
DOCUMENT RESUME

ED 079 357 TM 002 956

AUTHOR Levine, Michael V.
TITLE Geometric Interpretations of Some Psychophysical

Results.
INSTITUTION Educational Testing Service, Princeton, N.J.
REPORT NO ETS-RB-73-32
PUB DATE Apr 73
NOTE 58p.

EDRS PRICE MF-$0.65 HC-$3.29
DESCRIPTORS *Data Analysis; *Geometry; *Measurement Techniques;

*Perception; Research Design; *Research Methodology;
Technical Reports; Theories

IDENTIFIERS *Psychophysics

ABSTRACT
A theory of psychophysics is discussed that enlarges

the classical theory in three general ways: (1) the multidimensional
nature of perception is made explicit; (2) the transformations of the
theory are interpreted geometrically; and (3) attributes are
distinguished from sensations and only partially ordered. It is shown
that, with the enlarged theory and some elementary geometry, one may
use a few ideas to explain many qualitative results, to give a
credible and precise account of quantitative properties of data, and
to design experiments which seem worth doing whether the theory is
valid or not. In developing the new theory, the major criticisms of
the classical theory are answered. This paper is limited to one of
three aspects of the typical psychophysical measurement
experiment--the relation between perceptions and attributes. Although
the theory has been extendedto category and rating scales, only
magnitude estimation and related measurement procedures are discussed
here. The scope of this paper is further limited to phenomena which
have analogues in several sense modalities. (Author/KM)



.2

RE

SE

A
Rc

T

FILMED FROM BEST AVAILABLE COPY

U S DEPARTMENT OF HEALTH,
EDUCATION A WELFARE
NATIONAL INSTITUTE OF

EDUCATION
THIS DOCUMENT HAS BEEN REPRO
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGIN
ATING IT POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRE
SENT OFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR POLICY

RB -73 -32

GEOMETRIC INTERPRETATIONS OF SOME PSYCHOPHYSICAL RESULTS

Michael V. Levine

University of Pennsylvania
and

Educational Testing Service

This is a version of a chapter for the forthcoming book

Contemporary Developments in Mathematical Psychology

edited by R. C. Atkinson, D. H. Krantz, R. D. Luce and

P. C. Suppes. Comments are invited by the author.

Educational Testing Seryice

Princeton, New Jersey

April 1973



GEOMETRIC INTERPRETATIONS OF SOME PSYCHOPHYSICAL RESULTS

Michael V. Levinel

Part I: introduction

Many people, especially certain psychologists, speak and act as if

their impressions, perceptions and opinions were like numbers. Otherwise

reasonable people say things like, "The football team seemed twice as

strong when Jackson was coach." They behave as if addition, subtraction,

multiplication and division were defined for mental objects. The articles

in our technical journals have ample evidence. Psychophysicists commonly

set willing subjects to such tasks as adjusting a light until it looks

half as bright or deciding whether one tone is louder than the difference

in loudness of two other tones.

These curious phenomena are taken as the starting point for a highly

speculative theory of psychophysics. The theory extends the commonsense,

classical mapping theories which recently have been sharply attacked

(Krantz, 1972).

The new theory enlarges the classical theory in three general ways:

(1) The multidimensional nature of perception is made explicit. (2) The

transformations of the theory are interpreted geometrically. (3) Attributes

are distinguished from sensations and only partially ordered.

I will try to show that with the enlarged theory and some elementary

geometry one may use a few ideas to explain many qualitative results, to

give a credible and precise account of quantitative properties of data and

to design experiments which seem worth doing whether the theory is valid or

not. In the process of developing the new theory, the major criticisms of

the classical theory will be answered.
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1.1 Comments on Goals and Scope of the Theory

There are many replicable experimental findings in psychophysical

measurement. The goal of this theory is to show that some of the most

important ones can be related 1,o a few geometric principles. The object

is simply to better understand the psychological findings by deducing them

from a small number of psychological ideas which, for convenience and

clarity, are geometrically expressed.

To define the scope of this chapter it is necessary to distinguish

three aspects of the typical psychophysical measurement experiment. For

concreteness, consider an observer viewing a small illuminated panel and

judging brightness. The three aspects are (1) the relation 'between

pnysical stimuli and perceptions, (2) the relation between complex per-

ceptions (for example, the subjective representation of an illuminated

panel having a definite texture, distance from the observer, area, etc.)

and simpler attributes (for example, brightness or perceived size), and

(3) the relation between attributes and the responses the observer uses to

report the level of an attribute. This paper is limited to (2), the rela-

tion between perceptions and attributes. The other aspects are deliberately

treated in a schematic, noncommittal way.

Although the theory has been extended to category and rating scales

(Levine, 1973c), only magnitude- estimation and related measurement pro-

cedures are discussed in this paper. The scope of the paper is further

limited to phenomena which have analogues in several sense modalities.
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1.2 Theoretical Background: Mapping Theories ofpachoptizsics

The essence of our classical,commonsense theories of direct measure-

ment seems to be this. There is a functional relationship between stimuli

and the observer's internal states. Numbers, or more properly number

names, are treated as stimuli. When performing in a measurement experi7.

ment, the observer responds by selecting' stimuli mapping onto approximately

the same internal state. Following Krantz, these theories will be called

mapping theories

When details of these theories are made explicit, they often seem

highly implausible. For example, consider the following analysis of an

observer selecting a light appearing half as bright as a given light. The

observer first selects a number mapping onto approximately the same internal

state or magnitude as the light. He divides the number by two. Finally he

selects a light with the same magnitude as the halved number.

In spite of their implausibility, these theories have been remarkably

fruitful. An impressive number of replicable findings have been dis-

covered by experimenters evidently using the theories. It seems that some

of our most fruitful and widely held psychophysical ideas are inadequate.

A detailed and penetrating analysis of this situation is given in

D. H. Krantz's recent theoretical study of magnitude estimation (Krantz,

1972). Krantz lists a number of empirical generalizations which are based

on the direct measurement experiments. He then surveys the available

classical interpretations of the generalizations. Each interpretation

involves unlikely mental arithmetic, complicated sequences of matches or

is otherwise unacceptable.



Krantz's solution has been to discard the classical framework and

develop a fundamentally different conceptualization of psychophysics called

relation theory. For a clear and persuasive exposition of relation theory

with references to Kristof's and Shepard's earlier formulations, see the

Krantz paper.

The solution offered in this paper retains the classical framework.

By appropriately. specifying the relationship between perceptions and

attributes, one obtains a number of simple, intuitive interpretations of

the generalizations. See Section III.7 for further details.

These interpretations are free of all the defects of the earlier

theories. They are part of a theory which seems able to integrate a wide

range of data. This new theory, as a part of mapping theory, seems to be

a natural development of a vigorous, highly successful line of research.

In the remaining sections of Part I some informal arguments are

used to introduce the theory.

1.3 Some Informal Considerations Introducing_ Geometric interpretations of

Arithmetic

Ordinarily when we think of arithmetic, we think of the operations on

whole numbers we were taught in school. However, various experimental

results have led psychologists to conjecture that people are able to solve

arithmetic problems as analogue computers solve them: by representing

numbers as continuous quantities such as lengths or electrical potentials

and operating on them.
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In this section, one experimental finding is used to introduce

geometry as a language for reasoning abotit the sort of analogue devices

and phenomena that interest psychologists. The goal is to introduce the

geometric ideas needed for psychophysics rather than to explain the

experimental result. Consequently, details about experiments are omitted.

One of the simplest results to consider geometrically is an unpub-

lished study of Restle (1969a). A related published study is Restle

(1969b). Restle gave his subjects some-carefully chosen mental arithmetic

problems, placed them under time pressure and measured their accuracy

and rates of responding. He found that the speed and accuracy of deciding

whether a number b is closer to a (equal to zero in this study) or c

b -
- b

adepends largely upon the proportion - rather than upon the digits
c

of b . This suggests (at least to Restle and the present writer) that

the numbers were encoded like lengths and that the encoded numbers rather

than the digits were manipulated and compared.

All of the elementary statements of arithmetic can be translated into

geometric constructions. These constructions3 are well understood. A few

examples will be given in this section and the next.

From the psychologist's point of view, it is suggestive that a

multidimensional space is required for the constructions and that there

is little correlation between the complexity of the arithmetic statement

and the complexity of a geometric interpretation. For example, in most

constructions the distinction between rational and irrational numbers is

irrelevant.

Here is a construction relevant to the Restle study. Consider three

parallel lines called vertex, quantity and intensity arranged as in Figure
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One. Although the middle line will be used to represent numbers, all of

the zetric properties on all of the lines will be deliberately ignored.

The points on each of the lines (vertices, quantities, intensities) will

be regarded as ordered from left to right. After this discussion it should

be clear that only the ordering on one of the lines, say the intensity line,

need be ordered. The transformations we consider will induce the orderings

on the other lines.

Let two points F and V (for Fixed and Variable) be selected on

the vertex line. One can define a transformation of the quantity line by

passing a line through V and y so that the intersection x' of these

lines lies on the intensity line. It can be .5hown that the length of the

segment yx is independent of the point x . (Use similar triangles

FVx' and xyx' to show the ratio of the lengths of segments xy to FV

is independent of x .) Consequently, we may regard the mapping x + y

as the addition of a constant mapping, x + x + k . By elaborating the

diagram we can interpret various statements about addition and subtraction.

F

x'

Figure One: Adding a Constant to x .

Vertex

Quantity

Intensity
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One way to use this construction to understand the Restle result is

as follows: Each of the stimuli a,b,c art.: encoded as points on the

quantity line also denoted a,b,c . The fixed vertex F places each of

the quantities in correspondence with intensities a',b',c' as in Figure

Two. The observer under time pressure quickly selects the vertex V on

the same line as a' and b . By projecting through c he creates an

intensity x . Simply by comparing b' and x he is able to decide

whether b - a is greater than c - b . For c - b is greater if and

only if x is to the right of b' . In this way the observer could behave

as if he were doing arithmetic without actually counting or manipulating

digits.

j

a' c'

Figure Two: Geometric Interpretation of an Experiment

Vertex

Quantity

Intensity

Before relating these observations to psydhophysics there are

several qualifying remarks which must be made. (1) Many other construc-

tions might have been used to formulate process models for mental arithmetic.
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The one given above was chosen for its simplicity and usefulness in intro-

ducing considerations needed in the discussions of psychophysics. For more

plausible models of mental arithmetic, see Restle (1969b) and his references.

(2) Some of the alternative constructions are compatible with the relation

theories now being proposed as alternatives for mapping theory. For details

see the concluding paragraph of this section. (3) Whether or not these

geometric constructions can be realized by the components of hypothetical

neural-nets now accepted by physiologists and anatomists seems to be as

irrelevant a consideration for psychologists as, for example, the physio-

logical realizability of Hering's
4

now acceptable, previously rejected,

psychological ideas on color. The relatio,..,..111p between attributes and

perceptions seems to be a purely psychological problem. However, to make

the calculations required by the constructions little more is needed than

neural nets with output y(t) accepting positive bounded signals x(t)

such that if x(t) rapidly converges to x , then y(t) rapidly converges

to k(x) , where It is a linear fractional transformation.

Some details follow. They will be indented and printed in smaller

type. This device will be used throughout the paper to indicate material

which can be skipped on first reading.

On alternative constructions: As indicated
in the discussion of Figure One, each

vertex V to the right of F is associated

with an increment of quantity of length k .

(k depends on V and the ordering of these

k 's is the same as the ordering from left
to right of the V 's.) In this sense it

may be legitimate to interpret V as a sense

distance of size k . Then each pair of

quantities is associated with a unique sense
distance V(a,b) . To solve Restle's problem
the subject need only check to see whether



sense distance V(a,b) is to the left of

V(b,c) . To modify this construction in
order to obtain the sense ratios which play
an important role in the Shepard-Krantz
relation theory, simply rotate the vertex
line through F until it passes through the
point on the quantity line used to represent
the number zero. Then the transformations
analogous to those in the preceding dis-
cussion, except with vertices on the rotated
line, will define multiplicative transforma-
tions x kx . Just as vertices on the
parallel line were interpreted as sense
distances, these new vertices beha-re like

sense ratios. More is said about this con-
struction and geometric interpretations of
multiplication in the next section.

I.1 The Central Hypothesis of the Theorem

Consider an experiment in which an observer adjusts a light until it

appears half as bright. There are many published studies of this kind.

One of the earliest careful fractionation studies is Hanes (1949). For

an exceptional bibliography and a description of current experimental

procedures, results and theories of direct measurement, see L. E. Marks'

The New Psychophysics of Sensory Processes.

In the opinion of many experimental psychologists, subjects can

behave consistently and reliably as if they were converting stimuli to

numbers, multiplying these numbers by .5 and finding a stimulus which maps

onto the product. Experimental evidence for number-like encodings with

interpretable ratios has been cited for many different kinds of physical

stimuli and also for stimuli (such as crimes of varying seriousness) for

which there is no established physical measurement procedure (S. S. Stevens,

1966).
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Here is one way to consider the abili,y to perform in bisection experi-

ments. Suppose people represent numbers on a quantity line parallel to an

intensity line in a plane having a fixed vertex F placing quantities in

correspondence with intensities as in the discussion of Figure One. However,

now consider the vertex line passing through the encoding z of zero and its

corresponding intensity io as in Figure Three. For a vertex M on the

vertex line, a correspondence x x' 4- y can be defined as illustrated in

Figure Three. This new correspondence x 4'y can be considered multipli-

cation by a constant in the sense that the segment between y and the

representation of zero is easily shown to be a constant fraction of the

segment xz . (Use similar triangles Mzy , Miox' and Fi
o
x' Fzx with

common segment ioy .) Changing the vertex M only changes the multi-

plicative constant. There is exactly one M such that the constant is

one half. -

QUANTITY

INTENSITY

Figure Three: A Geometric Interpretation of Fractionation



To relate this construction to bisection experiments, suppose that

the experimental series of lights is represented by the observer as a

series of points in the same plane. Then the vertices 'F and M induce

a transformation of lights analogous to the halving transformation just

discussed.

Notice that once the vertices F and M are specified, the observer

is independent of numbers. There is absolutely no reason for him to map

lights to numbers, halve the numbers and return to the corresponding lights.

The transformation of lights is produced by an observer operating on lights

and their intensities only.

I propose that we acquire5 the ability to halve sensations by first

learning to do this geometric arithmetic. Then we use the same apparatus

for operating ot: sensory continua. There is nothing special about the

number continuum. The psychol)gical continuum of length c, time for

example could play the same role. The important point is that the vertices,

once defined for any dimension in which arithmetic is natural, become

available for an arithmetic of visual brightness or of seriousness of

criminal offenses.

The main hypothesis of this paper is that we have essentially multi-

dimensional perceptions, that we use processes like the projections con-

sidered above to abstract unidimensional attributes and that the

regularities of data suggesting mental calculation actually appear as

a consequence of these processes.
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Part II: The Basic Psychophysical Theory

The theory is called projective theory. Its components are:

Physical Space

physical events

physical continua

parameterizations

Psychological Space

appearances

straight psychological continua

intensities

projections

Magnitudes

points of view

intensity.curves and measures

In this section they are briefly discussed. The purpose is to

provide a vocabulary for mapping theory interpretations of psychophysical

phenomena. Enough structure is specified to provide geometric interpre-

tations and information processing schemes for arithmetic tasks with

sensations and with numbers.

The most closely related alternative theory seems to be Ross and

Di Lollo's. In their 1968 paper
6
they use multidimensional representations

and parallel projections for some of the same purposes as multidimensional

representations and not necessarily parallel projections are used here.
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The main problem in classical psychophysics is to describe the

relationship between physical events and their mental representations.

The view implicit in mapping theory, namely that the psychological repre-

sentation is a function of the physical event, is used here. However, an

attempt will be made to regard all psychophysical regularities as imposed

by the observer rather than transmitted from the physical world. For this

reason only the crudest physical relations will be acknowledged. This is

made explicit in the discussion of physical space.

II.1 Physical Space

Physical space is simply the set of all physical environments that

the experimenter may wish to present to his subject. The points in the

set are called physical events.

In a typical experiment the psychophysicist adjusts a bit of hardware

to obtain a one parameter subset of physical space. For example, when

studying brightness, he may turn a dial through A degrees to control the

amount of electricity passing through the filament of a light bulb. These

one-dimensional subsets will be called physical continua. More precisely,

a physical continuum is a parameterized set of physical events {Xx} where

the index A ranges over a set (generally interval) of numbers. The

mapping A Xx is called a parameterization.

From the point of view adhered to in this paper, physical space is

just a set. All of the quantitative regularities of data will be studied

from a psychological point of view.



11.2 Psychological Space

Psychological space, the space in which physical events are repre-

sented by the observer, is taken as a multidimensional space (euclidean space)

of low dimensionality. Each physical event is represented by the observer

as a point in psychological space celled an appearance. At any given time,

for any given observer, there is exactly one appearance for one physical

event. Some transformations and extra structure will be defined in later

sections. The usual topology in euclidean space will be used.

It will not be necessary to refer to coordinates in psychological

space. The psychological considerations that are ordinarily dealt with by

coordinate systems are handled by projections (Section 11.4) and points of

view (Section 11.6).

The set of appearances corresponding to a physical continuum is called

a psychological continuum. The function between a physical continuum and

its corresponding psychological continuum is called a psychophysical function.

Since every physical continuum has a real parameterization, every psycho-

logical continuum also has a real parameterization. Although this may

occasionally be confusing, the real parameterization of a psychological

continuum will also be called a psychophysical function. To restrict

attention to the sort of parameterizations psychophysicists study, only

continuous psychophysical functions are considered.

If the appearances in a psychological continuum fall on a line

segment in psychological space, then the continuum is called straight.

The main geometric fact dictating the use of this word is the fact that

two lines can meet in at most one point. However a curve can cross a

line twice.
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Not every psychological continuum will be
straight. The example which follows will
be clearer after the sections on projec-
tions and points of view have been read.
The reader may wish to return to this
example after reading those sections.

Since Newton's time, spectral colors
have often been represented by points on
a curve. Consider the physical continuum
that one gets by selecting a narrow seg-
ment of sunlight analyzed by a prism.
If one were to use this theory to under-
stand the scaling of redness one would

. be forced to conclude that the.psycho-
logical continuum corresponding to these
stimuli was not straight. There would be

equally read-appearing stimuli at both

ends of the spectrum. This can only

happen if some line intersects the psycho-
logical continuum twice.

Some continua- -those which appear to vary in exactly one salient

attribute--may be considered straight. Finding suitable continua seems

to be a matter of experimental skill and psychological sophistication.

After the continuum has been chosen there will be experimental implica-

tions of straightness which can be tested.

It is curious that a great many psychophysical
experiments can be analyzed without consider-
ing spaces of high dimensionality. This may

reveal a significant limitation on the
observer's ability to process information

or it may simply,be a consequence of the

experimenter's successful attempts to design
experiments in which all but a few dimensions

of experience are irrelevant. In the absence

of direct experimental evidence the more
conservative latter alternative is used, and
the low dimensional spaces are considered to be
quotient spaces of higher dimensional spaces.
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11.3 Intensities and the Interpretation of Matching

In cross modality matching experiments, subjects attempt to equate

levels of different attributes. For example, they may attempt to

adjust a light until it appears as bright as a sound is loud. Responses

are veriede, both within and between observers. But averaged results

have a consistency which has strengthened belief in the following

interpretation:

Traditional mapping theory interpretation of matching: An appearance

has several qualities such as brightness or yellowness and has each

quality to a definite extent. The extent to which an appearance has

brightness can be represented by a number or something number-like such

as neural excitation or length. The same number-like continuum is used

for brightness and for loudness. The observer matches brightness to

loudness by equating neural excitation, length, magnitude or whatever

the continuum which carries ordinal information for attributes is called.

I do not accept this interpretation, except as an approximation.

Criticism and an alternative interpretation are offered in Sections 11.5,

11.6 and 111.8. However the traditional interpretation will be used

frequently for two reasons. It gives a convenient approximation of the

central tendencies predicted by the alternative interpretation. And,

being familiar to most readers, it simplifies the exposition of the parts

of the theory for which the alternative and traditional views agree. To

prepare to use it, a special line is considered in the next assertion

about psychological space.

4
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There is a distinguished line in psychological space, the points of

which are called intensities. No appearance7 is an intensity.

11.4 Projections

To relate this theory to the traditional mapping theory interpretation

of matching, appearances must somehow be placed in correspondence with

intensities. There are certain qualitative properties demanded by data.

For example, the whiteness ordering on a psychological continuam must be

the opposite of the blackness ordering. The simplest mappings from a

vector space to one of its lines with all of the appropriate qualit.ative

properties and with sufficient generality to include the analogue

arithmetic schemes of Part I are the projections.

Projections give this theory its geometric and intuitive character.

Although they are a part of classical algebraic geometry, a few illustra-

tions and definitions will be included to show some of the qualitative

phenomena they describe and how they function like coordinate systems.

Projections in a two-dimensional space were illustrated in Sections

and 1.3. To define a projection from an appearance in a two dimen-

sional space onto the intensity line, one begins by selecting a point in

the space not on the intensity line called a vertex. If an appearance

is not on the line through the vertex parallel to the intensity line then

the projection of the appearance is the unique intensity on the line

through the vertex and the appearance. Just as the ratio of some numbers



-18-

is undefined, the projection of an appearance on the parallel line is

not defined.

Suppose a continuum of lights is presented. To make it easy to

draw pictures, suppose the experiment is adequately represented in a two

dimensional space. (See Figure Four.) A vertex B (for Brightness)

will induce one ordering on the appearances, when appearances with greater

projected intensities are regarded as greater. Another vertex Y (for

Yellowness) induces the opposite ordering for these appearances. As

Figure Four is drawn, there is very little change in the projection

through the yellowness vertex for one extreme of the psychological con-

tinuum.

.B

.y

Figure Four: Two Projections

Intensity

The two projections function like coordinates in the sense that each

appearance x can be specified exactly by a pair of intensities xy,x
B

where xy is the projection through the yellowness vertex and xB is

the projection through the brightness vertex. This is true not only for

appearances on the continuum but also for all appearances in the same plane,

provided the projections are defined.

In three dimensions, instead of taking a point as a vertex to define

a projection, one takes a line (not in a plane with the intensity line)
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as vertex. Then the projection of an appearance not in the plane con-

taining the vertex parallel to the intensity line is the unique intensity

on the same plane as the vertex line and the appearance. To develop

intuitions quickly, it may be helpful to visualize a large book with its

spine on the vertex. The projection of an appearance is the unique

intensity on the same page as the appearance. The same relarko about

coordinates remain valid, however three rather than two pro.:ections are

needed to locate an appearance.

There is no need to consider more
than three dimensions in this paper, how-
ever for completeness a vertex in psycho-
logical n-space is an n-2 affine subspace
not in the same hyperplane as the intensity
line. A projection onto the intensity
continuum is the mapping from appearances
to intensities such that corresponding
points lie on the same hyperplane con-
taining the vertex.

Motivation for Points of View

This section contains some informal remarks needed to motivate

an alternative to the traditional mapping theory interpretation of

matching.

Both intensities and appearances are points in psychological space.

Yet there seems to be a fundamental difference between the appearance

of an object and the degree to which it possesses an attribute. One

intuitively obvious difference is the definiteness of perception and

the uncertainty of psychophysical judgment. It is common to see an

object clearly and still be very uncertain about one of its attributes.

For a simple demonstration, I scattered seven :nnies on a

sheet of paper and eight on another. Two quarters, three nickels and
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a dime were added to both displays to break up easily counted clusters.

People passing my office were invited to guess which paper had more

pennies. They were asked not to count or place the coins in one-to-one

correspondence. Although it is easy to see a few coins on a white sheet

of paper in a well lighted room, four out of ten first guesses were

wrong. (With practice people became very good at the task.)

In the currently fashionable jargon, "perception is categorical."

If the perceptual system is functioning normally and processing familiar

objects, then, when we see, we see something in particular. But when

we are forced to abstract any judge the intensity of an attribute such

as numerosity, a vagueness becomes evident.

Consider matching brightnesses and loudnesses once again. A

moderately loud tone is held constant. A very bright light is clearly

more intense and a very weak light is clearly less intense. Brightness

appears to change continuously with luminance, so we expect to find one

light which exactly matches the sound. Instead, there is a broad

range of equally acceptable lights. Within the range, one light matches

the tone as well as another.

It is not sufficient to dispatch this uncertainty with the usual

observation that there are always errors of measurement. These errors

have an orderliness which indicates that something basic has been

omitted from the traditional interpretation. For example, with myself

as subject in informal experiments I have observed that the acceptable

range of lights matched to lights is considerably narrower than the

range of lights matched to tones. A probabilistic device unreliably

ordering points on an intensity line would give equal ranges. A
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semiorder structure (Suppes and Zinnes, 1963, Section 3.2) on the intensity

line again would give equal ranges.

Undoubtedly there are many ways to account for these aspects of

the intensity of experience. I wish to do so without losing two attrac-

tive features of the traditional mapping interpretation: (1) The traditional

interpretation is deterministic rather than probabilistic and (2) magnitudes

of different qualities are comparable in the traditional interpretation.

My solution, given in the next section, is to make appearances and the.

degree to which an appearance has an attribute fundamentally different

entities. The appearance of a light remain a point in psychological

space. But the brightness will be a curve in a plane. In addition to

yielding an intuitive theory capable of dealing with the considerations

above, the analysis gives a new explanation (see Section 111.8) of a

systematic departure from transitivity observed in matching.

11.6 Points of View and Magnitudes

This section may be skimmed on first reading. The ideas presented

are not needed for predicting the main effects in most experiments.

The traditional mapping theory interpretation of matching has each

appearance in correspondence with a definite pont on the intensity line

prior to matching. The alternative to the traditional view offered in

this section has each appearance associated with a definite curve.

The goal is to let the shape of these curves (henceforth called intensity

curves) carry the information which intensity points failed to carry.
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Each intensity curve will be the graph of a number-valued function

of intensity. The values of the function may be thought of as the ex-

tent to which an intensity is characteristic of an appearance. Once

these curves are defined, it will be easy to reason with precision

about the problems raised in the preceding section.

In the following paragraphs intensity curves will be discussed

informally. Then a generalization of the vertices used to define corre-

_spondences between appearances and intensities will be introduced. The

generalization, called points of view, will be used to place appearances

in correspondence with intensity curves.

Intensity curves will be specified in such a way as to be generally

unimodal and zero except on an interval. Physically intense stimuli will

have modes over a high intensity. Assumptions will be made to force the

shape of the curve and the length of the supporting interval to change

smoothly as an appearance is varied along a psychological continuum.

Instead of comparing points in the traditional interpretation

th.f. observer will be considered to be comparing curves. As discussed in

the final section of J. C. Falmagne's contribution to this volume, there

are many alternative ways to order curves. The details of the actual

processing carried out by the observer will depend on minor experimental

details such as instructions. For example, an observer instructed to

bracket (see Section 111.8) is likely to do so. Fortunately, it is possible

to derive many predictions by simultaneously considering a large class of

plausible processing schemes. The constraints
8

defining these schemes are

given in the next paragraph.
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It will be assumed that the observer is equipped with a device for

comparing intensity curves. When given a pair of curves u,v the

device responds that u is greater than v , that v is greater

than u or that it is unable to choose. For the purposes of this

section it will only be assumed that the device has the following

properties: (see footnote 8 for a discussion of these properties).

If the supporting intervals of u and v are disjoint then it always

responds that the curve with the interval on the right is greater. If

the curves have exactly the same shape in the sense that it is possible

to obtain the curve u by shifting the curve v to the right, then

it always chooses u . If the curves have approximately the same shape,

then it applies some complicated rule which generally selects the curve

to the right as greater. When the curves have very different shapes

and overlapping supports, the device responds that it is unable to

choose.

To see some of the implications of assuming that the observer uses

a device with these properties, consider matching experiments with

lights and tones. A very bright light with supporting interval to the

right of a moderately loud tone will be judged more intense. Lights

with approximately the same appearance will have approximately the same

shape intensity curves and so slightly different lights can be reliably

ordered. Since the loudness curves need not have the same shape as

brightness curves, the ordering device would be expected to fail to

choose over a larger range for matching lights to tones than matching

lights to lights. Some other qualitative phenomena are considered in

Section 111.8.
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The alternative to the traditional view will be entirely deterministic.

There is no need for probability at this level of the theory. However, the

quickest way to communicate the alternative theory is to appeal temporarily

to the reader's intuitions about probability.

Suppose that instead of specifying the vertex of a projection pre-

cisely, a probability distribution over vertices is given with most of

its mass concentrated on a particular vertex. Then each appearance de-

fines a distribution of intensities in the following way. The probability

of ;et of intensities is the probability of the set of vertices project-

.ing the -ppearance into the set. If suitable restrictions are made on the

probability distribution over the vertices, then the intensity of the

appearance can be thought of as a random variable with a continuous density.

A point of view is simply a measure defined on vertices. Only measures

sufficiently well behaved to permit the definition of the analogue of the

density in the preceding paragraph will be considered. But measures other

than probability measures will be permitted. The extra generality (signed

measures, measures with total mass not equal to one) is not especially

important. What is important is to retain a deterministic theory with a

partially ordered space of magnitudes sufficiently rich to account for

effects like those considered in the last section.

Magnitudes in the traditional interpretation were zero dimensional

intensity points. In this alternative they are taken to be the one dimen-

sional intensity curves or, equivalently, the measure on the intensity line

used to define the intensity curve. The intensity curves will be used when

it is desirable to reason geometrically about psychological phenomena, and

the measure will be used when it is desirable to consider properties which

are invariant under smooth transformations of the intensity line.
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The brightness of an appearance is simply the intensity curve (or

measure) induced by a point of view characteristically associated with

brightness, and the loudness of an appearance is simply that induced by a

loudness point of view. When magnitudes are defined in this way, there

is no difference in kind between the brightness and the loudness of appear-

ances. They differ only in the manner in which they are generated. To the

extent that curves with different shapes can be ordered, these brightnesses

and loudnesses can be ordered. In particular, when overlapping curves of

different shapes are compared, the observer's behavior is expected to be

variable.

To return to the distinction between a
probabilistic and deterministic theory, a
magnitude is an intensity curve or measure.
It is not a random variable having a particular
measure or density. An analogous physical
situation is described in the next paragraph
to show that this is more than a verbal distinction.

A stubborn man might refuse to acknowledge
the fact that his right index finger is extended
in space. In order to avoid being incorrect when
asked questions about its location, he might
explain that the location is, not really a point
in space, but a random point in space. We know
enough about electricity to quickly enlighten
such a man. Not even a random point can be in two
places at the same time, and it is safe for an un-
grounded man to touch one of the terminals of a
light socket.

11.7 Judgmental and Purely Sensory Effects

To recapitulate, physical events are represented by psychophysical

functions as appearances in psychological space. When the observer

wishes to judge the degree to which an appearance has an attribute he



selects an appropriate point of view and generates (by a process like

projection) an intensity measure or curve.

This leaves only two ways for accounting for the effects of experi-

mental manipulations which change the relation between stimuli and

magnitudes. There are purely sensory changes in which only the psycho-

physical functions change, and there are purely judgmental changes in

which points of view change.

In simple studies the two kinds of effects are likely to be confounded.

For example, if an observer is asked to judge brightness and then is asked

to judge the yellowness of a series of lights, the most obvious theoretical

interpretation is a change from brightness point of view to a yellowness

point of view. However, the data may indicate that asking the subject

to attend to a different aspect of the lights changes their appearance.

This is an empirical question which can be translated into a standard

statistical question of the form: Does a model give a significantly better

fit of data than a submodel?

For an opposite example, suppose the subject is exposed to an intense

blue light prior to viewing the stimuli for yellowness judgments. The

appearances of the lights will certainly be affected by the blue light.

But, as discussed in Section 111.7 there may be judgmental effects in

addition to the purely sensory effects. Even if the yellowness point of

view remains constant, there are other points of view involved in produc-

ing the response. Some of these may change when the distribution of

appearances in psychological space changes. These considerations are

considered in greater detail in Section 111.7.
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In the remainder of the chapter, only effects of changes of point

of view are considered in detail. The calculation of psychophysical

functions and the quantification of changes in psychophysical functions

are outside the scope of this paper. Some references to the author's

work in this area and some comments on results being prepared for

publication are included in Footnotes 9 and 12.



-28-

Part III: Elaborations of the Basic Theory and Some Illustrative Applications

In this section the basic theory is elaborated and applied to published

data. The elaborations needed are:

1. degenerate points of view for the approximation of central

tendencies in published data

2. embedding functions to generate graphical displays of

experimental results

3. number appearances to place magnitude estimation, cross

modality matching and rating experiments in the same frame-

work

4. inhomogeneities in the intensity continuum to study the

consequences of assuming psychological space is bounded

5. general factors influencing the subject's selection of a

point of view

6. symmetry in points of view to simplify the calculation of

regression effect and Ekman's law.

Most of the elaborations will be incorporated in the discussion of experi-

mental results.

In the following paragraphs it will be seen that the theory is

consistent with several essentially different explanations of published

experimental findings. The data for choosing between alternative explana-

tions is not yet available. But each of the alternative explanations

has testable implications. In Section 111.6 I will try to show that in

at least one case the experiments suggested by the theory are intrinsically

interesting.
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The theory is formulated as a description of individual information

processing. Most of the data considered are averaged over groups of

observers. Fortunately, there are recent theoretical and experimental

developments which should help overcome some of the problems
10

involved

in obtaining useful data from individual subjects. At this time

appropriate individual data are not available.

III.1 Degenerate Points of View

Points of view in their full generality are needed only in the

final applications of this section. In the other applications a triviali-

zation of the point cf view called a degenerate point of view is used to

approximate central tendencies in published data.

If a point of view has all but a very small amount of its mass

concentrated on a single vertex, then the intensity curve for an appear-

ance will be a sharp spike over a narrow range of intensities. The

limiting case, a point of view with all of its mass concentrated on a

single vertex, will be called a degenerate point of view. The vertex

induces a projective correspondence between intensities and appearances.

When the point of view is degenerate the distinction between magnitudes

and intensities will be ignored.

111.2 Embedding Functions

The appearance of a physical event is a point in a vector space rather

than a number or a number - measured sensation. And so it seems that the
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convenience of real functions in alternative mapping theories is lost.

In this section it is shown that this is not generally so.

Consider a physical continuum {xt} which is carried by its psycho-

physical function to a straight continuum {X
t

} . For example, consider

dial settings t parameterizing the luminance of a light source in a

brightness study. To define a real function simply select two different

dial settings t and s having appearances A equal to Xt and B

equal to Xs . Since every point on the line through A and B can be

written in the form [1 - a]k + aB for exactly one number a , we can

represent the psychophysical function t Xt by a real function t u(t)

with X
t
= [1 - u(t))A + u(t)B . Any such function is called an embedding

function.

The definition of an embedding function for a psychophysical function

t .+ X
t

depended upon the choice of arbitrary parameter values t and s .

Embedding functions are interval scales in the following sense. A

different embedding function v is defined if different t and s are

selected. But it is easy to show that there will always be a pair of

numbers a and b such that for all t , v(t) = au(t) + b . In particular,

when s and t are interchanged v is. 1 - u . For this reason every

strictly monotonic embedding function can and will be assumed to be

increasing.

As illustrated in the sequel, many questions can be considered in

detail in terms of the number-valued embedding functions rather than

the vector-valued psychophysical functions. It is in this sense that

the convenience of real functions is retained in this version of mapping

theory.
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111.3 Some Qualitative Facts about Projective Transformations

To move between qualitative descriptions of psychological processes

and quantitative aspects of data a few easily proven, elementary geometric

facts are needed. Proofs
11

and detailed discussions can be found in

introductory textbooks.

A projective or linear fractional transformation is a function f

defined for all numbers and the symbol co . It is defined by four

numbers a,b,c,d such that ad and be are different. For the

numbers x such that cx d is not zero, f(x) is defined by

f(x) (ax b )/(cx d).

If cx d is zero, then f(x) is equal to co . If c is zero, then

f(c) is zero. If c is not zero, then f(o3) is equal to a/c .

The word "infinity" will sometimes be used instead of co below.

The transformation f defined with numbers a,b,cld has an

inverse denoted by f
-1

and defined with numbers d,-b,-c,a in the place

of a,b,c,d . The projective transformations form a group with

products fg defined by function composition

(fg)(x) = f[g(x)].

Projective transformations enter tne theory in the following way.

Suppose a psychological continuum and vertex are given. When another

continuum and vertex are chosen, a correspondence between appearances

on the two continua is obtained by pairing appearances projecting onto

the same intensity. If the first continuum has embedding function u

and the second has embedding function v then the, f. Jill always be a

unique projective transformation f relating u and v in the following
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sense. If the appearance of x on the first continuum is paired with

the appearance of y on the second, then v(y) equals f[u(x)] .

To expedite the study of variations of points of view, f can

be decomposed into a product f = pg. This can always be done so that

a change of the first point of view only changes q and a change of

the second only changes p.

The decomposition of f into p and q can be done in many

ways. A device to force uniqueness upon the decomposition is to label

the intensities with numbers in the manner that embedding functions

were used to label appearances with numbers. For a fixed pair of inten-

sities A,B any intensity can be written uniquely in the form

IA 4- (1 - i)B for exactly one number i.

'The factors p and q are specified exactly by the following

condition: if the appearances of both x and y project to the intensity

iA (1 - i)B then qu(x) equals i .

Some statements using these number
assignments on the following pages may
strike the reader as a retrogression to the
earlier theories which failed to distinguish
numbers from nonnumerical psychological pro-
cesses. Expressions such as "the intensity
i " are written in place of more precise or
clearly nonnumerical expressions such as "the
intensity i A + (1 - i )B " or "the pro-
jected intensity of the°appearance of the
weakest stimulus." However, the numbers are
never used in an essential way. Every argument
with numbers can be replaced by a nonnumerical
statement. The translation is routine.

A basic property of projective transformations is that if f(xn)

equals g(xn) for three different values of x
n

then f equals g.

One implication is that unless f is the identity transformation, x -)x,

there can be no more than two solutions to the equation, f(x) = x .
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A number or infinity is a fixed point of f if it satisfies the

equation f(x) = x . If infinity is a fixed point of f , then f is

called an affine transformation and can be written in the form

f(x) = ax + b for some real constants a and b

The affine transformations f are the only projective transfor-

mations satisfying the monotonicity condition

x less than y implies f(x) less than f(y)

for all real numbers x and y .

If f and g have exactly the same fixed points then f and g

commute, i.e., fg equals gf . As a special case, two affine trans-

formations with a common real fixed point commute.

As another special case, if f and g both have zero and infinity

as fixed points, then they are both in the commutative group of simi-

larity transformations ( x ) . In particular, if f and g

both carry x0 to zero and to infinity, then for some constant

a, g(x) = (gf-1)[f(x)] equals af(x).

111.4 Magnitude Estimation as a Matching Experiment

In this section a simple interpretation of magnitude estimation is

offered. The goal is to introduce some ideas needed in the sequel. In the

process, an interpretation of Stevens's power law is given. Later (Section

111.7) the evidence for the power law is reconsidered and a different inter-

pretation is given. This section is concluded with some comments on some

extra assumptions used to relate projective theory to the power law.

As is now common among psychologists, perceived numbers are given

approximately the same theoretical status as perceptions of traditional
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stimuli. The physical events representing particular numbers are assumed

to give rise to appearances falling on a straight line in psychological

space and an increasing embedding function u is assumed to relate numbers

to number appearances.

Some complications-tangential to the inter-
pretation of the magnitude estimation experiment
as a matching experiment are avoided by treating
the set of number appearances as if it were
topologically equivalent to a line segment. No

-- matter what topological structure the set of
number appearances is assumed to have, a subject
with a fixed set of rules for naming appearances
and a definite rate of speaking must select his
responses in an experiment from a finite set of
number names. In Section 111.7 the discreteness
of the set of responses is acknowledged and used.

Numbers are assumed to have a special feature as a consequence of being

extremely familiar and abstract. The observer can generate and operate

upon a number appearance in the absence of an obviously appropriate

stimulating physical event.

In the magnitude estimation experiment, the observer attempts to

choose numbers with the same magnitude as auditory, visual or other appear-

ances. For concreteness, consider a continuum of lines of varying length.

Magnitudes are obtained from number appearances with a number point of view

and from line appearances with a length point of view. If both points of

view are degenerate, then it will be possible to match magnitudes exactly.

To make contact with the power law, suppose the length continuum is

straight with embedding function v . Then, as noted in the preceding

section, there will be constants a,b11,d such that number y matches

line x if and only if

(1) u(y) [av(x) + b] /[cv(x) + d]
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S. S. Stevens's power law asserts that for matching pairs (x,y) ,

y is a power function of x ; i.e., y equals axn for real constants

a and .n . Stevens and many others get good fits of data with linear

functions when mean log y is plotted against log x . This generalization

holds for length and a very large number of other physical continua. The

fit is best when x is large.

The most straightforward way to relate the power law to projective

theory is to adjoin assumptions like those presently being made by Stevens

and his associates:

1. The number embedding function u is linear.

2. The physical continuum embedding function v is a power function.

3. (Monotonicity) If x matches y , x' matches y' and x'

is greater than x then y' is greater than y .

The power law data can be easily deduced from these assumptions.

Since affine functions are the only monotonic projective functions,

must be zero in equation (1). Consequently, for large x , log y is

approximately equal to a linear function of log x .

None of these assumptions are essential parts of the theory. They

are intended as convenient by expendable specializations of the theory.

The monotonicity assumption 3. is relaxed in Section 111.7. Some

expeilmental evidence is considered there.

The assumptions 1. and 2. restricting the form of the embedding func-

tions have been systematically studied by D. Curtis and S. Rule in the

context of another mapping theory. Some of their findings are summarized

in a recent symposium paper (Curtis and Rule, 1972). Using a general curve



fitting algorithm of Kruskal they have computed the best fitting monotonic

embedding functions for direct measurement data. In partial support of the

assumptions used here, they find the physical continuum embedding function

to be a power function. The number embedding function is also a power func-

tion, but with exponent close to one.

Curtis and Rule's work shows that it is not necessary to assume par-

ticular functional forms for the embedding functions. The functions can be

calculated from experimental data. Some alternative methods for obtaining

embedding functions from psychological data will be published9separately.

Projective theory is neutral with respect to the controversy over the

validity of the power law and the competing refinements of the law. The

functional form of embedding functions is also a peripheral concern for

the theory. The theory is concerned with the quantification of the

relationships between functions and the psychological processes generating

functions rather than with the shape of any particular curve

111.5 On the Size Weight Illusion and Concurrent Graphs

J. C. Stevens and L. L. Rubin (1970) have recently published a

remarkably simple and precise study of the size-weight illusion.

Magnitude estimates of weights of various size were made under care-

fully controlled conditions. To a very high degree of accuracy the

logarithm of the (geometric mean of)estimates of weights of fixed size

were linear functions of the logarithm of weight measured in grams.

When the slope and intercept of the lines were estimated by the standard

least squares procedure applied to each of the sizes separately, a
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rather odd relation was discovered. The various slopes were a definite

function of the intercepts. Geometrically, the extrapolations of the

separately fitted lines all intersected at one point. This point, coin-

cidentally, corresponded to the heaviest weight the subject could lift

in the experimental position.

J. C. Stevens (1972) recently showed that this is not an isolated

occurrence. Concurrent magnitude estimation functions have been observed

many times, in many laboratories, with many dimensions of stimulation.

In nearly all of the published cases cited by Stevens the point of

intersection was interpretable.

In order to further elaborate the theory and illustrate its appli-

cation, an interpretation of the size-weight illusion will be attempted.

No attempt will be made to deduce the fact that the curves are linear

on logarithmic paper. Instead we will attempt to deduce the existence

of some transformations having the property of logarithm transformation.

In the concluding paragraph of the section it will be shown that the

Stevens-Rubin finding can be expressed algebraically and tested without

fitting special functions or extrapolating.

An essential part of the theory needed in the interpretation of

the Stevens-Rubin finding is the boundedness of psychological space.

Nearly all psychological continua definitely seem bounded. Few of us

have any conception of the heaviness of a 500 pound weight. The range

of intensities is also bounded. It is probably unnecessary to consider

negative intensities. The bounds of the intensity continuum are probably

not sharp. More likely our ability to use intensities varies over the

range of intensities so that only in the middle range do we process
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and compare quickly and accurately. The adjustments of point of view

considered below and in greater detail in 111.7 are a sort of calibration

enabling us to operate over ranges where we are most efficient.

The subject's behavior in the experiment is considered as a

process with five stages: estimation of heaviness prior to contact,

the initial attempt to lift, revised calculation of heaviness, compen-

satory muscular adjustment and judgment.

One idealization suggested by the Stevens-Rubin finding is this:

There is a useable range of intensities extending from a lower intensity

i
o

to an upper intensity i+ . There is a straight effort continuum

in psychological space corresponding to the appearance of muscular

effort in the lifting position ranging from e0 for no effort to e+

for the greatest effort the subject can or will produce. The number

continuum is straight and its point of view constant throughout the

experiment. The effort point of view is also constant. All points of

view are assumed degenerate. Effort e0 projects to 10
; e

+
projects

to i
+

.

The subject views the stimulus. From its size and his guess about

its density he estimates its appearance on a straight continuum. He

selects his heaviness point of view such that he will be able to deal

with whatever stimulus the experimenter offers. In particular, he

chooses so that zero weight projects to 1.0 and a barely liftable

object projects to i+. Then his best estimates of the appearance

project into the useable range of intensities.

It will now be assumed that all the heaviness vertices are independent

of irrelevant changes in appearance in this sense: Weights differing in
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color, size, or texture say, but equally resisting the subject's efforts

to lift, upon being lifted, have appearances projecting by such vertices

I% equal intensities.

This extreme position implies that all of the effects of size upon

heaviness are indirect,that size affects the heaviness only by affecting

the point of view. Experimental implications of this are developed in

the next ection, 111.6.

It follows from straightness and the degeneracy of the points of

view that the intensity of a weight of x _...nds and size A will be

of form

P
A
[v(x)]A + [1 - P

x
v(x)]E

where A and B are points on the intensity continuum, px is a pro-

jective transformation and v(x) is a number valued function of weight

only.

To make an initial pull the subject chooses an effort with intensity

curve closest to the heaviness curve of the estimated weight. After he

makes contact and has more infrrmation he adjusts the strength of contraction

ompletes the lifting. Finally he judges by choosing a number project-

ing onto the same place on the intensity continuum as the final heaviness.

This will give equation

(2) qu(y) = pxv(x)

for matching number y and weight x _airs with size parameter N .

Here q is a projective transformation from the conversion of number

ap2earances into intensities, u is a number embedding function. As

noted in section 111.3 only px will change when the heaviness point

of view is changed.



The equation (2) may be rewritten as

squ(y) = sly-l[rv(x)]

where r and s are any increasing projective transformations such that

rv(0) = s(i
o

) = co . For instance there are

r(x) = 1 / [ v(0) -x ] and

s(x) = 1 / [ io -x ] .

Each of the p?,, must satisfy

p
A
[v(0)] = i

o
and

-p?Jv(x+)] = i+ .

Consequently if we plot squ(y) against rv(x), we obtain a portion

of the graph of the projective transformation sly-1 . But for each

A this transformation has co as a fixed point and consequently is

affine. Thus for some numbers a and b
A A

sly -1
(x) = a

A
x + b

A
.

Thus each graph is a straight line. Furthermore, each projective

transformation spar-1 must take rv(x +) to the number s(i ) .

Since this condition is independent of A , all of the straight lines

must converge on the point of the plane corresponding to the heaviest

liftable weight and its corresponding number.

In this way the Stevens-Rubin result can be interpreted geometrically.

Before concluding this section it seems advisable to call attention

to the fact that the Stevens-Rubin result can be experimentally tested

without curve fitting or extrapolating. There is an unusual property

of the graphs of concurrent linear functions which is not affected by
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nonlinear transformations and which can be tested without considering

the values of the function near the point of concurrence. To define

this property consider the functions f = f?\ such that f(x) is the

number matched to weight x of size ?\ . For any two such functions

f and g that are strictly increasing and have overlapping domains

and ranges it is possible to define a transform Lion of a portion of

the domain of g denoted fg and defined by

fg(x) = y if f(y) = g(x)

If f,g,h, ... can simultaneously be transformed to concurrent linear

functions then the various transformations fg , fh , gh , etc.

will commute. Commutativity is a property which can be experimentally

tested even when there are no data points near the point of concurrence.

It is in this sense that the Stevens-Rubin result can be reformulated

without curve fitting or extrapolation. For further details on functions

which can be transformed to concurrent linear functions see Levine

(1972, Section V).

111.6 the_Size- Weight

There will generally 10' several alternative interpretations of an

experimental result like the Stevens-Rubin data in the theory. But each

has testable experimental implications. In this section some implica-

tions of the preceding analyses are discussed.

All of the size-weight illusion was attributed to the point of view.

Consequently if the point of view could be controlled, the illusion

could be controlled.
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The crucial part of the analysis is the selection of the heavi-

ness point of view prior to contact with the weight. There are two

ways to exploit this. A complicated way would be to incorporate

estimates of heaviness made prior to contact or measures of the force

exerted by the subject during his initial pull on the weight in a

model and to mathematically infer the point of view. An easier and

more amusing way would be to use an experimental technique developed

by Nielsen (1963) to separate the feel and the sight of the lifted object.

Nielsen showed that it is possible to convince an observer that he

is viewing his own body when in fact he is viewing another person's. In

a study of free will he instructed each subject to move his hand along

a painted line. A white glove obscured identifying marks on the hand.

The line was placed in a box containing a mirror system such that the

subject was actually viewing a confederate's hand. Despite the fact that

the confederate repeatedly moved his hand off the line and did not respond

to the compensatory motions of the subject, the illusion persisted.

Eighteen of Nielsen's 20 subjects recorded the viewed hand as their own

pulled by "magnets" or otherwise not completely under control.

It seems possible to adapt Nielsen's technique to obtain control

of the point of view. Consider a subject lifting an object of unknown

size. The subject places his hand in a poorly illuminated box. He

lifts one object and views a confederate lifting another. When the

object is lifted and held steady in a standard position for a full

second, the illumination in the box is increased so that the subject

can easily see the object in the confederate's hand.

One further manipulation is needed. In order to be certain that

the subject doesn't change his point of view prior to making his judgment,



he is instructed to hold his hand steady. If ne fails to obey these

instructions or wishes to terminate the trial or otherwise moves his

hand, the light in the box is automatically extinguished. There are

two anticipated effects of this manipulation. First, if the subject

changes his heaviness point of view, then, as a consequence of the

hypothesized relation between strength of pull and heaviness, there

should be a compensatory movement of the subject's hand. The prompt

extinguishing of the light gives the subject the feedback needed to

learn not to change his initial point of view. Secondly, the manipu-

lation may protect the illusion that the subject is viewing his own

hand. When he moves his hand he promptly sees an effect; when he does

not move his hand, the viewed confederate's hand remains steady.

Under these conditions the theory predicts a greatly diminished

size-weight illusion. The correlation between viewed size and judged

weight should be insignificant or positive rather than negative.

111.7 Changes of Modulus and Changes of Point of View

In his critique of mapping theory, Krantz (1972) lists a number of

generalizations about direct measurement. He argues that the alternatives

to relation theory are implausible because they require mental arithmetic

or complicated mental processes. This is no longer a valid criticism.

Within projective theory the invariances inherent in the generalizations

follow from a wellknown fact of geometry: projective transformations

with the same fixed points commute. Projective theory imposes projective

transformations upon data; plausible (see below) psychological assumptions



restrict the fixed points. Full details will be given in a separate

paper (Levine, 1973c). The basic idea is sketched in an interpretation

of the effects of change of modulus in this section.

In some magnitude estimation studies the experimenter instructs the

observer to assign a particular number to a particular stimulus. In cross

modal matching of lights to tones, the experimenter will sometimes in-

struct the subject to pair a particular light with a particular tone.

Changing the initial pairing of number to stimulus or light to tone is

called changing the modulus.

Krantz's major objection to mapping theory is that it fails to give

a plausible interpretation of some invariances associated with the change

of modulus. One of the central generalizations of direct measurement is

this: If f(x) is the average number matched to physical stimulus x in a

magnitude estimation study with one modulus and g(x) with another modulus,

then there is a constant such that for all of the stimuli, g(x) is the

constant times f(x) . Consequently, ratios of number responses are said

to be invariant. There is an analogous invariance assumed for cross modality

matching. (The exponents computed from cross modality catching data are

independent of modulus.)

The main purpose of this section is to develop the notion of having

several points of view for a single dimension of experience. In the process

it will be shown that this mapping theory quite easily accounts for changes

of modulus. Even the simplest versions of the theory yield a plausible

account of the invariances. No mental arithmetic or complicated ideation

of any kind is required.

After the invariances are dealt with, some steps are made towards a

less idealized description of the experiments. Hopefully these more



realistic descriptions will lead to a specification of the conditions under

which the invariances are observed and an account of, some of the systematic

departures from the generalizations about the experiments. The section is

concluded with a list of some of the factors which may influence the selection

of a point of view.

In the following discussion, only degenerate points of view are con-

sidered. The notations i and i of Section 111.5 for extreme inten-

sities will be used.

Suppose that instructing the subject to change his modulus in a

magnitude estimation study only causes him to change his number point of view.

The psychophysical function and the magnitudes of the appearances of the

physical stimuli are unchanged. Further suppose that each number point of

view pairs i
o
with the appearance of zero and i with the appearance of the

subject's largest number appearance. Then there is a simple geometric fact

which can be related to the invariances. If p and q are projective transformations

such that for two different numbers x
1

and x2

p(xl) = q(xl) = zero and

P(x2) = q(x2) = infinity

times p(x) . Consequently for any numbers y and z such that

xl < y < z < x2 the ratios p(y)/p(z) and q(y)/q(z) are equal.

To avoid reference to infinity one may assume

p(x
2

) = q(x
2

) = M for some large positive M

instead of p(x2) = q(x2) = infinity. ( M may

be thought of as the largest number that is

psychologically significant for the observer.)

Then the cross ratios
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P(y) M p(y)
and

q(y) M q(y)

P(z) M p(z) q(z) M - q(z)

are equal. If M is very large relative to p(z)

and q(z) then the ratios p(y)/p(z) an q(y)/q(z)

are very nearly equal. This follows from

M P(Y) P(z) P(Y)
= 1 +

M - p(z) M - p(z)

P(z) P(Y) 1

0 <

M p(z) M/p(z) - 1

and

To apply these Observations to magnitude estimation, recall that the

interpretation of magnitude estimation as matching experiment (Section

III.4) implies that the number matched to a physical stimulus is a pro-

jective transformation of the physical continuum embedding function

followed by a second projective transformation relating intensities to

number appearances. When the number embedding function u is linear,

the invariance follows from an elementary` calculation with projective

transformations. (Take u(0) equal to zero for interval scale u .)

The invariance of cross modality matching with changes of modulus

can be interpreted similarly. The key to the argument is that the changes

following the change of modulus leave the correspondence of a pair of in-

tensities with a pair of appearances invariant. This can be interpreted

as i
o

and i
+ corresponding to particular appearances as above or it can

be interpreted as the prolongation of a straight psychological continuum

either intersecting or being parallel to the intensity line. No matter which

of these alternatives is chosen, the invariances can now be interpreted in

several ways, none of which require mental arithmetic, complicated ideation

or other implausible p- :esses.



The device of varying the point of view removes the major criticism

of mapping theory by providing a number of simple processing schemes

which imply the invariances. This device also seems useful in accounting

for other aspects of direct matching experiments, especially experiments

using a large range of physical stimuli. It seems profitable to consider

the observer functioning like an automatic gain control device using

inputs and a portion of its own response to adjust its characteristics

in order to operate over an optimal range. This could be achieved by

adjustments of the number point of view or by adjustment of the points

of view relevant to the experimenter controlled events. For the present

time, only number points of view will be considered.

As a special case, suppose that the observer has exactly two number

points of view, labelled Lo and Hi . Both can be thought of as pro-

jecting a grid of numbers upon the intensity line. Assume that Lo projects

many more of the number appearances for which the observer has number names

into a neighborhood of i
o

than Hi so that Lo is better suited for

assigning different names to different magnitudes of weak stimuli. Lo

consequently will give steeper matching functions for these weak stimuli

when it is used. On any given trial the subject uses either Lo or Hi .

The averaged response to stimulus x will be

f(x) PL0(x)L(x)
Piii(x)H(x)

where P
Lo

and P
Hi are the proportions of trials each is used, and L

and H are conditional matching functions. If Lo is used only for very

weak stimuli in the sense that P
Hi

(x) increases rapidly from zero to one,

then one still predicts all of the qualitative properties accepted as
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1

evidence for the power law; namely, increasing, asymptotically linear,

concave plots of Log f plotted against Log x .

This elaboration of projective theory has the curious implication

that magnitude estimates need not be monotonic functions of physical in-

tensity. Since L has steeper slope than H , there 'will be x 's such

that L(x) is higher than H(x) . In an experiment of Ross and Di Lollo

(1968) observers judged very many light weights. Without warning they

were given a much heavier weight to judge. Suppose the observer retained

a high slope, low point of view for moderately heavy weights, but with

even heavier weights changed to a high point of view. Then one would

expect precisely the pattern of nonmonotonicities reported.

Another empirical consideration suggesting this elaboration of pro-

jective theory is the observation occasionally reported by experimenters

having a great deal of experience with direct measurement. It is reported

that in the method of free magnitude estimation (in which the subject is

not assigned a modulus) it is especially easy for the subject to give

reliable estimates. It is not clear in relation theory that free magnitude

estimation should be preferable to any other method. In the projective

mapping theory there are many possibilities. In the free method the sub-

ject selects the point of view. In the variants, the experimenter influ-

ences the selection of the point of view. The unconstrained subject is

free

1. to select a point of view which gives him an opportunity to use

a range of numbers of great familiarity,

2. to choose a point of view which gives good resolution over the

range of intensities into which most of the stimuli project,
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3 to choose a point of view which is easy to recall for successive

trials,

4. to choose a point of view so that the number intensity curves

will have approximately the same shape as the weight intensity

curves.

The next step in developing this line of reasoning seems to be to

obtain detailed individual data with deliberate manipulations to control

the point of view. In the context of such experiments it may be profitable

to design training procedures for giving the observer control of the point

of view and statistical procedures for inferring the point of view from

the fine structure of data.

111.8 On the Regression Effect

This application has been selected to illustrate arguments in which

points of view which are not degenerate play an essential rc1e. An

intransitivity of matching called the regression effect and a generalization

about the relation between uncertainty of judgment snd intensity of

stimulation called Ekman's law are considered briefly.

When an observer adjusts a bright light until it appears as intense

as a loud tone, he consistently underestimates the adjusted continuum in

the following sense: if light Zl is adjusted to match tone t1 and then

the tone is adjusted to t
2

matching £
1

, then t is generally less physically
a

intense than t
1

This phenomenon is called regression effect. It has been

replicated and is valid for many pairs of continua (Stevens and Greenbaum,

1965). There is also a tendency for overestimation of faint adjusted stimuli.
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In earlier mapping theories, regression was an artifact to be averaged

away or made less apparent by complex experimental procedures. In the

present theory magnitudes are only partially ordered, so the intransitivity

of matches is not an embarrassment. Two interpretations of the phenomenon

will be offered. In both cases the intransitivity follows from the manner

in which the observer tries to equate magnitudes of different shape.

In the first interpretation the observer matches magnitudes of differing

shape by computing an index of agreement. As a crude example, he might

calculate the correlation coefficient between representative values on

intensity curves and select stimuli to maximize it.

If the observer is maximizing an index of agreement between magnitudes,

the intransitivities are predicted. For to find Zi he is adjusting

lights to find a maximum in one set of index values. But to find t
2

he

is searching for a maximum in a different set. The :intransitivity occurs

when the 2,

1
.A

2
pair has a higher index of agreement than the Z

1,
t
1

pair.

And since the Z1,t1 pair is included in the set of pairs available for

the second match, the intransitivity is generally expected.

Some experimenters have attempted to obtain precise matches by in-

structing tho observer to bracket. When bracketing the observer chooses

a light Z just clearly less intense than tone t
1

and a light Z
+

just

clearly more intense. Finally the observer ignores the tone and selects a

light 2, = 2.1 which is in some sense exactly9 in between Z and 2.4. .

If the shape (skewness) of the intensity curve changes appropriately

then the regression effect can also be deduced from this bracketing. One

set of hypotheses sufficient to assure exactly the right changes in shape

is this:
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1. The light and tone continua are straight.
2. The light and tone continua are parallel to

the intensity continua.
3. Psychological space is two dimensional.
4. Both the brightness and the loudness points

of view are radially symmetric. (Here a point
of view is called radially symmetric when there
is one point of view such that every rotation
of psychological space leaving this point of view
fixed leaves the distribution defining the point
of view fixed.

To make the bracketing procedure explicit some notation is needed

to express the fact that 2. is just clearly less intense, L
+

is just

clearly more and £1 is exactly in between. Suppose the bracketing

lights are selected with reference to functions

f(x,m) = the measure of intensities smaller than x

calculated with the magnitude of stimulus m and

g(x,m) = the measure of intensities larger than x .

If brackets are chosen so that for small criteria e < d there

are intensities x < y such that

= f(x,i) = g(y,24)

e = f(x,ti) = g(y,ti)

and match 2, = £1 such that for some x < y

f(x,t) = g(y,L)

= f(5r,t+)

then by elementary arguments one can deduce that there will be an apparent

underestimation of very intense stimuli and an apparent overestimation of

very feeble stimuli.

A further consequence of the unnecessarily strong simplifying

assumptions used to deduce the regression effect is an approximation of

Ekman's law (S. S. Stevens, 1966; also Ekman, 1961) on the uncertainty
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of judgment. For high levels of stimulation the ratio of a measure

of scatter such as interquartile range to the modal intensity will be

very nearly constant.



-53--

Footnotes

1
Acknowledgments: Valuable criticism on this work has been received

from Jean Claude Falmagne, Peter Freydl Francis Irwin, Dorothea Jameson,

Ann King, R. Duncan Luce, L. E. Marks, Jacob Nachmias, Klaus Riegel,

Harris Savin and J. C. Stevens.

2
See Krantz (1972) for a finer classification of the classical

theories.

3
For a lucid discussion of these constructions, see Coxeter, The

Real Projective Plane. That introductory text contains much more

geometry than is needed in this paper.

4
See Hurvich (1969) for a lively account of this story. Hering's

psychological ideas were rejected when introduced decades ago because

they were judged to be in conflict with contemporary physiological

knowledge. Now physiology has changed and Hering's color theory is

widely accepted. Although Professor Hurvich does rr:, agree in conversation

or in print, the physiological realizability of Hering's psychological ideas

is irrelevant in the twentieth century as it was in the nineteenth.

5
The word "acquire" is used advisedly. The reader may choose to

think of the ability as acquired in the course of the experiment, in

developmental time or evolutionary time. The equations of the theory are

independent of the choice.

6
See Ross (1972) for more recent references.

7
Instead of introducing an abstract continuum in psychological space

some theorists have assumed that there are mappings from one psychological

continuum to another. For example, lights of varying brightness might be



-54-

compared with sounds of varying loudness by referring each to a continuum

of lines of varying length. Physical laws relating distance to a source

with physical intensity ftre sometimes used to defend the correlation and

induce quantitative relationships. This view will not be used here. In

addition to the objections of Krantz (1972) there is a vulnerability

to rejection in experiments using the following considerations: With

procedures such as selective adaptation, the correspondence between length

and perceived length as well as the relationship of appearances on a

length continuum may be systematically changed. These changes should

affect the crossmoaal matches in predictable ways. For this reason, a

new continuum is introduced.

8
An analogy may make the criteria for an acceptable device clearer.

Consider an individual with imprecise Knowledge of the distribution of

heights in various populations asked to make decisions of the following

kind. An individual is to be selected at random from two populations.

The decision maker is required to predict which population contrib-

utes the taller individual. Three critical comparisons are (1) mice

with men, (2) men who have just taken their shoes off with men who

have just put their shoes on, and (3) horses with men. The decision maker

is predictable in (1) since the distributions do not overlap. The decision

-iaker attempting to maximize the proportion of correct predictions is pre-

dictable in case (2) since the unknown distributions will have very nearly

the same shape. Although the crucial statistic may be much larger in the

last case than in the second case, the decision maker is unpredictable

because he lacks the information he needs to make a rational decision.

The distributions have different shapes and they overlap.
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9
Part IV of the earlier version of this paper is to be submitted

for publication separately to the Journal of Mathematical Psychology.

It contains an outline of some unpublished results on functional equations.

Some related published papers are Levine (1970) and Levine (1972).

10
An example of a major problem is the effect of repeated exposures

to the stimuli on the observer. After many exposures the observer knows

t. range of stimuli that will be used. This can have complex effects on

magnitude estimates. For an example of some important recent results,

see Teghtsoonian (1972).

11
In fact, almost every assertion can be proven directly from the

definition by routine algebraic manipulations.

12
Some tools for this quantification are presented in Levine (1973a)

-lid Levine (1973b). The first paper suggests using psychophysical data

to define local semigroups with essentially unique matrix representations.

The entries in the matrices quantify the relations between curves. The

second paper introduces a method for using fourier analysis to compute

the quantifying matrices with great precision from matching functions

defined on small ranges of stimuli. In collaboration with D. Saxe, a

computer program to do this calculation is being prepared for public use.

13
If the light k is selected as exactly in between by bisecting an

angle on the dial of an instrument used to control the lights, then the

instrument can be adjusted so that by successive approximations a bias is

introduced which is about the same size but in the opposite direction as

the regression effect. In the analysis tat follows it is assumed that

the observer can learn to select the matching intermediate light without

being influenced by angles on adjusting dials.
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