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Chapter 1

Introduction and Statement of Contributions

Research Motivation

The original goal of this research was to investigate ways

to stimulate creativity using the computer as a medium. One of

the criticisms of existing uses of computers in education has been

that "programmed instruction" is an unimaginative application of

conventional teaching practices to a computer learning

environment. Thus my hope was to understand the basis of this

criticism anct to suggest a remedy.

I soon learned that there are actually three distinct

areas of computer-education activity. One entire approach, which

I call the "environmental" approach, is based on the assumption

that the learner must discover nearly everything himself, without

an_over-riding structure to determine how new concepts are to be

presented. In practice, this may mean that the student is

introduced to a computational environment and told that he may

explore in any direction he chooses. However, some measure of

individual guidance is desirable, particularly if the student

becomes confused or bored. In the environmental area this

guidance has always come from a human teacher except in the

trivial case of providing programming "diagnostics". Seymour

Papert's work with computing environments for children is the most

interesting example of the environmental approach.
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The remaining two areas of activity embrace conventional

computer assisted instruction (CAI). These areas have been called

"frame oriented CAI" and "information structured CAI". Frame

oriented CAI is based on prestored /mitts (frames) of subject

matter, ranging in size from individual sentences up to several

paragraphs of text with associated drills. The interesting

research problems have focused on finding strategies for

presenting the frames to the student in some desirable way. These

strategies usually involve a student learning model that predicts

what will happen to the student upon exposure tr the frame, and a

dynamic programming scheme to find future sequences of frames to

show the student. Although the student is restricted compared to

the environmental approach, the predictability of both the frame

content and the student responses allows the computer to deal with

a larger domain of student aberrations. For instance, if the

student fails to understand a frame, he can be shown an easier

frame. Much of the ground work for frame oriented CAI was laid in

a dissertation by Smallwood.

Information Structured CAI is the newest of the three

areas, and -as the name suggests, is a collection of techniques

drawn mostly from artificial intelligence that exploit the 1

structure of the subject being taught. These programs are often

characterized by considerable student control of the dialogue as

well as a major effort to give the learning episode a human,

rather than computer, flavor. One well known example is Jaime
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Carbonell's semantic information net that allows students to

interview the computer about South American geography. His

program has a large data base constructed in such a way that

arbitrary questions can be answered and deductions can be drawn

from disparate facts,

My original interest in stimulating creativity gradually

evolved into a desire to isolate the moments of learning in the

normal educational process, and if possible, to recreate these

moments in a computer system. Since I had had experience teaching

mathematics, it occurred to me that many students have valuable

learning experiences in a tutorial situation, in which they return

to the teacher for answers to questions arising from an initial

attempt to understand the subject.

At this time I read two dissertations in artificial

intelligence on the subject of methods of integration. The

conclusion of the dissertations was that computers could solve

integrals as well as an expert human integrator. I immediately

wondered whether a tutor could be constructed for methods of

integration that in the same sense was as good as an expert human

tutor. This idea gradually developed into the subject of my

thesis.

Descriptive Model of the Educational Experience.

An informal model of the educational experience shows the

intended role of the tutor:
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1. A Need to Know

2. The Teacher Explains (Lecture)

3. The Student Thinks (Problem)

4. The Dialogue (Tutorial)

In the fourth phase, the student has already had some

exposure to the Subject from the Lecture phase and has pondered

some kind of synthesis process in the Problem phase. Thus the

somewhat knowledgeable student returns to the more knowledgeable

teacher for an interactive dialogue. The purpose of this

description is to emphasize that the tutor is not used as a

primary instructional medium, and that the general direction of

the episode is up to the student.

Desired Characteristics of the Tutor

A good human tutor

1. transmits problem'Solving heuristics

2.. chooses appropriate examples

3. deals with arbitrary student examples

4. handles a wide range of student backgrounds

and S. learns student heuristics if they are superior.

The goal of the research was to construct a tutor with

these desired characteristics and in the process to establish a

rationale for constructing tutors for subjects other than methods
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of integration.

Contributions

This research has produced six main contribut

1, extended and clarified the definition of a tutor
in computer-based education.

2, established a logic 41 and quantitative
methodology for transferring problem solving
heuristics in a ;zomputer tutorial situation.

3, experimentally supported a model of how the
student heuristics change when a failure is
encountered.

4, defined a methodology for measuring learning in
a tutorial situation and experimentally
supported the model by showing a positive rate
of learning on real students.

3, defined and implemented a scheme for tutor
improvement.

6, combined the results of new research in symbolic
integration and algebraic simplification for use
in computer based ech.:ation.

has

The research describe, in this thesis is of both a

theoretical and experimental nature. The theoretical ideas can be

summarized by the following:

1. For a structured subject, a tutorial system
can be constructed that

a, causes convergence of the student's
heuristics to those of the tutor;

b, chooses optimum examples, recommends
solution scheme choices, and shows how to
apply techniques;
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c. accepts arbitray examples;

d. allows measurements of the student's
learning rate and expected number of

4
steps to solution;

e. makes real time tutorial decisions on the
basis of problem length, unusualness of
approach, and overall problem solving
trouble;

f. adjusts to different student backgrounds;

and g. learns student heuristics if they are
superior.

The experimental section describes the following:

A computer based tutor for methods of
integration was constructed to illustrate
the theoretical claiMs. In addition,

a. algorithms were developed for substitution,
integration by parts, partial fraction
expansion, use of trigonometric identities,
and completion of the square;

b. a preliminary experiment was run with four
calculus students;

c. a main experiment was run with fifteen
calculus students, the results of which are
presented in Chapter S.

The Student-Subject Model

The ability of the tutor to understand the student's

actions depends on a model of the student interacting with the

subject. The principle components of this model are an exhaustive

set of observable problem solving states and a set of
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transformation techniques to transform from one problem to

another. A sample student solution trajectory is shown in Figure

1.1 for the subject of methods of integration. The definitions of

the states and techniques involved are discussed at length in

Chapter 2.

Integral solving is modeled here as a Markov process. We

also assume that when the student is confronted with a problem,

his probability of responding with one of the techniques is drawn

from a simple multinomial distribution. The parameters of this

multinomial distribution are never known exactly by the tutor, and

can only be inferred from the student's responses. The tutor

applies a simple Bayesian inference process to its prior estimate

of the student's response probabilities each time the student

emits a response. This is called the information updating

process.

If the tutor thinks the student has just learned a new

approach, it will isolate the response probabilities it feels have

changed the most and will apply what is called the student

learning model to predict the effect of this change on future

responses.

The Tutorial Strategy

The tutor allows the student great latitude during the

problem solving episode. The student is free to suggest his own

example, pursue his own solution, and ask for help. The tutor
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START

Integrands

involving

logarithms

substitution
)IP

Failures
associated

with log.
integrands

integration
by parts

Solved

Known identify problems

integrals trapping
as known

state

8

Figure 1.1 A sample student solution trajectory. The student began

fwith the integral X log(X) dX, tried the substitution U = log(X)

which failed to yield a simpler integrand, returned to the original

integral and successfully transformed it by integration by parts to

(1/2) X
2
log(X) - X/2 dX. This "known" integral was then solved by

inspection. A complete student protocol involving this problem is

given in Chapter 4.

Figure 1.1 A sample student solution trajectory.
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always understands what the the student is doing, however, and in

unusual cases of trouble or misunderstanding will step in to ask

the student ik he needs assistance. The student can request three

levels of help from the tutor: choosing a new problem; finding

the right technique to apply; and applying a given technique the

best way. In the first two cases the tutor relies completely on

its archive of example problems. All recommendations are made by

summarizing the actions taken in similar situations in the archive

problem solutions. The third type of problem help depends on

specific algorithms programmed into the tutor, and thus is known

as "wired in heuristics".

After the student completes the problem, the tutor checks

the student's overall problem solving patterns against its own.

If unusual trouble areas are apparant, the tutor scans a special

archive of problems for an example to show the student in a

"forced response" mode. Finally, if the student has produced a

superior solution for one of the tutor's archive problems, the

tutor will incorporate his solution and will forget the old one.

In this way, the tutor can significantly improve its own teaching

performance.

Experimental Results

A three week experiment with 15 students was conducted at

Stanford University with students interested in sharpening their

calculus skills. A total of 284 problems were worked, of which
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258 were chosen from the problem archive by the tutor, and 282

successfully solved. On 90 of the problems tutorial help was

requested.

Student response data indicated that the information

updating and the student learning models could be considered

separately since the observed response discontinuities seemed to

be very closely related to the instances of entering failure

states. 85% of all the response discontinuities occurred when the

students entered failure states, although only 45% of the

instances of failure states led to obvious response

discontinuities. Furthermore, the observed frequency of the

technique applied immediately before the failure occurred was

reduced by a average factor of 0.17 over all the observed learning

discontinuities. This was an important result for the student

learning model since it singled out a particular technique as

undergoing a dramatic change each time the discontinuity occurred.

On the average, each student made 0.101 fewer additional

steps per problem worked than the tutor. In other words, if a

student tended to work every problem using 3.0 more steps than the

tutor initially (a typical rate), then after 15 problems he took

on the average only 3.0 - (15 * 0.101) = 1.5 more steps than the

tutor to work each problem, We call this the student's

convergence rate.

On the average, each student made 0.011 fewer failures per

problem step. Thus if the student averaged 0.5 failures per step
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initially (a typical rate), then after 15 problems (a total of

perhaps 40 steps) he made 0.5 - (40 * 0.011) = 0.1 failures per

step.

Of the 73 original archive solutions, no less than 18 were

improved by the students. This was a major surprise to the

author, since he considered himself an expert integral solver.

The tutor's expected number of steps to solution decreased 1.38

steps (20.3%) for quotients of polynomials, 1.150 steps (25.7%)

for fractional powers of polynomials, and 1.00 steps (33.3%) for

fractional powers of trigonometric functions. .In the quotients of

polynomials case, the tutor acquired solution schemes that had

never occurred to the author.
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Chapter 2

Student Models

The student-subject model forms the foundation of the

tutorial system. Once we have established a methodology for

treating the student, the development of the tutorial strategy in

the next chapter follows naturally. The basis of the

student-subject model is a scheme for classifying the subject

matter. This chapter will introduce a Markovian formalism to

describe the student's dynamics. We shall introduce the notions

of "problem" and "solution" and shall show that the student

belongs to one of an exhaustive set of problem solving states at

all times. The important tutorial concept of the student's

failure state will be discussed and examples of state definitions

for several subjects will be given. We shall introduce a simple

Bayesian scheme to update our knowledge of the student's problem

solving patterns from his responses. From this we can calculate

interesting quantities relating to the student's performance such

as the mean and variance of the student's expected number of step

to solution.

Problems and Solutions

We begin with the notions of "problem" and "solution".

Since we have dealt practically with well defined subjects where

there are established limits, we allow the argument to proceed
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informally at this stage to avoid introducing abstract questions

about the nature of subject matter and in what way statements are

consistent with subject matter.

By "problem" we refer to some statement that we wish to

reduce to a form that warrants no further reduction. A 'utorable

"subject" consists of a space of possible problems defined by a

set of problem construction rules, plus a set of transformation

techniques used for reducing the subject's problems. Each time a

transformation technique is applied to a problem, a new problem is

generated. As we shall see, this process can go on indefinitely

until the student either gives up or the problem requires no

further reduction. In the latter case, we call the record of

successive problems and applied techniques a "solution" of the

original problem. For example, we shall discuss in Chapter 4 the

subject of methods of integration in which the problems are

indefinite integrals and a solution is a sequence of ordered pairs

of the form

(problem , technique).

Later in this chapter these ideas are applied to a number

of sample subjects: elementary arithmetic; the solution of

differential equations; and a simulated physics laboratory. fn

addition, we discuss briefly the subjects of medical diagnosis and

electronic trouble-shooting.
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Techniques and States

An important property of a solution is that each

successive problem is generated from the previous problem by the

application of one of a set of transformation rules called

"techniques". We designate the set of problem transforming

techniques by (T; 1 < j < NT) where NT is the allowed number of

different techniques for this subject.

Of prime interest to a tutor is how the student decides on

a given technique when presented with a problem. It is natural to

suppose that different problems will elicit different choices of

techniques. An important parameter. of the student is his

probability of choosing a given technique in different problem

solving situations. This section introduces the definition of the

student's technique choice probability. Looking at this choice

probabilistically, we say that the probability t. that a student

will choose technique T.
3

is dependent upon the particular problem.

Because all of the subjects investigated have an infinite number

of possible problems, it is inconvenient to index the technique

choiceprobabilityt.3 by the specific problem. Furthermore since

we shall usually be interested in estimating what the student's

technique choice probability will be for some new problem, we

shall find it convenient to assume that at all times the atudent

occupies one of a set of mutually exclusive and exhaustive states

of the problem solving process. We now speak of the probability

tiithatthestudentwillamsetechniqueT.given that he
3
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th
occupies the i problem solving state,

It is natural to define the states of the problem solving

process in terms of a description of the problem the student is

working on. We insist that the parameters of a given state

characterize the student in all problem solving situations

involving problems fitting a certain description. Thus the state

parameters amount to an encoding of our obServations of the

student's past history and our prior estimates of his problem

solving patterns.

For tutorial purposes we often are interested in

separately encoding our information about the student after he has

applied a technique unsuccessfully to a problem. In particular it

would be embarrassing to claim that the probability of the student

choosingtechniqueT.was some fixed quantity regardless of

whether the student had tried the technique unsuccessfully on the

previous step. Thus we introduce the concept of a "failure state"

for each class of problem description, The properties of these

states are discussed later in this chapter, Thus the set of

problem solving states will be defined by

(si 1 1 < i < Ns) = (problem description states)

U (student failure states)

where N is the total number of states. We intend that the states

)

{s.1are disjoint, and that they will span the set of possible

circumstances the student can be in,
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For practical reasons the states of the process must be

both observable and finite in number. Observability in this

context means only that we shall choose state definitions

beforehand that will guarantee an unambiguous identification of

the student's state at all times. The motivation for complete

observability arises from the need to compare the state of the

student with a similar state established by the tutor. In

general, the parameters of a given student state (such as ti.) may

be imperfectly known. The restriction to a finite and reasonably

small number of states is not a major assumption. since under

certain conditions we can. agglomerate a possibly infinite number

of seldom encountered states into a single "other" state.

Typically a subject will have at least one problem-description

"other" state and one failure-defined "other" failure state. In

practice, the requirement that the number of states Ns be

reasonably small means only that an Ns by Ns matrix can be

inverted off-line from the tutorial episode without unreasonable

cost.

The Technique Choice and Technique Result Probabilities

The most important parameter of the student's state si is

netechniquechoiceprobabilityt13 that he will choose technique

T. given that he is in state si. The technique choice

probabilities, if perfectly known, would be a complete map of the

student's problem solving heuristics. Even chis map, however,
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would not suffice to determine the student's expected solution of

a given problem. We must assume that some students are more adept

than others at applying a given technique to a problem, thus

giving rise to an uncertainty, as to what new state will result

from the transformation. We will define q...
13x

to be the

probabilitythatgivenaprobleminstates.md choice of

technique Tj the resulting state will be state sk. We can define

a state transition probability pik from state si to state sk by

Pik Ptsk I sil tij qijk

The Markovian Assumption

Up to this point we have avoided the question of whether

dleprobabilitiestl.j and
qijk

are dependent upon the past history

of the solution being attempted by the student. True changes in

these quantities do take place when the student gains a new

insight into the problem solving process. *However, useful general

analysis of a history dependent process is immeasurably more

difficult than if the transition probabilities are assumed to be

dependent only upon the present state of the system. Bearing in

mind that we are making an assumption, we shall proceed as if the

student's technique choice probabilities do not alter until he

verifies his new methods by completing the problem successfully.

In other words, we make the Markovian assumption that the state
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transition probabilities depend only on the present state of the

system. It should now be clear why the failure states were

introduced, since without them, the Markovian assumption is

untenable. This allows us to remove the implicit dependence of

t.. and qijk on the previous trajectory of the process and to use
13

the extensive theory of Markov px,,cesses in the analysis of the

student's problem solutions.

The Solved and Give-up Trapping States

We have made few general statements about how a student's

problem solving state is defined, prefering to deal with the

question for each of the examples to be shown. However, it is

useful to define two states that occur in all problem solving

domains that can be described by our Markov model. The first is

the "solved" state. A student reaches the solved state when the

problem has been transformed into one of a class of configurations

that the tutor and the stude4t have previously agreed to call

"solved". In numerical problems the solved state corresponds to

situations in which the equations have been reduced to one or more

numbers. In formal proofs the solved state is reached when the

desired result follows directly from a previously established

theorem or axiom. In methods of integracior '.:he solved state is a

class of "known" integrals, such as IX dX or 'sin(X) dX.

The other canonical problem solving state is the state of

"giving up" on a problem. At this point the student has reached
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a terminal situation and his transition probabilities to other

states are all zero. In fact, we recognize both of these states

as trapping states of the problem solving process since once the

student enters one of them he makes no more transitions to other

states. Figure 2.1 illustrates the problem solving model for an

arbitrary three state example.

The Failure State

A basic assumption we make about problem solving behavior

is that a student will try in succession all of the applicable

techniques he knows until the problem is completed. (We allow

"giving up" to be a legal technique to complete a problem). It is

true, however, that once a student has attempted a technique on a

problem unsuccessfully he does n3t return to the state where

application of the technique is still as likely. But it is also

true that the student's new state is closely related to the old

state. We expect that the student's response probabilities are

substantially the same after a failure except for the technique

that failed. We now pose a simple mathematical model to represent

this effect. If we choose a "failure parameter" G where

0 < A < 1 and G is expected to be small, then we assume that the

new technique choice probabilities, subject to a failure of

technique T3 , are
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where

ti = et..
j,posterior ij,prior

ti =
i

wt mm,posterior m,prior

1 - 9t..
w = 1J (in terms of prior probabilities)

1 - t..
13

21

renormalizes the posterior probabilities to 1. It is possible

that even the second technique chosen may be unsuccessful, thus

generating another set of technique choice probabilities modified

by the failure parameter O.

In the tutor-student model, the failure state assumes an

important role because we assume that the student is reassessing

his own technique choicp probabilities in order to transform the

problem. Experimentally, we observed that in approximately SO% of

the cases where the student entered the generalized failure state

(to be discussed), a significant change occurred in his technique

response probabilities.

A complication arises from our lack of a priori knowledge

of which failing technique the student may choose. To justify the

Markovian assumption (that the properties of the system do not

depend on the past history of the process), we would have to

specify in advance all the possible failure states that could

arise.

In Figure 2.2 we show a system with two problem

classification states, sa and sb. A small subset of failure
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Figure 2.2. A failure network for a two state system.
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states for state s
a

are shown. State s
al

corresponds to a failure

of the #1 ranked technique by a student occupying state sa. State

call
corresponds to a failure of the #1 ranked technique for state

s
al'

and so on. States such as s
al111' sa2' sa3' sa12'

and sa234

are not shown!

If we insist on the exact Markov process formalism, we

must include an infinite number of failure states with each

problem description state. To avoid this, we suggest two

approaches to collapse this multitude of failure states into a

single state.

In the first approach we generalize the problem solving

process from a discrete-time Markov process to a discrete-time

semi Markov process. Now not only do we associate a transition

probability pij from state i to state j, but we also specify a

holding time Tij that is a delay the process experiences in state

i before making a transition to state j. The holding time T.. is
13

described by a holding time mass function h..ij (m) defined over all

integral values of time from m=0 to m=infinity. Referring to

Figure 2.2, we see that the probability of entering the "failure

network" from state s
a
is pal. Immediately after entering the

network, the probability of eventually returning to state sa is

p(salfailure)
Pal,a Pa1,1 (Pall,a Pa11,1 Palll,a)

The holding time mass function is then
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PaF,a

Figure 2.3. The collapsed failula network.
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p
aF,aF

(only under
2nd assumption)
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hfail,a(m)

Pal ,a

1 Pal,b

8 (m-1)

+
Pa1,1 Pall

'

a
(m-2) +

Pa11,1
6 (m -3) }

1 Pal,b 1 Pall,b 1 Pall,b

Similar relationships hold for for p(sb I failure) and hfailb.

Thus if we are willing to cope with the additional generality of

the semi Markov process we can collapse the entire structure down

to that shown in Figure 2,3. Fortunately, we do not pay

substantial additional penalties when calculating quantities of

interest such as the mean number of steps to trapping, or the

time-interval transition probabilities.

The second approach to dealing with failure states is an

approximation, the exactness of which will not be discussed here.

In this case, we modify our definition of "transition" in the

problem solving process to allow only one step in the agglomerated

failure state of Figure 2,3, Formerly we identified a transition

in the process with the application of a technique. This remains

unchanged in the new approximation except that in the failure

state, only a successful application of a technique gives rise to

a transition. The problem with this approach is that the

Markovian formalism is in serious jeopardy if we believe the

discussion of the previous section that thr student's response

probabilities depend on what kind of failure he made.

Fortunately, this discussion is not central to the issue of
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developing a tutorial strategy.

Summing up, the failure states can be modeled by either 1)

a semi Markov formalism with attendant additional complexities; or

2) an approximation which changes the definition of transition

from the failure state and either a) raises doubt about the

validity of the Markovian assumption, or b) tempts us to ignore

the response probability model of the previous section. In

Chapter 5 we shall have more to say about whether the reponse

probability model is supported by experimental evidence.

Identification of the Problem Solving States

The most important step in developing a tutor for a

subject is identification of the problem solving states. Although

there is no known algorithm for selecting an optimal set of

states, we shall outline a two step procedure that has been

successful in practice. The first step is to isolate the main

stages of problem solving in the new subject. We call these

stages decision points. The intention is that separate decision

points must involve a separate set of alternatives for the student

for which he must employ his problem solving judgement to proceed.

Some subjects may only involve one decision point. The second

step of state selection involves selecting a set of problem

description classes for each decision point. These classes iffine

all the possible problem descriptions for the student when he

reaches that decision point. The remaining states, the failure
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states, must also be defined, depending upon how the teacher

wishes errors to be handled by the tutor.

The state structure is highly variable. For a subject

like methods of integration the problem solutions can be thought

of as a single decision point with perhaps thirty distinguishable

states (representing fifteen problem description states and

fifteen failure states). After an integration problem is

transformed, either the problem is solved or the student returns

to the same decision point, characterized by the question: how

can the integral be transformed to yield a simpler integral? The

state structure for integration contains only one decision point

since interconnections among the various problem types are quite

general. The student has substantially the same set of

subalternatives for each pioblem. In other words, an "exponential

integrand" may be transformed into a "quotient of polynomials" or

into a "trigonometric integrand" or into an "exponential

integrand" again.

The second step of our procedure, that of choosing problem

description states at each decision point, is more difficult. The

difficulty stems from the fact that in many' cases the most natural

way to select problem descriptions is according to the method of

solution. We soon discover that 1) different people solve the

same problem in different ways and 2) students new to the subject

have no way to tell what state they are in. It is no help to be

told that "this kind of problem is solved using technique T" when
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"this kind of problem" is defined as the set best solved by

technique T. As a guiding principle we state the following:

A problem description state must not be defined solely by

means of the technique used to solve its member problems

unless those problems are easily recognized and the use of

the solving technique is the sole recommended practice of

experts in the subject.

It could be argued that if a state is defined that meets

the exception conditions of the above principle then since no

judgement is required, it is really unnecessary to have a decision

point at that stage of the problem solving process. However we

shall see in the example of methods of integration that often

there exists a mixture of technique dependent states and states

defined from other considerations.

Our main interest in defining the problem description

states is that these state definitions must not depend upon the

observer. We shall often wish to compare a student's state with a

similar one established by the tutor because the tutor at all

times knows the techniques it would use to try solving a problem

of the given type. It is essential that in such a case we are

comparing the same subset of the total problem domain. This is

why we lust take pains to allow technique dependent states only

when an impartial observer would agree that the definition was

natural.
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The definitions of the other problem description states

depend on how problems are described. Roughly speaking it is

desirable to group together problems with similar characteristics.

Surprisingly, such groupings may yield a rich variety of different

problem approaches For instance, the integrals

1 i

dx , [ dx , and dx

2 3 2

1+ x j 1 + x 1+ x

might all be relegated to the same problem solving state since

they have similar characteristics, but they are usually solved by

quite different approaches.

State Selection Examples

Because of the importance of the selection of states to

the tutorial strategy, the following examples are presented of the

state selection procedure as it could be applied to familiar

school subjects.

To emphasize a point we shall choose first the simple

subject of multiplication of integers, as might be learned by

elementary school children. In this subject we will identify only

one decision point, which can be described by the question: what

is the product of the integers m and n? This subject can be

represented by a simple problem structure consisting of one problem

description state and one trapping state corresponding to a
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correct solution. Although the subject of integer multiplication

presents us with no automatic state divisions for its single

decision point, the students provide considerable additional state

structure through various failure mechanisms. Specific remedial

action can then be taken to deal with the problems of each failure

type. For example, let us divide the students' possible erroneous

responses into the following four states:

1. Differs from the correct answer by either 1 or 2

2. Differs from the correct answer by

a multiple of m or n

3. Null response

4. Other incorrect number

We have tried to construct states as dependent as possible

on specific "failure techniques" that might arise. For state #1

above we have assumed that the student has memorized the

multiplication tables imperfectly. For state #2 we assume that

the student confused one entry in the table with another. State

#3 represents a lack of understanding of the multiplication

process by the student. Figure 2.4 shows the state transition

diagram for this situation.

Many of the ideas developed in this chapter are of

interest even in such a simple case as our multiplication example.

The expected number of steps v for each student is a measure of

the expected number of errors he will generate on a typical
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Figure 2.4. State structure for elementary multiplication,



The Student-Subject Model 32

multiplication problem. Probabilities like pis (the probability

of a transition from state 1 to state s) are measures of how

probable a correct response is after a student makes an error of a

certain type. The change of this probability over time would be a

measure of the tutor's effectiveness. Of course we must remember

that the state transition probabilities depend upon both the

technique choice probabilities and the technique result

probabilities; that is,

Pik t q1)K

Several of the t
ij

's may be non-zero for a given state s.1 . For

example, even though we find the student in state s
2
of our

multiplication process, we can only surmise that the particular

proposed failure is likely. It could happen that the student made

a wild guess that fit the requirements of state s2 !

Differential Equations Example.

A more complicated example can be constructed from the

subject of ordinary linear differential equations. Apart from the

increased complexity of the problems compared to integer

multiplication, we must introduce three new generalizations in the

problem solving process. The first is the added multiplicity of

problem description states. These include first order equations,

second order equations with constant coefficients, and second

order equations with variable coefficients. The second is the
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possibility of two decision points in the process rather than one

as in the arithmetic example. These decision points correspond to

finding the particular solution and finding the homogeneous

solution. The third new complexity is that the process of solving

differential equatic,s itself often involves a fundamental

uncertainty to the approach. Once a person learns how to multiply

integers, he usually approaches mul'iplication problems

algorithmically. However, differential equations cannot be solved

by any comparatively simple algorithm. The student must exercise

his judgement at each decision point to decide which type of

solution scheme to pursue. The power of the tutorial methods we

are developing allows us to consider not only algorithmic subjects

like integer multiplication but especially subjects where problem

solution is something of an "art". A preliminary state transition

diagram for ordinary linear differential equations of the first

and second orders is show. in Figure 2.5 along with some

IL,resting failure states and some indicated technique

possibilities.

As in the multiplication example, the expected number of

steps allows us to calculate the expected number of errors made by

the student. If vl is the expected number of steps to solution

for first order equations, then the number of errors for each

szarting state is
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Figure 2.5. State structure for differential equation solving.
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12vc -i2vc 3*Ph2vc,1 2 *(l Ph2vc,1)

where "i2vc" refers to the state labeled inhomogeneous 2
nd

order

variable coefficients. In the first three equations we subtract

either 1 or 2 steps corresponding to error-free solutions. In the

last two equations we subtract off the number of error-free steps

weighted by the probability that the student will reduce the

equation to first order. This model has employed three different

types of failure states. For inhomogeneous second order equations

with constant coefficients there are two failure states depending

upon the method of solution attempted by the student. For

homogeneous second order equations with variable coefficients

there are two failure states corresponding to steps common to more

than one of the techniques. Finally, for first order equations we

have condensed all the failure states into a single state because

of the larger number of possible solution techniques. Each of

these failure state examples may be handled by the failure state

coalescence techniques discussed earlier in the chapter.

Physics Laboratory Example1

The third example of choosing states is a simulated
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physics laboratory. Imagine that the assignment is to measure the

acceleration of gravity. The students are performing this

experiment as part of a series of simulated mechanics experiments.

In fact, if desired, the students, rather than simulating the

experiment, could actually do the experiments and allow the tutor

to directly observe the measurements. The laboratory has at its

disposal a variety of mechanical devices: spring mass systems,

adjustable dashpots,'falling bobs, pendulums, inclined planes,

cubes and spheres of specified coefficients of friction, and

assorted pulleys, levers and motors to suit the student's needs.

The student also has a number of measuring devices available

including a stop watch to measure time, a variety of rulers and

micrometers to measure distance, and a recording device that

measures position at frequent fixed intervals of time from which

instantaneous velocity can be estimated. The students are then

allowed to experiment any way they desire, as long as they make a

careful estimate of the measurement errors incurred by their

particular setup. If their error on any particular measurement is

too large, or if the tutor thinks that the student's measurement

technique is inferior, the student must try a new approach.

The constraints we have just outlined are fairly typical

of college physics laboratories, yet this situation lends itself

1. Compare for example the EXPERIMENT program for the PLATO CAI

system by Bitzer, Probst and Walker.
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well to the problem solving model. We consider the student to be

in one of three problem description states at all times, unless he

is one of the failure states or the giveup or solved states.

These three states correspond to an attempted measuring of time,

distance, and instantaneous velocity. Briefly, we can imagine

several approaches to this problem: 1) measure the instantaneous

velocity of the falling bob, solving g = v/t ; 2) Measure the

period T and length L of the pendulum, solving g = 4 n2T2/L ; 3)

Measure the instantaneous velocity and vertical distance traveled

of the pendulum or the falling bob, solving g = v
2
/(2d) ; 4)

Measure the time and distance traveled of the falling bob, g =

(2d)/T
2

; 5) measure the instantaneous velocity of a solid sphere

rolling down an inclined plane of length L and inclination angle

* , measuring v and L, solving g = v2/(5*L*sin(*)). Each of

these approaches involves a succession of measurement techniques.

When the correct measurements are all made, the problem is solved.

Figure 2.6 shows the state model of our physics experiment.

This example has a particularly rich problem solving

structure. Transitions from each measurement state to any of

seven other states are possible. The successful transitions (to

non-failure states) may be due to any of several measurement

techniques applied by the student. In this example the technique

result probabilities (the qijk's) play a major role. since a

measurement might not be made with the accuracy necessary. Notice

that the failure states may be entered from any of several states.
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Figure 2.6. State structure for a simulated physics laboratory.



The Student-Subject Model 39

In this case they each represent the failure to apply one of a

class of measurement techniques. As in the other examples, the

expected number of steps is a good measure of a student's

overall expertise. The minimum number of steps of solution is

two; thus extra steps represent failures to measure the quantities

accurately enough or failures to set up the measurements

correctly.

The state definitions in this example were chosen so that

all of the proposed mechanics experiments could fit into one

scheme. We can thus interpret the transition probabilities to the

failure states as general weaknesses in the student's laboratory

technique. Of course, the example is very simple, but the

underlying ideas could be applied to a variety of other fields.

Finally, the subjects of medical diagnosis and electronic

troubleshooting should be mentioned. In both of these subjects

human judgement is required to solve problems. The doctor can be

imagined to progress through various states of information when

making a diagnosis (Wortman, 1972); at each state evaluating the

available options and proceeding on the basis of his best

judgement. The electronics troubleshooter also proceeds through

states of information and must use his judgement to progress

through the tree of all possible actions. These are examples of

subjects well suited to the tutorial approach and to the student

being in control of the dialogue as he moves from one decision

point to the next.
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The Transition Probability Matrix

The transition probability matrix for the system shown in

Figure 2.7 is

g
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Prg Prr PrF Prt
0

0 0

0 0

Pru
0

This is a stochastic matrix since all elements are greater

than 0 and each row sums to 1. This corresponds to the fact that

the states completely describe all possible student situations.

We could use the transition probability matrix directly to

assign probabilities to the student being in given states n steps

after starting in a particular state. However, this particular

use of the transition probability matrix is of little interest in

a tutorial system. We usually know which state the student is in

and have a relatively vague idea of the trajectory by which he

arrived there! In other words, our interest is in the student's

parameters as ends in themselves. Not only do we want to

determblethestuderit'sp..'s, but we are especially interested in
13

the technique choice probabilities (the t..'s) that we consider
ij
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Pl'r

trapping states

PTO

problem failure
description states

, states

(interconnections
not shown)

Figure 2.7. A general three state problem solving process.
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to be the primary elements of the student's problem solving

heuristics,

The Information Updating Model

It is obvious that as observers we can never know a

student's transition probabilities or his technique choice

probabilities exactly. Two processes are usually working

simultaneously that affect our observations of the student's

parameters. The first is the number of responses measured at any

given time. As we measure successive student responses, we must

steadily update our model of the student. The other process,

which we hope is working when the student is interacting with the

tutor, is the learning process. In this case the student's real

parameters are changing, not just our knowledge of them. Models

will be developed to cover both situations as part of our effort

to decide among alternative tutoring strategies.

We shall assume that the tutor's updating and the

student's learning processes can be separated so that they operate

independently. We shall now discuss a Bayesian approach to the

updating process, leaving the learning process until the next

section.

Consider a random variable xi defined on the possible

outcomes of a student's selection of a technique given that he is

instates..Welet..T.j if T. was the technique chosen,

1 < j < NT. We now let tij equal the probability that xi = j.
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This is the formal definition of the technique choice probability

t. .

13

If E is the event that in n independent selections from

states.1 the student chose technique T. a total of n. times, the

probability of this event is given by the multinomial

distribution:

{E I t}

n! n
1

n
2

n
N

t. t. ...t.
N11 12 1

n ! n ! n
1 2 N'

where the notation (E I t) means the conditional probability of

the event E given the set of technique choice probabilities

til,...,tiN.

The above assumes that the probability tij is known.

Since we are uncertain about its value, it is convenient to

consider t1. itself as a random variable. To encode our

uncertainty about tij, we place a prior distribution over the

domain of possible probabilities.

For this purpose, and because of its convenient

mathematical properties, we shall choose the Dirichlet

distribution (also called the multidimensional beta distribution).

In particular, the kernel of this distribution has the same form

as the multinomial distribution (the conjugacy property). This

allows the Bayesian modification of this distribution to be

carried out in a very simple way. Formally, suppose the tij's-are
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a priori jointly distributed according to

CtlE) = foi(Y1,Y2,...,YNImpm2,...01N)

(m1 + m
2

+...+ mN + 1)t

m
1
! m

2
! mN!

yi
m
1 y2

m
2 ... yN

m
N

44

where 0 < yk < 1 and yyk = 1.

The above distribution represents the technique choice

probabilities in a particular state s1; the subscript i being

supressed. The N constants ml,m2,...,mN are the parameters of

this distribution and provide the encoding mechanism for all of

our knowledge about the t..'s. An important property of this
ij

distribution is that the expected value of t.., is

m.

mk

where again we have surpressed the subscript i. Other quantities

suchasthelliarginaldistributionofaspecifict.k ,the variance

of t
ik' is

and the covariance of t. and t are easily derived. The

key feature of the inference process is that the m-parameters will

change as we obtain new data about the student. What parameters

do we start with in the absence of knowledge about a particular
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student? The choice of reponse probabilities characterizing the

student before he makes a response is called the set of prior

probabilities. Although in many processes the original, or zeroth

set of prior probabilities will have little effect on the eventual

characterization of the student, caution must be exercised in

choosing this set since it will have a large effect on the initial

tutoring strategy. Chapter 4 will discuss a specific choice of a

zeroth set of prior probabilities for the subject of methods of

integration.

We will now use Bayes' theorem to calculate the new

distribution over the t..'s after event E has changed our
3.3

knowledge of the student. Event E corresponds to the student

emitting mi responses of type i, where i ranges from 1 to N = N.

We have

(T)(EIT)

(E)

n!
nl nNf .(y ...,y Im ...m )

pi N N Y1 YN
n n.3 !

11

1

n!

kpi(Y1''YNIml''mN) yl
nl

...yN
nN

dyi ... dyN

n n.!

i 3

Note that the denominator integrates to a constant.
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1 1 mN +nNm +n
m2 +n2

Y
1 Y2 "'YN

(m
1
+n

1
)! (m

2
+n

2
)! (m

N
+n
N
)!

(n
1
+n

1
-,111

2
+n

2
+...+mN

+n
N
+1)

fOi(YFY2"YNIm14111'm24112''mN-PnN)

The above steps illustrate the value of the Dirichlet form

for the prior distribution of the t..'s. Bayes modification of

the distribution requires merely adding to the exponents of the

respectiveyisthermnberofselectionsoftechniqueT.during

event E. The posterior expected value of tik becomes

E(tik)

mk + nk

As we accumulate more responses from the student, we

reduce the dependence of E(tik) on the init'al choice of the

m-parameters, until in the limit of an infinite number of

responses they have no effect,

The Student Learning Model

Earlier we remarked that two processes caused our state of

information about the student to change. First we developed a

Bayesian scheme for calculating the reduction of our uncertainty

in the model parameters as we measured successive responses; we
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shall call this the information updating model. We shall now

analyze the process whereby real changes in the model parameters

occur as the student acquires new problem solving techniques.

Knowled:e of this process is essential for predicting how exposure

to a given problem will affect the student. We shall rely on the

learning model in the next chapter when we scan a set of problems

to find the best example.

Prior to a learning event E our knowledge of the student's

technique choice probabilities is represented by the Dirichlet

distribution:

(tlE) = f8i(Y1PY2P...PYNIM1PM2P...PMN)

1
ml m2

m
N- y1 y2

...YN

P(mi,'2,...mN)

m ... m N > 0
P 1, P

Since the posterior distribution for the event E is in

turn the prior distribution for the succeeding event, it is

convenient to require that the posterior distribution also have

the Dirichlet form. Ideally we would like to "update" the prior

distribution in the same manner as the information updating model.

However the possibility of a real change in the student's

technique choice probadlities creates a new uncertainty in our

knowledge of the student. For instance, if we have updated our

beta density prior distribution with 20 consecutive responses,

assuming no learning, we have substantially reduced t.e variances
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of the technique choice Probabilities. However if the student

subsequently is exposed to a better solution strategy; or

encounters a new problem form in the same class, he may alter his

response patterns over all the problems belonging to that state.

It would then be incorrect to assume that our knowledge of his

response probabilities is still represented by the simple Bayesian

updating of the prior distribution.

Our state of information about the student can be imagined

to progress monotonically between "discontinuities" that occur

with each learning event. This is, of course, a strong

assumption. The student's learning process and the observer's

updating process, in general, are constantly competing. The

discontinuity assumption was, however, suggested from observation

of calculus students interacting with the methods of integration

tutor. In Chapter 5 we show that calculus students do, in fact,

exhibit response discontinuities. Qualitatively, a typical

student episode went as follows:

1) the student encountered a new problem form

2) the student entered one or more failure states

attempting a solution

3) the student received tutorial assistance

4) the student (often) worked several more problems

before returning to #1 and #2.

It is clear that the distance between learning
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discontinuities depends in part on the existence of "several more

problems" in step 4 above. One can also argue that even if the

student does not enter any failure states that learning is

distributed among subsequent problems as the student experiences

further successes with his new techniques. If this is true, the

"c_zcontinuity" is perhaps only a gradual change. However,

Chapter 5 shows that for calculus students the change in response

patterns is typically abrupt. This lends confidence to the

assumptions that the learning process and the observing process

can be considered independently and that learning typically occurs

suddenly and sporadically.

What are the parameters of our distribution for the

student after a learning discontinuity? Let us assume that the

student is in problem state si, and chooses technique 1%, which

.1!

results in an unsuccessful transformation. Although the student

could choose another unsuccessful technique, let us assume that he

then chooses technique Tk, which yields a succesful

transformation. We shall label this sequence the event E. Since

the student often asks for assistance when he enters a failure

state, the choice of successful technique may be due to a tutorial

hint. A first candidate for the student's technique choice

probabilities after event E could be the prior distribution we are

willing to use for a student before any contact with the tutor. A

better candidate is this distribution modified by the new

responses suggested to the student by the tutor after the student
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entered the failure state. However this approximation does not

reflect the student's previous work. Observation of calculus

students suggests that the failing and successful techniques in

event E are the techniques most substantially affected. We thus

assume that the student's technique choice probability tip

(choosingtechniqueT,fronistates.1 )that led from problem state

s. to the failure state s
if

is modified by a learning parameter

a , and that the probability tik of choosing technique Tk (the

subsequently successful choice) is modified by a related parameter

tij.. a t,posterior

ij,prior

t.
ik,posterior

where T1

=
tik,prior

t. -at.
1M .3

tik

, T(j) unsuccessful

, T(k) tutor's choice

1 is a factor determined by a that renormalizes the sum

E t. to 1. For instance, if t. ,t. ,t. = 1/3 are
,im,posterior 11 12' 13

m
the only technique choice probabilities for state si, and a = 1/2,

then

11

1 - (1/3) - (1/2) (1/3) 3

1/3 2

IfthefailingteohniqueT.is I
1

and the successful
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technique Tk is T2, then

1

ti all 3)
l,posterior

6

1

ti2,posteris
ar 11(1/3)

2

1

t. = t.
13,posterior 13,prior

3

a is a factor depending on the problem and on the

student. In Chapter 5 we show that in practice a can have a

fairly wide range of values for a given student. We must also

assume that a will change in time as the student becomes more

experienced. In fact, it is clear that if the student is to

eventually converge on the tutor's problem solving heuristics, a

must approach 1 with increasing time. It is convenient to

consider a itself as being distributed according to the beta

function:

1

g(a ) = ar-1 (1 a )s
-1

13 (r,$)

Now, however, the learning model product ati is no longer

beta distributed. This is apparant from considering the simpler

case where a probability p is beta distributed:



r
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1

f (13)
p
m
1
-1

(1 - p)m2-1

13(mi,m2)

and the product 6 = a p is distributed according to

1 1

f( 6) = - f(p) g(a) da dp
d6

6 8/p

This integral is hard to evaluate in closed form, but if

a is assumed to be uniformly distributed with r = s = 1, then

1

d

f( ) = f(p)
d6

a

1

f(P)
dp

6

1

dp

If we also assume that p is uniformly distributed with

m
1
= m

2
= 1, then

1

1

f(6 ) = - dp = -1n( )

6

which obviously is not a beta distribution.

Since it is useful to preserve the beta distribution form

for the Bayesian updating procedure, we shall choose a beta

distribution whose mean and variance are equal to the mean and

2
variance of the product distribution . In the simple case
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discussed above,

8 = aP ap

r m
1

r + s +
ml m2

----
v 2

2 22 22
and S= 6 8 =a1)-al,

r(r+1) m
1
(m

1
+1) r

2

m 12

(r+s) (r+s+1) (mi+m2)(mi+m2+1) (r+s)
2

(mi+m2)
2

If the new beta distribution has the form

1

f( 6 ) = 6
n
1
-1

(1 - 6)
n
2
-1

0(ni,n2)

then, equating means and variances,

n1

n
1
+ n2

= E ,

n
1
(n

1
+ 1) n

1

2

(nl + n2) (ni + n2 + 1) (n
1
+ n

2
)
2

.

V

6

2. This procedure is known as the method of moments.
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and solving for n1 and n2 we get

n
1

_
6 (1 - 6 ) - 6 6

6

n2 = (1 - d )

v

76*(1 - ) -

v
6

For the case discussed above with ml = m2 = r = s = 1,

11= 1/4, 6 = 7/144 and we find that n1 = 5/7, n2 = 15/7. This

provides us with the parameters for the beta distribution

approximation of -ln( 6). We then compare

1 (1 - 6 )
8/7

(1 - 6 )
8/7

27, 1.2903
6
277

(5/7,15/7) 6 "

with -ln( 6) .

Figure 2.8.shows the two functions plotted. It is clear in this

case that the Beta distribution is a very acceptable approximation

to the exact product distribution.

The last few paragraphs have discussed a simplification of

the model. When we generalize to a beta distribution involving

both the unsuccessful and successful technique choice

probabilities, the results are similar. In particular,

f(t lm)

1

111(mi'm2'm3)

t
1

m
1
-1

t
2

m
2
-1

(1-t
1
-t

2
)
m
3
-1
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where T
1

is the unsucessful techn que whose probability is

modified by a, and T2 is the successful technique whose

probability is modified by 1. The new beta distribution is

f(u1n)

1

0(ni,n2,n3)

where u
1
corresponds to at1 ,

u2 corresponds to lt2 ,

and u3 corresponds to t3 .

ul
n

1
-1

u2
n
2
-1

(1-u1-u2)
n
3
-1

Defining R = r + s and M = E mi , we have

r m1

111 2. ----

R M

v (r + 1) r (mi + 1) mi r2 m12

u
1

(R + 1) R + 1) M R
2
M
2

from the univariate analysis, and solving for nl, n2, and n3 we

have

2 v
u
1

(1 - ul) - u1 ul
n
1

u
1 - V

u
1

(1 - ul) - u
1

n
2

+ n
3
= (1 - ul) V

u

m
3

n3 = (n1 + n2 + n3)
M

1

These last five equations completely define the updating
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process used by the tutor when the student encounters a learning

discontinuity. In Chapter 5 we shall show that the instances of

student learning discontinuities can be easily identified by the

tutor.

We see now that the two processes complement each other.

Starting with an original prior distribution of the student's

technique choice probabilities, we update our student model until

a learning event occurs (tnat is, until the student enters a

failure state). At this point the learning model provides us with

a new prior distribution, which we zontinue Updating. The new

prior distribution is _linked to the old through the distribution

of the learning parameter a. Actually since the distribution of

a will in general depend upon the student and upon time, we can

Imagine a third updating process involving a 1A.seif. As the

student encounters successive learning events we the observers

will improve ou: kr.owledge of a. We could call this process

"getting to know the student" For the time being we will assume

that a has a fixed distribution independent of particular

students The challenge will be to deduce this distribution from

an experimental environment

Expected Number of Steps

To obtain the student's transition probabilities, we could

carry out a similar updating process for the technique result

probabilities (the
jk

q, 's), or alternatively, we can measure the
-
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student's transitions directly. Once we have what we consider

reasonable estimates for the p..ij 's we can calculate the student's

expected number of steps to solution from any starting state.

Using the theory of transient Markov processes, the matrix of

expected delays before trapping, [T), is related to the modified

state transition probability matrix P (created by removing all

rows and columns of P corresponding to the trapping states) by

-1

where I is the identity matrix. Thus the sum is the
.

T. = vi

sum of the delays in all possible states given that the system

startedinstatesi ,and this is the expected number of steps to

solution of a problem begun in state si. Equivalently, the

product

CT] [3] = [

1i

1] = (;)

1
71

is the column vector of the expected number of steps to solution

from each state. Each of the terms T.. is useful as an
ij

indication of where the student is spending his time in the

solution of a problem begun in state si. We can examine the

expected posterior f!. for students with unusually long problem
ij

solutions to determine whether they are spending time in failure
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states or in legitimate transformations.

Similarly it is helpful to know the variance of the delay

in each state as well as the variance of the total number of

steps. Again, from the theory of Markov processes, the matrix N

of variances of the expected delays, vij, can be calculated by

= N2 - 11031-

where N2 = T[2(T I) - I]

and 171 = T , the matrix of delays.

Note that the box notation A B represents the term by term

multiplication operation for two matrices of similar dimensions,

i.e. if C = A OB, then C.. = a.. b...
3.3

The column vector of variances of the total delays in the

process is given by

v= (2T - I) 7)7)

where 7) is the column vector of the total expected delay in each

v Crl 11
Natestate. Ne that

v / It ij 1 j
because the times spent in

each state are not independent random variables.
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Chapter 3

The Tutorial Strategy

Chapter 2 introduced a general model of a student solving

problems. From this model we defined important parameters of the

student's understanding of the subject, such as his expected

number of steps to solution, his probability of choosing a

technique (tij), his probability of arriving in a given state

after applying a technique (4ijk), and the probabilities of

entering or leaving a failure state (piF and pFj). We discussed

specific methods for encoding an observer's knowledge of the

student and for modeling the student learning process. This

chapter will present a real time tutorial strategy for computer

assisted instruction that will use these models as its basis. The

essential elements of the tutorial strategy are: student trouble

thresholds which, when exceeded, cause the tutor to intervene in

the student's problem solution; a set of problem solving

priorities used by the tutor to give hints; two problem archives

which the tutor can scan for problems that will optimally

challenge or optimally help the student; and a self improvement

scheme that allows the tutor to incorporate the best problem

solving strategies of its students. In addition the tutor can

both hel' the student apply techniques and can modify its own

subject breadth to tutor students with differing backgrounds.
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Figure 3.1. The flow chart of the tutor.
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The Plan of the Tutor

Figure 3.1 is the flow chart of the tutor. This chapter

will discuss each element of the tutor in the order of execution

of a typical tutorial episode. From a macroscopic viewpoint, the

function of the four elements in the upper left corner of Figure

3.1 is to initialize the tutor's knowledge about the student and

to select an example to work. The large circuit of ten elements

in the center and lower portions of the figure handles the actual

working of the example and the tutor-student dialogue. After the

student successfully terminates the problem, the tutor performs

certain boakeeping functions and tests the student's problem

solving patterns for signs of major trouble. This last phase is

shown in the upper right corner of figure 3.1. The tutor then

returns to find another example.

Tutor Initialization: Dynamic Subject Scope

One of the characteristics of the tutorial phase of

learning is the dissimilar subject backgrounds of the students.

Often the students are involved in a lecture phase at the same

time they are interacting with the tutor. Since the tutor is

structured to deal with individuals it must be able to tune its

level of presentation to the capabilities of each student. is

is accomplished by querying each student as he logs in about which

techniques he is familiar with. A new student would be asked if

he knew each of the N
T
possible techniques. Thence afterward the
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tutor would only ask him about those techniques he had not known

in an earlier session.

During the session the tutor has the student's list of

unknown techniques. Whenever the tutor encounters a situation

where it would ordinarily give an unknown technique as a solution

hint, it will warn the student that he may be venturing ii.to deep

water. The student then has the choice of aborting the problem

solution as too difficult or choosing an alternative tutorial hint

that he knows.

This process of dynamically altering the subject scope

also allows the tutor to choose only problems from its .archive

that can be worked by techniques known to the student. Since an

outline of the teacher's solution is stored with each archive

problem, the tutor rejects any problem using unknown techniques.

Thus the student in general has access to a subset of the problem

archive. In fact we see that the concept of the dynamic subject

scope generalizes the tutoring process since for a tutoring system

with N
T
possible techniques, there exist 2

N
T possible subsubjects

all tutorable by the same tutor.

Selecting an Example: The Tutor-Student Distance

If the student has no example of his own, the tutor will

select one from its example archive. In order to choose among its

examples the tutor first calculates a "distance" measurement for

each problem description state that expresses how much the tutor
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and student disagree in choosing problem solving techniques. This

distance is given by

Di = ITii - tiii

where T.. is the tutor's relative frequency of applying technique
ij

j
T.
7

in state Si and ti is the student's expected relative

frequency of applying the same technique. The tutor's Tij is

determined by scanning all of the problems in the problem archive,

searching for occurrences of state si. The tutor-student distance

can range in value from 0 to 2 for each state, corresponding to

complete agreement or complete disagreement, respectively. The

following paragraphs discuss alternative schemes for choosing the
F

best problem for the student using the tutor-student distances

D D1" N
If we know in advance what responses the student would

make, we could select the problem that would minimize the total

distance

DT = / D.

posterior to working the problem. Lacking this perfect

information, we could nevertheless calculate the probability of

thestudentchoosintechniqueT.instates.,given his response

probabilities til. For instance, if the original problem

description state is sk, this probability would be
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P (Tjlsi) = 6ik tij

Pki tij

Pkl Pli tij

1

)L Pkl Plm Pmi tij
1,m

+

where prs is the probability of the student making a transition

from state sr to state ss.

The change in the student's total distance D
T

could then

be estimated by carrying out this calculation on each candidate

problem for all possible states and techniques.

Apart from the computational complexity of this scheme,

there are two significant objections to its use. First, we would

find that all problems of the same initial problem description

state give identical predicted contributions to the change in DT.

This still leaves us with a choice to make among a possibly large

number of problems. The second objection is that such a

computation ignores the solution used by the tutor for the

particular problem except insofar'as it contributes to the tutor's

T.
lj

. What is needed is a model to predict what relation the

student's particular solution will have to the tutor's particular

solution.

To pose such a model, we assume that if the tutor-student

distance for a given state is large, the student is more likely to
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enter failure states and more likely to get into situations where

the tutor gives him a hint that may change his problem solving

patterns. Although the tutor's hints are not based on its own

particular solution, the tutor does compare its solution with that

of the student upon completion of the problem.

A reasonable measure of a candidate problem is the set

(Di, Dj, Dk, , Dm) of tutor-student distances for states

encountered in the tutor's solution. The expected example

distance D
E
of this problem is the weighted sum

DE = Di + pig Dj Pij Pjk D.
K

+ p
nm

D
mij

where the transition probabilities are those of the student. The

expected example distance has the following desirable features:

1) it is computationally tractable; 2) its value is proportional

to the expected occurrence of tutor hints and comparisons that

will change the student's tip' "; 3) it depends on the entire tutor

solution and will yield very few ties among candidate problems;

and 4) since it is weighted by the student's transition

probabilities it takes into account the possibility that the

student may diverge from the tutor's solution.

To select an example, the tutor calculates the expected

example distance for all the unworked archive problems,

eliminating those using techniques unknown to the student, and

chooses that problem with maximum DE.
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Choosing a Technique

When the example problem is established, either by student

initiation or archive selection, the student is presented with the

fundamental question: "What shall we do to solve it?". He then

has three fundamental choices. He may name one of a set of

problem transforming techiques; he can attempt to finish the

problem directly by either guessing the final answer or correctly

identifying the integral as "known"; or he may ask the tutor for a

hint. The following paragraphs discuss how the tutor handles each

of these options.

Unusual Technique Threshold

If the student decides to name a problem transforming

technique, the tutor needs to measure the appropriateness of the

response. In keeping with the goal of giving the student as much

freedom as possible, the tutor should not comment on the student's

choice of technique unless the tutor thinks the student made a

very poor choice.

We define a simple threshold that causes the tutor to

intervene whenever the student chooses a technique that is

unlikely, in the tutor's view, to provide a successful

transformation in comparison to other untried techniques. If ei

is an adjustable quantity between 0 and 1, depending upon the

state si, which we call the unusual technique threshold parameter,

then we define the unusual technique threshold Thti as:
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Th
ti

e
i

[max tij,tutor]

In other words, the threshold is a certain fraction of the tutor's

response frequency for the most likely technique in that state.

The unusual technique threshold is exceeded whenever technique T.

chosen by the student satisfies

tij..
,tutor

< .

In other words, the tutor looks at its own priorities to decide if

the student chose a technique below the tutor's relative frequency
A

threshold.

If the tutor's technique probability falls below the

threshold, the tutor will stop the student to ask if he would like

a hint since his choice is suspicious. If the student desires to

proceed with his "unlikely" technique, he must be allowed to do

so, since it is possible that he is pursuing a line of reasoning

that is not represented in the tutor's archive. If the student

opts for a hint, it is given to him and he returns to "What shall

we do to solve it?".

Notice that if the student is in a failure state where he

has tried one or more techniques unsuccessfully already, he will

4
not necessarily be more likely to cause tutor intervention.

Although the tutor's archive contains no occurrences of failure

states, the tutor knows what its adjusted priorities would be if

this most likely technique failed. The probability for the most
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likely technique is demoted by the failure parameter 6, and all

the rest are increased for the sake of normalization. This

procedure insures that the student will be left alone by the tutor

unless he tries something quite unusual.

Hint Generation

When the student asks the tutor for help in choosing a

technique, the tutor must respond from its own knowledge of how to

solve the problem. The crucial point is that the tutor does not

know how to solve the problems If a tutor is to respond to

arbitrary student problems and solution paths, the tutor cannot

store certain prescribed solutions in its memory. In fact, many

subjects allow two or more solution paths for most of their

problems. The tutor cannot use the particular solution stored in

its archive since usually the student either suggests his own

problem or deviates frodthe solution path used by the tutor. The

tutor derives its own response frequencies from the archive by

ranking the frequency of the various techniques applied for each

problem type. We refer to this ranking as the tutor's priorities.

When the student asks for help, the tutor suggests the highest

priority technique. Successive requests for help yield

successively lower priority technique choices. We can thus state

the principle:

The tutor provides technique choice advice la presenting
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the student with its own technique choice priorities.

It is possible that the most highly recommended technique

will not solve the problem. The student should be prepared to

fail oc,.asionally even with "good" advice and start the problem

over using the next most highly recommended technique. Since the

student is learning a process of problem solving, rather than the

solutions to isolated problems, even such negative experiences

will broaden his judgement by causing him to search for less

likely solution schemes.

Applying the Technique

If the student avoids triggering the unusual technique

threshold, he enters a subprogram specifically designed for the

technique. He now is exposed to the second level version of "What

shall we do to solve it?". In this case the student can suggest a

solution scheme (such as "let u = x" in a substitution, or "let

u = e
x

, dv = sin(x) dx" in integration by parts, "apply the half

angle identity" in trigonometric identities. Alternatively, the

student can ask for help. Following the application of the

technique, the student has a chance to view the result and accept

it, reject the result and try again, accept the result and apply

the technique again, or give up on the technique altogether.

Theoretically, we could generate a set of priorities for

the student when he wants help with applying a technique as we do
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when he wants help with choosing a technique. Eventually,

however, we must stop naming techniques and subtechniques and

actually take the student through a manipulation from start to

finish. This is a practical rather than theoretical choice. It

is possible to imagine an optimization scheme for applying a

technique that would involve searching all the paths that could be

generated by different applications of the technique and then

choosing the path that led to the state with the lowest expected

number of steps to solution. The objection to this procedure is

the unreasonable overhead that would result from this real-time

decision. In the methods of integration tutor described in

Chapter 4, the explanations of technique applications are handled

by specific algorithms tailored in each case to the technique. Of

course, these algorithms contain procedures for rejecting problems

unsuited to the technique. These kinds of predetermined decisions

are termed "wired in heuristics". It is important to choose the

state definitions for any tutorial system so as to diminish the

importance of wired in heuristics. In particular, any decision

point that allows a genuine divergence of opinion among reasonable

problem solvers must not be handled by an algorithm that always

chooses one type of solution. If such a situation arises in the

construction of the tutor, a separate state should be constructed

that allows the student to choose among several paths and which

allows the tutor to apply the techniques just developed.
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Problem Length Threshold

Following the application of the technique, the tutor must

know if the problem solution is getting unusually long. It is

often possible to perform a very large number of steps on a simple

problem without triggering the unusual technique threshold. From

Chapter 2, however, if we know the tutor's state transition

probabilities (the pig's) we can calculate the expected variance

of the number of transitions to stop, given that the problem

startedinstates..From this we can establish a problem length

threshold :

= 47y7Thli

where vi is the expected number of steps starting from state s.

(the mean delay from state si to.a trapping state), vi is the

expected variance of the delay from state si, andit* it a -number

we call the problem length thieshold parameter. The tutor

interrupts the student whenever his solution length exceeds the

number Thii, defined as the tutor's mean number of steps plus K

standard deviations.

When the student exceeds the problem length threshold, the

tutor will intervene to ask if the student wants a hint. The

tutor can not in general know exactly why the student is producing

such a long solution, and of course must not force the student to

terminate his solution. However, practice suggests that returning
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to the beginning of the problem and reexamining the technique

priorities will usually prompt the student into a better solution.

Students who produce unwieldy solutions to ostensibly short

problems usually have not asked the tutor for suggestions.

Finishing the Solution

The student can continue to apply techniques to a problem

indefinitely. Each such application involves one loop of the

lower central portion of the flowchart in Figure 3,1, returning

each time to "What shall we do to solve it?". Eventually the

student will reduce the problem to a simple, recognizable form.

If this form is one of a list of agreed upon "known" forms, the

student can simply type "KNOWN" to terminate the problem. The

student may also try to guess the final answer, even if the

problem is not of the known form. Finally, if the student must

stop working on the problem before it is normally solved, he may

give up.

Following completion of the problem, the tutor updates its

prior estimates of the student's tiff's by using the information

updating and student learning models described in Chapter 2.

The tutor then prints a summary of the techniques employed

by the student to solve the problem. If the problem came from the

archive, the tutor also prints its own solution alongside the

student's. This is a very effective way for the student to

compare his problem solving schemes with those of the tutor,
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particularly if he has solved the problem without tripping the

tutor intervention thresholds or without asking for a hint.

Tutor Learning

Much of the value of the tutoring process we have

developed in this chapter depends on the tutor being a good

problem solver itself. In particular, the technique choice

convergence schemes we proposed for problem selection would be

counterproductive if the student was a better problem solver than

the tutor. In this case the tutor would be attempting to bring

the student down to its own level. The use of this tutorial

scheme woule also be severely restricted if the tutor required

initialization by sore kind of grand master of the subject.

Therefore a most important development in our tutorial theory is a

self improvement strategy for the tutor. We want the tutor to

recognize superior student solutions and learn them in such a way

that all future tutoring decisions will reflect the new knowledge.

The tutorial system as we have described it thus far is

wel; suited for modification of the tutor's strategies. Except

for the wired in heuristics all tutorial responses are determined

by the tutor's technique choice probabilities and the two problem

arcllves. From a practical standpoint these can be considered as

volatile as any other piece of data.

The real problem is to identify a criterion for superior

student solutions. In particular the tutor cannot recognize
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brilliance in the soluti'.n of a problem that does not exist in its

own problem archive. We must remember that the tutor's technique

choice probabilities are determined entirely from the problem

solutions in the general problem archive. A new problem can only

be judged as some statistical combination of the tutor's

previously known problems, thus the measure of its true difficulty

is unknown.

We shall make the simple assumption that length of problem

solution is a measure of superiority. Thus whenever the student

works a problem from the general problem archive that is shorter

than the tutor's solution the tutor will remember the student's

solution by replacing its archive entry and 'updating its t..
13

matrix (by subtracting the old solution statistics and adding the

new). The tutor must of course reject solutions that end in the

"give up" trapping state or involve he "guessing" technique if

such a technique is allowaMe. In this way the tutor's basis for

heuristic decisions can eventually be altered by the students.

Other superiority schemes that would not necessarily

shorten the problem solution can be easily imagined. For instance

iftechniqueListhoughttobernoreelegantthanT.then any

solutionusingT.couldreplacponesinvolvingT.3 ,possibly

subject to constraints on 44,e tot.1 length of s.:,,utien. Going one

step further, the problem archive could be optimized at several

levels simultaneously, depending upon different expected subject

scopes. In other words the archive could have several disjoint
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levels, each level depending on how many techniques the student

knows.

Diagnosing poor problem solving practices

Because have committed the tutor to allow the student

exceptional freedom while solving problems, it is quite possible

that a confused student may solve whole classes of problems poorly

without receiving much warning from the tutor. Thus after each

problem, we ask the tutor to scan the student's overall problem

solving patterns for signs of trouble.

During the course of solving a problem, the tutor

interrupted the student in the act of choosing a technique if the

tutor felt that the student's choice was unusual enough to be

reconsidered in favor of the tutor's. Similarly if the

th
tutor-student distanceD.for the

.

state is sufficiently high,

the tutor will stop the tutoring session to show the student a

complete example. The turrl. assumes that the student's problem

solving techniques at this point are sufficiently bad to require

that the student solve the problem in a "slave" mode that only

allows him to prcceed with the tutor's recommended solution. We

define a problem solving trouble threshold for each state by:

D. >
1 Pi

where T is a parameter, depending upon the state si, chosen
Pi
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between the extreme possible values of 0 and 2. For instance, we

may decide that one particular state is more critical than others

and thus assign it a lower problem solving trouble threshold.

When the student exceeds the problem solving trnuble

threshold the tutor then scans a special archive of problems

reserved for this situation. Each problem in the archive is

stored with the complete set of responses that the teacher used to

work the problem. The student then begins the pinblem as usual

but is s-opped every time he does not agree with the teacher's

response. Needless to say, the problem solving trouble thresholds

should be set high enough that this procedure is invoked

relatively rarely since it is a brute force effort to move the

student's technique choices toward the tutor's. In practice with

the methods of integration tutor a threshold value of 1.75 was

found to be reasonable.

The advantage of entering the "slave" mode in this

tutorial situation is that we can be sure for the purposes of

optimum probl::J1 choosing th.'. the student will see all the steps.

This was the assumption we could not make when we chose example

problems from the general archive. We also tacitly assume that

the effect of a forced response is the same as a voluntary

response in the non-slave mode. The steps cox. choosing an optimum

problem for the slave mode are:
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1) stop the student when he exceeds the

problem solving trouble threshold Tpi

2) use the information updating model to calculate

the student's expected posterior technique

choice probabilities as a result of being

exposed to the entire problem.

3) calculate the tutor-student distance Di

with the student's new t..'s.
13

4) Minimize the value of step 3 over all the

problems in the archive.

After the student is shown the problem, we continue with

the prior distribution that the learning model predicts for the

student after the complete exposure to the new techniques.

Summary

This chapter has presented a computer tutorial system

applicable to a wide variety of subjects and capable of providing

the student tutorial assistance at several levels. The tutor

bases its own problem solving heuristi.s entirely upon a general

..oblem archive established by the original human teacher. Using

the problem archive the tutor can select optimal problems either

as examples to set a floundering student on the right path or as

')roblems designed to challenge the stronger student in troublesome

areas. Because all of the tutor's recommendations are derived by
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statistically averaging over the entire archive, the student can

initiate his own problem qnd expect to receive the same level of

tutoring that he would get if the tutor chose a problem from the

archive. At the technique choice level the tutor offers its own

technique choice preferences whenever the student asks for help or

exceeds the unusual technique threshold. At the technique

application level the tutor relies on wired in heuristics to make

specific suggestions but leaves the final decision of application

up to the student if a choice exists.

In addition to the main function of providing tutorial

assistance the tutor also dynamically alters its subject scope for

the individual student and can optimize its own performance with

respect to any measurable superiority criterion.
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Cha ,er 4

The Methods of Integration Experiment

This chapter describes an experimental "methods of

integration" tutor developed from the ideas of the last two

chapters. We shall show how the states and techniques for this

subject were defined and how the tutor thresholds and problem

archives were implemented. A discussion of the student

information updating process and two versions of the student

learning model will follow. Finally we describe in a feral way

the challenges of creating computer programs that tutor this

subject. A discussion of the results of the experimentation with

calculus students is deferred to Chapter 5.

The Choice of Methods of Integration

Methods of integration was a good choice of subject for

this tutorial system for many reasons. As a subject in a calculus

course, it is almost never taught as an algorithmic procedure

(like differentiation). Rather the emphasis is on the acquisition

of a number of techniques like substitution, integration by parts,

and partial fraction expansion. Although the student is often

given groups of problems solvable by the same techniques, the real

challenge is the recognition of the correct approach, rather than

the details of the technique application. In addition; most

problems can be solved by any one of several approaches involving
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different technique choices and different lengths of solution,

thus providing the tutor a complete range of possible student

results to judge. This unusually rich problem solving structure

is ideal for testing the generality of the tutorial methods

proposed in Chapter 3. At the same time, the tutorial strategy is

not designed solely for this subject, as the examples in Chapter 3

point out.

Identification of the States and Techniques

In the initial phases of development of the integration

tutor it was hoped that the state definitions could be kept

completely independent of problem solving considerations. The

goal was to have each state unambiguously defined so that the

tutor could know which state the student was in. Although this

remains as an ideal, it was found that in certain situations a

state definition dependent upon "the wax the problem is solved" is

preferable to the pure problem description approach.

For instance, in the case of problems involving simple

variable substitutions leading directly to "known" integrals,

integral solvers overwhelmingly recognize these problems as a

distinct class based upon the substitution approach. Although one

could define this class using exclusively structural properties

(the presence of a term and its derivative,...) the motivation for

doing so is still based on the way the student solves this class.

The key point is that virtually every integral solver solves these
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problems with a simple variable substitution, and it is

unrealistic for the tutor to lump these problems into other

classes that could yield a variety of possible tutoring hints.

Thus as an exception to our rule for defining states (in Chapter

3), we list as state #2 below the state of "recognized

substitutions". Similarly, state #3 is also an exceptional

state: the state of "recognized trigonometric substitutions".

Except for the trapping states, all of the remaining states are

defined by their problem descriptions; the table of problem state

names follows:

0. The Solved state
1. Known integrals
2. Recognized substitutions
3, Recognized trigonometric substitutions
4. Trigonometric & hyperbolic functions
5. Exponential functions
6. Aic-trigonometric and -hyperbolic functions
7. Fractional powers of functions
8. lombination of types 4 & 5
9. Combination of types 4 & 7
10. Combination of types S & 6
11. Combination of types S & 7
12. Combination of type 6 & 7
13. Polynomial functic...1..

14. Other
15. The Give-up state

Problem state 1 is defined as the set of those integrals

agreed upon by the student and tutor as requiring no more

transforming to reach a solution. These integrals are sometimes

solved in the Lecture phase of the student's learning by

calculating the limit CA an infinite sum, but are rarely solved by
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the student after that point. These integrals are given to the

student at the beginning of the tutoring session.

In each of the types 4 through 12 above the characteristic

functions identifying the state can be multiplied or divided

freely with polynomials in the variable of integration. Thus

and

J1X2 dX is classified in state 1,

(but notjr(3*X)2 dX )

*ecos(X)
dX is classified in state 2,

1

JrdX is classified in state 3,
X2 +5

f(X3 + X)*sin(X) dX is classified in state 4,

X
2

-4- 2*X +

4X is classified in state 13.
x3 17.x2 - 1

In addition we will define one student failure state for

each problem state given above (other than states 0 and 15),

giving us a total of 30 states. State 0 is achieved when the

student successfully identifies a known integral. State 15 is

achieved only when the student requests to give up on the problem.

As explained in Chapter 2, these two special states are the

trapping states of the process. Note that. no state corresponding

to a combination of types 4 and 6 is given since integrands

involving both trigonometric and arc - trigonometric ft ctions are
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virtually nonexistent. Such a problem, if encountered, would be

,classified in the "other" state, #34.

In a like manner we list the techniques of transformation

that we allow the student to apply to integral problems:

1. The Known integral rrutire
2. Ordinary substitution
3. Integration by parts
4. Trigonometric substitution
5. Trigonometric identities
6. Separation of the sum
7. Polynomial division
8. Completion of the square
9. Partial fraction expansion

10. Conjugation of the denominator
11. Expansion of a power
12. Returning to the previous integral
13. Guessing the answer
14. Giving up

The Tutor as Seen 12:the Student

Logging in. When the student logs in to the tutor for the

first time, the tutor must establish tLe scope of the vudent's

understanding of the subject. The tutor asks the student seven

yes-or-no questions:

1. Have you ever studied integration by parts?
2. Have you ever studied trigonometric substitution?
3. Have you ever studied trigonometric identities?
4. Have you ever studied polynomial division?
5. Have you ever studied completion of the square?
6. Have you ever studied partial fraction expansion?
7. Have you ever studied conjugation of the denominator?

Several techniques were assumed known by the student, such
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as simple substitution, separating a sum, expansion of a power,

applying the known integral routine, and guessing the answer. All

but the first of these are simple logical or algebraic

manipulations that would be prerequisites for any exposure to

methods of integration. Simple substitution was not includei in

the list because nearly all students learn this technique first.

If a student logged in who proclaimed ignorance of every technique

including simple substitution, the tutor would not be able to give

intelligible hints for any nontrivial group of problems. In other

a.

words, it is assumed that any student who works with the tutor is

at least aware of the technique of simple substitution.

Since the student usually will increase his repertoire of

problem solving techniques during the period he is interacting

with the tutor (perhaps by outside reading or Lecture phase

exposure), each time the student logs in, the tutor asks him those

questions to which he responded negatively in the past. The tutor

keeps a statistical summary file on each stuirnt, one item of

which is the monotonically decreasing list of "unknown"

techniques.

Choosing the problem. After the student has logged in he

is asked "Do you have a problem?". If the student has a problem

he responds with "yes" and then types in his integral. If the

student responds "no" the tutor then retrieves the statistical

summary file for the student and constructs an appropriate prior



Methods of Integration Experimant 86

set of statistics. This process is explained in detail in a later

section. Armed with the prior statistics the tutor scans the

problem archive file, calculating the estimated weighted distance

between the tutor and student for each problem as described in

Chapter 3.

The problem that yields the highest value is then chosen

for the student. In practice, the problem selection process takes

approximately 3 seconds of machine time, a not unreasonable delay

for the student.

Choosing the technique. After the problem is selected the

student must choose from among his repertoire of techniques. The

tutor types the integral and follows with "What shall we do to

solve it?". The student refers to a printed list of abbreviations

for the 14 techniques listed above. He may specify directly any

of the techniques cr he may type "HELP" or "REVIEW". HELP causes

the tutor to show the student the name of the technique the tutor

thinks is most likely to solve the integral. Successive HELPs

give successively less likely hints until the tutor's hints are

exhausted, REVIEW causes the tutor to show the student all the

steps he has performed so far, in case he has made a number of

transformations and is confused as to the status of the problem.

Applying the technique chosen. Once the student has

chosen the technique he is placed under the control of the program
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specific to that technique. If the technique involves a secondary

choice, such as in substitution, the tutor types: "Can you think

of a substitution?". The student then can answer "YES", "HELP",

or "EXIT". ,f he types "YES" he then proceeds to type in the

actual expression for ,hich he is substituting. If he types

"HELP", the wired-in heuristics of the program take over to find a

reasonable substitution. In this case the program gives the

student a choice among several conceivable candidates. For

instance, with the integral

2

jrx * ex dx

2

either the substitution U = x
2
or U = e

x
will yield a known

integral, The tutor will present one of these to the student and

ask him if the choice is reasonable or whether he would like

another candidate or whether he would like to give up on

substitution altogether, Thu3 the final decision of which

substitution to make is left up to the student even though the

tutor's own wired-in heuristics did the original work. Usually

the students treated the search for a technique application choice

as a challenge, prefering to use the HELP feature as a last

resort.

If the technicv involves no choice of action, as in

polynomial divisi- le tutor simply prints the answer out and

returns to "What shall, we do to solve it?".
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A Sample Student-Tutor Dialogue

In order to capture the flavor of the interaction between

the student and the tutor, we present a sample dialogue selected

from actual proto'els gathered during an experiment with calculus

students. In the following, the underlined characters are those

typed by the student, everything else is typed by the tutor.

Statements beginning with a semicolon (;) are explanatory comments

inserted by the author. They did not appear to the student.

(INTEGRATE)

; Student's command to LISP to start the tutoring program.

Hello! What is your name?

Ruth

Hello again, Ruth

Have you ever studied partial fraction expansion?

no

; The tutor recognizes the student Ruth and asks if
; she has learned partial fraction expansion yet.
; She had previously answered "yes" to all the other
; techniques.

Ok, do you have a problem.'

no

All right, I will select one for you!

Thinking for a moment...

; At this point the tutor retrieves Ruth's technique
; choice probability matrix (the ti.'s) from an
; external file, constructs an appApriate prior,
; calculates the expected example distance for each
; problem in the example archive, and chJoses the problem
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; with the highest resulting value.

Ok, Ruth

Our integral is fX*log(X) dX

What shall we do to solve it? : sub

;Ruth has chosen substitution

Can you think of a substitution? (YES, HELP or EXIT)

; We are now in the substitution program and Ruth has

; 3 choices: 1) specify her own choice of substitution
2) receive a hint from the tutc'z.

3) abort substitution altogether and
return to the original integral

Let Ul = log(X)

; The,tutor prompts the student with "Let Ul = " and

; she responds with her choice. Successive substitutions
; would involve the variables U2,U3,...

Ok, Ruth

we will let Ul

equal log(X)

; At this point the tutor calculates dU = 1/X dX
; and tries to find dU in the integrand.
; Since the search was unsuccessful, the tutor then
; solves Ul = log(X) for X so that the substitution can
; be carried out.

Thus X

equals e
Ul

and dX

equals e
Ul

dUl

which we substituted into the integrand

Our new integral is now j'Ul*e (2*U1) dill
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Please type Good, Bad or Giveup

; Now that the student has applied substitution,
; the tutor lets her choose whether to go on with
; this new integral. "Good" will cause this.new integral
; to become the "official" new transformation, "Bad"
; will return us to the start of the substitution routine
; for another try, and "Giveup" will abort substitution
; to return to the original integral.

bad

Can you think of a substitution? (Yes, Help or Exit)

; We are now back to the original integral

help

I can't find a suitable substitution! Will exit...

; The tutor could not find a substitution that it felt
; led to a simpler integral. The point, of course, is that
; substitution was not a very good choice for this
; problem.

; Notice however that the tutor intervention threshold was
; not tripped when the student specified substitution. The
; intervention parameter is deliberately set high enough
; so that the student has some latitude to try poor
; guesses and see the results.

Ok, Ruth

Our integral is FX*log(X) dX

What shall we do to solve it? : help

; Now the student wants a hint from the tutor

I suggest you try integration by parts

What shall we do to solve it? : parts

; The student has taken the hint and asks for
; integration by parts

Integration by parts!

We will use the notation
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U dV = U*V - j'V dU

Can you think of a choice for U ? (Yes, Help or Exit)

; The student has essentially the same choice as she did
; upon entering the substitution program

help

How about letting U = log(X)

Can you think of a choice for U?

yes

Let U = log(X)

; Apparantly the student is somewhat unfamiliar with
; integration by parts, since she did not even attempt
; to guess a choice for U.

Ok, Ruth

we will let U = log(X)

thus dV = X dX

hmmmm...

; A slight pause as the computer utilizes a simple set of
; wired in heuristics to find the integral of dV. If the
; tutor cannot solve the integral of dV by the known
; integral routine, simple substitution, or simple
; trigonometric substitution, the student is so informed
; and the tutor returns to asking for a choice of U.

An intriguing choice!

X
2

thus V
2

1

and dU = -
X

We now have IX*log(X) dX
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X
2
*log(X)

2

X

dX

2

Please type Good, Bad, Again, Solve or Giveup

; Good allows the student to exit with the new integral

; Bad recycles back to the beginning of integration by

parts for a new choice of U
; Again lets the student integrate the new integral by

parts again (not used in this sample protocol)
; Solve lets the student solve for the original integral

if at least two consecutive integrations by parts
have been done (not used in this sample protocol)

; Giveup aborts integration by parts and returns with the

original integral

Good

Ok, Ruth

Our integral is now IX dX

-1

times --
2

; Extraneous coefficients are always factored out of the

; integrand

What shall we do to solve it? : known

; The students often used "guess" at this point to
; guess the answer to simple integrals. .UnDmme,however'
; simply provides the answer once the known integral is
; successfully identified.
; Notice that the student has now completed the problem.
; If this problem had dragged on one more step, the tutor's
; problem length threshold would have been exceeded and
; the tutor would have taken the student back to the
; beginning of the problem to find a better solution.

Very Good!

Before resubstitution

92
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the answer to integral 1

- X
2

is - - --

4

Adding the term from integration by parts

2*X
2
*log(X) - X

2

we have
4

plus an arbitrary constant...

You did that problem in 3 steps compared to 2 for me!

Mt Solution Your Solution

1. Integration by parts 1. Substitution
2. The known integral routine 2. Integration by parts

3. The k own integral routine

; One of the most effective features of the tutor is this
; problem comparison. Even though the student does not
; see the exact step-by-step solution of the tutor, the
; comparison of the solution outline is usually revealing.

Thinking for a moment

; The tutor now adds the pattern of responses generated by
; this problem to the statistical summary for Ruth. A
; trouble value is calculated for each problem state (See
; Chapter 3). If the trouble value for any state
; exceeds the problem intervention threshold, the tutor
; selects an example from a special list of remedial
; problems -- and forces the student through the entire
; solution. This did not happen in the protocol presented
; here.

Ok, do you have a problem?

; We have now come back to the'starting point shown above.

Implementation of the Thresholds and Archives

Summarizing the results of Chapter 3, we defined three
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thresholds that affect the dynamic performance of the tutor. The

technique intervention threshold and*the problem length threshold

were used by the tutor in the course of a student problem solution

to challenge an unusual choice of technique or an unusual length

of solution. The problem intervention threshold was used at the

end of a problem solution to see whether the student was

developing critical trouble in one or more problem states. If the

threshold was exceeded, the tutor did not allow the student to

select the next problem, but forced him to look at a specially

chosen example.

As is explained in Chapter S, the tutor evolved in three

stages. Stages 1 and 2 were followed by experimentation with

students learning calculus. Stage 3 was followeu by the present

report. Unfortunately, although virtually all the other salient

features of the tutor existed in some form by stage 1, the

technique intervention threshold and the problem length threshold

were installed during stage 3 and did not undergo a thorough

evaluation by real calculus students. Preliminary results with

the threshold settings describeein this chapter will, however, be

presented in Chapter S.

Chapter 3 introduced the unusual technique parameter e to

define the unusual technique threshold. In practice, we have used

a value of e = 0.2S with success. Thus if in a given state

(failure states included) the tutor's most likely technique choice

Tm has probability tim, then the threshold is exceeded whenever
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the student chooses a technique Tj with tutor- probability tip <

0.25 tins

Similarly for the problei length threshold we chose a

value of 2.0 for the problem length parameter. This means that

the student is stopped for a review whenever his problei solution

runs more than 2.0 standard deviations longer than the mean of the

number of steps for problems of this class (tutor's statistics).

The problem solving trouble threshold was set at 0.5 for

problem states #2 and #3 (simple substitutions and simple

trigonometric substitutions) and 1.75 for the other states. This

had the effect of concentrating the tutor's attention on these two

states since the student could not make more than one or two

failures in these states before the tutor-student distance

exceeded 0.5. The lessons learned through interaction with the

calculus students are discussed in the next chapter.

The general prbblem archive consists only of the original

problem description (the integrand) and a list of ordered pairs of

the form

(state,technique) , (state,technique),

representing the tutor's own Solution of the problem. Note that a

complete reconstruction of the'tutor's solution is not possible

because information on how the tutor applied the techniques is not

given. All that is known is which states the tutor arrived in,

and which techniques it subsequently employed.
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This form is sufficient to store all the information

needed to scan the archive for an optimal problem (as described in

Chapter 3), and to compare the length of the student's solution

with that of the tutor, If we also stored each of the specific

responses needed to work the problem in detail (necessary only for

slave mode .problem selection) we could combine the two archives

into one and the students could conceivably improve every problem

the tutor could give them. This was not done simply because the

general problem archive would have tripled in length, resulting in

increased overhead each time it was scanned. In addition, the

detailed response information is not used except when the student

is in the slave mode.

Whenever a student works a general archive problem in

fewer steps than the tutor, the tutor automatically rewrites the,

general problem archive with the student's solution outline

replacing the teacher's. The tutor also rewrites its own record

of technique choices from which its technique choice probabilities

are calculated for every student problem. Thus every student on

the system is exposed to the new tutorial strategy immediately

after the solution to an archive problem is improved. Since the

general archive contained about 80 problems, the effects are not

dramatic each time a problem is rewritten, but the cumulative

effect is substantial. Notice that certain precautions must be

taken to screen trivially improved solutions from supplanting

those of the tutor. One of the transformation techniques is
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"guessing the answer", a popular choice by students confronted

with integrals from class 2 or class 3, such as

1

dX = log(X + 3) .

X + 3

In this case the tutor will assume that the student knew that the

expected method of solution was simple substitution and will treat

the solution record as if simple substitution had been used. On

the other hand, the student can sometimes successfully guess the

answer to more complicated integrals for which no canonical

solution can be assumed. A sufficiently brilliant (or devious)

student could fill the entire archive with "guess-type" solutions

of one step if such solutions were not automatically excluded!

Similarly, a problem terminated in the give-up trapping state must

not be considered as improving the archive.

The Information Updating and Student Learning Models

As was shown in Chapter 3, between learning

discontinuities the student statistics may be updated in a very

simple way. The Dirichiet distribution allows us to simply add

the number of responses in each category to the corresponding

exponent in the form of the distribution. One needs only store a

matrix M of these exponents to completely characterize the

distribution. Specifically, if technique Tj is chosen for a

in- the
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updating

m.. <-- m.. + 1
13 13

The use of the student learning model, on the other hand,

is more challenging. In phases 1 and 2 of the research, we had

assumed that the student's learning took place more or less

continuously; and did not anticipate recognizing any sudden shifts

in the student's problem solving patterns measurable over the span

of a single problem. Because of these assumptions, a very simple

'odel was adopted for updating the student's patterns. It was

assumed that the last N responses ih each state would be the most

relevant representation of the student's patterns. We had hoped

to find an estimate for the optimal value of N that would balance

the loss of statistical "weight" from a small sampling with the

increase of relevancy of looking only at the most recent

responses. Such an optimal value would depend presumably upon

some sort of "learning rate" characteristic of the process.

Unfortunately, the second round of student measurements

revealed unmistakeable indications, that the students changed their

problem solving patterns suddenly and at unpredictable intervals.

This evidence will be presented and discussed in the next chapter,

but this important result is mentioned here to explain why the

final student learning model differs so much from the model first

used with the students. We see, in particular, that a student

"history" of N responses cannot model.a sporadically changing set
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of response probabilities realistically. On the other. hand,

thanks to the observed correlation of the learning discontinuities

with occupancy of student failure states, we can now identify the

moments at which to apply the student learning model developed in

Chapter 2. Although the tutor was undoubtably making some

sub-optimal problem choices (based on the student history model),

the complete record of each student's responses over a wide

variety of problem classes is still available, and thus allows us

to measure the parameters-of the new learning model from the raw

data.

Description of the Computer Tutorial System

The tutorial system is written in LISP 1.6, a dialect of

LISP developed at the Stanford Artificial Intelligence Laboratory

by John McCarthy and colleagues. Since a typical tutorial session

involves substantial algebraic manipulation, the tutor depends

upon the resources of a comprehensive algebraic package called

REDUCE written in LISP by A. C. Hearn of the University of Utah.

The tutor calls the command scanner in REDUCE to read every

formula and return the LISP prefix equivalent. Although some

minor formatting cleanup is done by the tutor, all algebraic

..manipulations including differentiation are sent to REDUCE.

REDUCE sends back the resulting simplified expression in LISP

prefix notation, modified in form by various flags that are

selected by the tutor. Finally, when expressions are printed out
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to the student, the tutor calls a REDUCE program to format the

individual expression terms. Al] other manipulations, including

processing of student word responses, manipulation of the student

models, variable substitution, trigonometric substitution,

integrating by parts, polynomial division, trigonometric

identities, and partial fraction expansion are done by the tutor.
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Chapter 5

Experimental Results

This chapter describes two experimental e' odes with

students learning calculus and sketches the tens of each

experiment and the lessons learned. A detailed justification of

the assumption of the existence of learning discontinuities is

derived from examination of the students' responses. Numerical

results from the second episode showing the student's expected

number of steps as a functicn of the tutor's expected length of

solution are then presented. We shall examine the student's

probability of entering a failure state as a function of the

number of problems worked and shall estimate the mean of the

student's learning parameter a. Finally, the results of the

tutor optimization are presented.

The First Experiment

A group of four college freshman calculus students was

chosen to help debug the prototype tutor. Although the students

were serious in their desire to learn techniques of integration

from the tutor, the experiment itself was a qualitative test of

the integration routines and the mode of interaction with the

students. Other than the identification of the computer program

bugs, the principal impressions gained from the students were:

1. The need for an archive of problems from which the
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tutor can select examples. The students were typically

--luctant to suggest mol; than a few of their own examples

and of course lacked the perpsective to choose those

examples most beneficial to their development,

2. The need for the technique of "guessing the answer" so

that the student could circumvent simple but repetitive

patterns. The students also enjoyed the challenge of

guessing occasionally when they understood which technique

to apply, particularly with simple substitution and simple

trigonometric substitution.

The Second Experiment

Following the preliminary experiment, the general problem

archive and the guessing technique were added along with a number

of minor alterations to the tutor's conversational format.

Facilities for rnording each student's response were added so

that complete protocols could be reconstructed. Fifteen students

from Stanford University voluntered to interact with the tutor

over a period of about three weeks. No particular attempt was

made to screen the students for a certain type of background,

although all the students were either studying calculus

concurrently or had studied calculus in the past and were

interested in resurrecting their skills at methods of integration.

In short, the students exhibited the reasonably broad spectrum of

prior mathematical expertise that a tutor would expect to
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encounter.

During the course of the experiment the students worked a

total of 284 problems (19 per student) of which 258 (91%) were

selected by command of the students from the tutor's problem

archive. 282 of the problems (99%) were terminated in the solved

state, and the other two were unsolvable problems initiated by the

students (e.g. ireX dX). The guessing technique was used 45

times with a success rate of 89%. The students asked the tutor

for direct help in 90 of the problems. Typically once help was

requested, it was requested repeatedly. In the 90 "helped"

problems, the students asked for technique choosing assistance 173

times and technique application assistance 65 times. The students

entered identifiable failure states (where application of the

trial technique failed to yield a new transformation) 98 times on

65 different problems. The probability that the student would

enter a failure state was 0.29 if he had not previously entered a

failure state on that problem and 0.40 if he had already entered a

failure state on that problem. The probability that the student

would ask for help was 0.32 if he had not entered a failure state

and 0.54 if he had entered a failure state on a particular

problem.

Determination of the Failure Parameter

In Chapter 2 we defined the failure parameter 6 as the

amount by which the probability of choosing a technique decreased
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given that the student 'had chosen the technique on the previous

step and encountered a failure. An accurate estimate of e was

difficult to make since the failing technique was rechosen only 7

times out of the 98 failures encountered. Furthermore, 5 of the 7

reapplications of failing techniques involved substitution, while

the other two were trigonometric identities.

Averaging over all the students, we found the results

expressed in Table 5.1:

State Technique t..(nonfailure) t..(failure)
13 13

e(i,j)

4 subst. 0.275 0.167 0.61

7 subst. 0.755 0.500 0.66
13 subst. 0.291 0.222 0.76

4 trig. iden. 0.217 0.667 3.06

all others t.1. 0 0

.

Since the substitution failures were made by several

students, a value of e = 0.7 seems reasonable for this technique.

The large e value for trigonometric identities is questionable

since it is based on only 2 responses made by the same student.

The Existence of Learning Discontinuities

A major assumption in Chapter 2 was that learning occured

suddenly and at unpredictable intervals. This assumption allowed

us to separate neatly the information updating and student

learning processes. We assumed furthermore that we could identify

the occurrences of student learning unambiguously, thus knowing

when to apply the student learning model. We shall now present an
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analysis of the students' responses that makes our assumptions of

the existence and properties of learning discontinuities more

credible.

Consider an experiment in which we the observers have only

the power to observe the responses made by the participants. We

are to assume nothing about the purpose of the experiment or the

meaning of the responses. The responses themselves are sequences

of positive integers which we assume arise from a multinomial

distribution. We are told by the designers of the experiment that

at certain designated points in the sequences it is likely that

the participants altered their rationale for responding, The

suspicion of uniqueness of these points arises from observations

that we are not permitted to see. We are asked to analyze the

response data to a) support or reject the hypothesis that the

suspicious points separate differing-reponse regimes; and b) test

the inclusiveness of the experimenter's criterion for selecting

suspicious points by trying to find additional points that are

significant statistically as regime separators. In this

hypothetical experiment we have purposely obscured the underlying

rationale for "suspecting" a given point so as not to allow the

observer any bias in deciding that such a point indeed ought to

separate response regimes.

In order to answer question a, we propose to consider the

sequence of responses s1 before each suspicious point and the

sequence of responses s2 following each point. Using these

1
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sequences we shall calculate the chi-square statistic for the

particular suspicious point. The chi-square statistic is chosen

since it is the natural comparison statistic for independent

samples from two multinomial distributions. Since the magnitude

of the chi-square statistic depends on the sample size, each

candidate pair of sequences will be compared to 1000 sequences

randomly generated with the same overall re gponse probabilities.

We shall take as the null hypothesis the event that the

subsequences sl and s2 do not arise from different multinomial

distributions. Thus if sequence s2 really does represent a

statistically significant change from sequence sl, the resulting

chi-square statistic will be large in comparison with most of the

1000 sequences generated under the null hypothesis. In practice,

we shall accept only those suspicious points whose chi-square

statistic has a significance of 90% or more (whose chi-square

statistic is strictly greater than 90% of the chi-square values

generated by the null hypothesis). Once we have identified a

point successfully as separating two regimes of responses, we must

ignore sequence sl in examining points further along the data

since responses from sequence sl will contribute falsely to

raising the chi-square values of subsequent points.

To answer question b, we shall repeat the calculation of

the chi-square statistic and the 1000 null hypothesis trials at

all of the nonsuspicious points to see how many "non-suspicious"

points are also regime separators. This is crucial as a test of
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the model predicting the occurrence of discontinuities.

Of course, this hypothetical experiment describes exactly

the situation we face when trying to identify the learning points

from the calculus students' response data. The suspicious points

are those places where the student encountered a failure state and

presumably had to consider whether or not his solution schemes

were practical. As emphasized above, we did not make any

assumptions about the student data other than assuming that

between learning events each student's reponses were derived from

a multinomial distribution. This was felt to be a fair test of

the existence of learning points since inclusion of extraneous

student entries and ad hoc interpretation of each student protocol

was avoided.

Several interesting facts were uncovered by this search.

As a general rule, a minimum of eight responses are needed to

establish a 90% certainty of the existence of a learning point,

even with the most extreme data. For instance, the sequence 1 1 1

1 2 2 2 (consisting of only seven responses) does not possess any

division into subsequences, even after the fourth response, that

generates a chi-square statistic with 90% significance. In a

similar vein, regardless of the total length of the sequence, the

first two responses are incapable of indicating a learning point.

For instance the sequence

1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
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also does not possess any division into subsequences that

generates a chi-square statistic with 90% significance. This

result has the incidental effect of causing most of the changes in

response probabilities due to "the start-up transient" not to be

considered as significant learning points. (Nearly all the

students made one or two anomalous responses at the outset before

they became familiar with the tutor).

The student responses were separated by state and the

suspicious points were identified by looking at the complete

protocols and marking all the times a student applied a

transformation that failed to yield a new integrand (definition of

the failure state). After response lists of fewer than eight

responses and failure states occurring in the first two responses

were eliminated, a total of 37 suspicious points remained. The

chi-square analysis showed that 17 of the S7 points (45.9%) were

indeed significant as response regime separators at the 90% level.

Six more were significant at the 80% level, but this is only

mentioned to show that most of the insignificant points were very

insignificant! The most important result of this analysis was that

a complete scan of all the responses (461 in all) produced only

three additional points significant as response regime separators

at the 90% level. Thus although only 45.9% of the suspicious

points seem to be genuine learning points, 85.0% of all possible

learning points are identified by our model.

Why are half of the student failure states obviously not
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learning points? A detailed examination of the student protocols

for each of the insignificant points shows that the contributing

causes are diverse. In three cases the failure state was "false"

since the student subsequently reapplied the same technique

successfully. In at least 10 cases the student encountered a

succession of failure states in more than one problen type. Since

the tutor tended to choose archive problems frAm he most

"critical" problem classification, some students did not return to

all the troubled states frequently enough to produce a reasonably

long run of failure free responses. Several short sequences of

responses were encountered that were interspersed with two or more

failure states and yielded inconclusive results. This, of course,

should be viewed as a mild failure of the experiment since in this

case it is not clear whether the student finished the experiment

too soon or whether the tutor failed to teach the student

effectively.

Returning to the original question of this section, what

was the distribution of identified learning points in the

student's responses? Examining 44 subsequences generated from the

students' set of responses divided at each learning point (some

student response sequences possessed no learning points), we find

that the average number of responses generated between learning

points is 461/44 = 10.47, but the the distribution of this number

varies from 3 to 39 with 18 different values measured. Referring

to Figure 5.1, we can now draw the conclusion that the response
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Figure 5.1. The number of reponses between learning points.
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discontinuities are sudden since our analysis shows that 85% of

all the significant learning points agree with our model of the

failure state as being the precise point where the responses

change significantly. Furthermore we are justified in claiming

that the discontinuities occur sporadically since we have just

seen that the average number of responses between learning points

is widely distributed. We have thus given a strong argument for

the existence of response discontinuities and in this context have

justified the separation of the information updating and student

learning models that we performed in Chapters 2 and 3.

The Student's Expected Number of Steps

The most interesting question to ask about the calculus

tutor is whether the students became better problem solvers after

exposure to the tutor. As we have explained, there are many

possible criteria of problem solving excellence. For instance,

elegance might be defined in terms of the use of certain very

general problem solving techniques. This project has focused on

solution length as a reasonable criterion. If the students "solve

problems in a fewer number of steps after exposure to /he tutor"

then the students have profited in a measurable way.

Unfortunately, the number of steps to solution is not a fixed

property of a given problem state (except for the special states

#1, #2, and #3). We did use the tutor's expected number of steps

to solution (plus a factor depending upon the variance of the



Experimental Results 112

expected number of steps) in defining the problem length threshold

for each state, but we recognized that this was only a guide to

help the tutor identify most of the unwieldy solutions. If we

insist on a very accurate measurement of the student's expected

number of steps, we must realize that the measurement depends

largely on the particular problems the student chose to work.

However since nearly all of the students' problems were selected

from the problem archive, we can compare the length of the

students' archive solutions to those of the tutor as a function of

number of problems worked to define a measure of improvement for

the student. Again it may be argued that whether or not the

student can approximate closely the tutor's length of solution

depends upon the particular problem, but we shall assume that

these effects are not significant.

Figure 5.2 shows a plot of the students' average number of

additional steps per problem versus the tutor as a function of the

numbe.. of problems worked. For each number of problems worked the

single highest instance of additional steps was ignored. This was

done because the raw data included several anomalously long

solutions all of which turned out from direct examination of the

problem protocols to be instances of the students experimenting

with features of the computer tutor! Notice the general downward

trend of the points, indicating that the students gradually

learned how to solve problems in as few steps as the tutor. No

negative entries are recor0-: here since erch time a student
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produced a shorter solution than the tutor, the t'itor incorporated

the solution into its own problem solving patterns. The results

thus show the performance of the students compared with the fully

optimized tutor that existed at the end of the experiment.

Although we know that the data should not be expected to be linear

with the number of problems worked since we have just discussed

the abrupt nature of the typical learning pattern, we shall take

the liberty of representing the data averaged over all the

students by a least squares linear fit in order to point out its

basic properties. This linear fit is given by

Y = 0.909 - 0.101*X .

The interesting part of this equation is the slope of

-0.101, which indicates that the student comes 0.101 steps closer

to the tutor each time the student works a problem. Notice that

this indicates that the students, on the average, become as

proficient as the tutor after working about nine problems in each

problem class. An exponential model would be a better fit, but

the above result gives an indication of how a "learning per

problem" quantity can be measured.

The Probability of Entering a Failure State

Another quantity related to gaining problem solving

expertise is the probability of entering a failure state. We have

already showed that the students converge on the tutor at the rate
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of about 0.1 steps per problem worked. If in additioa, the

students reduce their probability of entering a failure state as a

function of the number of problems worked, we can be reasonably

sure that they are really learning to solve problems more

efficiently. In Figure 5.3 we show the number of failure states

encountered on a problem divided by the number of steps used by

the tutor to work the problem as a function of the number of

problems worked. We have divided by the length of the tutor's

solution in order to correctly scale the difficulty of the

problems (remember from Chapter 4 that the tutor generally chose

the shorter, and thus easier, problems from the archive first).

The data is too noisy to draw many conclusions, but a clear trend

downward is seen after about six problems worked. The peak

between 4 and 6 problems worked is likely due to the increased

difficulty of a few particular problems usually encountered at

that point. For instance, after working one or two simple

substitution problems like

fsin(2*X) dX' and jrcosh(X/4) dX ,

nearly all of the students got

jPcot(2*X) dX

as the next problem. Although the tutor knew that the command

TRIGIDEN would change this to the more suggestive form
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i'cos(2*X)
dX ,

sin(2*X)

most of the students became confused after finding out that

fcot (Y) dY

was not a "known" integral and tried unusual substitutions or

trigonometric identities before realizing how simple the problem

was. The result of all this is a peak in most of the measured

statistics wherever this problem appeared. This problem remains

as a good example of how hard it is to assign a consistent

difficulty factor to integration problems.

For descriptive purposes a least squares linear fit to the

data in figure 5.3 yields the relation

Y = 0.143 - 0.0107 X

This indicates that the number of student failures per step

decreases by 0.0107 for each successive problem the student works.

Estimation of the Learning Parameters

Chapter 2 proposed a scheme for altering our estimates of

the student's technique response probabilities when the student

encountered a learning discontinuity. Since we have shown in this

chapter that we can identify (with probability 1/2) those moments

when the student actually does encounter the discontinuities, all

that remains is to deduce realistic numerical parameters for the



Experimental Results 118

model from the student data.

The basic assumption made in Chapter 2 was that when a

learning discontinuity occurred, only the techniques chosen

immediately before and immediately after- the discontinuity had

their response probabilities affected. The model assumed that

there was a learning parameter a such that if the student

encountered a learning discontinuity in state si as a result of

applying technique Tj and then subsequently applied technique Tk

sucessfully, then

and

,posterior
t13 .. =

13
at..

,plior

tik,posterior ltik,pxior

where a is beta distributed with parameters r and s. 1 depends

on a and is given in Chapter 2. Examining each of the 20

confirmed points of learning discontinuity, we calculate the

estimates

a .
1

i
t.
bposterior

20 tij..
,prior

and similarly,

v 1 t1...
2zposterior

20 tij..
,prior

= 0.169

2

a ) = 0.086

where t..,
posterior

is estimated by the observed response
1)

frequencies.
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Since

a =

r * s
and a =

r + s (r + s)2 * (r + s + 1)

we can use the methods of moments and solve for r and s to get

r = 0.1070 , s = 0.5260

The graph of this beta function is shown in figure 5.4.

Now that we have the actual form of the distribution for a

reasonably large group of students, we shall consider these

parameters as describing uncertainty in the student learning

parameters for all such events in the future.

A relevant question at this point is whether many of the

other student technique probabilities changed besides the

techniquesT.and Tk specifically mentioned in the model.

Calculating "a" parameters for all the remaining possible

responses in each case, we find that the technique applied

immediately before the failure had the smallest a and the

technique applied immediately after the failure had the largest

a , as the model predicts. The observed a's for each position

from 5 reponses before the failure to 5 responses after the

failure are shown in figure S.S. Each dot represents a single

measurement of a in a particular postion before or after the

failure event. Notice the remarkable discontinuity in the

observed a's before and after the failure. An unexpected

observation .is that the techniques applied two and three positions
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alpha

.

inf. .
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multiplicity of infinite
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.

i
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Figure 5.5. Observed a's, dependent positions included.
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Figure 5.6. Observed a's, dependent : 33tions removed.
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away from the failure also seem to be affected. This would seem

to seriously undermine the assumption that only the techniques

adjacent to the failure are affected. However, it is not true

that in this data the positional observations are independent.

For instance, in many cases the pre- or post-failure technique is

also applied in other positions. Subtracting these occurrences

reduces the correlation effect but does not cause it to disappear

as shown in Figure 5.6. The conclusion is that the failure state

does seem to affect the other techniques applied "nearby" in

addition to the ones predicted by the model. A systematic

inclusion of these other techniques seems difficult since there is

no obvious rationale for their technique frequencies altering as a

result of the failure. Possibly after discovering a new

technique, the student is stimulated to think about his problem

solving patterns or is more prone to experiment with new

techniques. In any case, the measurements indicate a definite

tendency for a few techniques before the failure to decrease

dramatically in frequency after the failure, and conversely a few

techniques after the failure increase dramatically in frequency.

As the figures show, the largest effect is the technique predicted

by our student learning model. We view this result as a qualified

success with interesting implications for future research.

Further work with this problem would he aided by longr student

sequences and possibly direct interviews with the students to

establish a rationale for prediction.
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Definition of a Learning Rate for Tutorial Systems

The above has illustrated some of the difficulties in

defining a learning rate for the methods of integration system.

Of course, this difficulty stems from the tutorial nature of the

system rather than from the subject of integration. In fact, the

subject of integration pr6bably allows measuring a learning rate

more easily than other subjects since the notion of problem

transformation is so simple to define.

The central idea of this tutorial system is that within

each problem classification, the tutor's problem solving

strategies are determined on a frequency basis. As we have

mentioned, because of this approach, the tutor never has to find a

solution and thus never knows how hard an individual problem is.

Great advantages in the actual tutoring process accrue from this

approach; for instance, the tutor can deal with problems it has

never worked, it can learn from the students, and it can adjust

its problem solving techniques to the level of the learner. But

these advantages have a price since the tutor has no absolute

standards against which to judge the student. If an advanced

student logs In to suggest only difficult problems to the tutor,

the resulting statistics may be the same as a beginning student

who has tried to work easy problems! Only the fact that the

overwhelming majority of the problems chosen by the students in

the experiment described in this chapter were from the tutor's

problem archive made the analysis of the learning rate meaningful.



Experimental Results 124

The Tutor Optimization Experiment

Before the methods of integration experiment the author

believed that one or two of the students might be so adept that

they would actually construct shorter solutions to some of the 73

archive problems. Since the author had been involved in integral

problem solving for at least two years prior to the experiment,

and considered himself an expert integral solver, there seemed

little chance that any improvements would actually occur. It was

his intention to implant one or two "doctored" solutions in the

archive to see if they were improved upon. However, this plan was

overlooked in the exigencies of getting the tutor running and the

students organized. Upon examining the archive at the end of the

experiment, it was found that no less than 18 of the original

problem solutions had been shortened! From the detailed solution

schemes, it was apparant that the tutor had acquired technique

patterns never before used by the author. This was a lesson of

the first magnitude.

The scope of the improvement was also unexpected. Of the

11 problem types represented in the archive, four were improved

significantly. Table 5.2 shows the average number of problem

steps for the tutor before and after the experiment, broken down

by problem type. See Chapter 4 for the description of problem

types.
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Type Description Before After Change

1 known 1.000 1.000 0

2 simple substitutions 2.000 2.000 0

3 simp. trig. subst's 2.447 2.000 -0.447

4 trig. functions 2.857 3.000 +0.143

5 exponential fns 2.250 2.250 0

6 arctrig. functions 4.250 4.368 +0.118

7 fract. poly. powers 4.470 3.320 -1.150

8 comb. of 4 and 5 1.000 1.000 . 0

9 comb. of 4 and 7 3.000 2.000 -1.000

12 comb. of 6 and 7 5.250 5.368 +0.118

13 quotients of poly's 6.805 5.421 -1.384

The largest drop was for quotients of polynomials, type

13. Notice that three categories experienced slight gains,

indicating that in the new problem solving scheme a trade-off

between categories occurred. It is also interesting to examine

the changes in the t..'s to see what techniques the improved tutor
ij

is more likely to use. Table 5.3 gives the values of

tij,after tij,before

for relevant values of i and j.

type

trig. fns.

change in
technique application frequency

deriv. subst. +0.037

parts +0.009

trig. subst. +0.018
trig. ident. -0.064

frac. poly. deriv. subst. +0.111

powers trig. subst. -0.111

quotients deriv. subst. +0.100

of trig. subst. +0.002

polynomials sum separation -0.093

poly. division -0.004

compl. square -0.020
If part. frac. exp. +0.015
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For problems of type 4 (trigonometric integrands) the

! tutor now uses trigonometric identities less in favor of

derivative substitution, integration by parts, and trigonometric

substitution. For fractional powers of polynomials the tutor now

recommends derivative substitution more often in place of

trigonometric substitution. Finally, for quotients of polynomials

the tutor now essentially recommends derivative substitution in

place of separation of the sum. This last change is one that had

never occurred to the author. For instance, with the integral

irX 2 + 2*X + 5
dX

X - 4

rather than dividing out the polynomials or separating the sum

into three integrals, it is shorter to substitute U = X - 4 ,

yielding

iU2+ 10*U + 29
dU

U

which is solved immediately by inspection as

U
2

+ 10*U + 29*log(U)
2

which upon resubstitution is

X
2

+ 6*X - 32 +29*log(X - 4)
2

The unpredictable occurrence of better solutions is an

interesting feature. Seven different students contributed to
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optimizing the archive, including students who otherwise appeared

to be the least proficient of the integral solvers.

The potential of the tabor's self improving scheme is

great. One may wish to carry out the optimization simultaneously

over several superiority criteria and several levels of student

sophistication. But perhaps most important, the tutor did improve

those areas in which the tutor's original author was weak.

Conclusions

This research has extended and deepened the definition of

a tutor in computer-based education. In particular, the tutor

transmits problem solving heuristics, chooses appropriate

examples, deals with arbitrary student examples, handles diverse

student backgrounds, and learns superior problem solving

heuristics from the students.

A logical and quantitative methodology for transmitting

problem solving heuristics has been established. The use of

problem archives as the basis of the tutor's odn heuristic schemes

is demonstrated.

A simple model is posed of how student heuristics change

when the student encounters a failure and is supported by

experiment with calculus students.

A definition of learning in a tutorial situation is given

and is demonstrated by the calculus students.

Perhaps the most interesting result of the research is the
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scheme for tutor improvement. In the calculus experiment the

tutor not only acquired a larger number of improved problem

solutions than had been expected, but incorporated problem solving

strategies previously unknown to the author.

Finally, this research combined for the first time the

results of recent research in symbolic integration (Moses, 1967)

and algebraic simplification (Hearn, 1970) for use in computer

assisted instruction.

Recommendations for FutureResearch

This research has suggested a number of interesting new

directions for future work. At the heart o. the student learning

model, much more needs to known about the role of a failure in

determining the student's technique choice probabilities. An

unexpected result of the calculus experiment was that techniques

other than the failing one are apparantly affected by the failure.

Experimentally it was shown that calculus students'

solution lengths converged to the tutor's solution lengths in

about 9 problems. How much of this convergence is attributable to

learning how to interact with the computer tutor and how much

represents true changes in the student's problem solving

strategies?

Taking a different approach, a utility theory of problem

presentation could be implemented that used the expected rate of

student convergence in different problem closseg as a criterion.
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The use of a quantitative measure of problem difficulty

was avoided completely in this research. The development of a

good "difficulty metric" for integration problems that did not

involve searching for a solution explicitly would, of course, be a

significant result in artificial intelligence as well as computer

assisted calculus tutoring.

Finally, the most obvious new direction for computer

assisted tutoring is developing ..utors for subjects other than

integration. Since methods of integration can be modeled by a

simple state and technique structure, construction of tutors foi

other subjects will undoubtably deepen the understanding of states

and techniques. Methods of integration also involves a very

traditional problem solving ,structure with heuristics being a

dominant component. These heuristics are clearly revealed in the

automatic integration programs and in the integration tutor. How

dominant the role of heuristics is in other subjects is not known.
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