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ON THE STABILITY OF ROTATED FACTOR LOADINGS: THE WEXLER PHENOMENON

ABSTRACT

The formulas which give the 'standard errors of factor loading estimates

while available and computable are complicated and our understanding of

them is limited. A nontechnical description of their behavior under favor-

able and unfavorable conditions is given. Of particular intereLt_is their

behavior in the presence of singularities arising fromequal eigenvalues

and undefined rotation.
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ON TILE STABILITY OF ROTATED FACTOR LOADINGS: THE WEXLER PHENOMENON

11 INTRODUCTION

Numerous authors have looked at the sampling stability of loading

estimates which arise in factor analysis. While analytic results for the

standard errors of unrotated loadings have been available for some time

(Lawley, 1953, 1967; Lawley & Maxwell, 1971) those for analytically rotated

loadings are fairly recent (Archer & Jennrich, 1973; Jennrich, 1973a,b).

Consequently much of the early work on stability was based on simulation

studies. After reviewing several studies, Cliff & Hamberger (1966). found

that the standard errors of factor loading estimates were about the\same

as those for correlations, that is about lirT in magnitude for a sample

of size n . This is a crude but useful summary of some rather com-

plicated results. It is useful because it is simple and reasonably

accurate when everything is going right and crude because it can be

fairly wide of the mark when this is not the case. Its usefulness may be

considerably enhanced by understanding the mechanisms which cause it

to be inaccurate. To identify some of these we begin with a result from

an interesting unpublished dissertation by Wexler (1968).

Wexler investigated the finite sample variances of maximum likelihood

factor loading estimates comparing them with those obtained using the

asymptotic formulas of Lawley (1953). These were Lawley's early results

derived under the assumption of known unique variances * , a restriction

which was later removed (Lawley, 1967). Let A be the unrotated (i.e.,

canonical, Rao, 1955) factor loading matrix for a population satisfying

the usual assumptions in maximum likelihood factor analysis (Lawley &
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Maxwell, 1971). Let A be the varimax rotation of A and let T be the

transformation which takes A into A so that

(1)

Wexler looked at two types of estimates for the rotated loadings A .

The first was the estimate

A* = AT (2)

computed from the maximum likelihood estimate A of A using the popula-

tion value T . The second was the maximum likelihood estimate A of A

computed without assuming T is known so that

(3)

where T is the matrix which takes int's into its varimax rotation A .

Lawley's formulas give the asymptotic standard errors for the components

of A and by a simple transformation the asymptotic standard errors for

the components of A* . Because T is a function of the data, the

asymptotic standard errors for the components of A are a little more

complicated (Archer & Jennrich, 1973) and were not available at the

time of Wexler's study.

In general Wexler's simulation studies showed reasonably good agree-

ment with Lawley's formulas. Figure 1 is reproduced from his thesis. It

shows loading variances computed using Lawley's formulas plotted against

actual simulated variances for the components ? of A* . There is
ir



one point for each loading in A The agreement is not perfect,

but taking into account the fact that only 100 simulations were used,

there are no statistically surprising departures from the asymptotic

results nor do there appear to be any systematic ones.

Insert Figure 1 about here

A
Because the asymptotic variances for the A loadings were not

available at the time of Wexler's thesis, it had been suggested that the

asymptotic variances of the A* loadings be used as an approximation for

the variances of the A loadings. To test this suggestion Wexler plotted

the asymptotic variances of the A* loadings against actual simulated

variances forthe A loadings. His plot is given in Figure 2. Many who

have seen this figure find it somewhat surprising. First the suggested

approXEMition does not seem to be satisfactory. But of greater interest

to us is the fact that for the most part the ludings computed using r_

are considerably more stable than those using the true population value

T . We would like to understand why this is so.

Insert Figure 2 about here

The results in Figure 2 were obtained using a population with a

very good varimax loading matrix, i.e., one with nice simple structure.

Wexler repeated his entire analysis using a population with only fair



simple structure. The results corresponding to Figure 2 are ,shown in

Figure 3. The phenomenon displayed in Figure 2 is far less pronounced

here. It is still abundantly clear, however, that it would be unwise

to use the asymptotic variances of the components of Am to approximate

those of A .

Insert Figure 3 about here

These examples suggest what we shall call the Wexler phenomenon:

When Good simple structure exists rotated loadings may be

surprisingly stable.

One manifestation of this phenomenon is that rotated loadings may be

considerably more stable than unrotated loadings. The opposite can also

happen and this suggests the anti-Wexler phenomenon:

When good simple -tructure does not exist rotated loadings May

be surprisingly unstable.

We intend to investigate these somewhat vague statements in greater detail.

2. FORMS OF DEGENERACY

We believe that the Wexler Phenomena are associated with forms of

degeneracy in the specification of a factor analysis model. Of particular

interest are those which arise from:

(i) equal eigenvalues

(ii) undefined rotation.
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For the purpose of thinking about these we specialize to a simple case.

We shall in fact leave factor analysis entirely and consider the case of

principal components analysi,p with quartimax rotation. This simplification

allows us to understand the details clearly without sacrificing the

essential issues at hand.

It is easy to give an example which displays both forms (i) and (ii)

of degeneracy. Let the 3 by 2 matrix A given in Figure 4 represent the

first two principal components of a 3 by 3 population covariance matrix.

In practice it is common to plot the rows of A . As displayed in Figure

4 they constitute three equally spaced points on the unit circle. The

first two eigenvalues here, being the column sums of squares for A , are

equal. Thus A has the first form of degeneracy. On the other hand it

is easy to show that the quartimax criterion (Harman, 1967, p. 298) is

constant here over all orthogonal rotations of A . As a consequence,

the quartimax rotation of A is undefined and A also displays the

second form of degeneracy.

Insert Figure 4 about here

To understand their effect we shall look at examples showing these

f,)rms of degeneracy selparately. Lot th 4 by 2 matri.x A given in

Figure 5 repres-nt the first two principal components oC a 4 by 4

population covariance matrix. The first two eigenvalues here are clearly



equal. On the other hand, as can be seen from Figure 5, A has an

independent cluster structure so its quartimax rotation is well defined.

The matrix A is in fact its own quartimax rotation. We want to consider

the statistical stability of an estimator A of A obtained by factoring

A
a sample covariance matrix, and that of A the quartimax rotation.of A .

When eigenvalues are equal as they are here we know from the results of

Anderson (1963) that as the sample size n -400,

#A -4AX (4)

in distribution where X is a random orthogonal matrix. This means that

for large n with high probability a plot of the rows of A will look

like a random rotation of a slight perturbation of the points displayed in

Figure 5. Because of the random rotation

'A' 7A (5)

as n 00 so that A is not a consistent estimator of A . On the other

hand quartimax rotation of A will undo.the random rotation so that when

n is large A will with high probability look like a slight perturbation

of A . In more precise terms (4) and the fact that A is its own quarti-

max rotation imply that

-,A (6)

in probability as n -400 . Thus for large n the rotated loadings A

which converge, will have a greater stability than the unrotated loadings

, which do not, giving rise to the Wexler phenomenon.
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Insert Figure 5 about here

Consider next the example given in Figure 6. As before, let A

represent the first two principal components of a 3 by 3 population

covariance matrix. The eigenvalue ratio here is a comfortable 2.71. On

the other hand the constant c in A has been carefully chosen so that the

quartimax criterion is constant over every orthogonal rotation of A

making the quartimax rotation of A undefined.

Insert Figure 6 about nere

As before let A be an estimate of A obtained by factoring a

sample covariance matrix and let A be the quartimax rotation of A .

Because of the eigenvalue ratio (and assuming the third eigenvalue is not

equal or nearly equal to the second) we expect A to be near A when n

is large. Since quartimax rotation is undefined at A , however, we

expect small changes of A in a neighborhood of A to produce large

changes in the rotated loadings A That is we expect the stability

of to to be poor compared to that of A giving rise to the anti-

Wexler phenomenon. As we shall see in the next section, this in fact

happens.



The first form of degeneracy discussed here was considered by

J8reskog (1963, p. 86) using a form of estimation proposed by him together

with target rotation. He observed that when the appropriate eigenvalues

are nearly equal his loading estimates could be expected to have large

variances before rotation but moderate variances after. This, in a slightly

different context, is a manifestation of the Wexler phenomenon. J8reskog

did not consider cases corresponding to Figures 4 and 6 possibly because

they were not particularly interesting in the context of target rotation.

3. TWO CONFIRMATORY EXAMPLES

By considering the specific case of principal components analysis

and orthomax rotation we have set forth rationales for the Wexler and

anti - Wexler phenomena. In this section by looking at two specific examples

and computing exact asymptotic variances we will verify that the two forms

of degeneracy considered do in fact produce the Wexler and anti-Wexler

phenomena. To demonstrate the generality of the arguments given, we

choose examples which are technically quite different but clearly analogous

to those of the last section. They are based on standardized (i.e., com-

puted from a sample correlation matrix) maximum likelihood loading estima-

tion and varimax rotation. Clearly maximum likelihood factor analysis is

not the same as the principal components analysis nor is varimax rotation

the same as quartimax.

LFt A be the matrix on the left in T)ble l'and let it represent

the standardized loadings in a canonical (Rao, 1955) factor analysis model



-9-

for a normal population. The model involves 2 factors and 6 score vari-

-r

ables. This is the smallest number of variables a two factor model with

perfect structure can hive and still have identifiable unique variances

(see the identifiability conditions summarized by Anderson & Rubin, 1956).

The appropriate eigenvalues here are the diagonal elements of

where t = diag(I - AA') is the matrix of standardized unique variances.

(Estimates of these eigenvalues are -ovided by standard maximum likelihood

factor analysis programs.) Because the eigenvalue ratio here is nearly one

(1.07 to two decimal places) analogy with the example of Figure 5 suggests

that the standard. errors for the maximum likelihood estimate3 of the

components of A will be quite large. On the other hand the perfect

structure of A suggests that varimax rotation may produce estimates with

relatively small standard errors. Using A and the formulas of Jennrich

(19750 the asymptotic standard errors of both the unrotated and rotated

estimates were computed and are recorded in Table 1. Clearly at least some

of the unrotated loading estimates are highly unstable while all of the

rotated loading estimates are quite stable. In the worst cases the

standard errors of the unrotated loadings are about 20 times as large as

the corresponding rotated loadings. It is easy to believe from this

example that the Wexler phenomenon may be made arbitrarily pronounced by

choosing population values sufficiently close to the appropriate form of

degeneracy.

Insert Table 1 about here
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Nrning to the anti-Wexler phenomenon let A be the 4 by 2 matrix

orl ;the left in Table 2 and as before let it represent thr. standardized

dbadings in a canonical factrl analysis model for a normal population. The

eienValue ratio here is 4.25 so that arguing by analogy with the laSt exam-

l& in the previous section we expect the maximum likelihood estiwates of

-theOnrOtated loadings to have moderate standard errort. On the other hand

he-Value .81 in the upper left-hand corner of A was carefully chosen so

. _

-_ithWthe varimax rotation of A is nearly undefined (the precise value

_ -0
iiibhrenders it undefined is (.43) VOT = .8003 ). Thus it is reasonable

to eXpect large standard errors for the maximum likelihood estimates of the

rotated loadings.

Using the formulas of Jennrich 1973b) again, the actual asymptotic

Standard errors are given in Table 2. As expected the standard errors for

the Unrotated loadings have moderate values while at least some of those

Par- the rotated -loadings are quite large. In the worst cases the latter

=are _about 26 times as large as the former and it is easy to believe that

the anti-Wexler phenomenon may be made arbitrarily pronounced by choosing

an appropriate sufficiently singular example.

Insert Table 2 about here
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1. DISCUSSION

Standard error formulas for analytically rotated factor loadings have

only recently bPeome available. While we can now compute standard errors

at will the computations which lead to them are complicated and our under-

standing of them is quite limited. A crude but simple summary asserts that

for a factor loading estimate (of any kind) the

Standard error = (7)

Both unrotated and rotated loading estimates, however, can-be made to

have arbitrarily large standard errors by choosing examples with the

appropriate form of singularity. Interestingly, rotated' oadings need

not have large standard errors simply because the unrotated loadings from

Which they are computed do. And conversely very stable unrotated loadings

can lead to very unstable rotated loadings. We have called these observa-

tions the Wexler and anti-Wexler phenomena and we know in some detail

Why the summary (7) must be crude.

An approximation proposed by C. Ti!. Harris and reported by Cattell

(1966, p. 235) asserts that for a factor loading estimate A. the

h2.)1.0
rr

standard error = (8)n - k - 1

where h
2

is the communality of the i -th variable, Orr is the r -th

diagonal element in the inverse of the matrix of factor correlations, and

k is the number of factors. Since there is nothing in this formula which
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allows for the effect of nearly equal eigenvalues or poorly defined

rotation -we know from consideration of the Wexler phenomena that this

too must, in some cases at least, be a very crude approximation.

On the other hand a summary as simple as (7) can be quite useful when

it is necessary to make simple inferences without the aid of a computer.

lawley & Maxwell (1971, p. 43) present a maximum likelihood factor analysis

involving_211 observations, 9 variables, and 3 factors. The eigenvalues

involved are quite distinct and direct quartitin rotation ( Jennrich &

8Ampton, 1966) gives loadings With good simple structure so that one might

be tempted to use

1 211 -= .069 (9)

as a standard error for the rotated loadings. The actual asymptotic

standard errors computed by Jennrich (1973a) are reproduced in Table 3.

Considering the simplicity of the formula which led to the value .069,

its agreement with the computed values is rather pleasing and good

enough for rough inferential purPoses (cf Jennrich, 1973a). Because

of the Wexler phenomenon, however, one must use a good deal of caution

with such an approximation when eigenvalues are not clearly distinct or

rotations are not well defined.

Insert Table 3 about here
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Table 1.--Asymptotic Results in the Case of Nearly Equal Eigenvalues

and Well Defined Rotation: Wexler Phenomenon

Population Loadings*

Asymptotic Standard Errors+

Unrotated Rotated

.81 .00 .05 1.31 .05 .07

.81 .00 .05 1.31 .05 .07

.81 .00 .05 1.31 .05 .07

.00 .8o 1.39 .05 .07 .05

.00 .8o 1.39 .05 .07 .05

.00 .8o 1.39 .05 .07 .05

*The rotated and unrotated loadings are identical here.

Standard errors are scaled to correspond to a sample size of 100.
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Table 2.--Asymptotic Results in the Case of Nearly Undefined Loadings

and a Good Eigenvalue Ratio: Anti-Wexler Phenomenon

Population Loadings*

Asymptotic Standard Errors+

Unrotated Rotated

..81 .00 .06 .09 .06 2.33

.81 .00 .06 .09 .06 2.33

-.43 .43 .11 .12 1.27 1.31

-.43 .43 .11 .12 1.27 1.31

-.43 -.43 .11 .12 1.27 1.31

-.43 -.43 .11 .12 1.27 1.31

*The rotated and unrotated loadings are identical here.

Standard errors are scaled to correspond to a sample size of 100.
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Table 3.--Asymptotic Standard Errors for a Direct Quartimin Rotation of

Maximum Likelihood Loading Estimates: Reproduced from Jennrich (1973a)

Variate I

Factor

II III

1 .074 .082 .096

2 .069 .082 .073

3 .072 .053 .067

it .054 .084 .075

5 .065 .069 .041

6 .046 .058 .056

7 .064 .036 .141

8 .064 .081 .116

9 .046 .050 .059
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FIGURE CAPTIONS

FIG. 1--Scatter plot of asymptotic variances versus empirical

variances of loadings estimating the elements of a good simple structure

population factor matrix. The populati-la transformation matrix was used.

Multiplicity of plots is indicated by encircled points.

FIG. 2-- Scatter plot of asymptotic variances versus empirical vari-

ances of loadings estimating the elements of a good simple structure

population factor matrix. The sample transformation matrix was used.

Multiplicity Of-plots-is indicated by encircled points.

FIG. 3=-Scatter plot of asymptotic variances versus empiridal

variances of loadings estimating the elements of a population factor

matrix with only fair simple structure. The sample transformation

matrix was used. Multiplicity of plots is indicated by encircled points.

FIG. 4--A principal components example displaying both forms of

degeneracy: Equal eigenvalues and undefined rotation.

FIG. 5--A principal components example displaying the degeneracy

which leads to the Wexler phenomenon: Equal eigenvalues with well-defined

rotation.

FIG. 6--A principal components exqmple displaying the degeneracy

which leads to the anti-Wexler phenomenon: Undefined rotation with

distinct eigenvalues.
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Asymptotic Factor Loading Variances
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