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Correcting data for attenuating measurement error is now widely

recognized as an essential procedure whenever the researcher is interested

in relationships among the true scores of the variables. Use of the usual

bivariate correction for attenuation with more than two variables, however,

presents two statistical problems. This pairwise method may produce a

covariance matrix which iot at least positive semi-definite. Further-

more, the bivariate procedure does not consider the possible influences of

correlated errors among the variables. The method described here, a

generalized correction for attenuation, is a multivariate method which

accommodates both the negative variance component problem and the collinear-

ity problem.

In the p-variate case, we shall consider two components of the

Faytheoretical observed covariance : , the true covariance matrix and

E' the error covariance matrix or

=

Theoretically, we can find the true covariance matrix by simply re-

arranging the equation. Since fy is exactly equal to :ET + E then

Zyt ZE and ET = ;y - ZE,?.o. With estimates S of these theoreti-

cal E's, we cannot be certain that ST = Sy - SEito. It is-entirely

possible that See SE, giving a non-positive semi-definite matrix for ST.

There is an obvious algebraic solution to this dilemma. We can

simultaneously diagonalize Sy and SE using the spectral decomposition

(Rao, 1965). Since both of these are real symmetric matrices, and SE is



2

positive definite, there exists a non-singular matrix T such that

T' Sy T = L and i' SE T = I

where L is a diagonal matrix and I is.the identity matrix. The diagonal

elements of L, 11 3 ... 1p, of L arc: the roots of 'Sy 1 SE/ = 0.

The ith column vector Ti of T satisfies SyTi = li SE Ti. If li> 1 for all

i then,

ST = Sy SE

= B' L B - B'B where B = T-I

= B' (L-I) B

= B' L* B.

*
If we restrict the li so that

*
11. = max(1.-1,0) for all i

we can insure that ST is at least positive semi - definite.

While the algebraic solution just described solves the negative

variance component problem, it would be more reassuring to know that the

resulting estimates possess desirable properties such as maximum likelihood

properties. We will now show that these estimates are maximum likelihood

estimates.

S is a sample covariance matrix with n degrees of freedom and is an

unbiased estimate of S has a Wishart distribution with density function

I

f(S) = C(S) 124
-n/2

exp(-4 tr S 2-1)

where C(S) = C1415 (n p -1) is a constant.

The joint log likelihood equation is

1
log L(2y, TE) = Cs - nY - nY tr SyLy

-2

n
-

E np
S1L,log I LEI

2
- tr SE y1

2
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Recall that Sy = B' L B and SE = B'B.

Substituting these expressions into the log likelihood equation and rear-

ranging terms in the trace:

= C
S

4- nY log1/7, - nY tr (L BY1 B')r
- 2E i2j- nE tr(BET1 B').

2
Let us define new parameters P and Q such that

Q = B'-1 fy Pr1 and P = B'-1 2:E B-1.

The determinants after this reparameterization then are

det Q = (det B) -2 det Ey

and det P = (det B) -2 det

The logs of the determinants of Ey and EE are

loglgyl 2 log /BI + log MI

= C + log (QI

aid log (SE) = C + log la

The log likelihood equation is now

= Cs' - nY log 1Q1 - nY tr L Q -1 - nE loglpl _ nE
r_r

2 2 2

We can show that the determinant is maximum when the off-diagonal

elements are zero. Since we want the maximum solution we can focus on the

diagonal elements of the determinants and hence the diagonal elements of

all terms in the equation. So now

C's + log/ Q0 + nE log (PO- tr L QD PD
1 nE

where the subscript D denotes that we are
sidering only the diagonal elements of the matrix.

.Amax = log qii + :E log p11 - :Y liqii - :E pii)

i=1

where pii is the inverse of the ith diagonal element
of P.

Therefore we can maximize each 1
i

separately and we have reduced

the problem to a univariate one. In differentiating to solve the equation

Then



4

we must consider the restriction on the parameters in order to achieve a

positive semi-definite matrix for ST. This constraint, in terms of the new

parameters, is that qii:! pii or If we consider the unrestricted

problem, the maximum likelihood estimates are

qiipii = 1 and = I.

Since we cannot insure that the constraint above will not be violated by

these unrestricted estimates, we must consider the restricted estimates.

One technique for incorporating restrictions into maximum likeli-

hood estimation is the application of Kuhn-Tucker conditions, assuming

that the constraint is convex and differentiable. This assumption holds

with the constraint iii this problem so the conditions are

T ri (qii
pii)

= 0 f o r A 0 and

for the equation

g + 1 =-0 where u is qii or pii and gi =Tri(qii-p
c:)u u

n
Si = 2y log qii +

E.
log pii - 2Y li qii - 2E pii.

The two equations to be solved for the restricted estimates are

n
E nE

= 0
2

Pli - 2 - Trl (1)

ny ny

2 qii 2 li = 0 (2)

ii
The first Kuhn-Tucker condition implies that qii = p indicating that the

restricted solution is on the boundary. Solving (1) and (2) above:
nE + ny li

Recall th4t

A

nEPii ny qii

ST = B' B - B' P B

= B' (Q 4) B.
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We have just shown that

qii - pii = li - 1 if li?. 1 (unrestricted estimate)

0 if lit- 1

So ST = B' L* B where li
*

= max(li-1,0).

Therefore the algebraic estimate is the maximum likelihood estimate and

we can estimate the true covariance matrix in terms of the eigenvectors and

eigenvalues of the observed covariance matrix in the metric of the error

covariance matrix.

Applications

Two examples will demonstrate the usefulness of the generalized

correction for attenuation. The first example uses data from the Louis-

ville Twin Study (Bock and Vandenberg, 1968). The second example uses data

from the .1el Research Institute Longitudinal Study (Petersen, 1973).

Example 1.

The variables for this example are the subtests of the

Differential Aptitude Test: Spatial, Numerical, Abstract, Verbal, Mecha-

nical, Clerical, Spelling, and Sentences. The subjects are monozygotic and

dizygotic twin pairs. The purpose of the study was to estimate the heri-

table variation of the mental test scores. The components of the total

variation are

ale covariance matrix of the heritable components

EEN: covariance matrix of the environmental components

2 ER: covariance matrix of the measurement error

The sample quantities used are the mean-product matrices Mwm and Mme, for

within-monozygotic and within-dizygotic pairs, respectively, and are cal-

culated from the between-twin differences for pairs of variables. The
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expected mean-product matrices are

E(MwD) = 2H + tEN fER

E(MWM) = gEN 1:JER

The naive estimate then for 21/ is MwD - M. Tables 1 and 2 give these

mean-product matrices and Table 3 shows their difference. The mechanical

subtest has a negative estimated variance due to heredity. In this example

the heritable covariance is analogous the true covariance and the mean-

product matrices are analogous to the observed and error matrices. The

true correlation matrix, analogous to the heritable correlation matrix,

is given in Table 4. The eigenvalues for this matrix, in Table 5, indicate

that there are only five dimensions in the data, with only three of these

eigenvalues larger than 1. The eigenvectors corresponding to these eigen-

values are given in Table 6. The first eigenvector appears to be a general

factor with clerical ability barely included, contrasted with mechanical

ability. The second eigenvector is primarily spatial, mechanical, and

clerical ability and the third is abstract reasoning contrasted with cleri-

cal ability. All three of these factors were consistent with other results

in the heritability study thus validating, to some extent, the generalized

correction for attenuation method.

Example 2.

The variables for this example are ratings of physical characteris-

tics for androgenicity. The generalized correction for attenuation was

used on all sets of data; only the data for males and females at age 18

are includeckhere. The error covariance matrix is the variance due to

differences between raters. Table 7 has the observed correlation matfices

and Table 8 displays the true correlation matrices after correcting for

the attenuating measurement error. The error has decreased all the cnrre-

lations, some substantially. There were three eigenvalues greater than
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one for females and.two eigenvalues for males. The corresponding eigen-

vectors were extremely interpretable in terms of the underlying dimension

of interest. When the error matrices were simply subtracted from the

observed matrices, there were some negative elements ion the diagonal in

all cases. The diagonal elements in this resulting matrix are identical

to the variances which would be obtained with pairwise application of the

bivariate correction for attenuation, indicating that this method would

have produced some negative variance estimates.

The generalized correction for attenuation described In this paper

produces estimates for the true relationships among variable- This

multivariate procedure considers the correlated errors and successfully

deals with the problem of negative variance estimates.
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TABLE 4

TRUE CORRELATION MATRIX

Spatial
Numerical
Abstract
Verbal
Mechanical
Clerical
Spelling
Sentences

Spat

1.00
-0.15
0.44

0.21
0.61

0.42
0.24
0.68

Numer

1.00

0.21

0.69

-0.71
-0.08
0.49
0.14

Abst

1.00

0.49

-0.01
-0.21

0.79
0.26

Verb

1.00

-0.53
0.18
0.87
0.68

Mech

1.00

C.49
-0.31
0.02

Cler

1.00

0.14
0.41

Spell

1.00
0.46

Sent

1.00

TABLE 5

EIGENVALUES OF TRUE CORRELATION MATRIX

1 3.43

2 2.48

3 1.16

4 0.57

5 0.37

6 0.00
7 0.00

8 0.00

TABLE 6

EICENVECTORS OF TRUE CORRELATION MATRIX

1 2 3

Spatial -0.21 -0.53 -0.15

Numerical -0.34 0.35 0.25

Abstract -0.37 -0.07 -0.66

Verbal -0.52 0.08 0.19

Mechanical 0.21 -0.56 -0.17

Clerical -0.08 -0.42 0.57

Spelling -0.50 0.02 -0.17

Sentences -0.37 -0.31 0.26
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TABLE 1

Spatial

Spat

291.32

DIZYGOTIC BOYS COVARIANC1

Numer Abst Verb

Numerical -3.49 24.94

Abstract 45.95 2.17 55.94

Verbal 13.14 10.85 10.53 27.82

Mechanical 49.48 -7.98 3.96 -6.69

Clerical 63.75 2.60 2.13 9.38

Spelling 64.19 25.13 41.98 61.;7

Sentences 100.94 11,52 19.21 30.75

TABLE 2

'Spatial

Spat

71.94

MONOZYGOTIC BOYS COVAR

Numer Abst Verb

Numerical 4.31 18.84

Abstract 19.07 0.45 42.72

Verbal 1.57 3.01 3.32 14.96

Mechanical 17.77 10.29 8.10 7.47

Clerical 13.93 6.10 10.25 3.02

Spelling 10.60 7.56 -10.84 9.48

Sentences 8.92 1.92 10.84 5.24

TABLE 3

Spatial

Spat

219.37

Numer

CT

Abst

CY - CE

Verb

Numerical -7.80 6.10

Abstract 26.89 1 71 13.22

Verbal 11.57 7.85 6.71 12.85

Mechanical 31.70 -18.26 -4.14 -14.16

Clerical 49.82 -3.50 -8.12 6.31

Spelling 53.59 17.57 52.82 52.49

Sentenres 92.01 -2.41 8.87 25.51
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TABLE 7

CORRELATIONS AMOG PHYSICAL VARIABLES AT AGE 18a

Musc Shol Wst Hips Butt Thi LegS Calf OvRt GIBS PubH

Muscles/Fat .73 .58 .69 .63 .49 .42 .55 .78 .41 -.05

Shoulder Width .82 .42 .54 .54 .32 .27 .39 .59 .37 .00

Waist Indentan .69 .68 .78 .66 .43 .29 .47 .75 .18 -.18
Hip Width .50 .52 .57 .87 .58 .50 .65 .86 .41 -.11

Buttocks Shape .73 .66 .68 .60 .64 .56 .61 .81 .44 .00

Thigh Shape .56 .54 .64 .56 .66 .80 .66 .64 .45 -.07

Leg Space .49 .40 .42 .28 .67 .57 .55 .56 .49 -.13
Calf Shape .G3 .59 .61 .41 .62 .56 .42 .62 .34 -.07
Overall Rating .80 .71 .73 .58 .73 .67 .49 .63 .45 -.10

Gen or Br Size .45 .50 .39 .37 .47 .43 .36 .46 .46 -.03
Pubic Hair .19 .20 .09 .26 .12 .11 -.11 .18 .34 .17

a
Girls above diagonal, boys below.
(n=90) (n=106)

TABLE 8

CORRECTED CORRELATIONS AMONG PHYSICAL VARIABLES AT AGE 18a

Musc Shol Wst Hips Butt Thi LegS Calf OvRt G/BS PubH

Muscles/Fat .77 .76 .92 .94 .77 .64 .88 .92 .69 -.22

Shoulder Width .99 .63 .81 .79 .23 .19 .49 .74 .38 -.01

Waist Indentan .70 .65 .92 .90 .51 .20 .70 .88 .35 -.21

Hip Width .71 69 .76 .97 .58 .40 .81 .97 .62 -.21

Buttocks Shape .90 ,87 .75 .75 .67 .46 .79 .96 .54 -.05

Thigh Shape .71 .65 .94 .88 .78 .88 .72 .70 .59 -.20

Leg Space .56 .50 .45 .37 .80 .42 .52 .57 .70 -.22

Calf Shape .78 .79 :74 .65 .81 .77 .41 .77 .74 -.32'

Overall Rating .91 .90 .76 .89 .84 .85 .39 .76 .67 -.25

Gen or Br Size .73 .67 .51 .62 .77 .68 .54 .75 .68 -.35

Pubic Hair .21 .26 -.02 .46 .12 .20 -.26 .11 .49 .08


