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CHAPTER I

INTRODUCTION

One obvious aim of educational psychology is to seek optimal teach

ing strategies for certain rezurring instructional situations, based on

knowledge of the learning process involved. Undoubtedly, this aim is

implicit in most of the experimental work in this area. It is only

recently,

vation of

processes.

however, that there have been serious efforts at formal deri-

teaching strategies from descriptive- models of learning

There are a number of good reCis7ons by formal study of this

problem has been neglected. Before formal dead. tion of a strategy can

begin: an explicit, descriptively adequate model of the learning process

unCer consideration must exist. Such models have been developed only in

the last twenty years for even the sihlest learning situations. Given

an adequate descriptive framework, it is still necessary to formulate

the optimization problem in terms amenable to mathematidal analysis.

The developments in sequential decision theory and mathematical program-

ming (which now make such analyses feasible) have all occurred since

1945. Finally, formal optimization questions were completely academic

prior to-the71617elopment of modern computer technology. The large amount

of record keeping and simple calculation which must be accomplished in

brief time periods in order to implement optimal procedures effectively

limits the use of these procedures to computer-assisted instruction

settings. Now that computer-assisted instruction is becoming more wide-

spread, optimization questions assume practical importance. This paper
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is intended as a .contribution to the study of an interesting optimization

problem in a learning task which commonly occurs in instruction.

If appropriate mathematical tools are to be brought to bear on an

optimization problem, it is necessary to place some rather severe re-

strictions on the nature of the learning situation to be considered.

The present study is limited to situations in which the task is to teach

the correct responses to a number of stimulus items, using a paired-
..

aSociate teaching procedure. It is assumed that the items are learned

independently, in the sense that the difficulty of learning an unknown

item does not depend on whether or not other items are known. Only one

item can be presented on a given trial and the total number of trials

is limited. The optimization problem to be considered is to find the

best strategy for deciding which item to present a subject on a given

trial, based on his performance on previous trials.

There are two principal reasons for concentrating on the item-

selection problem for paired-associate learning instead of considering

other learning paradigms which can be described reasonably well by exist-

ing models, e.g., simple cue learning. FIrst, the optimization problem

for the paired - associate case has received a fair amount of both

theoretical and empirical attention and the direction in which more

study is needed is fairly clear. Second, this paradigm is directly rele-

vant to some practical learning tasks, such as drill activities used in

the learning of vocabulary items in second-language learning, the acqui-

sition of a. sight vocabulary and a knowledge of phonics in initial reading,

and the mastery of spelling.

2



Two Strategies from Two Models

In subsequl.entchapters, three different strategies for choosing

items to present will be examined in some detail. The first two strat-

egies are based directly on corresponding simple models of the learning

process. The third strategy is also motivated by model considerations,

but the connection between model and strategy is not as direct in this

_case.

The first strategy may be described as follows. On a given trial,

present the item which has received the fewest presentations up to that

point.' If more than one item satisfies this criterion, select the item

at random from the set satisfying the criterion. Upon examination, this

strategy is seen to be equivalent to the standard cyclic presentation

procedure commonly employed in experiments on paired-associate learning.

It amounts to presenting all items once, randomly reordering them, pre,

senting them again and repeating,the procedure until the number of trials

allocated to instruction have been exhaUSted. This procedure will be

referred to hereafter as the RC (for random cyclic) procedure or strategy.

A rationale for the RC procedure can be provided by a simple linear

model of the learning process. In this model, the state of the learner

with respect to each item in_a_list depends only on the number of times

each item has been presented. The state of the learner is represented

by his momentary probability of error for each item. At the start of

instruction, all items have some initial probability of error, say qi;

each time an item is presented, its error probability is reduced by a

factor a, which is less than one. That is,

3



or alternatively

n+.1.
- = a q 1

When an item is presented for the nt
11

time, the reduction in error proba-

bility is given 'by

n-1

The fact that the decrement in error probability for an item becomes

smaller each time it is presented leads naturally to the RC procedure.

The second strategy is more complicated to describe, but the essen-

tial idea is very simple: ignore responses prior to-the last error on an

item; present the item which has received the fewest correct responses

since. its last error. If more 1.-;pn one item is eligible according to

this rule, select the item to be presented at random from the set of

eligible items Karush and Dear k1966) proved that this strategy is

optimal if the assumption that learning proceeds according to the so-

called one-element model is valid. The strategy is optimal in the sense

that ix maximizes the expected number of items learned in a fixed number

of presentations. For this reason, this strategy will be referred to

hereafter as the OEM strategy.

7-According to the one-element model a student is in one of two states

with respect t.,.) each item at any given point in time; the learned state

or the unlearned state. When an unlearned item is presented, it moves

into the learned state with probability c. That is,

U
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with probability 1-c

with probability c .

Once an item is Yearned, it remains in the learned state throughout the

course of instruction, so there is no reason to present the item again.

A subject may respond correctly to an item even though the item is in

the unlearned state and the subject is guessing. In effect, the OEM

strategy selects items for presentation that are most likely to be in

the unlearned state.

The linear model, which provides a basis for the RC procedure, and

the one-element model, which provides a basis for the OEM procedure, are

the simplest models for paired-associate learning having any empirical

support. On the whole, the one-element model gives a better account of

data from experiments using the RC procedure, than the linear model; see,

for example, Bower (1961). The data which lead to . is conclusion would

also :Lead one to believe that a given number of presentations allocated

to a list of items using the OEM procedure would produce significantly

better results than the same number of presentations allocated according

to the RC procedure. The predicted advantage for the OEM strategy often

\\fails to materialize, unless special modifications are made in the OEM

\p ocedure. This anomaly provides the motivation for the developments

tJ be reported in subsequent chapters.

Atkinson and Crothers (1964) reported data comparing performance

of several models of learning and retention which suggests consideration

should be given to procedures based on models taking forgetting phenomena

into account. However, it turns out that the performance of procedures

5



based directly on forgetting models is difficult to characterize in a

general way. The two strategies described above are special in two re-

spects) which make the relationship between model and strategy simpler

for them than it is in general. One special feature both the Oa and

RC procedure possess is that they maximize both immediate gain proba-

bility of correct response and global gain over the course of

experiment considered as a whole. It is the exception rather than the

rule for a procedure to be capable of maximizing both of these quantities.

Another mat el' rare property which these procedures have in common is
J

that tmplementation of neither one depends on the parameter values of

the model on which it is based.

The approach to be taken in this paper is to use a general theory

of learning and forgetting to describe performance of three strategies,

the two already mentioned and a third hypothetical strategy. This hypo-

thetical strategy is a modification of the OEM strategy which would be

optimal under the assumption of the general forgetting model if it could

be carried out. For reasons which will be clear when the strategy `is

described in detail later) the strategy would be impossible to implement.

Nevertheless, the strategy serves as a useful bound against which im-

plementable strategies can be compared.

The rest of this paper is devoted to consideration of the relative

performance of the three strategies discussed above, using the general

forgetting theory as e model framework. The forgetting theory and the

reasons for adopting it for this study are described Chapter II; this

chapter also contains several counterexamples which demonstrate the

infeasibility of dealing with globally optimal. strategies in the context

6



of the forgetting theory framework. Because it is not feasible to deal

with globally optimal strategies,, it is necessary to take a descriptive

approach to the evaluation of presentation strategies. Chapter III is

devoted to the definition and derivation of formulas for operating charac-

teristics of the three strategies described above. These formulas are

then used in Chapter IV to make numerical comparisons of the strategies

2or selected special cases within the general framework of forgetting

theory. In Chapter V the conclusions of the study ar.: summarized and

implications for future research are considered. The results presented

in this paper are new, at least to the author's knowledge, unless other-

wise noted.

7



CHAPTER II

A GENERAL FORGETTING THEORY AND ITS IMPLICATIONS

FOR PRESENTATION STRATEGIES

The General Forgetting Theory proposed by Rumelhart (hereafter to

be called the GFT) is a synthesis of several models which represent dif-

ferent-ways to generalize the OEM. These models retain much of the

simple all-or-none character of the OEM while introducing the factor of

forgetting, which the OEM does not take into account. The theory is

relevant to the problem being.treated here because the phenomena of for-

getting could work in a Ariety of ways to undermine the OEM strategy.

There is considerable evidence now that forgetting works in such a

way that the OEM strategy is not as effective as it theoretically should

be. In an experiment designed to. test the advantage of the OEM procedure

over the standard RC procedure reported by Dear, Silberman, Estavan and

Atkinson (1967), the advantage predicted for the OEM was not observed,

Experimental findings of Hellyer (1962) and Greeno (1964), among others,.

suggest that when items are presented repeatedly within a short period

of time (as they often are under the OEM procedure), many are responded

to correctly on the massed presentations, but are then rapidly forgotten.

This interpretation is consistent with that of Dear and his associates.

Experiments which have shown the predicted advantage for the OEM pro-

cedure, such as one by Lorton reported in Atkinson and Paulson (1972),

have modified the procedure to minimize the number of massed presentations,

The General Forgetting Theory

The GFT can be described as follows. At any given time, a subject

is in one of three possible states of learning with respect to each item:

8



the unlearned state, the Shortterm retention state, or the long-term

retention state. When an item is. presented, transitions between states
.

occur according to the following Stbchastic matrix.

State on trial ttl Probability of correct

State on
trial t

L

U

L

1

a

S

0

1-c

U response, given the state

That ._.to say; if an unlearned item is presented, then with proba-

bility a it is.learned in such a way that it will be/retained for a

relatively long time, with probability ,b it is learned in such a way that

it is likely :I:obe-forgaten soon, and with probability 1-a-b it remains,

unlearned, If an itemin the short-term retention state is presented,

''then with probability -c. it will shift to/7 long-term retention state,

-. and with probability 1-.1 it will remain in the short-term state. When-

ever an item reaches the learned state, it remains there for the duration

of the experiment.

When an item in either the long- or short-term state is presented,

the correct resppnse is' given with probability 1. If an unlearned item
T-

is presented,, the correct response 1,s given with the guessing probability g.
1

In this extended model it is necessary to consider what happens to

items which are not presented on a trial. Transitions between states

occur according to the matrix-

9



State on
trial t

L

c,0

U

State on trial t+1

L S U

1 0 0
0 1-f f

0 0 1

That is, items in the short-term retention state are forgotten, with

probability f, while items in the lon-term retention state or the un-

learned state are unaffected.

If it is stipulated that the parameter b in the learning matrix is

0, then an item can neverenter the short-term state so the model reduces

.

to the OEM in this case.

Perhaps the quickest way to follow the character of the GFT frame-

work is to c nsider briefly 60,Ze of the other models which it encompasses

as special cases. Table :1.1 is in.:ended to give the reader an abbreviated

natural history of the formulatioa just given. The various special cases

all assume a forgetting matrix of the form given above. They differ

with respect to the form of the learning matrix. The differences reflect

differences in assumptions regarding two separate issues,

The earlier models all assume that some learning takes place when-

ever an item in the unlearned state is presented. Hance, the probability

of staying in the unlearned state is 0. The models differ regarding the

relative size of the probability of transition to the long-term state

from the unlearned and short -term states, respectively. The model of

Atkinson and Crothers (1964) assumes that these transition probabilities

are equal. The model of Greeno (1964) assumes that transitions to the

10



Table 2.1

Transition Matrices of the Learning Process for

Special Cases of the General Forgetting Theory

State cn

L

S

U

L

S

U

L

S

U

L

S

U

L

S

U

S

U

State on trial N+1 Comments

L

1

a,

_a

1
0

a

0

1

b

a

1

by

_ay

c

a

S

0

1-a

1-a

0

1

1-a

0

1-a

1

0

1 -b

1-a

0

1-by

(1-a)y

0
4

1-c

b

u

0

0

0

0

0

0

Or

0

0

0

0

01

0

1-7

0

0

1 -a -b_

One of the original
versions of the long-
short model due to
Atkinson & Crothers (1964.)

A coding model due to
Greeno (1964)

A partial. learning
model due to-Eerbach
(1965)

A general model encom-
passing the three above

A further extension
introducing an attention
parameter 7, due to
Rumelhart (1967)

The formulation given
in this paper

trial N
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long-term state. can_ only t:Ae pIRidfraf7the,unlearned.state, ard.the

model of Bernbach (1965) assum5 that these transitions can only occur

from the short-term state. These three models all have learning matrices

depending on a single parameter. If one wishes to leave the issue of the

relative size of these transition parameters open, he can do so at the

price of introducing a second learning parameter, as indicated in the

fourth transition matrix in Table 2.1.

In formulating his GFT, Rumelhart leaves the issue of the relative

//7
size of the transition probabilities open, and introduces a third parath

eter y, which he regards as an attention parameter. If y is less than 1,

there is positive probabil;ity that an item in the unlearned state will

stay there following a presentation. The final matrix, which corresponds

to the one given above, is-a very slight generalization of Rumelhart's

ti

formulation. Combinationsof a, b, and c in the final formulation for

Which c > a+b do not correspond to any possible combination of a, b, and.

y in'the fifth matrix. The cases of most concern in this paper satisfy

the constraint c < a, so the difference is essentially one Of- .notational

convenience. According to Rumelhart the introduction of y results-in

a'marked improvement in the fit of the model to his data.

Now let us consider the implications of the GFT framework forpre-

sentation strategies. It is well-known that the strategy which maximizes

immediate gain in probability of correct response can differ from the

strategy which maximizes the global gain over the course of the experi-

I-
ment as a whole. The latter type of strategy is called globally optimal,

The rest of this chapter presents findings which together demonstrate

the need to leave the search for globally optimal strategies in favor of

12



'a detailed description of operating characteristics of certain selected

strategies. The crux of the argument is that the globally optimal

strategy requires looking more than one trial ahead in all cases of in-

terest; in the context of the general forgetting theory this fact alone

makes the globally optimal strategy very difficult to characterize in

a useful way.

It is unfortunate that the strategy that looks just one trial ahead

not globally optimal. because this strategy is mathematically simple

and intuitively reasonable. There ere very clear interpretations. of this

strategyj_ILeach of the, special cases of the GFT framework described

above. Each of these is a plausible generalization of or alternatiVe to

the optimal strategy corresponding to the one-element model. But counter-

examples will be provided to show that none of these are globally optimal.

Strategies Maximizing Immediate Gain

Let 2. ,
1

s.
n.

u.
1 ,n

be the respective probabilities that item i
t,n ,'

is-in the long-term, short-term, or unlearned state,on trial n. Let

8. be an indicator variable which is 1 if item i is presented on trial
1,n

0 if it is not The probability that item i is in the long-term re-

tention state on trial n+1 is given by

+ 6 (cs
1, ,n i n i n 1 n

The expected gain in number of items.in the long-term state on trial

n+1 is given by

I I I

/i
"
n+1

1
ti n

Z
8i ,n

(cs
i n

+ au
i n

) .

1= ' 1=1 '
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Clearly, the expected gain is maximized if we present the items with

largest values of cs. + au
I,n

In the special case a = c this amounts to presenting the items with

the largest values of s
ipn

u
J.,n'

or the smallest value of
iln

. Hence,

in this case the strategy maximizing the immediate gain is a generaliza-

tion of the one-element model strategy.

In the special case c = 0 the expected gain is maximized by present-

ing the items most likely to be in the unlearned state, which is a dif-

ferent generalization of the OEM strategy. In the case a = 0 immediate

gain is maximized by presenting the items most likely to be in the short-

term state. These comments are summarized as.a,theorenfor future reference.

Theorem 2.1. Let £i, s and u. be the state probabilities for item i

on a given trial, and let a and c be the transition probabilities for

moving to the state L from state U and S, respectively. Then the expected

immediate gain is maximized by presenting the items with largest values

of

G. .= au. + cs.

In the case a = c, this is equivalent to presenting the items least

likely to be in L. In the case a = 0, it means presenting the items

most likely to be in S. In the case c = 0, it means presenting the

items most likely to be in U.

Counterexamples to Demonstrate Non - optimality of Maximizing Immediate

Gain

When Karush and Dear (1966) established the global optimality of

the OEM strategy, they did so by first deriving the strategy maximizing

lk



the immediate gain and then.showing by an induction argument that this

strategy is, in fact, globally optimal. Their approach to the Character-

ization of optimal strategies will not narry over into the GFT framework;

as the counterexamples to be presented will show. A counterexample will

be described for each of the special cases mentioned in Theorem 2.1. In

each of these cases, the strategy maximizing immediate gain focuses all
f-s\

attention on a single state probability, ignoring the other two.(KThe

thrust of the counterexample in each case is -Co show, that the other two

state probabilities carry important information.

Case 1: a = 0. It is perhaps easiest to see the necessity for look-
.

ing ahead more than one stage by examining the special case in which each

item must pass through the short-term state before it can reach the longr

term state. That is, the probability a of making a direct transition

from the unlearned state to the long-term state equals 0. In this

special case, the policy maximizing immediate gain is to present the

item most likely to be in S. If ail items start out in the unlearned

state, all have probability zero of being in S. After the first item

is presented, it has positive probability of beilig in S and will continue

to-have for the duration of the experiment. Since the other items would

still have probability zero of being in S, the policy maximizing immed-

iate gain would be to continue to present the first item indefinitely.

There is no immediate gain to be had from presenting a new item once,

because it will just go to the short-term state, but there may be con-

siderable advantage in presenting it twice. The strategy maximizing

immediate gain ignores this possibility.

15



Suppose A and B are two unknown items and four trials are available

for teaching both of them. Suppose the parameter values are a . 0,

b = 1, c = f = .5 for both items. The strategy maximizing immediate

gain would devote all four trials to one item. It is easy to verify

that a better strategy would be to present each item twice in succession.

This example is logically sufficient to prove that the strategy maximizing

immediate gain is not in general the globally optimal policy in the OFT

framework. It is still possible that such strategies are globally op-

timal:for some other special cases. Two more examples will be given to

show that this is not the case in the instances of most interest in the

present study.

Case 2: a = c. It was shown earlier that when a equals c, the

'strategy maximizing the immediate gain is to present the items least

likely to be in L. Suppose two items, A and B, are not in L. Suppose

A is in state U and B is in state S. Which item should be presented on

the next trial? From the point of view of immediate gain it makes no

difference, because the probability of either item making the transition

to state L is the same; that is, a . c. However, from a longer term

point of view it does make a difference. If item B is presented, it will

be responded to correctly; if item A is presented, it will likely be re-

sponded to incorrectly. The incorrect response would be informative,

letting the experimenter know that t item was certainly not in L before

its presentation. Thus/ it would be preferable to present item A.

The preceding argument is not completely satisfactory because it is

assumed that both A and B are not in L, so presenting A is not as infor-

mative as it seems. But the argument would apply to a case where A and

16



B have the same positive probability of being in L butNll'is more likely

to be in U than is B. This situation is likely to arise in practice.

For example, consider the case wherea=b=c=f=g= .5. The se-

quence of events given in Figure 2.1 consists of an initial phase and

two alternative strategies for a second phase. At the end of the initial

phase both items have probability about .79 of being in L, item B h&s

__probability 0 of being in U; while item A has probability .10 of being

in U. The strategy maximizing immediate gain would be indifferent with

regard to which of the two alternatives to follow. Direct numerical

c:alculations demonstrate that it.would be preferable to present A first.

Case 3: c = 0. Table 2.2 gives a sequence of events to show the

need for looking more than one trial ahead in the case c = 0, a = b = .25,

f = g = .50. (It is still a two-item list under consideration.)' When

c = 0, the strategy maximizing immediate gain is to present the items

most likely to be in U. The idea behind this example is a simple one:

it can be advantageous to refrain from presenting an item, even if it is

the one most likely to be in U, if waiting will significantly 'increase

the probability of being in U. It is necessary that there be another

item available to present whose prospect for immediate gain is nearly

as, good.

This example also consists of two phases, the first phase showing

how two items could come to have certain critical state probabilities

under the policy of maximizing immediate gain, the second phase showing

the advantage of looking two stages ahead instead of one, given these

state probabilities. At the end of the initial phase the state proba-

bility
1 ,6 7 \bility vectors for items A and B are (17, 27, 7) and kyz, E ),
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Table 2.2

Sequences of Events Showing Policy of Maximizing Immediate

Gain is Suboptimal When a = b = .25, c = 0, f = g 7.

Initial phase under

policy maximizing

immediate gain:

Continuation under

A+/B+/A+/B-/B F/A-/ continuation

MIG policy: A +/B

'Better continuation: B +/A

Note: Letter indicates item presented; the sign following
the letter indicates the correctness of the response,
where + means that the correctness does not influence
the decision regarding which item to present next.
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1
respectively. Since .7_7 the policy maximizing immediate ga5n would

be to present A next. If A is presentdd, the state probabilities on the

next trial will be such that item B will be presented on the final trial,

whether the response to A is correct or not. Similarly, if item R is

presented first, item A should be presented on the final trial. Direct

calculations show that the latter policy is slightly preferable.

These examples show that _globally optimal strategies in the GFT

frameWork generally require more than maximization of immediate gain.

They do not show that the strategy maximizing immediate gain is never

optimal. It obviously is in the special case where the model reduces

to the OEM, when b 0. Even if b is positive, if it is sufficiently

small, it will have no bearing on the optimal strategy, The implications

of the counterexamples given above concern what can be said in general

about globally optimal strategies without specifying the exact values

of the parameters, The fact that we can say very little suggests that

a descriptive approach permitting comparison of strategies with one

another, but not with the globally optimal strategy, would be appropriate.
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CHAPTER III

OPERATING CHARACTERISTICS OF THREE

PRESENTATION STRATEGIES

A reasonable model of learning should enable one to make a variety

of predictions about the overall state of a list of items, provided the

items are presented in a certain way, The presentation procedure used

most often in the evaluation of learning models is the RC procedure dis-

cussed earlier. When this procedure is used, sample statistics corres-

ponding to expressions for the trial of last error, the probability of

error given the last response to the ftem was an error, and other

descriptive statistics of interest can be calculated and compared with

theoretical predictions.

Matters become more complicated when presentation procedures other

than the RC procedure are employed. For one thing, the meaning of the

descriptive statistics which are of interest may change when other

procedures, such as the OEM strategy, are used. For example, under the

OEM strategy the number of presentations varies widely from one item to

another, so the "trial of last error" means something differeni: than it

does under the RC strategy. Another difficulty which arises concerns

the derivation of theoretical expressions for statistics cf interest.

Indeed, it is only in exceptional cases that it is possible to derive

explicit expressions for quantities of interest. Usually, the number

of times each item is presented, and when, is subject to such a variety

of contingencies that explicit calculations are not feasible. As an

illustration, consider the case of the strategy maximizing immediate
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gain within the GFT framework. The item to be presented on a given trial

is the item having the highest value on an index which is a function of

the parameter values, the number of correct responses since the last

error, and the number of items intervening between each of these correct

responses. Direct calculation or exact theoretical formulas of interest

in this situation appears to be hopeless.

The situation is vot as bleak as this in the case of try OEM strat-

egy because there is a pattern to presentations under this procedure

which serves as a natural basis for summarizing the overall state of the

items. This pattern be described in some detail, because it serves

as a basis for most of the theoretical derivations in this chapter.

Presentation c Iles and "almost" sufficient histories. Under the

OEM procedure items arc presented in a series of cycles which are similar

in many respects to trials under the RC procedure. Each item receives a

specified treatment on each cycle. The difference between the RC and the

OEM procedures. lies in the fact that under the OEM procedure the treat-

ment of an item may involve several presentations, whereas under the RC

procedure treatment consists of a single presentation per item per trial.

The cyclic structure of item presentations under the OEM strategy

arises in the following manner. The strategy says to present an item

whenever the string of consecutive correct responses to it is shorter

than the corresponding strings for the other items. If several items

are tied at a given point, the choice is made on a random basis. At the

beginning of a Cycle this index is the same for all items. If an-item

is presented and receives a correct response, its index is incremented

22



by 1 and is therefore greater than the indices for the other items. It

will not be eligible for presentation again until all the other items

reach the same level, i.e., until the cycle has been completed for all

the other items. If, on the other hand, the item is responded to in-

correctly, its index is reset to 0, so it is lower than all other items

and will continue to be lower until repeated presentations bring it back

to their level.

Denote by cycle n those presentations required to move the list

from the place where all items have been responded to correctly n-1

times in a row to the place where they have all been responded to cor-

rectly n times in a row. Most of the operating characteristics of

interest in describing performance under the OEM procedure, such as

cycle of last error, probability of error, and cumulative number of

presentations, are functions of the cycle number.

When the OEM is an accurate description of the learning process,

the cycle number is a sufficient history for describing the state of a

list of items because for every item in the list the cycle number is

equal to the number of correct responses since the last error. The lag

between successive presentations of a given item is irrelevant. If for-

gettillg is taken into account, as it is in the GFT framework being

considered here, then the lags become an important factor. Strictly

speaking, given a GFT model a sufficient history for each item involves

the number of correct responses since the last error and the number of

intervening items presented between each of these correct responses.

Fortunately, it is possible to simplify this sufficient history in the

case of the OEM procedure with negligible loss of information.
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The following observations are the justification for the simplifica-

tion of the sufficient history of an item which will be referred to as

an almost sufficient history:

1. When an item is presented on a cycle and the response is cor-

rect on the first try, the item is not presented again on that

cycle, so it is safe to assume that many intervening items will

be presented before that item is presented again.

2. When an item is prksented on a given cycle and the response is

an error, there follows a string of presentations4of the item

without any intervening items, culminating in a string of pre-

sentations with correct responses whose length is 1 less than

the cycle number. The last correct response is made after a

number of intervening items have been presented.

As a consequence of these features of the OEM procedure, the state

of an item at a given point in the instructional process is essentially

determined by its cycle number and the cycle of last error. The string

of correct responses on the cycle of last error has lag 0 between each

presentatiOn except .'or the last presentation. It and the correct re-

sponses on subsequent cycles have what may, for practical purposes, be

regarded as infinite lag. Therefore, s 0 for these presentations,

where s is the probability of the item being in the short-term state.

Thus, the cycle number indicates the number 14 consecutive responses to

an item and the cycle of last error indicates the lengths of an initial

block, of presentations with no intervening items and a final block of

presentations with many items intervening between them.
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By conditioning on the cycle number and the cycle of last error,

it is possible to calculate approximate theoretical expressions for a

number of statistics of interest when this presentation procedure is

employed. These calculations will be carried out in the next F:ection.

Subsequent sections will discuss corresponding expression.-i for other

procedures. The other procedures to be treated include the RC procedure

and the hypothetical procedure that serves as a baseline for comparisons

to be made in the next chapter. This hypothetical strategy will be re-

ferred to as the modified OEM procedure. This' is the procedure that

would result if one were somehow able to introduce very long lags

between the several presentations of an item which has been responded

to incorrectly on a given cycle. This hypothetical procedure is better

than any procedure that can really be carried out, so it serves as a

useful bound in determining how close a suboptimal procedure is to being

optimal. It serves this purpose in the place of the optimal strategy,

whose operatThg characteristics cannot be determined in practice because

the strategy itself is unknown.

Operating Characteristics of the OEM Strategy

The basic statistic for describing performance under the OEM strat-

egy is the expected number of presentations per item required for each

cycle. Every item receives exactly one presentation on the first cycle,

but on subsequent cycles the number of presentations is a random variable.

Define three random variajaes for each cycle k > 2 as follows. Let'

P
k

= number of presentations required for an to complete

cycle 4,
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Now

W
k

= number of presentations following an error -required to

obtain a sequence of k consecutive correct responses, and,

g
klk

= the probability of at least one error on cycle k for a given

item (the reason for the double subscript will become clear ,

later).

.1 with probability 1-Trk,k

P
k

=

Therefore we have

(1)

1 4-Wk, with probability Tr1,,k .

EP
k
= 1 + gkkEW k .

,

The key task of this section is to find g
k k

and EW
k.

The main ideas

to be used in accomplishing this task apply to a broader class of models

than the GFT framevork, so they will be set forth in some generality.

Then specific approximations will be obtained for the GFT framework.

General Formulas

The distribution of W
k.

The crucial fact to note about W is that

it is the waiting time in a terminating renewal process, in the sense

that Feller (1969, p. 186) defines the term. A renewal process is a

stochastic process whose characteristic feature is that there is an

event which sets the process back to its starting point whenever ik

occurs. Such an event is called a recurrent event. We may regard Wk

as the waiting time for the first occurrence of a sequence of k con-

secutive correct responses following an error. The occurrence of an

error is the recurrent event which resets the probabilistic structure
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of the process. Renewal theory provides a fundamental relationship be-

tween the distribution of W
k

and the distribution of E
k'

the waiting

time for the next error. Actually, the distribution of Ek is defective

because there is positive probability that the cycle will terminate before

there is another error on the cycle (hence, the term terminating renewal

process), For this reason, we also consider the conditional distribution

of Ek, given that there is-another error on the cycle.

Let

and let

and

P(Ek = v

P(W
k

n) = wk
n?

= e
k,v

for v = 1,...,k y

P(process terminates without an error) = e
k,k+1

The conditional distribution of Ek, given that another error occurs on

the cycle, is given by

P(E
k

= vlEk = v', for some v' = 1...k) -
1-e

e
k

.

v

k,k+1

Let the conditional random variable be denoted by Ek. The generating

function.for the distribution of is then

k
g *(s) - e s .

E
1

1-e
k,k+1 v=1

k,v

Let g -(s) . 2: w
n
s
n

be the generating function of W
k

n=0
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Theorem 3.1, Consider any model for which the occurrence of an error on

cycle k is a terminating recurrent event. Then conclusions A, B, and C

below follow.

A. The distribution of W
k

is given by

(2)

(3)

(4)

w
kln

e
k,k+1

for n < k

for n= k

k

E e ut
kIv k n-v

for n > k .

v=1

B. The generating function of Wk is given ty

k
e
k k+1

s

gw (5) )g (s)klk+1

C. The expected value of Wk is given by

B(1)
EW

k
. k + (1-e

k,k+1 ek,k,I

Before proceeding with the prOof of the theorem, it would be good

to interpret the terms on the right-hand side of Equation 14. Equation

4 states that the average number of presentations required following an

error on cycle k is the sum of the number of consecutive correct responses

required, k and the number of extra responses made necessary by further

errors. The latter term is the product of 1-e-
klk+1'

the probability of

further errors on the cycle;
1

the expected number of errors on
ek,k+1

the cycle; and g (1) , the average number of presentations per error.
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These quantities depend, of course, on the exact nature of the particular

learning model being considered.

Proof_of-the theorem. It is obvious that w
k,n

= 0 for n < k. The

waiting time for k consecutive correct responses is equal to k with

probability e
k k+1.

If W
k

> k, there must have been an error on some

presentation v = 1,...k. The probability that Wk = n, given an error

on presentation v, is w
k n-v

. The expression for w
k n

when n > k in

Equation 2 is the weighted average of the w
k,n-v

is. Taken together,

these comments justify Equation 2.

If both sides of Equation 2 are multiplied by sn and the results

for all values of n added together, the result is

co

(5) gW (s) ek k+ls 2: 2: ek v w k n-v
s
n

n=k+1 v=1

= e
k k+1

s
k

+ e s
v(

w s
n-v

k,v kn v

which is Equation 3.

e
klk+1 5

k
(1-e

k3k+1
) g (s) g

w
(s)

k
e
k,k+1

s

1-(1-ek,k41)g .(s) /

Differentiating Equation 3 yields

[1-(1-e
k,k+1

)g
Ek
*(s)]kek,k+lsk-1 +eklk+lsk(1-e

k,k+1
)gE

k
*(s)

[1-(1-e )
k,k+1 (s)]2

Letting s = 1 and noting that gE*(1) = 1, we obtain
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Eq4 (1) = k +

1 e

&A l)
klk+1 hk

which justifies Equation ! and completes the proof.

Recursion formulas for computing nk.k. The general formulas for

computing g
k,k

to be given are valid for any model of learning for which

the initial probability of a correct response is a guessing probability,

However, they are really usefUl only if the model is one for which con-

ditioning on the cycle of last error leads to a simplification or a

reasonable approximation, as is the case with the GFT.

Let qk be defined as follows:

k,n
P(Error on cycle nicycle n-1 Just completed;

last error on cycle k), for k = 1,...,n-1 .

IP(Error on cycle nicycle n-1 just completed,
no errors on item yet); for k = 0,

Similarly, let y
kln

be defined as

P(No errors on itemIcycle n just completed), for k = 0 ,

kln
P(Last error was on cycle kIcycle n just completed),

for k = 1,...,n .

Note that according to this definition gitk is the probability that

the last error was on cycle k, given that cycle k has just been completed.

But this is just the probability that there was an error on cycle k, which

accords with the definition of given earlier. Also, note that q
kln

is not defined for n = 1. It is not needed and the definition makes no

sense in that instance.
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Theorem3.2./rcaribecomputedinternisofq.'s with j,v < k using
j,v

the following relationships.

(6a)

n-1
(6b) it

0,n
= g TT (1-q

0 k+1
) 1 for n > 2 ;

k=1

n

(6c)
jIn

=
j,j

T-T (1-q ), for j > 1
/
n > j ;

v=j+1

k-I
(6d) Tr = Z It

k,k i'k-1 '
for k > 2 .

i=v

The justification for Equation 6a is that ir
0 1

and rt
1 1

are the

respective proportions of items having and not having correct responses

on the first presentation. Since Items are assumed to be unknown at the

outset, the values are g and 1 -g. The relationship expressed in Equation

6b says simply that the probability of no errors on an item through cycle

n,is the product of the probability of guessing correctly on the first

cycle and the appropriate conditional probabilities of not making an

error on succeeding cycles.

On completion of cycle n, where n > j, the proportion of items

whose last error was on cycle j is the proportion of items with an error

on cycle j and no further errors through the n
th

cycle. This is the

relationship expressed in Equation 6c.

The formula given in Equation 6d expresses rt
klk

as the sum of the

conditional probabilities of error on cycle k, given the cycle of last

error, each weighted by the probability that it was the last error.

This completes the proof.



In order to use Theorems 1 and 2 to find the expected number of

presentations on cycle k for a specific model of the'learning process,

it is usually necessary to have explicit expressions in terms of model

parameters for the following quantities:

Ao The q
kan

9s, the conditional probabilities of error on cycle n

given the last error was on cycle k.

B. The probability of no further errors on the k
th

cycle folloving

an error on that cycle, ex
0k4-1°

C. The conditional distribution of the waiting time for the next

error following an error on cycle k given that there will be

another error on the cycle, and its mean.

Before deriving expressions for these quantities in the general

GFT case, it should be noted that the calculations can be simplified

considerably in the important special case where Greeno's model applies.

The calculation of the qk,n9s can be avoided because a formula giving

the approximation for ,t
'cal(

can be derived directly. The other quantities

of interest are simple functions of g
k,ak

and the cycle number.

Theorem 302a. When Greeno's model applies
' kok

can be approximated by

the following formula.

1-g when k = 1

(1-g) (1-a)

k-2
for k > 2

Proof. The formula is obvious for k = 1 and 2. It needs to be

'demonstrated that IT
k+1k+1 &fig kak'

for k > 2. It suffices

to show that P (In state U on cycle k +llIn state U on cycle k)
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An item must be responded to correctly in order to complete a cycle. If

an item is in U at the start of a cycle, one of three things will happen:

a correct response by guessing and no transition to the long-term state

(with probability g(1-a)); a response, correct Or incorrect, followed by

transition to the long-term state (with probability a); or an incorrect

response and no transition to the long-term state (with probability (l-g)

(1-a)). In the latter case, there follows a make-up sequence of presen-

tations, which are useless if Greeno's model holds because the item is

trapped in the short-term state. Then intervening items are presented,

and finally the item is tried once again. By this time the item is back

in U (according to the approximation assumption), the process starts over

and is repeated until one of the first two situations obtains. Thus

CO

P(Uk+11Uk) g(1-a) 2: [(1-g)(1-a)lv
v =0

as required.

a+g

ApproximationsUnder the GFT

Theorem 3.3: A formula for q
k,n

In terms of the parameters of the GFT
'N

presented in Chapter 2, the conditional probability of an error on cycle

n, given that the last error was on cycle k, is approximately given by

the following formula.

(7)qk,n

1- (1.-8. .1n-2
for k = 0, n > 2

[g(1-a)]
n-2

+ (1-[g(1-a)]
n-2

)
'

1-g(a1-a)

LI[g(1-a)]
n-k-1

(1-g)

-

for k > 1, n > k
1IL,

1-g
2 1-g

)]n -k -1

k 1-g(1-a7 k 1-g(1-a)
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where Lk = P (In state Llmake-up sequence of length k just completed)

and =

Proof. The expression for (30,n will be developed first.

q0 ,n P(no errors through cycle n-1)
P(no errors through cycle n-1, error on cycle n)

(1-g)[g(1-a)P-1

n-2
eg(1-a))11-

2
+ 2: ag(g(1-a))

v-1

v=1

(1-g)(1-a)(43(1-a)311-2

[g(1-a))n-2 +
1-g(1-a) ((1 -al] n -2)

as asserted.

In order to develop the expression for q
k n

when k > 1 let the

events A and B be defined as follows.

Then

A = (error on cycle n3

B (last error through cycle n-1 was on cycle k).

q
k,n

P( Ai B)
PP( (A B)

The event B will occur if there is an error on cycle. k, unless the item

is still not instate L at the end of the make-up sequence in cycle k

and there is another error before cycle n. Hence

n-k-2

P(B) Itk,k(1 2: [g(1-anv)
v=0

k,k
1-

1 g
11'c + [s(1 _a) ]n-k-1



The event At-1B will occur ii.there is an error on cycle ks and a series

of correct guesses and failures to go to state L on subsequent cycles,

ended by an incorrect gucss on cycle n. The probability of this event

is given by

P(A B)
-

jg(1-a))
n-k-1

(1-g) .

Dividing this expression by the expression just derived for P(B) yields

the formula for q
k,n

given in Equation 7.

As one might expect, the quantities remaining to be calculated are

closely interrelated. It is necessary to know 1.31'c in order use Equ:

tion 7 to compute q
k,n

. It will soon be seen that it is necessary to

know e
k k+1

in order to find L. Calculating e
k k+1

involves the deter-
,

mination of the distribution of the waiting time for the next error. It

will help keep repetition to a minimum if we can refer to some basic

quantities involved in the several separate calculations. The breakdown

of W
k

given in Figu1'e 3.1 suggests what these quantities might be. Define

five new random variables as follows.

K = the number of presentations in c. "iterion run on cycle k in

state U.

K
S'
K
L
= the corresponding random variables for states S and L.

K U
= the number of presentations in state U following an error,

given that there will be another error on cycle k.

E*
k S

= the correspording random variable for state S.

It turns out that the remaining calculations in this section'will be

expedited by considering the joint distributions of (K K
S'
K,) and

35



P
r
e
s
e
n
t
a
t
i
o
n
s

o
n
 
c
y
c
l
e
 
k

f
o
l
l
o
w
i
n
g
 
a
n

e
r
r
o
r (w

 )

1
-
e
k
 
k
+
1
 
*

p
r
e
s
e
n
t
a
t
i
o
n
s

E
_ -
k
 
U

i
n
 
s
t
a
t
e
 
U

e
k
,
k
+
1

1
-
e

-
-
.
1
1
L
1
1
4
1
 
E
*

p
r
e
s
e
n
t
a
t
i
o
n
s

k
,
S

i
n
 
s
t
a
t
e
 
S

e
k
,
k
:
1

K
U
 
p
r
e
s
e
n
t
a
t
i
o
n
s
 
i
n
 
s
t
a
t
e
 
U

K
p
r
e
s
e
n
t
a
t
i
o
n
s
 
i
n
 
s
t
a
t
e
 
S

K
L
p
r
e
s
e
n
t
a
t
i
o
n
s
 
i
n
 
s
t
a
t
e
 
L

P
r
e
s
e
n
t
a
t
i
o
n
s
 
a
f
t
e
r
 
i
n
i
t
i
a
l

e
r
r
o
r
,
 
b
e
f
o
r
e
 
t
h
e
 
c
r
i
t
e
r
i
o
n

r
u
n
, 1
-
e
k
 
k
+
1

E
*

i
n
 
a
l
l
.

e
k
,
k
+
1

k
 
p
r
e
s
e
n
t
a
t
i
o
n
s

i
n
 
c
r
i
t
e
r
i
o
n
 
r
u
n

F
i
g
u
r
e
 
3
.
1
.

B
r
e
a
k
d
o
w
n
 
o
f
 
p
r
e
s
e
n
t
a
t
i
o
n
s
 
o
n
 
c
y
c
l
e
 
k
 
a
f
t
e
r
 
i
n
i
t
i
a
l
 
e
r
r
o
r
.



(E*
U'

E*
S

)

'

respectively. Note that
k,

K - k an,J

The joint distributiOn of
-;

")(- EE
k

k.S) is a conditional distribution

given that another error is going to occur. For this reason the proba-

bility of the simple sequence of events that results in the event

(Ek
U

=
'

E
k S

= m) for some 2 and in must be divided by 1-e
k k+1

in,.
order to find P(F , =

S
= m). Figure 3.2 shows a classification

nyu

of points (2,m) having positive probability into three types such that

the probability expressions are similar for points within a type. Tne

figure applies to the special case k = 4. The reader can easily verify

the following assertion if he bears in mind that presentations in a make-

up sequence on cycle k are contiguous until there are k-1 presentations

receiv'_ng correct responses, in which case a number of items intervene

before the next presentation. Let y = g(1-a-b). Then

(8)

(1-e k,k+1)P(Ek,U EkS

,2-1(1-a-b)(1-g) for 2.1,...,X-1; m=0;

k-1
(1-a)(1-g) for 2.k; m.0;

2-1 -2
b(1-c)k (1-g) , for 2=1,...,k-1; m=k-i

Figure 3.3 gives a classification of points (2,m,n) having similar

expressions for e F(Ku=2,Ks.111,KL n). A suitable approxima-

tion for this quantity is given by
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4

3

2

= 1

Case I: No passage to S, finally guess
correctly.

Case II: Whether or not passage to S takes
place after (k-1)st correct gUess
does not have any bearing, since
many other items will intervene
before next presentation.

__Case III: Passage to S means that error
will occur on last presentation,
if at all.

= 0 1 2 3

k

Figure 3.2. Classification of points (2,m) having similar

expressions for-(1-e
k k+1' kU ' S

)P(E* 2 E*. m)

where E*- e" are the numbers of presentations
kx(1) k S

in the respective states in a run culminating in

an error on cycle 4.
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3

2

Impossit!ie case (according to the approximation
assumgcion). because item cannot be in S on last
presentation in criterion run due to intervening
items.

k = 4

1 A \
IV \

m = 0

%---- -,...
\ \

lk A \ A

\\ \
\ \ II \

\ \ \
n=3 n=2 n=1

= 0

n=14

1 2 3 -4

n=0

Figure 3.3. Classification of points (2,m,n) having similar

expressions for e
k,k+1

P(KU = X,Ks = m)KL = n).

where K
U/
K
S/

K
L

are the numbers of presentations

in the respective states during the criterion in

on cycle 4.
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ekk+1 P(KU i'KS m'KL n)

y
t -1

g(1-a)

ay
i

for £ =k; m=n=0;

for t=0,...,k-1; m=0; n=k-t;

(9)
,-tk

gyp b(1 -c) for t=1,...,k-1; m =k -1; n=0;

yk- m-
nb(1 -c)mc for £= k -m -n; m=1,...,k-n; n=1,...,k-1.

The value of e
k/k+1

can be calculated either by adding the results

of Equation 9 for all allowable values of (2,m,n) or by adding the re-

sults for Equation 8 over all a possible values of (2,m) and subtracting

the outcome from 1. The latter course is simpler because it avoids a

messy double summation.

k-1 k-1
e
k k+1

1-(1-g)(1-a)yk-A. - 2: 72-1(1-a-b)(1-g) -
2
-b(1-c)ki

,
t=1 2=1

(10)

k-1
= 1-(1-g)((l-a)y

k-1
+ (1-a-b)

1-y
b [(1-c)

k-1
-7
k-1

])

1-
1-c

ression can be simplified significantly in some important special

cases.' \tw,

1 - b(1-g)(1-c)k-1 , when a+b = 1, c > 0;
, 0

(11) ek,k+, .4. '

1-y

_

[
1 - b(1-g) , when a+b = 1, c = 0 .

A formula forL;c. It was noted above that the formula for q
n

given in Equation 7 presumes knowledge of I. For k = 1, L1 = a, and

Li = 1 - a because items are just presented once on the first cycle,
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regardless of the correctness of the responses. In order to derive an

estimate of for k > 2, define events Al B, and C as follows.
.

A = (Error on cycle. k)

B = (Error on cycle-k;-cycle k completed with no further errors)

C = (Error on cycle ktcycle k completed with no further errors,

but item fails to make transition to state I)).

The fact that Cc B cA and P(A) > 0 implies that

P C
= P(CIB) -.14331A

A

The quantity P(BIA)
is %/Iva'

which was just derived. The quantity

P(CIA) can be obtained by multiplying Equation 9 by 1-a and adding over_

those possibilities for which KL = 0. That is,

and

P(KU = ilKs = m4KL . 0 and no transition to-L-takes placee
klk+1

after correct guess on last response)

'(1-a) skk+1 P(KU = 1,K8 .= k-21KL = 0)

/-1g(1-6). for = k.

g7l-lb(1-c)k-t(1ra ) for = 1...,k-1;

P(C1A) = (1-a) e
klk+1

P(K
U

K
S

k-4,KL 0)

£.1

k-1
r.

y
k-1

g(1-a)
2
+

gyp-1
b(1c) ""' (1-a)

g=1

=
k-1

g(1 -a

k-1 2-1
+ bg(1-a)(1-c)-1 2: (-z-.)

1-c
2=1

41'



y
k-1

g(1-a)
2
+

bg(1-a)
[(1-c)

k-1
- y

k-1

1- 7--
1-c

b k-1
= g(1-a)[(1-a

k -1
(1-c)

k-1
] .Z 1- 7

1-c 1-c

This formula also simplifies in important special cases:

P(CIA) = g(1-a)b(1-c)k-1 when a+b = 1 c > 0;

g(1 a)
,

-
(1-07

k b1
+ when a+b < 11 c = 0;

-7

bg(1-a)

Finally, the formula for 1.,:c for k > 2 is

ek,k +1

( 12 )

when a+b = 1, c = 0 .

g(1-a)[(1-a-
b

)7
k-1

(1-c)k
-1

1- -2-
1-c 1-c

k-1
1- (1-g)((l-a)y

k-1
+ (1-a-b) +

[(1-0k-1myk-1])
1-7 --Z..

1-c

In the special cases mentioned above, Equation 12 becomes

(13) = I

k-1

k-1

1-b(1-g) (1-c)

(1 -a)[(1-y)yk+bg]

when a+b = 1, c > 0;

when a+b < 1, c = 0;
1-y-(1-g)(1-a)(1-7

k
)

1.L-tb

42
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It might be noted that the formula for ql,n given in Equation 7

reduces to the formula for q
0 n 1

when 1-a is substituted for L' Equa-

tion 13 can be used with Theorems 3.2 and 3.3 to compute estimates of

nk,it. Theorem 3.1 tells us how to compute EWk (and hence EPk) given

and p(E;), the mean waiting conditional waiting time forn
klk'

e
kIk+1'

another error following an error on cycle k, given that there is going

to be another error. Approximations for all but the last of these

quantities have been given above.

The distribution and expected value of E.
u

E*
k

Since E; = E; + E:
0

we can use Equation 8 to write

(14) (1-
klk+1

) P(Ell = v)

(1-e
klk+1

) P(E;u= v,qs =0), for v = 1...1k-1;

k-1
(1-e

k
) P(E! =k-mq =m) for v = k;

k+1 m=0 IS

y
v-1

(1-a-b)(1-g), for v = 1,...,k-1;

k-1
y
k-1

(1-a)(1-g) + 2:
7k-1-

mb(1-0m(1-g), for v = k;
m=1

y
v-1

(1-a-b)(1-g) for v = 1,...1k-1;

7k-1(1 b b(1-g)
for v

i _ -7-
1-c

(1-c)k-l
1- -1--

1-c

In the special cases, Equation 14 becomes
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v)(15) \(.,-\ ek,k+1'
) P(E*

k
..

[

b(1-g )(1-c)k-1

0

for v k;

otherwise, when a+b = 1, c > 0;

yv-1(1-a-b) (1-g) for v = 1,......,k-1;

yk-1(1-a- :127)(1-g) + 4,:y , for v = k when

a+b < 1, c = 0;

{

b(1-g) , for v = k;

0 , otherwise, when a+b = 1 and c = 0.

Straight forward summation of series; omitted here for the sake of

brevity, results in the following expression for (1-e k,k+141(Ek)°

(16)
(1-ek 1(1)4(Ek)2

(1-a-b) (1-g)
1-k7

k-1'
+(k-1)7k

(1-y)2

+ k[7
k-1

(1 a b
b(1-)(1-gb(1 -& (1-c)

k-1

1 1 1-
1-c 1-c

The restriction that c = 0 does not in itself produce any signifi-

cant simplification in Equation 16. The restriction that a + b = 1 does,

however. In this case

(17) (1-e
k,k+1

)m(E:) = kb(1-g)(1-c)k-1 when a+b = 1;

kb(1-g) , when a+b . 1 and c = 0 .

Summary of the calculation of EP
IC

If the expression for EW
k

given

in Equation 4 is substituted for EWk in Equation 1, the result is

1.4



EP
x

= 1 -I-
k,k (: e

k,k+1

(1-ek,k+1)11(q)

If the expressions derived above are substituted in the right-hand side

of this equation, the result is a cumbersome expression for EP
k

in terms

of the model parameters. In general, this expression is unenlightening,

so it will not be reproduced here. It should be noted, however, that it

simplifies in the case ai-b = 1 to the following:

Furthermore,

kn
k,k

EP
k

1
1-b(1-g)(1-c)

k-1

1

ksc

b7.ki,l
EP

k
+1 '"

g)
when ° + b = 1 and c = 0 .--

Other Operating Characteristics of the OEM Procedure

One of the chief reasons for studying the operating characteristics

of the OEM procedure (under the assumption that, some model in the-dFT

applies) is to find ways of modifying the procedure to ge-L better in-

structional results. In a number of experiments it has been found that

a > c. When this is the case in an instructional setting, one should

maximize the cumulative number of presentations in state U. Thus, it is

useful to consider how many-ofthe Pk presentations of an item on cycle

k are in states U, S, and L, respe2tively. This information may suggest

modifications -which would increase the proportion of presentations in

state U.

Let p
k U'

P
k S'

and P
k L

be the number of presentations in the
9

respective states on cycle k. Let [1(Ku), p(Ks), and p(KL) be the means
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of K
IP

K
S.'

y,and K
LI

respectivel u.
x,

s 2k be the respective

probabilities that an item is in U, S, or L on its first presentation on

cycle k. Then

and

PkU + P
k,S

+ P
kIL

= P
k

1- e

EP = u, + Clu(K ) +kU x kk
k,k +l

µ( U)
, e

k,k+l

1-P
k,k+1 /EP

kIS
s
k

+
klk hµ(KSe) + -------- [AEls)] ,

k 7k+1

EP 2 + Tr
k,L k .k,k /1(1(L)

The task now is to find , sk, 2k, ,,t(Ku), u(Ks), p(KL), (1-ek ,k+1)4(E:T

and (1-e ME'
kjk.41 kS).

Finding (1-ek,k+1)4(E11.1) and (1-ek k+141(EkS) . The procedure is

very direct: first find (1-ekk+1)µ( :,S) by adding weighted terms usingE

Equation 8; then find (1-e
k k+1)`1( k U

E* ) by subtracting the result from

(1ekk+1)).:(Ek ), which is given by Equation 16.

k.71
(18) (1-e )4(E* ,) = m(1-e = m)k,k+1 klo kk+1 KISm=1

k-1

mY
k-m-1

b(1-c)m(1-g)
m=1

k-1
b(1-g)(1.7-2) 7-- 2: m(1yc)m

-1

m=1

= b(1-g)(
1;c) yk-1

46
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b(1-g)
2 1y c

ro,k-1-(1-0k-1,
1-c

tt

(k-1)(1-c)k-1(1 )
- "

Z
(1 Z)

1-c

Then subtracting Equation 18 from Equation 16, we have

p(e
k,k+1

u(E40 - (1-e 1.1.(E*(19) (1-e
k,k+1

)
k,U

) = (1-e )
k,k+1

)
k,S

)

11:a112111g1 [1-ky
k-1

{k -24y
k
] + k(1-g)(1-a)y

k-1

(1-y)
2

b(1-5)
[(1-c)

k-1
-Y Y
k (k-1)b(1-g) k-1

2
1

(1
1-c

1-c

As was the case with (1-ekk+1)11(q) these formulas can be simpli-

fied significantly only if a+b = 1. The results for that case are

b(1-g)(1-c)
k-1

when a+b = 1,
(20) (I-e )

,klk+1 kU
b(1-g) , when a+b = 1 and c

and

(k-1)b(1-g)(1-c)k-1 , when a+b = 1,
(1-e )

k,S
(k-1)b(1-g) , when a+b = 1 and c = 0.

Finding p(Ku), u(Ks), and p(%). The approach to calculating these

quantities is also direct. ExpreLlsions for e u(K ) andkk+1 S -kk+1p(KL )

will be found first because the probability expressions for Ks > 0 and

KL > 0 given in Equation 9 involve only two of the four types pictured

in Figure 3.3, while those for Ku involve all four types. Once µ(KS)

and p.(KL) have been found, we know p(Ku) = k-p(Ks)-14KL).

On the basis of Equation 9, we can write

a



-n
(21)

kk+1 P(KL=r1) "k-n
+ bcyk-m-n (1-e)m
m=1

= (a be
Y
k-n

+
be , k-n

1-c) , for n=1,...
1- 11-e

Therefore,

(22)
Zk n( 1- )

be
nyk-n be

7
k,k+111(KL) = (a

1 ' n=1 1- :7 n=11-c

ak , when a+b = 1, c = 0;

a
k
1-y

)1 ., when fr-fb < 1, c = 0;
(1-7)2

ak (1 -c)bk b(1-c)11-(1-c)kj,
when a+b = 1, c > 0;

be 7(1-7
k)1 be [k 1-c [1.Li__-L.-cLI

k

1 - --Z
1-7 (1_7)2_ c c2

1-c 1-c

when a-f-b < 1, c > 0 .

The corresponding argument in the case of ek
k+1

p.(K
S

) is that

k-m
(23) ekk-f-1 P(K m) = bg7

k-m-1
(1-e)in + E bcyk-m-n (1-e)m

n=1

therefore,

m k-m-1 be(1-e )m= bg(1-c) y 7k-m), for m=1...,k-I;1-7
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(24) ekk+111(K
S

)

bg(k-1), when a+b = 1) c = 0;

k-1
k-1

bg when a+b < 1, c = 0;
1-7 2 '

(1-2')

-c
bg(1-c)

k
(k-1) +

1b[1-(1-c) k-1
- (k-1)(1-c) c],

when a+b = 1,

b(E
y 1-

c

y)(
1-7---c

)

k
ky(1-c)

k-1
+ (k-1)(1-c)

k
]

1y [1-(1-0
k-1

- (k-1)(1-c)
k

c

when a+b < 1, c > 0

Approximationsfor p(KL), p(Ks), and g(Ku) can now be computed using

Equations 22, 24 and.the formulas for ekk+1 given in Equations 10 and

11. For example, in the simpleot non-trivial case, where a+b = 1 and

c = 0, th are given by

and

p(K
ka

L
)

1-b(1-g7

(-)
p(K

S
)

l-b(1 -g)

11("1.1)

bg

The values of uk, sk, and .ek are needed in order to complete the

state-by-state breakdown of the average number of presentations on cycle

k. These are easily determined by the relationship
7ckk (1-g)uk')
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1-g
k k

.ek + Vic., and s
k

= O. The fact that s
k

= 0 is a consequence

of the approximation assumptions. These relationships imply that

(25

and

Irk,k
uk

_Jahr
1-g

Formulas have been derived which provide for the calculation of the

main quantities of interest when the OEM strategy is employed. We turn

now to the calculation of analogous quantities when other strategies are

used.

Operating Characteristics of Other Strategies

An Ideal Modification of the OEM Strategy

Most experiments to date concerned with the evaluation of the OFT

framework suggest. that parameter a > c. If the number of items being

presented is large, say, greater than 20, then most of the items will

not be in the short-term state at a given time. If it could be guar-

anteed that all items to be presented would not be in S, then the

question of the optimal item to present would be reduced to the question

of which item is most likely to still be in state U. The OEM would

describe the learning process end the OEM strategy would be optimal.

Such a modification of the OEM strategy would be ideal if it could be

accomplished.

There are a number of ways one might approach this ideal. All items

could be presented on a given cycle before any .item receiving an error

response was presented again. Those items. receiving error responses
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could then be presented in the standard cyclic fashion for the required

number of make-up trials. Those items in the sublist receiving no errors

in the remedial phase would be removed and the others would be presented

once again and checked against the criterion, and so'forth. The outcome

of such a procedure should be that only a few items toward the end of

the cycle would receive repeated presentations without a fairly large

number of intervening items.

It is hard to say exactly now close an approach like the one just

described would come to the ideal. The matter will not be pursued

further her. But the operating characteristics of the ideal modifica-

tion are easy to calculate, because they are,just the characteristics

derived in the last section, computed under the assumption that the OEM

applies. The results will be stated here without proof, because they

are based on well-known results for the OEM.

The mean number of resentations on c cle k. By Theorem 3.1 we

know that

1-ek k+1
E(Pk) = 1 + (k + 4(4)) .

x,k
ek,k+1

Consider 2., the probability that an item is in state L at the end of

thejthcycle.Successivevaluesof2,canbecomputed.bythe formula

Then we have

+(1-2.)ag
2
j+1 , where = 0

kk = (1-4
k-1

) (1-g) , for k > 1 .
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By either letting b = 0 in Equation 16 or by straight forward argu-

ment from the properties of the OEM, it can be shown that

(26) (1-ek k+1)/lE
(1-a)(1-g)2

cl [g(1-a)]k) -
,

[1-g(1-a)]

1 -a) (1-

1-g
[g(1-a)]k

Similarly, letting b = 0 in Equation 10 or proceeding by a direct argu-

ment yields

(27) . -ekk+1
1(1-a

1-gl-a
1-[g(1-a)]k-1)

It is interesting to compare these results with yell-known results

for the OEM. Let k become indefinitely large i-n_Equations 26 and 270

Then we get

lim e
a

. _
k k+1 1777 '

which corresponds to the standard result for the probability of no more

errors, following an error, when the OEM applies; and

(1-a} (1 -g)
JAM (1-e )p.(E4)

k
k-*oc [1-g(1-a) ]

2

If we let L be the trial of last error in an infinite sequence of

presentations, then the mean of L is given by

Thus

lim
k-4 oo

EL 1E )
a 1-gkl-e7

(1-e )).:(

k,k+1
O
-kk+1

52

(1-a)EL .



The quantity EL is the mean trial of last error, starting from state U.

With probability a, an item moves to state L following an error, in which

cane there will certainly be no more errors. With probability 1-a, the

process starts again from U.

Other operating characteristics of the ideal modification. By

hypothesis, no items the short-term.state are ever presented under

the modified strategy. Hence,

(1-e
k,k+1 ) k,U11(E" ) =

which already been calculated. It is easy to show that

1_1(K )

k[g(1-a)]
k,
tg(1-a.)-[g(1-a)1

2
-a) a(1-[g(1-a)]k)

(28) e
k k+1 U 1-g( 1-a)

[1-g(1-a))2

The breakdown of EP
k

into the mean number of presentations in each state

is as follows.

and

1-e
k k+1

EP
klU

= 1-2
k-1

+ n
k;k

[11(Ku) + II( )1

k,k+1

Ep
k,L k-1

+ n
k;k1-1(KL)

The asymptotic distribution of the cycle of last error. It may

sometimes be of interest to consider what would happen if either the

OEM procedure or its ideal modification were continued for a very large

number of cycles. It is clear that sooner or later all items would be

learned and there would be no further errors. In fact, the distribution

of the cycle of last error can be expressed simply in terms of the n
k,k

zs.

Define n.k and p
k

as follows.
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and

Ak
= P(last error is on cycle k)

loo

= P(no more errors error on cycle k) .

Then n
k, oo=

lim n
k n2

and n
k

= n
Kok

It fo1lows from Equation lc
co

that

n-k

/5k
1
im

(1-q
k,k+v )

ri- op v=1

A more profitable way to look at is to condition on whether an item

is in state L or not following the make-up sequence on cycle k. Then we

get

(29) pk = Lk P(no more errorslin state U following cycle k)

-4 Lk
L1

[g(1-a) ]vmk-lga

v=k+.1

a
= +

Lk 1-g 1-a)

= 1 -

Therefore, the asymptotic probability that the last error is on cycle k

is given approximately by

1-g
(30) nk r.t. n

k
(1 - 12

1 K 1- g(1-a)) '

Operating Characteristics of the RC Procedure,

For purposes of comparisonosit is desirable to know the operating

characteristics of the RC presentation procedure used in many experiments
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on paired-associate learning. The usual approach used to derive theoret-

ical predictions for this procedure when models like those in the GFT

are being considered, is to multiply the learning matrix by an "average"

forgetting matrix to get a single transition matrix summarizing the

effects of learning following presentation and forgetting between pre-

sentations. Approximate theoretical predictions can then be made in-..

terms of this single transition matrix. For the GFT, this matrix is

given by

( 31) P = 1 0 0

1-c 0 0 1-f f

a 0 0 1

1 0

c (1-c)(1-f) (1-c)f

b(1-f) bf-1-(1-ab)

Calculation of the n-stage transition matrix, P
n

, is facilitated

by noting that the matrix P can be partitioned as follows, where 3 is a

2 X a matrix.

P = l

A B]

It follows by simple algebra, tttat

(32)
Pn

1

(7, B ) A Bn
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In the general case, there does not seem to be any particularly

simple way to express B. Of course, it is very easy to carry out the

multiplications numerically, so the lack of a simple expression causes

no special difficulty. However, in the case a+b = 1, B
n
does have a

very simple form. If we let X = (1-f)(1-c) bf, it-is easy to verify

that

Bn = Xn
-1

B .

This is so because X is a characteristic root of B (and of P) and each

row of .B is a left characteristic vector corresponding to X. Therefore,

P
n

can be written as

(33) Pn 0 0

1-(1-c)Xn-1 (1-c)(1-f)Xn-1 (1-c)fin-1

1-(1-a)Xn-1 (1-a)(1-f)Xn-1 (1-a)
n-1

In the general case, two positive values of X are given by the

formula

(34)

=
l-a-b)12-4(1-c)(1-f)(1-a-b)

Eauaion 34 shows why the case a+b = 1 is special, A modification of

Equation 33 using both ?'s is useful in computing Pn in the general case,

even 'nough the theoretical formulas would be very messy in terms of 'the

basic model parameters.

In the case a+b = 1, X can be interpreted as the proportion of items

currently in state S or state U which will still be in S or U following

the next presentation.
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If the starting state vector, [0, 0, 1], is postmultiplied by Pn,

the result is the expected state vector after trial n. Thus

(35)
2 = 1-(1-a)Xn-1

s
n

= (1-a)(1-f)Xn-1, and

u
n

= (1-a)fX
n-1

Equation 35 can be used to derive all the operating characteristics

one desires. The details will he discussed in the next chapter, in which

the operating characteristics derived in this chapter will be used in

numerical comparison of procedures.
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CHAPTER IV

NUMERICAL COMPARISON OF PRESENTATION STRATEGIES

The purpose of this chapter is to compare the three presentation

strategies we have been considering, using the formulas which were de-

rived in the last chapter with specific parameter values to make pre-

dictions. TWo kinds of questions are of particular interest. One

concerns comparison of strategies given a certain set of parameter values.

For example, how big is the difference between the RC procedure and the

OEM procedure in terms of how many items are in the long-term retention

state after a given number of presentations? How big is the difference

between the OEM procedure and its ideal modification? Another kind of

question of interest concerns how answers to the first kind of question

vary as a function of parameter values. Do changes in the rate of tran-

sition from the unlearned to the long-term state affect the size of the

differences between the OEM procedure and the RC procedure? In order

to address these questions, operating characteristics of the three

strategies have been computed for three different sets of parameter

values. It might be helpful at this point to say a few words about the

particular values that were chosen.

From the point of view of ease of calculation the best parameter

values to choose satisfy the. constraints of the model proposed by Greeno

(1966): c = 0 and a b = 1. That is, the probability of a presented

item making a direct transition from the short-term to the long-term

state is 0 and the probability is 1 that a presented item in the uncon-

ditioned state will make a transition either to the short-term or to the
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long-term state. Expressions for operating characteristics of the OEM

procedure are considerably simpler in this case than they are in general.

It wts noted in the previous chapter that the OEM procedure leads

to cyclic presentation of items, with repeated presentation of items

receiving error responses on a given cycle. If Greeno's model holds,

these massed presentations are useless, Immediately following the first

presentation of an item on a given cycle the item is either in the long-

term or short-term retention state, because a + b = 1, It is unnecessary

to present it again if it is in the long-term state and it is useless to

present it again immediately if it is in the shortterm state, because

c = O. We want to examine the predictions of Greeno's model in some

detail because we would expect them to differ sharply from the predic-

tions of the OEM.

In contrast to Greene's model the LS -2 model proposed by Atkinson

and Crothers (1964) makes almost the same predictions for operating

characteristics of the OEM procedure as the OEM elf. As in Greeno's

model a + b = 1, but in the LS-2 model c = a.. Since the probability of

the presented item making a transition to the long-term-state is the

same whether the item is in the short-term or unconditioned state, the

fact that a b = 1 does not diminish the value of the massed presenta

tions which occur under the OEM procedure, Greeno's model and the LS-2

model make the same predictions for the ideal modification of the OEM

procedure and for the RC procedure because these predictions depend only

on a, the transition probability between the unconditioned snd the long-

term state. For this reason it is unnecessary to calculate the operating

characteristic for the LS-2 model directly unless one is interested in
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the small, detailed differences between the LS-2 and OEM models under

the OEM procedure.

Both cases mentioned so far satisfy the constraint a+b = 1. One of

the interesting features of the data presented by Rumelhart (1967) was

that the accuracy of predictions within the OFT framework could be signi-

ficantly enhanced by allowing a+b < 1. This suggests that operating

characteristics might be different for these two cases also. We will

compare the prediction of two models which differ only with respect to

whether a+b = 1 or a+b < 1. It will be seen that, contrary to our ex-

pectations, the differences in operating characteristics based on the

two sets of parameters are minimal.

The reason the differences are small has to do with the most im-

portant variable influencing the relative' performance of the strategies:

the transition probability from the unlearned to the long-term state, a.

When a is relatively large, as it is in Rumelhartis experiment, the dif-

ferences between the three strategies are moderate and relatively

insensitive to the values of the other parameters.. When a is relatively

small, the differences are pronounced and dependent on the values of the

other parameters. These points will be expanded upon in an analysis of

the detailed predictions for the three strategies using the three sets

of parameter values given in Table 4.1.

Predictions of Greenois Model When Lealy is Slow

Atkinson and Crothers (1964) compared the fit of several models,

including their LS-2 model, on eight different sets of experimental data

Cf the eight experiments, the rate of learning was slowest in an experi-

ment conducted by Hansen (1963) with four and five-year old nursery
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Table 4.1

Three Sets of Parameter Values to be Used to Generate

Theoretical Predictions of Operating Characteristics

Under the Three Presentation Strategies

Case

a

Parameter values Experiment

b c

1 .129 .871 0 .844 .250 Four and five
year old children.
Hansen (1963)

2a .410 .590 0 .954 .333 University under-
graduates. Rumelhart

2b .380 .360 0 .702 .333 (1967). Both cases
fit data from same
experiment. Case 2b
relaxes constraint
that a+b=1.
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school children. Atkinson and Crothers report parameter estimates for

the LS-2 model for this data. We are more interested in predictions fcr

Greeno's model, for reasons described above. In order to adapt the

parameter estimates for the LS-2 model to Greeno's model, we use the

fact that if a' and f are parameters of the LS-2 model and a is the

learning rate in Greeno's model, then Greeno's model with a = a'f and

the same value cf f will yield exactly the same predictions for the RC

procedure as the LS-2 model. The parameter values for CaSe 1 given in

4.1 were obtained using this adjustment.

Before considering the operating characteristics predicted from

these parameters, the reader may wish to review the breakdown of presen-

f
tations on a given cycle under the OEM procedure which is summarized in

Tables 4.2a and 1.2b. Table 4.2a gives general terms and their explicit

expression in the case of Greeno's model. Table 4.2b identifies the

terms used in the formulas in Table 4.2a.

It is worth noting that under the OEM procedure Greeno's model pre-

diets that the average number of presentations in the unlearned state on

a given cycle, EP, , is a constant multiple of Trk the probability of

error on the cycle. The number of presentations in the short-term state,

EP
k S'

on the other hand, depends on the product (k-1)Tr
k lc'

The overall
)

expected number of presentations on cycle k is 1 plus a constant multiple

of
k,k

k. These observations provide a basis for determining whether or

not the OEM procedure will be far from optimal under Greeno's model.

Massed presentations are a real problem only on later cycles where the

criterion run is long. If
k,k

k converges to 0 relatively fast with

increasing k, they are not a problem. If not, the OEM procedure will
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Table 4.2b

Key to Terms Used in Table 4.2a

uk-l'Ik-1
probability item is in state U (or L) following

cycle k-1.

itk,k = ;probability of an error on the first response in

cycle k.

= probability of no further errors on cycle k,e
k,k+1

1

following an error.

- expected number of errors on cycle k, given that
e
k k+1

at least one error occurs on the cycle.

(1-e
k k

+1)µ( k) = expected waiting time for the next error

on cycle k, in terms of number of responses

following an error, given'that another

error is going to occur.

(1-e re)k(E* ),(1-e )k(E* ) = breakdown of
k,k+1 k,U k,k+1 k,S

(1-e )k(E*
k,k+1 k

state.

y

u(Ku),u(K
s

) u(K ) = expected number of presentations in the

respective states on the criterion run

on cycle k.

EP
lc'

EP
k,U'

EP
k,S

,EP
k,L

. expected number of presentations on

cycle k, with breakdown by states.
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be far from optimal. This can be seen in the present case, where learn-

ing is slow, by comparing the performance of the OEM procedure and its

ideal modification.

The ideal modification of the OEM strategy serves two purposes in

the comparisons to be made now. It presents an upper bound on how much

the OEM strategy can be improved by simply manipulating the number of

intervening items between preFelitations of an item on a cycle. It also

gives indication of the discrepancy between the predictions of the OEM

and of Gxeeno's model for the OEM strategy, since its operating charac-

teristics are what the OEM would predict, with or without the modification.

When learning is slow, this discrepancy is pronounced, as may be seen in

Table 4.3.

The effect of the two procedures on nK is the same far the first
k

two cy-les, so Ir
3,3

:Lao for both of them. But the OEM procedure re-

quires 5.77 presentations per item to reduce error probability to this

point, whereas the modified OEM procedure requires only 4.07 presenta-

tions, The size of the discrepancy increases for the next several

cycles, Two more cycles under the modified procedure reduces Trkk to
,

.04, a point that requires five additional cycles to reach under the OEM

strategy. In terms of number of presentations per item, the.comparison

is 22,67 versus 10.90 presentations, a difference of more than 100%.

It is also interesting to compare the probability that an item is

in the long-term state after a given number of cycles under the modified

and unmodified OEM strategies with the corresponding probability for r.n

item receiving the same number of 'presentations under the. RC procedure,

The difference between the modified OEM procedure and the RC procedure
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Table 4.3

Predictions of Greeno's Model for Selected Operating

Characteristics-'of the OEM, Modified OEM, and RC

Procedures When Learning is Relatively Slow*

Cycle Probability
number of error on

k

(a) OEM procedure

Expected cum-
ulative number
of presentations
through cycle k

Probability
item is in
long-term
state after k
cycles under
OEM procedure

Probability item

dure

is in long-term
state after same
number of presen-
tations under RC

1 .750 1.00 129 .129

2 .653 5.77 .453 .497

3 .410 10 .32 .656 .702

.258 14.29 .784 .8i2

5 .162 17.62 .864 .872

6 .102 20.38 .915 .907

7 .064 22.67 .947 .928

8 .04o 24.60 .966 ,943

(b) Modified OEM proced "re

1 .750 1.00 129 129
2 .653 4.07 .453 390

3 .410 8.37 .798 .627

.151 10.90 .948 .722

5 .039 12.34 .988 .764

6 .009 13.45 .997 .793

7 003 ,1999 .816

8 .000 15.49 .836

*Note: Parameter. values: a = -1290 g = .25.
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is dramatic in this respect, while the difference between the unmodified

OEM and RC procedures is small and actually in the wrong direction for

the first five cycles. See the last two columns of Table 4.3 for these

comparisons.

Predictions of Greeno's Model When Learning is Rapid

Parameter values used to obtain predictions of Greeno's model when

learning is rapid are given in Table 4.1, Case 2a. They are reported by

Rumelhart (1967) to be the minimum chi-square estimates, computed by a

grid search, for data from an experiment involving Stanford undergraduates.

One property cf Greeno's model which has already been noted is that

the probability of error on a cycle is the same for both the modified

and unmodified procedures for the first three cycles. After the first

three cycles, it drops more rapidly for the modified procedure. When

learning is slow, this results in notable differences between the two

procedures in terms of nkk for k > 3. In the present case, learning

is so rapid that there is little room for the n
k k

's for k > 3 to differ,

because they are all :lose to O. Even though the n
k k

's are close for

the two procedures, it is conceivable that the procedures differ in terms

of the number of presentations required to complete cycles. They do in

this case, but only slightly. For example, it takes 3.30 presentations

on the average to finish two cycles under the OEM procedure and 3.14

presentations under the modified procedure.

By referring to Table 4.4., the reader can see that the small dif-

ferences between the modified and unmodified OEM procedures are typical

of the differences that can be considered:. All the differences favor

the modified OEM procedure, as they must, but none of the differences
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Table 4.4

Predictions of Greeno's Model for Selected Operating

Characteristics of the OEM, Modified OEM, and RC

Procedures When Learning is Relatively Rapid*

Cycle Probability
number of error on

(a) OEM procedure

Expected cum-
ulative number
of presentations
through cycle k

Probability
item is in
long-term
state after k
cycles under
OEM procedure

Probability item
is in long -term
State after same
number of presen-
tations under RC
procedure

1 .667 1.00 .410 .410

2 .393 3.30 .809 .807

3 .128 4.93 .938 .915

.041 6.20 . 98o .955

5 .013 7.31 992 .V74

6 oo5 8.36 .998 .984

(b) Modified OEM procedure

1 .667 1.00 .410 .410

2 393 3.14 .809 .793

3 .128 4.67 .957 .902

.029 5.82 .991 .945

5 .006 6.65 .998 .967

6 7.86 1.000 .96o

*Note: Parameter values: = .41, g = .33.
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are large. Examination of the last two columns of Table 4.4 also reveals

that when learning is rapid, Greeno's model predicts that the differences

between the OEM procedure, modified or unmodified, and the RC procedure

will be slight.

Predictions of a More General Model When Learning is Rapid

The parameters of Case 2b in Table 4.1 are what Rumelhart obtained

for the data just described when he relaxed the requirement that a+b = 1.

Predictions of operating characteristics of the OEM procedure made by

Gxeeno's model and the more general model are compared in Table 4.5.

The differences in the predictions are very slight indeed. In general,

one would expect there to be a difference in the predictions the two

models make regarding the expected number of presentations in the short-

term state per cycle. In the present case the model for which a+b < 1

predicts about a third fewer presentations in the short-term state, than

does Greeno's model, but the rate of learning is so great that the

number of these presentations is predicted to be small by both models.

Summary of the Relative Performance of the Three Strategies

It might be helpful to review some properties of the special cases

of the GFT we have been considering before summarizing the resuY:s. No

cases have been examined for which c > a. There are two reasons for this

omiszion: first, no experiments have been reported for which c > a, at

least to the author's knowledge; second, the case c > a radically modi-

fies what is desirable in a strategy, because it is then desirable to

present items which are in the short-term state. Tne question cf good

presentation strategies for this case would be interesting in itself if

situations arise where- -it applies. Among cases where c < a, we have
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Table 4.5

Compari;;On of Predictions of Greeno's Model

and a Model that Permits a + b < 1

Probability that Expected number of
Cycle item is in state cumulative presen- Expected number of
number L at start of tations through presentations of items

k asle k cycle k in state S on cycle k

a+b=1 a+b<1 a+b=1 a +b'1 a+b=1 a+b<1

1 1.00 1.00 .00 .00

2 .41 .38 3.30 3.37 .38 .27

3 .81 .81 4.93 4.99 .25 .18

4 .94 .94 6.20 6.24 .12 .08

5 .98 .98 7.31 7.33 .05 .03

6 .99 .99 8.36 8.37 .02 .01

*Note: For Greeno's model parameters arc a = .41, b = .59.

For the more general mode; a = .38, b = .36.
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considered or can guess what would be predicted for models having ex-

treme values of the three parameters. That is, we have some basis for

saying what will happen for a large and small, for t = 0 and b = 1-a,

for c =0 and c The predictions are as follows.

1. When a Is large, differences on other parameters are not im-

portant. The operating characteristics of the three strategies

are such that the modified OEM strategy has a slight adVantage

over the OEM strategy and the OEM has a slight advantage over

the RC strategy. If a = c, th modified and unmodified OEM

are practically identical.

2. When a is small and c = 0, the modified OEM procedure is far

better than the other two. In this circumstance, the RC pro-

cedure may even be slightly superior to the OEM procedure.

3. When a is small and c = a, the modified OEM is much better than

the RC procedure, but not much better than the unmodified OEM

procedure.

4, Regarding Lhe importance of parameter b, we may say:

a. It is not important when a is large.

b. If a is small and c 0, b determines the relative perfor-

mancemance of the OEM and modified OEM procedures. The wc:-.2t

case for the OEM procedure is:when b = 1-a and the best

case when- b = O. (In the latter case, the OEM and modified

OEM operating characteristics are identical.)

c. If a is small and c = a
) the size of b is of little

importance.
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Some of the qualitative conclusions suggested here could be deduced

heuristically without calculating the operating characteristics in nu-

merical terms. The numerical calculations serve to transform the vague

generalizations which could be made without them into assertions whose

meaning can be made as precise and detailed as one wants.
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CHAPTER V

CONCLUDING DISCUSSION

Attempts to deduce instructional implications from psychological

theories o' empiriz.:al generalizations may be crudely classified as be-

longing to one of clic) types. One type of deduction is very 3nfoxmal,

perhaps, but not necessarily because the relationship on which it is

based is only loosely formulated. Practica.11r all deductions of impli-

cations for instructional practice were of this type until ten years ago.

At that time, the success of some very explicit mathematical theories of

simple learning processes led a few investigators to try more formal

derivation of instructional strategies. Because the explicit mathematical

statement of the consequences of instructional acts makes it possible to

Li

formulate the quc3tion of optimal instruction policy in completely unam-

biguous terms, it is natural to seek the answer to this question. The

study undertaken in this paper is closer in spirit to this latter type

of approach, but it does involve what some might regard as regressive

elements of the first approach.

It was argued in the second chapter with regard to the question of

item presentation strategy, that the globally optimal strategy corres-

ponding to the OFT is too complicated to be of central interest. But

what is of interest if the optimal strategy is not? Surely, if a reason-

able model of the process of learning items exists, it should be possible

to use it to make judgments about presentation strategies, even if it is

not practical to work with the globally optimal strategy based on that

model, The problem is that the bases for the judgments my come to
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depend somewhat on the biases and preferences of the individual investi-

gator. For example, investigator A may argue for the strategy maximizing

immediate gain while investigator B pushes a modification of the Oa!

'strategy, both justifying their choice- on the basis of the GFT, Some

theorists would regard this as an unpleasantly awkward situation; others

would see nothing wrong with it Tukey (1962), for example, has stated

that the question of which statistical procedure is optimal in a given

situation does not interest him until he knows of four sensible alter-

natives that have demonstrably different properties. At that point,

lack of a criterion for choosing between the alternatives becomes a

concern. It may happen that none of the alterna+i.ves is globally op-

.timal, but one or more of them is very nearly optimal. If a theoretical

analysis could identify such ia situation when it occurs it would be very

helpful, even if the analysis does not yield an optimal procedure.

The descriptive analysis of three presentation procedures under GFT

assumptions given in Chapters III and IV provides some basis for saying

when a strategy is nearly optimal. When learning is very rapia. for

example, both the RC and the OEM strategies are very nearly optimal,

independent of the exact parameter values. When learning is extremely

slow, the RC procedure is poor, and how bad the OEM procedure is depends

very much on the exact parameter values. These theoretical results are

consistent with the results of the few empirical studies that have been

done. Whether or riot they will hold up under more direct experimental

scrutiny is an open question.

There are a number of limitations imposed by the scope of this

study which would need to be considered before applying the conclusions
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in a particular list learning situation. It has been assumed that the

GFT adequately describes the process governing learning and retention;

that the item;; neutral transfer value with respect to each other;

that all the items are unknown at the start of instruction; thatcorres:

ponding learning parameters are equal from one item to the next; and

that the reward structure can be taken to be a simple function of the

overall probability of correct response at the end of instruction. One

or more of these assumptions are very likely to be violated in practice,

Violations may or may not have damaging consequences for a given strategy.

There are some relevant studies that relate to some of these consequences,

Let us review some of them now

The adequacy of the GFT framework. It is almost certain that th

GFT framework could be shown to be an oversimplified account of the

process of learning and retention. The phenomena of human information

processing are now being studied with particular intensity. At times

it seems as though important new developments are appearing monthly.

In a climate of such intense experimental and theoretical inquiry all

bets are off concerning the adequacy of any simple model. One aspect

of the GFT which is suspec7, concerns its representation of what happens

to an item which is Y.ot presented on a given trial. The GFT assumes:

that no learning takes place in this situation. But suppose a subject

surreptitiously rehearses an item for a few trials after it has been

presented. The OFT assumes that transitions to the long-term state

could not take place via such a process. In fact; in a very successful

model of human memory proposed by Atkinson and Shiffrin (196B), such a

rehearsal process plays a cntral role. It is beyond the scope of this
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paper to guess what the implications of other models of learning and

memory might be with regard to item presentation strategy. But it is

important to note that the GFT is not the only way that the memory pro-
-,

cesses can be modeled. For purposes of this study it suffices that it

'z
is a reasonable way to model the process.

Heterogeneity of items. The assumptions that items are all unknown

at the start of instruction and that their learning parameters are equal

from item to item are almost certain to be violated unless extraordinary

measures are taken to insure that tney hold. The necessity for such

measures notably reduces the general applicability of the procedures

requiring tnem. It may be that a procedure will b reasonably robust

with respect to minor violations of homogeneity. Calfee (19(0), for

example, carried out some numerical calculations which suggest that this

is the case for the Oil: procedure, provided the other OEM assumptions

are satisfied. We might argue, by analogy, that a suitably modified

OEM procedure would stand up pretty well under minor deviations from

item homogeneity, provided the other assumptions of the GFT hold. If ,

item heterogeneity is extensive, however, a couple of studies have

shown that parameter - depend, nt strategies which take these item differ-

ences into account will out-perform the OEM procedure. See Laubseh

(1969), and Atkinson and Paulson (1972).

The importance of item heterogeneity has been noted; it should also

be noted that in order to implement a parameter-dependent strategy the

key problem is to find suitable parameter estimates. These estimates

must separate subject and item differences, so we are led indirectly to

a consideration of individual differences. The consideration of subject
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r,

differences required has an interesting twist to it: it is not enough to

estimate the state of knowledge of a subject; one must also measure in a

fairly "direct" sense the subject's ability to learn. These measure-

ments may have some important implications for the concept of intelligence

and its assessment. In a.symposium on the nature of intelligence, Hunt

(1972) described some exploratory studies of perSons of above average

intelligence who could be classified into two groups on the basis of

being more quantitatively than verbally oriented, and vice versa. These

subjects were given continuous memory tasks like the one described by

Atkinson and Shiffrin (1968), and model parameters were estimated for

their model. Consistent individual differences between subjects were

found; these differences were'meaningfully related to differences in

their independently determined profiles of ability. Parameter-dependent

strategies should be of continuing practical and theoretical interest.

Other crucial assumptions. It is patently clear for some kinds of

curriculum material that some ways of sequencing the material make sense

and others do not. When there is a natural sequence or hierarchy in the

material to be learnedi.good presentation strategies must take them into

account. Such strategies are beyond the scope of this study. Also be-
4

yond the scope of this study are situations where the items to be learned

are differentially weighted in terms of their importance. Smallwood

(1970) hEis considered this kind of problem, using an OEM theoretical

framework which allows for item heterogeneity.

Final Remark

It should be apparent from the preceding discussion tl'at the item

selection problem is not a single problem with a single solution; but
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rather is a-family of pl:oblems representing a widr range of edUcationaI

situations in which the question'bf optimal procedure is open. The st-:dy

.

described in this paper has.addreied.onc of these problems. Other

studies examining some of the Other prcblems whieh'iemain unrezOived ore
.

,

-in progress. It is the goal of all (4 these studies to develop general

methods whi6h may be used to attack more complex optimization problems.

Three universal ibipectfi of.Problem of optimizing in&txuctionrare empha-

sized: (1.) the development of an adequate description of ale.learning

process, (2) the assessment of costs an;I:benefits associate,d, with poi-

zible instructional actions and.ptatep of learning, and (3) the derivation

of optimal Strategies based on the goals set for the student.

The format of the list learnt ZgJ t asp is siMple enough that all three
(...

aspect z of optimization problems,mentiOned'above can be sWojected to de-

. .- .

tailed experiMental and theoretical a-lalysis. In addition to'res earch
I

.

_ 1 _ .

.

_
dt4scri1ed in thiS-paPer, inStructional-strategies -whicii explicitly 'take

individual differences into account are ::ow beilig studied:. There ?should._.
1-

be studies in the near future utilizing organizational features of the

material'to be learned it constraCting optima? 'c Jeihile the

direct implications which. can be drawn front such-i:ormal optiAzation

studies of. list learning are necessarily limited -:the fact that Many

prototypical educational problems rer,iain unresolved even within this

restricted context justifies continued expenditure ofleffort at this

level.
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