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PREFACE

This is one of a continuing series of reports of the Ford Foundation
sponsored Research Program in University Administration at the University

; . bf California, Berkeley. The guiding purpose of this érogrém is to under-
take quantitative research which will assist unive;;ity adminietrators and
other individuals seriously--concerned with the management of uriversity
systems béth to understand the basic functions of their complex systems

and to utilize effectively the tools of modern management in the allocaéioﬁ
. of educational resources.

This paper presents a Markov model of a graded faculty system and in-

vestigates preferred policies for achieving' a desired balance between

B0 A ARV EE 1Y 5 0 o k1 e,

faculty of various ranks. The problems associated with faculty promotion

(I

oy

and other attrition are a complex confluence of many political, social,

economic, and traditional forces which are greatly abstracted for the de-

scriptive purposes of this model.

TSRS g g £

The research reported in the Paper is not a complete analysis of the

I L

vital prcblem of faculty retention and advancement. However, this is an

illustration of the conceptual and computational feasibility of applying
sophisticated operations research techniques to important aspects of

university management.
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ABSTRACT

This report considers a university faculty which is divided into k
grades. The toial size is to remain fixed but the proportions in the

grades may vary. The problem is to find control strategies which will

bring about desired changes in these proportions. This report is confined ' :

to investigating what can be achieved by controlling the numbers of new '

appointments made into each grade. It is assumed that movements within

the system and to the outside would be governed by time homogenevous tran-
sitjion probaﬁilities. A number of theorems are presenteé showing that

not all structures can be attained and that some which are attainable can-
not be maintaineé. Some bounds are given for the length of ti?e

needed to achiev; the goal when this is possible. A number of sub-optimal
strategies are proposed and their performance is studied empirié#lly.
Suggestions are made for further research. Finally, a qontechnical

summary of this analysis is given at the beginning of this report.
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I.  SUMMARY OBSERVATIONS

1. Introduction

The problem addressed by this report is that of naintaining a
satisfactor balance between the numbers of faculty in the various gresdes
in an institution of highe:r education. It has been found, for example, in
the College of Engineering at Berkeley, that if present promotion and
attrition rates are continued into the future then an unduly top-heavy
structure will result. This has been a conclusion reached in many isan-
power systems and it commonly results from a history of expansion. The
relatively high promotion rates which were necessary and desirable during
a period of expansion are found to be too large to maintain a satis-
factofy_and stable structure once the expansion has ceased. The manage-
ment problem which this situation poses is how to maintain the required
balance between the grades and, at the same time, maintain adequate pro-
motion prospects to attract and retain high quality staff.

There are three main aspects of the system which are amenable to
control as folloﬁs:
(a) The promotion and demotion policies.

(b) The losses due to resignation (through depressed salary scales,

early retirement benefits, etc.)

(c) The proportions recruited into each grade.

Of these the last involves the least disruption of the system and is




thus an obvious candidate for initial investigation. The work re-
ported here is thus concerned with showing what changes in structure
can be produced by making changes in the appointment pattern. All

other parameters of the system are assumed to be constant.

2. Attainability and Maintainability

A principal conclusion, with important practical implications, is that

not every desired structure can be attained. Furthermore, there are some
structures which, though they can be attained, cannot be maintained.
A good deal of effort has been devoted to trying to characterize these
structures and answers have been found to some of the most important
questions. For example, a set (. structures has been found which cannot
be reached no matter where we start. Another set can be reached from
any starting point, and thére are yet others which can only be reached
from some starting points but not others.
3. Optimal Strategies

If a desired structure can be attained, it is necessary to know what
appointment.strategy should be used. This analysis shows that there is
usually a choice of strategies and this raises the question of whether

some are better than others. The main criterion of optimality adopted

in this report is that of the number of steps (yedrs in the academic

/“éontext) needed to reach the goal. In general, it does not Seem

possible to find the minimum number of steps needgd‘but some useful re-
sults have been found which enable a lower bound to be calculated. In
certain cases_it is possible to find an upper bound as well.

4. Sub-Optimal Strategies .

In the absence of a general method of finding optimal strategies,




it seemed advisable tc find ways of achieving more limited objectives.
The first class investigateé consisted of those which aim to get

as near as possible to the goal at each step. There is no single measure
of "distance" so a clase of distance measures was investigated, each
member leading to a different strategy. The performance of these
strategies was investigated by making calculations’for a three-grade

and a five-grade organization. The tentative conclusions to be drawn
from these calculations are as follows:

(a) The definition of what is meant by "distance" is not crucial.
All the strategies considered prrduce very similar results.

(b) All of the strategies lead to points which can be maintained.
If the goal is not maintainahtle we shall have to be satisfied
with a nearby maintainable struccure.

(c) The more grades in the system the longer it takes to ceach
the goal.

(d) The rate of approach to the goal is very dependent on the

size of the loss rates. The higher the loss rate the eas-
ier it is to effect changes in the structure.

In order to give an idea of what is involved in implementing the
strategies which have been discussed, a verbal description of one of
the most successful is given. The Study first computes how many of the
existing members of the system will still be present in one year's
time and how they will be distributed throughout the system. Next,
it calculates the difference between the number desired in each grade
and the number who will be left. In general, some of these differences
will be positive and some negative. The positive differences are
called the "recruitment needs" for those grades. The final stage is to
distribute the new entrants to those grades with recruitment needs in
proportion to those needs.

Better strategies, which look farther anead, have been proposed but

not investigated in detail.




5. Further Work
The work carried out so far is incomplete at almost every point.
Some of the topics in which further work is needed are listed below.

(a) This study assumes that the faculty size is constant in time.
The theory should be extended to cover organizations whose
size changes over time.

(b) It is not known whether or not the strategies which look one
step ahead are near to the optimum. A first step toward the
elucidation of this point would be a comparison with those
which look two steps ahead.

(c) Some structures are not maintainable but it may be possivle
to.remain near to them for a sufficiently long time. This
point needs investigation.

(d) The calculations in this report are based on typical but arti-~

ficial data. Suitable data collected from various colleges
and campuses should be used to test the methods in practice.

6. Implications for Policy
The work described in the report is a step toward a general theory
of control for Markov chain models of graded manpower systems. As such, it is
primarily a theoretical exercise intended to give some insight into the dynamics
of such systems. It was motivated by the problem facing a university whose
faculty structure was moving in an unwanted direction and there are several
conclusions which can be drawn which have important implications for those
faced with that problem. For any organization in which the assumptions of the
model apply, the fcllowing conclusions hold:
(a) Not all structures are attainable or maintainable by control-
ling the appointment policy alone. Those which are can be
found from results given in the report. Those which are not
can only be reached by making changes in the promotion rates
or by contriving to alter the leaving rate. The kind of changes
needed can also be determined from the results given.
(b) Some changes in structure can be brought about by appropriate
variations in the appointment policy. The best way to do this

is still an open question but several strategies have been
proposed which seem to give satisfactory results.
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IT. MATHEMATICAL ANALYSIS

1.  Statement of the Problem

The management of a grvaded manpower system such as a university
faculty ‘involves making repeated decisions on appointments and prometions
This paper is primarily concerned with hr .tol the "shape'" of the

hierarchy by manipulating the pattern of appointments.

The problem may present itself to the management of the system in
a varietr of ways. Perhaps the commonest arises when a period of expansion
comes to an end. It is then discovered that if past promotion rates are
centinued in the futur;, the system will show unacceptable growth at the
top. This phenomenon has been observed repeatedly in man& kinds of organi-
zations. At Berkeley, Branchflower's calculations for the College of
Engineering  the same tendency. The management probler. which then has
to be faced is what changes to make to bring the system under control. A
second situation is where one wishes to prepare in advance fo cope with some
change in the external environment. For example, if < rew campus were to be
established which would be expected to attract senior faculty from an
existing campus, then the latter would wish to ensure in ;dvance that
sufficient people were av;ilable who were capable of being promoted to fill
the gaps. In both examples, the problem may be stated as follows. At the
present, we have a system with a certain grade structure. At time T in the
future, we require it to have Some other structure. What appointment and/or

recruitment policy should we adopt between now and T to ensure that the

goal is achieved?




The main parameters of the system which we subject to management
control are the following:
(a) The numbers of people recruited into each grade at each
point in time.
(b) The numbers of people promoted (or demuted) between grades
of the system.
(c) The numbers of people dismissed or induced to leave .

the system.

In most organizations there is no control over members who decide to leave
of their own free will. Control by (a) alone has many attractions. Chief
among these is that it has fewer adverse repercussions ua those who are
already in the sys;;m than the other two methods. To control unwanted
growth at the top by method (b) involves cuéting promotion rates; method
(c) is usually reserved for use when all else has failed. It is for these
reascis that our main effort will be directed to (a) as a means of control.
We shall show that it is a fundamental control variable but that there are
severe limitations on what can be achieved by using it. This will lead us
to conside. how methods (a) and (b) can be combined to arrive at our objec-
tives. We shall-not discuss method (¢). If this is available, our problem

is trivial since a combination of (a) and (c) can always be found to

achieve any goal as soon 33 deaired.

2. The Model

To analyze the problem as stated above, a mathematical model of
the system is constructed. We shall use the Markov chain model first intro-

duced by Gani [1963] and Young [1961] for use in industrial and educational

organizations. These models have been used successfully on many occasions and




they include all the basic factures required to describe a un%versity
faculty system. Although the Markov chain model is a stochastic model we
shall treat it deterministically in this paper. The elements of the model
are as follows. We have a system consisting of g grades. At ctime

zero there are N members of the system of which a proportion xi(O)

are in grade i . Changes taks place at discrete points in time (yearly
in a faculty system). The porportion who move from grade i to grade j
at any time is denoted by pij and the porportion who leave is Wos Py

is the proportion who remain in the same grade. It follows at once that

k
381 Pyy

e

+ wy = l for 1=1, 2, .

For simplicity we shall assume that the system is maintained at a
constant size N by recrui“ing as many new members at any time as
there are leavers. We shall let pi(T) denote the proportion of new
recruits at time T who go into grade i . Finally, let xi(T) denote
the proportion of the N members of the system who are in grade i at
time T . Then tlere is a simple recurrence formula connecting xi(T+l)

and xi(T) which may be expressed in matrix notation as follows:

§(T+1) = E(T) P+ f(T)Y'B(T+1) (1)

where
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(1) = (%, (M), x,(T), . . . x (D)
wos (wy, vy, W)
p(T+l) = (pl(T+1), Py (THL), - . . pk(T+1))
_ (911912 Tt 91;:
P o= 1PyPyp » - - Poi '
[Pr1Pr2 © * 7 Pk

It is important to note that (1) can also be written in the form
x(T+1) = x(T) (P + w'p(T+1)) = x(T)Q(T+1) (2)

where Q(T+1) 1is a stochastic matrix.
The elerents of P and w could be made functions of T but this would
only be appropriate if we wished to treat them as control parameters. We

will assume that they are fixed at their current values and see. what can be

w1

achieved by exercising control over p(T+l) only. Our problem may now be

stated more precisely as follows.

To find a sequence of vectors E(T+1) such that we pass from the
initial structure 5(0) to the goal structure f* , say, in an "acceptable
way. We deliberately leave open what is meant by "acceptable'. (I am not
aware of any other work on this problem.) The problem of a stationary
p , rather than P(T) , was discussed in Bartholomew, [1967). The results

~

given there have since been extended by A. F. Forbes in a paper to be
published.

The elements of the vectors §(T) must all be positive and sum to one.
It is convenient for purposes of exposition to visualize what is happening in

geometrical terms. The structure at time T may be represented by a point
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in k-dimensional Euclidean space. It will lie in the positive orthant
on the hyperplane Xy + X, + ... xk = 1 ., In three dimensions this
region is an equilateral triangle in the positive octant. This represen~-
tation leads us to 3peak of moving from the point 5(0) to the point 5*

and to refer to the path or trajectory of the movement.

3. Two Basic Questions About X*

The foregoing discussion should not be taken to imply that the
problem we have set ourselves is always scluble. Before attempting to
find optimum sequences {p(T)} we shall first attempt to discover when
and whether a solution is possible. We consider this question in two
parts:

(a) Is x* attainable?
(b) 1Is it maintainable? That is can we remain at x* once we
have arrived there?
For practical purposes these questions are unnecessarily restrictive:
it will usually suffice to answer
(a') Can we get near enough to x* 7
(b') Can we remain near enough to x* for a sufficiently long
period of time?
The second two qdestions are less easy to answer so wé shall concentrate

on the former but bear the latter in mind.

4, Condition for Attainability

We shall show that some points cannot be reached at all. Hence
if x* belongs to this set our goal is certainly unattainable. Some
other points are reachable from some but not all points. Finally, there

are points which can be reached (or, at least, approached arbitrarily closely)
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from any other point.

We first delineate the set of points which cannot be reached no
matter where we start. We do this by determining its complement which

we denote by A . The result {g contained.in the following theorem,

THEOREM 1
A=fx|x2yP x,yeX
where X = {5 | X >0, f}'= 1}
Proof

If x* can be reached at all it must be reachable from at least

" one other point Zn X . That is there must be a y such that

gor any such point x* > yP since 'p> 0. A is thus the set of

x* 's for which at least onme such y ¢an be found. [::]

~

Although this theorem characterizes A it does not make it very easy

to determine the boundaries of the set in any particular case. Theorem

2 1is more explicit on this point.

-~

THEOREM 2

A 1is the convex hull of the points with co-ordinates

Py e (3w1,2,...k 1=1, . ..k

- 123

where P(i) is the vector of elements in the ith row of g and ‘gi

ig a vector of zeros with a 1 in the jth position.

Proof

Consider first the set of points which can be reached in one step

from e, ({=1,2, ...k . Clearly, all of these belong to A.
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Substituting T = 0,

2(1) = ;P + evip(l) (3
B (4)
~ 1351 P3tH¢
The primary region is thus
{x | x = p(D) ; a,e, ,a, =1 a,>0, i=1,2 k} |
xPx=s Y1 321735y y 3 1 A
Consider next the set of points which can be reached from (yl, yz, . e yk).
k
These co-ordinates may be written 151 yie;

Substituting this for x(1)

sets reachable from each e

~1

will be termed primary regions.

x(T) = e, in (2)

in (3) now gives

K K
- 1
21 = 5 v+ dy v e
K W, K
= qEp VB TH gEy VoY 4y py(Dey
k k
, ()
&1 yi{P +wy L Z, pj(l)e } ,

Hence, the set of points which can be reached from y is

~

k

k

11
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! = (i) = = *
x| x= L ydp L7 Z, aje} o > 0, Eaj 1, y>0, 2y, =1

But any point in this set is a convex combination of points in the primary

region. Hence, the totality of points in A is the convex hull of the

vertices of the primary region. These vertices are obtained by setting

in (4) for each value of i . This gives the set of points

¢ =Yy




—

i
LTI rnae M P et e ¢

i

I

S G, 5=1,2, . ..%. —

P

~

+ w,e
~i~j

% and not all of them will be extrome

The number of points here is k
points of the convex hull, However, for k small it is a simple mat-

ter to determine the region.

EXAMPLE 1
Consider a 3-grade system with the following parameters -

0.50.4 0
p=|0 0.6 0.3 W= 0.1, 0.1, 0.2) .

0 0 0.8

Theorem 2 says that the region A will be the convex hull of the poirts with

co-ordinates

(.5 + .1, .4, O)*%, (0 + .1, .6, .3), 0+ .2, 0, .8)*
(.5, .4+ .1, 0)%, (0, .6 + .1, .3), (O, 0+ .2, .8)

(.5, .4, 0+ .1) , (0, .5, .3+ .1)*,(0,0, 0.8 + .2)*

In this case the extreme points, which are marked with an asterisk, are
easily recognized by plotting them on the triangular plane of the region

X as in Figure 1. In higher dimensions the recognition of extreme points

i{s more difficult although algorithms are awailable. However, the mere
inspection of the set of co-ordinates given by Theorem 2 gives an idea

of the kind of structures which are attainable.

Condition for Maintainability
If a point

This is easily derived as a special case of Theorem 1.
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can be reached from itself then the system can remain there as long as

desired. Llet S denote the set of maintainable points, then we have
THEOREM 3
S ={x | x > xP, xeX}

The recruitment vector required to hold the system at a particular Xx

is easily obtained from (1).

THEOREM 4

If xS then the system ecan be kept at that point hv choasing

p =x(I-P)/L

-~

where L = xw', the proportion of leavers.

~ o~
—

This result leads to a more explicit description of the region S which

is given in the following theorem.

THEOREM 5

The vertices of S have co-ordinates proportional to

e, (I - 'l w=1,2 ...k

with the constant of proportionality being determined so that the elements

sum to one.

Proof: From Theorem 4.

x = xw'p(I - P)-l
rEERL T B
= ' -
' (I pee,(I-P)

for all points xeS . Hence, any point in § can be written as a convex

1

- # ination of the points ei(I - P) = multiplied by a scaling factor afg'
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to make the elements sum to one. The vertices of S thus have co-

ordinates proportional to ei(I - P) .

COROLLARY

If wy=w (1i=1, 2, . . . k) then the co-ordinates of the vertices

are

51(5-5)’1,(1-1,2,...1&) .

Proof

The result follows at once on noting that, in this case xw' =1

for all X .

THEOREM 6

If x*S then we can get arbitrarily close to x* , no matter what

our starting point, by adopting the recruitment policy

p = x*(I - g)/x*y' for all T.

Proof

If we apply a recruitment policy which is constant over time we may

write (2) in the form
x(T + 1) = x(T)Q .

Q 1is a regular stochastic matrix so that the system will have a limiting
structure satisfying x = xQ . The limiting structure will therefore be

x* 1if we can find a p such that
x* = x*(P + w'p) with x*1'=1 .

This equation is satisfied if we choose p as given in the theorem. ]::I

15
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At this point it is convenient to identify the practical implica-
tions of these theorems as listed below:

(a) If our goal vector f* is in A it can never be attained
by varying the appointment vector alone (Theorems 1 and 2) .

(b) If our goal vector f* is in A - S it may be attainable
but it will not be possible to remain at 5* once it is attained (Theorem
3). Whether or not we can remain sufficiently near to 5* remains an
open question.

(c) If f*eS we can ultimately get as close as we please to 5* ’
no matter where we start. Further we can reach the goal by using a con-
stant appointment policy (Theorems 3, 4, 5 and 6).

In the following,section we shall investigate the best way of reaching 5*
given‘that it is (or may be) attainable. If our goal is not in S there
are only two courses open to us. Either we must change the goal so that
it can be reached or we must change the parameters of the problem. This
amounts to resorting to methods (b) or (¢) of Sectgon 1. The means of
doing this are provided by Theorems 3 and 4. We must adjust the elements
of P, and by imﬁlication, the value of w so that 5* lies within the
rew S.

It may happen that the appointment vector needed to maintain the desired
structure is. itself unacceptable. For example, it may require that appoint-'
ments be made only at the lowest level, so preventing the recruitment of
distinguished faculty at higher levels. In such an eventuality, it must
be accepted that the two requirements are incompatible and that one of

them, at least, must be relaxed.

5. The Problem -« Determining Optimal Appointment Policies

A successful appointment policy is one which achieves the desired
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goal., An optimal policy is one which does so in the most "satisfactory"

way. It will help to clarify the attributes of an optimal policy if we

first identify some of the characteristics of an unsatisfactory policy.

We suggest that the following features are und .sirable in any appointment

policy:
(a)
(b)
(c)
(d)

The last

a large number of steps to reach the goal.

a series of abrupt changes from one time period to the next.
Passing through some undesired structures on the way to the goal.
high cost (in terms of salaries, etc.)

point may simply be another aspect of (c) since high cost would

make some structures undesirable. We shall proceed on the assumption that

(a) is the most serious disadvantage and so try to devise strategies

which attain the goal in a small number of steps. We shall use (b) and

(¢) as guides in choosing between strategies which take similar times

to reach the goal.

The mathematical problem which we shall try to solve is thus

To find the smallest T » denoted by T* , such that there

the following:

exists a sequence of vectors

{p(T)} with non-negative elements satisfying

x* = x(0) ) {P +w'p(m)

If the goal is attainable in a finite number of steps, T* can

always be found, in principle, by direct combutation. We would have to

in turn and determine at each stage whether

set T¢=1,2, ., .,

or not the equations (5) had a solution in non-negative p(T)'s. The

smallest value of T* for which this was true would be the one required.

In practice this is a formidable task so we shall aim here to gain some

insight into the nature of the solution by elementary mathematical analysis.
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Our results are in the form of bounds ¢cn T* which, in exceptional

&

cases, may serve to determine its value. No computations have been made

to investigate the closeness of these bounds; this should have high

priority in future work. The following theorems and their corollaries

contain the main results.

oy THEOREM 7

T* > T' where T' 4is the smallest T for which

p x* :_x(O)PT .
Proof
1f we are to have
T
x* = x(0) jgl P+ w'p(j)

for some T then the first term in the expansion of the product

on the right hand side cannot exceed x* since all the remaining terms

are necessarily non-negative. ||
L

7

It should be noted that x(O)PT is the vector of the proportions of

the original members of the system who remain at time T . Hence

it is intuitively obvious that the goal cannot be reached until all of

these have decreased below the target levels. The result of Theorem

7 is quite general but from this point onwards we shall have to make

a further assumption in order to make progress. We shall assume that

w, =w for all i . This means that an individual's chance of leaving

i

! is the same no matter where he is in the hierarchy. 1In practice

leaving rates tend to decrease as we move from the lower to the higher

[ R

ranks. In spite of this restriction we may hope to gain some insight

\
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into the nature of the solution which will pave the way for further

generalization. Atte: Theorem, 8 we shall make the additional assumption
that the promotion matrix P is upper triangulay. There is no lack

of realism in this assumption since demotions rarely, if ever, occur.

THEOREM 8
T T“'l j H
x(T) = x(0)P" + w jEO p(T - j)P .
Proof

The proportion of leavers who have to be replaced at time T
is 5(T)y' = w because all the elements of W are equal to w .,
Hence, wE(T - j)gj is the vector of the proportions of people
recruited at time T - j who survive :0 time T . The expression
on the right hand side in the statement of the theorem is thus the
cumulative sum of all survivors, including those who were present

at T = 0. I~

The point of this theorem is that it shows that x(T) can be
expressed as a linear function of the appointment vectors when the loss
probabilities are equal. This represents a very considerable simptifi-
cation which makes it possible to arrive at the following results.,
THEOREM 9

T* < T" where T" 1is the smallest value of T such that

x*P_(T - x(0)P >0 .

Proof

The method of proof is to show that x* can be reached in T"
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steps if the condition given holds. The smallest possible number of
steps obviously cannot exceed T" . If the goal is reached after T

steps then

T T-1 j
x* = x(0)P” + w jEO p(T - J)P (by Theorem 8).

Re~write this equation in the form

T-1 j x* - x(O)PT
L, p(T - J)P7 = —=y . (6)
j20 P ) . y

Then it may easily be verified that (6) is satisfied by

p-d w(l - W)j

p(T - 3) =y for J =0, oy «» + + T = @)
b T 1-(-w

For this to be an admissible solution it is also necessary that all of
the vectors p(T - j) should have non-negative elements summing to one.

We first show that 5

-
]

E(T - j)}' =1 where %' is the vector (1,1, . . 1) .

Let u = yP-:l then u is the vector which when post-multiplied
j times by P gives y . Since the loss rates are equal, each multi-

plication by P reduces the total size by a factor (L - w) . Therefore,

ul' = (1 - w)_j Xl' »
But

yl' = (5*1' - §(0)§T1')/w ={1-(1- W
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Therefore,

y1' = {1- @ -whua-wl .

Substitution in (7) now yields the required result.

The requirement that the elements should be non-negative is that

350 for §=0,1,2,...7-1

which, substituting for y , may be written
x*P'J-x(O)PT'jg_o,j=0,1,2,...T—1 . (8)

Suppose that these ineéualities are qatisfied for j = jo then it
follows that they are also satisfied for j = jo - 1 since a vector of
non-negative elements multiplied by a matrix with non-negative elements
yields another non-negative vector. Hence it is sufficient for (8) to be

satisfied with j =T - 1 and this gives the condition of the theorem. [::l

Note that condition (8) is always satisfied for j =0 if T > T" (see

Theorem 7). Further insight into the nature of the conditions can be

obtained by writing out the first two elements in the vector inequality

x"‘P-(T =D

~ o~

- x(0)P > 0 .

These are

’f*pli(T R x,(@py; 20
9
[T - 1] -(T - 1) -
f;qlz + x§p22 - xl(O)p12 x2(0)p22 >0
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where

ng J-T+HL_ -3-1

(1-1] _ _ .
P12 520 P11 P22

9

is the (1, Z)th element in the (T-l)th power of g-l. The first
inequality can obviously be satisfied by making T sufficiently large.
However, the same is not true in general for the second inequality
because x; and xg have coefficients of opposite sign and comparable
magnitude.

1f a value of T" can be found then (7) gives a sequence of
appointment vectors which will achieve the goal in T steps. This
may not be an optimum sequence but if T" is acceptably small the
strategy is well worth considering. It is the only one we have for which
the number of steps to reach the goal is known in advance but it relates
only to the case of equal loss probabilities.

The strategy implied by (7) has the following interpretatiom.
Tt requires us to choose E(T = j) 4in such a way that the proportions
of those recruited at time T - j who will remain at time T 1is pro-
portional to y for all j . The vector wy may be described as
the "recruitment needs" at time T and so the strategy requires us to
select appointment vectors in the light of what the recruitment needs
will be at time T .

Our remaining rggult is much more limited in its scope. Instead
of trying to reéch the goal in every grade we merely try to meet the

goal in the lowest grade only. In this special case a complete solution

can be achieved if P is upper triangular and we=w for all 1 .
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THEOREM 10

Let Ti be the smallest number of steps in which the target

can be reached in grade 1 , then T{ is the smallest T for which

T
x -
x} - Py;p%,(0)

T
0 < = < Q- pll)/(l - pll) .
Proof From Theorem 8

T T-1 T-1
X, (T) = p %, (0) + w{pll Pi(1) +pypy (D) + L L+ pl(T)} .

We can only make xl(T) = xi if xi is between the minimum and the
maximum of the right hand side of the equation. It is obvious that the

minimum occurs wiien

pl(l) = p1(2) =, . . o= pl(T) =0
and the maximum when
P =p(2)=...=p(D]) =1 .

Hence, at least one solution in positive pi(j)'s exists if

T T T-1 T-2
*
P 1%, (0) < x4 < p) %, (0) + w{p11 tpte .t 1} (10)
which is equivalent to the inequalities given in the statement of

the theorem. |

Corollary 10,1

The goal in grade 1 can ultimately be reaehed if

* -
x} < max (w + P11%,(0), w/ (1 pll)) .
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Proof
Re-write (10) in the form

p'ilxl(O) <xb<w/(L-py)+ p'{l{xl(m - w/(1 = py )} X

Then if xl(O) >w/(l - pll) the upper limit is a decreasing function
of T and so if the inequality is satisfied at all it is satisfied for
T=1. This gives

xt < w + pyx; (0) :

If xl(O) <w/(l - pll) the upper limit is a non-decreasing function
cf T with maximum value, occurring in the limit as T + «, on w/(l - pll)'
In the limit, the. lower inequality is always satisfied and so the result

follows. |

Corollary 10.2

Theorem 10 provides a complete solution to the problem of finding

T* when k = 2 and shows when a solution exists. (Triangular P and

w, =W for all 1 ).

The geometric form of the two limits of Corollary 10.2 shows

that the limiting values will be attained quite rapidly for typical
values of p11(0.6 - 0.7). This means that if the goal can be achieved

at all it is likely to be reached quickly.

Corollary 10.3

x > Tk .
T* > T4

In this section we have defined an optimal policy as one which

reaches the goal in the smallest number of steps. At the present
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time it does not appear computationally feasible to determine the

optimal policy in this sense in any but very special cases. Nevertheless,
the theorems which we have given provide some information about the

value of T* and hence provide a yardstick with which proposed policies
may be compared. In the remainder of this report we shall be considering
some strategies which seem intuitively reasonable. In our suggesfions

for further work in Section 7 we shall propose that they be evaluated

in part by the criterion which forms the basis of this section.

6. Strategies Which Look One Step Ahead

We have seen that it is not possible, in general, to find strategies
which wilf'make the desired change of structure in the minimum number
of steps. However, it is possible to devise strategies which have .certain
sub-optimal properties. In this and the following section we shall de-
scribe some such strategies and investigate their performance.

The first class of strategies is designed to get as near as possible

to the goal in one step. In the short term this 48 an attractive property

_but it may have to be paid for in the later stages of the transition. For

a system starting at x(0) we have to find a point x(1) which can be
reached from x(0) and which is such that the distance from x(1) to

x* is a minimum. Having reached x(1) so that then becomes the starting

-~
-

point for another step, and so on. There is, of course, no unique mea-

Ry
sure of "distance" in this context, and different measures will lead to
different strategies. A class of reasonable measures of the distance from

x(1) to x* is given by




We shall investigate the case a =1 and a = 2 . First we prove two

theorems about all members of this class.

THEOREM 11

1f x* can be reached in one step from x(0) then a strategy

minimizing D will do this.

Proof
The result is obvious because if x* can be reached in one step

there must exist at least one x(1) which makes D zero. I-‘_I

——

THEOREM 12

The vector which minimizes D also minimizes

'

k
D' = I, lyg - pila ,a>0

where
y = (@ - x(0R) /x(0)y’ -

Proof
. x* = x(1) = x* - x(0)(P + w'p)
! x* - x(0)P
; = x(0)w§y——"——=~p
: ~ x(0)w'
: = constant {y - p} ' .

Hence, any function of the differences xi* - xi(l) will be proportional

to the same function of the differences y; = Py |-.'|

This theorem has an interesting interpretation. 1f we were to

. take p =y then it may easily be verified that the goal would be reached
(S ~ ~
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in one step. However, we cannot do this in general because the elements

of y are not necessarily all positive. Theorem 12 leads us to choose

an admissible p which in a certain sense is nearest to the inadmissible

p which would have taken us to the goal in one step.
It would be useful to know something about the conditions under
which strategies minimizing D will reach or converge on X* . The

} following conjecture is supported by intuition and calculation but a

satisfactory proof is lacking.

CONJECTURE

If %%¢ S , strategies minimizing D will ensure that

lim x(T) =x* . If x*d S , x(T) will reach, or converge to the point
Tro ~ - ”

in S nearest (in the sense of D) to x* .

The minimization of D subject to the restraints p > 0 and

~ ~
’

B}' =1 is a problem in mathematical programming which is discussed

in the Appendix. When a = 1 it turns out that there is a whole class
of strategies which will give the same value of D . It does not follow
that, when applied repeatedly, every member of this class will produce
the same trajectory because there are infinitely many steps which can be
; taken from §(0) which yield the same value of D . When a = 2 the
solution is unique. It also minimizes D with a = 1 and the argument

of the Appendix may easily be extended to show that it minimizes D for

TIORAPMNG omnm n R

any even positive integer a > 2 . The strategies which we have selected

f

g to examine in detail are the following.

The Strategy Sl

This is one of those which minimizes D with a= 1. It is defined

DU TR R o s 4

as follows. ‘éompute y and replace all negative elements by zero. Re-
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scale the remainder so that their sum is 1 . This strategy is thus one
in which we allocate to each grade which is below strength an equal pro-

portion of their needs.

The Strategy 32

This is the strategy obtained by minimizing D with a=2 . It

may be compared iteratively as follows. Compute

0 if yi<0

<
[N
fl

1
yi-;{Y-l} if yi_>_0

<
]

where m is the number of non-negative y's and Y 1is their sum., If
] ]
y' >0 then p= y' , otherwise treat the yi' s as original v, 8

and repeat the cycle as often as necessary to produce a positive vector.

The Strategy Sé

In each time period a proportion x(T)w' of members leave the
system. An equal number of replacements are allocated to the various

grades according to the chosen p . With this strategy we select

~

max y, and 1f max ¥y > 1, all of the recruits go into that grade.
1 =
If max Yy <1, we bring the number in this grade up to its target

by allocating a proportion max Yy to this grade., We then move on
to the grade showing the next largest shortfall and treat that in the

=

séme way. This procedure is continued until all of the recruits have

been dealt with.

It is easy to see that 33 also minimizes D with a= 1 and

hence will reach the goal in one step if that is possible.
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The Strategy S4

Here we put all recruits into the grade having the largest Yy oo
In general, this does not seem a very desirable policy since it might
involve appointing all assistant professors in one year followed by
all full professors the next. Nevertheless it is useful to include
it for purposes of comparison with the other strategies.

The final strateé& which we shall consider was ;pecifically

designed to ensure a smooth transition from x(0) to x* . We restrict

our attention to points x(T) satisfying
x(T + 1) = ax* + (1 - a) x(T), 0.5 a<l, T> o . (11)

—

The trajectory for such a policy 1is thus a straight line joining the two

points §(0) and x* . Substituting (11) in the basic equation
ax* + (1 - @)x(T) = x(T)(P + w'p(T + 1))
Solving this equation for E(T + 1) we find
p(T+ 1) = {ox* + (1 - o)x(T) - x(DP)/x(Dw' . (12)

The formal analysis just carried out may not yield a non-negative p
for any a . ‘In this case no progress will be possible and the strategy

must be abandoned. Otherwise SS is defined as follows.

The Strategy. SS

Select the largest value of a(0 < a < 1) for which p(T + 1)
as given by (12) is non-negative.
This strategy thus moves as far as possible in the direction of

~

x* at each step. Like Sl, 32 and 33 (but unlike 34) it will
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therefore reach f* in one step if that is possible. In practice
we have rarely found it possible to make any progress at all with this
strategy. When it can be used it is either equivalent to or no better
than one of the other strategies. For this reason it only appears in
one of the tables.

An obvious strategy if x* ¢ S 1is the one suggested by Theorem

6 which uses a constant appointment vector given by

p = x*(I - P)/x*w' .

-~

Although this strategy does not appear in our calculations we shall
be able to compare it with the others in certain cases.
Tables 1-5 summarize the results of calculations made using the
strategies 31—35 for two promotion matrixes of dimension 3 and 3 .
The czlculations may not be fully representative and the conclusions
set out below must be interpreted with this remark in mind. We shall deal

with the tables one by one but the following remarks apply to them all.

(a) 33 and S, are almost identical for these examples.

4
(b) 32 tends to spread the recruits more widely over the
grades than does Sl but otherwise the strategies are
similar.
(c) The goal is reached within 10 steps on only one occasion
‘ but when k = 3 the structure is often very close to the

goal after 5 steps. Rather more steps seem to be needed

when k =5 .,

Table 1

The goal here is the vertex of $ which would be reached, in

the limit, by using the constant appointment vector p = (1 0 0).



The strategies 33 and S4 starting from (0 1 0) turn out to be
identical with this constant strategy. In the case of the starts from
(LO0O) and (0 0 1) the sequence E(T) becomes equal or very close
to this in every case as the structure approaches the goal. 1In this
example, all of the strategies produce a structure close to that

required im a very few steps.

Table 2

Here the goal is outside $ and all strategies appear to be
converging on a point at or near the vertex used as the goal for Table
1. None of the strategies takes us very rear to the goal but all get
near to their limiting structure quite quickly. There are interesting
differences between the sequences of »ppointment vectors in this case.

Again, they appear to be converging to a limit.

Table 3
The starting points in this table are not the five extreme

points of X but three structures chosen to represent the spectrum

of possibilities. As when k = 3 there is little difference between

the strategies except now it is taking much longer to get close to

the goal. This is particularly true of the example in the first

section of the table. Si', 33 s and S4 are either near or equal to the
pure strategy (1 0 0 0 0) throughout or quickly converge to it but

Sl allows a much greater spread.

Table 4
This is our only example in which the goal is exactly attained.
Only S1 and 32 are successful but it would be premature on such

limited evidence to conclude that they will always show this super-
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lority. The goal cannot be maintained and beyond T = 4 there seems
little t. choose between the strategies. This is a case where a sequence

of pure strategies would obviously be unsuccessful, in the early

stages at least.

Table 5 v

This table is included to show a case where none of the strategies
1s very successful. The two illustrated are never near to the goal in

every grade and matters are getting worse rather than better beyond

T =5,
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TABLE 1b: SEQUENCES OF APPOINTMENT VECTORS USED TO
ACHIEVE HE RESULTS OF TABLE 1la

Appointment Vectors for start at (1 0 0)

135 .717 1 .970 .970 .976 .981 .985 p1
Sl 0 0 0 0 0 030 .030 .024 .019 .015 p2
.865 .238 0 0 0 0 0 0 0 p3
0 0 .928 1 1 1 1 .995 .996 .998
32 0 0 0 0 0 0 0 .005 .004 .002
.072 0 0 0 0 0 0 0
33
and
34 1 1 0 . . .

Appointment Vectors for start at (0 1 0)

.690 1 .921 .908 .925 .941 .953 .963 .970
Sl 0 0 0 .099 .092 .75 .059 .047 .037 .030
.310 0 0 0 0 0 0 0 0 0
.986 .973 .983 .989 .993 .995 .995
32 0 0 0 .014 .027 .017 .011 .007 .005 .005
0 0 0 0 0 0 0 0
\
33 L] . 1
and . . .
34 . . . L]
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TABLE 1b (Continued)

Appointment Yectors for start at (0 0 1) A

.500 .559 .641 .719 .782 .821 .868 .896 .918 .935
S .500 .441 .359 .281 .218 .169 .132 .104 .082 .005

.500 .639 .747 .827 .883 .922 .949 .966 .978 .986
S .500 -.361 .253 .173 .117 .078 .051 .034 .022 .014

2
0 0 0 0 0 0 0 0 0 0
0 1 1 .956 .940 .969 .984 .992 .996 #9868
33 1 0 0 .024 .060 .031 .016 .008 .004 .002
0 0 0 0 0 0 0 0
0 1
34 0
0

Note: At T =1 xf - xl(O) = x§ - x2(0) = 0,286 when starting from
(001 . S3 treated grade 1 as having the largest differ-
ence and 34 chose grade 2 . This also accounts for the big
difference between the 83 and 34 rows in the (0 0 1) part

of Table la for T = 2 .

P
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TABLE 2b: SEQUENCES OF APPOINTMENT VECTORS USED TO
ACHIEVE THE RESULTS OF TABLE 2a

Appointment Vectors for start at (1 0 0)

0 .143 .558 .801 .883 .875 .860 .853 .852 .851
S 0o 0 0 0O O O O ©0 0 o

1
1 .857 .442 ,199 .117 .125 .140 ,147 .148 .149
.710 .975 .935 .919 .913 .911 .910 .909
32 0 0 0 0 0 0 0 0 0
.290 .025 .005 .081 .087 .089 .090 .091
33 0 . 1
and 0
S
4 o

Appointment Vectors for start at (0 1 0)

.600 .849 .970 .925 .872 .855 .851 .851 .851 .851
S 0 0 0 0 0 0 0 0 0 0
.400 .151 .030 .075 .128 .145 .149 .149 .149 .149

1 1 .989 .918 .913 .910 .910 .909 .9G9
S 0 0 0 0 0 0 0 0 0 0
0 0 0 .011 .082 .087 .090 .090 .091 .091

S

3 1

ipd 0 . 0
A 0 : . 0

37
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TABLE 2b (Continued)

Appointment Vectors for start at (0 01)

.600
s, |.400
: 0

.750

s, {.250

0
Sy

1
S 0

.698
.302
0

.819
.181

.8%4
.146

0

.957
.043

.976
.024

.41 .873
0 0
0 .127
1 .890
0 0

. 110
0
0 .

.833 848 858 .051 .851
0 0 0 0 0
.167 .158 .152 .149 .149

.893 .903 .907 .908 .909
0 0 0 0 0
.107 .097 .093 .092 .091




Tablies 3 , 4 and 5 relate to a system with the following parameters

- T TR

\ k=35
(65 .20 0 0 0 )
F ' 0 .70.15 0 0
P = 0 0 .75 .15 0
, 0 0 0 .85 .10
L 0 0 0 0 .95
w= (.15 .15 .10 .05 .05)

A point is in S if

x, 2 (2/3)x, , x, 2_(3/5)x2‘, X, 2%y, X > 2%,

The goal in Table 3 is obtained by taking the equality sign in each

case. This gives the structure with the greatest degree of '"tapering"

towards the top which can be maintained. The other goals in Tables

Y an

4 and 5 lie outside S .
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TABLE 3b: ‘
LEADING TO THE STRUCTURES GIVEN IN TABLE 3a

THE SEQUENCES OF APPOINTMENT VECTORS

Appointment Vectors starting at (.05 .10 .15 .30 .40)
p, -668 .665 .654 .655 .663 .674 .687
Sl p2 .312 .305 .289 .274 .261 .250 .240
p3 0 .030 .057 .071 .076 .076 .0BS
P 1 1 1 1 .989 .,984 .989
32 1
p2 0 0 0 0 .011 .0l16 .011
S5
and : p 1 1 1 1 1 1 1
34

Appointment Vectors starting at (.2 .2 .2 .2 .2)
p,  -749 .808 .848 .85 .864 .873
p2 .102 140 .152 .145 .136 .127
S 2 )
1 ) P 0 0 0 0 0 0
Py 0 0 0 0 0 0
' P, 1 1 1 1 .995 .992
32 l P, 0 0 0 0 .005 .008
33 )
and p1 1 1 1 1 1 1
S

.882
-118
0
0

.99
.006

.700
.231

.992
.008

.889
111

.996
.004

.713
.223
.064

.994
.006

.896
804

997
.003

41

725

.216
.059

.996

.004

le

.898

098
.005

.998
.002
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|
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TABLE 3b (Continued)

Appointment Vectors starting at (.40 .30 .15 .10 .

p, 186 .580 .792 .914 .954 .42
Py 0 0 0 0 .025 .058
52 Yp, 060 0446 0 0O 0 0
P, 754 .416 .208 .086 .02 O
< > 0 .849 .927 .949 .966 .978
S Y 1 .151 .073 .051 .034 .022
33 P’y 0 1
and
S 1 0 )




TABLE 4a:

AN EXAMPLE IN WHICH THE GOAL IS ACHIEVED
AT T=4 BY S AND S, WHERE THE GOAL IS NOT MAINTAINABLE

*1 ) X3 4 5
Start .2 .2 .2 .2 .2
S, .085 .152 .162 .261 .340
s, .085 .152 .162 .251 .351
2| S,

S .085 o ,152 .162 .287 .315 l
4 !
S, .140 .160 .180 . 240 .280 1
}

S .048 .098 .148 .297 .410

S, .048 .098 .148 .298 .410

3 s, .029 .301 .151 .301 417

S, .023 .075 .179 .295 427

S5 .052 .101 .151 .299 .397

S, .041 .088 .136 .296 449

s, .038 .088 .138 .288 .450

10

S, .021 .100 148 .276 .455

s, .031 .121 .130 . 254 464

SS ....... veeves...Cannot proceed beyond T = 5.......

Goal .05 .10 .15 .30 .40

43
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TABLE 4b: THE SEQUENCES OF APPOINTMENT VECTORS
LEADING TO THE STRUCTURES GIVEN IN TABLE 4a

1 p, 0 0 0 .190%.212 .207 .203 .199 .

P, 0 0O 0 .03 .242 .243 .243 .243
0 .052 .267 .273 .273 .274 .274
p, -345 .391 .486- .457 .293 .273 .281 .24 .
J pg 655 .609 .462 .050 O O 0 0

1 0 0 0 .191* .207 .199 .192 .185

p, O 0 0 .036 .241 .243 .244 .245
Sy V Py .310 .276 .277 .279 .280 .
p, -050 .550 .628 .439 .276 .281 .286 .290
ps -950 .45050.372 .024 0 0 0 0
pp O 0 123 0 L4390 .417
p, O 0 0 .335 .331 .060 .498
S, Py O 0 .310 .335 .230 .366 .985
p, © 1 .113 .566 .329 O .574 O
pg 1 0 .87 0 0 0 0 0
pp O 0 0 0 0 0 0 1
p, O 0 0 0 0 1 0 0
S, b py O 0 0 0 1 0 0 0
(p, O 1 0 1 0 0 1 0
g 1 0 1 0 0 0 0 0
L P; 400 .313 .215 .102 0
p, O 0 0 0 .017 Strategy
S | p, -100 .111 .124 .138 .162 Terminates
p, +200 .259 .325 .401 .470
J .300 .316 .336 .359 .351 T=3

* Indicates the point at which the goal is achieved

195

.243
275

208
0

.179
.246

281

.294

.378
.622

© O ~# O ©O

.192
.242
.275

.172 )
<247
.283
.298

.549
451

o O O +~ O
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TABLE 5a: TWO EXAMPLES WHERE S; AND S, ARE UNSUCCESSFUL
IN REACHING THE GOAL

In both cases the goal is outside S

T |Start 2 .2 e2 2 2 .2 .2 .2 .2 2

S .200 .217 .167 .197 .220 | .085 .152 .283 .258 .223

1
2
S, | -250 .172 .162 .197 .220 | .085 .152 .322 .222 .220
S, | -203 .224 .148 .182 .243 | .034 .111 .293 .292 .269
5
S, | .276 .176 .128 .178 .243 | .023 .097 .347 .275 .258
S, | .203 .225 .14 .161 .266 | .024 .08 .255 .291 .341
10 S, | -290 .190 .114 .145 .261 | .003 @56 .306 .304 .331

Goal .40 .30 .15 .10 .05 .05 .15 .40 .30 .10

P
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TABLE 5b: THE SEQUENCES OF APPOINTMENT VECTORS
LEADING TO THE STRUCTURES GIVEN IN-TABLE 5a

Appointment Vectors when the Goal is (.40 .30 .15 .10 .05)

1 .692 .706 .714 .718 .715 .712 .711 .710 .710 .710

S, p, -308 .294 .286 .282 .276 .273 271 .270 .269 .269
P, 0 0 0 0 .009 .015 .018 .020 .021 .021
S Py .985 .987 .990 .991 .992 .993

P, 0 0 0 0 .015 .013 .010 .009 .008 ,007

Appointment Vectors when the Goal is (.05 .15 .40 .0 .10)

Py 0 0 0 .060 .094 .105 .109 .109 .107 .106

S 0 0 .116 .192 .230 .248 .255 .258 .258 .257
p;  -688 .738 .719 .66l .631 .619 .612 .608 .604 .60l

| p, 313 .262 .165 .086 .045 .029 .024 .026 .030 .047

P, 0 0 0 .0S1 .203 .200 .191 .179 .165 .150

S, Py .895 .905 .909 .797 .800 .809 .821 .835 .850
P, 0 .105 .095 O 0 0 0 0 0 0

i
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7. Strategies Which Look Two Steps Ahead

Although the strategies investigated so far perform reasonably
well we might hope to improve upon them by looking farther ahead.
We shall therefore suggest two further classes of strategies which take

into account what the position will be after the next step has been taken.

The Class of Strategies S'

This class is a natural ex’ension of that which gave rise to

Sl and 32 . Instead of seeking to minimize, at the start, the distance

between x(1) and x*, we now consider the distance between x(2) and x*.

-

The problem is then one of minimizing a function such as

k
ARSI

with respect to p(l) and p(2) subject to the usual restrainte.

The Class of Strategies S"

Here the object is to aim initially n-: for x* itself but for
L

some other point from which 5* can be reache@ in one step. The moti-
vatlon for this is that there may -ell be points from which f* is
reachable in one step which are much more reasonable than §* « Let— -
X¥Jenote the sets of points from which 5* can be reached in one step;
then the following would be a possible way to proceed. At time T use
one of the strztegies 31-35 to aim for the point in X* nearest
to x(T) . If this point can be reached then x* can be reached in
one further step. l

Other classes of strategies can easily be devised by extension of

these ideas but it would be better to explore th:~ .2 already proposed




before proceeding further.

8. Suggestions for Further Work
The work described in this report is incomplete at almost every
point. Below we list some of the topics on which further work ié'needed
if the control problem is to be fully understood.
(a) Throughout we have assumed that the total size of the
organization was fixed. The theory peeds to be developed

for organizations whose size is changing in time.

(b) The class of strategies S' and S" require further
investigation. A comparison between the original class
Sand S' or 8" would throw some light on whether it is

worthwhile to look beyond the next step when choosing p .

~

(¢) The question of how one can stay near to 5* when 5*
is outside S needs further investigation. It is known
that a trajectory can move outside § infinitely often but
it is not clear whether it is possible to pursue a path which
is "nearer" to x* than the nearest point on the boundary of

S.

(d) ~The strategies should be tried out using6data for the larger

colleges on the various campuses.

9. Implications for Policy

The work described in this repcrt is a step towards a general
theory of control for Markov chain models of graded manpower systems.
As such it is primarily a theoretical exercise intended to give some

insight into the dynamics of such systems. It was, however, motivated



SRR e e

R e

by the problem facing a university whose faculty structure was moving

in an unwanted direction and there are several conclusions which can

be drawn which have important implications for those faced with that

problem.

For any organization, in which the assumptions of the ‘model

apply, the following conclusions hold.

(a) Not all structures are attainable or maintainable by control-

(b)

ling the appointment policy alone. Those which are can be

found from results given in this report. Those which are not
can only be reached by making changes in the promotion rates

or by contriving to alter the leaving rate. The kind of changes

needed can also be determined from the results given here.

Some changes in structure can be brought about by appropriate
variations in the appointment’'policy. The best way to do
this is still an open question but several strategies have
been proposed which seem to give satisfactory results. Of
these 31; strategy described in Sec*’.n 5 is both easy to

determine and satisfactory in its performance.

-49
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APPENDIX

The implementation of the strategies S1 and 32 requires the
minimization of
k

D= L |y -p
i=1 i i

a

k
Zp,=1.
g=1 1

We show here how the results given in the text may be justified

for a=1 and 2 where Py >0 (1=1,2, .. .k) and

taking first the case a =1 .
The problem of minimizing D when a =1 can be converted
into a problem in linear programming by a well known device as Sollows.

Trensform to new variables xi+ and xi~ given by

¥ =Yy mPy oy 2y

= 0 otherwise,

L
L}

0 otherwise.

It follows that

+ -
lyy = oyl =% 4

and gso the function to be minimized is
k -

D= % (x¥+ + X )
i=]1

o
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The restriction

k
I p, =1
i=1 1
becomes
1
k + k _
z X, = in (Al)
i=1 i=1

and the inequalities p, > 0 become

X, vy for those i for which y, 2 0

x. 2_-yi for those 1 for which ¥y <0.

i

Introduce slack variables v, >0 sucﬁ that x, =v, =Y

and let 2+ and I denote summation with respect %to

i over those values for which Yq 2_0 and vy < 0 respectively.
Then eliminating in+ from D using (Al) and substituting

X, =Vvy” y; wve have

+ + -
D= -ZZ.yi + 2LV, +2 x

This clearly achieves a minimum value of -ZZ-yi when T

if vy < 0 . This implies p, = 0 if y, < 0 . The complete

solution can easily be found by revetting to the original notation

L
for now we have to find p, s (for vy, > 0) which make

. i o
Sly, -p =Ty =2y




-

33

It i8 clear that any set of p's satisfying Yy 2 P4 will yield

~ this minimum value. In particular the p's adopted for S1 and for

33 satisfy this equation and, as we shall now see, 80 do those of

32 .
When a = 2 the problem can be interpreted geometrically.

D can be thought of as the squared distance from y to the point P -

It must lie on the hyperplane P, + P, +. .. P = 1 in the orthant

P Z.O s call this region P . The vector y lies on the same

hyperpdane but not, in general, in the positivé orthant. The problem

is thus one of finding the nearest point in P to the given point

y . Let 4
k 2 k-
= I (yi-pi) +2 Ip,
i=1 i=1

where o is an undetermined multiplier. Then we have to find the
minimum of ¢ subject to p > 0 . Denote the minimizing value of

P by p' then at this point

%-o if p,' >0
i
'g
g%; >0 if Py 0

which implies

Py =¥ -a if ¥y >a

=0 if A <a




for some o which will be a function of the y's . The multiplier

a is determined by the condition

k
):p=1 .
g=1 1

The iterative procedure described in Section 5 is one way of finding pi'

and is will suited to automatic computation. A simple method with

pencil and paper is to plot

I <y, - o
i=l 1

where -

<x> =x if x>0

0 otherwise

as a function of a , finding the péint at which the sum is one. This

gives the value of o to substitute in

Pi=yi"0'v L

L
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