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Charles E. Hall
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Abstract

Variance reduction analysis is a simple method for determining the

effect of inequality of cell size on analysis of variance calculations.
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VARIANCE REDUCTION ANALYSIS

Charles E. Hall
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I

Several methods of obtaining sums of squares for significance tests for

analysis of variance pro)lens with unequal cell sizes are in current usage.

Variance reduction analysis is a technique for discovering what these tech-

niques do to the data. The procedure as proposed is independent of the

method of obtaining analysis of variance solutions.

The technique is based on the premise that the data as collected is

the best set of data available for the analysis. This premise subsumes

that any mathematical manipulations which are done after data collection

to obtain "orthogonal" solutions necessarily misrepresent the data.

The suggested procedure has three steps.

Step 1. Calculate the sum of squares for the given hypothesis from the

raw data ignoring any other effect that may be correlated with it. Call

this the "raw" sum of squares for hypothesis. The author recommends leaving

even the grand mean in the data for the following reason. In orthogonal

analysis of variance there are two methods for removing the estimate of the

population mean from the data: (1) use of constant parameter consisting of

all ones to get the grand mean of the data as an estimate of the population

mean, and (2) use of contrasts which sum to zero (as if the population mean

were already removed) in obtaining sums of squares for hypotheses. Both

practices are carried into nonorthogonal analysis of variance. However, in

ncaorthogonal analyses the constant parameter obtains a grand mean of the

data which may not estimate the population mean of the data (as in stratified

sampling). On the other hand, a contrast which sums to zero assumes that the
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estimate of the population mean which is the mean of row (or column) means

and may be a better estimate of the population mean than the grand mean.

Therefore, this author prefers to leave the constant parameter out of the

model and use zero sum contrasts to est' ate the population mean.

Step 2. Calculate the same sum of squares for hypothesis after removing

other design effects (orthogonalizing) as desired: either by the partial

technique which removes all other effects or by the hierarchical technique

which removes particular effects (see Bock, 1963) or any other method. Call

this the "reduced" sum of square: for hypothesis.

Step 3. Calculate 100x(1.0- "reduced" = "raw") to obtain percent loss

due to the orthogonalization process of the solution.

Although this method appears to be univariate, it can be applied to

multivariate problems by using the traces or some other function of the

roots of the "raw" and "reduced" sums-of-squares-for-hypothesis matrices.

Several other side statistics can also be generated which may prove

interesting in some analyses. (1) Comparing the "raw" and "reduced" sums

of squares for design parameters and/or contrasts. (2) Comparing the corre-

lations among the "raw" and "reduced" design parameters and/or contrasts.

(3) In multivariate analyses, reducing both the "raw" and "reduced" sum-of-

squares-for-hypothesis matrices to correlations and comparing the resulting

changes in correlations among variable means.

An Example

The author used a common problem, the test problem from Cramer's MANOVA

(Clyde, Cramer, & Sherin, 1966) to try the technique. This problem consists

of four samples with 10 observations each and 6 observed variables. For
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this example, the first observation was deleted, reducing the first sample

to 9 observations. Deviation contrasts were used.

The tables below show what occurred to the various statistics generated

out of the procedure.

Sum of Squares among Design Parameters and Percent Loss

Parameter 1 2 3

Unred. 19.00 20.00 20.00

Reduced 18.97 20.00 20.00

Pct Loss 0.13 0.0 0.0

Correlations among Design Parameters before Reduction

Parameter 1 2 3

1 1.00 0.51 0.51

2 0.51 1.00 0.50

3 0.51 0.50 1.00

Correlations among Design Parameters after Reduction

Parameter 1 2 3

1 1.00 0.51 0.51

2 0.51. 1.00 0.50

3 0.51 0.50 1.00

Sum of Squares among Contrasts and Percent Loss

Parameter 1 2 3

Unred. 0.08 0.08 0.08

Reduced 0.08 0.08 0.08

Pct Loss -0.2 -0.02 -0.02
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Correlations among Contrasts before Reduction

Parameter 1 2 3

1 1.00 -0.34 -0.34

2 -0.34 1.00 -0.32

3 -0.34 -0.32 1.00

Correlations among Contrasts after. Reduction

Parameter 1 2 3

1 1.00000 -0.34 -0.34

2 -0.34 1.00000 -0.32

3 -0.34 -0.32 1.00000

Correlations among the Hypothesis Sums of Squares before Reduction

Variable Error 1 Error 2 Error 3 Error 4 Error 5 Error 6

Error 1 1.00 -0.04 -0.64 0.93 -0.59 0.84

Error 2 -0.04 1.000 0.67 -0.08 0.57 0.47

Error 3 -0.64 0.67 1.00 -0.77 0.48 -0.13

Error 4 0.93 -0.08 -0.77 1.00 -0.36 0.70

Error 5 -0.59 0.57 0.48 -0.36 1.00 -0.33

Error 6 0.84 0.47 -0.13 0.70 -0.33 1.00

Correlations among the Hypothesis Sums of Squares after Reduction

Variable Error 1 Error 2 Error 3 Error 4 Error 5 Error 6

Error 1 1.00 0.86 0.96 0.62 0.48 0.08

Error 2 0.86 1.00 0.95 0.81 0.78 0.17

Error 3 0.96 0.95 1.00 0.64 0.71 -0.03

Error 4 0.62 0.81 0.64 1.00 0.40 0.71

Error 5 0.48 0.78 0.71 0.40 1.00 -0.32

Error 6 0.08 0.17 -0.03 0.71 -0.32 1.00
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The Rank of These Matrices Is 3.

Trace of Unreduced Sum of Squares for Hypothesis Matrix 30353.09

Trace of Reduced Sum of Squares for Hypothesis Matrix 21791.97

Percent Loss of Hypothesis Variance 28.20

Variance Due to Hypothesis for Individual Variables and Percent Loss

Three Degrees of Freedom

Variable Error 1 Error 2 Error 3 Error 4 Error 5 Error 6

Unred. 3197.04 249.47 914.37 5701.39 1.66 53.76

Reduced 4454.66 681.59 1687.82 393.54 2.60 43.78

Pct Loss -39.34 -173.21 -84.59 93.10 -56.81 18.58

The reader will notice that very little distortion occurred to the

contrasts and design parameters in this problem. However, striking changes

occurred in the sums of squares for hypothesis both in the trace of that

matrix and the individual variables involved. The variable called "Error 2"

gained 173% in hypothesis variance while "Error 4" lost 93% in hypothesis

variance:

Discussion

This procedure for examining nonorthogonality problems in analysis of

variance points out some of the problems in handling nonorthogonal data:

the unpredictable consequences to the sums of squares and F ratios. The

example at hand is only one of several sets of data which the author I.as

examined since devising the technique and is typical of what he has seen

happen in the process of analysis.

The advent of computer technology has made it very easy to examine huge

piles of data which are not orthogonal by making the arithmetic easy. The
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author is slowly arriving at the conclusion that this is not always a good

thing. Certainly, it would seem if a researcher were to examine his non-

orthogonal data from this point of view, he might decide to do other than

a straightforward analysis of variance. Perhaps he might sample down some

cells at random or drop some small samples completely. Or perhaps he might

even design his data collection to obtain an orthogonal design.

The procedure is incorporated in a linear model computer program called

VARAN (Hall, Kornhauser, & Thayer, 1972).
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