ED 078 646

AUTHOR
TITLE

INSTITUTION
SPONS AGENCY

PUB DATE
NOTE X
JOURNAL CIT

1

-

EDRS PRICE
DESCRIPTORS

—

IDENTIFIERS

ABSTRACT

DOCUMENT RESUME
EM 011 175

Kaplow, Roy; And Others

Compu%er Assistance for Writing Interactive Programs.
TICS,. .

Massachusetts Inst. of Tech., Cambridge. Dept. of
Metallurgy and Materials Science.

National Science Foundation, Washington, D.C. Office
of Computing Activities.,.

Apr 73

14p. ~

ACM SIGCUE Bulletin, Computer Uses in Education;
Aoril 1973 .

MF"'$0. 65 HC"‘$3. 29

Authors; *Computer Assisted Instruction; *Computer
Programs; Computers; Computer Science; Instructional
Media; *Instructional Programs; Interaction; *On Line
Systems; Program Descriptions; Program Development;
*Programing; Programs

*Teacher Interactive Computer System. TICS

- Investigators developed an on-line, interactive

programing system--the Teacher-Interactive Computer System (TICS)--to
provide assistance to those who were not programers, but nevertheless
wished to write interactive instructional programs. TICS had two
components: an author system and a delivery system. Underlying
assumptions were that instructional programs required complex logical
structures and could not be written in one linear sequence, that they
must be modifiable, that authors should be able to use on- and
off-liné modes, that programs required communication with and some
control by students, and that programs should allow different modes

of interaction..

.TIC's structural framework consisted of

interconnected nodes, each containing a linear sequence of actions. A
dynamic data base was maintained and the author language served as '
the interface between the author and the system's routines: for
creating, mapping, testing, and modifying programs, for viewing their
structures, and for developing auxiliary information stores.
Automatic maintenance features included space allocation for the
growing data base, the assignment of identifiers for newy 1tems, and
the notation of errors.. (PB)




— g

Y e .

ED 078646

75

ACH SIGCUE Bulletin - Computer Uses in Education - April 1973

Computer Assistance for Writing Interactive Programs: TICS

by

Roy Kaplow*, David Schneider', Franklin C. Smith, Jr.*

and William-R. Stensrud* —_——

uUS OEPAR WENTOF HEALTH.
EOUCATION 8 WELFARE
N - " . NATIONAL INSTITUTE OF
Department of Metallurgy and Materials Science s DOCUMENS MAS BEEN REPRO

DUCED EXACTILY AS RECEIVED FROM

- Massachusetts Institute of Technology THE PERSON OR ORGANIZATION QRIGIN
~ Cambridge, Massachusetts 02139 B T ot NECESOARILY REPRE

O S tow OF POLICY

The need to make it easier to create the "software" associated with
the general use of "new" technology for education is being increasingly recog-
nized. During the past few years, we have concentrated on a part of the computer
aspect of the technology, to jmplement a partial solution of the software prob-
lem within that narrower framework. In this paper we describe an on-line and
interactive prograiming system (TICS,(]) for Ipacher-ipteractive-gpmputer-
System), which is aimed at facilitating the auihoring‘of interactive, instruc-
tional computer programs by persons who are experts on the subject matter being
aédressed, but not ;ecessarily programmers. To that purpose, the system provides
a greater degree of computer—as;istance for the authoring process itself than has
been afforded in earlier anguages and programming.systems of similar orientationgz'a

TICS is implemented within the M.I.T. Multics time-sharing system(ﬁ) in two compo-

" nents: an author system and a delivery system. The former provides the tools for

writing, investigating, editing, and trying out programs; The latter provides'a

special environment for student use of the programs.

Professor and staff members, respectively, Department of Metallurgy and
Materials Science.

-

¥ Graduate Student, Department.of Electrical Engineering.

FILMED FROM BEST AVAILABLE COPY

L s AT




.

-
—
-
®

The system reflécts a number of basic premises about the nature of

instructional ccmputer programs and about the needs*ofpghe authors. The foi-

Towing list, although not inclusive of all the assumptions, indicates the con-

siderations on which the overall design and sbecific features of the system are
based. ‘
Premises

1. Instructional programs will generg]]y require complex internal logicai
structufes; the internal structure may be sufficiently complex that the
'aqphor him§e]f will not be able to keep track of it Qithout éssistance.

2. It is 66t sensible to think of an author writing such a program as one
linear sequence of statements;

3. During the authoring of such programs, it should be easy to include a
process of tria1~and-modificatioﬁ, using feedback from‘students.

4, It should be feasible for persons other than the original authors to
modify and augment pfograms, possibly months or years later.

5.— Authors may prefer to use an off-line, as well as an on-line mode, in -
arbitrarﬁ]y mixed combipation, while developing one program.

6. Such programs will depend strongly on two-way communication with the student;
for example, we need to have a concern about student in;ut and authour output
which goes far beyond "pead-from-terminal” and "write-to-terminal” instructions.

7. In using such programs, the student shpu?d not .be "boxed-in" but should have

some explicit control over the interaction flow.

8. Authors may. want to use various combinations of different interaction modes,

such as tutorial, socratic, enquiry, questionnaire, gaming, problem-solving,
simulation, and dri]l.(7) This implies the need for a number of features,

including an information data base, a data base for computational parameters

.and results, and access to general purpose subroutines.

.
b o cmemy < e el e




.

b -

-

9. For such programs, there are certain repetitive execution-time features

that can be automated, relieving the author of concern ove:r them, unless he .

chooses to override them. - - ' ! "‘

There are always a variety of viewpoints from which a comp]icatéd
computer system can be described. We think it is useful to consider TICS, in
the light of the preceding premises, and in termé of four partiéu]ar aspects:
1) the structural framework which it provides,fgr the program being authored;
2) the datavbase in which the current description of the desired program is
stored; 3) the author language for specifying and studying the program;

4) the "aqtomatic" maintenance and execution-time facilities. .

Structural Framevork - -

The provision of a structural framework for the author's description of
what should happen dﬁri:g the student's interaction with the program is based on -
a number of the given premises, especially the first, second, fourth, and ninth.
The mere existence of a structural framework can facilitate the author's design

process. A structural framework can be particularly useful if 1) its subunits

“can correspond to conceptual units in the author's design, 2) it facilitates a

multidemensional addressing scheme for referring to individual items within the
program (which in turn makes it easier to find one's way‘around the program), and
3) it facilitates implementation of an efficient délivery (execution-time) systém
for the students. Generally speaking, the more tightly defined the structural
framework, the more therauthoring process can be made easier through comphterized
assistance and automated maintenance facilities. At the same time it is necessary
to minimize restrictions on what the author can do ard certainly to avoid a set
format for the studént'interaction. - 7

In the TICS system we ask the author to im&gine that his program consists

of a collection of nodes, interconnected by arbitrary numbers of branches. The

descriptions for the events which can occur during the student's execution of




-

the program are contained within the nodes, and the flow of the interaction is

detenninéa by the branches taken during an actual execution. h )
Looking inside of a node, one sees the next levelrof the structural

framework. This is described most simply as a linear 1list of action sequences

to be conditionally executed, with the possibility of implicit, system-automated

actions superimposed. Each action sequence is specified in the form:

if <condition> is true, then <action> and <action> and ... <action>.

The specific actions can include: outputting something to the terminal and get-

ting a student response {e.g., an "ask" or a "hint"), outputting to the terminal

and going directly on (e.g., a “"print"), doing mathematical or character operations

on variables, writing entries in a report file, calling subroutines, and branching

to another node. The <condition>'s can be null, in which case tne action sequence

is.always executed if the execution progresses to that point in that node. If a

condition is sbecified, it can depenu on: the matci between anticipated responses

and the stugent's response in the current node, on responses given elsewhere in.

the program, on the va]uesrbf variables, and on elapsed-time.  Awong the implicit

operations. are the following: if conditionals are phrased in terms of one or

more anficipated responses, then a student response is soughc adtomatically after
the initial "ask" and subsequent "hints"; the full 1ist of conditional action
sequences is repeated each time another response is sought in the same node,
except for the initial output and sequences containing hints (this avoids the
possibility of “"looping" within a nbde); if a student response does not lead to

a hintvor branch,ithe systeﬁ c;eates a multiple choice offering out of the
responses anticipated. These éonventions jmply that a “dead-end" cannot occur
during execution if at least one anticipated response (or a null condition)
necessarily 1e§as to a branch; that condition is monitored by the system ‘

automatically, for every node.

~at




il

There are actually two types of nodes as regards the internode struc-

ture; we might call these ordinary and return type. For the former, all poten-

tial branches-out must be given éxp]icit]y (e.g., "go to node such-and-such").

For the return type, potential branchés are either explicitly to other nodes

of. the same type, or return§ to the internal point in the ordinary node vhich ‘
initiated fhe "call" to a return-type node. This allows what might be thought of
as an internal sub-process, consisting of a cluster of return-type nodes. These
are useful for such purposes as 1) a single interaction which needs to be called
from different points in the prograrn, 2) interactive "hints", i.e., a many-node
interaction effectively contained in a single action sequence, and 3) to define

a "sub-process" execution-time duration for data allocation.

) Two formal sfructura]y]imitatiqns are imposed, mainly to make it feasi-
b]é‘for the system to monitor the internode structure of the program for display
and error-checkiﬁg purposes. The first is that "calls" to return-type nodes can
only be made from ordinary nodes. The second is that there are no computed

branches; that is, no branches of the form "go to variable", where the value of

variable, to be computed at execution time, might be any node in the program.

The Data Base

The system dynamically maintains an on-line data base description of
the program being authored. The primary directory for the data base is a table
of node descriptor blocks; each node biock contains pointers to rings of entries 7
for the specific execution-related items‘which nodes contain, such as anticipated
responses, branches in and out, conditional action sequences, and each of the
individual types of actions. ‘Ihe data base also includes, in both the table and
as additional rings;vother'infofmation which.is useful for the authoring process--
although not needed for an execution-time description. The author can agtacﬁfto

each node, for example, a name, documentation comments, personal reminders, and




%

keyword phrases. The system automatically maintains flags which indicate the

presence of active intra-node conditionsr(éuch as incompleteness, errors, or
aftached messages) and rings of inter:ggge data such as item cross-references
and errors (or possible errors) caused by edifs*on cross-referenced items. .

One important aspect of the dynamic data base is its accessibility
to the‘author through an off-line (e.g.; punqhed card) job, as readily as when
he is ai a termina].‘ The off-line fécility of‘the author system allows the
gntire aufhor command language to be used,ﬁexcept for the portions which absoﬁ
lutely require the author's immédiafe presence. Tﬁe mode may-be used whenever
-desired, and mixed with on-line wo}k. Although it utilizes punched cards, fhe
off-1ine mode differs from usual "batch-processing”, in that the "deck” never -
represents more than the new work, the instructions to add new things or to modi-

fy old items in the internally stored dynamic data base:

Tﬁe Author Language

I The TIﬁS author language is the interface between the autﬁor and the
operators (or routines) which the éystem provides: for creating a gro;fam; for
providing a map of the program--in‘thé form of keywords and other dq}uméntation;
for viewing its structure; for inyinq out the program--as a student'wouid see it;
for making changes in its content; and for creating an auxilliary information
store for the student, like a dictionary/theséurus; 7

The chosen st}ucturalvfﬁamework, and its reaiization in the dynamicr
data base, leads to a multidimensional addressing scheme:for the items in the
program as a natural consequence. Using his own identifiers and those assigned
by the system, the author is able to work in terms of specific items, qhich is
especially useful when changes or additions are required. Thus, for example, a

particular item in the data base-~say an arithmetic assignment action--might be

,-referred to as the "third action in the second conditional action sequence of




the node named vave_set". In another context, the identical item might be
referred to as “the fourth arithmetic assignment in the twenty-fifth node".*
The same addressing schemes aré also used by the system, in responding to author
queries, for erample, such as “Where is the variable 'var' used?"

Creating a Program

‘An author can tackle the program all over at once if he chooses, since
conmands of all types can be mixed in any orde(, and the items being addressed can
be anywhere.in the data base. waevef, tﬁe system does assume that hé will tend
to work on a node-by-node basis, and uses the concept of an author-selected
working node. That is, the author selects é node and subgequent commands are
assumed to refer to that node until he changes it. The pdmmands for creatinq
the program-itself are probably the simplest part of the language; the following _
sequenée is intended simply to give its flavor and is shown without the shorthand’
'conventi;ns that comprise the true language.
set ‘working node “"name_1*" |
ask “"Mnat is the date of Washington's Birthday?"
if responée = "“february 22" then print "Yes, that's right!" and go to node “name_2".
if‘response = “february 19"& response (in node 17) = "old enough" then do flag =

1 + flag and print “Yes, in America-they will even change a Presidént's birthday
to make a long weekend." and goto node "name_3"..
if response = "february 14" & variable > 2.3 then caf] subroutine_name (flag,

variable) and hint “That's Valentine's Day, ='name. Please try again".

In an actual on-line session, the system responds to each statement with a notice
of the identifiers assigned to each new item created; it gives warnings (and may

seek verification) of possibly unexpected creations (e.g., of a new anticipated

In both instances, of course, a short-hand code wouid actually be used.




-

- 8 :

I
response in another node); and it checks for consistency with the.existing data
base as well as for language syntax.
Although anticipated responses can be specified as simply as illustrated

above, a variety of alternatives have been provided for greater sophistication.

Special allowance is made for numeric and algebraic responses, and texts can be

finely detailed in terms of exactness required, parts which should or should not .
be included, synonomous forms, aﬁd other respects. Subroutines may also be used ‘
to operate on the student's responses. In addition, nodes may be designated to

give multiple-choice presentations (among the anticipatgd'responses); to seek a

free-form response; to re-interpret a previous response with respect to a dif-

ferent set of anticipated responses; or to analyze a response in terms of its

being a lisi of responses.

For the text output side, the system tries to provide simple, format-free

options, like that illustrated above, with a simple code for inclusion of varia-

LH

bles (the -symbol, illustrated by - name in the above example). At the same time,

format control is available when gesired. In accordance witih the general phil-

osophy of the system, it trys to minimize the difficulties associated with set-

ting up and making alterations on output texts, whether or not the author gives

his own format specifications. In sum, this requires many of the features of a

full text processing system, including system defaults fof execution-time format- ,
ting for variables and automatic margin line adjustment. An ana]ogou§ sophistica-

tion is needed for graphical and "line-drawing" output. .

Providing a Map of the Program

As -indicated earlier, the system provides means for attaching documenta-
tion to individual nodes in the form of comments (for long term reference) and

reminders (which are printed out whenever the node is entered, either as the

working node or during a simulation). Unique names may also be attached, and




any number of keyword phrases. The language includes commands for attaching
keywords to nodes with individual "hierarchy" levels and for using the Keyword
list as a multi-level node directory, if desired. A subset of the keyword-node
assignmehts can be specified by the author to be a map for the student of the
points in the program to which he can jump arbitrarily. The selected Tist

‘serves both to tell the student what the specific parts of the program are

—

about and also to control the student's mobility. B

Viewing the Structure of a Program

The systém provides a number of commands for examining the existing
data base and therghx for studying what will happen during a sﬁudent's execution
of the program. - The content of the program ma& be disp]ayeqh1n tabularized
formats on the author's console or via a remote high speed brintér. “Graphical
and printed displays of the internode (tree) branching structure; and of block
diagrams of intranode structures can be obtained. The author may request a
“"trace", that is, a playing through of the outputﬁ, student responses and con-
ditional action sequences that would be involved in a path through a given set
of nodes. In addition, the system includes a mode of operation in which the
author caﬁ play the role of a student, while the system simulates the execution
of the program, starting at any point. This can be done while the program is
structurally incomplete and even erroneous; the system detects and reports such
conditions during the simulation. The author has available a variety of commands
for édntro]ling the simulation, for examining and setting variable values, and
for setting "stop-points" within nodes for halting the simulation to allow exam=~
ination of the instantaneous state of affairs. He may also interrupt a simulation
to use any of the standard TICS requests to create, display, examine or alter any

part of the program. The simulator can also be run in a mode in which the auxil-

liary information output and the user control capabilities are inhibited; this is




10

useful for providing real student feedback during the entire authoring process.

Editing a Program

rThe problems with editing a complex program are not completely solved
by providing.-the needed operators, text editor and author language alone. The
difficult pért of the job for the author (and especially for subsequent modifiers
of a program) is to keép track of the interrelationships among different parts
of the program. Often, a change (especially a deletion) made in one place will
have ramifications elsewhere. Obviously, it 55 not possible to keep track of
all relationships automatically, although the author can do a lot in that regard
with the means provided for documen%étion and mapping, and for studying the
program structure. On the other hand the system can and does keep track of all
of the explicit cross-references dmong items, both intra- and inter-node. These
tables (rings in the data base) are available for author examination and--more
importantly--are referred to autcmatically by the system whenever changes or
de]etions are made. When alterations cause -certain or possible errors, the
affected items are flagged (with back pointers to the altered or deleted item).
When deletions are the cause of errors, the de]efed item i3 actually saved
(as a ghost) for subsequent reinstatement. Even'if the authbr‘does not take
the initial Qa;nings serious]y,rerror and warning messages remain attached to
the affected noaes, and those wiich represent structural incompleteness will
demand subsequent correction.

Creating the Dictionary Thesaurus

The author can build up to five separate dictionary/thesaurus informa-
tion stores. These are subsequently made avaifable to the student, along with
appropriate look-up requests,as an integral attachment to each program. The
author language allows the author to specify, modify and edit entr1es, consisting

of words and phrases linked to one another in the sense of a thesaurus, and to




-

N

attach descriptive encyclopedia-like texts to each.such list. Any one word or
phrase can be included in any number of entries, each with its own descriptive
text. These data arefprimarily intended for use by the student in an on-line
request mode, while he is using the program. It is recognized, however, that

the data might also be conveniently used in hardcopy form, so the system also
provides a well-formatted print-out option for making duplication masters or high-
speed printer copies. In a classical application, these might be analogous t6

a glossary in a textbook, but they can also serve as indices, cataiogues and

even as more general data bases. GOne interesting appiication has occurred in a
language program, for which three dictionaries were used to 1list the meanings,

pronunciation, and etymology, respectively, of German words used in the program.

1t seems, in fact, that such data bases, with the look-up requests that the system
supplies, can themselves comprise an important type of learning interaction, with
very little brogram structure superimposed by the author.

Automatic Facilities .

- Many of the automated facilities have been referred to a]reédy, parti-
cu]arly in the discussion of thé author language. The most important author-time
dynami<c gystém maintenance features are: to make the a]]ocations of space re-
quired for the dynamic data base as it grows; to assign identifiers for items
as they are Ereated; to note and record all interconnections and cross-references
as they ate created; to monitor the structural completeness of each node; and to
note, warnrabout and flag errors or potential errors caused during editing.

Other maintenance operations are eséential]y automatic as far as the
author is concerned, although he must request them. These include ordering the
data base (i.e., to put everything in systematic order, to increase operatidna]
efficiency and decrease storage requirements); checking the data bLase for_inte-

grity (i.e., to guard against computer errors); and compressing the data base

N
B o —————t
|

g o ——————h " Do S

.
Camw—n ] e e cewg et
N




12

(i.e., to produce a highly coded copy of only the portions required for the
execution of the program).

After the compression step, the entire delivery system is e§§entia1]y
automatic from the author's point of view, but much of the control is nonetheless
at his discretion, on & program-by-program basis. The system provides, for
students, a limited-access environment with it..s for using TICS-authored
programs and any‘other Multics facilities that the author of a program so stipu-
lates. The system maintains an awareness of all available TICS programs; it
pfovides a directory and choice of programs for students; it maintains the " -
individual sets of data for each student's execution of each program; it creates
report files, optional history-of-execution records, and message-to-teacher files
for each student and each program. B

During execution the system carries out a variety of implicit opera-
tions within a program itself (such as creating a multiple choice offering when
a student's given responsé leads nowhere). It also gives the student a number
Bf “interruptive" requests to use. These are for 1) Tlooking up information in
thg dictionaries, 2) searching through the keyword map, 3) jumping to a point
specified by a keyword phrase, 4) backing up to a previous reSponsé of his in
the interaction, 5) sending a message to whomever‘is in charge of the use of
the program, 6) calling any subroutine or My]ticsAsubsystem that the author
has stipulated he should be able to use, and 7)kﬁ§topping the session, with the
option.of continuing later.

- Concluding Remarks

We believe that TICS incorporates a number of important features which

make it easier to write interactive programs, particularly programé intended for

.~ instructional purposes. Many of these features have evolved during the development

of the system itself, Just as we would advocate that an instructional program

pom—




/ 13

-

should be developed with a lot of feedback from students. we have taken advanfage
of the experiences of authors who have tolerated working with a changing system.
In nart, this has been possible because most of the changes could be handled
.ithout disrupting the authors' work, even to the point of automatically changing
existing data bases for partially completed programs.

We know that major refinements and additions will continue to be made
to the system. On the other hand, these are only details in comparison with the
fundamental issue of focusing on the problem of providing as much computer assistance
és.possib]e to thé?adthoring process.

Acknowledgements

This work has Been supported by a grant from the Mational Science
Foundation, Office of Computing Activities. We would also Tike to thank a number
of persons who have contributed to the design of the syétem: Dr. John Brackett,
Dr. Alan Campagna, Jonn P. Lincerman, David Pettijohn; Seth Cohen, Lee Scheffler,
Paul Leach, Richard Goldhor, Geoffrey Bunza, Gary Stahl, Samuel Desch, and
Dr. Melvin Rodman.
References
1.' Roy Kaplow, D. S. Schneider, F. C. Smith, Jr., and W. R. Stensrud, TICS:
The Author Language and Instruction Manual, Massachusetts Institute of
Technology (1971); TICS, A System for the Authoring and Delivery of Inter-
active Instructional Programs, Seventh Annual Princeton Conference (1973).
2. Swets, J. and Feurzeig, W., "Computer-Aided Instruction", Science 150 (1965);
also see Feurzeig, W., Computer Systems for Teaching\éomp]ex Concepts,
Report No. 1742, Bolt, Beranek and Newman, Cambridge, Mass. (1969).
3. Feingoldy S. L.: "PLANIT - A Flexible Language Designed for Computer-Human
Interaction", Proc. AFIPS 1967 Fall Joint Computer Conf. 31, pp. 545-552,

Thompson Book Co., Washington.

—— ke




-

14

IBM Corp. Courswriter III for S&stem/350, Version 2, Application
Description Manual. Ho. GH20-0587-1 (3rd ed., August 1969).
Computer-Based Education Research Laboratory.' Tutor User's Manual.
University of I1linois, Urbana, July 1971.

F. J. Corbato, J. H. Saltzer, C. T. Klingen Multics--the First Seven
Years, AFIPS Proceedings, 40, p. 571, Spring Joint Computer Conference

(1972); E. I. Organick, the Multics System--an Examination of its

* Structure, M.I.T. Press (1972).

Roy Kaplow, S. H. Desch, D. 0. Pettijohn, M. H. Rodman, and F. C. Smith,
Jr., Illustrations of Conversational, Inquiry, Problem-Solving and
Questionnaire Type Interactions within the TICS System, Seventh Annual

Princeton Conference Proceedings (1973).




