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THE RELATIVE EFFICIENCY OF TWO TESTS AS A FUNCTION OF ABILITY LEVEL

Abstract

A new formula is developed for the relative efficiency of two tests

measuring the same trait. The formula expresses relative efficiency solely

in terms of the standard errors of measurement and, surprisingly, the

frequency_distributions of true scores. Approximate methods for estimating

relative efficiency may make this function routinely available. A numeri-

cal illustration compares new and old estimates.of relative efficiency for

subtests from the Scholastic Aptitude Test.



THE RELATIVE EFFICIENCY OF TWO TESTS AS A FUNCTION OF ABILITY LEVEL*

Birnbaum [1968] defines the relative efficiency'of two testing .droce-

dures as the ratio of their information functions. Their relative efficiency

will vary for different levels of the trait measured. Ideally, test manuals

should report information functions or relative efficiencies as routinely

as they now report reliability coefficients.

The main purpose of the present note is to derive a useful and instruc-

tive formula for relative efficiency, appropriate for two unidimensional

tests measuring the same trait. It is necessary that the two tests be

administered either to the same group or to approximately equivalent groups

of examinees. The new formula shows that relative efficiency is closely

related to the shapes of the true-score distributions of the two tests.

The first section briefly discusses information functions. The second

section derives the new formula. The third section presents a method of

practical application and an empirical check.

1. Information Function

A testing procedure produces a LJore x for each testee, presumed to

be related to his standing on the trait 9 , hereafter called the "ability,"

measured by the procedure. The score x may be the number of questions

answered correctly, or it may be a complicated function of the examinee's

responses. If x were a consistent, preferably an unbiased estimator of

and if A were uniquely defined, the testing and scoring procedure

could perhaps be evaluated by its sampling variance. Scores commonly

*Research reported in this paper has been supported by grant GB-32781X
from National Science Foundation.
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used (because of their convenience) are typically consistent estimators

of some awkward function 9 , however. Worse yet, this function is seldom

the same from one procedure to the next, except for the case, uninteresting

for making comparisons, when the two procedures are strictly parallel.

This situation usually causes no problems for the mental tester who is

interested only in the relative standings of the examinees on 8 . For

him, within limits, one monotonic function of A is about as good as

another. This situation does prevent us, however, from comparing testing

and scoring procedures simply in terms of the sampling variance of the

score.

Birnbaum [1968, p. 418] suggests comparing scoring procedures by the

.widths of their asymptotic confidence intervals for A . (In this dis-

cussion, "asymptotic" indicates that the number, n , of test items is

large.) This width is inversely proportional to the square root of

[6e(xlgY6t9)
2

(1) I(g/xJ Var(x1g)

termed the score information function. An alternative, nonasymptotic line

of reasoning leading to this same function has been outlined by Lord

[1952, eq. 57; 1971, eq. 6.3].

A few remarks about information functions will be listed below:

1. In classical test theory, if x is a linear composite of item

scores, lengthening the test k -fold will multiply the mean of x by k .

Since Var(x10)E x- e(x10) 1 9 ] represents the variance of the
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errors of measurement, this quantity will be multiplied by k also (not

by k2 ). Thus, lengthening the test k -fold will multiply the score

information function by k . Conversely, a percent increase in a score

information function is most easily interpretable as equivalent to the

increase achieved by lengthening a conventional test by the same percentage.

2. If x is the maximum likelihood estimator 6 then I(0,x) =

I(006) is asymptotically equal to the Fisher information measure

clog L(1110)
2

IF[0,0 E e(

where I(u10) is the likelihood function for the vector u of observed

item responses [Birnbaum, 1968, e0.3]. Also, I(0,6) is equal to the

reciprocal of the asymptotic variance of A .

3. A nonasymptotic line of reasoning given by Rao [1965, pp. 270-1]

suggests the use, even for small n of

(2) [g x)
F

e(6 0 LW(?) )2

as a measure of the information about A contained in x . This Fisher

information measure is necessarily less than or equal to the one given in

the preceding paragraph. By virtue of the Cramer-Rao lower bound to the

variance, we have under regularity conditions

Var x:<
(6e(x10)/60)2

`

F
(G'x)

Consequently, IF(0,u) > Ir(G,x) > I(0,x) . If x is a sufficient

statistic for 0 , the equality signs hold asymptotically [Kendall &

Stuart, 1961, 17.37).
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4. A linear transformation of x does not affect I(G,x) , but a

nonlinear transformation changes I(G,x) . Asymptotically, the effect of

a strictly monotonic nonlinear transformation is negligible under mild

conditions.

5. A strictly monotonic nonlinear transformation of x has no effect

on the information statistic (2) suggested by Rao, even in small samples,

since the likelihood of a sample of observations is not affected by the choice

of scoring system. This is a very desirable property, in view of the fact

that the choice of a score x _rather than some function of x is largely

arbitrary. Rao's informaticn measure leads to a very complicated formula,

however, when x is the number -right score. For this reason, it will not

be utilized here.

6. Let 8* E 0*(8) be a strictly monotonic transformation of the abil-

ity scale. It is easily found from the chain rule for differentiation that

(3) i(e*,x) = I(0,x)(3o*p8)-2

(4) IF(g*,x) = IF(0,x)(6o*/60-2

Thus the shape of the information function m2y be distorted to any con-

tinuous single-valued curve by choice of G* . In particular, the ability

level at which maximum "information" is obtained may be drastically changed

by a transformation of the ability sce.le.

7. It is seen from (3) that the relative --afficiency of measuring

procedures x and y is not changed by a strictly monotonic transformation

of the ability scale. For this reason, the parameter will be omitted from

the corresponding symbol:
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(9,0*,y)
R.E.CY)x.1

Iy) I(
- NIx) -

8. Unless we are prepared to defend strongly a particular choice of

metric for ability, it will be wise in any practical investigation to

present R.E. curves rather than the protean information curves. If desired,

an actual measurement procedure can be compared in efficiency to a hypo-

thetical "standard" test composed of statistically equivalent items with

specified item parameters, or to a hypothetical standard test characterized

by a uniform distribution of item difficulties (Brogden, 1957, p. 305).

2. A New Formula for Relative Efficiency

The relative efficiency of two scores, x and y , is ordinarily

computed from their score information functions by (5). As an illustra-

tion, consider the case of number-right scores.

For this special case, we have

n
x = E ui

i.1

where u. = 1 or 0 represents a right or a wrong answer to item i . Thus

(6)

n

e(xle) = E Prob(u. lie)

i=1 1

n

P4(9) 1

n
Var (x19) = E P. Q.

i=1 1

where 13 = P.(9) is the characteristic function of item i and
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Qi
E1 - P. . Thus, from (1), the score information function of x for

0 is [Birnbaum, 1968, eq. 20.2.2]

n
E p:

(7) I(01x) -

E P.Q.
1 1

where P! = 613.1/60 . In order to estimate relative efficiencies, it1

has until now seemed necessary to estimate the item characteristic func-

tions P.(0) for all n
x

and ny items.
1

Let us now derive a new formula for relative efficiency. We no

longer require x to be a number-right score.

By definition, t e(xtQ) is the true score corresponding to x .

---Since P.1 (0) is ordinarily a strictly increasing function of 0 , as will

be assumed here, we have from (6) that t is also a strictly monotonic

transformation of 0 . From (3) we then have that the score information

function of x for t is

(8) I(g,x) = I(0,x)(600)-2

Finally, from (1) and (8),

(9) Ia,x) = liVar(x1)

(The numerator here is 1 because the regression of observed score on true

score has unit slope.) If y measures the same trait as x and

= e(y10) denotes the true score for y , we have similarly

Vila) = 1/var(5,111)
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Since g and r are both strictly monotonic transformations of 8 1

it follows that 1 E l(g) is a strictly monotonic transformation of .

Thus we can use (3) to write down the score information function of y

for g :

02
(10)

VaryYri = 11(0)

The efficiency of y relative to x is now the ratio of (8) and

(10):

(11) R.E.br,x) =
)2 Var(x I E)

( at Var(y140)

Similarly,

(12) R.E.(x,y) Var(yln)
kari / var(x10

The function 1(g) can be defined by the relation

go 1(go)

(13) 13(00 = q(TI)dri

-co -co

where p(g) and q(11 are the probability density functicns for t

and r . Equation (13) simply states that for any population, the pro-

portion of cases lying below go must be the same as the proportion lying
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below no . This must be true, for t and n are simply two different

ways of expressing the individual's standing on a single psychological

dimension.

Since (13) holds for all t
o

, we can differentiate both sides to

obtain p(t0) = q(11(0)(6110/60 . Dropping the subscript and rearranging

gives

(l1.) p
g S

Substituting (i1.) in (11) gives an interesting expression for the relative

efficiency in terms of frequency distributions of true scores:

Var
R.E.(y,x)

Var Yin

2
(t)

(1

2
(11)

1

where i = n(g) is the equipercentile equivalent of t , as required by

(13).

If x is a number-right score, the range of g is 0 to n
x

, where

n
x

is the number of items in test x , and similarly for n . It may be

desirable to rewrite (15) in terms of t E t/nx , z E X/nx co E n/ny ,

and w = y /ny :

(16) R.E.(y,x)

2
g (0
2,
h vb)

where g and h are the density functions for t and w .
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To cur surprise, these formulas show that the relative efficiency of

two tests can be expressed directly in terms of true-score frequency dis-

tributions and standard errors of measurement, The formulas agree with

the vague intuitive notion that a test is more discriminating at true-score

levels where the scores are spread out, less discriminating at true-score

levels where scores pile up.

3. Practical pplication

Various convenient ways of estimating the expression on the right of

(16) will be found. The crude but simple procedure of substituting sample

distributions of observed scores for p(g) and q(i) will be discussed in

another publication, Here we discuss a particular estimation procedure

available when x and y are number-right scores. Although this proce-

dure is complicated, it is an order of magnitude simpler than estimating

accurately all the item parameters required by (7). In large 'samples, the

new procedure seems to yield results that are much the same for most

practical purposes.

The functions g(0 and h(w) needed for (16) are estimated from

the sample frequency distributions of x and y by methods discussed by

Lord [1969], using a revised version, available from the author, of the

computer program described by Wingersky, Lees, Lennon, and'ford [1969].

The functions Var(zit) needed for (16)are approximated by the formulas

[Lord, 1965, eqs. 9, 34]

k
x 2

2
! n (n

x
- 1)s

2
/[x(n

x
X) - s

2
- n s

2
]

px

1 -

x x p



wh:;:re x and s
2

are the sample mean and variance (over people) of the

number-right scores, s
2

is the sample variance (over items) of the p. ,

and pi is the sample proportion of correct answers to item i .

Var(w1a) is obtained simila-ly.

The relation between r and t symbolized Ae notation n n(t) ,

is calculated numerically by a computer program [Stocking, Lees, Lennon,

& Lord, 1969] that solves (13) for n . A revised version of this program,

available from the author, also computes relative efficiencies from (16)

and plots them as a function of t . No item characteristic curve param-

eters are used anywhere in this method. This new method has been tested

out and compared to the old method using 90 verbal items from the

Scholastic Aptitude Test. For the old method, item parameters for all

90 items were estimated simultaneouslY from 2926 answer sheets by the

maximum likelihood method described by Lord [1973J. Random responses were

supplied for omitted responses (but not for items apparently "not reached"

by the examinee). A 45-item "peaked" subtest was selected consisting-of

those items having estimated difficulty parameters near the average value

for the entire test. A "regular" su'ytest cc .sisted of the 45 even-numbered

items. Actually, there was considerable overlap in items between the two

subtests. However, the formulas used and the conclusions reached are

appropriate for two nonoverlapping 45-item tests having the same item

parameters as the actual tests, with all examinees responding to all items.

Estimated score information functions were computed from the estimated

item parameters by (7). The dashed curve in Figure 1 shows the ratio of

these information functions, estimating the efficiency of the regular



test relative to the peaked test. A logarithmic scale is used for relative

eft' r since an R.E. of .5 is precisely as noteworthy as an R.E. of

2.0.

The solid curve in Figure 1 was obtained by the new method (16), as

described in the first paragraphs of this section. The necessary sample

distributions for x and y were obtained simply by scoring the 45-item

subsets involved. Only the 1805 examinees who finished the test were

used for these calculations. The solid curve shows some tendency to

oscillate about the first curve, but in general seems to provide a satis-

factory and very usable approximation. The oscillations could presumably

be avoided by using larger samples or by other means. The computational

cost of estimating (16) does not increase with sample size.
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Fig,:re 1. Estimate of relative efficiency from (16) compared with

estimate from (7) and (5).
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