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COMPARING REGRESSIONS WHEN MEASUREMENT ERROR VARIANCES ARE KNOWN

Abstract

In a multiple (or multivariate) regression model where the predictors

are subject to errors of measurement with a known variance-covariance

structure, two-sample hypotheses are formulated for (i) equality of regres-

sions on true scores and (ii) equality of residual variances (or covari-

ance matrices) after regression on true scores. The hypotheses are tested

using a large-sample procedure based on maximum likelihood estimators.

Formulas for the test statistic are presented; these may be avoided in

practice by using a general purpose comput3r program. The procedure has

been applied to a comparison of learning in high schools using achievement

test data.



COMPARING REGRESSIONS WHEN MEASUREMENT ERROR VARIANCES ARE KNOWN

1. Introduction

Often we want to compare two groups of subjects on the basis of a

posttest, with adjustment made for scores on a pretest. For this purpose

many experimenters have used the analysis of covariance. When the observed

pretest scores contain errors of measurement, however, we would really like

to make our adjustment in terms of true scores [Lord & Nbvick, 1968], since

otherwise'the covariance adjustment does not properly correct for the bias

in the difference of adjusted means as an estimate of the difference in

intercepts [Cochran, 1968, p. o3)]. Because true scores are unobservable,cr-

one needs extra information to make a satisfactory correction. Lord

[19601 has proposed a method of doing this when duplicate measurements

(ith independent errors) on an individual's score are available.

Another problem frequently encountered is that the within-group

regressions may not be rarallel In the case of one pretest variable,

the regression lines may cross so that the subjects in one group may

score higher or lower on the posttest than tho in the other group, de-

pending on the pretest score. Cronbach and Gleser [1965, pp. 177-181]

give some examples of this, and !ohnson and Jackson [1959, pp. 424ff]

describe a method (the ,T_hnson-Ticyman technique) for ascertaining statis-

tical significance in this case-.

In this article we propose a method -)f testing for equality of regres-

sions in two groups when all variables in the regression equation are true

scores. The end is similar to that achieved by Lord [1960], but we allbw
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the regression slopes to be different. Instead of assuming that duplicate

measurements exist, we assume that the pretest measurement error variance-

covariance matrix is known and the same for both groups, and that the post-

test measurement error covariance matrix is the same for both groups.

Either the pretest score or the posttest score, or both, may be multivari-

ate. The case where both are univariate is described in Stroud [1972].

The study which motivated the methodology described here involved a

desire to compare the learning taking place in two groups of schools, where

the Iowa Tests of Educational Dotelopment (ITED) were administered in grade

9 (pretests) and the Tests of Academic, Progress (TAP) were administered

in grade 11 (posttests). It was felt this could be best achieved by testing

the null hypothesis that the true score regressions were the same for both

groups. The formulation described here should be applicable in many situa-

tions involving tests or measurements in which multivariate nozmality may be

assumed and measurement error variances and covariances of the predictor

variables are known, as is the case with to is such as the ITED if one is

willing to use the publisher's fic_.res for standaid errors of measurement

and assume the subtest measuroment errors uncorrelated.

For subjects in the first group, let as write, using the classical

test theory model, the vector equation 7. = T E (observed score = true

score error of measurenent), which we partition as

Here theis the vector of pretest scores for an individual, X
2

the cor-

responding vector of posttest scores (not necessarily of the same dimension),
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and Ti , T
2

, E
1

, and E
2

are the corresponding true score and error

vectors. We assume zero correlation between T and E and between E
1

and E2 . For subjects in the second group, let the corresponding equation

be Y = U + F , again partitioned into pretest and posttest vectors.

We are interested in testing the hypothesis that the regression func-

tion of posttest true score on pretest true score is the same in both

groups, i.e.,

H
1

: e[T
2

IT
1
= t] = du

2
IU
1

= t] for all vectors t

In the school comparison example cited above, one could interpret this

as meaning that the average "learning" (in some sense) is the same in both

groups of schools. Another hypothesis of interest is that the learning

is equally uniform in both groups of schools, i.e., that the true score

residual covarians:e matrix is the same in both groups:

H2: e[T
2
IT
1
= t] = e[U

2
IU
1

= t] for all vectors t

where the symbol C denotes covariance matrix. We may be interested in

either H
1

or H
2

independently of the other; so they are treated

separately.

In Section 2 we express hypotheses Hi and H2 in terms of the param-

eters of the observed scores X and Y , assuming multivariate normality

and that the measurement errors in the two groups, E and F , have the

same covariance matrix with the pretest part known. In Section 3 we



describe how to test these hypotheses using Wald's large- sample test pro-

cedure based on maximum likelihood estimators and a computing algorithm

[Lord, 1972] which calculates the value of the Wald test statistic without

requiring a formula for it, using numerical differentiation. Section h

contains the resultS of the above mentioned comparison of schools.

Finally, an appendix is presented which contains a formulation of

some properties of the Wald procedure, and formulas for the asymptotic

covariance matrix of the maximum likelihood estimator of the left-hand

side of each hypothesis, which would enable computation of the Wald

statistic without using numerical diSferentiation.

2. Formulation of Hypotheses in Terms of Parameters of

Distribution of Observed Scores

Assume that one is given m n mutually independent observation vec-

tors; the first m of the form X=T-I-E (T and E independent) and

the remaining n of the form Y where X and Y are the only

quantities observed. Assume all distributions are multivariate normal,

viz: T T(p,E*) U 7Xv,0,1*) 1:(O4) , and F WIG) . X and

Y are each partitioned into a pretest Part (dimension p ) and a posttest

part (dimension q ), as described in Sction 1. This induces a partitioning

on µ , v 1 Z* , 7 :* , and A , e.g.,

-q1 9.2

r*Z E
2.1_ 22
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v and irk are represented similarly. El and E2 have been assumed

uncorrelated; so write A = diag(641,62) We assume that E* and 4r*

are nonsingular, and that -.AI is known. In practice 61 will usually be

diagonal; however, we allow both Al and 62 to be any positive semi-

definite matrices, provided 61 can be specified.

In regression problems involving errors of measurement, it is common

to consider the underlying variables, although random, to be linearly or

"structurally" related [Kendall, 1951; Madansky, 1959; Moran, 1971]. We

take a different approach and consider rather the unconditional joint

distribution of Tl and T2 (or of X1 end X2 ). We avoid writing

anything as a linear function of TI ; we retain T as /i(glE*)

throughout and condition on Tl only to obtain the formulas for ePr21T11

and epf
2

IT
1

) . Taking the formulas for these quantities from Anderson

[1958, page 29], H1 and H2 may be written as follows:

(2.1)

1 1

ELEti q1q11 '

H1:

42
r21-11

41 v2 1Yth*11 vl '

r *-1 Trm- -1

(2.2) H E* - E* -
2' 22 21 11 12 22 21 11 12

To write these hypotheses in terms of the parameters of the distri-

butions of the observed vectors X and Y , note that X and Y are

normally and independently distributed with mean vectors µ , v and

covariance matrices E = VE" 4 A and * ** T A respectively. Partition

E , ' in the same way as E* , ** ; then (2.1) and (2.2) become,

respectively,
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(2.3)

E21(El1 61)-1 *21(*11 61)
-1

H1:

112 E21(E1l 61)-1111
-

v2 *21(*11 61)-1v1 '

(2.4)
1°: E22 E21(Ell

) -1-12
* *21*11

-11hA
A 1 22 ' 12

3. The Hypothesis Testing Procedure

The method proposed in this article for testing H1 and H2 is an

asymptotic test procedure based on unrestricted maximum likelihood esti-

mators (MLR), first described by Wald [1943]. Consider the general problem

of testing a vector hypothesis g(p,v,E,*) = 0 where (1.1,Z) are the mean

vector and covariance matrix of one multivariate normal population and

(v,1;1) are the mean vector and covariance matrix of a second such population.

A A

Denote sample estimates by (11,Z) and (vM respectively, where the

sample sizes are m and n . Let

= g(11,c,M)

written out as a column vector, using each off-diagonal component of the

symmetric matrices E and v on]y once. Then the test statistic is

(3.1) W

where ":"_. = 41,v,E,0 is a large-sample approximation to the covariance

matrix of , based on the partial derivatives of g , and F. is defined

as g4,v,E,40
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The estimates a and V of the population mean vectors are usually

taken as the sample mean vectors X and I , respectively. E and * are

the unrestricted maximum-likelihood estimates ET
=1
,(Xi - R)(Xi 5)'/M and

1

E? (Yi - - , although one could instead use the unbiased
1=1

versions with denominators of (m - 1) and (n - 1) , the difference

being unimportant in large samples.

The statistic W is asymptotically distributed as central (noncentral)

chi-square if the hypothesis is true (false). This result, originally

proved by Wald
IP

11910] under rather strict regularity conditions, has been

shown by Stroud [1971] to hold under fairly general circumstances, which

apply in particular to the problems studied in this article.

Ts compute the value of W from given data using the computer program

described in Lord [1972], it is necessary to write a FORTRAN function to c'm-

pute each component of U , given p , 9 , E , and * . For the two prob-

lems described here, U is obtained by writing equations (2.3) and (2.4)

with estimates substituted in and with all quantities transposed to the left

of the equal sign. If H1 is being, tested, the first pq components of U

^
are the components of 221 (211 A1) -1 21(-*11 )

-1
, and the last q

%-1^ 1-1
components of U are given by ri2 - 21(211 - v- * *

'e 21(11 "1/ vl

For 112 , U is obtained from a triangular portion of E22 - E21(Ell

A1)15:"1.2 132161l 61)112 written as a vector. The reader is

referred to Stocking and Lord [1975] for a further description of the

computing procedure.
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In order that U denote what is intended, i.e., an approximately nor-

mal random vector with mean g(11,v,E,*) both Ell AI and 1/11 -

ought to be positive definite, yet theoretically this can fail. If the

data turn out to be such that either Ell - AI or
;11 61

is near

singularity or has negative roots, one may regard this as an indication

that, due to insufficient sample size, the measurement error has swamped

out the information in the data estimating
Ell 61 or *11 61

Evidence is presented in Stroud [1968, pp. 80-81] that with standardized

achievement test data with p = q = 1 and sample sizes greater than 40,

E - A (and hence E
11

- ) is almost certain to be positive definite.

For the multiple regression case, perhaps larger sample sizes than this

would be necessary to ensure that the anomaly would not occur.

The necessary formulas for computing W without using the Lord

algorithm are given in the appendix. In this case one has the additional

work of substituting the estimates a , i and * into rather

complicated formulas for the asymptotic covariance matrices. The computa-

tion of W has been carried ont on the data described in the next section

both using the Lord algorithm and using the asymptotic covariance matrix

formulas. The results agree precisely to at least the number of significant

digits retained in Table 1.

!4. Analysis of Some Achievement Test Battery Scores

In this section we report the results of the study, mentioned in the

introduction, based on grade 9 ITED ( Xi and andand grade 11 TAP

( X
2

and Y
2

) subtest scores. The comparison was between one specified

school in Portland, Oregon and the group consisting of the other 11 high

schools in that city.
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AversionofthisstudyinvhichX1,X2,Y1,andY2were uni-

variate (composite scores) has already been reported [Stroud, 1972]. The

portion of these results concerning the tests of hypotheses H1 and H
2

are included here for purposes of comparison with the multivariate tests.

The TAP subtests used were Composition, Reading, and Mathematics, in

that order, and the ITED subtests were Social Concepts, Correctness of

Expression, Quantitative Thinking, Reading (Social Studies), and Reading

(Natural Sciences).

First the procedures were applied using as X1 and X2 the standard

scores of all the girls in the specified school (School 1) and for Yi and

Y
2

the scores of the girls in the rest of the city (Schools 2-12) taken

together. Secondly, the same procedure is repeated for the boys. In the

third and final application, the girls in the twelve schools (X1,X2) are

compared with the boys (Y1,Y2) . Table 1 shows the value of W for com-

paring (i) conditional mean vectors (hypothesis H1) and (ii) conditional

covariance matrices (hypothesis H2) for both the multivariate data just

described and the univariate case utilizing composite scores (averages over

the subtests). Beside the value of W is given the corresponding value of

the inverse of the approximating chi-square cumulative distribution func-

tion ( P = 1 - significance level attained ). The sample sizes are shown in

Table 2.

The standard errors of measurement for the ITED subtests were taken

to be 3.32, 3.16, 5.146, 3.32, and 3.146, respectively. These values were

derived from the administrator's manual [Science Research Associates,

1965], and are expressed in the appropriate scaling of the Portland standardiza-

tion. Subtest measurement errors were assumed to be uncorrelated with each

other.



Insert Table 1 about here

It is seen from the significance levels in Table 1 that t lu

of the univariate and multivariate applications do not completely corres-

pond with each other. Notice that in the school-versus-school comparisons

(boys and girls separately) the multivariate test for covariance matrices

reveals greater significance than the corresponding univariate test, but

the multivariate test for mean vectors shows less significance. In the

boy-versus-girl comparison, hcdever, the pattern is reversed.

Insert Table 2 about here

In trying to account for these phenomena, we may note from Table 2,

where the six 8-dimensional mean vectors are tabulated, that subtest scores

for School 1 are consistently lower than those of the 2-12 group. However,

if we compare boys and girls, we find that boys do bettef in some subtests

(notably the quantitative) whereas girls do better in others (e.g.,

composition). Thus the composite scores used in the p = q = 1 analysis

are appropriate for comparing schools, but not for comparing sexes because

the sex-related differences will tend to be reduced in the averaging of

subtest scores. In the school-versus-school comparison of mean vectors,

most of the meaningful variation has been recorded in the composite score

analysis; so that for example a chi-square of 11.92 on 2 degrees of freedom

is registered as being more significant than a chi-square of 29.94 on 18



degrees of freedom, even though the difference of the chi-squares (18.02)

slightly exc' -h difference in the degrees of freedom.

In the boy-versus-girl comparison, on the other hand, the multi-

variate analysis of mean vectors g1ves a more impressive result than the

univariate for the reason (mentioned above) that the simple average is far

from being the best linear combination demonstrating differences between

boys and girls.

The interpretation of the results regarding conditional variances and

covariance matrices is more difficult. The main factor is probably that

residual variances based on predicting a single variable by a single

variable cannot be expected to resemble too closely a 3 x3 residual

covariance matrix based on five predictors. One would guess that, with the

school-versus-school comparisons, there are discrepancies in the residual

)variance matrices which are washed out when we look at just the residual

variance of the composite score. Regarding the boy-versus-girl comparison,

an examination of the data has revealed that the difference between residual

variances in the univariate analysis exceeds (in relative terms as well as

absolute) the difference in residual variances of any of the three subtest

scores in the multivariate results. This may very well be related to the

interaction between sex and subtest content, but the pattern appears too

complicated to give a d,Lailed account here.

In conclusion, it would appear that the univariate and multivariate

analyses taken together aiz, more informative than either one would be alone.

Although the techniques used to study the above data have been derived from

c)

the theory of inference, the author has the distinct impression:that an

honest attempt to get as good a feel for the data as possible is more

fruitful than the making of statistical decisions such as accepting
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or rejecting hypotheses. This supports the view of Dempster [1969] that

the data-analytic approach to multivariate problems is often more sensible

than a "solution" based on inference.
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APPENDIX

Al. A Simplifying Transformation of the Parameter Space

The statistic W defined by (3.1) for testing either H1 or H2 may

be computed as described in Section 3. This process involves obtaining 4-4

by numerical differentiation of the function g(4,v,E,*) at the points in

the parameter space specified by the estimates 11 , v , E , and * We

will now proceedto derive the analytic form of . This yields an alter-

native method of computing W , in addition to providing a base for possible

study of the properties of W .

We assume in the following derivations that the pretest measurement

error covariance matrix is nonsingular. This assumption is not essential,

but it makes possible a transformation which simplifies some of the terms

in the matrix expressions. The derivations of formulas for the more

general case may be carried out with straightforward modifications.

The transformation is that of resealing the pretest variables to unit

error of measurement, and is carried out as follows. Assume 61 is

nonsingular; then define T , U , E, and F as transformed values of

T U , E , and F , respectively, after premultiplication by the matrix

O
I`

2

0

1
, e.g., T= rT . Let X T and = 5 + ; then X = rx

and Y = ry . Then T 9(u,i4) and U ,

p2 ta2 1v 211, 6.1E4111: , and 22=

where 41 . 61al

22 , with similar

identities for the v and * quantities. Clearly the hypotheses (2.1)

and (2.2) are unchanged when k , v E* , and ** are replaced by la ,



v , E* , and ** respectively. Let us therefore work with the

-quantities, forgetting the old ones, and the - symbol need be retained

no longer since it is unnecessary. However, note that now E and F each

have the covariance matrix ra =

0

0 A]

matrices of X and Y are (p01) and (v,*) , respectively. The hypothe-

The mean vectors and covariance

ses now read

(Al)

(A2)

111:

H2:

p
2

E22

-1
E
21

(E
11

- I)-1 -
21

(IV
11

- I) = 0

- E
21

(E
11

Trip
1

- v
2

+ If
21

(If
11

- I)-ly
1

= 0

E21(E11

-1r

"12 *22 *21(4111

-1

" 1.12
0

In practice one carries out the transformation simply by dividing each

pretest variable at the outset by its standard error of measurement; then

one tests the hypothesis defined by (Al) and (A2).

A2. General Results for Asymptotic Covariance Matrices

We now state some general results which apply to problems of testing

hypotheses concerning samples from two normal distributions. Let the

hypothesis to be tested be g(p,v,E,*) = 0 and let the test statistic

be W = as defined in (3.1). Consider m observations of

X - MI,E) and n observations of Y /7(v,*) , all independent. We

are concerned with asymptotic results which hold when m and n in-

crease such that n/M p as n -4 W where 0 < p < . Recall that
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is an asymptotic approximation to the covariance matrix of U , and

hence is of order n
-1

(under regularity conditions). We define a =

where H is a function of p , v , 41 which does not depend on

A-1_
n . Then W = nUt0 U , where ci is obtained from a by replacing p ,

v , E , and * by a , , and IT( , respectively. It is shown

in Stroud [1971] that if g is twice differentiable with matrix of first

derivatives of full rank then the distribution of W is asymptotically

central (noncentral) chi-square when g(p,v,E,*) is zero (nonzero), and

that the components of 0 are given by

(A3) w(a,P) = avt*f3v + 2p tr azEr_iE + 2 tr a44' 4(4(

where a is defined as gi(p,v,E,*) (the i -th component of g when

written as a vector), (3 is defined as gj(p,v,E,*) , and by (LOA

is meant the (i,j) -th component of 0 . Subscripts in (A3) denote

partial differentiation; e.g., fip is the (p q) -vector of partial

derivativesof.with respect to the components of p , and az is

the (p q) x (p q) symmetric matrix of partial derivatives of gi

with respect to the components of E . In the latter case, since E is

symmetric, the off-diagonal components of ai include a factor of

[see Stroud, 1971, formula 4.6; and Aitken; 1953], derivatives with

respect to symmetric matrices are defined this way for simplicity of the

resulting formulas.

The final two sections of this appendix are concerned with deriving

formulas for the w(a,(3) when g is given by Hi or H2 Since H2

is simpler, it is treated first.
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A3. Components of :F2., for Testing Equality of Residual Covariance Matrices

Define II as the function of the parameters representing the left-

side of (A2); the hypothesis is II = 0 . A typical component of the matrix

S2 = n'E. is given by (A3), which may be written as

(Au)
i kf

wij,k1 2p tr gE
j
EgE
kf
E + 2 tr A00* *

(note that µ and v are not involved), where, for example, iti2 is

the matrix of partial derivatives of the (i,j) -th component of the matrix

II with respect to the components of E .

The partial derivatives AEA and A
ij are evaluated with the aid of

matrix differentials and the associated formulas for products d(AB) =

(dA)B + A(dB) and for inverses d(A-1) = -A
-1

(dA)A
-1

[see, e.g., Deemer

and Olkin, 1951, results 5A15, 5A15, and 5B3]. If Y = AXB (where all

capitals denote matrices), the formula

6yij
A'F..B1

Ox 2.3

where E.. consists of a "1" in position (i,j) and zeros elsewhere

[Dwyer & MacPhail, 1948] is used to evaluate the matrix derivative. In

case X is symmetric, the formula becomes

6yij
- RA'EuBi f 13E! .A) ,

1
where a Yij 2/6x is defined with a factor of in the off-diagonal elements.
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The differential of 11 is now obtained. From (A2) it follows that

The following partial derivatives are obtained:

agii 3 dni. - RE..+E!.)
i

i(E.+E..)
22 dE 1J 1J j J1

agij 3 dnii

3T2; 3 dIV22

4(E. .+E..)
13 21

alii 1 ,2[(E11-I, E
1
E..E (E -I)

-1
(E -I)

-1E E!E (E -I)
-1j

2 1J 21 11
11

12 ij 21 11

2(E11- I)- 1E12 (E. I)(E
11
-Ill

ij 1

3g
ij

,-1 ,

77-- 2 11
1011 -I) kV

12
kE

ij
+E

ji
)4,
21

(IV
11

-I)-1

11

31cii (E E )E (E
T1-1

3E
21

21` 1-"

agij ,,-1_ .11

lj Jl 21
0
11
-

iit 1Remembering that the matrix WC '76E is evaluated with a factor of
2

applied to all off-diagonal components, we may write it, using (A6), as

follows, where the q x q symmetric matrix F.. is defined by
ij

F.. =
1

(E13 ..+ E3..)
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(Z
11

-I) 1Z
12 ij
FZ

21
(Z

11
-I)

-1
-(E

11
-I)-1E

12 ij
F

-F..Z
21

(Z
11

-I)
-1

10

Since Z may be written as

[

(E11-1)+I
Z
12

Z
21

Z
22

it follows from (A7), by straightforward evaluation, that

(A8)
ij kf (1) ( )tr ZA tr F A -F ,A-1-E Z

F.
kx.

1,(a(1)a(1) a(1)a(1))
2 ik jf if jk

[cf. Stroud, 1971, fo)mula 3.1], where

(A9) A(1) .
E22-Z21(Z11-1)-1212 E21(Z11

I) -212

and a(1) stands for the (i,k) -th component of A(1).ik

A(2)Define A in terms of * as in (A9). If we substitute into

(All) the formula (A8) and the analogous formula involving * and A(2) ,

the following result is yielded:
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n ( (1) (1) (1) (1)) (a(2)a(2) a(2)a(2))

(43i.j,k1 'aik ajf aif ajk ik if if jk

(1<i < j < q, < k < < q)

where p is taken here as equal to n/M .

In the case q = 1 , St equals the scalar w
11,11

U = 11 is also

a scalar, so it is easy to write down the following formula for the

'statistic W :

W

A4. Testing for Equality of Regressions

The development of this section parallels that of the preceding

section, but the presentation is somewhat more condensed to save space.

This time the quantity g(i.i,v,E,*) is the vector of dimension pq q

whose components are the components of the q x p matrix

21
(1.,

11 21 11

_1)-1

and the q x 1 vector

% %
A . 4

2
-E
21

(E -If m
1
-v
2
4

21
(;f
11

-I)
1
vi
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It is straightforward to show that the matrix of partial derivatives

of the transformation from (u,v,E,*) to (0,A) has full rank of pq + q ,

by showing that the Jacobian of the transformation from (E
21 2

) to (0,A)

is nonzero [see Deemer & Olkin, 1951, Theorem 3.5].

The pq + q components of U are the components ( L < i< q

1 < j < p) of the matrix 0 and the components 7\1 (1 < i< q) of the

A % A A
vector A when (p,v,E,*) is replaced by its estimator (11,v,E,*)

Ench component of S2 , as given by (A5), is one of three types,

according to whether a and fi are:

(i) both components of

(ii) both components of A

(iii) one a component of and the other of A .

Let the components of ft of these tybes be denoted, respectively, by

(i,k 1,...,q; j,1 1,...,p) u. (i,k = 1,...,q) , and
wij,k1 ,

wi kf
(i,k = 1,...,q; f 1,...,p) . The general formula (A5) may be

,

rewritten as follows:

(A10)

k i;
= pk* VZo I 4

(O 2p tr `'EGkIE 4 2 tr 0ii*Okt*
wij,kt

i% k i k
(1) = A PEA (A )141A 4 tr 2 tr
I, k v v L 111 Y

uk,ki = WiTEltf :z "AiEok
It V V

p tr 2 tr 7\i*(d'411(

where i,k = 1,...,q; j,1 = , and p n/m . The next step is to

ij
obtain formulas for expressions like , Ni , and 'A

E
and then find

simplified expressions for the terns of the right sides of (A10).
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ij

'
To get 0

E
first write the differential of o :

do = dE
21

(E
11

-I)-1-E
21

(E
11

-I)-1dE
11 11(E -I)-1-d*21(*11-i)-1

21 11* (* -i)-1°11(4111-/)-1

Hence, after differentiation with respect to submatrices, incorporating

the factor of
1

where necessary, one gets

1(E
11

-I)
-1

(E )(E -I)
-1

12 10 ij 21 11

1E..3.0 (E
11
-I)-1 0

By straightforward calculation and noting
( Ell-i) 1E11(E11-/)-1

(E11-/)-1 (Ell-I)

-2
, we obtain from (All) that

ij ki
2tr 0 E = tr E..0

(1)Eike(1)

lj
+ tr E.B

(1)
F dB

(1)

13

where, for a = 1,2 , the matrices A( are defined by (A9), and the

following notation is introduced:

B
(I)

= (E
11

-I)
-2
E
12 '

C
(I)

= (E
11

-I) 1+(E
11

-I)
-2

with B
(2)

and C
(2) defined analogously for 4' . Hence

tc(1)a(1) b(1)b(1)1
tr

*E wE 2 g ki jk fi 1

and a similar formula holds involving * .
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Since 4) does not involve µ or v the first two terms in the

formula for w.. , vanish, and hence
ijIkx

(1) ) (1) (i )) (c)a) (2)= o(cji ak. b. b
jk it ki bjk b

2)
)

(i,k = 1,...1q; jlf = 11...1p)

The following result is obtained for the differential dA :

dA =
dµ2-E21(Ell-I)-1411-d

21(Ell-I)-1/114- E21(E11 -i)-

- d v2+ 21( X11-I)- ldvl+d
1 11

-Iriv
1
-*
21

()V
11

-I)-1d*
11

(IV
11

Using the fact that when E.. contains only one column it may be written
ij

as e. , defined as a column vector with "1" in the i -th position and

zeros elsewhere, one may obtain

(Al2) Nji

and

-1
)(z -I)

-1 -1(E elZ
12 i 1 1 i 21 11 Plei

-2eiPl(Ell-I
)-11 ,

(A13) Aµ =

-(E
11
-I)1E

12
e.

e.
1

0

It may be noted that formulas (All) and (Al2) are identical, except that

in (Al2) the matrix (eill1) replaces Eij of (A11). Thus (Al2) implies
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(A14) tr = tr tr e.WB(1)e B(1)
i ,(1)u ,(1)

lek 11 kl

(1) )a(1) it ,B(1)1 f.,B(1))
/11' ik 2°11 ii`"1

By further calculation it may be seen that relation (A13) implies

pipak A(1)a

k
= a(1k )

i

Substitution of (A1), (A15) and analogous expressions involving 41 and v

into (A10) yields the following formula:

= 4.11C (1) 1-1)a. (i.B ). kti'B )

(1) (1)% / (1)%
k 1 1 ik 1 11 k

uvic(2)144.1)4V (v113(2))i(v1B(2))0

(i,k = 1,...,q)

To get the formula for wilkl , it is straightforward to obtain

tr
E
E.

E
-fE = - tr e.u1C

(1)
EI,A

(1)
e.u'B

(1)EtB
i kt

1 kA 11

a(1)(1.0c(1)), bcitliB(1))
ki 1 Ai k

Then, since .1c = 0 , one obtains

wilk/ = -p[41)(111C(1))1 b(1)(p1B(1))0

- [anviC(2))1 4 42i)(V1B(2))0

(i,k r 1,...,q:
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Expressions for all the components of S2 . ra have now been displayed.

When X, and Y
2

are univariate ( q = 1 i.e., multiple but not

multivariate regression), one can present a reasonable looking formula for

a as a bordered matrix, rather than simply a collection of separate

formulas for components ,uch as appears above. Eliminate superscripts and

write as F. A(a) = a(a)
'

B = B(a) , and Ca E C (a) for a = 1,2 . The
11

as are scalars, the Bs are p x 1 column vectors and the C are

p x p symmetric matrices. Then define

G =aC
-1-13 aB'a aa a 1,2) .

It is then straightforward to write the formula for Q

nG1 +mG
2

= 2"-

m

-nG
1 1

-mG
2
v
1

1 1 1
-mv'G

2
n(a

1 1 1 1
)+m(a

2 1
+v'G

2
v
1

)

If p = 1 as well (simple regression), the formu.La for SI

-1
may be

easily written down. The corresponding formula for W = nUta1U may be

found in Stroud [1972].
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