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STANDARD ERRORS FOR OBLIQUELY ROTATED FACTOR LOADINGS

Abstract

In a manner similar to that used in the orthogonal case, formulas for

the asymptotic standard errors of analytically rotated oblique factor

loading estimates are obtained. This is done by finding expressions

for the partial derivatives of an oblique rotation algorithm and using

previously derived results for unrotated loadings. These include the

results of Lawley for maximum likelihood factor analysis and those of

Girshick for principal components analysis. Details are given in cases

including direct oblimin and direct Crawford-Ferguson rotation. Numerical

results for an example involving maximum likelihood estimation with direct

quartimin rotation are presented. They include simultaneous tests for

significant loading estimates.
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1. Introduction

In an earlier paper Archer and Jennrich [1973] derived formulas for

the asymptotic standard errors of orthogonally rotated factor loading

estimates. Corresponding results are derived here for obliquely rotated

loadings.

We begin with a p by k factor loading matrix A = (air) and an

A
asymptotically normal estimate A = (air) . Maximum likelihood estimates

in the classical factor analysis model [Lawley, 1967] and the principal

components estimates in principal components analysis [Girshick, 1939]

are both of this form. We are interested in the effect of an oblique

rotation algorithm h on the asymptotic distribution of A . A function

h is an oblique rotation algorithm if it maps an arbitrary p by k

matrix X into a p by k matrix Y = XT where T is a nonsingular

k by it matrix whose inverse has normalized rows, i.e.,

diag(T'T)-1 = I

the k by k identity matrix. The value of T may, and generally

will, be a function of X We are interested in the asymptotic dis-

tribution of the rotated loading estimates A = h(A) = AT and the rotated

factor correlation estimates 0 = . Of special interest are the

cases when h represents oblimin [Harman, 1967, D. 324] or Crawford-

Ferguson [1970] rotation.
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2. Asymptotic Distributions under Oblique Rotation

Let A = h(A) = .) denote the "true" rotated loadings and 0 =

g(A) = (TIT)
-1

= (0
uv

) the true rotated factor correlations. Assume that

at A , h has a differential dh and g has a differential dg

Then

(1) f (%1 - A) a dh( - A))

and

(2) in - 0) ! dg( Tn - A))

where
" a
=

"
means that the difference between the left- and right-hand

sides of (1) and (2) approaches zero in probability as the sample size n

on which the estimate A is based approaches infinity [Rao, 1965, p. 321].

Since dh and dg are linear and A is an asymptotically normal estimate

of A , A and 0 are asymptotically normal estimates of A and 0
A

whose asymptotic covariance matrices may be obtained from that of 4 .

In terms of the partial derivatives of h and g ,

6hir

(3) acov6.
ir js ) Emnxy &z

acov( ame
ny)

311.,s

mx ny

and

3g 3g
uv

acov(0 ,0 ) = E QUacov(or ,ars uv mnxy ors
mx

MX ny
)

ou hy
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Formulas for the asymptotic covariances on the right, i.e.., the asymptotic

covariances for specific unrotated loadings, were given by Lawley [1967] for

maximum likelihood factor analysis and by Girshick [1939] for principal

components analysis. (See Lawley and Maxwell [1971] for a convenient

summary.)

For the oblique rotation algorithms used in practice, it is difficult

to find dh and dg or, equivalently, the partial derivatives ahirjs

and .)g
uv os

directly. As in the orthogonal case [Archer & Jennrich,

1973] we proceed by means of implicit differentiation. Suppose that

(5) p(A,0) = 0

is a k(k - 1) dimensional constraint which is satisifed whenever A = AT

is an h -rotation of A and 0 (T1T)-1 is the corresponding

factor correlation matrix. Constraints of this form will be derived in

Section 3. While it would be possible to express these constraints in

terms of A and T rather than in terms of A and 0 the latter

parameters appear to be the more natural and lead to simpler formulas.

It is not possible here, as it was in the orthogonal case, to express the

constraints in terms of A alone. In the development of the general

theory, this represents the primary difference from the orthogonal case.

Differentiating the relations:

(6) A . AT

(7) 0 (TIT)-1
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(8)

(9)

gives:

diag 0 = I

tf(A,O) = 0

(10) dA = dAT + AdT

(11) d0 = -0(TidT + dT1T)0

(12) diag dO = 0

(13) dtlti(dA) + 02(0) = 0

when 01 and 02 denote the differentials at (A10) of %V with respect

to its first and second arguments respectively. Solving (10) through (13) for dA

in terms of dA will define the differential dh and the required partial

derivatives of h . Similarly solving for dO in terms of dA will

define dg and the required partial derivatives of g . This is the

standard technique of implicit differentiation. The only novelty here

is that some matrix algebra is employed. Let

(14) K = T idT0 so dT = TKO
-1

Using this change of variable, the linearity of 01 and simplifying

slightly, equations (10) through (13) become

(15) dA = dAT + AKA -1
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(16) dO = -(K + K')

(17) diag K = 0

(18) dydAT) + d411(AK-1) - 02(K + K') = 0

We shall solve the last equation for K in terms of dA . To this end,

let 2t be the space of k by k matrices which are zero on the diagonal

and define the linear transformation

'
(19) L(X) = 01(AX0 - 1) - 02(X + XI)

for all X in 97. Because of (17), K is in 12. Assuming L is an

invertible linear transformation, (18) gives

(20) K = -L 1(d*
1
(dAT))

Substituting this expression into (15) gives

(21) ))0dA = dAT - AL-1(dlirlidATI
-1

which expresses dA in terms of dA and defines the differential dh .

Similarly substituting (20) into (16) gives

(22) dO = -L 1(d*
1
(dAT)) - (L 1(d*

1
(dAT)))I

and this defines dg . Equations (21) and (22) represent our basic

results. The approach in the following sections will be to find constraint

functions 4t
suitable for various types of oblique rotation and then to

recover the required partial derivatives of h and g from (21) and (22)

respectively.
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3. Constraints for an Oblique Rotation Algorithm

Oblique rotation may be applied directly to the loadings [Jennrich

& Sampson, 1966] or indirectly to the reference factor structure [Carroll,

1960). This gives rise to direct and indirect oblique rotation methods

(see Harman [1967, p. 334] for a discussion). Because the present trend

seems to be toward direct methods, we shall consider only that case. No

corresponding decision was required when considering orthogonal :rotation

for there the loadings and reference structure are the same.

Direct oblique analytic rotation algorithms are designed to optimize a

criterion of the form:

(23) Q = Q(A) = Q(AT)

over all T which satisfy (7) and (8). The resulting A = AT is called

a Q - rotation of A It is not necessary that the optimizing A be

unique. It is assumed only that the corresponding rotation algorithm

h maps each A into an optimizing A . The criterion Q is usually

a quartic function of the components of A but it may, as in the case of

target rotation, be a quadratic function. Since there is no need to

specialize at this point, an arbitrary Q will be considered here end

in the next section.

Let dQ, denote the differential of Q at A and assume that for a

given A , A = AT optimizes Q for all T satisfying (7) and (8).

Then it is necessary that



-7-

(24) dQ(AdT) = 0

for all dT satisfying (11) and (12). But using the change of variable

in (14), this is equivalent to requiring that

(25) dQ(AK0-1) = 0

for all K in N. Let K(u,v) be the elementary k by k matrix which

has a one in row u and column v and is zero elsewhere. Then (25) is

equivalent to requiring

(26)
'uv

-
dQ(AK(u,v)0

1)
0

for 1 <u/v<k. These are constraints of the form (5) required in

Section 2. In coordinate form the constraint functions are:

p k
(27)

E E

ur

77-
i=1 r=1 it

for 1 <u/v<k. In matrix form the constraints require that

(28) At 0--g 0-1
dA

be symmetric.

Here d0/dA denotes the matrix (aQPir) of partial derivatives of Q

Except for the appearance of 0
-1

these are the same as the constraints

which arose in the orthogonal case [Archer & Jennrich, 1973].
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4. The Partial Derivatives of the Functions h and g

We shall derive here explicit and computationally convenient formulas

for the partial derivatives of h and g . To this end let J(j,$) be

the elementary p by k matrix which has a one in row 1 and column s

and is zero elsewhere. In terms of their differentials dh and dg ,

the partial derivatives of g and h are:

6h.

(29) )ct. - dh(J(j,$))
js

and

(30)
6

- dp
av

(J(j,$))

a6guvjs

for 1 < i,j < p and 1 < r,s,u,v < k . Another way to express (29) is

to assert that

k(31) H = E)
js

is the matrix of dh relative to the basis

(32)

of the space

(33) G =

1 <j<p , 1 <s<k

of all p by k matrices. Similarly
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is the matrix of dg relative to this basis. The differential dh is

defined by the fundamental relation.(21). We may view (21) as a composition

of four linear transformations and express the matrix H of the linear

transformation dh in the form

(34) H = B - CD1E

where B , C , D , and E are the matrices of the linear transformations

(35) x H XT X E //777

(36) z f--0. Azo -1 z E /77

(37) z.--& L(z) , z E /77

(38) xl-a.dlifi(xT) , x E /1,7

respectively relative to the basis (32) of /17/.) and the basis

(39 K(u,v) 1 <u/v< k

of . Similarly since dg is defined by the fundamental relation (22),

the matrix G of the linear transformation dg has the form

(4o) G = -(F 4 Ft)

where

(41) F = D-1E

From (35) the matrix B is given by:

(42)

where (

B = (J(j,$)T) = 0.3
ir,js it .j sr

)ir
denotes the element in row i and column r of the

matrix inside the parentheses and b.. denotes the Kionecker delta.
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Similarly from (36) the matrix C is given by:

(43) Ciruv = (AK(u,v)0-1)ir = lu

()vr

Since D is the matrix of the linear transformation I. defined by (19)

it is given by:

(44)
uv,xy

= [d4f1(Ac(x,y)0-1) - #2(K(x,y) + K(y,x)))tiv

p k
uv ()yr uv tftiv

7-- ix 3,47-- ;(7--
i=1 r=1 it xy yx

Finally using (38), E is given by:

(45) E = (#100' s)Tnx
xy,js

k

= )TxY Tsr
r=1 jr

In each case the index ranges are 1 < i,j < p , 1 < r,s < k ,

1 <u/v<k, and 1<x/y< .

Equations (44) and (45) require partial derivatives of the constraint

functions tlf

uv
As discussed in the previous section these depend on the

rotation algorithm employed. Specific formulas for the generalized Crawford-

Ferguson family will be. )btained in the next section.
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5. The Generalized Crawford-Ferguson Family

There are two well-known families of fourth degree oblique rotation

criteria, the oblimin criteria [Harman, 1967, p. 324]

P P
(46) (

2 2
- ?\2. 7\.

2

it is p it is
ris i=1 i=1 i=1

and the Crawford-Ferguson [1970] criteria:

p
2 2

k

(47) K, E E ?\. ?\.
is

+ K
2

E E ?\.

2
?\2

r
.

' r/s i=1
ir /.n r=1

ir j
i

*

Specific criteria in these families are obtained by fixing the values of

y and K1 and K, . In spite of the fact that the Crawford-Ferguson

family contains an additional parameter, it does not contain the oblimin

family. Both families, however, are contained in what we shall call the

generalized Crawford-Ferguson family:

P k
k

(48) K (
Ti r)2

4 K
2

( 7\

2

r
)
2

+ K
p

( 7\

2
)
2

1 i=1 r=1 lr i=1 r=1
i 3

r=1 i=1
ir

p k h

+
i=1 r=1

ir

This family becomes the Crawford-Ferguson family when K1 = K1 + K2

K2 = -K2 , K, = -K1 , and Kb = 0 and it becomes the oblimin family

when K1 = -7/P , K2 = 1 , K, = yip , and Kb = -1 . Indeed, every fourth

degree polynomial criterion which has the property that it is invariant

under changes in sign of the rows and columns of A and under row and
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column permutations is of the form given in (48). We will derive our

results for this complete family of quartic criteria. Let 4Q equal the

expression given in (48). It follows easily that

6
(49)

,Q, A m
ara. -ir-ir

where

r r 12 12 12 2
(50)

Mir Kl
4.

-i,r-ir K2-r r-ir K3-r i-ir K4-1ir

for 1 < i < p and 1 < r < k Thus using (27),

p k

(51)
uv Z ir

ovr 1 <u/v< k
i=1 r=1

are the appropriate constraint functions for the generalized Crawford-

Ferguson family. One may show easily that

6m.

(52)
ir

- 2(c.. +
K25ii K35rs K45ij5rs)?\js

as

and tnen with a little more straightforward differentiation effort that

(53)
64,

Uv I dQ -1
Fj\ our

d!1 i
) + M. T.

Iry

ir
v it iu

+ 21c (AIA0-1) + 21c (4-1)
1
?\ir

uv 2 ir iu iv

A

2K.,?\.
r
(MA)

ur
or + 2ty\ir?\iuOr

i
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for 1 <u/v<k 1 <i:p and 1 <r<k. Having completed this

task it is quite easy to show that

*uv
(54) 5"--- - (5ux077 + 6 ev)(m dg A-1%

°
vy dA w iuu

xy

for 1 <a/v<k and 1 <x/y<k. These are the partial derivatives

of IV required in Section 4.

6. Example and Discussion

As in previous work on the orthogonal case, the results derived here

apply equally well to principal components analysis and to maximum likeli-

hood factor analysis. Because of the work of J8reskog [1967], Jennrich

and Robinson [1969], and Clarke[1970] maximum likelihood factor analysis

has become computationally feasible. While this may enhance the popularity

of maximum likelihood factor analysis, principal components analysis is

too important and certainly too popular to be ignored.

We shell consider a maximum likelihood example with direct quartimin

rotation. Table 1 contains unrotated loading estimates obtained by

J8reskog [1967] from an analysis of the correlations of 9 variables

measured on 211 subjects. These data were originally analyzed by Emmett

Insert Table 1 about here

[1949]. It was chosen here because Lawley and Maxwell [1971, p. 64]

have given standard errors for the loadings in Table 1 using Lawley's

[1967] formulas. We have verified these results which indicates that in
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all probability Lawley's formulas have been properly implemented both here

and by Lawley and Maxwell. Since these formulas are not simple, this is

worth verifying. The verification was exact to within one digit in the

last decimal place presented in Lawley and Maxwell's text.

Table 2 contains a direct quartimin rotation of the loadings in

Table 1 together with the matrix T which produced the transformation.

This is a fairly clean rotation. Variables 141 5, and 6 appear to be

primarily associated with factor 2, variable 8 with factor 3, and the

remaining with factor 1. But how stable are the factor loading estimates?

Table 3 contains standard errors computed from the formulas derived here

together with those of Lawley.* The standard errors are pleasantly, almost

surprisingly, small. They range from .036 to .141. This is similar to

what happened in the orthogonal case [Archer & Jennrich, 1973] using a

different set of data but one with roughly the same number of variables

and sample size. To our knowledge this is the first time that standard

errors for obliquely rotated factor loading estimates have been published.

Insert Tables 2 and 3 about here

The standard errors presented give a quick indication of the stability

of the rotated loading estimates. For example one may use the standard

errors in Table 3 to scan Table 2 for loadings which are significantly

different from zero while accounting for the fact that he is scanning.

To this end we observe that asymptotically at least

*There has been a recent indication that the Lawley [1967] formulas
may have a minor error. This does not affect the theory developed here, but
it could affect the values in this example.
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15i i1
(55)

r r
<X x (k(p-k+ 1)) , 1<i<p, 1 <r<k

95 _ _

ir

is a 95% simultaneous confidence interval for all pk loadings. Here

X.95(v) denotes the square root of the 95% probability point of the chi-

squared distribution with v degrees of freedom. In our example

v = k(p - k + 1) = 21 so

(56) x
.95

(21) /3277 = 5.72 .

The entries in Table 2 which after division by the corresponding entries

in Table 3 exceed this value have been marked with an asterisk. They

are the estimates which are significantly different from zero at

the 95% probability level. It is interesting to note that since the median

standard error in Table 3 is .067, the median significant deviation from

zero is .383. This is not too far from the value .30 suggested by the "rule

of thirty" and often found in factor analytic studies. As can be seen by

multiplying each entry in Table 3 by 5.72 the rule of thirty represents

a fairly gross approximation but not one which is completely wide of the

mark. Standard errors depend, of course, on sample size. For this reason

the xule of thirty is often used with the understanding that, as here, there

are about ten observations per loading.
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TABLE 1

Unrotated Standardized Maximum Likelihood Loadings

Factor

Variate I II III Communality

..
1 .664 .321 .074 .550

2 .689 .247 -.193 .573

3 .493 .302 -.222 .383

4 .837 -.292 -.035 .788

5 .705 -.315 -.153 .619

6 .819 -.377 .105 .823

7 .661 .396 -.078 .600

8 .458 .296 .491 .538

9 .766 .427 -.012 .769
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TABLE 2

Direct Quartimin Rotation of the Loadings in Table 1

Factor

Variate I II III Communality

1 .596* .084 .191 .550

2 .703* .131 -.104 .573

3 .690* -.056 -.140 .383

4 .102 .827* -.023 .788

5 .093 .749* -.163 .619

6 .087 .932* .109 .823

7 .772* -.025 .043 .600

8 .204 .057 .611 .538

9 .811* .019 .127 .769

Transformation Matrix T

.461 .623 .081

1.053 -1.069 .182

-.650 .180 1.059
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TABLE 3

Standard Errors for the Rotated Loadings in Table 2

Variate I

Factor

II III

1 .074 .082 :096

2 .069 .082 .073

3 .072 .053 .067

.054 .084 .075

5 .065 .069 .041

6 .046 .058 .056

7 .064 .036 .141

8 .064 .081 .116

9 .046 .050 .059


