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COMBINING UNBIASED ESTIMATES OF A PARAMETER KNOWN TO BF POSITIVE

T. W. F. Strome

ABSTRACT

The statistician has n independent estimates of a parameter he knows

is positive but, as is the case in components -of- variance problems, some of

the estimates may be negative. If the n estimates are to be combined into

a single munber, we compare the obvious rule, that'of averaging the n

values and taking the positive part of the result, with that of averaging

the positive parts. Although the estimator generated by the second rule is

not consistent, it is shown by numerical calculation that for small n it

has a smaller mean-souare error than the first over a considerable region

_of_the parameter space, and that for n = 2 or 3 the second is minimal

relatiVe to the first over aregion consisting of almost the whole parameter

space. The distribution of each of the n estimates is assumed to be

either Gaussian or the distribution of a weighted difference of two indepen-

dent chi-squares with known degrees of freedom, as in one-way components of

variance. Some other simply calculated estimators, including the positive

part of the median, are studied for the chi-square difference case with

-(2,2) degrees of freedom and n = 3 .



COMBINING UNBIASED ESTIMATES OF A PARAMETER KNOWN TO BE POSITIVE

1. INTRODUCTION

Sometimes, most notably in components-of-variance problems, a statis-

tician is trying to estimate a parameter he knows is positive, but in using

standard-unbiased estimation techniques he obtains an estimate which is

negative. When this happens, the statistician would usually estimate the

parameter by zero, since in so doing he is coming closer to the true param-

eter value than the original estimate.

Occasionally the statistician may have several unbiased estimates of

the same parameter arising from independent sources. The statistician will

want to combine the raw data sets and treat them as one data set; however,

this may not always be possible. There may be nuisance parameters which

vary from one source to another. Or the computational procedure may

require too much memory to accommodate all the data at once. This may

happen in using Rao's MINQUE technique [8], where matrices the size of the

data set are handled, or Henderson's third method [4,9] with a large number

of groups. (For a problem where either or both of these techniques are

called for, see [11]). Finally, the statistician may not be able to com-

bine the pbservations due to not being supplied with the raw data.

let us assume that from each source the statistician has nothing

more than an unbiased estimate (which can be positive or negative) of a

common unknown parameter value which is necessarily positive. We study

alternative procedures for combining the estimates into a single number.

The estimates are assumed to be identically distributed. (This does=not

cover the situation of-nuisance parameters varying over experiments, but,
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when caution is used, some features of the results reported here may still

apply.)

The main part of this paper is devoted to studying two simple techniques

for combining the estimates. A few other-procedures are treated in a

limited way in the last section. We study the performances of the two

techniques when the distribution of the estimates is normal and when it is

the weighted difference of two independent chi-squares with known degrees

of freedom.,4 The latter model is the correct one for one-way components of

variance, and may be considered as a prototype for more complicated problems.

As the degrees of freedom vary, a range of distributional shapes is Ob-

tained. The normal distribution is, of course, the limiting case as both

degrees of freedom become large.

2. THE TWO-ESTIMATORS-AND-THEIR MEAN SQUARE ERRORS

Let X
I'
X
2

... X
n

be a set of independent random variables, each

member representing the estimate of-the unknown parameter u based on

one source. The Xi are assumed to be identically distributed with

expectation u = E(Xi) and one nuisance parameter which is taken to be

the standard deviation a = a(Xi) . We know that u is greater than or

equal to zero, although any Xi has a positive probability of being

negative.

Denote by XI the positive part of X. , i.e., the random variable

which equals Xi when Xi > 0 and which equals zero otherwise. When

n = 1 , X, is the obvious estimator of µ . When n > 1 , one can
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either average the Xi values and then take the positive part or take the

positive parts before averaging. Denote ,(R)+ , the estimator obtained by

the first method, by a , since it is the maximum-likelihood estimator under

normality. We denote the second estimator (E4)/n by µ , since it is the

arithmetic mean of a set of quantities. These two estimators were con-

sidered by,Sirotnik [10] in a mental testing application.

We note that µ is not consistent, since it converges in probability

to E(XI) which is always greater than n i.e., E(XI) =

P(Xi > 0)E(Xil Xi > 0) > P(Xi > 0)E(Xiki > 0) + P(Xi <a)E(XilXi < 0) = E(Xi)

One's first reaction to this fact is that a has better properties and is

thus the preferred estimator. This is certainly true when n is large, or

even moderate. The reason for presenting this article is that, for small

n , n performs better over a reasonably large portion of the parameter

space, assuming as we do that the Xi are either Gaussian or the weighted

difference of 'two independent chi-squares.

The comparison of the estimators' performances is based on mean square

error (MSE), which is defined as the expected squared difference between

the parameter and its finally estimated value, and which equals the vari-

ance plus the square of the bias. It will be seen that formulas for the

MSE contain a-proportionality factor of a
2

; for this reason the compari-

sons to be presented are in terms of MSE/a
2

.

insert Table 1 about here
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Table 1 is a summary of the relative performance of µ and a , as

measured by MSE/a
2

. When pia > 1/2 , 11e is generally better, but

the advantage becomes minimal as n increases, and the critical value of

pia such that 11' is as good as a is increasing in n and eventually

exceeds 1/2. The value of MSE/a
2

for both a and g increases to 1/n

as gia approaches its theoretical upper bound
1

M . However, if we re-

strict consideration to the region g/a < K , for any K < M , the maximum

MSE/a
2

of µ over this region is. less than that of a when n = 2 or 3

and, depending on tha distribution of xi , sometimes also when n

or 5 .

The relative advantage of 11 over a when g/a > 1/2 also depends

on thedistributionoftheL.In the next section some numerical

results are presented for the normal case and for the chi-square dif-

ference with certain specified degrees of freedom. From these results we

shall see in detail under what conditions g is the preferred estimator.

3. NUMERICAL CALCULATIONS AND GRAPES

When 'n is large, is clearly a poor competitor to g , siace in

this case a will be close to g and µ will be close to a number known

to be larger than g . Let us therefore see what happens for n ranging

from2to5,andtostartwithassumetheX.to be normally distributed.

The calculations are obtained from formulas (4.3) and (4.4). We note that
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for,both a and 1-1 the MSE equals a2 times a function of the standard-

ized mean m f p/a tthe reciprocal of the coefficient of variation).

For this reason we graph MSE/a
2

as a fumtion of m ; we use -m rather

than l/m = a/p to display results for values of m close to zero, since

the behavior as m -)co is obvious.

Insert Figures A and B about here

To separate the curves, those for n = 2 and 4 are shown in Figure

A and for n = 3 and 5 in Figure B.

It is seen that 11 enjoys a healthy advantage over a in the region

1/2 < p/a < 2 . When p is much smaller than a- thebias of 1.1. has a

noticeable effect, and when p is much larger the chances of a negative

X. are slight so that the values of both a and p will usually coincide

with X . Note that for the estimator X the value of MSE/62 is the con-

stant lin . This value is approached by the curves for both a and 11

as m gets large, but the a curve gets there faster.

Insert Table-2 about here

Table 2 indicates the behavior of the MSE functions for larger values

of n It is clear that for n as large as 9, the MSE/a
2

of p is so
-

,

much greater at m = -0 than the MSE /a4 of a is anywhere that one would

want to avoid using It for n > 9 even though it is better than a for

some values of m



This gives the general picture when the Xi are normal; for very

small n there are certain advantages to , but as n increases these

are outweighed by a very high MSE/a2 in the neighborhood of m.= 0 . The

next question is, do the small-sample advantages of II persist when the

X. are distributed other than normally?

In the one -way components of variance problem, the usual unbiased

estimator- X of the main effect variance component has the distribution

of G1X1
2

- G2X2
2

, where X 1
2

and X
2

2
are independent chi-square random

variables with known Aegrees of freedom f
1

and f
2

, respectively, and

0
1

and G
2

are positive numbers related to the unknown variance -com-

ponents and which satisfy the inequality E(X) = Alfa. - A2f2 . There

are four cases to consider: low f
1

and low f
2

, low f
1

and high f
2

,

high fl and low f2 , and high fl -and high f2 . The low and high

degrees of freedot have-been chosen as 2 and 20. Other even values are

easily treated using the formulas of the next section. Odd=nuMbered values

are much more difficult mathematically, but by continuity we expect the

characteristics to be similar to the adjacent even values.

Insert Figures C and D about here

, 2
Figures C and D show, respectively, some 145E/a curves for fl = 2 ,

f2 = 20 and for fl = 20 1 f2 2 The curves for fi = f2 = 2 have

been examined and their appearance is similar to Figure C, with the

curve having less upsweep near in = 0 . Some values were also calculated

for f1 = f
2

= 20 , and they were reasonably close to the values for the
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normal case (see Table 3). The conclusion may be drEhrn that when fl

high thr, estimator 1-1 is considerably better than ; for moderately

high values of m , but that when fl is low the advantage is so meager

that it does not seem worth the risk near m '= 0 .

Insert Table 3 about here

To summarize; in problems where the Xi can be considered to be a

weighted difference of two independent chi-squares, we would recommend

over a if n is quite small, the degrees of freedom of the first chi-

square is fairly large; and it is thought likely that m > 1/2 , i.e., that

the mean of Xi is at least half its standard deviation.

In a one-Way variance components model where it is desired to combine

estimates, from n independent sources, of the common variance components

e (between) and d
w
2

(within); this means we recommend that negative

^2 2
estimates a

b
of a

b
be replaced by zero before averaging provided n is

small, the number of leVels k in the one-way classification is large, and

2, ^2v1
the ratio a

b
/(var a

b
)2 is at least 1/2 . From [2, page 322, formula

(5.7)], the latter condition in. the balanced case is equivalent to

ala > (12 lc/
2

(kr - 1 )/(kr - k))2] /r , where r is the number of2 2

b w
1

observations per level (within one source) and / = (2k - 3)2 . A more

2, 2
simply calculated quantity which exceeds the above lower bound for a /ab w

provided k > 5 And r> 2 , is 2//r . If k = 26 and r = 10 , for

2 2,
example, 11, is preferable to a when ab > aw/35 (and n is small).
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4. DERIVATION OF FORMULAS FOR MEAN SQUARE ERROR

We now indicate how the.values for the curves discussed in Section 2

were calculated.

As before, denote by g and e the mean and variance, respectively,

of the X
i
, and for any U denote U

+
= max(000) . We wish to derive

formulas-for the MSE of _a = X and a = (F.4 /n . These-can be obtained
-1

from expressions for the mean and variance of it+ and of XI ,- since the

MSE of any estimator of g withAppaii v and variance T is given by

2 a
T + gj

If F is the c.d.f. of X
i
, the mein v and variance T

2
of g

are given by

v = E(4) fxdF(x) , (4.1)

2 2
nT + v E(002) = fx2dvx) .

0

For the normal case, let z = (x - g)/a ; then

co

xdF(i) Jr. (g + az)d0(z)f
0

.ir , ,

x
2
dF(x) = f g2 + 2gaz + 1za z )i2 2,

dot
,

0 -gia

(4.2)
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where 0 is the standard normal c.d.f. The integration is straightforward,

using integration by parts on z
2
d0(z) Hence v2 = a(m0(m) + gm))

and nT
2
= a

2
N
m

where (m) = (20-2 exp(-m
2
/2) and N =

,
m
2
0(111)11 - gm)) - tO(m)(20(m) - 1) + 0(m) - ($(0)

2
Finally the MSE

-
for g is

a
2
(( m /n) 4* 5m2 ) , (4.3))

where 5
m
= 10 - 0(m)) Since has a normal distribution, the

MSE for a -may -be derived similarly; its -value is

(a2/n)tx 5 . (4.14)

The distribution of a weighted difference of two-independent chi-

squares with even degrees of freedom can-be _represented-as.a finite mixture

of positive and negative chi-squares. This result hasibeen derived

Ariously by Box [11, Mantel and FaSternack I6], and Jayachandran-and Barr

[5]._ Using the notation of_Section_3 with D-e f1/2 and q = f2/2 as

integers the density o2 X 0-X- - 0 X
2
2

can be written as
1 2

fx =) E (P q 1
(1 + 01"-j gi(x)i.1

E (p + q - k - 1) 1.13

h (x)
k=1

p- op+q-k k

= E c
'

p(r- q)g (x) + d (r a)h ( )
k '

.m
k x

(4 .5 )

say, where r = 02/0 , gi(x) is the density of 01 times a chi-

square with 2j degrees of freedom and hk(x) is the density of (-02)
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times a chi-square with 2k degrees of freedom. Note that the g.(x)

are nonzero only when x is positive and the hk(x) are nonzero only

when x is negative. Since (4.1) and (4.2) involve integration over only

positive values of x , we need consider only the terms containing g.(x) .

The expectation of XI is therefore the weighted sum of expectations of

2
0
1 2j
X random variables with the weights given by the coe2ficients of the

g.(x)in(4.5),andthesecondniomentofLis a similar weighted sum of

second moments of these G X2 . .Using the fact that a2 = 4.02(p + r4q) ,
1 j

and

E X.
p
E c.(r;p,q)(2j01)
j=1

2 -I P
= d(p + r 2 E iCj tr;15,0

j=1

p

E((X(!-)2) = [a2/(1) l'20] 1)c ;P,q)

j.1

These formulas were used to compute MSE/a
2

for the estimator [7. as

a function of r . The quantity MSE/a
2

was then plotted as a function -of

m by obtaining m from the monotonically decreasing relation m

(p - rq)(p r
2
q) 2 which follows from µ = 201(p - rq) and a2 =

2,
401(p + r

2
q) . Since u > 0 , the maximum'value of r allowed is p/q ;

also r > 0 implies that m < p2 = (f1/2)2 .

Note that the distribution of hashas the representation (:)3X - A4X124 ,

where 03 = Gain , 04 = 02/n , and X3
2

and X4
2

have nfi and of

degrees of freedom, respectively. Thus MSE/a
2

may be calculated for

in the same manner as for IL with the appropriate substitutions.



5. OTHER POSSIBLE ESTIMATORS

In this section we look at a few other naturally suggested estimators

of simple form. Motivated by the resultSjust stated, the author decided

to seek a simply-calculated-compromise between 41 and ti , one that does

better than _a for larger valuet of m = gia but does not have the

characteristically high MSE that g has for values of m near zero. It

is appealing to try to use the sample informatinn to get some idea of m

and then choose a or g accordingly. An easy rule to use would be

based on the proportion of Xi which are negative. If this proportion

is high, it indicates a greater likelihood of low values of gia , and we

would perhaps be predispoSed to use the rule that performs best for these

low values.

For breVity we restrict ourselves to the model OX. 02X: where

both_ X
1

and X
2

2
haVe just two degrees of freedom. This turns out to

be the easiest case mathematically. From (4.5),

fx(x) = (01g1(x) 02h1(x))/(01 + 02)

HereX.is distributed as a mixture of a- 0
1
X
2

and a -0
2
X
2

random

variable,each with 2 degrees of freedom, with weights proportional to

0
1

and 0
2

respectively. Regard the sampling as coming from an urn

with "positive" and "negative" balls in this proportion. For a small

sample it is easy to write the probabilities of observing J negative

balls ( J taking values from 0 to n ) and to compute the *mean square
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error for any rule which chooses a or ET according to the value of J -

Letting Y stand for the resulting estimator,.

MSE = E(Y g)2 = Pr(J = j)E((Y - 41)21J = j)

Taking as an example n = 3 , by symmetry we can write

E((Y - 021J = 1) = E( -(Y - g)21X1 < 0, x2 > 0, x3 >0) .

When X1 < 0, X2 ). 0 , and X3 >. 0 we have Xi = 0 , X2 = X2 and

3
= X. so that here µ = (X

2
4- x3)/3 , where X2 and X3 have the

conditionaldistributionoftwoindependent01X2random variables, each

with 2 degrees of freedom. Hence E(µIIJ = 1) = 401/3 and Var(lIJ = 1) =

89
2
/9 The formula for E(671. 02IJ = 1)- follows directly. The con-

ditional distribution-of 5C , given that J = 1 is that of (01/3)X -

2
(02/3)Xb , where Xa

2
and Xb are independent chi-squares with 14. and 2

degrees of freedom, respectively. Thus the first and second moments of a

May be calculated along similar lines to those indicated in Section 4. The

J = 2 case is similar, and the J = 0 and J = 3 cases are trivial.

If Y
2 or X2 have an even number of degrees of freedom mnre than

2

two, the same general principles may be used, but the distilbutions, given

whether positive or negative, are no longer pure chi-squares but mixtures

of chi-squares. The computations for a then become rather involved.

When n = 3 there are just 4 possible rules of the type described

above, based on choice of a or µ when J = 1 and when J = 2 , two of

which are simply a and µ . (When J = 0 or 3 , a and µ yield the
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same value.) Let g
I

be the estimator obtained by choosing g when

J = 1 and a when J = 2 . (This is the rule based on the heuristic

likelihood argument of the first paragraph.) Let 172 be the estimator

obtained by choosing 1.7. when J = 2 and a when J = 1 .

Insert Table 4 about here

For selected values of r = 02/91 , Table 4 gives the corresponding

value of m = via and MBE/62 for the rules µ , , Ili and 1:2 /

in the case fl = f2 = 2 . Surprisingly, the rule 1.7.1 which chooses a

or- p according to the relative likelihood of low or high values of m

performs badly, and the rule g2
which reverses the choice does relatively

well. 112 has a lower MSE than a for all m greater than about .28

and a lower MSE than either a or µ for m between .28 and .55.- At

m = 0 , where 1.7. loses to a by .083, the compromise estimator '12 is

worse than a by .031. 1.7.

2
is thus a much more acceptable alternative to

a than is 1.7. .

We present a possible explanation for the fact that the MSE for 17,2

is usually lower than for ill . When two out of three of the xi are

negative, we know that these Xi are less than it , and hence that X is

probably in underestimate of g . The estimator a = if compensates for

this to some extent by frequently yielding zero in these cases. This is

good if g is close to zero. But for larger g (i.e., p. > .28a ), the

-
estimator p which is strictly positive in these cases seems to perform

better.



When only one Xi is negative, on the other hand, R. will usually

be positive and as such will usually be closer to g than will the biased

g . This holds unless gia is quite high (> .55), where now even one

negative Xi is unlikely and when it occurs it is evidence that X will

underestimate g , so again the estimate should be raised.

It should be pointed out that this article is written. from the

irequentist point of view, according to which expectations are based on

repeated sampling with the same parameter values. This viewpoint has

been challenged by many statisticians (see, e.g., [7]), and alternative

criteria of performance might conceivably yield different results.

Also included in Table it are results for a , the positive part of

the sample median. Its mean and variance are easily calculated in the

f
1 2

= 2 case since here
-

1

2
is exponentially distributed, and

1

using the no-memory property the order statistics are directly expressed

as convolutions of exponential random variables; see, e.g., [3, P- 55,

rrup. 3]. [a performs better than its competitors when -m is small and

worse when -m is large. In the case of large m- the distribution of

Xl is markedly skewed, and we would thus expect the sample median to be

centered around the population median, but not the population mean. As

in -0 the distribution of X. approaches the double exponential, for the

case f
1

f
2
= 2 , for which the sample median is the maximum-likelihood

estimator of the center of symmetry and is known to have good properties.

This feature would not be expected to be present throughout all the dis-

tributions for X. studied here.
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6. CONCLUSION

We have compared two simple rules for the problem of combining

independent, identically distributed, unbiased estimates of a parameter

value known to be positive when the estimates may be negative. The first

rule :1 (the positive part of the average of the estimates) is consistent

and the second rule 11 (the average of:the positive parts) is inconsistent.

In large samples there is of course no difficulty in choosing between the

two. We have seer that when n is very small the relative performance

depends both on the ratio g/a (when g/a > 1/2 , t71. is-generally

better; otherwise a is better) and on the underlying distribution. A

rule of thumb for when to use II in practice is suggested in the last two

paragraphs of Section 3; however, this requires a prior idea of g/a and

of the underlying family of distributions. A good practical rule is not

obvious for situations where no such prior knowledge exists.

For the case of the chi-square difference with (222)- degrees of free-

dom and n = 3 , the positive part of the sample median performs very

well when g/a is small, but badly when g/a is largei The estimator

g2 (choose g if two of the independent unbiased estimates are negative)

performs better than the others in the intermediate region and also

reasonably mell for large g/a .

All estimators studied here have a positive probability of being

zero. It would be desirable to have a simply calculated estimator with

the property of always being (strictly) positive, or at least of being

positive whenever one or more of the Xi is positive. To date no

reasonable method of obtaining such an estimator seems to be available.
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FOOTNOTES

*T. W. F. Stroud is assistant professor, Department of Mathematics,
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Testing Service, Princeton, New Jersey. The author is grateful for the

comments of Donald B. Rubin and Robert I. Jennrich. The author wishes

to thank Michael-W. Browne for suggesting the estimator µ , and Frederic .

M. Lord for some of the references.

1For the normal case M = +co 1 and for the weighted difference of two

chi-squares M is the square root of half the degrees of freedom of the

positive chi-sauare (see Section 4, second last paragraph).
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1. SUMMARY OF PERFORMANCE OF µ RELATIVE TO a

2,3 4,5 6-8

1
> 2

11 better 11-better 12 better very close

a 2
1 worse p. worse 1.1.- 'worSe p. mud, worse

estimator 11 depends on a a

with loger distribution

maximum of X.
1

auMaximum" refers to max imum MSE/62 over any region

of the form 0 < < K < M , where- M is the largest

possible-value of .
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4. VALUES OF MSE/a
2

FOR a , 111

n= 3 AND LI = f2 = 2

o2 AND a WHEN

r = e 1 in

MSE/02

1'12

o 1.000 .333 .333 .333 333 .389

0.2 . 0.784 .327 .313 .319 .321 .361

0.4 0.557 .289 .275 .288 .276 .290

0.5- 0.447 .261 .259 .270 .250 .253

0.6 0.343 .234 .248 .253 .228 .220

0.7 0.246 .209 .242- .23g .212 .194

0.8. 0.156 .189 .240 .228 .201 .175

1.0 0 .167 _.250 .219 .198 .160
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