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COMBINING UNBIASED ESTIMATES OF A PARAMETER KIOWN TO BF POSITIVE

T. Y. F. Stroud

. ABSTRACT

The statistician has n indevendent estimates of a parameter he knowus
is positive ?ut, ;s is the case in components-of-variance problems, some of
the estimates may be negative. If the n estimates are to be combined into
a single number, we compare the obtvious rule, that’'of averaging the n
values and taking the pﬁSit‘ve part of the result, with that'of averaging
the positive parts. Aithough the estimator generated by the second ruie is
not consistént, it is shown by numerical calculatiqn that for sm2ll n it

has a smaller mean sguare error than the first over a considerable region

of the parameter space, znd that for n = 2 or 3 the second is minimax

relative to the firsi over a region consisting of almost the whole parameter
space. The distribution of each of the n estimates is assumed to be
either Gaussian or the distribution of a weighted difference of two indepen-
dent chi-squares with known degrees of freedom, as in one-way components of
variance. Some other simply calculated estimators, including the positive
part of the median, are studied for the chi-sguare difference case with

(2,2) degrees of freedom and n = 5 .
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COMBINING UNBIASED ESTIMATES OF A PARAMETER KNOWN TO BE POSITIVE

1. INTRODUCTION

-

Sometimes, most notably in components-of-variance problems, a statis-
tician is trying to estimate a parameter he khows is positive, but in using
standard -unbiased estimation techniques he obtains an estimate which is
negative. When this happens, the statistician would usually estimate the
parametér by zero, since in so doing he is coming closer to the true param-
eter value than the original estimate.

Occasionally the statisticié;kﬁggﬂhave several unbiased estimates of
the same parameter arising from independent sources. The statistician will
want to combine the raw data sets and treat them as one data set; however,
this may not always be possible. There may be nuisanée parameters which
vary from one source to another. Or the computational procedure may
require toé much memoxry to accommodate all the data gt once. This may
happen in using Rao's MINQUE technique [8], where matrices the size of the
data set are handled, or Henderson's third method [4,9] with a large number

of groups. (For a problem where either or both of these techniques are

called for, see [11]). Finally, the statistician may not be able to com- .

bine the observations due to not being supplied with the raw data.

Tet us assume that from each source the statistician has nothing

more than an unbiased estimate (which can be positive or negative) of a

zommon unknown parameter value which is necessarily positive. We study

alternative procedures for combining the estimates into a single number.
The estimates are assumed to be identically distributed. (This‘doeseﬁot

cover the situation of-nuisance parameters varying over experiments, but,




when caution is used, some features of the results reported here may still

apply.)

The main part of this paper is devoted to studyiné two simple techniques
for combining the estimates. A few other procedures are treated in a
limited way in the last section. We std&y the performances of the two
technigues when the distribution of the estimates is normal and when it is
therweighted differeﬁce of two independent chi-squares with known degrees
of freedom« The latter model is the correct one for one-way components of"
variance, and may be considered as a prototype for more complicated problens.
As the -degrees of freéd;m vary, a range of distributional shapes is ob-
taiﬁedx The'pormal distribution is, of course, the limiting‘caSé as both

-

degrees of freedom become large.

2. THE TWO ESTIMATORS AND THEIR MEAN SQUARE ERRORS
X

Let X ,+++,X_ be a set of independent random variables, each
2 n - i

12
member representing the estimate of the unknown parameter u based on
oné source. The Xi are a;sumed to be identically distributed with
expectation up = E(Xi) anG one nuisance parameter which is taken to be
the standard deviation o ='0(Xi) . Ve know that p 1is greater than or
equal to zéro, although any Xi ‘has a positive probability of being
negative.

Denote by X; the positive part of Xi , i.e., the random variable

which equals Xi—<when Xi > 0 and which equals zero otherwise. When

+ . .
n=1, X, 1is the obvious estimator of p . When n > 1 , one can

EN
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-either average the Xi values and then také the positive part or take the

positive parts before averaging. Denote (i)+ , the estimator obtained by
the first method, by it , Since it is the maximum-likelihood estimator under
normality. We denote the second estimator (ZXZ)/n by u , since it is the
arithaletic mean of a set of quantities. Thése two estimators were con-
sidefed by .Sirotnik [10] in a mental testing application.
We pbté that @ is not consistent, since it converges in probability
to E(—XQ;) which is always greater than u , i.e. , E(XZ) -
P(¥; > o)E(xi‘Ixi 20) > B(x; 2 O)E(X, Ix; > 0) + P(X, <0)E(x, |x, <0) = E(x,)
One's firsf reaction to this facét is that it hés better properties and is
thus the preferred estimator. This is certainly true when n is large, or N
even moderaté. The reason for presenting this article is thal, fbr'smgll
n, ﬁ performs better over a reasonably large portion of the parameter
spacc, assuming as we do that the Xi are either Gaussian or the weighted
difference of two independent chi-squares. s
The comparison of the estimators' performances is based on mean square
error (MSE), which is defined as the expected squared difference between r 44
the parameter and its finally estimated value, and which equals the vari-
ance plus the square of the bias. It will be seen that formulas for the
MSE cont;in a ‘proportionuality factor of 02 ; for this reason the compari-

sons to be presented are in terms of MSE/02 .

PN
>
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Table 1 is a summary of the relative performance of p and {, as
measured by MSE/02 . When ufo >1/2, p. is generally better, but
the advantage becomes minimal as n increases, and the critical value of
u/6 such that p- is as good as {I is increasing in n and eventually
exceeds 1/2. The value of MSE/U2 for both {I and p increases to 1/n
as u/o approaches its theoretical upper bound1 M . However, if we re-
strict consideration to the region u[g <K, for any K <M, the maximum
MSE/U2 of I over this region is_less than that of {I when n =2or3
and, depending on th2 distribution of Xi , sometimes also when n = L
or 5 .

The relative advantage of 1 over { when pfo > 1/2 also depends

on the distribution of the Xi « In the next section some nggerical &

‘results are presented for the normal case and for the chi-square dif-

ference with certain specified degrees of freedcm. From these results we

shall seé in detail under what conditions p is the preferred estimator.
~

3. NUMERICAL CALCULATIONS AND -GRAPHS

When ‘'n is large, § is clearly a poor competitor to i ,—éince in
this ¢ase {1 will be close to p and 1 will be close to a nunber known
to be larger than p . Let us therefore see what happens for n ranging

from 2 to 5, and to start with assume the Xi to bé normally distributed.

The calculations are obtained from formulas (4.3) and (k.k). We note that
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for both {I and ﬁ the MSE equals 02 times a function of the standard-
. ized mean m = pfo ‘(the reciprocal of the coefficient of variation).
For this reason we graph MSE/U2 as a function of m ; we usé -m raﬁher
than l/m = o/u to display results for values of m close to zero, éince
by " the behavior as m —® is obvious. <

To separate the curves, those for n = 2 and L4 are shown in Figure
A and for n = 3 and 5 in Figure B.
It is seen that g enjoys a healthy advantage over {1 in the region
"1/2 <ufo-<2 . When i is much smaller than o the bias of i has a
77777 noticeable effecf, and when i;ijQh larger the chances of a negative
Xi are slight so that the values of both @ and ﬁ will usually coincide -
with X . DNote that for the estimator X the value of MSE/U2 is the con-

stant 1/n . This value is approached by the curves for both {i and n

as m gets large, but the {I curve gets there faster.

Table 2 indicates the behavior of the MSE functions for larger values
. of n . It is clear that for n as large as 9, the MSE/U2 of is so
- ., D ,
much greater at m =-0 than the MSE/UL of {I is anywheré that one would ;

want to avoid using g for n > 9 even though it is better than {I for

some values of w .
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This gives the general picture vhen the Xi are normal; for very
small n there are certain advantages to L , but s n increases these
are outweighed by a very high MSE/02 in the neighborhood of m =0 .. The
next question is, do the small-sample advantages of g persist when the
X; are distributed other than normally?
In the one-way components of variance problem, the usual unbiased ’
éstimgpor' X of the main effect variance component has the distribution
of olxi - oexg , where Xi and Xg are independent chi-square random
variabies with known .degrees of freedom f, and f, , respectively, and
Gl and '02 are positive numbers related to th: unkrown variance com-
ponents and which satisfy the inequality E(X) = 0,f; - 0,5, 20 . There
are four cases to consider: low fl and low f2 , low fi and high f
and high £ ?he low 2nd high

2 2

high f, and low f2 , and high f

1 1 2"’
degrees of freedom have been chosen as 2 and 20. Otheér even values are
easily treated using the formulas of the next section. Odd-numbered values

are much more difficult mathematically,'but#by continuity we expect the

characteristics to be similar to the -adjacent .even values. -

Figures C and D show, respectively, some 'MSE/ce curves for fl =2,

f2 = 20 and for fl‘b 20 , f2 = 2 ¢+ The curves for fl = f2 = 2 have o

been examined and their appearance is similar to Figure C, with the mn

curve having less upsweep near m = 0 . 'Some values wére also calculated

for ‘fl = f2 = 20 , ahd they were reasonably close to the values for the
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normal case (see Table 3). The conclusion may be drawn that when fl is
high thr, estimator § is considerably better than B for moderately

high values of m , but that when f. is low the advantage is so meager

1l
that it does not seem worth the risk near m'=0 .

e e A G e G D D ST R G S D

To summarize; in probiems where the X; can be considered to be a

weighted difference of two independent chi-squares, we would recommend n

over {I if n is quite small, the degrees of freedom of the first chi-

square is fairly large, and it is thought likely that m > 1/2 , i.e., that
the mean of’ X; 1is at least half its standard deviation.

In a olle=way variance components- model where it is desired to combine
estimates, from n indePendent sources, of the common variance components

o§ (vetween) and di (within), this means we recommend that negative

estimates 8§ of cﬁ be replaced by zero-before averaging provided n is
small, the number of levels k in the one-way classification is large, and
2

RS
the ratio /(var ’o‘rs)2 is at least 1/2 . From [2, page 322, formula

%
(5.7)], the latter condition in. the balanced case is equivalent to
L
0%/03 > [[2 + [{[2 + (kr =1 )/(kr - k)}2]/r , where r is the number of
< -+
observations per level (within one source) and [ = (2k - 3) 2 . A more

simply calculated quantity which exceeds the above lower bound for Us/os )

provided k>3 and r>2, is 2f/r. If k=26 and r =10, for

example, | is preferable to {i when o 2;03/55 (and n is small).

b
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4. DERIVAYION OF FORMULAS FOR MEAN SQUARE ERROR

We now indicate how the.values for the curves discussed in Section 2

l . were calculated. . -
As before, denote by u and 0,2 the mean and variance, respectively,

of the X , and for any U denote vt = max{U,0)} . We wish to derive - -

i
formulas for the MSE of i = X' and p = (D(I)/n . These can be cbtained

-

from expressions for the mean and variance of ).C+ and of X; » Since the

MSE of any estimator of u with.mean v and variance 'ra is given by

4 (v -u)a .

If F is the c.d.f. of xi , the mean v and variance 12 of n
are given by

v = E(XI) = fxdF(x) , , (4.1)
2 y
n'r2 + v2 = —E{(x;)?] = fxadl-‘(x) . (4.2)
' 0

For the normal case, let z = (x - p)/o ; then

. fxdF(X) = f (2 + oz)do(;) ’
0

/o

[xadF(x) = / (u.2 + 2u0z + oaza)do(z) s ‘ :
o ) -

/o
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vhere ¢ 1is the standard normal c.d.f. The integration is straightforward,
using integration by parts on zado(z) . Hence v, = olmd(m) + o(m)]

snd nr° = 02?\m , where o(m) = (2x‘)'% exp(-ma/a—) and A =

mecv(m)[l - o(m)) - we(m){20(m) - 1} + o(m) - [o(uu)l2 . Finally the MSE

for p is
2 2 -
(A /n) + 8, {s.3)

vhere & = o(n) - m{l - 6(m)) . Since ¥ has a normal distribution, the

A

MSE for i wmay be derived similarly; its velue is
(02/n)(7\ v 85 . | (&.h)
wn ~ m/n

The distribution of a weighted difference of two independent chi-
squares with even degrees of freedom can be represented as.a finite mixture
of positive and negative chi-squares. This result has been derived ,

ariously by Box [1], Mantel and Pasternack {6), and Jayachandran and Barr
(5]« Using the notation of Section 3 with p = i‘i/2 and q = f2/2 as

integers the density o2 X ~ Ol-)(l

Lnd
-

- oaxg can be written as

rx( %)

D+ q -3 -1} P-d ,
.‘él ( 1-1 ) (1 + r)P*ad gj_(x)

L3 (rra-k-1y___ P
z ( ) (1 + z)Prak ") ¢-3)

Zies(rippale,(x) + B (rima)hy (x)

say, where r = 92[0 g].(x) is the density of @. times a chi-

1’ 1
square with 2j degrees of freedom and hk(x) is the density of (-Oa)
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times a chi-square with 2k degrees of freedom. Note that the gj(x)

are nonzero only when x 1is positive and the hkgx) are nonzero only
when x is negative. Since (k4.1) and (4+.2) involve integration over only
positive values of x , we need consider only the terms containing 'gj(x) .
The éxﬁectation of X; is therefore the weightéd sum of expectations of
legj random -variables with the weights given by the coelficients of the

gj(x) in (4.5), and the second mioment of X; is a similar weighted sum of

N i 2 2 P2
second moments of these olxgj . -Using the fact that o = h@l(p + r‘q) s
+ b o
B(X;) = X c.(r;p,a)(236,)
j=1 9

o2 -1 D ,
=o(p+raq)? X :icj,(—r;p,q*)
J=1

and

+ ) D
B((x])%) = [o7/(p + %) X

i3+ l)cj(f;p,q') .
j=1

These formulas were used to compute MSE/02 for the estimator u as
a function of r . The quantity 'MSE/oe was then plotted as a function of

m by obtaining w from thé monotonically decreasing relation m

- - -
(p - rq)(p *+ r2q) 2 which follows from p = 20l(p - rq) and e

2 2
h@i(p + rq) . Since p >0 , the maximum'value of r allowed is p/q ;
L s
also r >0 implies that m <p? = (1"1/2)2 .
Note that the distribution of X has the representation G5X§ - thf s
2 2
=0,/ =
where Oz = 9,/n, 6 6,/n , and Xs and X have nf, and nf,

degrees of freedom, respectively. Thus 'MSE/GQ may be calculated for t

- g— e

Ly

in the same manﬁéf as for [T with the appropriate substitutions.
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5. OTHER POSSIBLE ESTIMATORS

In this section we look at a few other naturally suggésted estimators
of simple form. Moﬁivated by the results just stated, fhe author decided
to-seek a simply calculated compromise between f and yu , one that does
better than jﬁ for larger values of m = u/; but does not have the
characteristically high MSE that p  has for values of m near zero. It
is appealing to try to use the sample informatinn to get some idea of m
and then choose f{I or ﬁ accordingly. An easy rule to use would be
based on the proportion of Xi which are negative. If this proportion
is high, it indicates a greater likeliho?d of low values of w/o , and we

would perhaps be predisposed to use the rule that performs best for these

low values. -
For brevity we restrict ourselves to the model 91X§ - 92X2 where
both Xi and Xg have just two degrees of freedom. This turns out to

be the easiest case mathematically. From (4.5),
fX(X) = {Glgl(x)‘+ O2h]ux)}/(91 + 92) .

Here Xi is distributed as a mixture of a 91X2 and a -02X2 random
variable,.each with 2 degrees of freedom, with weights proportional to
Ol and ’02 respectively. Regard the sampling as coming from an urn

with "positive” and "negative" balls in this proportion. For a small ] ) .

sample it is easy to write the probabilities of observing J negative

balls ( J taking values from O to n ) and to compute the mean square




-12-

error for any rule which chooses i or ﬁ according to the value of J .

Letting Y stand for the resulting estimator,
2 _n - 210 .
MSE = E(Y - 1) = ZG:O Pr{J = JIE((Y -w)lo =3 .
Taking as an example n = 3 , by symmetry we can write
2 2
E((Y - #)°1J = 1) = BU(Y - u)7Ix, <0, X3 >0, X5 >0} .

+ +
When Xl <0, X2 0, and AX3 >0 we have X, = 0, X=X, and
e

X3 = X5 , so that here n o= (X, + x5)/5 , where X, and X; have the

-

conditional distribution of two independent 91X2 random variables, each
with 2 degrees of freedom. Hence E(n]lg =1} = h91/3 and Var{p|J =Vl} =
89?/9 . The formula for E{(p - u)2rJ = 1} follows directly. The con-
ditional distribution of X ; given that J =1 ; is that of (91/3)X§ -
(9273)X§ , where Xg and X§ are independent chi-squares with 4 and 2
degrees. of Treedom, respectively. Thus the first and second moments of
may be calculated along similar lines to those indicated in Section 4. The
J = 2 case is similar, and the J =0 and J =3 cases are trivial.

If Xi or Xg have an even number of degrees of freedom more than
two, the same general principles may be used, but the distributions, -given
whether positive or negative, are no longer pure chi-squares but mixtures
of chi=squares. The computations for {I then become rather involved.

When n = 3 there are just 4 possible rules of the type described
above; based on choice of {i or p when J =1 and when J = 2, two of

which are simply fi and 1 . (When J=0or3, {i and p yield the
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same value.) Let ﬁl be the estimator obtained by choosing p when
J=1 and i when J =2 . (This is the rule based on the heuristic
7'likelihood argument of the first paragraph.) ILet ﬁ’a be the estimator
obtained by choosing p when J =2 and { when J=1.

For selécted values of r ='02/91 , Table 4 gives the correspohding
value of m = pfo and MBE/G2 for the rules fi , [, ﬁl and ﬁe s
in the case f, =f, =2 . Surprisingly, the rule u) which chooses @
or p according to the relative iikglihood of low or high values of m
performs badly, and the rule ;2 which reverses the choice does relatively
well. 52 has a lower MSE-than {i for all m greater than about .28
‘and a lower MSE than either {i or ﬁ for m between .28 and .55. At
m=0, where 1 loses to {i by .083, the compromise estimator ﬁe is
worse than {i by <031. ﬁe is thus a much more'aCCeptablé alternative to
i than is p .

We present a possible explanation for the fact that the MSE for ﬁe
is usually lower than for ﬁl . When two out of three of the X; are
negative, we know that thése X, are less than 1 ,. and hence that- X is
probably &n underestimate of p . The estimator {i = X compensates for
this to some -extent by frequently yielding zero in these cases. This is
good if p is close to zero. But for larger p (i.e., u > .28 ), the

estimator p which is strictly positive in these cases seems to perform

better.
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When only one Xi is negative, on the other handg, X will usually
be positive and as such will usually be closer to p than will the biased
it « This holds unless p/o is quite high (> .55), where now even one
negative Xi is unlikely and when it occurs it is evidence that X will
widerestimate p , So again the estimate should bg raised.

It should be pointed out that this article is written. from the
frequentist point of view, according to which expectations are based on
repeated sampling with the same parametef values. This viewpoint has
been challenged by many statisticians (see, e.g., [7]), and alternative
criteria of performance might conceivab;y,yield different results.

Also included in Table 4 are results for ﬁ,’ the positive part of

the sample median. Its mean and variance are easily calculated in the

fl = f2 = 2 case since here Gixi is exponentially distributed, and
using the no-memory property the order statistics are directly expressed
as convolutions of exponential random variables; see, e.g., [3, p. 55,
rrup. 3]. {I performs better than its competitors when m is small and
worse vhen m is large. In the case of large m the distribution of
Xi is markedly skewed, and we would thus expect the sample median to be
centered around the population median, but not the population mean. As
m - 0 the distribution of Xié approaches the double exponential, for the
. case fl = f2 = 2 , for vhich the sample median is the maximum-likelihood
estimator of the center of symmetry and is known to have good properties.

This feature would not be expected to be present throughout all the dis-

tributions for Xi studied here.
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6. CONCLUSION

We have compared two simple rules for the problem of combining
independent, identicali& distributed, unbiased estimates of a parameter
value known to be positive when the estimates may be negative. The first
rule 1 (the positive part of the average of the estimates) is consistent
and the second rule g (thg average of the positive parts) is inconsistent.
In large samples there is of course no difficulty in choosing between the
two. We have seer that when n -is véry small the relative performance

depends both on the ratio pfo (when pfoc >1/2, p is-generally

A

better; otherwise {i is better) and on the underlying distribution. A

rule of thumb for when to use p in practice is suggested in the last two
paragraphs of Section 3; however, this requires a prior idea of u/d and
of the underlying family of distributions. A good practic;i rule is not
obvious for situations where no sudﬁ prior knowledge exists.

For the case of the chi-square difference with (2,2) degrees of free-
dom and n = 3, the positive part of the sample median performs very
well when p/o is small, but badly when p/oc is larges The estimator
52 (choose p if two -of the independent unbiased estimates are negative)
performs better than the others in the intefﬁédiate region andfalso
reasonably well for large pfo . -

A}] estimators studied here have a positive probability of being

zero. It would be desirable to have a simply calculated estimator with

- the property of always being (strictly) positive, or at least of being

positive whenever one or more of the Xi is pcsitive. To date no

reasonable method of obtaining such an estimator seems to be available.




p

~-16~
FOOTNOTES

*T, W. F. Stroud is assistant professor, Department of Mathematics,
Queen's University, Kingston, Ontario, Canada. This res_earcl; wasx performel
while the author was visiting research fellow, Psychometric Group, Educational
Testing Service, Princeton, New Jersey. The author is grateful for the
conments of Donald B. Rubin and Robert I. Jennrich. The author wishes
to thank Michael-W. Browne for suggesting the estimator p , and Frederic
M. Lord for some of the references.

A 1For the normal case M = +w , and for the weighted difference of two
chi-squares M is the square root of half the degrees of freedom of the

positive chi-square (see Section 4, second last paragraph).
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1. SUMMARY OF PERFORMANCE OF u REIATIVE TO

4,5 6-8

29

i better
ﬁ worse

estimator
with logér
maximum

u better i betier

14

worse [ 'worse

depénds on
distribution
of Xi

very close

K mucl. worse

8'Maximum" refers to maximum MSE/02 over any region
of the form 0 < pfo <K <M, where M is the largest
possible value of up/o .
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4. VALUES OF MSE/o° FOR

n - 3 A'ND 1'1 = f2 = 2
MSE/c"

r= 02/ % =n a R s | Hp #
0 1.000  .333 333 .33 3% 389
0.2 . 0.784 327 <313 <319 .321 361
0.4 0.557 .289 275 .268 .276 290
0.5 0.447 «261 259 .270 250 253
006 003!‘5 023!‘ 021.8 0253 0228 «220
0.7 0.246 .209 242 .239 212 <194
0.8° 0.156 .189 .240 228 201 A5
0 <167 250 198 ;160

1.0
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