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AN

CHAPTER I

INTRODUCTICN

One obvious aim of educational psychology is to seek optimal teach-
ing stfatcgies Toxr certaln recurring inst;uctional situations, based on
knowledge of the learning érocess involved. Undoubtedly, this aim is
implicit in most of the éxperimental work in this area. It is only
recently, however, that there have been serious efforts at formal déri-

-,

vation of teaching strategles from descrip?ﬂ&é\ﬁodels of learning
processes. There are a number of good réézbns hy formal study of this
problem has been neglected. Before formal derivation of a strategy can
begin, an expllcit, descriptively adeguate model of the learning process
un'er consideration must exist. Such models have been developed only in
the last twenty years for even the simgiest &garning situations. Given‘
an adequate descriptive framework, it is stiil necessary to formilate
the optimization problem in terms amenable to mathematidal analysis.
~-The developments in sequential decision theory and mathematical program-
ming (which now make such analyses feasible® have all occurred since
l9h5 Finally, formal optimlzation guestions were completely academic
prior tokzgg\EEVElopment of modern computer technology. The large amount
of record keeplng and simple calculation which must be accemplished in
brief time periods in order to implement. optimal proéedures effectively
limits the use of these procedures to computer-assisted instruction |

settings, Now that computer-assisted instruction is becoming more wide-

spread, optimization questions assume practical importance. This paper



is intended as a.contribution to the study of an interesting optimization
problem in a learning task which commonly occurs in instruction.

It aPPropriafe mathematical tools are to be brought to bear on an
optimization problem, it is>necessary tc place some rather severe re-
strictions on the nature of the learning situatiocn to be considered.

The present study is limited to situations in which the task is to teach
the correct responses to a number of stimulus items, using a paired-
asSociate teaching procedure; f; is assumed that the items are learned
independently, in the sense that the difficulty of learnirg an unknown
item does not depend on whather or not other items are known. Only one
item can be presented on & given trial and the total number of trials

is limited. The op+imization problem to be considered is to find the
best strategy for deciding which item to present a subject on a given
trial, based on his performance on previous trials.

There are two principal reasons_for conceﬁtrating ol the item-~
selection problem for paired-associate learning instead of considering
other learning paradighs which can be described reasonably well by exist-
ing models, e.g., simple cue learning. First, the optimization problem
for the paired-associafe case has received s féir amount of both
theoretical and empirical attention and the direction in which more
study is needed is fairly clear. Second, this paradigm is directly rele-
vant to some practical‘learning tasks, such as drill activities used in
the learning of vocabﬁlary iteps in second-language learning, the acgui-
sition of a sight vocabulary and a knowledge of phonics in initial reading,

and the mastery of spelling.




Two Strategies from Two Models

In subhsequent—chapters, three different strategies for chdosing
items to present will be examlined in some detail. The first two strat-
egies are based directly oh corresponding simple models of the learniné
process. The third strategy is also motivated by model considerations,
but the ccnnection between model and strategy is not as direct in this

case. ] -

The first strategy may be described as follows. Oﬁ a given trial;
present the item which has received the‘fewest preéentations up to that
voint. If more then one item satisfies this criterion, select the item
at random from the set satisfying the criterion. Upon examination, this
strategy is seen to be equivalent to the standard cyclic presentation
procedure commonly employed in experiments on paired-associate learning.
It amounts to presenting all items once, randomly reordering them, pre-
senting them again and repeating .the procedure until the number of trials
allocatea to instruction have been exhausted. This procedure will be
referred to hereafter as the RC (for random cyclic) procedure or strategy.

A ra-ionale for the RC procedure can bekprovided by a simple linear
ééggl of the learning process. In this mcdel, the state of the learner
with;respect to each item in_ a list depends only on the number of times
each item has been presented. The state of the learner is represented
by his momentary probability of error for each item. At the start of
instruction, gll items have scme initial probability of error, say ql;

each time an item %§ presented, its error probability is reduced by a
. .

factor ¢, which is less than one. That is,
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n+rl ~ 'n
or allernatively
n+i

. , ) o nno, ‘
When an item is presented for the n time, the reduction in error proba-

bility is given by

. n-1
® Y " 9,1 T ¢ (l~a)ql ‘

The fact that the decremenit in error probability fﬁr an item becoﬁes
smaller cach time it is presented leads naturally to the RC procedure.
The second strategy is more complicated tc describe, but the essen-
tial idea is very éimple: ignore responses prior to -the last error on an
item; present the item which nas received the fewest correct responses
since 1ts last errcr. If more i;@nl one item is eligible dccording to
this mle, select the item to be presented at random from the set of
eligible items Karush and Lear (1906, proved that this strategy is

optimal if the assumption that learning proceeds according to the sc-
#*

called one-element medel 1s valid. The strategy is optimael in the sense

that it meximizes the expected number of items learned in a fixed number
of presentations. For this reason, this strategy will be referred to
hegeafter as lhe OEM strategy.
//Ecccrdiné to the one-element mcdel a student is in cne of two states
with respect to each item at any given point in time:; the learned state
T,

. . , . . i
or the unlearned state. When an unlearned item is presented, it moves

inte the learned state with probability c. That is,



qa, with probability 1l-c

0, with probabilify c

Once an item ig iéarned, it rémains in the learrned state througliout the
course Of instruction, so there is no reason to present the item again.
A subject may respond correctly to an item e¢ven though the item is in
the unlearned state and’the subject is guessing. 1In effect, the OEM
strategy selects itéms for presentation that are most likely to be in
the unlearned state. ’&-
The lineaf model; which provides a basis for the RC procedure, and
the one-€lement ﬁodel, which provides a basis for the OEM procedure, are
the simples* models for paired-associate learning having any empirical
support. On the whole, the one-element model gives a better account of
data from experiments using the RC procedure, than the linear model; see,
for example, Bower (1961). The data which lead to . is conclusion would
also lead cne to believé that a given number of presentations allocated
to a list of items using the OEM procedure would produce significantly
better results than the same number of presentations allocated according
N to the RC procedure. The predicted advantage for the OEM strategy often
\fails to materialize, unless special modifications are made in the OEM
pyocedure. This anomaly provides the motivation for the developments
t& be reported in subsequent chapters.
Atkinson and Crothers (1964) reported data comparing performance
of several models of learning and retention which suggests consideration

should be given to procedures based on models taking forgetting phenomena

into account., However, it turns out that the performance of procedures

5




based directly on forgetting models is difficult to characterize in a
general way. The two strategies described above are special in two re-
spects, which make the relationship between model'anq strategy simpler
for them than it is in general. One special fzature both the OEX ;nd
RC procedure possess is that they maximize both immediate gain ih proba-
bility of correct response and glcbal gain over the course of %iijf’//
experiment consideved as a whole. It is the exception rather than the
rule for a procedure to be capablé of maximizing both of these guantities.
Another rat Ej rare property which these procedures have in common is
that imﬁiéﬁentation of neither one depends on the parameter values of
the model on which ii is based.

The approach to be taken in this paper is to use a general theory
of learning and forgetting to describe performance of three strategies,
the two already mentioned and a third hypotheticai strategy., This hypo-
thetical strategy is & modificaticn of the OEM strategy which would be
optimal under the assumption of the generalfforgetting medel if it could
be carried ocut. For reasons which will ve clear when theﬁgtrategy"is‘
described in detail later, the strategy woulé be impoésible to implement.
Nevertheless, the strategy serves as a useful bound against which im-
plementable strategies can be compared.

The rest of this paper is devoted to consideration of the relative
performance of the three strategies discussed above, using the general
forgetting theory as o mocdel framework. The forgetting theory and the
reasons for adopting it for this study are described in Cha;ter II; this
chapter also contains several counterexamples which demonstrate the
infeasibility of dealing with globally optimal strategies in the context

Tex Provided by E 3,



of the forgetting theory framework. Because it is not feasible to deal
with globally optimal strategies, it is necessary to take a descriptive
apprcach to the evaluation of presentation strategies. Chapter IIT is
devoted to the definition and derivation of formulas for operating charze-
teristics of the three strategies described above. These formulas are
then used in Chaptér IV to make numerical comparisons of the strategies
Jor selected special ‘cases within the general framework of forgetting
thééry. In Chapter V the conclusions of the study arc summarized and
implications for future research are considered. The results presented

in this paper are new, at least to the author's knowledge, unless other-

wise noted.




CHAPTER TT
A GENERAL FORGETTING THEORY AND ITS TMPLICATIONS

FOR PREGENTATION STRATEGIES

The General Forgetting Theory proposed by Rumelhart (hereafter to
be called the GFT) is a synthesis of several models which represent dif-
ferent-ways to generalize the OEM. These models retain much of the
simple all-or-none character of the OEM while introducing the factor of
forgetting, whicﬁ the OEM does not take intb account. The theory is
relevant to the problem being-treated here because the phenqmena of for-
getting could work in a vgriety of ways to undermine the OEM strategy.

There is considerable evidence now that forgeiting works in such a
way that the OEM strategy is not as effective as it theoretically should
be. *In an experiment designed to test the advantage of the OEM procedure
over the standard RC procedure reported by Dear, Silberman, Estavan and
Atkinson (1967), the advantage predicted for the OEM‘was not cbserved.
Experimental firndings of Hellyer (1962) and Greeno (196L), among others;.
suggest that when items are presented repeatedly within a short period
of time (as they often are under the OEM procedure), many are responded
to correctly on the massed presentations, but are then rapidly forgotten.
This interpretation is consistent with that of Dear and his associates.
Experiments which have shown thé predicted advantage for the OEM pro-
cedure, such as one by Lorton reported in Atkinson and Paulson (1972),
have modified the procedure to minimize the nunber of massed presentations.

The General Forgetting Theory

The GFT can be described as follows. At any given time, & subject

is in one of three possible states of learning with respect to each item;

8
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the unlearned stateJ the short term.retentlon state, or the lcag ~{erm

@

retention state. When an 1tem is presented tran51tlons between states

occur according to the following stdchastic matrixg

State on trial t+l . Probablllty of correct -
S L S U rpronse, given the state ‘
L [1 o 0 ' 1
State on ) .
trial t -c 0 i
U a b 1- Q b @ i °
L e /1

That is° 1o say, if an unlearned item is presented, then with proba- .
* L . o :

bility a it is-learned in'suchfavway'that it will be retained for a

relativeiy long time, with'prebabilitylg it is ieérned in such a way that
it is likely'towbe~foré6tten soon, and with_probability l-a-b it remains: ..

unlearned. - If an item-in'the short-term retention state is presented

“then ‘with probablllty c 1t Wl¢l Shlft to”the long tenn retentlon state, s

.and with probabllwty 1-n 1t will remain in the short term state. When-

ever an ltem reecheb the learned state, 1t remaaps there for the_duratidn
of the experlmvnt,

When an item in either the long- or short-term state is presented
{“

"the correct resppnse is' given with probablllty 1. If an un“earned item

is presented,,the correct responae Hc glwen with the gue551ng probabﬂllty g.
In this extended model‘it is necessary to con51der_what happens to
items which are not presented on a trial, Transitions between statés

occur according to the matrix



State on trial t+1

T 3 U
L |1 0 0
State on \\w/‘w
trial % S 10 1-f T
Uu 10 0 1

That is, items in the short-term rctention state are forgotteﬂ, with
probability f, while items in the long-term retention state or tﬁe un-~
learned state are unéffected.

If it is stipulated that thé parameter b in the learning matrix is
0, then an item can never enter the short-term state so {he model recuces-
to the OEM in this case. v

Perhapssthe quickest way to follow the character of the GFT frame-
work is todié;sider briefly soi:e of the other models which it encompassés
as special cases. Table 7.1 is in:ended to give the reader an abbreviated
natural his%ory of the l'ormulatica just given., The various special caées
ali assume 4 forgetting matrix of the form given above. They differ
with respect to the form of the leérning matrix. The differehces reflect
df fferences in assumptions regarding two separaté issues.

The earlier models all assume that some learning takes place when-
ever an item in the unlearned state is presented. Hggfe, thé.probability
of staying in the un}earned state is 0. The models differ regarding the
relative size of the probability of transition to the long-terﬁ state
from the unlearned ard short-term states, respectively. The model of

“Atkinson and Crothers {1964) assunes that these transition probabilities

are equal. The model of Greeno (1964) assumes that transitions to the
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Table 2.1
. Transition Matrices of the Learning Process for

Special Cases of the Generzl Forgetting Theory

- 'State on trial N+l Comments
L S U
L [1 0 0] One of the original
. versions of the long-
S & +-8 © . short model due to
U |a 1l-a 0| Atkinson & Crothers (196L)
L [ 0 0]
0 0 A coding model due to
_ Greeno (196h)
U a ~  1l-a 0
— _ -
Loopd 0 0 A partial learning
State cn S a 1l-a 0 ‘model dué to Bernbach
(1965)
trial N° v —O 1. ol
* . [21 0 0]
. , A general mcdel encom-
5 b 1-0 0 passing the three above -
U |a l-a O
L j1 0 0| A further extension
introducing an attention
S by 1-by 0 parameter y, due to
_ U |ay (1-a)y 1~y | Rumelhart (1967)
L [z o, 0
The formulation given
c l-c 0 . .
in this paper
U a b l-a-b
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long-te?mAstate;can only iske pléﬁ%lfrﬂm*thévunlearned,sfate, arrd the
model of Bernbach (1965) assumes that these transitions can only occur
from the short-term ;tafe. These three.ézdels all have learning matrices
depending on a single pérémeter. If one wiéhés_to leave the issue of the
relative size of these tr%nsitioﬁ.parameters open, ﬁe can do so at th%
price of introducing a second learning parameter, as indicaééd in the
fourth transition matrix in Table 2.1. *

In formulating his GFT, Rumelhart'leaves the issue of the relatiVﬁ///f
size of the transition‘probabilities open, and introduces a third param-
eter y, which he regards as.an attention parameter. If y is less than 1,
there is positive probgpi%ity that an item in-the unlearned state will |
stay there following a presentation. The final matrix, which corresponds
to the one given above, is- a very slight generallzatlon of Rumelhartis
formulation. Comblnationsuof a, b, and c in the final formulation for
which ¢ > a+b do‘not correspond to'any-possible combination of a, b, and.
y in"the fifth matrix. The cases of most concern in this paper satisfy
the constfaint c <a, so:the difference is essentially one of notational

 cbnvenience. Accqrding to Rumelhart; the introdqction of y results in
é;ma%kéd improvement in the fit of the model to his data. |

NQY let us consider the'impliﬁations of the GFT ffamework for pre-

- sentation strategies. It is well-known that the strategy which maximizes
immedjate gain in probabillty of correct reébonse can differ from. the
strategy which maximizes the global gain over the course of the experi-

r : : .
ment as a whole. The latter type of strategy is called globally optimal,

The rest of this chapter presents findings which together demonstrate

e

the need to leave the search for globally optimal strategies in favor of

[Kc S 12
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‘a detailed description of operating characteristics of certain selected
vtrategies. The crux of the aféﬁhent is that the globally optimal
strategy requires loocking more than one trial ahead in all cases of in-
terest; in the context of the general forgett;ng theor& this fact alone
mekes the globally optimel strategy very difficult to characterize iﬁ
a useful way. . ‘ |
It is unfortunate that the strdtegy that locks Jjust one trial ahead
it not globally cptimel, because this strategy is mathematicall& simple
and intuitively reasonablég There gre very clear interpretations. of this
stratggy,in_each of the special®cases of the GFT framework described
‘above. EBach of these is & plausible generalization of or alternative to
the optimal syratégy,corresponding to the one-elemeinit moiel. But counter-

examples will be provided to show that none or these are globally optimal.

Strategies Maximizing Immediate Gain

Let 2, , s, ., u, ve the respective probabilities that item i
t,n? “i,n’ "i,n
is in the long-term, short-term, or unlearned state on trial n. Let

Bi 0 be an indicator variable which is 1 if item 1 is presented on trial
n, 0 if it is not. The probability that item i is in the long-term re-

tentior. state on trial n+l is given by

2, + 8 _ (cs +au, ) . o L
' : i,n i,n i,n i,n

»

The expected gain in number of items. in the long-term state on trial

n+l is given by -

I I :
S 2 - ) = .
i?:l 1,0+l ié_v«l i,n 2. O n (o855 o+ &Yy )
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Clearly, the expected gain is maximized if we present the items with

largest values of cs, + au .
: i,n i,n

In the special case a = ¢ this amounts to preéenting the items with
the largest values of Si,n + ui,n’ or the smallest value of ﬁi,n’ Hence,
in this case the stratggy maximizing the immediate gain is a generaliza-
w‘tion of the one-element model strategy.

In the special case ¢ = O the expected gailr is maximized by present-
ing the items most likely to te in the unlearned state, which is a dif-
ferent_generalization of the OEM strategy. 1n the case & = O immediate
gain is maximized by presenting the items most likely to be in the short-
term state. These comments are summarized a&s.a theormm for future reference.
Theorem 2.1. ILet ﬂi, 55 angd u, be the state probabilities for item i
on & given trial, and let a and ¢ be the transition probabilities for
moving to the‘;tate L from state U and S, respeétively. Then the expected
immediate gain is meximized by presenting the items with largest values

of

G. = 8u, + ¢s,
i i i

In the case & = ¢, this is equlivalent to presenting the items least
likely to be in L. In-the case a = Q, it means presentiﬂg the items
most likely to be in S. 1In the case ¢ = 0, it means presenting the
items most likely to be in U.

Counterexamples to Demonstrate Non-optimality of Maximizing Immediate

Gain

When Karush and Dear (1966) established the globsl optimality of .

the OEM strategy, they did so by first deriving the strategy maximizing

Lt '



the immediate gain and then showing by an induction argument that this

strategy is, in fact, giobally optimal. Their approach to the character-
ization of optimal strategies will rot cexrry over into the GFT framework,
as the counterexamples to be presented will show. A counterexample will
be described for each of the special cases mentioned in Theorem 2.1. 1In

each of these cases, the strstegy maximizing immediaté gain focuses all
/\\
attention on a single state probability, igncring the other two.Q/The

thrust of the counterexample in each case 1s to show.that the other two

state probabilities carry important information.

Case 1: a = 0. It is perhaps easiest to see the necessity for look-
ing ahead more than orne stage by e#amining tﬁe speéial case in which each
item must pass through the short-term state before it can reach the long-
term state. That is, the probability a of making a direct transi%}on
vfrom the unlea{ned state to the long-term state gquals 0. In this
speeial case; fhe policy meximizing immediate gain is to present the
item most likely to be in 8. If all items start out in the unlearned
-state, all have probability zero of being in S. After the first item
is presented, it has positive probability of beifg in S and will continue
to have for the duration of the experiment. Since the other items would
still have probability zero of being in S, the policy maximizing immed-
iate gain would be to countinue to present the first item indefinitely.
There is nc immediate gain to be had from presenting a new item once,
because it wlll just go to the short-term state, but there may be con-
siderable advantage in presenting it twice. The strategy maximizing

P
immediate gain ignores this possibility.
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Suppose A and B are two unknown items and four trials are available

for teaching both of *hem. Suppose the parameter values are a = 0,
b=1l,c=1"° =.:5 for both items. The strategy maximizing immediate

gain would devote all four trial; to one item. It is easy to verify

that a better strategy would be to present each item twice in suCCessionf
*This example is logicaily sufficient to prove that the strategy maximizing
immediate gain is not in géneral the globally optimal policy in.the GFT ‘
framework. It is still possible that such strategies are globally op-
timal for aome other special cases. Two more examples will be given to
show that this is not the case in the instances o}'ﬁost interest in the

present study.

Case 2: & = c. It was shown earlier that when a eguals ¢, the

"strategy maximizing the immediate gain is to present the items least
likely to be in L. 'Suppose two items, A and B, are not in L. Suppose °
A ls in state U and B is in state S. Which item should be preseﬁted on
the néxt trial? From the point of view of immediate gain it makes no
differcnce, because the propability of either item making the transition
to state L is the same; that is, a = ¢, However, from a longer term
point of view it does make a difference. If item B is presented, it will
be responded to correétly; if item A is presented, it will likely be re-
Hsponded to incorrectly. The incorrect response would be informative,
letting the experimenter know that thé item was certainly n;t in L before
its presentation. Thus; it would bejpreferable to present item A.

The preceding argument is not completely satisfactory because it is

assumed that both A end B are not in L, so presenting A is not as infor-

mative as it seems. But the argument would apply to & case where A and
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B have the same pcsitive probability of being in L but‘i'is more likely
to be in U than is B, This situation is likely to arise in practice.
For examéle, consider the case where a8 = b = c'= f=g= .5. The se-
guence of events given ir Figure 2.1 consists of an initial phase and
two alternative strategies for a second phase. At the end of the initial
phase both items have probability about .79 of being in L, item B hés
..probability O of being in U, vhile item A has probapiiity .10 of being
» in U. The strategy meximizing immediate gaein would be indifferent with
ragard to which of the two slternatives to follow. Direct numerical
nalculations demonstrate that it-would bé preferable to present A first.

Case 3: ¢ = 0. Table 2.2 gives a sequence of evenis to show the

need for looking more than one trial ahead in the case ¢ = 0, a=>b= .25,

f

it

g = .50. (Tt is still a two-item list under consideration.): When
¢ = 0, the strategy maximizing immediate gain is to pfesent the items
most likely to he in U. The ideg behind this example is a simple one:
itkcan be advantagscus to refrain from presenting an item, even if it is
the one moét 1lik=ly to be in U, if waliting will significantly ‘increase
the probvaocility of being in U, It is necessary that there be another
item availabvle to present whose prospect for immediate gain is nearly
as_gouod.

This example also consists of two phases, the first phase showing
how two items could come to have certain critical state probabilities
under the policy of meximizing immediate gain, the second phase showing
the advantage of looking two stages ahead instead of one, given these
stete probanilities. At the end of the initial phase the state proba-

. 1 1 1 6 3 7
< 4 . - - . -
bility vectors for items A and B are (h’ i 2) and (ig’ %’ 18 Y,

O
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Table 2.2

Sequences of Events Showing Policy of Maximizing Immediate

Gain is Suboptimal When @ = b = .25, ¢ = 0, f = g = %.
Initial phase under
policy maximizing
immediate gzin: A+/B+/A+/B~/B+/A-/ continuation

Continuation under

MIG poliéy: A +/B
Better continuation: B +/A

Note: Letter indicates item presented; the sign following
the letter indicates the correctness of the response,
where + means that tlie correctness does not influence
the decision regerding which item to present next.
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respectively. Since % > %é’ the pclicy maximizing immediate g=in would
be to present A next. If & is presen;éd, the siate probabllities on the
next trial will be such that item B will be presented on the final trial,
whether the response tc A is correct or not. ~éimilarly, if item B is
presented first, item A should be presented on the final triel. Direct
calculafionérshow that the latter policy is slightly preferable.

These examples show that glcbally optimal strategies in the GFT
framewory genérally require more than maximization of immediate gain.
They do not show that the sfrategy maximizing immediate gailn is never
optimal. It obviously is in the special case where the model reduces
to the CEM, when b = 0. Even if b is positive, if 1t is sufficiently
small, it will have no bearing on the optimal strategy. The implications
of the counterexamples given above concern wrat can be said in general
about globally optimal strategies without specifying the exact values
of the parameters. The fact that we can say very liitle suggesits that
a descriptive approach permittirg comparison of sirategies witn one

anothér, but not wicth the gictally optimal strategy, would be approprizte.
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CHAPTER III
OPERATING CHARACTERISTICS OF THREE

PRESENTATION STRATEGIES

A reasonable model of learnihg should enable one to make & varie?y
of predictions about the overall siate of a list of items, provided the
items are presented in a certain way. The presentation proce@ure used
most often in the evaluation of learning models is the RC procedure dis-
cussed earlier. When this procedure is used, sample statistics corres-
ronding to expressions for the trial of last error, tﬁe probability of
error given the last resp;nse to the Item was an erfor, and other
_ descriptive statistics of interest can be célculated and compared with
theoretical predictions.

Matters become mocre complicated when presentation procedures other
than the RC procedure are employed. For one *hing, the meaning of the
descriptive gtatistics which are of interest may change when other
procedures, such as the OEM strafegy, are used. For example, under the
CEM strgtegy the nﬁmber of presentations varies widely from one item to

"trial of last error" means something different than it

another, so the
does under the RC strategy. Another difficulty which arises concerns
the derivation bf theoretical expressions for statistics cf interest.
Indeed, it is only in exceptional ceses that it 1s possible to derive
explicit expressions for guantities of interest. Usually, the number
of times each item is presented, and when, is subject to such avvariety

of contingencies that explicit calculations are not feasible. As an

illustration, consider the case of the strategy maximizing immediate
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gain within the GFT framework. The item to be presented on a giveﬁ~trial
is the item having %ﬁé Eighest value on an index which is a function of
the parameter values, the number cl correct responses since the last
error, and the number of items ihtervening btetween each of these correct
responses. Direct calnuiation of exact theoretical formulas of interest
in this situation appears 1o be hopeless.

The sitvation 1s 70t as bleak as this in the case of tkh» JEM strat-
egy because there is-a pattern to presentations under this procedure
which'serveé as a natural vasis for summarizing the overall state of the
items. This pattern w:ll be descriﬁed in some detall, because it serves

as a basis ,for mcst of the theoretical derivations in this chapter.

Presentation cycles ard "almost" sufficient histories. Under the

OEM procédure ifémsvare presented in a series of cycleés which are similar
in many respects to'trials ugggr the RC procedure. Each item receives a
specified treatment on each cycle. The différence between the RC and the
OEM procedures. liec in the fast that under the OEM procedure the treat-
ment of an item may involve several presentationg, whereas under the RC
procedure treatment consists of a single presentatibn per item per trial.
The cyclic structure of item presentations under the OEM strategy
arises in the following manner., The'strategy says to present an item ¢%ﬁ’wc
whenever the string of consecutive correct responses to it is shorter
than the correspondiﬁg strings f§r the other items, If several items
are fied at a given pcint, the choice is made>on a random basis. At the
beginning of a cycle this index is the same for allritems. If an-item

is presented and receives a correct response, its index is incremented
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by 1 and is therefore greater than the indices for the other itehé. It
will not be eligible fér presentatipn again until all the other items
reéch the same level, i;e., until the cycle has been completed for all
tke other items. If, on the other hand; the item is responded to in-
correctly, its index is reset to 0, so it is lower than all other items
and will continue to be lower until repeated presentations.bring it back
to their level.
N

Denote by cycle n those presentations required to movéithe iist
from the place where all items have been responded fo correctly n-l
times in a row to the place where they have all been responded to cor-
rectly njtimes in a row. Most of the operating characteristics of
interest in describing performance under the OEM procedure, such as
cycle of 1asé error, probability of error, and cumulztive number of
preseﬁ%ationg; are functions of the cycle number.

When the OEM is an accurate description of the lgarning process,
the cycle number is a sufficient histor& for describing the state of a
list of items becmuse for every item in the 1list the dycle number is
equal to the number of correct responses since the last error. The lag
between successive presentations of a given item is irrelevant. If for-
gettiagz is taken into account, as it is in the GFT framework being
considered here, then the lags become an important factor. .Strictly
speakihg, given a GFT model a sufficient history for each }tem involves
the number of correLt responses since the last error and the number of
intervening items presented between each of these correct resﬁonses.

Fortunately, it is possible to simplify this sufficient history in the

case of the OEM procedure with negligible loss of information.

IToxt Provided by ERI
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The following observations are the justification for the simplifica-
tion of the sufficient history of an item which will be referred to as

an almost sufficient history:

1. When an item is presented on a cycle and the response is cor-
rect on the first try, the item is not presented again on that
cycle, so it is safe to assume that many interveping items will
be pfesented before that item is presenFed again.

2. When an item is prusented on a given cycle and the responée is
an error, there follows a string of presentationstf the item

‘ without any intervening items, culminatiné in a string of pre-
sentations with cg;;;ct-responses whose length is l~less than
the cycle number. The last correct response is made aféer a
number of intervening items have been presented.

As a consequence of these features of the CEM proceduze, the state

of an item at a given point in the instructional process is essentially

determined by its cycle number and the cycle of last error. The string
of zorrect responses on the cycle of last error has lag O between each
presentation except “or the last presentatioh. It and the correct re-
sponses on subsequent cycles have what may, for practical purposes, be.
regarded as infinite lag. Therefore, s = O for these presentations,
where s is the probability of the item ﬁéing in the short-term state.
Thus, the cycle number indicates the number of consecutive respbnses to
an item and the cycle of last error indicates the lengths of an initial
block of presentations with no intervening items and a final block of

presentations with many items intervening between them.
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By conditioning on the cycle number and the cycle of last error,
it is possible to calculate approximate theoretical expressicns for a
number of statistics of interest when this presentation procedure is
employed. These calculations will be carried out in the next section.
Subsequent sections will discuss corresponding expressions for other
procedures. The other procedures to be treated include the RC procedure
and the hypothetical procedure that serves as a baseline for coﬁparisons
to be made in the next chapter. This hypothetical strategy will be re-

ferred to as the modified OEM procedure. This is the procedure that

wduld result if one were somehow able to introduce very long lags
between the several presentations of an item which has been responded
éo incorrectly on a given cycle. This hypothetical procedure is better
than any procéaure that can really be carried ocut, so it serves as a
useful bound in determining how clcse a suboptimal procedure 'is to being
optimal. It serves this purpose in the place of the optimal strategy,

whose operating characteristics cannot be determined in practice because

the strategy 1tself is unknown.

Operating Characteristics of the QOEM Strategy

The basic statistic for describing performance under the OEM strat-
egy is the expected number of presentations per item required for each
cycle. Every iiem recelves exactly one presentation on the first cycle,
but on subsequent-.c¢ycles the number of presentations is a random variable.
Define three random variables for each cycle k > 2 as follows. Let-

P, = number of presentations required for an item to complete

k
cycle &4,
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Wk = number of presentations following an error required to
obtain a sequence of k consecutive correct responses, and,
ek S the probability of ‘at least one error on cycle k for a given
)

item (the reason for the double subscript will become clear

‘late;).

i

Now

1l , with probability l-x
T Tk,k

14+W, , with probability =,
.‘»,

K’ k °

'Tnerefore, we have

(1) EP, = 1+ nk’kEWk .

The key task of this section is to find =« and Ewk. The main ideas

k,k
to be used in accomplishing this task apply to & broader class of models

S

than the GFT framework, so they will be set forth in some generality.
Then specific approximations will be obtained for the GFT framework.

General Formulas

The distribution of Wk. The crucial fact to note ahout Wk is that

it is the waiting time in a terminating renewal process, in the sense

that Fellér (1969, p. 186) Gefines the term. A renewal process is a
stochastic process whose characteristic featufé is that there is én
event which sets the process back to its starting point whenever ik
occurs. Such en event is called a recurrent event. We may regerd wk
as the waiting time for the first occurrence of a sequence of k con-
secutive correct responses following an error. The occurrence of an
error 1s the recurrent event which resets the probabilistic structure
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of the process. Renewal theory provides a fundamental'relationship be-

tween the distribution of W, and the distribution of B

Y B the waiting

time for the next error. Actually, the distribution of Ek is defective
because there is positive probability that the cycle will terminate before
there is another error on the cycle (hence, the term terminating renewal

process). For this reason, we also consider the conditional distribution

of Ek’ given that there is-another error on the cycle.

Let
P(wk = n) e Vi n ¢
and let
P(Ek ='v)‘= %,y for v = 1l,.s0,k ,

and

P(process terminates without an error) = ek,k+l .

The conditicnal distribution of E , given that another error occurs on

k’
‘the cycle, is given by

e .
P(E, = lek = v', for some v' = lje.. k) = 1-ek — .
K, k+1

Let the conditional random variable be denoted by E;. The generesting

function for the distribution of E; is then

k
1 v
(S) = Z € S -
I-C k41 vl oV

i

[+

et GWL(S) = w%'nsn be the generating function of W.
k n=0 "
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Theorem 3.1. Consider any model for which the occurrence of an error on
cycle k is a terminating recurrent event. Then conclusions A, B, and C
below follow.

A. é&he distribution of wk is given by

-
G for n<k
2 - -
(2) wk,n ) ek,k+l for n=k
k R
W ¢ > .
Véé ek,v e ey for n>k

B. The generating function of W

" is given vy

k
e 5

) ' K, k+1
(3) gwk(s) i 1’(1"ek,k+1)gE§(S) |

C. The expected value of wk is given by

- ) —E
R \\

Before proceeding with the proof of the theorem, it would be good
to in£erpret the terms on the right—hénd side of Equation 4. Egquation
b states that the average number of presentations required following an
error on cyéle k 1s the sum of the numbef of consecutive correct reséonses
required, k, and the number of extra responses made necessary by further

errors. The latter term is the product of l-e the probability of

K, k+1°

further errors on the cycle; E;;L——y the expected number of errors on
k,k+1

the cycle; and gﬁ;(l), the average number of presentations per error.
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These quantitié% depend, of course, on the exact nature of the particular

learning model being considered.

Proof of--the theorem. It is obvious that w =0 for n < k. The

k,n

waiting time for k consecutive correct responses is equal to k with

probability e

K, kel If wk >k, there must hgve been an error on some
presentétion v =1l,.c.,k. The probability that Wk =n, given an error
on presentation v, is w . The expression for v when n > k in

k,n-v k,n
Equation 2 is the weighted aveiage of the Y n V‘s, Teken together,
;-

these commenfs Justify Equation 2.
If both sides of Equation 2 are multiplied by s” and the results

for all values of n added together, the result is

k < n
(5) 8U (S) = € s + z z e A s
" k,ktl neksl vl k,v k,n-v
k : -
k v n-v
“k,k+1° F z& “i,v® | g TEenev®

k
e sk
- kK, k+1l
= T : s
which is Equation 3.
Differentiating Equation 3 yields
- k-1 k, . .
[l'(l'ek,k+1)gE;(°)]kek,k+1s ek, k+1° (l—ek,k+l)gE;(s) h
.
gy (s) = 5 :
k [1-( l‘ek,ku)ga;( 5)]

Letting s = 1 and noting that gE*(l) = 1, we obtain
k
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" l-e

:1k_lh_k_+£ 1),
gwk( ) ’ K, k+1 E;( )

which justifies Equation 4 and completes the proof.

Recursion formulas for computing The general formulas for

"k .k’

to be given are valid for any model of learning for which

ti
computing Hk,k ‘
the initial probability of a correct response is & guessing probability.
However, they are really useful only if the model is one for which con-
ditioning on the cycle cf last error leads to a simplification or a

reasonable approximation, as is the case with the GFT,

Iet q be defined as follows:‘
k,n

P(Error on cycle n]cycle n-1 Just completed,

no errors on item yet), for k = 0,
qk’n =
P(Error on cycle nlcycle n-1l juvst completed,

last error on cycle K), fork = 1,...,n-1 .

Similarly, let m, be defined as

b
P(No errors on item|cycle n just completed), for k = O ,
b1 =

k,n
P(Last error was on cycle klcycle n just completed),
for k = 1,...,n .

Note that according to this definition =« is the probability that

k,k
the last error was on cyclg k, given that cycle k has Jjust been completed.
But this is Jjust the probability that there was an error on cycle Xk, which
accords with the definition of “k,k given earlier. Also, note that qk,n
is not defined for n = 1. It is not needed and the definition makes no

sense in that instance.
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Theorem 3.2. can be computed in terms of q 's with j,v < k using

¢ :
K,k JsV
the following relationships.

(68) jTO’:L =g 5 ﬁl,l = 1-g 3
_ n-1

(6b) To,n = B l_L (l—qo,k+l) , for n>2;

- 1

(6c) ¢ =1 (l-q, ), for J>1, n>J;

J,n J}J V=,j+l J,V B
. k-1
(64) ﬂk,k = -1 qi,k , for k>2.

i=v

The Justificatién for Equation 6a is that nO,l and nl,l are the
Iespective proportions of items having and not having correct responses
on the first presentation. 'Since items are assumed tc be unknown at the
outset, the values are g and ltgaﬁ‘The relationship expressed in Eguation
6b says simply that the probability of no errors on an item through cycle
n.is the product of thé probability of guessing correctly on the first
cycle and the appropriate conditional probabilities of not making an
error on succeeding cycles.

On cdmpletion of cycle n, where n > j, the proportion of iéems
whose last error was on cycle j is the proportion of items with an error
on cycle J and no further errors through the nth cycle. This is the
celationship expressed in Equation 6c.

The formula given in Equation 64 expresses nk,k as the sum of the
conditionel probabilities of error on cycle k, given the cycle of last

error, each weighted by the probability that it was the last error.

O 5 completes the proof.
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In order to use Theorems 1 and 2 to £1nd ‘the expected number of
presentations on cycle k for a specific model of the "learning process,
it 1s usua}ly necessary to have explicit expressions in terms of model
parameters éor the following gquantities:

Ao, The qk,n's, tﬁe conditional probabllities of error on cycle n,

given the last error was on cycle k.,

B. The probability of no furthsr errors on the k 0 cycle following

an error on that cycle, ek,k+l°

Ce 'The conditional distribution of the waiting time for the next

error following an error on cycle k; given that there will be
another.error on the cycle, and its mean,

Before derlving expressions for these quantities in the general
GFT case, it should be noted that the calculations can be simplified
conslderably in the important speclal case where Greeno®s model applies.
The calculation of the qk’n's can be avoided because a formula giving

the approximation for x can be derived directly. The other guantities

Kk

of interest are simple functions of x and the cycle number,

K,k

Theorem 3.2a4. When Greeno's model applles, can be approximated by

Ty k

the following formula.

l-g when kK = 1

! gy | K2
(1-g)(1l-a) ;EférE:%T y foxr k>2,

Proof. The formula is obvious for k = 1 and 2, It needs tc be

. . (1-a
demonstrated that “k+l;k+l = E%érifgi “k,k’ for k > 2. It suffices

to show that P (In state U on cycle k+l}In state U on cycle k) = E%é%igéf .

Tk ©
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An item must be responded to correctly in order to complete a cycle. If
an item is in U at the start of a cycle, one of three things will happen:
a correct response by gugssing and no transition to the long-term state
(with probability g(1l-a)); a response, correct or incorrect, followed by
transition to the long-terﬁ state (with probability a); or an incorrect
response and no transition to the leng-term state {with probability (1-g)
(1-a)). In the latter case, there follows a make-up sequence of presen-
tations, which are useleés if Greeno's model holds because the item is
trapped in the short-temm state. Then intervening items are presented,
and finally the item is triéd once again. By this time the item is back

in U (according to the approximation assumption), the process starts over

and is repesied until one of the first twoc situations obtains., Thus

P(Uk+llUk) - slae) VZ% [(1-g)(1-2)1" = a+g11?a ’

as required.

ApproximationsUnder the GFT -

Theorem 3.3: A formula for QY pe In terms of the parameters of the GFT .
2

v

presented in Chapter 2, the conditional probability of an errer on cycle
n, given that the last error was on cycle k, is approximately given by

the following formul=z.

o~

(l-g)(l-a) g(1-2) )" fork = 0, n >2

(g(1-2)]™ -—gﬁ—ayu lg(1-2)1"7%)

fle

(7) .qk.,n 9

n-k-1

L (g(1-2)] (1-g)

[ 1-
1Ly l-g(l =7+ Iy Togriay (e(1-a)]

nRo1 0 for k>1,n>k
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~ %

where Lk P (In state Lfmake-up seguence of length k just complieted)

and Lﬁ = 1~Lk.

Proof. The expression for 9 n will bte developed first.

P(no errors through cycle n-1, error on cycle n)

qO,n P(no errors through cycle n-1)

(1-g)[g(1-2) 1"t

n-2

glg(1-a)1"2 + 2. aglg(l-a
v=1

ile

)]v-l

(1-2;) (_La) [g(1-a) ]2 -
[g(1-2)1" -Eri-gy//}ﬁﬁ(l-qil

n—2

as asserted.

In order to develop the expression for qk'h when k > 1, let the
7

events A and B be defined as follows.

= {error on cycle n}

B - {last error through cycle n-1 was oa cycle kJ.

- _P(ANB)
qk,n = P(AlB) - P B -

The event B will occur if there is an error on cycie k, unless the item

Then

is still not in’'state L at the end of the make-up sequence in cycle k

and there is another error before cycle n. Hence

n-k~2 v
nk,k(l - Li(1-g) 2. [e(l-a)]’)

it

(5)

: 1- . 1-. -k-1 _,
(L - TogTay I * Termey (1)1 1)
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The event ANB will occur if there is an error on cycle k; and a series
of correct guesses and failures to go to state I on subseguent cycles,
ended by an incorrect gucss on cycle n. The probability of this event
i iven b ;
58 v =

n-k-1

P{(ANR) = Ty x Ll;[é(l-a)] (1-g) -

xDiVidiﬁg this expression by the exﬁfession just derived for P(B) yields
the fonnﬁla for qk,n given in Equation 7.

As one might expeczt, the gquantities remaining to be calculated are
closely interrelated. It is necessary to know Lﬁ in order +o use Equa=-—
tion 7 to compute qk,n' It will soon be seen that it 1s necessary'to
know ek,k+l in order tc find L!'. Calculating ek,k+l involves the deter-
mination of the distribution of the waiting time for the next error. It
will help keep repetition to a minimum if we can refer to some basic
quantities involved in the several separate calculations. The breakdcwn

of Wk given in Figure 3.1 suggests what these guantities might be. Define

five new random variables as follows.

KU = the number ot presentations in criterion run on cycle k in
state U.
KS,KL = the corresponding random variables for states S and L.

E: U T the number of presentations in state U following an error,
2
given that thnere will be another error on cycle K. —

the correSPOLGing random &ariable for state S.

i

B8

2

It turns out that the remaining calculations in this sectlon will be

expedited ty considering the joint distributions of}(KU,KS,K;) and

N
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* * . .
(Ek,U’Ek,S)’ respectively. Note that

2]

W, KL oF K. o= koand I ¥ .
3 -

S s
U O L e K’U ‘-“Ii)b k

E . e . . N £ ¥ X . . . - T . s
The joint distribution of (BL,U’ER,S) is a conditional distribution
given that another error is going to ocecur. For this reeson the proba-
bility of the simple sequence of events that results in the event
* * : c . .
== E = ,E 2 m : -
{Ek,U ’EK,S m} for some £ and m must be divided by 1 ® kel 1P

order to find P(E"}’;,U = BJEE,S = m). Figure 3.2 shows a classification

of points (£,m) having positive probability into three types such that
the probability expressicns are similar for points within a type. The
figure applies to the special case k = 4. The redder can easily verify
the following assertién if he bears in mind that presentations in a make-
up seguence on cyéle k are contiguous until there are k-1 precsentations

recelving ccorrect responses, in which case a numnber of items intervene

before the next presentation. Let y = g{l-a-b). Then

IRt = - e
(l'ek,k+1)P\Ek,U = £ Bes ™ )
2 i
v T (1-a-b){(1-g) , for £=1,...,k-1; m=0;
8 Te k"‘l -
(8) = y o (l-a)(1-g) , for 4£=k; m=0;
£-1 | k-2 :
¥ b(1l-c) (1-g) , for £=1,...,k-1; m=k-£ .

Figure 3.3 gives a classification of points (£,m,rn) having similar
- P -~ 1, — -r . - - 3 ) . ”
expressions for ek;k+l F(Ky = ﬂ,ns = myK, = n). A suitable approxima-

tion for this gquantity is given by
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Case I: No passage to S, finally guess
correctly.

Case II: Whether or not passage to S taekes
. place after (k-1l)st correct guess
does not have any bearing, since
many other items will intervene

before next presentation.
Case III: Passage to S means that error N
4 will occur on last presentation,
° if at all.
kK =L
3 ° "«ﬂn‘—,v"‘
2 ®
= l L]
m=0
Figure 3.2. Classification of points (£,m) having similar

i -{1- 3 = 2 L=
expressions for-{1 ek,k+l’P<E:,U ’E;,S m),
where E¥- , E* _ are the numbers of presentations

k,U’ k,S
in the respective states in a run culminating in

an error on cycle 4,
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items.

k=14

Impossitie case (according to the approximation
4:”’/'assumption)vbecause item cannot be in S on last
presentation in criterion run due to intervening
L
\

Figure 3.3. Classification of points (£,m,n} having similar
K, k+1 P(KU = E’Ks = m,K

where KU,KS, KL are the numbers of presentations

in the respective states during the criterion run

expressions for e =n).

on cycle kL, , : a
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€ k1 Py = £,Kg = mK; = n)
( A
lg(l-a) , for £=k; m=n=0;
£
ay , for £=0,...,k-1; m=0; n=k-£;
(9) = - ,
l b{ 1-c )k- , for Z£=1,...,k-1; m=k-£; n=0;
k m-nb(l-c) ¢, for £=Kk-m-n; m=l,...,k-n; n=1l,...,k=-1.
The value of e can be calculated either by adding the results

K,k+1
of Equation 9 for all ellowable values of (£,m,n) or by adding the re-

sults for Equation 8 over all a pnssible values of (£,m) and subtracting
the outcome from 1. The latter course is simpler because it avoids a

messy double summation.

k-1 k-1+
®k,k+1 2 1-(2-g)(1-a)/"" - EZ; “}(1-a-v)(1-g) - 2 (1-g) 7" b (1-c )
(10)
k-1
= 1-(1-g) ((1-a)7%"1 4+ (2-a-v) & T+ b — ((1- eyl k=1yy
e

)

e 2
h;}Je§pression can be simplified significantly in some important special

EN
cases. .
i k-1 :
1 - b(1l-g)(1l-c) , when a+b = 1, ¢ > 0;
" . J l- l"a k -
(11) ek,k+l = 1~ &——%%é———l-(l-y ) , vhen a+b < dy c = O;
L1 - b(1-g) : , vhen e+b=1,c=0.

A formula for L'. It was noted above that the formula for q
k,n
~2

given in Equation 7 presumes knowledge of Lﬂ. For k = 1, L = a, and

L' l - a because items are Just presented once on the first cycle,

EKC 4o
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regardless of the correctness of the responses. In order to derive an

estimate of Li for k > 2, define events A, B, and C as follows.

A = {Error on cycle k)
B = (Efror on cycle-k; eycle k completéd with no further errors )
C= [Error4on cycle kjy cycle k completed with no further errors,

but item fails to meke transition to state L].

The fact that CC BCA and P(A) >0 implies that

Lt = P(c|B) =4§%{% ,

k.#+l’ which was Jjust derived. The quantity
;

P(C|A) can be obtained by multiplying Equation 9 by l-a and adding over,.

The quantity P(B|A) is e

those possibilities for which KL = 0. That is,

=l = = i < .
©) k4l P(KU_ LK ‘_Q,KL 0 and no transition to-I-takes place

after correct guess on last response) -

fl

(1-8) e = k-£,K = 0)

K, k+1 Py = L,Kg

E- . ) .- .
y lg(l-a)_2 for £ = k-

- -2 : ' B
gyz lb(l—c)k {(1-a) for £ = 1,...,k-1;

.and

P(cla) z}jl (1-8) ® el B(K, = £,Kg = k-4 ,K = 0)

k-1 | )
k-1 2 2-1 . \ked
7 e(la)” + ) g b(l-c)"(1-a)

' ’ k;l‘, £-1
7 Le(1-2)% + bg(1-a)(1-c)*} pc)

i

‘ o ) ! ..' ) hl,




Y lg(1-a)2 4 DBLI8) [y k-l _ k-
A '

l-c
- g(1-2)[(1-a - —2—)"t 4 B (1)),
1- L A
l-c l-c

This formula also simplifies in important special cases:

p(cla) = g(l--a)b(l--c)k-l , when a+b=1, ¢ >0;

4
<(l-a)7k + bg(l-a) when a+b <1, ¢ = 0;

-y . 7
| vg(1-2) ", when atb=1,c=0.
Finally, the formula for Li fork > 2 is
L} = Bc[a)
© Sk, k4l
(12)
b\ k-1 b (k-1
g(1-a)[(1l-a- ——=)y" " + —— (1-c)" ]
R A A A
_ l-c l-c
) k-1 15ty k-1 k-1
1-(1-g) ((1-a)y " + (1-a-b) T+ ((1-e)™""y"771)
7 1-L

In the special cases ;rentioned above, Equaticn 12 becomes

[ g(la)b(1-c)*"
1-b(1-g)(1-c)*

, when a+b

1, ¢ >

(13) L =

! (1-a) ((3-7)y s vg] ,
1-y-(1-g)(1-a)(1-7%)

when a+b <1, ¢ =

when a+b

1
[
-
0
n

1-b(1-g ’

L2

0;



It might be noted that the formula for ql,n given in Equation 7
reduces to the formula for qo’n when l-a is substituted for Li. Equa-
tion 13 can be used with Theorem: 3.2 and 3.3 to compute estimates of
T k" Theorem 3.1 tells us how to compute Ewk (and hence EPk) given
"k,k’ ek,k+l’ and p(E;), the mean waiting conditional waiting time for
another error following an error on cycle k, given that there is going
to be another error. Approximations for all but the last of these

quantities have been given above.

The disiribution and expected value of E;. Since E; = Eﬁ,U + E;,S’

we can use Equation 8 to write
: *

2 ((l-e ) P(E; U:v,l-:; g=0), for v = 1l,...,k-1;
J J

K,k+1
k=1

"k, k1) m§0

* = g = k¢
(1 P(EK,U-R m,E;,S\m), for v = k;

et

r

= 7v'l(l-a-b)(l-g), for v =1,...,k-1;

k-1 ook m )
7 (1-a)(l-g) + T 7o b(1-c)™(1-g), for v = k;
L m=1

~

:_- 7v-l(l-a"b)(l'g), for v = l,ooo,k-l;

4 7k'1(l-a- -%JL:)(I-g) + ?%iigi (l—c)k'l, for v % k .

l-c l-c \\\\\\\~

In the special cases, Ecuation 14 becomes

'.J
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5 - ) *
(lz‘) \&ek,k‘!‘ll P(Ek V)

b(l—g)(l-c)k-l , for v = k;

0 , Otherwise, when a+b =1, ¢ > 0;

“l(1-2-b)(1-g) , for v = L,u..,k-1;

L 7k—1(1-a— 1?7)(1-6 —{‘-Ji} , Tfor v = k when

a+b<l,c=0;

©(1-g) , for v = k;
l and ¢ = Q.

1

0 ; Otherwise, when a+b

L

Straight forward summation of series, omitted here for the sake of

. + 3 ) L L - *
nbrev1ty, results in the following expression for (1 ek,k+l)“(Ek)°

(16) (l'ek,k+1) u(EY)
- (1-8-b)(1-g) [1221{'1;@-1)?‘}‘]
(1-7)°
+ k[yk-l(l-a-- {1-g) ————%l (1- c)k l’
1- 973 Y

The restriction that ¢ = 0 does not in itself produce any signifi-

cant simplification in Equation 16. The restriction that a + b = 1 does,

however. In this case

(17) (1-e, k+l)“(E ) = (kr(1-g)(i-c)*? , vhen a+b = 1;

kb{l-g} , when a+b =1 and c =0 .

Summery of the cai&ﬁiétion of EPk' If the expression for EWk given

in Eguation 4 is substituted for EW, in Equation 1, the result is

Ll




+

N
(l-ek ,k'l'l) p(ER) )
e, kel

o

3 X,k (x

If the expressions derived above are subsiituted in the right-gand side
of this equation, the result is a cumbersome.expression for EPk in terms
of the model parameters. 1In general, this expression is unenlightening,
so it will not be reproduced here. It should be noted, however, that it
simplifies in the case a+b = 1 to the following:

k

FB %1+ K,k
21-b(1-g){1-c

)k-l :

Furthermore,

kﬂk,k

EPk=l+l—bl—g » when 2+b =1 and ¢ =0.

Other Operating Characteristics of the OEM Procedure

One of the chlef reasons for studying the'operating characteristics
of the CEM procedure (under the assumption that some model in the~GFT
applies) is to find ways of modifyihg the procedure to ge: better in-
structional results. In & numober of experiments it has been found that
a > c¢. When this is the case in an instructicnal setting, one should
maximize the cumulative number of presentations in stats U. Thus, it is

useful to consider how many of the P. presentations of an item on cycle

k

kX are in states U, S, and L, respeztively. This information may suggest

modifications which would increase the proportion of presentations in

.
i

state U, o

let P P g, &nd P
s

k,U’ “k X,L
respective states on cycle k. Let u(KU), p(KS), and u(KL) be the means

o

be the number of presentations in the

k5



of KU’ KS’ and KL’ respectively, and let u?, s Ek be the respective

k)

probabilities that an item is in U, S, or L on its first presentation on

cycle k. Then

=

-

K,k+1 .
S w(EE J1,
k,k+1 ’

FPe,u = B Ty (uKy) +

l‘Pk,k 1

- + *

EPk,S Sk + ﬁk,k [“(B-S) + e H(EK’S)] 2
, K,k+1

i}

and

EPe,n = Fx t ek MEL) -

The task now is to find Wos Sy, ﬁk, p(KU), u(KS), p(KL), (l~ek,k+l)”(E§;U)’
and (l-ek,k+l)“(E;,S)'

Finding (l-ek,k+l)“(E;,U) and (l-ek’k+l)u(E;,s). The procedure is
very direct: first find>(l-ek’k+l)u(E;’S) by adding weighted terms using
Equation 8; then rind (l-eklk+l)p(E;,U) by subtracting the resﬁit Trom

(l—ek k+l)p(E;), which is given by Eguation 16.
2

' k-1
(l&) (l-ek,k-i-l)“(Ei,S) = mél m(l“eka_*_l)P(E;,s = m)
k-1
2 5w (1-0)®(1-g)
m=1
k-1 m=-1
2 v(2-0)(59) 713wk
m=1
k-1
1l-c l-c
RSy ke (S
= b(l-g)(i;g) L z > Z
l-c
(1-==)
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b(1-g) . {lzc (-0 1+ (k-1 (2-0)K (1 E%Ej}°

Then subtracting Equation 18 from Equation 16, we have

(19) (l_ek,k-!'l)p(E;,U) = (l-ek,kﬂl‘l)“(E}t) - (l-ek,k-l-l)u(E;,S)

(l'?lb)gé gz[l Ky l+(k 13751 + k(1-g)(1-a)7"72
-7 /,

, _b(1-g) . [(1-0) 51K (k-1)b{1- Je-1

(1~ ~%E) I-c

As was the case with (1-ek,k+l)p(E§), these formulas can be simpli-

fied significantly only if a+b = 1. The results for that case are

k,k+l)u(E;,U

e

(20) - (1-e

b(l—g)(l—c)k'l., when a+b = 1,
& .
b(1-g) , when a+b = 1 and ¢ = O;

and

(k-l)b(l—g)(l—c)k“l , when a+b = 1,

Iie

Fl - Fl)u(E* )

(k-~1)b(1-g) ., when a+b = 1 and ¢ = O..

LI}

Finding u(K,), u(KS), and (¥ ). The approach to calculating these

quantifieéﬂis also direct. EXPrBLS ions for e lu(KS) and e

Kkt 1 e {E)

will be found first beceuse the prooability expressions for KS > 0 and

KL > 0 given in Equation 9 involve only two of the four types pictured
in Figure 3.3, while those for Ky involve all four types. Once p(KS)
and u(KL) have been found, we know p(KU) = k-p(KS}-u(KL).

On the basis of Equation 9, we can write

by




K-~

n
(21) € kel P(KL=n) = ayk'n + bcyk'm“n(l-c)m
’ m=1
= (a - ——EE——) 7k-n + ——227— (l-c)k'n , for n=1,...,k .
1- 1- 75
o
Therefore,
RI
k ' k
. be k-n be k-n
(22) ek,k+lp(KL) L (a - It—T;-) L ny + . nZi n(1l-c)
lec Yo

= ( ak , when a+b = l, ¢ =0;

k ' .
a l}f - 7(1-7?,)3 » Wwhen g+b <1l, c=0;

4 Ky

ak +~(l-c)bk - bgl-c)(l-(l-c)

= » when a+b = 1, ¢ > 0;

o cwt—

l-c -~ l-c

(o by [ 7(1-7}{)‘] . e [5 ) Q—c)néu-g)k]],

15177 (an? L ©

when a+b <1, ¢ > 0 .

The corresponding argument in the case of ey k+lp(KQ) is that
, ~

) . kem
(23) & kel P(KS=m) = bgrk-m'l(l-c)m + ) bcyk-m-n(l-c)m
’ n=1 - )

m :
= bg(1l-c)™ yRml EE%%%El_ ;l-yk'm), for m=1,...,k-1;

therefore,
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(24) ek,k+1“(Ks)

= | bg(k-1), when a+b =1, ¢ = 0;

. k-1
bg i'l 22y 5 ) , when a+b < 1, ¢ = O;
7 (1)
bg(1-c) (k1) + 2% b[1-(1-0)7F - (k-1)(2-c ¥ te1,

whgn atb = 1, ¢ >'0;
b(£ - T ED - w10 4 (x 1) (1-c) 5]

b l-c k-1 x~1
+ T:?T . -—c—' [l-(l—c) - (k--l)(l—c) C],

L when atb < 1, ¢ >0 .

Approximations for u(KL), p(KS), and u(KU) can now be computed using

Equations 22, 24 and the formulas for e i given in Eguations 10 and

k,k+
1l. For example, in the simplect non-trivial case, where a+b = 1 and
¢ =0, th are given by

ka

H(KL) = l-b(l-gj ’

» (k-1)bg
H(KS) - 1-b l—g 2
and
. b
ulity) * Toriegy -
The values of W Sy and Ek are needed in order to complete the
state-by-state breakdown of the average number of presentations on cycle

k. These are easily determined by the relationshipc x = (l-g)uk,
X,k

k9



l-xk,k = ﬂk + gu,, and Sie = 0. The fzct that Sy = 0 is a consequence

of the approximation assumptions. These relationships imply that

. T
o - XK,k
. SIS 1.3
(25 ' % T T1eg
and
x
L =1 - Kk
k 1-¢

Formulas have been derived which provide for the calculation of the
main guantities of interest when the OEM strategy is employed. We turn
now to the calculation of analogous quantifies when other strategies are

used.

Cperating Characteristics of Other Strategies

An Ideal Modification of the OEM Strategy !

Most experiments to date ceoncerned with the evaluation of.the GFT -
framework suggest that pafameter a >c. If the number of items being
presented ié large, say, greater than 20, then most of the items will
Egzvbe in the short-term state at a giveh time., If it could be guar-
anteed that all items tc be presented would not be in S, then the
questivn of the optimal item to present would be reduced to the guestion
of which item is most likely to still be in state U, The.OEM would
describe the learning process end the OEM strategy would be optimal.
Such a modification of the OEM strategy would be ideal if it could be
accomplished.

Therz are a nﬁmber of ways one might approach this ideal. All items
could be presented on a given cycle before any item receiving an error
response was presented again. Those items. receiving error responses
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could then te presented in the standard cyclic feshion for the required
number of make-up trials. Those items in the sublist receiving no errors
in the remedial phase would be remcved and the cthers would be presented
once again and checked against the criterion, and so forth. The outcome
of such a procedure should be that only a few items toward the end of
the cycle would receive repeated presentations without a féirly large
number of intervening items.

It is hard to say exactly how clgse an approach like the one just
described would come to the ideal. The matter will nct be pursued
further her:», But the operating characteristics of the ideal modifica-
tion are easy to calculate, because they are just the characteristics
derived in the last section, compufed under the assumption that the OEM

applies. The results will be stated here without proof, because they

are bezsed on well-known results for the OEM.

- The mean number of presentations on cycle k. By Theorem 3.1 we

know that

1-
(k +

e, -
B (m))

E(P ) = 1 + n,
k & K ,k+1

sK
Consider 23, the probapility that an item is in state L at the end of

th .
the J cycle. Successive values of ZJ can be computed by the formula

£ -
J+(l ﬂj)ag

EJ+1 =T 4L g where ﬂO =0 .
J J

Then we have

Ty oy = (l—ﬂk_l)(l-g) , for k>1.
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By either letting b = O ir Eguation 16 or by straight forward argu-
ment from the properties of the OEM, it can be shown that
' 1-a){1- 1-a)(1- k
(26) (1o du(E) - EMEEL (oo fga-a) 1) -k G2 iE) tp(2-e))
k k+l l—g(l*&}] l g -a

Do

Similarly, letting b = O in Equation 10 or proceeding by a direct argu-

ment yields

. 1-g){i-a
(27) ek,k+l =1 - Lijgti——yl (1-[g(2- a)] ) .

) !
It 1s interesting to compare these results with yell-known results
i
for the CEM. 1Ilet k become indefinitely large in.Equé;ions 26 and 27.

Then we get

a

kffm °k,k+1 = I-g(1-a) ’

which corresponds to the standard result for the probability of no more

errors, following an error, when the OEM applies; and

gy . (1-2)(og)

lim  (1l-e )i
Yo o0 k;k+l k [1-g(1-a)]2

If we let L be the triz) of last error in an infinite seduence of

7
/
presentations, then the mean of L is given by . 4>
K
¢
- A8 1 : ~
EL = = (l-g(l-a)) : :}
Thué
- -.’ ‘X'
. (3 ek,k+1)*\nk) {(1-a)(1-g)
llm ‘ - = a[l-—g(l—a)] = (l‘a)EL .
k- 0o Tk,k+1
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- (28)

Define x;

The quantity EL is the mean trial of last error, starting from state U.

With probability a, &n item moves to state I following an eiror, in which
case there will certainly be no more errors. With probvability l-a, the
process starts again from U.

Other operating characteristics of the ideal modification. By

'hypothesis, no items 3i the short-temm state are ever presented under

the modified strategy. Hence,
- .x = d ‘ *
(l ek]k+l)p(Ek,U) (l ek,k’*‘l)u(Ek) 2
which | .s already beer calculated. It is easy tO show that

. kl[g(1-2)1"{g(2-a)-[g(1-2)]%-a) . all-[g(1-a)}]*)
e X,,) = + — .
K, k+1M\0U T 1-g(i-a) [1-g(1-a) ]2

The breakdown of EPk into the mean number of presentations in each state

is as follows.

l-e

: k,k+1
= .y 1 ——— %
BPy g = Trhyey oy DKy + WED]
k,k+1

and

B = b 3 K >
Peon = feen t oy oK)

The asymptotic distribuiion of the cycle of last error. It may

sometimes be of interest to consider what would happen if either the

QOEM procedure or i£s ideal modification wers comtinued for a very large
number of cycles. It is clear that sooner ar later all items would be
learned and there would be ro further errors. In fact, the distribution
of the cycle of last error can be expressed simply in terms of the x 's,

K,k

%, o and Bk as follows.
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T, 0 = P(last error is on cycle k)

and

By = P(no more errors|error on cycle k) .

Then n = 1lim g , and n It follows from Equation lc

= 7 .
Ky~ T Tk,n k00 © k,x Pk
that
n~k

Bo=un ] (g ,.) - S~

. k,k+v
n- o v=1

A more profitable way to look at ak is to condition on whether an item

is in state L or not following the make-up sequence on cycle k. Then we

get

(29) By

L, + Lﬁ P(no more errors|in state U following cycle k)

o0

L + L Z: [g(l-é)lv'k'lsa

v=k+1A
a
Ly + Lt Tofray
1-
1- Li 1-g(l1-a) °

Therefore, the asymptotic probability that the last error is on cycle k

e

i}

is given approximately by

. l’ ’
(30) Tk, = Tk, (1 - Ly Tgriay) -

Operating Characteristics of the RC Procedure.

For purposes of comparison, it is desirable to know the operating

characteristics of the RC presentation procedure used in many experiments
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on paired-associate learning. The usual approach used té derive theoret-
ical predictions for this procedure when models like those In the GFT
are being considered, is to multiply the learning matrix by an "average”
forgefting matrix to gef a single transition matrix summarizing the
effects of learning follcwing presentation and forgetting between pre-
sentations. Approximate theoretical piedictions can then be mede in..

terms of this single transition matrix. For the GFT, this matrix is

given by
(31) P={1 0 0 1 1 o 0
e 1l-c C 0 1-f fg
| a b l—a-bJ 0 0] 1
c (1-¢)(1-7) {l-c)f
~ La H{1-1) bf+(1-a-b)

: . s ias . n . C 9
Calculation of the n-stage transition matrix, P, is facilitated
by noting that the matrix P can be partitioned as follows, where B is a

2 X 2 matrix.

(32) Pl 0.
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In the general cese, there does not seem to be ény;par£icularly
simple way to express Ep. Of course, it is very easy to carry out the
multiplications numerically, so the lack of a simple expression causes
no special difficulty. Howewver, in the case a+b = 1, Bn does have a
very simple form. If we let A = (1l-f){1l-c) + bf, it-is easy to verify

that

Thié is so because A is a characteristic root of B (and of P) and each
row of B is a left characteristic vector corxesponding to A. Therefore,

" P" can be written as

(33)  P'= [1 _ 0 0
) 1-(1-c)a™t (1-c)(1-1)2a""t (1-c) ARt
1-(1-a)3""t (1-a) (1-£)2""L  (1-a);a™t |,

In the general case, two positive values of A are given by the

formula

(34)

X = (1-¢)(1-£)+bf+({ 1-a-b)E /[Ll-c)u-f)+bf+(15a-b)]2(-h(1-c)(1-f)(1-a3b) .

=

Fauation 34 shows why the case a+b = 1l is special., A modification of
Eguation 33 using both A's 1s useful in computing Pn in the genersl cease,
even ‘hough the theoretical formuias would be very messy in terms of the
basic model parameters.

In the case a+b = 1, i can bhe interpreted as the propcrtion of items
currently in state S or state U which will sti1ll be in S or U following
tﬁe next presentation,
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If the starting state vector, [0, O, 1]}, is postmultiplied by Pn,

the result is the expected state vector after trial n. Thus

»

(35) S = 2-(2-a™
n-1
5 = (1-a){1-£)X" ~, and
. n-X
U.n = {1 a)f}\ .

Equation 35 can be used to derive all the operating characteristics
one desires. The details will he discussed in the next chapter, in which
the'operating characteristics derived in this chapter will be used in

numerical comparison cf procedures.
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CHAPTER IV

NUMERICAL COMPARISON OF PRESENTATION STRATEGIES

The purpose Of this chapter is to compare the three presentation
strategies we have been considering, using the formulas which were de-
rived in the last chapter with specific parameter values to make pre-
dictioné. Two kinds of gquestions are of particular interest.’ One
concerns comparison of strategies given a certain set of parameter values.
For example, how big 1s the difference between the RC procedure and the
OEM procedure in terms of how many items are in the long-term retention
state after a given number of presentations? How big is the difference
between the COEM procedure and its ideal modification? Another kind of
gquestion of interest concerns how answers to the first kind of question
vary as a function of perameter values. Do changes in the rate of tran-
sition from the unlearned to the long-term state affect the size of the
differences between the OEM procedure and the RC ﬁrocedure? ‘In order
to address these questions, operating characteriétics of the three
strategies have been ccomputed for three different sets of parameter
values, It might be helpful at this point to say avféw words about the
particular values that were chosen. o

From the pcint of view of ease of calculation the best parameter
yalues to choose satisfy the constraints of the model prbposed by Greeno
(1956): ¢ = 0 and a + b = 1. That is, the probabilit& of a presenfed
item making a direct transition from the short-term to the long-tgrm
state is 0 and the probability is 1 that a presented item in the unccen-

ditioned state will make a transition either to the short-term or to the
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-long-term state. Expressions for operating characteristics of the OEM

procedure are considerably simplier in thils case than they are in genéral.

It wes noted in the previous chapier that the OEM procedure leads
to cyclic presentation of items, with repeated presentation of items
receiving error responses on a givén cycle. If Greeno's model holds,
these massed presentations are useless. Immediately following the Ffirst
presentation of an item on & given cycle the item is either in the long-
term or short-term retention state, because a + b = 1., It is>unnecessary
to present it again if it is %P the lcng-term state and it is useless to
present it again immediately if it is in the short-term state, because
c = 0. We want to examine the predictions of Greeno’s model in some N
detaii because we would expect them to differ sharply from the predic-
tions of the OEM.

In cqntrast to Greeno's model the LS-2 model proposed by Atkinsoun
and Crothers (196%) makes almost the same bredictions for operating
characteristics of the OEM procedure as the OEM itself, As in Greeno's ey
model & + b = 1, but in the LS-2 model ¢ = a. gince the probability of
the pfesented item making & transition to the long~term state is the
same whether the item is in the short-term or unconditioned state, the
fact that & + b = 1 doas not diminish thgivalue of the massed presenta-
tionsg whicﬁ occur under the OEM procedure. Greeno's model and the LS-2
model make the same predictions for the ideal modification of the OEM s
procedure and for the RC procedure because these predictions depend only
on 8, the transition probability between the unccnditioned and ine long-
term state. For this rezson it is unnecessary to calculéte the operating

characteristic for the 13-2 model directly unless oue is interested in
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the small, detailed differences between the LS-2 and OFEM models under
the OEM procedure.

Both cases mentioned so far sétisfy the constraint a+b = 1. One of
the interestiﬁé features of the data presented by Rumelhart {(1967) was ;
that the accuracy of predictions within the GFT framework could be signi-
ficantly enhanced by allowing a+b < 1. This suggests that operating
characteristics might b¢ different for these two cases also, We will
compare the prediction of two models which differ only with respect to
whether a+b = 1 or a+b < 1l. It will be seen that, conurary to our ex-
bectations, the differences in operating characteristics based on the
two sets of parameters are minimal. .

The reason the differences are small has to do with the moét im-
portant variablé infiluencing the relative performance of the strategies:
the transition probﬁbility from the unlearred to the long-term state, a.
When & is relatively large, as it is in Rumelhart's experiment, the dif-
ferences between the three strategies are moderate and relatively
insensitive to Ehe values of the other parameters. When a is relatively

small, the differences are pronounced and dependent on the values of the

other parameters. These points will be expanded upon in an analysis cof

"the detailed predictions for the thiree strategies using the three sets

of parameter values given in Table L.1.

Predictions of Gr2eno’s Model When Learning is Slow

Atkinson and Crothers (1964) compared the fit of several models,
including their LS-2 model, on eight different sets of experimental data.
Gf the eight experiments, the rate of léérning was slowest in an experi-

ment conducted by Hansen (1963) with four and five-year old nursery
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Table 4.1
Three Sets of Parameter Values to be Used to Generate
Theoretical Fredictions cof Operating Characteristics

Under the Three Presentation Strategies

e et et e . — —, S
— _——— e e ——

Case Parametexr valiues Experirent
a b c tf g
1 129 871 0 .By4 250 Four and five

year old chilidren.
Hansen (1963)

2a .hib 590 0 . 954 .333 . University under-
: graduates. Rumelhart
2b .380 .360 O .702 .333 {1967). Both cases

fit data from same
experiment. Case 2b
relaxes constraint
that a+b=1.




school children. Atkinson and Crotheré report parameter estimates for
the LS-2 model for this data. We are more interested in predictions fcr
Greeno's model, for reasons described above. In order to adapt the
parameter estimates for the LS-2 model to Greeno's model, we use the
fact fhat if a' and f are parameters of the LS-2 model and & is the
learning rate in Greeno's model, then Greeno's model with a = a'f and
the same value of f will yield exactly the saﬂe predictions for the RC
procedure as the LS-2 model. The parameter values for Case 1 given in
4.1 Qere obtained using this adjustment.

Before considering the operating characteristics predicted from
these parameters, the reader may wishf}o review the breskdown of presen-
tations on a given cycle under the OEM procedure which is swmmarized in
Tables 4.2a and 4.2b. Table 4.2a gives general terms and their explicit
expression in the case of Greeno's model. Table L4.2b identifies the
ferms used in the formulas in Table 4.2a.

It is worth noting that under the OEM proceduré Greeno's model pre-
dicts that the average number of presentations in the unlearned state on

a given cycle, EP

k.U? is a constant multiple of x
;U

I the probability of
J

error on the cycle. The number of presentations in the short-term state,

EP s on the other hand, depends on the product (k-1)x The overall

k,S K,k

expected-nﬁmber of presentations on cyecle k is 1 plus a constant multiple
of ﬁk)kk. These Qbservations provide a basis for determining whether of
not the OEM procedure will be far from cptimal under Greeno's model.
Massed presentations are a real problem only on later cycles where the
criterion run is long. If ﬁk,kk converges to O relatively fast with

increasing k, they are not a problem. If not, the OEM procedure will
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Table L.2b

Key to Terms Used in Table L.2a

ki

uk-l’gk-l = probability item is in state U (or L) following

cycle k-1.
.
Irk,k = mrobability of an error on the first response in
cycle k.
e = probability of no further errors on cycle k,
k,k+l

following an error.

E_;L__ = expec.ed number of errors on cycle k, given that
kyk+d at least one error occurs on the cycle.
- = iti i

(1 ek,k+l)p(E§) expected waiting time for the next error

on cycle k, in terms of number of responses
following an error, given“that another

error is going to occur.

* —
(l-ek’k+l)p(Ek,U),(l~ek’k+l)u(g§,s) = breakdown of .
(l-ek’k+l)u(Ek) by .
state.

u(KU),p(KS),p(KL) = expected number of presentations in the
respective states on the criterion run

on cycle K.

EP EP = expected number of presentations on

EP, ,EP k,5" "%, L

k,U’
cycle k, with breakdown by states.
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be far from optimal. This can be seen in the present case, where learn-
ing is slow, by comparing the performance of the OEM procedurs and its
ideal modification.

The ideal modification of the Ogﬂistrategy serves two purposes in
the comparisons to be made now. It présents an upper bound on how much
the OFEM strategy can be improved by csimply manipulating thg number of
intervening itews between preseutations of an item on a cycle? It also
gives indication of the discrepancy between the predictions of the OEM
and of Greenc's model for the OEM strategy, since its operating charac-
teristics are what the OEM would predict, with or without the modification.
When learning is slow, this discrepancy is pronounced, as may be seen in
Table L,3.

s
oy

The efrect of the two procedures on T % is the same for the first
b

two cy:-les, s .4310 ror both of them. But the OEM procedure re-

o] n3’3 =
quires 5,77 presentaticns per item to reduce error probability to this
point, whereas the modified OEM procedure requires only 4,07 presenta-
tions, The size of the discrepancy increases for the next several
cycles, Two more cycles under the mecairied procedure reduces nk,k to
-0k, a point that requires five additional cycles to reach under the OEM
strategy. 1In terms of number of presentations per item, the comparison
is 22,67 versus 10.90 presentations, a difference of more than 100%.

It is also interesting to compare the probability that aﬁ item is .
in the long-term state after a given number of cycles under the modified
and unmodified OEM strategies with the corresponding probability for cn

item receiving the same number of presentations uander the RC procedure.

The difference between the modified OEM procedure and the RC procedurr:
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Table 4.3

Predictions of Greeno's Model for Selected Operating
Characteristics-of the OEM, Modified OEM, and kC
Procedures When learning is Relatively Slow*

Cycle Probability
number of error on

(a) OEM procedure

Expected cum-
ulative number
of presentations

Probability
item is in
long-temm
state after k
zycles under

Probability item
is in long-term

state after same
nunber of presen-
tations under RC

k cycle k through cycle k OEM procedure procedure
1 750 1.00 .129 .129
2 .653 5.77 453 497
3 L10 10.32 .656 702
4 .258 14,29 .78k 812
5 .162 17.62 . 864 .372
6 .102 20.38 .915 . 907
7 .064 22,67 . 947 . 928
8 .00 24 .60 . 966 943
(b) Modified OEM proceduvre
1 750 1.00 .129 .129
2 .653 4,07 453 .390
3 110 8.37 .798 .627
I .151 10.90 . 948 722
5 .039 12,34 .988 .76k
6 .009 13.45 . 997 <793
7 .003 1L 2999 .816
8 .G00 15.49 j;lgqo .836

¥Note: Parameter values: a = .29, g = .25.
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is dramatic in this respect, while the difference between the unmodified
OEM and RC procedures is small and actually in the wrong direection for
the first five cycles. See the last two columns of Table 4.3 for these
cemparisons.

Predictions of Greeno's Model When learning is Rapid

Parameter values used to obtain predictions of Greeno's model when
learning is rapid are given in Table 4.1, Case 2a. They are reported by
Rumelhart (1967) to be the minimum chi-square estimates, computcd by a
grid search, for daté from an experiment involving Stanford undergraduates.

One property c¢f Greeno's model which has already béen'nbted is that
the probability of error on a cycle is the same for both the modified
and unmodified procedures for the first three cycles. After the first
three cycles, it drops more rapidly for the modified procedure. When
learning is slow, this results in notable differences between the two

procedures in terms of x for k > 3. In the present case, learning

k,k?
is so rapid that there is little room for the T k‘s for k > 3 to differ,
) .
because they are all -lose to 0. Even though the T k's are clcse for
2

the two procedures, it is conceivable that the procedures differ in terms
of the numbei of presentations required to complete cycles. They do in
this case, but only slightly. For example, it takes 3.30 presentations
on the average to finish two cycles under the OEM procedure and 3.14
presentations under the modified procedure.

By referiing to Table 4.4, the reader can see that the small dif-
ferences betwe:n the modified and unmodified OEM procedures are typical
of the differences that can be considered. All the differences favor
the modified CEM procedure, as they must, but none of the differences
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Table 4.4

Predictions of Greeno's Model for Selected Op:rating
Cheracteristics of the OEM, Modified OEM, and RC
Procedures When ILearning is Relatively Rapid*

Cycle Probability
number of error on

(a)

OEM procedure

Probability
item is in

Expected cum- long=-term
ulative number state after k
of presentations c¢ycles under

Probability item
is in long-temm

state after same
number of presen-
tations under RC

k cycle k through cycle k OEM procedure procedure
1 <667 1.00 410 .410
2 <393 3.30 .809 .807
3 .128 4.93 .938 . 915
4 0Ll 6.20 .980 <955
5 .013 T7.31 . 992 <74
6 .005 8.36 .998 .984
(b) Modified OEM procedure
1 .667 1.00 410 110
2 «393 3.14 .809 793
3 .128 k.67 .957 .902
L .029 5.82 «991 <945
5 .006 6.65 .98 - 967
-6 .001 7.85 - 1.000 .980
#*Note: Parameter vealues: & = Ui, g = .33.



are large. Examination of the last two columns of Table k.4 also reveals
that when learning is rapid, Greeno's model predicts that the differences
between the OEM procedure, modified or unmodified, and the RC procedure
will be slight.

Predictions of a More General Model When Learning is Rapid

The parameters of Case 2b in Table 4.1 are what Rumelhart obtained
for the data just described when he relaxed the requirement that a+b = 1.
Predictions of operating characteristics of the OEM procedure made by
Greeno's model and the more general model are cogpared in Table 4.5.
The differences in the predictions are very slight indeed. In general,
one would expect there to be a difference in the predictions the two
rodels make regarding the expected nuﬁber of presentations in the short-
term state per cycle. In the present case the model for which a+b <1
predicts about a third fewer presentations in the short-term state. than
does Greeno's model, but the rate of learning is so great that the
nurber of these presentations is predicted to be small by both models.

Summary of the Felative Perfommance of the Three Strategies

It might be hglpful to review some properties of the special cases
of the GFT we have been considering before summarizing the resul:s. No
cases have been exemined for which ¢ > a. There are two reasons for this
omission; first, no experiments have been reported for which ¢ > a, at
least to the author's xknowledge; second, the case ¢ > a radically modi-
fies what is desirable in a sfrategq, because it is then desirable to
present items which are in the short-te;p:state‘ Tie question cf good
presentation strategies for this case would be interesting in itself if

situations arise where <t applies. Among cases where c < a, ~e have
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Table 4.5

Compariﬁon of Predictions of Greeno's Model
- and a Model that Permits a + b < 1 '

Probability that  Expected number of

Cycle item is in state cumulative presen- Expected number of
number L at start of tations through presentations of items
k. cycle I cycle K in state S on cycle k

a+b=1 a+b<l a+b=1l a+b<l a+b=1 a+b<l
1 _— -2a 1.00 1.00 .00 _ .00
2 L4l .38 3.30 3.37 .38 27
3 .81 .81 L,93 4,99 .25 .18
Y .9k .Gk 6.20 6.2k .12 .05
5 .98 .98 7.31 7.33 .05 © .03

6 .99 .99  8.36 8.37 .02 .01

¥Note: For Greeno's model parameters arc & = .41, b = .59.

n
L]

)
n

For the more general model & = .38, b

oy
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considered or can guess what would be predicted for models having ex-
treme value; of the three parameters. That is, we have some basis for
saying what will happen for 5'large'and small, for t = O and b = 1-a,
for c = O and ¢ e a. The predictions aré as follows. |

1. When a s large, differences on other parameterg*are rot im-
portant. The operating characteristics of the three strategies
are such that the modified OEM stretegy has a slight advantage
over the OEM strategy and the OEM has a slight advantage over
the RC sfrategy. If a = ¢, the mocdified and unmodified OEM
are practically identical.

2. When 8 is small and ¢ = O, the modified OEM procedure is far
better than the other two. In this circumstance, the RC pro-
cedure may even be slightly superior to the OEM procedure.

3. When a is small and ¢ = 8, the modified OEM is much better than
the RC procedure, but not much bet*ter than the unmodified OEM
procedure.

k, Regardins .he importance of parameter E,.we may say:
a2, It is not important when & is large.

b. If a is small and ¢ = O, b determines the relative perfor-
mance of the OEM and modified OEM procedures. The wei:st
case for the OEM procedure is ‘when b = 1l-a and the best
case when- b = 0. (In the lat£er case, the OEM and modified
OEM operating characteristics are identical.)

c. If a is small and ¢ = &, the size of b is of iittle

importance.

Tl



Some of the qualitative conc}usions suggested here could be deduced
heuristicé;ly without calculating the operating characteristics in nu-
merical terms. The numericeali calculations serve to transfonn the vague
generalizations which could be made without them into aésertions whose

meaning can be made as precise and detailed as one wants.
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CHAPTER V

CONCLUDING DISCUSSION

Attempts tc deduce instructional implications from psychological
theories or empirical generalizations may be crudely classified as be-
longing to one of c¢wo types. One type of deduction is very informal,
perﬁaps, but not‘neceséérily because the relatiorship on which it is
based is only loosely formulated. Practically all deductions of impli-
cations for instructional practice were of this type until ten years ago.
At that time, the success of some very explicit ﬁ;thematical theories of
simple learning processes ied a few investigators tg try more formal
derivation of instructicnal strategies. Becagse the explicit mathematical
statement of the consequences of instructional acts meskes it possible to
formulate the gucstion of optimal instruction peliicy in completely unam-
biguoﬁs terms, it is natural to seek the answer to this question. The
study undertaken in this paper is cleser in spirit to this latter type
cf approach, but it does involve what some might regard as regressive
elements of the first approach.

It was argued in the second chapter with regard to the question of
item presentation strafegy, that the globally optimal strategy corres-
bonding to the GFT is too coﬁflicated to be of central interest. But
what is of interest if the optimal strategy is not? Surely, if a reason-
able model of-the process of learning ;£ems exists, it should be possible
to use 1t to meke Jjudgments about presentation strategies, even if it ;s

not practical to work with the globally cptimal strategy based on that

model. The rroblem is that the bases for the judgments mey come to

o 73




depend somewhat on the blases and preferences of the individual investi-
gator. TFor example, investigator A may argue for the strategy maximizing
immediate gain while investigator B pushes & modification of the COEM
'strategy, both justifying their choic¢ »n the basis of the GFT. Some
theorists would regard this as an unpleasantly awkward situation; others
would see nothing wrong with it. Tukey (1962), for example, has stated
that the guestion ofryhich étatistical procedure is optimal in a given

=

sgﬁiation does not interest him until he knows of four sensible alter-
&

gétives that have demonstrablyidifferent properties. At that point,
lack of a criterion for choosing betweenrthe alternatives becomes a
concern., It may'happen that none of the alternatives is globally op-
timal, but one or more of them is very nearliy optimal. If a éheoretical
analysis could identify such « situation when it occurs it would be very
helpfil, even if the analysis does not yield an optimal procedure. -

Tne descriptive analysis of ihree presentation procedures under GFT
assumptions given in Chapters IIT and IV provides some basis for sayihg
when a strategy is nearly optimal. When leérning is very rapid, for
example, both the RC and the OEM strategies are very nearly optimal,
independent of the exact parameter values. When learning is extremely
'slow, the RC procedure is poor, and now bad the OEM procedure is depends
very much on the exact parameter values. These theoretical results are
consistent with the results of the few empirical studies that have been
done, Whether or not they will hold up under more direct experimental
scrutiny is an open question.

There are a number of limitations imposed by the scope of this
study which would need to be considered before applying the conclusions

Q
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in a particular list learning situation. It has been assumed thet the
GFT adequately deséribes the process governing learning and retention;
that the itemsz wuye neutral transfer value with respect to each other;
that ail the items are unknown at the start of instruction; that corres-
ponding learning paraneters are equal from one item to %HE néxt; and

that the reward structure can be taken to be a éimple function of the
overall probability of correct response at the end of instruction. One
or more of these assumpticns are very likely to be violated in practice.
Violations may or ma&y not have damaging conseguences for a given s<trategy.
There are some relevant studies that relate tp some of these conseqguences,

Let us review some of them now.

The adequacy of the GFT framswerk. Tt is almost cértain that }h%
GFT framework could be shown to be an ovarsimplified accoﬁnt of the
prccess of learning and retention. The phenomena of human information
proressing are now being studied with particular intensityc At times
it seems as though important nsw developments are appeariﬁg monthly.
In a climate of such intense experimental and theoretical inquiry all

bets are off concerning the adeguacy of any simple model. One aspect

of thé GFT which is suépec: concerns its representation of what happens
to an item which 15 1ot presented on a given trial. The GFT assumes
that no learning takes place in this situatiog. But suppose a sgbject
surreptitiously rehearses an item for a few trisls after it has been
presented.  The GFT assumes ﬁhat transitions to the long-term state
could nut take place via suach a process. In fect, in a very successful
model of human memory proposed by Atkinson and Shiffrin (1968), such a

reliearsal process plays a central role. Tt is veyond the scope of this
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paper to guess what the implications of other models of learning and

memory might be with regard to item presentation strategy. But it is

important to note tth the GFT is not the cnly way that the memory pro-

cesses can be modeled. For purposes of this study it suffices that it
&

is a reasonable way to model the process.

Heterogeneity of items. The assumptions that items are all unknown

at the start of instruction and that their learning parametefs are equal
from item to item are almcst certain to be violated unless extraordinary
measures are taken to insure that tney 5old. The necessity for such
measures notably reduces the general applicability of the procedures
requiring tnem. It may be that & procedure wi;l?bé reasonably robust
with respect to minor violations of homogeneity.v Calfee (1970), for
example, carried out some numerical calculations which suggest that this
iz the case for the OEﬁ'procedure, provided the other CEM assumptions
are satisfied. We might argue, by analogy, that a suitably modified

OEM procedure would stand up pretty well under ninor deviations from
item homogeneity, provided the other assumptions of the GFT hold. If
item heterogeneity is extensive, howevar;'a couple of studies have
shown-that parameter-dependgnt strategies which take these itém differ-
ences into account will out-perform the OEM procedure. See Laubéch
(1969), and Atkinson and Peulson (1972).

The importance of item heterogeneity has been noted; it should also
ﬁe noted that in order to implement a parameter-dependent strategy the
key problem is to find sultable parémeter escimates. - These estimates
must separate subject and item differences, so we are led indirectly to
a consideration of individual differences. The consideration of subject

IToxt Provided by ERI



differences required has énvinteresting twist to it: it is not enough to
est%mate the state of kndﬂledge of a subject; one must also measure in a
fairly "direct" sense the subject's ability to learn. éhese measure-
ments..may have-soﬁe important implications for the concept of intelligence
and its assessment. In a symposium on the nature of intelligence, ﬁunt
(1972) described some exploratory studies of persons of above average
intelligence who could be classified into two groups on the basis of
being more quéﬁiztatiQely than verbally oriented, and vice versa. These
Qubjects were given continuégs memory tasks like the one described by
Atkinson and Shiffrin\Zi968), and model parameters were estimated for
their modél.r~Consistent individual differences befween sub,jects were
found; these différences were ‘meaningfully related to differences in
their independently éetermined profiles of_ability.' Parameter—depéndent

strategies should be of-continuing pfactical and theoretical interest.

Other cruclal assumptions. It is patently clear for some kinds of

curriculum material that some ways of sequencing the materisl make sense
and cthers do‘not. When there is‘a natural sequence or hierarchy in the
material to be learned; good presentation strategies must take them into
account. Such strategies are beyond the scépe of this sﬁudy. Also be-
yond the scope of thi; study are situations ﬁhere the items to be learned
are differentially weighted in terms of their importance. Smallwood

(1970) has considered this kind of problem, using an OEM theoretical

framework which allows for iltem heterogeneity.

Final Remark i

It should be apparent fron the preceding discussion tkat the item

selection problem is not a single problem with & single solution, but
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ratner is a“f:ml ly of p;oblnms repl senti ng a wide “ange 01 cduuatlonai _ N

tuatlonq in whlch the guestlon°6* opt timal Urogelur is open. The s

= described in thi naner has.’ adﬂreS'ed'one of theSE'problems, GCtner
. . ) t _ " ]
studies examiﬁing’spﬂe of the Other prebiems which remdin unresolved ere
el . h -
[ ) r“

~in'progress; It is the goél of all of thése studies to develcp geheral

dEuﬂOdc \hlch may be used to aufabh more complex Optiml78t10ﬂ problemb.7

L. , .. . { oo ; L :
Three unlversal aspects Qf_problemq of optimizing 1n&¢rucﬁlon‘are empna—

Y

sized: {1}) the development of an adeguate deseripiion of the,learning - ;
.l : K N .

process, (2) the assessment of costs and benefits associated with pes-

sible instructionél actions and-states of leax nlng.‘and {3) the derivation
of optimal §irategieﬁ-base on the goals set for the student.

The fo*mat of tnp liSL learn 1g ask is 51mp1e enough that all three

Iy

aspects of optimiw ati on prnblems m ntloned aoove ‘can be suugectcd to- de»

tailed &3 per1mﬂrta1 and Qhesretic&l aﬁaly is. In additiqn'ﬁb're§earch

in Lq ‘paper, instructional';trategies wnlcn explic1tly uake

J""‘

individual differences into accaint are' 10 b 1ng studied{f'T ere hould
Rt R : : el

s

. . U i . T I .
be studies in the near-future_utilizing organiz 1 onal iea‘urus of the

material to be leamed ip cons Iuctlng optlmQW erqtegles. ﬂWHilﬁ the

TR b PO

direct implicetions which can be drigwn trom suck’;ormal optlszatlon ' L
studies of, list 1earn1ng are nece: arllj L mlteagfthe fact'that many

-~ . . ] . . . -
- .r‘ . "' R \ . - PN

ouotyn Leal educatiOqal p;oblnms renan anésolved even wilhin this
. TEDtTlCLPd COUtP?t Just1fies contlnued e penﬁiture of effort at this

level.
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