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SIMPLIFIED FORMULAS PDR STANDARD ERRORS IN

MAXIMUM LIKELIHOOD FACTOR ANALYSIS

ABSTRACT

Standard errors for maximum likelihood estimates of factor loadings

are expressed in terms of the inverse of an augmented information matrix.

This formulation arises naturally by viewing the problem as one in con-

strained maximum likelihood estimation. The constraints correspond to the

form of rotation used. Results are given for canonical rotation and

analytic rotations in the orthomax family.



SIMPLIFIED YORMULAS FOR STANDARD ERRORS IN

MAXIMUM LIKELIHOOD FACTOR ANALYSIS

1. INTRODUCTION

Formulas for the asymptotic standard errors of unrotated loading

estimates which arise in factor analysis were given in an important paper

by Lawley (1967). These were extended to analytically rotated loadings by

Archer & Jennrich (1973) for the orthogonal case and by Jennrich (1973)

for the oblique case. The results of the latter authors applied also to

principal components analysis. Factor analysis is one of the most popular

statistical methodologies. Literally hundreds of factor analysis programs

produce thousands of estimates every day, but not a single standard error.

In part this is due to the fact that the standard error formulas which are

presently available are fairly complicated in form. It turns out, however,

that considerably simpler formulas may be obtained in the maximum likeli-

hood case by viewing the problem as one in constrained estimation. In a

sense this should not be a surprise. One of the advantages of maximum

likelihood estimation is summarized it. the familiar formula

acov (:)= J-1(9) (1)

which states that the asymptotic covariance matrix for a maximum likelihood

estimator of a parameter vector G is simply the inverse of the population

information matrix for that parameter vector. This result holds in a

slightly altered form when 9 is assumed to satisfy a set of functional

constraints. The required alteration will be discussed in Section 2.
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In maximum likelinood factor analysis (see, e.g., Anderson & Rubin,

1956 or Harman, 1967) estimation is based on a sample of size n from a

multivariate normal population of score vectors. In the case of p scores

and k orthogonal factors the covariance matrix of this population has the

form

E = AA' +* (2)

where A is a p by k matrix of (natural) factor loadings Air and 4r

is a p by p diagonal matrix of inique variances Vi . Since E is

unchanged when A is replaced by AT for any orthogonal T , A is not

determined by E and hence cannot be consistently estimated. This in-

determinacy is eliminated by employing a variety of rotation criteria.

These may be viewed as constraints so that maximum likelihood factor

analysis is in fact constrained maximum likelihood estimation.

While the decomposition of E given in (2) is the simplest, the de-

composition most frequently encountered in practice involves standardized

loadings. The standardized loadings are given by

a. . /a.
ir or '

1< i< p, 1< r< k

1

wherethe?.0
r

are the natural loadings from (2) and the a. = (a..)2
i

(3)

are the score standard deviations. In terms of the standardized loadings,

the population correlation matrix P has a decomposition

P w AA' 4- r (10



which is of the same form as that given in (2) for the population covari-

ance matrix. Here A is a p by k matrix of standardized loadings air

and P is a p by p diagonal matrix of standardized unique variances.

Because the diagonal of P is the p by p identity matrix I , it follows

easily from (4) that

P = I ndg AA'

where ndg AA' denotes the nondiagonal part of AA' . If X is the

p by p diagonal matrix with diagonal elements a. then

E = XPX

and using (5),

E = X(I ndg AA')X .

(5)

(6)

(7)

This gives a parameterization of E in terms of standardized loadings

and score standard deviations. It will be used in Section 6 to find stand-

ard errors for standardized loading estimates.

2. STANDARD ERRORS MR CONSTRAINED hAXIMUM LIKELIHOOD ESTIMATORS

As observed earlier, rotation criteria impose constraints on factor

loadings. here we consider a general result on the distribution of con-

strained maximum likelihood estimators to be used in the following sections.

Let be be a constrained maximum likelihood estimator of a parameter vector

0 = (0 ... ) which is assumed to satisfy constraints



g,(G) . 0 ; j 1,...,r (8)

Let J(A) be the population information matrix and let dg/d8 denote

the q by r matrix of partial derivatives 6060. . If
1

( Jo ) li. no/

dE
dO

i.e., if 4- (A) is the q by q matrix in the upper left-hand corner

of the inverted augmented information matrix on the left, then

acov A = .

(9)

(10)

This result may be found in Silvey (1971, p. 81). Sufficient regularity

conditions are that .2)(G) and dg /dQ exist and are continuous in a

neighborhood of the population value of A , tint the indicated inverse

exists and that 6 is consistent. As expressed in (10) the result

here is similar in form to that in the unconstrained case. It is easy to

show thatthat j(G) is a pseudo-inverse of 4 (g) In general it will

not be a Moore-Penrose inverse so that in general 4"(;) is not a

pseudo-inverse of ,6(A) . The motivation for the notation is that 4 (Q)

is obtained from the inversion of an augmented information matrix.

The information matrix .D(G) may, and in our applications mill,

be singular. The constraints, however, must be sufficient to identify

the parameter and in particular sufficient to make the augmented

information matrix invertible.
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3. THE INFORMATION MATRIX FOR A NORMAL POPULATION

The multivariate normal population density for a score vector z is

f(z) . (2/) -PP IEI-1 exp(-1(z - p)'E-1(z - g) (11)

where 1E1 denotes the determinant of E and g denotes the mean of z .

Since we are interested in the factor analytic structure of E and since

the distribution of the maximum likelihood estimatecf this structure does

not depend on g we may assume without loss of generality that g = 0 .

With this assumption the population information for any pair of parameters

a and a is

(a, 13) = E( log 0( 4- log f)

1
-1 6E -1 3E

)2 t r(E 7T.

(-2)

6E
(see, e.g., Jennrich, 1970). Here denotes the p by p matrix ofaa

partial derivatives 3a.. c of the components_:07-. of E with respect
ij

to an arbitrary parameter a .

4. NATURAL LOADINGS WITH CANONICAL ROTATION

This case is considered first because it is the simplest and may most

readily be compared to previously published results. Canonical rotation

means that the factors are orthogonal and the loadings satisfy the

constraint:

At*-1 iA is diagonal (13)
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As its name implies this is the rotation which arises naturally in canoni-

cal factor analysis (Rao, 1955).

Differentiating E with respect to the natural loadings ?%ir and

unique variances ?Pi gives

6E 6A 6A1
3T-- _ -A' 4. A 737-= Ji A' 1- AJ!

ir ir
r ir

6E

7
,

71.7.

where J. is a p by k unit matrix with a one in row i and column r
ir

andzeroselsewhereSimilarlyK..is a p by p unit matrix with a one

in the i -th diagonal position and zeros elsewhere. Inserting these

derivatives in (12) and simplifying one finds that the information matrix

relative to the parameters Air and VI is given by ale pleasingly simple

formulas:

(Air,Ajs)
-1

'E A)
(E

-1
A)

)j
(E

-1
A

rs r

JO. Atj ) = aii(E -1A)-ir Jr

-(*illkj) =

where 1 < i,j < p and 7. < r,s < k . Here ( )
rs

denotes the element

in row r and column s of the matrix inside the parentheses and (Ili

%
denotes (E -1) ..

Using (13) the constraint functions associated with canonical

rotation are:

g
uv

(A,Vi) . (Al -1A)
uv

, 1 < u < v < k

These have derivatives:

(15)
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°guy
(5 7\ )Irru

.

ry iu i
ir

(16)

t1 lr-2?\i7\i*i

for 1 <i<p 1 "/..<k and 1 <u<v<k. Here 6 denotes the
ru

Kronecker delta.

From the general result (10) the asymptotic covariance matrix for the

maximumlaelihoodestimatorsofthe7\.lr and # constrained by canoni-

cal rotation is the square matrix of order p(k I) in the upper left-

hand corner of the inverse of the augmented information matrix:

/.40,A)
J(A,*)

cb(tif'A) 11 (*,*)

\0*

(17)

To specify this matrix uniquely one must specify some order for the param-

eters and constraints. For example, he may use

A.
ir

1 <i<p 1 <r<k
(18)

ordered lexicographically on i and r followed by

, 1<j< p (19)

in natural order and finally by
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uv
1<u<v<k (2o)

in lexicographic order on u and v .

Table 1 gives maximum likelihood estimates for a matrix of canonically

rotated factor loadings obtained by Lawley & Maxwell (1971, p. 43).

Insert Table 1 about here

Table 2 gives the corresponding asymptotic standard errors computed by

Lawley & Maxwell (1971, p. 63) assuming a sample size n = 211 .

Insert Table 2 about here

Table 3 contains the same standard errors using the formulas derived here.

Insert Table 3 about here

Differences between the results in Tables 2 and 3 may be traced to a

slight problem in Lawley's formulas Wnnrich & Thayer, 1973). In

terms of the presentation by Lawley & Maxwell (1971) this may be cor-

rected by inserting a Or immediately in front of the summation sign in

equation (5.27). When this is done the values obtained agree to within

one digit in the last decimal place with the results presented in Table

3
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5. NATURAL LOADINGS WITH ANALYTIC ROTATION

In maximum likelihood factor analysis canonically rotated loadings

are commonly referred to as unrotated loadings because these are the

initial loadings produced by most estimation algorithms. Usually one is

interested in other rotations. In the orthogonal case these include pre-

`dominantly quartimax, varimax, and equamax all of which are members

of the orthomax family (Harman, 1960, p. 334). As in canonical rotation,

the loadings obtained from analytic rotation satisfy constraints which

are associated with the form of rotation used. Archer & Jennrich (1973)

have given a general method to generate constraints from arbitrary

orthogonal rotation criteria. For the quartimax family they give

constraint functions g
uv

whose derivatives with respect to the loadings

?ir are given by:

ague
- 5 a - 5 a

ur iuv VT ivu
ir

for 1 <i<p, 1 <r<k ) and 1 <u<v<k where

(21)

a. ?3 - 5?\
2

A. - [7. (WA) - WA)uu) - aiu(A'A)uv] (22)iuv iv iu iv p iv vv

for 1 < i < p and 1 < u,v < k . Here y = 0,1,k/2 corresponds to

quartimax, varimax, and equamax rotation respectively. In the case of

quartimax rotation and in fact in the case of analytic rotation generally,

the constraints do not involve the unique variances ti . Thus
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6guli
70, - 0 , 1 < i < p 1 <u<v< m (23)

Since only the constraint functions have been changed, the formulas for

the asymptotic standard errors in the case of natural ,ith ortho-

max rotation are precisely the same as those in the previous section

except that the constraint derivatives are now defined by equations (22)

and (23) instead of (16). The augmented information matrix here has the

form:

p(A,A) 4(A, 4) 4
Jov,A) 4('v,*) 0

T
0 0 /

(214-)

Table 4 gives a varimax rotation of the loadings given in Table 1

and Table 5 contains the corresponding standard errors obtained by using

Insert Tables 4 and 5 about here

the formulas of this section. These standard errors were also computed

using Lawley's formulas modified as observed in the previous section

together with the results of Archer & Jennrich (1973). The values

obtained agreed exactly (when rounded to three decimal places) with

those presented in Table 5.



6. STANDARDIZED LOADINGS WITH ANALYTICROTATION

As observed earlier this is probably the most important case. We

are interested here in parameterizing E in terms of the standardized

loadings a. and the sure standard deviations a. as displayed in
ir

(7).Sincethemaximumlikelihoodestimatesofthea.are invariant
ir

under changes of scale in the score vector population, we may assume

witImitlossofgenefalitythateacha.,-1 for the purpose of computing

standard errors for the standardized loading estimates. Using (12) and

being careful to employ this assumption only after differentiation, the

population information matrix is found to be given by:

j(a. ,a. ) p1j(A1P-1A)
rs

+ (P-1A)is(P-1A).
ir js Jr

- 2pijair (P-1A)
is

- 2pija
js

(P-1A ) .

2(pij)2a.
ir js

sl(a. ,(7.) Pija. b..(19-1A 26. .Pii Cc
ir j Jr ij )jr 13 ir

.x-A (a., a.) =
ij

+ P..Pij

(25)

where 1< i,j < r , 1 < r,s < k and p
J

and p
ij

denote components

of the matrices P and P
-1

respectively. These formulas are a little

but not a great deal more complicated than the corresponding formulas

(l1) in Section 4.
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In the case of orthomax rotation, the constraints are those of the

previous section applied to A instead of A . It follows from (10)

tnat the asymptotic covariance matrix for Cie maximum likelihood estimates

of the air and c (assuming the latter have true value one) is the

square matrix of order p(k 1) in the upper left-hand corner of the

inverse of the augmented information matrix:

N.11(A,A) ,O(A,X) M
J(X,A) 4(X,X) 0

6aT

0 0 /57

Table 6 contains standard errors for the varimax rotated loadings.

Insert Table 6 about here

(26)

given in Table 4 using the results of this section to correct for

standardization. We note in passing that when corrected for standardization

every loading except one has a smaller asymptotic standard error.

As in the previous section, Lawley's modified formulas together with

the results of Archer 84 Jennrich were used to check the standard errors

in Table 6. The results agreed to within one digit in the last decimal

place presented.

7. DISCUSSION

We have seen that relatively simple formulas result when asymptotic

standard errors for analytically rotated factor loadings are obtained by
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inverting an augmented information matrix. From a practical point of view

further simplification results from the fact that the formulas may be

-easily implemented as an independent computer module with simple input.

For example, in the case of standardized loadings with orthomax rotation

the required input consists of the rotated standardized loadings matrix

A , the orthomax parameter y , and the sample size n . Thus it is easy

to modify an arbitrary maximum likelihood factor analysis program to

produce asymptotic standard errors.

As always, however, there are trade-offs. The information matrix

method is not as computationally efficient as that based on the formulas

of Lawley. It requires the inversion of a large matrix whose order is

equal to the number of parameters plus the number of constraints. In the

example there were 27 loadings, 9 unique variances (or score standard

deviations), plus 3 constraints making a 39 by 39 matrix. Such a matrix,

while large, is about the same size as that which is inverted in a linear

regression problem with the same number of parameters so the cost per

standard error is no worse than in linear regression. This is perhaps

only minor comfort since factor analysis typically involves considerably

more parameters than regression analysis. It should be ibserved that

within limits matrix inversion is not a terribly expensive operation.

A medium speed computer such as the IBM 360/65 will invert the 39 by 39

matrix in our example in well under a second. One might also worry

about precision problems resulting from the need to invert a large

matrix. We know very little about the precision of this method compared



to that based on Lawley's results. We observe only that numerically

accurate inversion is not difficult simply because a matrix is large (con-

sider the identity matrix), nor is a method based on matrix inversion

necessarily less accurate than one yliich involves primarily matrix

multiplication. Fortunately it is not difficult to monitor the precision

of a matrix inversion. While we have reason to believe the results in

our examples are accurate to about 5 significant digits, the whole area

of standard errors in factor analysis seems to be deNeloping too rapidly

invest a great deal of effort in problems of numerical precision at

this time.

The results derived here apply to maximum likelihood factor analysis.

Unlike the results of Archer& Jennrich (1973) they are not easily

adapted to other methods such as principal components analysis. The

results here are also limited in that the oblique case has not been

included. This is because in the oblique case with standardized loadings

the information matrix becomes too messy to be included in a discourse

whose title asserts simplification.

Perhaps the most important use of the results derived here is that

of verifying results derived elsewhere. They have already proved useful

in uncovering a problem in Lawley's results and verifying those of Archer

Jennrich.

The author is indebted to Allen Yates and Thomas Stroud for their

detailed review and suggestions for improvement of this manuscript and

to Karl JJreskog for providing a much needed reference.
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Table 1.--Canonically Rotated Maximum Likelihood Loadings

Factor

Variate I II III,

,..

Communality

1 .664 .321 .074 .550

2 .689 .247 -.193 .573

3 .493 .302 -.222 .383

4 .837 -.292 -.035 .788

5 .705 -.315 -.153 .619

6 .819 -.377 .105 .823

7 .661 .396 -.078 .600

8 .458 .296 .491 .538

9 .766 .1i27 -.012 .769
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Table 2.--Standard Errors for the Loadings in Table 1 Using

Lawley's (1967) Formulas

Variate I

Factor

II III

1 .066 .058 .076

2 .06h .061 .068

3 .070 .071 .083

4 .o6o .046 .045

5 .065 .057 .072

6 .064 .046 .037

7 .068 .057 .066

8 .073 .093 .142

9 .066 .047 .055
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Table 3.--Standard Errors for the Loadings in Table 1 Using

the Inverse of the Augmented Information Matrix

Variate I

Factor

II III

1 .068 .066 .091

2 .066 .076 .069

3 .072 .081 .084

4 .061 .068 .054

5 .067 .073 .081

6 0 .069 .049 .036

7 .071 .068 .080

8 .076 .103 .124

9 .070 .058 .078



Table 4.--Varimax Rotation of the Loadings in Table 1

2actor

Variate I II III Communality

1 .605 .306 .300 .5119

2 .656 .376 .036 .573

3 .589 .190 -.022 .384

4 .298 .832 .081 .787

5 .243 .746 -.065 .620

6 .178 .87o .187 .8214

7 .709 .258 .175 .600

8 .323 .158 .640 .538

9 .772 .319 .269 .769



Table 5.--Standard Errors for the Loadings in Table 4

Ignoring Standardization

Variate I

Factor

II III

1 .085 .059 .113

2 .067 .060 .128

3 .071 .063 .130

.049 .060 .047

5 .052 .063 .093

6 .o48 .061 .048

7 .072 .055 .12o

8 .132 .058 .200

9 .081 .052 .121
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Tab.1.6 6.--Standard Errors for the Loadings in Table 4

Corrected for Standardization

Variate I

Factor

TI III

1 .066 .052 .103

2 .o48 .052 .120

3 .056 .060 .124

4 .o41 .029 .07o

5 .049 .037 .092

6 .o38 .032 .044

7 .o48 .05o .109

8 .124 .055 .190

9 .055 .044 .109


