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K Chapter 1

~ Introduction and Statement of Contributions

Research Motivation

The originél goal of this research was to investigdte ways
to stimulate creativity using the computer as a medium. One of
the criticisms of existing uses of computers in education haé been
that "progrgmmed instruction" is an unimaginative application of
conventional teaching pragtices to a computer ' learning
environment. Thus my hope was to understand the basis of this
criticism and to suggest a remedy.

I soon learned that there are actually three distinct

areas of computer-education activity. One entire approach, which

I call the "environmental' approach, is based on the assumption
that the learner must discover nearly everything himself, without
an .over-riding structure to determine how new concepts are to be
presented. In practice, this may mean that the student is
introduced to a computational environment and told that he may
explore in any direction he chooses. However, some measure of
individual guidance is desirable, particularly if the student
becomes confused or bozxed. In the enviroﬁmental area this
guidance has always come from a human teacher exéépt in the
trivial case of providing programming 'diagnostics". Seymour
Papert's work with computing environments for children is the most

interesting example of the environmental approach.
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The remaining two areas of activity embrace conventional
computer assisted instruction (CAI). These areas have been called
"frame oriented CAI" and "information structured CAI'". Frame
oriented CAI is based on prestored amits (frames) of subject
matter, ranging in size from individual sentences up to several
paragraphs of text with - associated driils. The interesting
research problems have focused on finding strategies for
presenting the frames to the student in some desirable way. These
strategies usually involve a student learning model that predicts
what will happen te the student upon exposure tc the frame, and a
dynamic programming scheme to find future sequences of frames to
show the student, Although the student is restricted compared to
the environmental approach, the predictability of both the frame
content and the student responses allows the computer to deal with
a larger domain of student abe;rations. For instance, if the
student faiis to understand a frame, he can be shown an easier
frame. Much of the ground work for frame oriented CAI was laid in
a dissertation by Smallwood.

Information Structured CAI is the newest of the three

areas, and -as the name suggests, is a collectinn of techniques

-

drawn mostly from artificial intelligence that exploit the
structure of the subject being taught. These programs are often
characterized by considerable student control of the dialogue as

well as a major effort to give the learning episode a human,

rather than computer, flavor. One well known example is Jaime
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Carbonell's semantic information net that allows students to
interview the computer about South American geography. His
program has a large data base const?ucted in such a way that
arbitrary questions can be answered and deductions can be drawn
from disparate facts.

My original interest in stimulating creativity graduaily
evolved into a desire to isolate the moments of learning in the
normal educational process, and if possible, to recreate these
moments in a computer system. Since I had had experience teaching
mathematics, it occurred to me that many students have valuable
learning experiences in a tutorial situation, in which they return
to the teacher for answers to questions arising from an initial
attempt to understand the subject.

At this time I read two dissertations in artificial
intelligence c¢n the subject of methods of integration. The
conclusion of the dissertations was that computers could solve
integrals as well as an expert human integrator. I immediately
wondered whether a tutor could be constructed for methods of
integration that in the same sense was as good as an expert human
tutor. This idea gradually developed into the subject of my

thesis.

Descriptive Model of the Educational Experience

An informal model of the educational experience shows the

intended role of the tutor:
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1. A Need to Know
2, The Teacher Explains (Lecture)
3. The Student Thinks (Problem)

4, The Dialogue (Tutorial)

In the fourth phase, the student has already had some
exposure to the subject from the Lecture phase and has pondered
some kind of synthesis process in the Problem phase. Thus the
somewhat knowledgeable student returns to the more knowledgeabie
teacher for an interactive dialogue. The purpose of this
description is to emphasize that the tutor is not used as a
primary instructional medium, and that the general direction of

the episode is up to the student.

Desired Characteristics of the Tutor

A good human tutor

1. transmitS'problem‘éolving heuristics

2. - chooses appropriate examples

3. deals with arbitrary student examples

4. handles a Qide range of student backgrounds

and 5. learns student heuristics if they are superior.

The goal of the research was to construct a tutor with

these desired characteristics and in the process to establish a

rationale for constructing tutors for subjects other than methods
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of integration,

s 2.

Contributions
> This research has produced six main contribu:. 1. nas
1. extended and clarified the definition of a tutor

in computer-based 2ducation.

established a logical and quantitative
methodology for transferring probler solving
heuristics in a cesmputer tutorial situation.

experimentially supported a model of how the
student heuristics change when a failure is
encountered.

defined a methodology for measuring learning in
a tutorial situation and experimentally
supported tha model by showing a positive rate
of learning on real students,

defined and implemented a scheme for tutor
improvement.

combined the results of new research in symbolic
integration and algetraic simplification for use
in computer based adt zation,

The research describer in this thesis is of both

theoretical and experimental nature,

summarized by the following:

1.

For a structured subject, a tutorial system
can be constructed that

a, causes convergence of the student's
heuristics to those of the tutor;

b. chooses optimum examples, recommends
solution scheme choices, and shows how to
apply techniques;

a

The theoretical ideas can be
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s

c. accepts arbitra 'y examples;

d. allows measurements of the student's
learning rate and expected number of
% steps to solution;

e. makes real time tutorial decisions on the
¥ basis of problem length, unusualness of
approach, and overall problem solving
trouble;

f. adjusts to different student backgrounds;

and g. learns student heuristics if they are
superior.

The experimental section describes the following:

A computer based tutor for methods of
integration was constructed to illustrate
the theoretical claims. In addition,

a. algorithms were developed for substitution,
integration by parts, partial fraction
expansion, use of trigonometric identities,
and completion of the square;

b. a preliminary experiment was run with four
calculus students;

c. a main experiment was run with fifteen

calculus students, the results of which are
presented in Chapter 5.

The Studen:-Subject Model

The ability of the tutor to understand the student's
actions depends on a model of the student interacting with the

subject. The principle components of this model are an exhaustive

set of observable problem solving states and a set of
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transformation techniques to transform from one problem to
another. A sample student solution trajectory is shown in Figure
1.1 for the subject of methods of integration. The definitions of
the states and techniques involved are discussed at length in
Chapter 2,

Integral solving is modeled here as a Markov process. We
also assume that when the student is confronted with a problem,
his probability of responding with one of the techniques is drawn
from a simple multinomial distribution. The parameters of this
multinomial distribution are never known exactly by the tutor, and
can only be inferred from the student's responses. The tutor
applies a simple Bayesian inference process to its prior estimate
of the student's response probabilities each time the student
emits a response, This is called the information updating
process.

If the tutor thinks the student has just 1learned a new
approach, it will isolate the response probabilities it feels have
changed the most and will apply what is called the student
learning model to predict the effect of this change on future

responses.,

The Tutorial Strategy

The tutor allows the student great 1latitude during the
problem solving episode. The student is free to suggest his own

example, pursue his own solution, and ask for help. The tutor
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Failures
associated
with log.

integrands

Integrands
involving
logarithms

substitution

integration
by parts

Solved
problems
trapping
state

Known identify

integrals

as known

Figure 1.1 A sample student solution trajectory. The student beéan
with the integral J{; log(X) dX, tried the substitution U = log(X)
which failed to yield a simpler integrand, returned to the original
integral and successfully transformed it by integration by parts to
(1/2) xz log(X) - ufk/z dX. This "known'' integral was then solved by
inspection. A complete student protocol involving this problem is

given in Chapter 4.

Figure 1.1 A sample student solution trajectory.
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always understands what the the student is doing, however, and in
unusual cases of trouble or misunderstanding will step in to ask
the student if he needs assistance. The student can request three
levels of help from the tutor: choosing a new problem; finding
the right technique to apply; and applying a given technique the
best way. In the first two cases the tutor relies completely on
its archive of example problems. All recommendations zre made by
summarizing the actions taken in similar situations in the archive
problem solutions. The third type of problem help depends on
specific algorithms programmed into the tutor, and thus is kﬁown
as '"wired in heuristics'l,

After the student completes the problem; the tutor checks
the student's overall problem solving patterns against its own.
If unusual trouble areas are apparant, the tutor scans a special
archive of problems for an example to show the student in a
"forced response' mode. Finaily, if the student has produced a
superior soiution for one of the tutor's archive problems, the
tutor will incorporate his solution and will forget the old one.
In this way, the tutor can significantly improve its own teaching

performance.

Experimental Results

A three week experiment with 15 students was conducted at
tanford University with students interested in sharpening their

calculus skills. A total of 284 problems were worked, of which
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258 were chosen from the problem archive by the tutor, and 282
successfully solved. On 90 of the problems tutorial help was
requested.

Student response data indicated that the information
updating and the student learning models could be considered
separately since the observed response discontinuities seemed to
be very closely related to the instances of entering failure
states, 85% of all the response discontinuities occurred when the
students entered failure states, although only 45% of the
instances of failure states led to obvious response
discontinuities. Furthermore, the observed frequency of the
technique applied immediately before -the failure occurred was
reduced by a average factor of 0.17 over all the observed learning
discontinuities. This wac an important result for the student
learning model since it singled out. a particular technique ast
undergoing a dramatic change each time the discontinuity occurred.

On tne average, each student made 0.101 fewer additional
steps per problem worked than the tutor. In other words, if a
student tended to work every probleﬁ using 3.0 more stéﬁs than the
tutor initially (a typical rate), then after 15 problems he took
on the average only 3.0 - (15 * 0.101) = 1.5 more steps than the
tutor to work each problem, We call this the student's
convergence rate.

On the average, each student made 0.011 fewer failures per

problem step. Thus if the student averaged 0.5 failures per step
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initially (a typical rate), then after 15 problems (a total of
perhaps 40 steps) he made 0.5 - (40 * 0.011) = 0.1 failures per
step.

Of the 73 original archive solutions, no leéss than 18 were
improved by the students. This was a major surprise to the
author, since he considered himself an expert integral solver.
The tutor's expected number of steps to solution decreased 1.38
steps (20.3%) for quotients of polynomials, 1.156 steps (25.7%)
for fractional powers of polynomials, and 1.00 steps (33.3%) for
fractional powers of trig;nometric functions. . In the quotients of

polynomials case, the tutor acquired solution schemes that had

never occurred to the author.




Chagter g_
Student Models

The student-subject model forms the foundation of the
tutorial system. Once we have established a methodology for
treating the student, the development of the tutorial strategy in
the next chapter follows naturally. The basis of the
student-subject model is a scheme for ciassifying the subject
matter. This chapter will introduce a Markovian formalism to
describe the student's dynamics. We shall introduce the notions
of 'problem'" and "solution" and shall show that the student
belongs to one of an exhaustive set of problem solving states at
all times. The important tutorial concept of the student's
failure state will be discussed and examples of state definitions
for several subjects will be given. We shall introduce a simple
Bayesian scheme to update our knowledge of the student's problem
solving patterns from his responses. From this we can calculate
interesting quantities relating to the student's performance such
as the mean and variance of the student's expected number of steps

to solution.

Problems and Solutions

We begin with the notions of 'problem" and ''solution".
Since we have dealt practically with well defined subjects where

there are established limits, we allow the argument to proceed
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informally at this stage to avoid introducing abstract questions
about the nature of subject matter and in what way statements are
consistent with subject matter.

By ''problem'" we refer to some statement that we wish to
reduce to a form that warrants no furtherzreduction. A rutorable
"subject' consists of a space of possible problems definel by a
set of problem construction rules, plus a set of transfi:rmation
techniques used for reducing the subject's problems. Each time a
transformation technique is applied to a problem, a new problem is
generated. As we shall sze, this vrocess can go on indefinitely
until the student either gives up or the problem requires no
further reduction. In the latter case, 7we call the record of
successive problems and applied techniques a '"solution'" of the
original problem. For example, we shall discuss in Chapter 4 the
subject of methods of integration in which the problems are
indefinite integrals and a solution is a sequence of ordered pairs
of the form

(problem , technique).

Later in this chapter these ideas are applied to a number
of sample subjects: elementary arithmetic; the solution of
differential equations; and a simulated physics laboratory. (n
addition, we discuss briefly the subjects of medical diagnosis and

electronic trouble-shooting.
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Techniques and States

An important property of a solution is that each
successive problem is generated from the previous problem by the
application of one of a set of transformation rules called
"techniques". We designate the set of problem transforming
techniques by {T} ] 1<3j=< NT} where NT is fhe ailowed number of
different techniques for this subject.

Of prime interest to a tutor is how the student decides on
a given technique when presented with a problem. It is natural to
suppose that different problems will eiicit different choices of
techniques. An important parameter of the student is his
probability of choosing a given technique in different problem

solving situations. This section introduces the definition of the

student's technique choice probability. Looking at this choice

probabilisticaily, we say that the probability tj that a student
will choose technique Tj is dependent upon the particular problem.
Because all of the subjects investigated have an infinite number
of possible problems, it is inconvenient to index the technique
choice prcbability tj by the specific problem. Furthermore since
we shall usually be interested in estimating what the student's
technique choice probability will be for some new problem, we
shall find it convenient to assume that at all times the s3tudent
occupies one of a set of mutually exclusive and exhaustive states
of the problem solving process. We now speak of the probability

tij that the student wili choose technique Tj given that he
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occupies the ith probiem solving state.

It is natural to define the states of the problem solving
process in terms of a description of the problem the student is
working on. We insist that the parameters of a given state
characterize the student in aii probiem solving 'situations
involving problems fitting a certain description. Thus the state
parameters amount to an encoding of our observations of the
student's past history and our prior estimates of his problem
solving patterns.

For tutorial purposes we often are interested in
separateiy encoding our information about the student after he has
applied a2 technique -unsuccessfuliy to a problem. In particular it
would be embarrassing to claim that the proﬁability of the student
choosing technique Tj was some fixed quantity regardless of
whether the student had tried the technique unsuccessfully on the
previous stzp. Thus we introduce the concept of a '"failure state"
for each class of probiem description. The properties of these
states are discussed later in this chapter. Thus the set of

problem solving states will be defined by

{g; 151 <N} = {probiem description states}

U {student failure states}

where NS is the total numbexr of states. We intend that the states
{si} are disjoint, and that they will span the set of possible

circumstances the student can be in,
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For practical reasons the states of the process must be
both observable and finite in number. Observability in this
context means only that we shall choose state definitions
beforehand that will guarantee an unambiguous identification of
the student's state at all times. The motivation for complete
observability arises from the need to compare the state of the
student with a similar state established by the tutor. 1In
general, the parameters of a given student state (such as tij) may
be imperfectly known. The restriction to a finite and reasonably
small number of states is not a major assumption since under
c2rtain conditions we can. agglomerate a possibly infinite number
of seldom encountered states into a single 'other" state.
Typically a subject will have at least one problem-description
"other'" state and one failure-defined '"other'" failure state. In
praétice, the requirement that the number of states Ns be
reasonably smail means only that an Ns by NS matrix can be
inverted off-line from the tutorial episode without unreasonable

cost.

The Technique Choice and Technique Result Probabilities

The most important parameter of the student's state S; is |
the technique choice probability tij that he will choose technique
'I'j given that he is in state s;» The technique choice

probabilities, if perfectly known, would be a complete map of the

student's problem solving heuristics. Even chis map, however,
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would not suffice to determine the student's expected solution of
a given problem. We must assume that some students are more adept
than others at applying a given technique to a problem, thus
giving rise to an uncertainty, as to what new state will result
from the transformation. We will define qijk to be the
prcbability that given a problem in state s; and choice of
technique Tj the resulting state will be state Sk We can define

a state transition probability p., from state s; to state s, by

Py = Pl ls;} = Ztij 9 5k
J

The Markovian Assumption

Up to this point we have avoided the question cf whether
the probabilities tij and qijk are dependent upon the past history
of the soiution being attempted by the student. True changes in
these quantities do take place when the student gains a new
insight into the probiem soiving process. However, useful general
analysis of a history dependent process is immeasurably more
difficult than if the transition probabiiities are assumed to be
dependent only upon the present state of the system. Bearing in
mind that we are making an assumption, we shall proceed as if the
student's technique choice probabilities do not alter until he
verifies his new methods by completing the problem successfully.

In other words, we make the Markovian assumption that the state
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transition probabilities depend only on the present state of the
system. It should now be clear why the failure states were
introduced, since without them, the Markovian assumption is
untenzble. This allows us to remove the implicit dependence of
tij and qijk on the previous trajectory of the process and to use

the extensive theory of Markov pr.cesses in the analysis of the

student's problem solutions. v

The Solved and Give-up Trapping States

We have made few general statements about how a student's
problem solving state is defined, preferinyg éo deal with the
question for each of the examples to be shown. However, it is
useful to define two states that occur in all problem solving
domains tHat can be described by our Markov model. The first is
the 'solved'" state. A student reaches the solved state when the
problem has been transformed into one of a class of configurations
that the tutor and the studeft have previously agreed to call
"solved". In numerical problems éhe solved state corresponds to
situations in which the eﬁuations have been reduced to one or more
numbers. In formal proofs the solved state is reached when the
desired result follows directly from a previously established
theorem or axiom. In methods of integracion :he solved state is a
class of ''known" integrals, such as X dX or 'sin(X) dX.

The other canonical problem solving state is the state of

""giving up" on a problem. At this point the student has reached
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Figure 2.1. A three state problem solving model
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a terminal situation and his transition probabilities to other
states are all zero. In fact, we recognize both of these states
as trapping states of the problem solving process since once the
student enters one of them he makes no more transitions to other
states. Figure 2.1 illustrates the problem solving model for an

arbitrary three state example.

The Failure State

A basic assumption we make about problem solving behavior
is that a student will try in succession all of the applicable
techniques he knows until the problem is completed. (We allow
"giving up'" to be a legal technique to complete a problem). It is
true, however, that once a student has attempted a technique on a
problem unsuccessfully he does not return to the state where
application of the technique is still as likely. But it is also
true that the student's new state is closely related to the old
state. We expect that the student's _Tesponse probabilities are
substantially the same after a failure except for the technique
that failed. We now pose a simple mathematical model to represent
this effect. If we choose a 'failure parameter" 6 where
0<86 <1and 6 is expected to be small, then we assume that the
new technique choice probabilities, subject to a failure of

technique Tj’ are
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L . = 0Ot,. -
ij,posterior ij,prior
. . = wt, . j
t1m,poster10r im,prior s m#E S
where
1 - eti.
I 1. (in terms of pricr probabilities)
1 - ¢t,.
1]
renormalizes the posterior probabilities to 1. It 1is possible

that even the second technique chosen may be unsuccessful, thus
generating another set of technique choice probabiiities modified
by the failure parameter 6.

In the tutor-student model, the failure state assumes an
important role because we assume that the student is reassessing
his own technique choige probabilities in order to transform the
problem. Experimentally, we observed that in approximately 50% of
the cases where the student entered the generalized failure state
(to be discussed), a significant change occurred in his technique
response probabilities.

A complicatiocn arises from our lack of a priori knowledge
of which failing technique the student may choose. To justify the
Markovian assumption (that the properties of the system do not
depend on the past history of the process), we would have to
specify in advance all the possible failure states that could
arise.

In Figure 2.2 we show a system with two problem

classification states, S, and She A small subset of failure
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Figure 2.2, A failure network for a two state system.
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states for state s, are shown. State Sa1 corresponds to a failure
of the #1 ranked technique by a student occupying state S, State

s corresponds to a failure of the #1 ranked technique for state

all
Sal’ and so on. States such as Sallll’saZ’ Sa3’ Sa12’ and 53234
are not shown.

If we insist on the exact Markov process formalism, we
must include an infinite number of failure states with each
problem description state. To avoid this, we suggest two
approaches to collapse this multitude of failure states into a
single state.

In the first approach we generalize the problem solving
process from a discrete-time Markov process to a discrete-time
semi Markov process. Now not only do we associate a transition
probability pij from state i to state j, but we also specify a
holding time Tij that is a delay the process experiences in state
i before making a transition to state j. The holding time Tij is
described by a holding time mass function hij(m) defined over all
integral values of time from m=0 to m=infinity. Referring to
Figure 2.2, we see that the probability of entering the ''failure
network" from state s_ is pa,l’ Immediately after entering the

a

network, the probability of eventually returning to state S, is

11 =
P(s, |failure) =p,; o+ Py 3 (a1 4 * Parn, Parnn,a)

The holding time mass function is then
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Figure 2.3. The collapsed failuie network.
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--g§13§__ § (m-1)

hfail,a(m) = 1 -
pal,b

Similar relationships hold for for p(sb |failure) and hfail,b‘

Thus if we are willing to cope with the additional generality of
the semi Markov process we can collapse the entire structure down
to that shown in Figure 2.3. Fortunately, we do not pay
substantial additional penalties when calculating quantities of
interest such as the mean number of steps to trapping, or the
time-interval transition probabilities.

The second approach to dealing with failure states 1is an
approximation, the exactness of which will not be discussed here.
In this case, we modify our definition of ''transition'" in the
problem solving process to allow only one step in the agglomerated
failure state of Figure 2.3. Formerly we identified a transition
in the process with the application of a technique. This remains
unchanged in the new approximation except that in the failure
state, only a successful application of a technique gives rise to
a transition. The problem with this approach is that the
Markovian formalism is in serious jeopardy if we believe the
discussion of the previous section that ths student's response
probabilities depend on what kind of failure he made.

Fortunately, this discussion 1is not central to the issue of
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developing a tutorial strategy.

Summing up, the failure states can be modeled by either 1)
a semi Markov formalism with attendant additional complexities; or
2) an approximation which changes the definition of transition
from the failure state and either a) raises doubt about the
validity of the Markovian assumption, or b) t?mpts us to ignore
the response probability model of the previous section. In
Chapter 5 we shall have more to say about whether the reponse

probability model is supported by experimental evidence.

Identification of the Problem Solving States

The most important step in developing a tutor for a
subject is identification of the problem solving states. Although
there is no known algorithm for selecting an optimal set of
states, we shall outline a two step procedure that has been
successful in practice. The first step is to isolate the main
stages of problem solving in the new subject. We call these

stages decision points. The intention is that separate decision

points must involve a separate set of alternatives for the student
for which he must employ his problem solving judgement to proceed.
Some subjects may only involve one decision point. The second
step of state selection involves selecting a set of problem
description classes for each decision point. These classes .i¢fine

all the possible problem descriptions for the student when he

reaches that decision point. The remaining states, the failure
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states, must also be defined, depending upon how the teacher
wishes errors to be handled by the tutor.

The state structure is highly variable. For a subject
like methods of integration the problem solutions can be thought
of as a single decision point with perhaps thirty distinguishable
states (representing fifteen problem description states and
fifteen failure states). After an integration problem is
transformed, either the problem is solved or the student returns
to the same decision point, characterized by the question: how
can the integral be transformed to yield a simpler integral? The
state structure for integration contains only one decision point
since interconnections among the various problem types are quite
general., The student has substantially the same set of
subalternatives for each problem. In other words, an "exponential
integrand' may be transformed into a '"quotient of polynomials' or
into . a '"trigonometric integrand" or into an 'exponential
integrand" again.

The second ster of our procedure, that of choosing problem
description states at each decision point, is more difficult. The
difficulty stems~from the fact that in many cases the most natural
way to select problem descriptions is according to the method of
solution. We soon discover that 1) different people solve the
same problem in different ways and 2) students new to the subject
have no way to tell what state they are in. It is no help to be

told that ''this kind of problem is solvad using technique T' when
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"this kind of problem" is defined as the set best solved by
technique T. As a guiding principle we state the following:
A problem description state must not be defined solely by
means of the technique used to solve its member problems
unless those problems are easily recognized and the use of
the solving technique is the sole recommended practice of

experts in the subject.

It could be argued that if a state is defined that meets
the exception conditions of the above principle then since no
judgement is required, it is really unnecessary to have a decision
point at that stage of the problem solving process. However we
shall see in the example of methods of integration that often
there exists a mixture of technique dependent states and states
defined from other considerations.

Our main interest in defining the problem description
states 1s that these state definitions must not depend upon the
observer. We shall often wish to compare a student's state with a
similar one established by the tutor because the tutor at all
time; knows the techniques it would use to try solving a problem
of the given type. It is essential that in such a case we are
comparing the same subset of the total problem domain. This is
why we must take pains to allow technique dependent states only
when an impartial observer would agree that the definition was

natural,
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The definitions of the other problem description states
depend on how problems are described. Roughly speaking it is
desirable to group together problems with similar characteristics.
Surprisingly, such groupings may yield a rich variety of different

problem approaches. For instance, the integrals

might all be relegated to the same problem solving state since
they have similar characteristics, but they are usually solved by

quite different approaches.

State Selection Examples

Because of the impcrtance of the selection of states to
the tutorial strateg}, the following examples are presented of the
state selection procedure as it could be applied to familiar
school subjects.

To emphasize a point we shall choose first the simple
subject of multiplication of integers, as might be learned by
elementary schcol children. In this subject we will identify only
one decision point, which can be described by the question: what
is the product of the'integers m and n? This subject can be
represented by a simple problem structure consisting of one problem

description state and one trapping state corresponding to a
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correct solution, Aithough the subject of integer multiplication
presents us with no automatic state divisions for its single
decision point, the students provide considerable gﬁditional state
structure through various failure mechanisms. Specific remedial
action can then be taken to deal with the problems of each failure

type. For example, let us divide the students' possible erroneous

responses into the following four states:

1. Differs from the correct answer by either 1 or 2
2. Differs from the correct answer by
a multiple of m or n
3. Null response
4, Other incorrect number
We have tried to construct states as dependent as possible
on specific "failure techniques" that might arise. For state #1
above we have assumed that the student has memorized the
multiplication tables imperfectly., For state #2 we assume that
the student confused one entry in the table with another. State
#3 represents a lack of understanding of the multiplication
process by the student. Figure 2.4 shows the state transition
diagram for this situation.
Many of the ideas developed in this chapter are of
interest even in such a simple case as our multiplication example.

The expected number of steps v for each student is a measure of

the expected number of errors he will generate on a typical
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Figure 2.4. State structure for elementary multiplication.
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multiplication problem. Probabilities like p, (the probability
of a transition from state 1 to state s) are measures of how
probable a correct response is after a student makes an error of a
certain type. The change of this probability over time would be a
measure of the tutor's effectiveness, Of course we must remember
that the state transition probabilities depend upon both the
technique choice probabilities and the technique result

probabilities; that is,

Pix ~ Ztig Yk
J
Several of the tij's may be non-zero for a given state S For
example, even though we find the student in state s, of our
multiplication process, we can only surmise that the particular

proposed failure is likely. It could happen that the student made

a wild guess that fit the requirements of state s, !
g q 2

Differential Eqpations'ﬁxample

A more complicated example can be constructed from the
subject of ordinary linear differential equations. Apart from the
increased complexity of the problems compared to integer
multiplication, we must introduce three new generalizations in the
problem solving process. The first is the added multiplicity of
problem description states. These include first order equations,
second order equations with constant coefficients, and second

order equations with variable coefficients. The second is the

b
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possibility of two decision points in the process rather than one
as in the arithmetic example. These decision points correspond to
finding the particular solution and finding the homogeneous
solution. The third new complexity is that the process of solving
differential equatic.s itself often involves a  fundamental
uncertainty to the approach. Once a person learns how to multiply
integers, he usually approaches mul‘iplication problems
algorithmically. However, differential equations cdnnot be solved
by any comparatively simple algorithm. The student must exercise
his judgement at each decision point to decide which type of
solution scheme to pursue. The power of the tutorial methods we
are developing allows us to consider not only algorithmic subjects
like integer multiplication but especially subjects where problem
solution is something of an "art'". A preliminary state transition
diagram for ordinary linear differential equations of the first
and second orders is showa in Figure 2.5 2along with some
ur.. -resting failure states and some indicated technique
possibilities,

As in the multiplication example, the expected numbei of
steps allows us to calculate the expected number of errors made by
the student. If vy is the expected number of steps to solution
for first order equations, then the number of errors for each

scarting state is




The Student-Subject Model

1st Decision 2nd Decision
Point Point
( \ ‘ h !

integration; First
8 ’ Order Fail:
g reduce to separable; Equations any tech
F’ make exact. q L -
general form;
sep. of variab.;
' integrating
r factors;
successive
approx.
Fail:
Var. param.
Variation
Inhomogen. arameters: Homogen.
2nd order, P >{ 2nd order, subst, SOLVED
const§nF Annihilator COHSt?"F e’X
coefficien coefficient
method
subst.

power ser;
Fail: Reduce |Subst X i
Annihil. order |Subst X
with pow. ser.
known
solution

Fail:
Recur. rel.

ail:
Var. const
Inhomogen.\ Variation Homogen.
2nd order, constants 2nd order, rail:
variable variable Indic. eqn

coefficient coefficient

Figure 2.5. State structure for differential equation solving.
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El = \)1-1
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Eiove = Viave ~ 3*ph2vc,1 -2t - ph2vc,1)

where ''i2vc' refers to the state labeled inhomogeneous g?d order
variable coefficients. In the first three equations we subtract
either 1 or 2 steps corresponding to error-free solutions. In the
last two equations we subtract off the number of error-free steps
weighted by the probability that the student will reduce the
equation to first order. This model has employed three different
types of failure states. For inhomogeneous second order equations
with constant coefficients there are two failure states depending
upon the method of solution attempted by the student. For
homogeneous second order équations with variable coefficients
there are two failure states corresponding to steps common to more
than one of the techniques. Finally, for first order equations we
have condensed all the failure states into a single state because
of the larger number of possible solution techniques. Each of
these failure state examples may be handled by the failure state

coalescence techniques discussed earlier in the chapter.

Physics Laboratory Examplel

The third example of choosing states is a simulated
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physics laboratory. Imaginé that the assignment is to measure the
acceleration of gravity. The students are performing this
experiment as part of a series of simulated mechanics experiments.
7 In fact, if desired, the students, rather than simulating the
experiment, could actualiy do the experiments and allow the tutor
to directly observe the measurements. The laboratory has at its
disposal a variety of mechanical devices: spring mass systems,
adjustable dashpots, falling bobs, pendulums, inclined planes,
cubes and spheres of specified coefficients of friction, and
assorted pulleys, levers and motors to suit the student's needs.
The student also has a number of measuring devices available

including a stop watch to measure time, a variety of rulers and

micrometers to measure distance, and a recording device that

measures position at frequent fixed intervals of time from which
instantaneous velocity can Dbe estimated. The students are then
allowed to experiment any way they desire, as long as they make a
careful estimate of the measurement errors incurred by their
particular setup. If their error on any particular measurement is
too large, or if the tutor thinks that the student's measurement
technique is inferior, the student must try a new approach.

The constraints we have just outlined are fairly typical

of college physics laboratories, yet this situation lends itself

- e T e A T D e M e T W T W = = = = e e = W e

1. Compare for example the EXPERIMENT program for the PLATO CAI

system by Bitzer, Probst and Walker.
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well to the problem solving model. We consider the student to be
in one of three problem description states at all times, unless he
is one of the failure states or the giveup or solved states.
These three states correspond to an attempted measuring of time,
distance, and instantaneous velocity. Briefly, we can imagine
several approaches to this problem: 1) measure the instantaneous
velocity of the falling bob, solving g = v/t ; 2) Measure the
period T and length L of the pendulum, solving g = 4 nsz/L 3 3)
Measure the instantaneous velocity and vertical distance traveled
of the pendulum or the falling bob, solving g = vz/(Zd) 3 4)
Measure the time and distance traveled of the falling bob, g =
(Zd)/T2 ; 5) measure the instantaneous velocity of a solid sphere
rolling down an inclined plane of length L and inclination angle
¢y , measuring v and L, solving g = vz/(S*L*sin(¢ )). Each of
these approaches involves a succession of measurement techniques.
When the correct measurements are all made, the problem is solved.
Figure 2.6 shows the state model of our physics experiment.

This example has a particularly rich problem solving
structure. Transitions from each measurement state to any of
seven other states are possible. The successful transitions (to
non-failure states) may be due to any of several measurement
techniques applied by the student. In this example the technique
result probabilities (the qijk's) play a major role since a
measurement might not be made with the accuracy necessary. Notice

that the failure states may be entered from any of several states.
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In this case they each repiesent the failure to apply one of a
class of measurement techniques. As in the other examples, the
expected number of steps is a good measure of a student's
overall expertise. The minimum number of steps of solution is
two; thus extra steps represent failures to measure the quantities
accurately enough or failures to set up the measurements
correctly.

The state definitions in this example were chosen so that
all of the proposed mechanics experiments could fit into one
scheme. We can thus interpret the transition probabilities to the
failure states as general weaknesses in the student's laboratory
technique. Of course, the example is very simple, but the
underlying ideas could be applied to a variety of other fields.

Finally, the subjects of medical diagnosis and electronic
troubleshooting should be mentioned. In both of these subjects
human judgement is required to solve problems. The doctor can be
imagined to progress through various states of information when
making a diagnosis (Wortman, 1972); at each state evaluating the
available options and proceeding on the basis of his best
judgement. The electronics troubleshooter also proceeds through
states of information and must use his judgement to progress
through the tree of all possible actions. These are examples of
subjects well suited to the tutorial approach and to the student

being in control of the dialogue as he moves from one decision

point to the next.
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The Transition Probability Matrix

The transition probability matrix for the system shown in

Figure 2.7 is

r Prs prg Prr PrF Prt 0 Pru 0
Te| Pp g Pr g Py Pr Pre O P, 0
F TpS "Tpg “TpTr Yo rFt Tu
t | Pes Peg Per 0 Py Pep Py O
t 0 0

P p p P P P
F| Ptps Prpe ©t tet Ptpo Ptou

FX F-  “FF
Pus pug Pur 0 Put 0 Pou Pur

Up | Py s Py o Pur® Pye0 P, . P
F UpS “upg “upr uFt Ugu “upe

This is a stochastic matrix since all elements are greater
than O and each row sums to 1. This corresponds to the fact that
the states completely describe all possible student situations.

We could use the transition probability matrix directly to
assign probabilities to the student being in given states n steps
after starting in a particular state. However, this particular
use of the transition probability matrix is of little interest in
a tutorial system. We usually know which state the student is in
and have a relatively vague idea of the trajectory by which he
arrived there! In other words, our interest is in the student's
parameters as ends in themselves., Not only do we want to
determine the student's pij's, but we are especially interested in

the technique choice probabilities (the tij's) that we consider
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Figure 2.7. A general three state nroblem solving process,
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to be the primary elements of the student's problem solving

heuristics.

The Information Updating Model

It is obvious that as observers we can never know a
student's transition probabilities or his technique choice
probabilities exactly. Two processes are usually working
simultaneously that affect our observations of the student's
parameters. The first is the number of responses measured at any
given time. As we measure successive student responses, we must
steadily update our model of the student. The other process,
which we hope is working when the student is interacting with the
tutor, is the learning process. In this case the student's real
parameters are changing, not just our knowledge of them. Models
will be developed to cover both situations as part of our effort
to decide among alternative tutoring strategies,

We shall assume that the tutor's updating and the
student's learning processes can be separated so that they operate
independently. We shall now discuss a Bayesian approach to the
updating process, leaving the learning process until the next
section.

*' Consider a random variable X, defined on the possible

outcomes of a student's selection of a technique given that he is

in state S5 - We let X; = j if Tj was the technique chosen,

1<3i< NT' We now let tij equal the probability that x; = j.
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This is the formal definition of the technique choice probability

t.. .
1)

If E is the event that in n independent selections from

state s, the student chose technique Tj a total of nj times, the

probability of this event is given by the multinomial

distribution:

where thé notation {E | t} means the conditional probability of
the event E given the set of technique choice probabilities
t1oee oty

The above assumes that the probability tij is known.
Since we are uncertain about its value, it is convenient to
consider tij itself as a random variable. To encode our
unéértainty about tij’ we place a prior distribution over the
domain of possible probabilities.

For this purpose, and because of its convenient
mathematical properties, we shall choose the Dirichlet
distribution (also called the multidimensional beta distribution).
In particular, the kernel of this distribution has the same form
as the mvltinomial distribution (the conjugacy property). This

allows the Bayesian modification of this distribution to be

carried out in a very simple way. Formally, suppose the tij's.are

-
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.

a priori jointly distributed according to

{t|E} = f ()’ YRR 4 |m My 000y )
i (V1972 )

where Of_ykf_l and Zyk=1.
k

The above distribution represents the technique choice
probabilities in a particular state Sy the subscript i being
supressed. The N constants ml,mz,...,mN are the parameters of
this distribution and provide the encoding mechanism for all of

our knowledge about the tij's. An important property of this

distribution is that the expected value of tij’ is

where again we have surpressed the subscript i. Other quantities
such as the marginal distribution of a specific tixe the variance
of tixe and the covariance of t.. and tis are easily derived. The
key feature of the inference process is that the m-parameters will

change as we obtain new data about the student, What parameters

do we start with in the absence of knowledge about a particular
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student? The choice of reponse probabilities characterizing the
student before he makes a response is called the set of prior
probabilities. Although in many processes the original, or zeroth
set of prior probabilities will have little effect on the eventual
characterization of the student, caution must be exercised in
choosing this set since it will have a large effect on the initial
tutoring strategy. Chapter 4 will discuss a specific choice of a
zeroth set of prior probabilities for the subjecf.of methods of
integration.

We will now use Bayes' theorem to calculate the new
distribution over the tij's after event E has changed our
knowledge Qf the student. Event E corresponds to the student

emitting m, responses of type i, where i ranges from 1 to N = N,

We have
{T}HE|T)
(T | E} = --ceeme- .
{E}
n!
nl nN
fﬂl()'l, "yN ml’ mN) “;';j;' yl yN
j ]
11
nl nl nN
Ljfﬁi(yl" Syylmgs e my) LT e dyy oo dyy
0 A
j J

Note that the denominator integrates to a constant.
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= fsi(yl’YZ’ o 'yN‘m1+n1 9m2+n25 cee ’mN*"N)

The above steps iliustrate the value of the Dirichlet form
for the prior distribution of the tij's. Bayes modification of
the distribution requires merely adding to the exponents of the
respective yj's the number of selections of technique Tj during

event E. The posterior expected value of tix becomes

As we accumulate more responses from the student, we
reduce the dependence of E(tik) on the init‘al choice cf the
m-parameters, until in the limit of an infinite number of

responses they have no effect.

The Student Learning Model

Earlier we remarked that twc processes caused our state of
information about the student to change. First we developed a
Bayesian scheme for calculating the reduction of our uncertainty

in the model parameters as we measured successive responses; we
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shall call this the information updating model. We shall now
analyze the process whereby real changes in the model parameters
occur as the student acquires new problem solving techniques.
Knowledre of this process is essentiai for predicting how exposure
to a given problem will affect the student. We shall rely on the
learning model in the next chapter when we scan a set of problems
to find the best example.

Prior to a learning event E our knowledge of the student's
technique choice probabilities 1is represented by the Dirichlet

distribution:
(t|E} = fﬂi(yl’YZ’” ~:yN|m1sm2,~~~:mN)

m m
2 N
D e tmftmce—en——— yl yz ,,,yN ’ml,...,m’q>0

Since the posterior distribution for the event E is in
turn the pricr distribution for the succeeding event, it is
convenient to require that the posterior distribution also have
the Dirichlet form. Ideally we would like to 'update'" the prior
distribution in the same manner as the informatioa updating model.
However the possibility of a real change in the student's
technique choice probz .ilities creates a new uncertainty in our
knowledge of the student. For instance, if we have updated our

beta density prior distribution with 20 cnnsecutive responses,

assuming no learning, we bhave substantially reduced i’.e variances
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of the technique choice rrobabilities. However if the student
subsequently is exposed to a better ;olution strategy, or
encounters a new problem form in the same class, he may alter his
response patterns over all the problems belonging to that state.
It would then be incorrect to assume that our knowledge of his
response probabilities is still represented by the simple Bayesian
updating of the prior distribution.

Our state of information about the student can be imagined
to progress monotonically between ''discontinuities" that occur
with each 1learning event. This 1is, of course, a strong
assumption. The student's learning process and the observer's
updating process, in general, are constantly competing. The
discontinuity assumption was, however, suggested from observation
of calculus students interacting with the methods of integration
tutor. In Chapter S we show that calculus students do, in fact,

exhibit response discontinuities. Qualitatively, a typical

student episode went as follows:

1) the Student encountered a new problem form

2) the student entered one or more failure states
attempting a solution

3) the student received tutorial assistance

4) the student (often) worked several more problems

before returning to #1 and #2.

It is clear that the distance between learning
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discontinuities depends in part on the existence of ''several more
problems" in step 4 above. One can also argue that even if the
student does n;; enter any failure states that learning is
distributed among subsequent problems as the student experiences
further successes with his new techniques. If this is trué, the
"¢ .>continuity'" is perhaps only a gradual change. However,
Chapter 5 shows that for calculus students the change in response
patterns is typically abrupt. This lends confidence to the
assumptions that the learning process and the observing process
can be considered independently and that learning typically occurs
suddenly and sporadically.

What are the parameters of our distribution for the
student after a 1learning discontinuity? Let us assume that the
student is in problem state Si» and choéses technique Tj’ which
results in an unsuccessful transforma£ion. Although the student
could choose another unsuccessful technique, let us assume that he
then chooses technique Tk’ which yields a  succesful
transformation. We shall label this sequence the event E. Since
the student often asks for assistance when he enters a failure
state, the choice of successful technique may be due to a tutorial
hint. A first candidate for the student's technique choice
probabilities after event E could be the prior distribution we are
willing to use for a student before any contact with the tutor. A
better candidate 1is this distribution modified by the new

responses suggested to the student by the tutor after the student
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entered the failure state. However this approximation does not
reflect the student's previous work., Observation of calculus
students suggests that the failing and successful techniques in
event E are the techniques most substantially affected. We thus
assume that the student's technique choice probability tiJ
(choosing technique Tj from state si) that ied from problem state
s; to the failure state s;. 1s modified by a learning parameter

@ , and that the probability toy of choosing technique Tk (the

subsequently successful choice) is modified by a related parameter

M :

. . = at. . T(j) wunsuccessful
t1J,poster10r ij,prior °’ (3) ces

. . t. . T(k t ' i
tik,posterior M ik,prior ’ (k) tutor's choice

1- Z Cim "~ ¢:vtij
méjk
where N = =i
Fik

N 1is a factor determined by & that renormalizes the sum
ﬁ tim,posterior to 1. For instance, if til’tiZ’tiS = 1/3 are
the only technique choice probabiiities for state CHp and @ = 1/2,

then

1 - (1/3) - (1/2)(1/3) 3

If the failing technique Tj is T, and the successful
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technique T, is T2, then

k
1
til,posterior = «(1/3) = ';°
1
ti2 posterior -~ N(1/3) = Y
t. . = t. . = ee=
i3,posterior i3,prior 3

a 1is a factor depending on the problem and on the
student. In Chapter 5 we show that in practice « can have a
fairly wide range of values for a given student. We must also
assume that o will change in time as the student becomes more
experienced. In fact, it is clear that if the student is to
eventually converge on the tutor's problem solving heuristics, «
must approach 1 with increasing time. It 1is convenient to
consider o« itself as being distributed according to the beta
function:

1

gla) = -==muu- oFla - o)®
B(r,s)

-1

Now, however, the learning model product aty is no longer
beta distributed. This is apparant from considering the simpler

case where a probability p is beta distributed:
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1
f(p) = cmmmmm——— pml'l(l _ p)mz-l
B(my,m,)

and the product § = o p is distributed according to

d
£(8) = - ---
dd

J f(p) g(o) do dp
§ Y8/p

This integral is hard to evaluate in closed form, but if °

11

« is assumed to be uniformly distributed with r = s = 1, then

1 1
d
£(8) = - --- f(p) o dp
db 5 Q/p
1

J £(p)
= ——— dp
s p

If we also assume that p is uniformly distributed with
m=m, = 1, then
1
1
£f(86) = -dp = -1n(%)
5 P
which obviously is not a beta distribution.
Since it is useful to preserve the beta distribution form
for ‘the Bayesian updating procedure, we shall choose a beta
distribution whose mean and variance are equal to the mean and

. e pai g a2 .
variance of the product distribution”. In the simple case
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discussed above,

ont
n
R
g~
"
R
4~

v 3 2 2.2
and 5= 62- 6= ap - ap
2 2
r(r+l) ml(m1+1) T m

2. This procedure is known as the method of moments.
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and solving for n, and n, we get

-2 - -V
6 (1 -86)-8298
n S eedcvcarcaccccrccoe--
1 v
8
_ _ v
6*(1 - 6) - 6
n, = (Q-086) ---=ec--- ;T
8
For the case discussed above with m=m=r=s= 1,
—- v
5§ =1/4, & = 7/144 and we find that n = 5/7, n, = 15/7. This

provides us with the parameters for the beta distribution

approximation of -1n(6). We then compare
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with -1n(6) .

Figure 2.8 shows the two functions plotted. It is clear in this

case that the Beta distribution is a very acceptable approximation

to the exact product distribution.

The last few paragraphs have discussed a simplification of
the model. When we generalize to a beta distribution involving
both the wunsuccessful and successful technique choice

probabilities, the results are similar. In particular,

my-1 (1-1:14:2)'“3'1
B(m, ,m,,mz)
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Figure 2.8, Beta distribution and the exact product distribution
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where T, is the unsucessful techn jue whose probability is
modified by «, and T, is the successful technique whose

probability is modified by 7. The new beta distribution is

-

1
L e — a M7 o0 (1 )]
ﬂ (nl ’nzﬁns)

1 where u, corr ponds to atl ’

u, corresponds to Tt, ,
and us corresponds to t3 . .

Defining R=r + sand M= 3 m, , we have
i

S
1 rm
v r+1)r@m+1)mn rm 2
U, = mememmmmmmedaeeeeol L
1 R+ DRM+1M  REM
from the univariate analysis, and solving for n;, Ny, and n, we
have
2 - v o
_uy @ -uy) -y
nl = cceremesa C et
- ul
u, (1 - u,) -u
_ 1 1 1
n, + ng = Qa - ul) ------- gosme—-=-
u
1
M3
3
ng = &- (n1 +n, 4 ns)

These last five equations completely define the updating
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process used by the tutor when the student encounters a learning
discontinuity, In Chapter 5 we shali show that the instances of
student iearnming discontinuities caa be easily identified by the
tutor.

We see now that the two processes compiement each other,
Starting with an original pricr distrzbution of the studen:'s
technique choice probabiiities, we update our student mode!l wuntil
a lezrning event occcurs {tnat is, until the student enters a
failuze state). At this pcoint the learning model provides us with
a new prior distributionm, which we continue udpdating. The new
prior distributisn 1s iinked to che oid thrcugh the distribution
of the learning pzarameter «. Actually s:nce the distributicn of
o will in generai depend upeon the studen’ and apon time, we <can
imagine a <chird wupdatiag process invelving o iiself. As the
student encountexs successave learning evenis we the cbservers
wili improve our kuowiedge of . We could call this process
"getting <o kncw the student"  For the time being wo wiil assume
that o has a fixed distribution :ndependent <f particular
scudents The challenge will be to deduce :his distribution frem

Zn experimenta. envirionment

Expected Number of Steps

To obtain the student's transition probab:iities, we ccuid
carry c¢ut & similar updating process for the technique result

probabiixties (the q“k's), or alternatively, we can measure the
-J
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student's transitions directly. Once we have what we consider
reasonable estimates for the pij's we can calculate the student's
expected number of steps to solution from any starting state.
Using the theory of transient Markov processes, the matrix of
expected delays before trapping, [t], is related to the modified
state transition probability matrix P* (created by removing all
rows and columns of P corresponding to the trapping states) by

. -l
(r] =[I-P]

where I is the identity matrix. Thus the sum E Tik = Vi is the

sum of the delays in all possible states given that the system

started in state s,, and this is the expected number of steps to

solution of a problem begun in state Y Equivalently, the

product

is the column vector of the expected number of steps to solution
from each state, Each of the terms Tij is wuseful as an
indication of where the student 1is spending his time in the

solution of a problem begun in state S5 We can examine the

expected posterior ?;j for students with unusually long problem

solutions to determine whether they are spending time in failure
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} states or in legitimate transformations.

Similarly it is helpful to know the variance of the delay
in each state as well as the variance of the total number of
steps. Again, from the theory of Markov processes, the matrix ;

- of variances of the expected delays, ij, can be calculated by

v 3 - -
N=N - N[ON

f[2(«01) - 1]

where N2

4|
]

and Tt , the matrix of delays.

Note that the box notation A [JB represents the term by term
multiplication operation for two matrices of similar dimensions,
i.e. if C = A[JB, then cij = aij bija

The column vector of variances of the total delays in the

process is given by

where T 1is the column vector of the total expected delay in each
' vyl 1 . .
state. Note that  # LY 1 ] because the times spent in

each state are not independen* random variables.




Chapter 3

The Tutorial Strategy !

Chapter 2 introduced a general model of a student solving
problems. From this model we defined important parameters of the
student's understanding of the subject, such as his expected
number of steps ‘to solution, his probability of choosing a
technique (tij)’ his probability of arriving in a given state
after applying a technique (qijk)’ and the probabilities of
entering or leaving a failure state (piF and ij). We discussed
specific methods for encoding an observer's knowledge of the
student and for modeling the student 1learning process. This
chapter will present a real time tutorial strategy for computer
assisted instruction that will use these models as its basis. The

essential elements of the tutorial strategy are: student trouble

thresholds which, when exceeded, cause the tutor to intervene in
the student's problem solution; a set of problem solving
priorities used by the tutor to give hints; two problem archives

which the tutor can scan for problems that will optimally

challenge or optimally help the student; and a self improvement
scheme that allows the tutor to incorporate the best problem
solving strategies of its students. In addition the tutor can

both helyr the student apply techniques and can modify its own

subject breadth to tutor students with differing backgrounds.
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Figure 3.1. The flow chart of the tutor.
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The Plan of the Tutor

Figure 3.1 is the flow chart of the tutor. This chapter
will discuss each element of the tutor in the order of execution
of a typical tutorial episode. From a macroscopic viewpoint, the
function of the four elements in the upper left corner of Figure
3.1 is to initialize the‘tutor's knowledge about the student and
to select an example to work. The large circuit of ten elements
in the center and lower portions of the figure handles the actual
working of the example and the tutor-student dialogue. After the
student successfully terminates the problem, the tutor performs
cartain bockkeeping functions and tests the student's problem
solving patterns for signs of major trouble. This last phase is

shown in the upper right corner of figure 3.1. The tutor then

returns to find another example.

Tutor Initialization: Dynamic Subject Scope

One of the characteristics of the tutorial phase of
learning is the dissimilar subject backgrounds of the students.
Oftzn the students are involved in a lecture phase at the same
time they are interacting with the tutor. Since the tutor is
structured to deal with individuals it must be able to tune its
level of presentation to the capabilities of each student. ~ is
is accomplished by querying each student as he logs in about which
techniques he is familiar with. A new student would be asked if

he knew each of the NT possible techniques. Thence afterward the
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tutor would only ask him about those techniques he had not known
in an earlier session.

During the session the tutor has the student's list of
unknown techniques. Whenever the tutor encounters a situation
where it would ordinarily give an unknown technique as a solution
hint, it will warn the student that he may be venturing ii.to deep
water. The student then has the choice of aborting the problem
solution as too difficult or choosing an alternative tutorial hint
that he knows.

This process of dynamically altering the subject scope
also allows the tutor to choose only problems from its archive
that can be worked by techniques known to the student. Since an
outline of the teacher's solution 1is stored with each archive
problem, the tutor rejects any problem using unknown techniques.
Thus the student in general has access to a subset of the problem
archive. In fact we see that the concept of the dynamic subject
scope generalizes the tutoring process since for a tutoring system
with NT possible techniques, there exist ZNT possible subsubjects
all tutorable by the same tutor.

Selecting an Example: The Tutor-Student Distance
4“1@

If the student has no example of his own, the tutor will
select one from its example archive. In order to choose among its
examples the tutor first calculates a ''distance' measurement for

each problem description state that expresses how much the tutor
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and student disagree in choosing problem solving techniques. This
distance is given by

D; = Z|Tij -ty

J

where Tij is the tutor's relative frequency of applying technique
Tj in state s; and tij is the student's expected relative
frequency of applying the same technique. The tutor's Tij is
determined by scanning all of the problems in the problem archive,
searching for occurrences of state S;. The tutor-student distance
can range in value from O to 2 for each state, corresponding to
complete agreement or complete disagreement, respectively., The
following paragraphs discuss alternative schemes for choosing the
-

best problem for the student using the tutor-student distances
Dl""’DN‘

If we know in advance what responses the student would

make, we could select the problem that would minimize the total

distance

DT= ZDi
posterior to working the problem. Lacking this perfect
information, - we could nevertheless calculate the probability of
the student choosing technique Tj in state s, given his response

probabilities tij' For instance, if the original problem

description state is Sy this probability would be
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P {lesi} = 85y by
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where p_ is the probability of the student making a transition
from state Sy to state s_. _

The change in the student's total distance DT could then
be estimated by carrying out this calculation on each candidate
problem for all possible states and techniques.

Apart from the computational complexity of this scheme,
there are two significant objections to its use. First, we would
find that all problems of the same initial fproblem description
state give identical predicted contributions to the change in DT.
This still leaves us with a choice to make among a possibly 1large
number of problems. The second objection is that such a
computation ignores the solution used by the tutor for the
particular problem except insofar as it contributes to the tutor's
Tij' What is needed is a model to predict what relation the
student's particular solution will have to the tutor's particular

solution.

To pose such a model, we assume that if the tutor-student

distance for a given state is large, the student is more likely to




-

g

The Tutorial Strategy 66

enter failure states and more likely to get into situations where
the tutor gives him a hint that may change his problem solving
patterns. Although the tutor's hints are not based on its own
particular solution, the tutor does compare its solution with that
of the student upon completion of the problem.

A reasonable measure of a candidate problem is the set

(D., D

. D., ... , D} of tutor-student distances for states
i’ i’ K’ ? m

encountered in the tutor's solution. The expected example

distance DE of this problem is the weighted sum

Dg = Dy + Py D5 + Py Py D * T Py T Pop Dy
where the transition probabilities are those of the student. The
expected example distance has the following desirable features:
1) it is computationally tractable; 2) its value is proportional
to the expected occurrence of tutor hints and comparisons that
will change the student's tij'f; 3) it depends on the entire tutor
solution and will yield very few ties among candidate problems;
and 4) since it is weighted by the student's transition
probabilities it takes into account the possibility that the
student may diverge‘from the tutor's solution.

To select an example, the tutor calculates the expected
example distance for all the unworked archive problems,
eliminating those using techniques unknown to the student, and

chooses that problem with maximum DE‘
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Choosing a Technique

When the example problem is established, either by student
initiation or archive selection, the student is presented with the
fundamental question: "What shall we do to solve it?". He then
has three fundamental choiges. He may name one of a set of
problem transforming techiques; he can attempt to finish the
problem directly by either guessing the final answer or correctly
identifying the integral as "known"; or he may ask the tutor for a
hint. Thé following paragraphs discuss how the tutor handles each

of these options.

Unusual Technique Threshold

If the student decides to name a problem transforming
technique, the tutor needs to measure the appropriateness of the
response. In keeping with the goal of giving the student as much
freedom as possible, the tutor should not comment on the student's
choice of technique unless the tutor thinks the student made a
very poor choice.

We define a simple threshold that causes the tutor to
intervene whenever the student chooses a technique that is
uqlikely, in the tutor's view, to provide a successful
transformation in comparison to other untried techniques. If €
is an adjustable quantity between 0 aad 1, depending upon the

state s, which we call the unusual technique threshold parameter,

then we define the unusual technique threshoid ’I‘hti as:
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]

The; = & ["";."‘ ti; tutor

In other words, the threshold is a certain fraction of the tutor's
response frequency for the most likely technique in that state.
The unusual technique threshold is exceeded whenever technique T,

J
chosen by the student satisfies

tij,tutor < Thti

In other words, the tutor looks at its own priorities to decide if
the ﬁfudent chose a technique below the tutor's relative frequency
threshold.

If the tutor;; ‘feéﬂnique probability falls below the
threshold, the tutor will stop the student to ask if he would like
a hint since his choice is suspicious. If the student desires to
proceed with his "unlikely" technique, he must be allowed to do
so, since it is possible that he is pursuing a line of reasoning
that is not represented in the tutor's archive. If the student
opts for a hint, it is given to him and he returns to '"What shall
we do to solve it?".

Notice that if the student is in a failure state where he
has tried one or more techniques unsuccessfully already, he will
not necessarily be more likely to cause tutor in:irvention.

Although the tutor's archive contains no occurrences of failure

states, the tutor knows what its adjusted priorities would be if

this most likely technique failed. The probability for the most
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likely technique is demoted by the failure parameter 6, and all
the rest are increased for the sake of normalization. This
procedure insures that the student will be left alone by the tutor

unless he tries something quite unusual.

Hint Generation

When the student asks the tutor for help in choosing a
technique, the tutor must respond from its own knowledge of how to
solve the problem. The crucial point is that the tutor does not
know how to solve the problemi If a tutor is to respond to

zbitrary student problems and solution paths, the tutor cannot
store certain prescribed solutions in its memory. In fact, many
subjects allow two or more solution paths for most of their
problems.  The tutor cannot use the particular solution stored in
its archive since uswally the student either suggests his own
problem or deviates from the solution path used by the tutor. The
tutor derives its own response frequencies from the archive by
ranking the frequency of the various techniques applied for each
problem type. We refer to this ranking as the tutor's priorities.
When the student asks for help, the tutor suggests the highest
priority technique, Successive requests for help yield
successively lower priority technique choices. We can thus state

the principle:

The tutor provides technique choice advice by presenting
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the student with its own technique choice priorities.

It is possible that the most highly recommended technique
will not solve the problem. The studéht should be prepared to
fail ociasionally even with '"good" advice and start the problem
over using the next most highly recommended technique. Since the
student is learning a process of probiem solving, rather than the
solutions to isolated problems, even such negative experiences
will broaden his judgement by causing him to search for less

likely solution schemes.

Applying the Technique

If the student avoids triggering the unusual technique
threshold, he enters a subprogram specifically designed for the
technique. He now is exposed to the second level version of 'What
shall we do to solve it?''. In this case the student can suggest a
solution scheme (such as '"let u = ;n in a substitution, or ''let
us=s ex, dv‘= sin(x) dx" in integration by parts, "apply the half
angle identity' in trigonometric identities. Alternatively, the
student can ask for help. Following the application of the

technique, the student has a ch?nce to view the result and accept

it, reject the result and try again, accept the result and apply

the technique again, or give up on the technique altogether.

Theoretically, we could generate a set of priorities for

the student when he wants help with applying a technique as we do




The Tutorial Strategy 71

when he wants help with choosing a technique. Eventually,
however, we must stop naming techniques and subtechniques and
actually take the student through a manipulation from start to
finish. This is a practical rather than theoretical choice. It
is possible to imagine an optimization scheme for applying a
technique that would involve searching all the paths that could be’
generated by different appliications of the technique and then
choosing the path that led to the state with the lowest expected
number of steps to solution. The objection to this procedure is
the unreasonable overhead that would result from this real-time
decision. In the methods of integration tutor described in
Chapter 4, the explanations of technique applications are handled
by specific aléérithms tailored in each case to the technique. Of
cours2, these algorithms contain procedures for rejecting problems
unsuited to the technique. These kinds of predetermined decisions
are termed '"wired in heuristics'. It is important to choose the
state definitions for any tutoriai system so as to diminish the
importance of wired in heuristics. In particular, any decision
point that allows a genuine divergence of opinion among reasonable
problem solvers must not be handled by an algcrithm that always
chooses one type of solution. If such a situation arises in the
construction of the tutor, a separate state should be constructed
that allows the student to choose among several paths and which

allows the tutor to apply the techniques just developed.
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Problem Length Threshold

Following the application of the technique, the tutor must
know if the problem solution is getting unusually long. It is
often possible to perform a very large number of steps op a simple
problem without triggering the unusual technique threshold. From
Chapter 2, however, if we know the tutor's state transition
probabilities (the pij's) we can calculate the expected variance
of the number of transitions to stop, given that the problem
started in state s,. From this we can establish a problem 1engtﬁ

threshold :

where.;i is the expected number of steps starting from state s,
(the mean delay from state s, to a trapping state), 31 is the
'expected variance of the delay from state s, and” w i$ a ‘number
we call the problem length threshold parameter. The tutor
interrupts the student whenever his solution length exceeds the
number Thli, defined as the tutor's mean number of steps plus
standard deviations.

When the student exceeds the problem length threshold, the
tutor will intervene to ask if the student wants a hint. The
tutor can not in general know exactly why the student is producing

such a long solution, and of course must not force the student to

terminate his solution. However, practice suggests that returning
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to the beginning of the problem and reexamining the technique
priorities will usually prompt the student into a better solution.
Students who produce unwieldy solutions to ostensibly short

problems usually have not asked the tutor for suggestions.

Finishing the Solution

The student can continue to apply techniques to a problem
indefinitely. Each such application involves one loop of the
lower central portion of the flowchart in Figure 3,1, returning
each time to 'What shall we do to solve it?". Eventually the
student will reduce the problem to a simple, recognizable form,
If this form is one of a list of agreed upon "known" forms, the
student can simply type "KNOWN"™ to terminate the problem. The
student may also try to guess the final answer, even if the
problem is not of the known form. Finally, if the student must
stop working on the problem before it is normally solved, he may
give up,

Following completion of the problem, the tutor updates its
piior estimates of the student's tij's by using the information
updating and student learning models described in Chapter 2.

5 The tutor then prints a summary of the techniques employed
by the student to solve the problem, If the problem came from the

archive, the tutor also prints its own solution alongside the

studegt's. This is a very effective way for the student to

compare his problem solving schemes with those of the tutor,
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particularly if he has solved the problem without tripping the

tutor intervention thresholds or without asking for a iant.

Tutor Learning

Much of the value of the tutoring process we have
developed in this chapter depends on the tutor being a good
problem solver itseif. In particular, the technique choice
convergence schemes we proposed for problem selection would be
counterproductive if the student was a better problem solver than
the tutor. In this case the tutor would be attempting to bring
the student down to its own level. The wuse of this tutorial
scheme woulcd also be severely restricted if the tutor required
initialization by sorre kind of grand master of the subject.
Therefore a most important development in our tutorial theory is a
self improvement strategy for the tutor. We want the tutor to
recognize superior student solutions and learn them in such a way
that all future tutoring decisions will reflect the new knowledge.

The tutorial system as we have described it thus far is
wel: suited for modification of the tutor's strategies. Except
for the wired in heuristics all tutorial responses are determined
by the tutor's technique choice probabilities and the two problem
arcl ives. From a practical standpoint these can be considered as
volatile as any other piece of data.

The real problem is to identify a criterion for superior

student solutions. In particular the tutor cannot recognize
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brilliance in the solutiun of a problem that does not exist in its
own problem archive. We must remember that the tutor's technique
choice probabilities are determined entirely from the problem
solutions in the general problem archive. A new problem can only
be judged as some statistical combination of the tutor's
previously known problems, thus the measure of its true difficulty
is unknown.

We shall make the simple assumption that length of problem
solution is a measure of superiority. Thus whenever the student
works a problem from the general problem archive that is shoxter
than the tutor's solution the tutor will remembé? the student's
solution by replacing its archive entry and updating its tij
matrix (by subtracting the old soluticn statistics and adding the
new). The tutor must of course reject solutions that end in the
"'give up" trapping state or involve the 'guessing" technique if
such a technique is allows™le. In this way the tutor's basis for
heuristic decisions can eventually be altered by the students.

Other =uperiority schemes that would not necessarily
shorten the problem solution can be easily imagined. For instance
if technique Ti is thought to be more elegant than Tj then any
solution wusing Ti could replace ones ‘involving Tj’ possibly
subject to constraints on **e tot.l length of sz.uticw., Going one
step further, the problem archive could be optimized at several
levels simultaneously, depending uvon different expected subject

scopes. In other words the archive could have several disjoint
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levels, each level depending on how many techniques the student

knows.

Diagnosing poor problem solving practices

Because We have committed the tutor to allow the student
exceptional freedom while solving problems, it is quite possible
that a confused student may solve whole classes of problems poorly
without receiving much warning from the tutor. Thus after each
problem, we ask the tutor to scan the student's overall problem
solving patterns for signs of trouble.

During the course of solving a problem, the tutor
interrupted the student in the act of choosing a technique if the
tutor felt tlat the student's choice was unusual enough to be
reconsidered ir favor of the tu;or's. Similarly if the
tutor-student distance D, for the ith state is sufficiently high,
the tutor will stop the tutoring session to show the student a
complete example. The tutr. assumes that the student's problem
solving techniques at this pcint are sufficiently bad to require
that the student soive the problem in a 'slave" mode that only
allows him to prcceed with the tutor's recommended solution. We

define a problem solving trouble threshold for each state by:

where Tp is a parameter, depending upon the state Sso chosen
i
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between the extreme possible values ¢f 0 and 2. For instance, we
may decide that one particular state is more critical than others
and thus assign it a lower problem solving trouble threshold.

When the stﬁdent exceeds the problem solving tronuble
threshold the tutor then scans a special archive of problems
reserved for this situation. Each problem in the archive is
stored with the complete set of responses that the teacher used to
work the problem. The student then begins the pinblem as usual
but is s*npped every time he does not agree with the teacher's
response. Needless to say, the problem solving trouble thresholds
should be set high enough that this procedure is invoked
relatively rarely since it is a brute force effort to move the
student's technique choices toward the tutor's. In practice with
the methods of integration tutor a threshold value of 1.75 was
found to be reasonable.

The advantage of entering the ''slave" mode in this
tutorial situation is that we can be sure for the purposes of
optimum proble.a choosing th. % the student will see all the steps.
This was the assumpcion we could not make when we chose example
problems from the general archive. We also tacitly assume that
the effect of a forced response is the same as a voluntary
response in the non-slave mode. The steps >r choosing an optimum

problem for the slave mode are:
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1) stop the student when he exceeds the
problem solving trouble threshold 'I‘pi
2) use the information updatiag model to calculate
the student's expected posterior technique
choice probabilities as a result of being
exposed to the entire problem.
3) calculate the tutor-student distance Di
with the student's new tij's.

4) Minimize the value of step 3 over all the

problems in the archive.

After the student is shown the probiem, we continue with
the prior distributicn that the learning model predicts for the

student after the compiete exposure to the new technioues.

Summar
This chapter has presented a computer tutorial system
applicable to a wide variety of subjects and capable of providing
the student tutorial assistance at several levels. The tutor
bases its own problem solving heuristi.s entirely upon a general
~oblem archive estabiished by the original human teacher. Using
the problem archive the tutor can select optimal problems either
as examples to set a floundering student on the right path or as
sroblems designed to chailenge the stronger student in troublesome

areas. Because all of the tutor's recommendations are derived by
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statistically averaging over the entire archive, the student can
initiate his own problem and expect to receive the same level of
tutoring that he would get if the tutor chose a problem from the
archive. At the technique choic= level the tutor foers its own
technique choice preferences whenever the student asks for help or
exceeds the unusual technique threshold. At the technique
application level the tutor relies on wired in heuristics to make
specific suggestions but leaves the final decision of application
up to the student if a choice exists.

In addition to the main function of providing tutorial
assistance the tutor also dynamically alters its subject scope for
the individual student and can optimize its own performance with

respect to any measurable superiority criterioén.
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The Methods of Integration Experiment

This chapter describes an experimental ‘'methods of
integration" tutor developed from the ideas of the last two
chapters. We shall show how the states and techniques for this
subject were defined and how the tutor thresholds and problem
archives were implemented. A discussion of the student
information updating process and two versions of rihe student
learning model will follow. Finally we describe in a ieral way
the challenges of creating computer programs that tutor this
subject. A discussion of the results of the experimentation with

calculus students is deferred to Chapter 5.

The Choice gg_MetHods gg.Intagration

Methods of integration was a good choice of subject for
this tutorial system for many reasons. As a subject in a calculus
course, it is almost never taught as an algorithmic procedure
(l1ike differentiation). Rather the emphasis is on the acquisition
of 2 number of techniques like substitution, integration by parts,
and partial fraction expansion. Although the student is often
given groups of problems solvable by the same techniques, the real
challenge is the recognition of the correct approach, rather than

the details of the technique application. In addition; most

problems can be solved by any one of several approaches involving
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different technique choices and different lengths of solution,
thus providing the tutor a complete range of possible student
results to judge. This unusually rich problem solving structure
is ideal for testing the generality of the tutorial methods
proposed in Chapter 3. At the same time, the tutorial strategy is
not designed solely for this subject, as the examples in Chapter 3

point out.

Identification of the States and Techniques

In the initial phases of development of the integration
tutor it was hoped that the state defini:ions could be kept
completely independent of problem solving considerations. The
goal was to have each state unambiguously defined so that the
tutor could know which state the student was in. Although this
remains as an ideal, it was found that in certain situations a
state definition dependent upon ''the ng.thg problem is solved" is
preferable to the pure problem description approach.

For instance, in the case of problems involving simple
variable substitutions leading directly to '"known" integrals,
integral solvers overwhelmingly recognize these problems as a
distinct class based upon the substitution approach, Although one
could define this class using exclusively structural properties
(the presence of a term and its derivative,...) the motivation for
doing so is still based on the way the student solves this class.

The key point is that virtually every integral solver solves these
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problems with a simple variable substitution, and it is
unrealistic for the tutor to lump these problems intv other
classes that could yield a variety of possible tutoring hints.
Thus as an exception to our rule for defining states (in Chapter
3), we list as state #2 below the state of ''recognized
substitutions'. Similarily, state #3 is also an exceptional
state: the state of ''recogniced trigonometric substitutions".
Except for the trapping states, all of the remaining states are
defined by their problem dsscriptions; the table of problem state

names follows:

0. The Soived state

1. Known integrals

2. Recognized substitutions

3. Recognized trigonometric substitutions
4, Trigonometric & hyperboiic functions
5. Exponentiai functions

6. Axc-trigonometric and -hyperbolic functions
7. Fractional powers of functions

§. Combination of types 4 § 5

9. Combinaticn of types 4 § 7

10. Combination of types S § 6

11. Combination cf types 5 & 7

12. Combination of type< 6 § 7

13, Polynomial runctic...

14. Other

15. The Give-up state

Probiem state 1 is defined as the set of those integrals
agreed upon by the student and tutor as requiring no more
transforming Eo reach a solution. These integrals are sometimes
solved in the Lecture phase of the student's learning by

calculating the limit of an infinite sum, but are ravely solved by

prrn




Methods of Integration Experiment 83

the student after that point. These integrals are given to the
student at the beginning of the tutoring session.

In each of the types 4 through 12 above the characteristic
functions identifying the state can be multiplied or divided

freely with polynomials in the variablie of integration. Thus

J‘xz dX  is classified in state 1,

(but notJ‘(S*X)2 dX )

s‘n\X}*ecos(x) dx is classified in state 2,
Ly
o 1

S i dX is classified in state 3,
J X" +5

3 + X)*sin(X) dX is classified in state 4,
v
n X2 + 2*X + 5 -

and | ~ze------ I ax is classified in state 13,

J X7 o+ 17*X° -1

In addition we will define one student failure state for
each problem state given above (other than states 0 and 15),
giving us a total of 30 states. State 0 is achieved when tﬁe
student successfully identifies a known integral. State 15 is
achieved only when the student requests to give up on the problenm.
As explained in Chapter 2, these two special states are the
trapping states of the process. Note that no state corresponding
to a coﬁbination of types 4 and € is given since integrands

involving both trigonometric and arc-E;igonometric fu :tions are
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virtually nonexistent. Such a problem, if encountered, would be
.classified in the '"other'" state, #14.
In a like manner we list the techniques of transformation

that we allow the student to apply to integral problems:

The Known integral rcutire
Ordinary substitution
Integration by parts
Trigonometric substitu.ion
Trigonometric identities
Separation of the sum
Poiynomial division

Completion of the square
Partial fraction expansion
Conjugation of the denominator
Expansion of a power

Returning to the previous integral
. Guessing the answer

. Giving up

-

Woo 3O G-

)
Ll =0

The Tutor as Seen by the Student

Logging in. When the student logs in to the tutor for the
first time, the tutor must establish the scope of the g}udent's
understanding of the subject. The tutor asks the student seven

yes-or-no questions:

Have you ever studied integration by parts?

Have you ever studied trigonometric substitution?
Have you ever studied trigonometric identities?

Have you ever studied polynomial division?

Have you ever studied completion of the square?

Have you ever studied partial fraction expansion?
Have you ever studied conjugation of the denominator?

NN BN

Several techniques were assumed known by the student, such
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as simple substitution, separating a sum, expansion of a power,
applying the knownriﬂtegfaf routine, and guessing the answer. All
but the first of these are simple 1logical or algebraic
manipulations that would be prerequisites for any exposure to
methods of integration. Simple substitution was not included in
the 1ist because nearly all students learn this technique first.
If a student logged in who proclaimed ignurance of every technique
including simple substitution, the tutor would not be abie to give
intelligible hints for any nontrivial group of problems. In other
words, it is assumed that any student who works with the %uté} is
at ledst aware of the technique of simple substitution.

Since the student usually will increase his repertoire of
problem soiving techniques during the period he is interacting
with the tutor (perhaps by ocutside reading or Lecture phase
exposure), each time the student logs in, the tutor asks him those
questions to which he responded negatively in the past. The tutor
keeps a statistical summary file on each stuirat, one item of
which is the monotonically cdecreasing 1list of '"unknown"

techniques.

Choosing the problem. After the student has logged in he

is asked '"Do you have a problem?". 1If the student has a problem
he responds with "yes' and then types in his integral, If the
student responds 'mo' the tutor then retrieves the statistical

summary file for the student and constructs an appropriate prior
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set of statistics., This process is explained in detail in a later

section. Armed with the prior statistics the tutor scans the

problem archive file, calculating the estimated weighted distance

between the tutor and student for each problem as described in
Chapter 3.

The problem that yields the highest value is then chosen
for the student. In practice, the problem selection process takes
approximately 3 seconds of machine time, a not unreasonable delay

for the student.

Choosing the technique. After the problem is selected the

student must choose from among his repertoire of techniques. The
tutor types the integral and foiiows with "What shall we do to
solve it?", The student refers to a printed list of abbreviations
for the 14 technique: listed above.~ He may specify directly any
of the techniques cr he may type "HELP" or "REVIEW". HELP causes
the tutor to show the student the name of the technique the tutor
thinks 1is most 1likely to soive the integral. Successive HELPs
give successively less likely hints until the tutor's hints are
exhausted. REVIEW causes the tutor to show the student all the
steps he has performed so far, in case he has made a number of

transformations and is confused as to the status of the problem.

Applying the technique chosen. Once .the student has

chosen the technique he is placed under the control of the program

e
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specific to that technique. If the technique involves a secondary

choice, such as in substitution, the tutor types: 'Can you think
of a substitution?". The studen:c then can answer 'YES'", '"HELP",
or "EXIT'. .f he types "YES" he then proceeds to type in the
actual expression for 'hich he is substituting. If he types

"HELP", the wired-in heuristics of the program take over to find a
reasonable substitution. In this case the program gives the
student a choice among several conceivable candidates. For

instance, with the integral
2

x2
J‘x * " dx
X

either the substitution U = x2 or U = e will yield a known
integral, The tutor will present one of these to the student and
ask him if the choice is reasonable or whether he would like
another candidate or whether he would like to give up on
substitution aitogether. Thus the final decision of which
substitution to make is 1left up to the student even though the
tutor's own wired-in heuristics did the original work. Usually
the students treated the search for a technique application choice
as a chalienge, prefering to use the HELP feature as a last
resort.

If the technigq” involves no choice of action, as in
polynomial divisi- 1e  tutor simply prints the answer out and

returns to '"What shai: we do to solve it?!",
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A Sample Student-Tutor Dialogue

In order to capture the flavor of the interaction between
the student and the tutor, we present a sample dialogue selected
from actual proto~Is gathered during an experiment with calculus
students. In the following, the underlined characters are those
typed by the student, everything else is typed by the tutor.
Statements beginning with a semicolon (;) are explanatory comments

inserted by the author. They did not appear to the student.

(INTEGRATE)
; Student's command to LISP to start the tutoring program.
Hello! What is vour name?

Ruth

Hello again, Ruth
Have you ever studied partial fraction expansion?

no

; The tutor recognizes the student Ruth and asks if
; she has learned partial fraction expansion yet.

; She had previously answered ''yes' to all the other
; techniques.

Ok, do you have a problem?
no

All right, I will select one for you!

Thinking for a moment...

; At this point the tutor retrieves Ruth's technique

; choice probability matrix (the ti.'s) from an

; external file, constructs an appr3priate prior,

; calculates the expected example distance for each

; problem in the example archive, and chuoses the problem
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; with the higbest resulting value.
Ok, Ruth

Our integral is J‘X*log(X) dX

What shall we do to solve it? : sub

;Ruth has chosen substitution

"Can you think of a substitution? (YES, HELP or EXIT)

We are now in the substitution program and Ruth has
3 choices: 1) specify her own choice of substitution
2) receive a hint from the tutez
3) abort substitution altogether and
return to the original integral

we W W we Be

yes

Let Ul = log(X)

; The tutor prompts the student with '"Let Ul = " and
; she responds with her choice. Successive substitutions
; would involve the variables U2,U3,...

Ok, Ruth
we will let Ul
equal log(X)

; At this point the tutor calculates dU = 1/X dX

; and tries to find dU in the integrand.

; Since the search was unsuccessful, the tutor then

; solves Ul = log(X) for X so that the substitution can
; be carried out. :

equals eU1

and dX ¢
equals eU1 dul

which we substituted into the integrand

Our new integral is now J~U1*e(2*U1) dul




Methods of Integration Experiment 90

Please type Good, Bad or Giveup

; Now that the student has applied substitution,

; the tutor lets her choose whether to go on with

; this new integral. "Good" will cause this.new integral
; to become the "official' new transformation, ''Bad"

;3 will return us to the start of the substitution routine
; for another try, and '"Giveup'" will abort substitution

; to returh to the original integral.

Can you think of a substitution? (Yes, Help or Exit)

; We are now back to the original integral

help R
I can't find a suitable substitution! Will exit...

The tutor could not find a substitution that it felt
led to a simpler integral. The point, of course, is that
substitution was not a very good choice for this
problem.

Notice however that the tutor intervention threshold was
not tripped when the student specified substitution. The
intervention parameter is deliberately set high enough
so that the student has some latitude to try poor
guesses and see the results. -

Ve We We Be Wwe Ve Ve e o

0k, Ruth

Our integral is bfx*log(X) dX

What shall we do to solve it? : help

; Now the student wants a hint from the tutor
I suggest you try integration by parts

What shall we do to solve it? : parts

The student has taken the hint and asks for
integration by parts

.
»
.
»

Integration by parts!

We will use the notation
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J.U dv = UV - J‘V du

Can you think of a choice for U ? (Yes, Help or Exit)

; The student has essentially the same choice as she did
; upon entering the substitution program

help

How about letting U = log(X)

Can you think of a choice for U?

yes
’ Let U = log(X) _
) ; Apparantly the student is somewhat unfamiliar with
; integration by parts, since she did not even attempt
;s to guess a choice for U, ’
Ok, Ruth
we will let U = log(X)
thus dV = X dX
hmmmm, . .
; A slight pause as the computer utilizes a simple set of
wired in heuristics to find the integral of dV. If the
tutor cannot solve the integral of dV by the known
integral routine, simple substitution, or simple

trigonometric substitution, the student is so informed
and the tutor returns to asking for a choice of U,

e Mo We ws we

An intriguing choice!
. X2 1
thus V = ---
2

1
and dU = -
x L 3

We now have ‘J&*log(X) dX
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} Xz*log(X)
;

) .- .
Please type Good, Bad, Again, Solve or Giveup
Good allows the studént to exit with the new integral
Bad recycles back to the beginning of 1ntegrat10n by
. parts for a new choice of U
Again lets the student 1ntegrate the new 1ntegra1 by
parts again (not used in this sample protocol)
Solve lets the student solve for the original integral
if at least two consecutive integrations by parts
have been done (not used in this sample protocol)
Giveup aborts integration by parts and returns with the
original integral

We We Ve Ve W Ve Ve Ve We We

(7]
Q
Q
Q.

0k, Ruth
Our integral is now Jﬂx dXx

-1
times --
2

; Extraneous coefficients are always factored out of the
; integrand

What shall we do to solve it? : known

; The students often used ''guess" at this point to

; guess the answer to simple integrals. .Know~! however

; simply provides the answer once the known integral is

; successfully identified.

; Notice that the student has now completed the problem.

; If this problem had dragged on one more step, the tutor's
; problem length threshold would have been exceeded aad

; the tutor would have taken the student back to the

; beginning of the problem to find a better solution.

Very Good!

Before resubstitution ‘
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the answer to integral 1

- xz
is ----
4 -
Adding the term from integration by parts
24x%*10g (X) - X°
we have ~~--vvcccocaaaao

pius an arbitrary constant...

You did that problem in 3 steps compared to 2 for me!

My Solution Your Solution -
1. Integration by parts 1. Substitution

2, The known integral routine 2. Integration by parts
- 3. The k own integral Toutine

; One of the most effective features of the tutor is this

3 problem comparison. Even though the student does not

; see the exact step-by-step solution of the tutor, the

; comparison of the solution outline is usually revealing.

Thinking for a moment.....

; The tutor now adds the pattern of responses generated by
this problem to the statistical summary for Ruth, A
trouble value is calculated for each problem state (See
Chapter 3). If the trouble value for any state

exceeds the problem intervention threshold, the tutor
selects an example from a special list of remedial
problems -- and forces the student through the entire
solution. This did not happen in the protocol presented
here.

e W we WE WM We e e

Ok, do you have a problem?

; We have now come back to the starting point shown above.

Implementation of the Thresholds and Archives

Summarizing the results of Chapter 3, we defined

93

three
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thresholds that affect the dynamic perforhance of the tutor. The
technique intervention threshold and the problem length threshold
were used by the tutor in the course of a student problem solution
to challenge an unusual choice of technique or an unusual length
of solution. The problem intervention threshold was usg? at the
end of a problem solution_ to see whether the student was
developing critical trouble in one or more problem states. If the
threshold was exceeded, the tutor did mot allow the student to
select the next problem,‘ but forced him to look at a specially
chosen example.

As is explained in Chapter 5, the tutor evolved in three
stages. Stages 1 and 2 were followed by experimentation with
students learnéng Calculug. Stage 3 was followeu_by the preseﬁt
report. Unfortunately, although virtually all the other salient
features of the tutor existed in some form by stage 1, the
technique intervention threshold and the problem length threshold
were installed during stage 3 and did not undergo a ihorough
evaluation by real calculus students. Preliminary results with
the threshold settings described in this chapter will, however, be
presented in Chapter 5.

Chapter 3 introduced the unusual technique parameter € to
define the unusual technique threshold. In practice, we have used
s« value of € = 0.25 with success. Thus if in a given state

(failure states included) the tutor's most likely technique choice

'ﬁm has probability tim? then the threshold is exceeded whenever
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the student chooses a technique T, with tutor-probability ti; <
0.25 t, .

Similarly for the problem length threshold we chose a
value of 2.0 for the problem length parameter. This means that
the student is stopped for a review whenever his problem solution
TUNS MOre than 2.0 standard deviations longer than the<pean of the
number of steps for problems of this class (tutor's statistics).

The problem solving tiouble threshold was set at 0.5 for
problem states #2 and #3 (simple substitutions and simple
trigonometric substitutiong) and 1.75 for the other states. This
had the effect of concéntrating the tutor's attention on these two
states since the student could not make more than one or two
failures in these states before the tutor-student distance
exceeded 0.5. The lessons learned through interaction with the
calculus students are discussed in the next chapter.

The general problem archive consists only of the original
problem description (the integrand) and a list of ordered pairs of

the form
(state,technique) , (state,technique), ...

representing the tutor's own solution of the problem, Note that a
complete reconstruction of the tutor's solution is not possible
because information on how the tutor applied the techniques is not

given, All that is known is which states the tutor arrived in,

and which techniques it subsequently employed.
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This form is sufficient to store all the information
needed to scan the archive for an optimal problem (as described in
Chapter 3), and to coﬁpare the length of the student's solution
with that of the tutor. If we also stored each of the specific
responses needed to work the probiem in detail (necessary only for
slave mode problem selection) we could combine the two archives
into one and the students could ;onceivably improve every problem
the tutor could give them. This was not done simply because the
general problem archive would have tripled in length, resulting in
increased overhead each time it was scanned. In addition, the
detaiied response information is not used except when the student
is in the slave mode.

Whenever a student works a general archive problem in
fewer steps than the tutor, the tutor automatically rewrites the.
general problem archive with the student's solution outline
replacing the teacher's. The tutor also rewrites its own recofd
of technique choices from which its technique choice probabilities
are calculated for every student problem. Thus évery student on
the system is exposed to the new tutorial strategy immediately
after the solution to an archive problem is improved. Since the
general archive contained about 80 problems, the effects are not
d{fmatic each time a problem is rewritten, but the cumulative
effect is substantial. Notice that certain precautions must be
taken to screen trivially improved solutions from supplanting

those of the tutor. One of the transformation techniques is
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"guessing the answer", a popular choice by students confronted

with integrals from class 2 or class 3, such as

1 s
J ..... dX = log(X + 3) .

In thisrcase the tutor will assume that the student kne% that the
expected method of solution was simple substitution and will treat
the solution record as if simple sqbstitution had been used. On
the other !hand, the student can sometimes successfully guess the
answer to more compli;ated integrals for which no canonical
solution can be assumed. A sufficiently brilliant (or devious)
student could fill the entire archive with 'guess-type' solutions
of one step if such solutions were not automatically excluded!
Similafly, a problem terminated in the give-up trapping state must

not be considered as improving the archive.

The Information Updating and Student Learning Models

As was shown in Chapter 3, between learning
discontinyities the student statistics may be updated in a very
simple way. The:Dirichlet distribution allows us to simply add
the number of responses in each category to the corresponding
exponent in the form of the distribution. One needs only store a
matrix M of these exponents to completely characterize the

distribution. Specifically, if technique Tj is chosen for a

problem in. state Si» then matrix element mij undergoes the
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updating

The use of the student learning model, on the other hand,
is more challenging. In phases 1 and-2 of the research, we had
assumed that the student's learning took place more or less
continuously; and did not anticipate recognizing any sudden shifts
in the student's problem solving patterns measurable over the span
of a single problem. Because of these assumptions, a very simple
=model was adopted for updating the student's patterns. It was
assumed that the last N responses i1 each state would be the most
relevant representation of the student's patterns. We had hoped
to find an estimate for the optimal value of N that would balance
the loss of statistical "weight"!frOm a small sampling with the
increase of relevancy of looking only at the most recent
responses., Such an optimal value would depend presumably upon
some sort of '"learning rate" characteristic of the process.

Unfortunately, the second round of student measurements
revealed unmistakeable indications. that the students changed their
problem solving patterns suddenly and at unpredictable intervals,
This evidence will be presented and discussed in the next chapter,
but this important result is mentioned here to explain why the
final student learning model differs so much from the model first

used with the students. We see, in particular, that a student

"history'" of N responses cannot model a sporadically changing set
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of response probabilities realistically. On the other: hand,
thanks to the observed correlation of the learning discontinuities
with occupancy of student failure states, we can now identify the
moments at which to apply the student learning model developed in
Chapter 2., Although the tutor was undoubtably making some
sub-optimal problem choices (based on the student history model),
the compiete record of each student's responses over a wide
variety of problem classes is still available, and thus allows us
to measure the parameters -of the new learning model from the raw

data.

Description of the Computer Tutorial System

The tutorial system is written in LISP 1.6, a dialect of
LISP developed at the Stanford Artificial Intelligence Laboratory
by John McCarthy and colleagues. Since a typical tutorial session
involves substantial algebraic manipulation, the tutor depends
upon the resources of a comprehensive algebraic package called
REDUCE written in LISP by A. C. Hearn of the University of Utah.
The tutor calls the command scanner in REDUCE to read every
“formula and return the LISP prefix equivalent. Although some

minor formatting cleanup is done by the tutor, all algebraic

" «.manipulations including differentiation are sent to REDUCE.

REDUCE sends back the resulting simplified expression in LISP
prefix notation, modified in form by various flags that are

selected by the tutor, Finally, when expressions are pririted out
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to the student, the tutor calls a REDUCE program to format the
individual expression terms. All other manipulations, including
processing of student word responses, manipulation of the student
modeis, variable substitution, trigonometric  substitution,
integrating by parts, golynomial division, trigonometric

identities, and partial fraction expansion are done by the tutor.
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ChaEter S

Experimental Results

This chupter describes two experimental enirndes with
students learning calculus and sketches the tiuns of each
experiment and the lessons learned. A detailed justification of
the assumption of the existence of learning discontinuities is
derived from examination cf the students' responses. Numerical
results from the second episode showing the student's expected
number of steps as a functicn of the tutor's expected length of
solution are then presented. We shall examine the student's
probability of entering a failure state as a function of the
number of problems worked and shall estimate the mean of the
student's learning parameter ¢, Finally, the results of the

tutor optimization are presented.

The First Experiment

A group of four college freshman calculus students was
chosen to help debug the prototype tutor. Although the students
were serious in their desire to learn techniques of integration
from the tutor, the experiment itself was a qualitative test of
the integration routines and the mode of interaction with the
students. Other than the identification of the computer program

bugs, the principal impressions gained from the students were:

1. The need for an archive of problems from which the
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tutor can select examples. The students were typically
~ .juctant to suggest mox: than a few of their own examples
and of course lacked the perpsective to choose those
examples most beneficial to their development,

2. The need for the technique of ''guessing the answer" so
that the student could circumvent simple but repetitive
patterns, The students also enjoyed the challenge of
guessing occasionally when they understood which technique
to apply, particularly with simple substitution and simple

trigonometric substitution,

The Second Experiment

Following the preliminary experiment, the general problem
archive and the guessing technique were added along with a number
of minor alterations to the tutor's conversational format.
Facilities for rocording each student's response were added so
that complete protocols could be reconstructed, Fifteen students
from Stanford University voluntered to interact with the tutor
over a period of about three weeks. No particular attempt was
made to screen the students for a certain type of background,
although all the students were either studying calculus
concurrently or had studied calculus in the past and were
interested in resurrecting their skills at methods of integration.

In short, the students exhibited the reasonably broad spectrum of

prior mathematical expertise that a -tutor would expect to
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encounter.

During the course of the experiment the students worked a
total of 284 problems (19 per student) of which 258 (91%) were
selected by command of the students from the tutor's problem
archive. 282 of the problems (99%) were terminated in the solved
state, and the other two were unsolvable problems initiated by the
students (e.g. J‘exzdx). The guessing technique was used 45
times with a success rate of 89%. The students asked the tutor ‘
for direct help in 90 of the problems. Typically once help was
requested, it was requested repeatedly. In the 90 ""helped"
problems, the students asked for technique choosing assistance 173
times and technique application assistance 65 times. The students
entered identifiable failure states (where application of the
trial technique failed to yield a new transformation) 98 times on
65 different problems. The probability that the student would
enter a failure state was 0.29 if he had not previously entered a
failure state on that problem and 0.40 if he had already entered a
failure state on that problem. The probability that the student
would ask for help was 0.32 if he had not entered a failure state
and 0,54 if he had entered a failure state on a particular

problem,

Determination of the Failure Parameter

In Chapter 2 we defined the failure parameter & as the

amount by which the probability of choosing a technique decreased
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given that the student ‘had chosen the technique on the previous
step and encountered a failure. An accurate estimate of 6 was
difficult to make ;ince the failing technique was rechosen only 7
times out of the 98 failures encountered. Furthermore, 5 of the 7
reapplications of failing techniques involved substitution, while
the other two were trigonometric identities,

Averaging over all the students, we found the results

expressed in Table 5.1:

State Technique tij(nonfailure) tij(failure) 0(i,j)

4 - subst. 0.275° 0.167 0.61
7 subst. 0.755 0.500 0.66
13 subst. 0.291 0.222 0.76
4 trig. iden. 0.217 0.667 3.06

all others tij 0 0

Since the substitution failures were made by several
students, a value of © = 0.7 seems reasonable for this technique.
The large 6 value for trigonometric identities is questionable

since it is based on nnly 2 responses made by the same student.

The Existence of Learning Discontinuities

A major assumption in Chapter 2 was that learning occured
suddenly and at unpredictable intervals. This assumption allowed
us to separate neatly the information updating and student
learning processes. We assumed furthermore that we could identify

the occurrences of student learning unambiguously, thus knowing

when to apply the student learning model. We shall now present an
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analysis of the students' responses that makes our assumptions of
the existence and properties of learning discontinuities more
credible.

Consider an experiment in which we the observers have only

the power to observe the responses made by the pa}ticipants. We

=

are to assume néthing about the purpose of the experiment or the
meaning of the responses. The responses themselves are sequences
of positive integers which we assume arise from a multinomial
distribution. We are toid by the designers of the experiment that
at certain designated points in the sequences it is likely that
the participants altered their rationale for responding. The
suspicion of uniqueness of these points arises from observations
that we are not permitted to see. We are asked to analyze the
response data to a) support or reject the hypothesis that the
suspicious points separafe differing reponse regimes; and b) test
the inclusiveness of the experimenter's criterion for selecting
suspicious points by trying to find additional points that are
significant' statistically as regime separators. In this
hypothetical experiment we have purposely obscured the underlying
rationale for "suspecting" a given point so as mot to allow the
observer any bias in deciding that such a point indeed ought to
separate response regimes.

In order to answer question a, we propose to consider the
sequence of responses $) before each suspicious point and the

sequence of responses S, following each point. Using these
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sequences we shall calculate the chi-square statistic for the
particular suspicious point., The chi-square statistic is chosen
since it 1is the natural comparison statistfc for independent
samples from two multinomial distributions., Since the magnitude
of the chi-square statistic depends on the sample size, each
candidate pair of sequences will be compared to 1000 sequences
randomly generated with the same overall reSponse probabilities.
We shall take as the null hypothesis the event that the
subsequences s; and s, do not arise from different multinomial
distributions, Thus if sequence s, really does represent a
statistically significant change from sequence Sq» the resulting
chi-square statistic will be largz in comparison with most of the
1000 sequences generated under the null hypothesis. In practice,
we shall accept only those suspicious points whose chi-square
statistic has a significance of 90% or more (whose chi-square
statistic is strictly greater than 90% of the chi-square values
generated by the null hypothesis). Once we have identified a
point successfully as separating two regimes of responses, we must
ignore sequence s, in examining points further along the data
since responses fron sequence Sy will contribute falsely to
raising the chi-square values of subsequent points,

To answer question b, we shall repeat the calculation of
the chi-square statistic and the 1000 null hypothesis trials at

all of the nonsuspicious points to see how many 'non-suspicious"

points are also regime separators. This is crucial as a test of
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the model predicting the occurrence of discontinuities.

Of course, this hypothetical experiment describes exactly
the situation we face when trying to identify the learning points
from the calculus students' response data. The suspicious points
are those places where the student encountered a failure state and
presumably had to consider whether or not his solution schemes
were practical. As emphasized above, we did not make any
assumpfions about the student data other than assuming that
between learning events each student's réponses were derived from
a multinomial distribution. This was felt to be a fair test of
the existence of learning points since inclusion of extraneous
student entries and ad hoc interpretation of each student protucol
was avoidéd.

Several interesting facts were uncovered by this search.
As a general rule, a minimum of eight responses are needed to
establish a 90% certainty of the existence of a learning point,
even with the most extreme data. For instance, the sequence 1 1 1
1 2 2 2 (consisting of only seven responses) does not possess any
division into subsequences, even after the fourth response, that
generates a chi-square statistic with 90% significance. In a
similar vein, regardless of the total length of the sequence, the
first two responses are incapable of indicating a learning point.

For instance the sequence

1122222222222222222222222
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also does not possess any division into subsequences that
generates a chi-square statistic with 90% significance. This
result has the incidental effect of causing most of the changes in
response probabilities due to '"the start-up transient' not to be
considered as significant learning points. (Nearly all the
students made one or two anomalous responses at the outset before
they became familiar with the tutor).

The student responses were separated by state and the
suspicious points were identified by looking at the complete
protocols and marking all the times a student applied a
transformation that failed to yigld a new integrand (definition of
the failure state). After response lists of fewer than eight
responses and failure states occurring in theﬁfirst two responses
were eliminated, a total of 37 suspicious points remained. The
chi-square analysis showed that 17 of the $7 points (45.9%) were
indeed significant as response regime separators at the 90% level.
Six more were significant at the 80% level, but this is only
mentioned to show that most of the insignificant poin:s were very
insignificant! The most important result of this analysis was that
a complete scan of all the responses (461 in all) produced only
three additional points significant as response regime separators
at the 90% level., Thus although only 45.9% of the suspicious

points seem to be genuine learning points, 85,0% of all possible

learning points are identified by our model.

Why are half of the student failure states obviously not
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learning points? A detailed examination of the student protocols
for each of the insignificant points shows that the contributing
causes are diverse. In three cases the failure state was '"false"
since the student subsequently reapplied the same technique
successfully., In at least 10 cases the student encountered a
succession of failure states in more than one probler type. Since
the tutor tended to choose archive problems frym -he most
"eritical' problem classification, some students did sot return to
ali the troubled states frequently enough to produce a reasonably

long run of failure free responses. Several short sequences of

responses were encountered that were interspersed with two or more

failure states and yielded inconclusive results. This, of course,
should be viewed as a mild failure of the experiment since in tkis
case it is not clear whether the student finished the experiment
too soor or whether the tutor failed to teach the student
effectively.

Returning to the original question of this section, what
was the distribution of identified 1learning points in the
student's responses? Examining 44 subsequences generated from the
students' set of responses divided at each learning point (some
student response sequences possessed no learning points), we find
that the average number of responses generated between learning
points is 461/44 = 10.47, but the the distribution of this number
varies from 3 to 39 with 18 different values measured. Referring

to Figure 5.1, we can now draw the conclusion that the response




Experimental Results 110

Observed frequency
7

v T

sl i

' 2 &~ S 4
10 20 30 ab 50
Responise sequence length
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discontinuities are sudden since our analysis shows that 85% of
all the significant learning points agree with our model of the
failure state as being the precise point where the responses
change significantly. Furthermore we are justified in claiming

that the discontinuities occur sporadically since we have just

seen that the average number of responses between learning points
is widely distributed. We have thus given a strong argument for
the existence of response discontinuities and in this context have
juscified the separation of the information updating and student

learning models that we performed in Chapters 2 and 3.

The Student's Expected Number of Steps

The most interesting question to ask about the calculus
tutor is whether the students became better problem solvers after
exposure to the tutor. As we have explained, there are many
possible criteria of probiem solving excelience. For instance,
elegance might be defined in terms of the use of certain very
general problem solving techniques. This project has focused on
solution length as a reasonable criterion. If the students "solve
problems in a fewer number of steps after exposure to Ahe tutor"
then the students have profited in a measurable way.
Unfortunately, the number of steps to solution is not a fixed
property of a given problem state (except for the special states
#1, #2, and #3). We did use the tutor's expected number of steps

to solution (plus a factor depending upon the variance of the




Experimental Results 112

expected number of steps) in defining the problem length threshold
for each state, but we recognized that this was only a guide to
help the tutor identify most of the unwieldy solutions. If we
insist on a very accurate measurement of the student's expected
number of steps, we must realize that the measurement depends
laréely on the particular problems the student chose to work.
However since nearly all of the students' problems were selected
from the’problem archive, we can compare the 1length of the
students' archive solutions to those of the tutor as a function of

number of problems worked to define a measure of improvement for

the student. Again it may be argued that whether or not the
student can approximate closely the tutor's 1length of solution
depends upon the particular problem, but we shall assume that
these effects are not significant.

Figure 5.2 shows a plot of the students' average number of

.

_additional steps per problem versus the tutor as a function of the

numbe. of problems worked. For each number of problems worked the
single highest instance of additional steps was ignored. This was
done because the raw data included several anomalously 1long
solutions all of which turned out from direct examination of the
problem protocols to be instances of the students experimenting
with features of the computer tutor! Notice the general downward
trend of the points, indicating that the students gradually
learned how to solve problems in as few steps as the tutor. No

negative entries are record'. here since erch time a student
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Figure 5.2. The student's average number of additional steps per

problem worked as a function of the number of problems worked.
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produced a shorter solution than the tutor, the titor incorporated
the solution into its own problem solving patterns. The results
thus show the performance of the s<udents compared with the fully
optimized tutor that existed at the end of the experiment.
Although we know that the data shouid not be expected to be linear
with the number of problems worked since we have just discussed
the abrupt nature of the typical learning pattern, we shall take
the liberty of representing the data averaged over all the
students by a least squares linear fit in order to point out its

basic properties. This linear fit is given by
Y = 0,909 - 0.101*X .

The interesting part of this equation is the slope of
-0.101, which indicates that the student comes 0.101 steps closer
to the tutor each time the student works a problem. Notice that
this indicatés that the students, on the average, become as
proficient as the tutor after working about nine problems in each
problem class. An exponential model would be a better fit, but

the above result gives an indication of how a '"learning per

problem" quantity can be measured.

The Probability of Entering a Failure State

Another quantity related to gaining problem solving

expertise is the probability of entering a failure state. We have

already showed that the students converge on the tutor at the rate




-

Experimental Results 115

0.24, Number of failure states
per tutor's solution step

0.22}
0.20¢
0.18 "
0.16}
0.14
0.12

0.10

Y =0.143 ~ 0.0107 X

0.08F

0.06§

0.04

0.02f

i i A

1 2z 3 4 5 6 7 8 9 10 11 12
Number of problems worked

Figure 5.3. The number of student failure states per problem per

tutor step as a function of thc number of problems worked.
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of about 0.1 steps per problem worked. If in additioa, the
students reduce their probability of entering a failure state as a
function of the number of problems worked, we can be reasonably
sure that they are really learning to solve problems more
efficiently. In Figure 5.3 we show the number of failure states
encountered on a problem divided by the number of steps used by
the tutor to work the problem as a function of the number of
problems worked. We have divided by the length of the tutor's
solution in order to correctly scale the difficulty of the
problems (remember from Chapter 4 that the tutor generally chose
the shorter, and thus easier, problems from the archive first).
The data is too noisy to draw many conclusions, but a clear trend
downward is seen after about six problems worked. The peak
between 4 and 6 problems worked is likely due to the increased
difficulty of a few particular problems usually encountered at
that point, For instance, after working one or two simple

substitution problems like

Jﬁsin(Z*X) dX" and L[cosh(X/4) dX ,

nearly all of the students got

Icot(Z*X) dX
as the next problem. Although the tutor knew that the command

TRIGIDEN would change this to the more suggestive form
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cos (2*X)

most of the students became confused after finding out that

fcot () dy

was not a "known'" integral and tried unusual substitutions or
trigonometric identities before realizing how simple the problem
was., The result of all this is a peak in most of the measured
statistics wherever this problem appeared. This problem remains
as a good example of how hard it is to assign a consistent
difficulty factor to integration problems.

For descriptive purposes a least squares linear fit to the

data in figure 5.3 yields the relation

Y = 0.143 - 0.0107 X .
This indicates that the number of student failures per step

decreases by 0.0107 for each successive problem the student works.

Estimation of the Learning Parameters

Chapter 2 proposed a scheme for altering our estimates of
the student's technique response probabilities when the student
encountered a learning discontinuity. Since we have shown in this
chapter that we can identify (with probability 1/2) those moments

when the student actually does encounter the discontinuities; all

that remains is to deduce realistic numerical parameters for the
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model from the student data.

The basic assumption made in Chapter 2 was that when a
learning discontinuity occurred, only the techniques chosen
immediately before and immadiately after the discontinuity had
their response probabilities affected. The model assumed that
there was a learning parameter o« such that if the student
encomtered a learning discontinuity in state s; as a result of
applying technique Tj and then subsequently applied technique Tk

sucessfully, then

= ot

M

t.. . . .
1j,posterior 1j,prior

and

tik,posterior - tik,ptf:ior

where o is beta distributed with parameters r and s. 1 depends
on o and is given in Chapter 2, Examining each of the 20

confirmed points of learning discontinuity, we calculate the

estimates
1 t.. .
&E = am-- -1l.posterior = 0.169
20 L. .
ij,prior
and similarly,
v 1 ij,posterior —
@ = ---- (-2L2BOTRETION % ) = 0.086
20

t.. .
ij,prior

where t.

ij,posterior *° estimated by the observed response

frequencies.
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o

i 1.105 (1 - p)0-474 ;-0-893
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Figure 5.4, Distribution of o for the calculus students,
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Since

we can use the methods of moments and solve for r and s to get
r = 0.1070 , s = 0.5260

The graph of this beta function is shown in Zfigure 5.4.
Now that we have the actual form of the distribution for a
reasonably large group of students, we shall consider these
parameters as describing uncertainty in the student lea.ning
parameters for all such events in the future.

A relevant question at this point is whether many of the
other student technique probabilities changed besides the
techniques Tj and 'I’k specifically mentioned in the model.
Calculating " o" parameters for all the remaining possible
responses in each case, we find that the technique applied
immediately before the failure had the smallest « and the
technique applied immediately after the failure had the largest
o , as the model predicts. The observed «'s for each position
from S reponses before the failure to 5 responses after the
failure are shown in figure 5.5. Each dot represents a single
measurement of o« in a particular postion before or after the
failure event. Notice the remarkable discontinuity in the
observed «'s befere and after the failure. An unexpected

observation .is that the techniques applied two and three positions
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away from the failure also seem to be affected. This would seem
to seriously undermine the assumption that only the techniques
adjacent to the failure are affected. However, it 1is not true
that in this data the positional observations are independent.
For instance, in many cases the pre- or post-failure tecnique is
also applied in other positions. Suhtracting these occurrences
reduces the correlation effect but does not cause it to disappear
as shown in Figure 5.6. The conclusion is that the failure state
does seem to affect the other techniques applied 'nearby" in
addition to the ones predicted by the model. A systematic
inclusion of these other techniques seems difficult since there is
no obvious rationale for their technique frequencies altering as a
result of the failure. Possibly after discovering a new
technique, the student is stimulated to think about his problem
solving patterns or is more prone to experiment with new
techniques. In any case, the measurements indicate a definite
tendency for a few techniques before the failu;e to decrease
dramatically in frequency after the failure, and conversely a few
techniques after the failure increase dramatically in frequency.
As the figures show, the largest effect is the technique predicted
by our student learning model. We view this result as a qualified
success with interesting implications for ruture research.
Further work with this problem would he aided by longer student
sequences and possibly direct interviews with the students to

establish a rationale for prediction.
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Definition of a Learning Rate for Tutorial Systems

The above has illustrated some of the difficulties 1in

defining a learning rate for the methods of integration system.
O0f course, this difficulty stems from the tutorial nature of the
system rather than from the subject of integration. In fact, the
subject of integration prébably aliows measuring a 1learning rate
more easily than other subjects since the notion of problem
transformation is so simple to define.

The central idea of this tutorial system is that within
each problem classification, the tutor's problem solving
strategies are determined on a frequency basis. As we  have
mentioned, because of this approach, the tutor never has to find a
solution and thus never knows how hard an individual problem is,
Great advantages in the actual tutoring process accrue from this
approach; for instance, the tutor can deal with problems it has
never worked, it can learn from the students, and it can adjust
its problem solving techniques to the level of the 1learner. But
these advantages have a price since the tutor has no absolute
standards against which to judge the student. If an advanced
student logs :n to suggest only difficult problems to the tutor,
the resulting statistics may be the same as a beginning student
who has tried to work easy problems! Only the fact that the
overwhelming majority of the problems chosen by the students in
the experiment described in this chapter were from the tutor's

problem archive made the analysis of the learning rate meaningful.

i
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The Tutor Optimization Experiment

Before the methods of integration experiment the author
believed that one or two of the students might be so adept that
they would actually construct shorter solutions to some of the 73
archive problems. Since the author had been involved in integral
problem solving for at least two years prior to the experiment,
and considered himself an expert integral solver, there seemed
little chance that any improvements would actually occur. It was
his intention to implant one or two ''doctored" solutions in the
archive to see if they were improved upon. However, this plan was
overlooked in the exigencies of getting the tutor running and the
students organized. Upon examining the archive at the end of the
experiment, it was found that no less than 18 of the original
problem solutions had been shortened! From the detailed solution
schemes, it was apparant thst the tutor had acquired technique
patterns never before used by the author. This was a lesson of
the first magnitude.

The scope of the improvement was also unexpected. Of the
11 problem types represented in the archive, four were improved
significantly. Table 5.2 shows the average number of problem~
steps for the tutor before and after the experiment, broken down

by problem type. See Chapter 4 for the description of problem

types.
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Type Description Before After Change
1 known 1.000 1.000 0
2 simpie substitutions 2.000 2.000 0
3 simp. trig. subst's 2.447 2,000 -0.447
4 trig. functions 2.857 3.000 +0,143
5 exponential fns 2.250 2.250 0
6 arctrig. functions 4.250 4,368 +0.118
7 fract. poly. powers 4.470 3.320 -1.150
8 comb. of 4 and 5 1.000 1.000 .0
9 comb. of 4 and 7 3.000 2.000 -1.000
12 comb. of 6 and 7 5.250 5.368 +0.118
13 quotients of poly's 6.805 5.421 -1.384

The largest drop was for quotients of polynomials, type
13. Notice that three categories experienced slight gains,
indicating that in the new problem solving scheme a trade-off
between categories occurred. It is also interesting to examine
the changes in the tij’s to see what techniques the improved tutor

is more likely to use. Table 5.3 gives the values of

tij,after - ti4, before

for relevant values of i and j.

change in

type technique application frequency
trig. fns. deriv. subst. +0.037
" parts +0.009
" trig. subst. +0.018
" trig. ident,. -0.064
frac. poly. deriv. subst. +0.111
powers trig. subst. -0.111
quotients deriv. subst. +0.100
of trig. subsct. © +0,002
polynomials sum separation -0.093
" poly. division -0.004
" compl. square -0.020

" part. frac. exp. +0.015
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For problems of type 4 (trigonometric integrands) the
tutor now uses trigonometric identities less in favor of
derivative substitution, integration by parts, and trigonometric
substitution. For fractionai powers of polynomials the tutor now
recommends derivative substitution more often in place of
trigonometric substitution. Finally, for quotients of polynomials
the tutor now essentially recommends derivative substitution in
place of separation of the sum. This last change is one that had

never occurred to the author. For instance, with the integral

rather than dividing out the polynomials or separating the sum
into three integrals, it is shorter to substitute U= X - 4 ,
yielding

U2+ 10*U + 29

which is solved immediately by inspection as
2
-- + 10*U + 29*log(U)
2

which upon resubstitution is
X2

-- + 6*X - 32 +29*1log(X - 4)
2

The unpredictable occurrence of better solutions is an

interesting feature. Seven different students contributed to
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optimizing the archive, including students who otherwise appeared
to be the least proficient of the integral solvers.

The potential of the tutor's self improving scheme is
great, One may wish to carry out the optimization simultaneously
over several superiority criteria and several levels of student
sophistication. But perhaps most important, the tutor did improve

those areas in which the tutor's original author was weak.

Conclusions

This research has extended and deepened the definition of
a tutor in computer-based education. In particular, the tutor
transmits problem solving heuristics, chooses appropriate
examples, deals with arbitrary student examples, handles diverse
student backgrounds, and 1learns superior problem solving
heuristics from the students.

A logical and quantitative methodology for transmitting
problem solving heuristics has been estatlished. The use of
problem archives as the basis of the tutor's o#n heuristic scheme
is demonstrated.

A simple model is posed of how student heuristics change
when the student encounters a failure and is supported by
experiment with calculus students.

A definition of learning in a tutorial situation is given
and is demonstrated by the calculus students.

Perhaps the most interesting result of the research is the
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scheme for tutor improvement. In the calculus experiment the
tutor not only acquired a lar;er number of improved problem
solutions than had been expected, but incorporated problem colving
strategies previously unknown to the author.

Finally, this research combined for the first time the
results of recent research in symbolic integration (Moses, 1967)

and algebraic simplification (Hearn, 1970) for use in computer

assisted instruction.

Recommendations for Future-Research

This research has suggested a number of interesting new
directions for future work. At the heait o. the student learning
model, much more needs to known about the role of a failure in
determining the student's technique choice probabilities. An
unexpected result of the calculus experiment was. that techniques
other than the failing one are apparantly affected by the failure.

Experimentally it was shown that calculus students'
solution 1lengths converged to the tutor's solution lengths in
about 9 problems. How much of this convergence is attributable to
learning how to interact with the computer tutcr and how much
represénts true changes in the student's problem solving
strategies?

Taking a different approach, a utility theory of problem
Presentation could be implemented that used the expected rate of

student convergence in different problem classes as a criterion.

_pundie
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The use of a quantitative measure of problem difficulty
was avoided completely in this research. The development of a
good "difficulty metric" for integration problems that did not
involve searching for a solution explicitly would, of course, be a
significant result in artificial intelligence as well as computer
assisted calculus tutoring.

Finally, the most obvious new direction for computer
assisted tutoring is developins .utors for subjects other than
integration. Since methods of iantegration can be modeled by a
simple state and technique structure, construction of tutors fo:
other subjects will undoubtably deepen the understanding of states
and techniques., Methods of integration also involves a very
traditional problem solving  structure with heuristics being a
dominant component. These heuristics are clearly revealed in the
automatic integration programs and in the integration tutor. How

dominant the role of heuristics is in other subjects is not known.
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