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STANDARD ERRORS FOR ROTATED FACTOR LOADINGS

Abstract

Beginning with the results of Girshick on the asymptotic distribution

of principal component loadings and those of Lawley on the distribution of

unrotated maximum likelihood factor loadings, the asymptotic distributions

of the corresponding analytically rotated loadings is obtained. The

principal difficulty is the fact that the transformation matrix which

produces- the rotation is usually itself a function of the data. The ap-

proach is to use implicit differentiation to find the partial derivatives

of an arbitrary orthogonal rotation algorithm. Specific details are given

for the orthomax algorithms and an example involving maximum likelihood

estimation and varimax rotation is presented.



STANDARD ERRORS FOR ROTATED FACTOR LOADINGS*

1. Introduction

While its proponents have never questioned its importance, many stat-

isticians are surprised to learn that factor analysis is one of the most

popular methods of statistical investigation. An extensive computer usage

survey at UCLA found regression analysis, discriminant analysis, and fac-

tor analysis the three most popular statistical methodologies. Informal

inquiries at other institutions indicate that more often thRn not, factor

analysis ranks in the top three. Computer programs for factor analysis are

unusual, however, in that they give no standard errors for the estimates

they produce. This is due in large measure to the fact that until now

formulas for the standard errors of estimates of rotated factor loadings,

the estimates which constitute the primary output of standard factor

analysis programs, have not been produced. In two important papers Lawley

[1953, 1967] identified the asymptotic standard errors of the unrotated

loadings produced in maximum likelihood factor analysis. Similar results

for principal components analysis were given some time ago by Girshick

[1939]. The difficulty in extending these results to the case of rotated

loadings is that the transformation matrix T which produces the rotation

is usually derived from the data. It is -perhaps not surprising that

Lawley and Maxwell [1971] state, "It would be almost impossible to take

sampling errors in the elements of T into account. The only course is,

therefore, to ignore them in the hope that they are relatively small."

*This research was supported in part by NIH Grant FR-3. The authors
are grateful to Mrs. Dorothy T. Thayer who implemented the algorithms dis-
cussed here as well as those of Lawley and Maxwell. We are particularly
indebted to Dr. Michael Browne for convincing us of the significance of
this work and for helping to guide its development.
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We shall show that these sampling errors can in fact be taken into account.

This is important because Wexler [1968] has produced some evidence to

indicate they cannot be'safely ignored.

We begin with a p by k factor loading matrix A = (air) and an

anulIctoticallYllortualestimate(air ). By this we mean that as the

size n of the sample on which A is based approaches infinity, the dis-

tribution of W-1 (A - A) approaches multivariate normal with mean zero.

The maximum likelihood estimates in the classical factor analysis model

and the principal components estimates in principal components analysis

both have this property. We are not concerned at this point with specifi-

cally which estimates are being considered, but rather with the effect of

an orthogonal rotation algorithm on the asymptotic distribution of A

We have in mind algorithms such as quartimax, varimax, and equimax, but

for the present let h denote an arbitrary orthogonal rotation algorithm.

Specifically h is a function which maps an arbitrary p by k matrix X

into a p by k matrix Y = XT where T is an orthogonal matrix whose

value may, and generally will, depend on X . We are interested in the

asymptotic distribution of 11* = h(A) (Tir) . In particular if

A = h(A) . (Air) we would like to conclude that WI (11 - A) is asmptoti-

cally normally distributed and to find its asymptotic covariance matrix.

This we shall do.

2. The Asymptotic Distribution of Orthogonally Rotated Loadings

In principle at least our task is quite simple, Let dh be the

differential of h at A . Then
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fr; (i1- A) a dh( vrr-i (A - A))

where " a " is read "is asymptotically equal to" and means that the dif-

ference between the left and right sides of (1) approaches zero in proba-

bility as n . This is the basis of the E. - m'thod as discussed by

Rao [1965, p. 521]. Since dh is a linear transformation, and A is an

asymptotically normal estimator of A , A is an asymptotically normal

estimator of A whose asymptotic covariance matrix may be obtained from

dh and the asymptotic covariance matrix of A . To be more explicit, let

the differential of the relation A = h(A) = (hit ) be expressed by a

formula of the form

c.41.

(2) d?\i - his
ir

(1,L
r s Ocr. js

js

Then the asymptotic covariances of the F\,r may be expressed in terms of

those of the by means of the formula

(3)
oh. 6h.

acov6. (u) =
it ^ ^

acov(
ir js mnuv Oo

mu
mu nv 'cr,

ny

For rotation algorithms of interest, quartimax, varimax, and eqaimax,

it is difficult to find dh or, euivalently, the partial derivatives

611ir Pa. directly. Our approach is to use implicit differentiation.js

Suppose that



is a 1(.(k - 1)/2 dimensional constraint which is satisfied whenever A

is an h -rotation of A no matter what the value of A Constraints

of this form for rotation algorithms of interest will be found in Section

5. By differentiating the relations

(5) A . AT , T'T = I , *(A) = 0

one obtains

(8)

dA = dAT + AdT

+ TIdT = 0

d* (dA) = 0

where d* denotes the differential of * at A . It follows from (7) that

T'dT is a skew-symmetric k by k matrix. Let -)4( denote the space of

all such matrices. It has dimension k(k - 1)/2 Moreover, for each

K E Klet

(9) L(K) = di(AK) .

Then L is a linear transformation from a k(k - 1)/2 dimensional space

into a k(k - 1/2 dimensional space which we assume is invertible. This

is usually the case for constraint functions * of interest. Since T'dT

is skew-symmetric it is in the domain of L and using (9) and (5) in order

gives

(10) L(T'dT) = d/(AT'dT) = dc(AdT) .

Substituting (6) into (8) and using the linearity of d* shows that

d*(AdT) = -d*(dAT) so that from (10),
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(11) L(T'dT) = d*(AdT) -d*(dAT)

Thus

(12) T'dT = L l[d*(AdT)] -L l[d*(dAT)] .

Multiplying on the left by AT and using (5) and (6) gives the basic

relation

(13) dA = dAT - AL l[d*(dAT)]

which expresses dA in terms of dA and defines the differential of h

at A . It also defines the required partial derivatives of h . All that

is needed for a particular rotation algorithm is to find an appropriate

constraint function * and to recover the partial derivatives
whir' js

from (13). The first task will be relatively easy. The second is a little

harder.

5. Constraints for an Orthogonal Algorithm

Orthogonal rotation algorithms are designed to optimize a criterion:

(14) Q = Q(A) = O(AT)

over all orthogonal k by k matrices m . The resulting A = AT is called

the 0 -rotation of A . In the case of quartimax, varimax, and equimax

rotation, 0 is a quartic function of A . In target rotation, on the

other hand, Q is quadratic. There is, however, no need to specialize at

this point. An arbitrary Q is considered here and in the next section.
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Assume that A = AT optimizes Q and let dQ denote the differen-

tial of Q at A . It is necessary that

(15) dQ(AdT) = 0

for all dT which satisfy (7). Since T'dT is skew-symmetric, it is

necessary that

(16) dQ(AK) 0

for all K it Let K(rls) be the elementary k by k skew-symmetric

matrix which has the value 1 in row r and column s , the value -1 in

row s and column r , and is zero elsewhere. Replacing K in (16) by

K(r,$) and writing the result in coordinate form gives:

oe
(J., * = (7\i 7\i a ) 0

rs r ais s

for 1 <rs<k. These are the constraints which are needed. We ob-

serve that the matrix 4i
('ors)

is skew-symmetric for arbitrary A .

One may view (17) slightly differently. Let V denote the p by k

matrix(6Q/Wir )of partial derivatives of Q . Then (17) says that

dC) la 3A' iTA- is symmetric. In the case of the quartimax criterion A

where A3 = (2\3
r
) and (17) demands that A'A3 be symmetric. This

i

furnishes a simple test for the convergence of a quartimax algorithm.

Corresponding tests apply to other orthogonal algorithms.
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4. The Differential of an Orthogonal Algorithm

We turn now to the problem of finding formulas for the partial

derivatives of an orthogonal rotation algorithm h . Note first that the

elementary skew-symmetric matrices

(18) K(u,v) , 1<a<v< k

form a basis for X . The k(k - 1)/2 by k(k - 1)/2 matrix (Lid) of

L as defined in (9) relative to this basis taken in lexicographic order

is given by:

(19) = Ors(AK(u,v))

dy,
rs `ors

= iv 577-iu 7
iu

where

(20) f(r,$) (r - 1)(2k - r) /2 + s - r

for 1 < r <s < k and 1 < u < v < k .

While it is not evident from our derivation and not essential to what

foliows,thematrix(Lij ) is in fact symmetric and nonnegative definite.*

Under the assumption that L is nonsingular, (L.4) is positive definite.
id

*Itcanbeshownthat(L..)is a matrix or secc!.d partial derivatives

evaluated at the minimum of an appropriate function.
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Let (Li ) be the inverse of the matrix (Lij) and let

(21)
iruv

= [AL
-1

(K(u,v))].
ir

be the (i,r) -th component of the matrix AL
-1

(K(u,v)) . Using the fact

that the (L'3) is the matrix of L-1 with respect to the basis in (18),

(22)
it

Lgt,r),/(u,v) -
it

Li(r,t),/(ulv)

t=1 t=r+1

for 1<i<p, 1 <r<k and 1 <u<v<k. The sums in (18) are

zero when the lower limit exceeds the upper limit.

Finally, using (21), the basic relation (13) may be put in the

coordinate form:

k 34(

(23) dXir =EdaisTsr -E E e

s=1 u<v jst
iruv Njtuv 124 Tsst

Reading the partial derivatives of h from this gives:

(24

A.

7-
)

ir

sr

64(

7 b..T -ZZeiruv )N
uv

ij
T
st

js u<V t jt

for 1 < i,j < p and 1 < r,s < k . Here b.. denotes t.e Kronecker

delta.

In summary the partial derivatives of h may be computed from A ,

T , and a formula for Q as follows:

(i) Use Q and (17) to obtain tormulas for the *
rs

(ii) Compute the values of the partial derivatives
agirsi6Xit

(iii)Using(19)formthematrix(L.)and invert it.



-9-

(iv) Compute the eiruv (21).

(v) Using (211) compute the partial derivatives of h

5. Orthomax Algorithms

We turn now to the problem of finding specific formulas for the

orthomax algorithms. These algorithms are designed to maximize the

orthomax criterion:

k

(25) E ( E

^ 2k P
) )?\ir p i.1 1r=1 i=1

This bezomes the quartimax, varimax, and equimax criterion when y = 0,1 ,

avid k/2 respectively. Using (17) the corresponding constraint functions

are:

2
(26) tlf E (Y - - E E (Ti- 1

'ors . , ir is ir p ir is r is'
i=1 i=1

for 1 < r,s < It Alternatively, these constraint functions may be

found, i the y 0,1 cases at least, by setting the rotation angle

equal to zero in the quartimax and varimax algorithms de.xril:ed 1.7 Harman

[1967, p. 300 and p. 307].

The partial derivatives of the 1r

rs
follow easily from (26). For

1 <i<p and 1 <r/s<k they are:

(27)

41

rs
3?\

2
A"! - [\. E ) a. E j-

11ir is is ir
j=1 j=1

jr js ir Jr js
ir

rs 64'sr

a.
is is
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For all other values of i r , s , and t :

(28)
6411'S

- 0

alit

In summary the partial derivatives of an orthomax algorithm h may

be computed from A and T as follows:

(i) Using (27) and (28) compute the partial derivatives of y .

(ii)Using(19)form(L..)and invert it.
it;

(iii) Using (21) compute the ci .

(iv) Use (24) to give the partial derivatives of h .

As observed earlier, we must assume that L as defined by (9) is non-

singular when A is an orthomax rotation of A . This needs to be an

assumption for it is not always true. It is easy to show, for example, that

if the orthomax criterion has the same value for every rotation of A , then

L u and is clearly singular. In the two factor case this is the only waj

in which L can be singular. M.:re generally, in the course of a simulation

study the authors have looked at thousands of randomly selected L trans-

formations arising in quartima7 rotation. Not one of these was singular.

The same was true for a smaller set of varimax rotations. There is pres-

ently, at least, no indication that our nonsingularity assumption will prove

to be a practical difficulty. indeed, in the cases looked at, the matrix

(L..) was not only nonsingular but fairly well conditioned.
lj

6. An Example and Discussion

Lawley and Maxwell [1971, p. 69] give an analysis of correlation

L the s.1,rti., of f 292 childnni z:t



10 cognitive tests. Their unrotated maximum likelihood estimates for

loadings on three factors are given in Table 1. The standard errors of

these loadings obtained by evaluating Lawley's formulas [Lawley and

Maxwell. 1971, p. 621 for standardized loadings (i.e., loadings computed

from correlations) are given in Table 2. These standard errors are

pleasingly small, ranging in value from .022 to .094.

Insert Tables 1 and 2 about here

Turning to the rotated case, Table 3 contains a varimax rotation

of the loadings in Table 1 together with the transformation matrix T

which produced them [Lawley and Maxwell, p. 75]. As be seen from the

matrix T, a substantial rotation has been made. The resulting structure,

however, is not particularly simple. Tne standard errors for the rotated

loadings in T -ble 3 computed by using Lawley's formlas and ignoring the

fact that T is computed from the data are given in Table 4. We will

refer to these as uncorrected standard errors. Again their values are

pleasingly small, ranging from .054 to .077. Using the results developed

here, Table 5 contains the corresponding standard errors corrected for

sample variation in T . The values cover roughly the same range, from

.035 to .094. Before turning to a direct comparison of the uncorrected

and corrected standard errors, we note that what has been presented

thus far demonstrates the feasibility of computing standard errors for

rotated loadings. To our knowledge this is the first time that standard

errors for the rotated case have been presented in the literature.
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Insert Tables 3, h, and 5 about here

There are important and substantial differences between the un-

corrected and corrected standard errors. Figure 1 is a plot of the cor-

Insert Figure 1 about here

rected standard errors of Table 5 against the uncorrected errors in

Table 4. The uncorrected standard errors range from 41 below to 70%

above the corrected standard errors. These differences support Wexler's

[1968] simulation study which showed large discrepancies between uncorrected

standard errors and standard errors obtained by simulation. The differ-

ences between uncorrected and corrected standard errors may be made

arbitrarily large by choosing the data carefully. Using artificial data

the authors have computed standard errors which differ by more than 50

fold. Because they originated from real data, however, the differences in

Tables 4 and 5 are probably more relevant. It should be observed that the

differences displayed in Figure 1 represent real theoretical discrepancies,

not random fluctuations.

The standard errors preseited give a simple indication of how stable

factor loading estimates are. A quick significance test can be based on

the rule which declares an observed difference significant if it exceeds

twice the sum of the corresponding standard errors. Under this rule the
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estimates in Table 3 of A
11

and )\

12
differ significantly while those

of 2\
12

and i\

13
do not. A more sensitive test could be made by taking

account of the covariances between the factor loading estimates.

Indeed, since the covariances are available, familiar procedures make

it possible to test almost any hypothesis about rotated factor loadings.

For example, is one variable related to the factors in the same way as

another or, given a sample from a second population, does the factor

pattern there differ from that of the present population? One may also

produce simultaneous confidence intervals which allow him to scan across

one or more tables of factor loadings in search of significant differences

and account for the fact that he is scanning.

Before attacking such generalizations, however, it may be wise to

ascertain how well tilt asyr.ptotic results perform on finite samples.

Preliminary work here is encouraging but only begun. Another natural

next step is to derive similar results for the oblique case The results

derived here could be used with other methods of extraction such as those

of minres and alpha factor analysis except that the asymptotic covariances

for unrotated loadings have not been derived for these methods. This pro-

vides still another area for investigation.



References

Girshick, M. A. On the sampling theory of roots of determinantal

equations. Annals of Mathematical Statistics, 1939, 10 203-224.

Harman, H. H. Modern factor analysis. Chicago: University of Chicago

Press, 1967.

Lawley, D. N. A modified method of estimation in factor analysis and

some large sample results. Uppsala Symposium on Psychological

Factor Analysis. Nordisk Psykolige's Monograph Series No. 3.

Stockholm: Almqvist and Wiksell, 1953. Pp. 35-42.

Lawley, D. N. Some new results in maximum likelihood factor analysis.

Proceedings of the Royal Society of Edinburgh, 1967, 67A, 256-264.

Lawley, D. N., & Maxwell, A. E. Factor analysis as a statistical method.

New York: American Elsevier, 1971.

Rao, C. R. Linear statistical inference. New York: Wiley, 1965.

Wexler, N. An evaluation of an asymptotic formula for factor loading

variance by random methods. Unpublished doctoral dissertation.

Rutgers University, 1968.



-15-

TABLE 1

Unrotated factor loadings for a set of cognitive tests

Test I

Factor

II II1 Communality

1. Comprehension .788 -.152 -.352 .768

2. Arithmetic .874 .381 .041 .911

3. Similarities .814 -.043 -.213 .710

4. Vocabulary
4

.798 -.170 -.204 .707

5. Digit span .641 .070 -.042 .418

6. Picture completion .755 -.298 .067 .663

7. Picture arrangement .782 -.221 .028 .661

8. Book design .767 -.091 .358 .725

9. Object assembly .733 -.384 .229 ;137

10. Coding .771 -.101 .071 .610
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TABLE 2

Standard errors for the unrotated loadings in Table 1

Factor

Variate I II III

1 .025 .094 .049

2 .040 .063 .o46

3 .022 .083 .043

4 .024 .071 .o48

5 .036 .076 .059

6 .028 .045 .059

7 .026 :049- .051

8 .027 .076 .051

.031 .059 .064

10 .026 .057 .048
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TABLE 3

Varimax rotation of loadings in Table 1

Variate

Factor

I II III Communality

1 .759 .329 .289 .768

2 .340 .849 .274 .911

3 .633 .45o .327 .710

4 .657 .345 .397 .707

5 .370 .453 .276 .418

6 .464 .263 .615 .c63

7 .485 .332 .561 .66o

8 .183 .472 .684 .725

9 .354 .209 .754 .737

lo .409 .423 .514 .610

Rotation Matriy T

.56o .633 .534

-.311 .758 -.573

-.768 .155 .622
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TABLE 4

Uncorrected standard errors for the rotated loadings in Table 3

Variate I

Factor

II III

1 .038 .077 .067

2 .039 .064 .045

3 .038 .069 .055

4 .0')4 .060 .056

5 .057 .065 .055

6 0 .050 .046 .041

7 .042 .046 .042

8 .053 .065 .04k;

9 .063 .059 .054

10 .010 .051 .042
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TABLE 5

Corrected standard errors for the rotated loadings in Table 3

Factor

VariAte I II III

1 .041 .045 .036

2 .064 .094 .036

3 .044 .041 .039

4 .043 .043 .043

5 .051 .049 .0'50

6 .049 .044 .044

7 .048 .042 .043

8 .035 .050 .046

9 .047 .041 .042

10 .047 .043 .044
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Figure Caption

Figure 1. Corrected verses uncorrected standard errors. Each

corrected standard error in Table 5 is plotted against the corresponding

uncorrected standard error from Table 4. A scale unit equals 0.01.
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