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ON THE STABILITY OF ROTATED FACTOR LOADINGS: THE WEXLER PHENOMENON

ABSTRACT . K

v

The formulas which give the standard errors of factor loading estimates
while available and computable are complicated and our understanding of
- A

them is limited. A nontechnical description of their behavior under favor-

able and unfavorable conditions is given. Of particular interest is their

behavior in the presence of singularities arising froﬁ\%j;al eigenvalues

and undefined rotation.




ON THE STABILITY OF ROTATED FACTOR LOADINGS: THE WEXLER PHENOMENON
1, INTRODUCTION

Numerous authors have looked at the sampling stability of loading
estimates which arise in factor analysis. While analytic results for the
standard errors of unrotated loadings have been available for some time
(Lawley, 1953, 1967; lawley & Maxwell, 1971) @hose for analytically rotated
loadings are fairly recent (Archer & Jennrich, 19735 Jennrich, 1973a,b).
Consequently much of the early work on stability was based on simulation
studies. After reviewing several studies, Cliff & Hamberger (1966). found
that the standard errors of'factor loading estimates were about the&same
as those for correlations, that is about l//g in magnitudgkggg_gmgample
of size n . This is a2 crude but useful summary of some rather com-
plicated results. It is useful because it is simple and reasonably
accurate when everything is going right and crude because it can be
fairly wide of the mark when this is not the case. Its usefulness may be
considerably enhanced by understanding the mechanisms which cause it
to be inaccurate. To identify some of these we begin with a result from
an interesting unpublished dissertation by Wéxler (1968).

Wexler investigated the finite sample variances of maximum likelihood
factor loading estimates comparing them with those obtained using the
asymptotic formulas of ILawley (1953). These were lLawley's early results
derived under the assumption of known unique variances V¥ , a restriction
vhich was later vemoved (Lawley, 1967). Let A be the unrotated (i.e.,

canonical, Rzo, 1955) factor loading matrix for a population satisfying

the usual assumptions in maximum likelihood factor analysis (Lawley &
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Maxwell, 1971). Let A be the varimax rotation of A and let T be the

transformation which takes A into A so that
A= AT . (1)

Wexler looked at two types of estimates for the rotated loadings A .

The first was the estimate

A¥ = AT (2)

.

computed from the maximum likelihood estimate A of A using the popula-
tion value T . The second was the maximum likelihood estimate K of A

computed without assuming T is known so that

~ AN

A=A (5)

where % is the matrix which takes A into its varimax ?otation A
Lavley's formulas give the asymptotic standard errors for the components
of K and by a simple transformation the és&&ptotic standard errors for
the components of A¥ . Because T is a function of the data, the
asymptotic stgggﬁfd errors for the components of A are é little more
cdbmplicated (Archer & Jennrich, 1973) and were not available at the
time of Wexler's study.

In general Vexler's simulation studies showed reasonably good agree-
ment with ILawley's formulas. Figure 1 is reproduced from his thesis. It

shows loading variances computed using Lawley's formulas plotted against

actual simulated variances for the components Xﬁr of A¥ . There is
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ogf point for each loading in A . The agreement is not perfect,
but taking into account the fact that only 100 simulations were used,
there are no statistically surprising departures from the asymptotic

results nor do there appear to be any systematic ones.

Because the asymptotic variances for the A loadings were not

available at the time of Wexler's thesis, it had been suggested that the

asymptotic variances of the A*¥ loadings be used as an approximation for
the variances of the A loadings. To test this suggestion Wexler plotted
the asymptotic variances of the A*¥ loadings against actual simulated
variances for the A loadings. His plot is given in Figure 2. Many who
havé seen this figure find it somewhat surprising. First the suggested
approximation does not seem to be satisfactory. But of greater interest

e

to us is the fact that for the most part the lc2dings computed using

are considerably more stable than those using the true population value

T . We would like to understand why this is so. -

The results in Figure 2 were obtained using a population with a

very good varimax loading matrix, i.e., one with nice simple structure.

Wexler repeated his entire analysis using a population with only fair
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simple structure. The results corresponding to Figure 2 ore shown in
Figure 3. The phenomenon displayed in Figure 2 is far less pronounced
here. It is still abundantly clear, however, that it would be unwise

to use the asymptotic variances of the components of A¥ +to approximate

those of A .

These examples suggest what we shall call the Wexler phenomenon:

When good simple structure exists rotated loadings may be

surprisingly stable.

One manifestation of this phenomenon is that rotated loadings may be
considerably more stable than unrotated loadings. The opposite can also
happen and this suggests the anti-Wexler phenomenon:

When good simple <tructure does not exist rotated loadings way

be surprisingly unstable.

We ihtend to investigate these somewhat vague statements in greater detail.
2. FORMS OF DEGENERACY

We believe that the Wexler phenomena are associated with forms of
degeneracy in the specification of a factor analysis model. Of particular
interest are those which arise from:

(i) equal eigenvalues

(ii) undefined rotation.




P

—)—

For the purpose of thinking ahout these we specialize to a simple case.

We shall in fact leave factor analysis entirely and consider the case of
principal components analysis with quartimax rotation. This simplification
allows us to understand the details clearly without sacrificing the
essential issues at hand.

It is easy to give an example which displays both forms (i) and (ii)
of deé;neracy. Let the. 3 by 2 matrix A given in Figure 4 represent the
first two principal components of a 3 by 3 population covariance matrix.
In practice it is common to plot the rows of A . As displayed in Figure

4 they constitute three equally spaced points on the unit circle. The

“ag

first two eigenvalues here, being the column sums of squaces for A , are
equal. Thus A has the first form of degenéracy. On the other hand it
is easy to show that the quartimax criterion (Harman, 1967, p. 298) is
constant here over all orthogonal rotations of A . As a consequence,
the quartimax rotation of A is undefined and A also displays the

second form of degeneracy.

To understand their effect we shall look at examples showing these
forms of degeneracy separately. Let thiz 4 by 2 matrizx A given in

Figure 5 repres-nt the {irst two principal components of 2 4 by b

population covariance matrix. The first two eigenvalues here are clearly
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equal. On the other hand, as can be seen from Figure 5, A has an
independent cluster structure so its quartimax rotation is well defined.
The matrix A is in fact its own Quartimax rotation. We want to consider
the statistical stability of an estimator K of A obtained by factoring
a sample covariance matrix, and that of K the quartimax rotation.of K .
When eigenvalues are equal as they are here we know from the results of

Anderson (1963) that as the sarmple size n — s

K - AX (4)

- e

in distribution where X is a random orthogonal matrix. This means that
for large n with high probabilify a plot of the rows of A will look
like a random rotation of a slight perturbation of the points displayed in

Figure 5. Because of the random rotation
[N (5)

as n - © so that A is not a consistent estimator of A . On the other
hand qQuartimax rotation of K will undo the random rotation so that when

n is large K will with high probability look like a slight perturbation
of A . 1In more precise terms (%) and the fact that A is its own quarti-

max rotation imply that
A oA (6)

in probability as n -« . Thus for large n the rotated loadings A s

which converge will have a greater stability than the unrotated loadings

A , which do not, giving rise to the Wexler phenomenon.




Consider next the example given in Figure 6. As before, let A
represent the first two principal components of a 35 by 3 population
covariance matrix. The eigenvalue ratio here is a comfortable 2.7l. On

the other hand the constant ¢ in A has been ‘carefully chosen so that the

quartimax criterion is constant over every orthogonal rotation of A

making the quartimax rotation of A undefined.

As before let A be an estimate of A obtained by factoring a
sample covariance matrix and let A bve the quartimax rotation of K .
Because of the eigenvalue ratio (and assuming the third eigenvalue is not
equal or nearly equal to the second) we expect K to be near A when n
is large. Since quartimax rotation is undefined at A , however, we
expect small changes of K in a neighborhood of A to produce large
changes in the rotated loadings K « That is we expect the stability

of A to be poor compared to that of A giving rise to the anti-

Wexler phenomenon. As we shall see in the next section, this in fact

happens.

-~
%
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The first form of degeneracy discussed here was considered by
JBreskog (1963, p. 86) using a form of estimation proposed by him together
with target rotation. He observed that when the appropriate eigenvalues
are nearly equal his loading estimates could be expected to have large
variances before rotation but moderate variances after. This, in a slightly
different context, is a manifestation of the Wexler phenomenon. J8reskog
did not consider cases corresponding to Figures 4 and 6 possibly because

they were not particularly interesting in the context of target rotation.

5. TWO CONFIRMATORY EXAMPLES

o

By considering the specific case 5f principal components analysis
and orthomax rotation we have set forth rationales for the Wexler and
anti-Wexler phenomena. Tn this section by looking at two specific examples
and compnuting exact asymptotic variances we will verify that the two forms
of degeneracy considered do in fact produce the Vexler and anti-Wexler
pheromena. To demonstrate the generality of the arguments given, ve
choose examples vhich are technically quite different but clearly analogous
to those of the last section. They are based on standardized (i.e., com-
puted from a sample correlation matrix) maximum likelihood loading estima-
tion and varimax rotation. Clearly maximum likelihood factor analysis is '
not the same as the principal components analysis nor is varimax rotation

the same as quartimax.

Let A be the matrix on the left in Tuble 1'and let it represent

the standardized loadings in a canonical (Rao, 1055) factor analysis model >
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for a normal population. The model involves 2 factors and 6 score vari-
ables. This is the smallest number of v;§iables a two factor model with
perfect structure can heve and still have identifiable unique variances
(see the identifiability conditions summarized by Anderson & Rubin, 1956).
The appropriate eigenvalues here are the diagonal elements o° A W‘Lw

where V = diag(I - AA') is the matrix of standardized unique variances.

(Estimates of these eigenvalues are =ovided by standard meximum likelihood -

A G 1

. factor analysis programs.) Because the eigenvalue ratio here is nearly one
B i, (1:07 to two decimal places) analogy'with‘the example of Figure 5 suggests
E B that the stéﬁdard.errors for the maximum liﬁelihood estimatex of the

| | components of A will be quite large. On the other hand the perfect
structura of A suégests that varimax rotdtion may produce estimates with
relatively small standard errors. Using A and the formulas of Jennrich
(1373b) the asymptotic standard errors of both the unrotated and rotated
esfjmates vere computed and are recorded in Table 1. Clearly at least some
of the unrotated loading estimetes are highly unstable while all of the
rotated loading estimates are quiteﬁgtable. In the worst cases the
standard errors of the unrotated loadings are about 20 times as large as
the corresponding rotated loadings. t is easy to believe from this
example that the Viexler phenomenon m;y be made arbitrarily pronounced by
choosing population values sufficiently close to the appropZ&éte form of

degeneracy.

Y L L L L L L X T Y
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B "Tﬁrning to the anti-Wexler phenomenon let A be the * by 2 matrix

on- ﬁ é left in Table 2 and as before let it represent the standardized

;iééﬁings in a canonical facter analysis mddel for a normal population. The
- eifenvalue ratio here is b. 25 so that arguing by ahalogy with the last exam-

fi§,j@ the previous section we éxpect the maximum likelihood esti.ates of

{gﬁrdtated loadings to have mddérate standard errors. On the other hand

Jat;the varimax rotation of A is nearly undefined (the précise valueé

¢l renders it undefined is (.k43) ‘[ 2 8005 ). Thus it is reasdnable

. ;ﬁ@_éipect large standard errors for the maximum likelihood estimates of the -

¥dtated loadings.

*

:,§§§§§grd errors are given in Table 2. As expected the standard errors for

" Using the formulas of Jennrich (l975b)ségain, the actual asymptotic

. the unrotated loadings have moderate values while at least some of those
fér»ﬁhe rotated 1loadings are quf%e large. In the worst cases the latter

:éieAabout 26 times as large as the former and it is easy to believe that

- the anti-Wexler phenomenon may be made arbit}arily pronounced by choosing

‘an appropriate sufficiently singular example.
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4. DISCUSSION

. Standard error formulas for analytically rotated factor loadings have
| dﬁl& recently become available. While we can now compute stand;rd errors

at will the computations which lead to them are complicated and Qur under-

:Standing of them is quite limited. A crude but simple summary asserts that

for a factor loading estimate (of any Kind) the

Standard error = 1NH . (7)

T
sy f ey e

Both unrotated and rotated loading estimates, however, can.be made to

‘have arbitrarily large standard errors by choosing examplées with the
appropriate form of singularity. Interestingly, rotated ‘loadings need

not have large standard errors simply because the unrotated loadings from
which they are computed do. And conversely very stable unrotated loadings
cén lead to very unstable rotated loadings. We have called these observa-'
tions the Wexler and anti-Wexler phenomena and we know in some detail

why the summary (7) must be crude.

An approximation proposed by C. W. Harris and reported by Cattell

A

(1966, p. 235) asserts that for a factor loading estimate kir the

1

-y

standard error = (m

(8)

where h? is the communality of the i -th variable, er is the r -th

diagonal element in the inverse of the matrix of factor correlations, and

k is the number of factors. Since there is nothing in this formula which

— o gt A ATE R rome w1 b | N rie g sl i e o3 TF A% A ¥ RIy o L NTTT
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Tawley & Maxwell (1971, p. 43) present a maximum likelihood factor analysis

involving 211 observations, 9 variables, and 3 factors. The eigenvalues

Sampson, 1966) gives loadings with good simple structure so that one might
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allows for the effect of nearly equal eigenvalues or poorly defined

rotation. e know from consideration of the Wexler pheromena that this

too must, in some cases at least, be a very crude approximation.

On the other hand a summary as simple as (7) can be quite useful when

it is necessary to make simple inferences without the aid of a computer.

involved are quite distinct and direct quartimin rotation (Jennrich &

be tempted to use

3

1IAPIT = .069 (9)

as a standard error for the rotated loadings. The actual asymptotic

standard errors computed by Jennrich (1973a) are reproduced in Table 3.
Considering the simplicity of the formula which led to the value .069,
its agreement with the computed values is rather pleasing and good
enough for rough inferential purposes (c¢f Jennrich, 1973a). Because
of the Wexler phencmenon, -liowever, one must use a good deal of caution
with such an approximation when eigenvalues are not clearly distinct or

rotations are not well defined.
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i
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Table 1.--Asymptotic Results in the Case of Nearly Equal Eigenvalues

and Well Defined Rotation: Wexler Phenomenon

Asymptotic Standard Errors+ -
Population Inadings* ‘

Unrotateéd Rotated
.81 .00 .05 1.31 .05 .07
— ‘ .81 .00 .05 1.31 .05 .07 ’
i - .81 .00 05 1.31 .05 .07
B ’ 00 .80 1.39 .05 07 .05
’ .00 .80 T 1.39 .05 .07 .05
.00 .80 1.39 .05 .07 .05

*The rotated and unrotated loadings are identical here.

+Standard errors are scaled to correspond to a sample size of 100.
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Table 2.--Asymptotic Results in the Case of Nearly Undefined Ionadings

-17-

and a Good Eigénvalue Ratio:

Anti-Wexler Phenomenon

Population Loadings*

.81
.81
-3
.43
-3
-3

.00
.00
43
43
=43
=143

Unrotated
.06 .09
.06 .09

11 a2
.11 .12
.11 .12
.11 .12

.06
.06
1.27
1.27
1.27
1.27

Asymptotic Standard Errors’

Rotated
2.33
2.35
1.31
1.31
1.31
1.31

*¥The rotated and unrotated loadings are identical here.

+
Standard errors are scaled to correspond to a sample size of 100.
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Table 3.--Asymptotic Standard Errors for a Direct

Quartimin Rotation of

Maximum Likelihood lnading Estimates:

Reproduced

from Jennrich (1973a)

Variate

1

O © 3 O F W N

I
Noy(

072
.05k4
.065
046
064
064
.06

Factor

II
.082
.082
053
.084
.069
.058
.036
.081
.050

11T
.096
075
067
075
041
.056
<1kl
116
-039
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FIGURE CAPTIONS

FIG. 1--Scatter plot of ssymptotic variances versus empirical
variances of loadings estimating the elements of a good §imple structure
population factor matrix. The populati n transformation matrix was used.
Multiplicity of plots is indicated by encircled points.

FIG. 2--Scatter plot of asymptotic variances versus empirical vari-
anceés of loadings estimating the elements of.a good simple structure
population factor matrix. The sample transformation matrix was used.
Multiplicity of plots is indicated by encircled points.

A FIG. 3--Scatter plot of asymptotic variances versus empirical
variances of loadings estimating the elements of a population factor
matrix with only fair simple structure. The sample transformation
matrix was used. Multiplicity of plots is indicated by encircled points.

FIG. 4--A principal components example displaying both forms of
degeneracy: Equal eigenvalues and undefined rotativn.

FIG. 5--A principal componern®s example displaying the degeneracy
which leads to the Wexler phenomenon: Iqual eigenvalues with well-defined
rotation.

FIG. 6--A principal components exgmple displaying the degeneracy
which leads to the anti-Wexler phenomenon: Undefined rotation with

distinct eigenvalues.

T

o P i




Empirical Factor Loading Variances

045

040
035
030
- 025
020
015
010
.005

.000

-20-

Asymptotic Factor

Loading Variances
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Asymptotic Factor Loading Variarces
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a=cos(2M/3) b=sin(27+/3) eigenvalue ratio=|
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c=2 eigenvalue ratio =2.7|




