TITHE	Staff Utilization for Continuous Progress Educaticn.
	Math. - A K-8 Scope and Sequence.
INSTITOTION	Scottsdale Public Schools, Phoenix, Ariz.
SPONS AGENCY	Bureau of Elementary and Secondary Education
	(DHEW/OE), Washington, D.C.
FUB DATE	73
NOTE	166p.
EDRS PRICE	MF-\$0.65 HC-\$6.58
DESCRIPTORS	*Curriculum; Curriculum Development; *Curriculum
	Guides; Elementary School Mathematic: Geometric
	Concepts; *Instruction; Instructional aterials;
	Mathematics Education; Measurement; Number Concepts;
	Units of Study (Subject Fields)
IDENTIFIEKS	ESEA Title III

ABSIRACT
An outline is presented for the scope and sequence of the following topics to be covered in grades $\mathrm{K}-8$: sets, operations, number theory, measurement, geometry, and number sentences. Details of a coding scheme for mathematics units, exemplary units for each level, and a description of the procedures used to correlate science and mathematics courses are included in this document. This work was prepared under an ESEA Title III contract. (DT)

A K-8 SCOPE AND SEQUENCE

E.S.E.A. TITLE III

STAFF UTILIZATION FOR

CONTINUOUS PROGRESS EDUCATION

Copyright © 1973.
Scottsdale Public Schools
P.O. Box 15428

Phoenix, Arizona 85018
ALL RIGHTS RESERVED

PERMISSION TO REPRODUCE THIS COPY RIGHTEO MATERIAL HAS BEEN GRANTED BY

Lana J. Brown
to erac and organizanions operating
under agreemenis with the national in.
STITUIE OF EDUCAHON FUGTHETG REPIO STITUTE OF EOUCATION FUGTHEA REPRO
COCTION OUTSIOE THE ERIG SVSIEM REQUIRES PERMISSION OF THE COPYRIGHI OWNER

勇
昜

3.

1

1

The E.S.E.A. Title III funded project entitled, Staff Utilization for Continuous•Progress Education, was located at the Pueblo Elementary School in Scottsdale, Arizona. The faculty of this school authored this document under contract to the project. Application for copyright has been made by the Scottsdale School District as of June 15, 1973. Any use of these materials for monetary profit should be done only with the written permission of the Director of Research and Evaluation of the Scottsdale School District.

The work presented or reported herein was performed pursuant to a grant from the Arizona Department of Education, E.S.E.A. Title III Office. However, the opinions expressed herein do not necessarily reflect the position or policy of the Arizona. Department of Education, and no official endorsement by the Arizona Department of Education should be inferred.

The thirteen documents, listed on the following page, have been published as a result of the S.U.C.P.E. project. These items are stored on microfilm with the Arizona Research Coordinating Unit Information Service. They are available to you in microfiche form. Send your request and a stamped selfaddressed envelope to: Information Specialist 1535 West Jefferson Phoenix, AZ 85007

MATHEMATICS CURRICILU.A
 K-8 SCOPE AND SEQUENCE
 PUEBLO ELEMENTARY SCHOOL

STAFF UTILIZATION FOR CONTINUOUS

 PROGRESS EDJCATION PROJECTE.S.E.A. TITLE III

Developed by:
Don Bennett
Ray Brie
Ed Coats
Geri Dwight
Rita Freeman
Mary Lou Nevin

rationale - mathematics curriculum development

The Mathematics Curriculum team realizing the need to improve the existing curriculum and tailor it to a Sontinuous Progrsss Learning setting, constructed the attached $K-8$ Scope and Sequence. The concepts outlined in the Scope and Sequence are predicated on the following definitions:
Sets: Deals with problems of counting and reasoning
Operations: Practical application of matematical principles
Number Theory: Is the relationship of numbers
Measurement: Deals with the size of things
Geometr: Is the relationship among the measurement of iigures
Number sentences: Is problem solving through equations

For each grade level $K-8$ the major instructional objcctives of these concepts have been identified. As the instructional units for each concept are developed the following format will be used.

1. concept
2. instructional objective
a) behavioral objective
b) learning activities
c) references (materials)
d) evaluation techniques

The inception of this matematics curriculum was not dictated by building needs, but rather by the desire to sufficiently challenge Pueblo Elementary S:hool students with a variety of experiences in mathematics so that they may better achieve their maximum indivirlual potential. The learning activities in this program:
A. Are intellectually stimulating
B. Pa:ovide more flexibility for grouping and the movement of students from one group to another
C. Provide the students with an appreciation of mathematics and an understanding of its usefulness
D. Provide better articulation from one grade level to another of students skill development
E. Allow instructional managers more latitude for innovation.

We realize that curriculum change is a dynamic, systematic rocess, and in accordance vith this dynamic quality, the continuous implementation of new ideas into the mathematics program will be based on:

1) identification of needs
2) evaluation within the existing program
3) alternative proposals available
4) selection by curriculum teams
5) in-service implementation

The above diagram indicates the inter-relationship of the major concepts of the Mathematics Scope and Sequence. These concepts are defined as follows:
Sets: Counting and reasoning
Operations: Applications of mathematical principles
Number Theory: Relationship of numbers
Measurement: Size of things
Geometry: Relationship and measurement of figures
Number sentences: problem solving thiough equations

The mathematics program in a contindius progress setting should foster a positive attitude which will permeate the entire learning situation. Furthermore, the individual differences in leaming styles among students necessitates a multi-sensory approach.

DEFINITIOA OF MATHEMATICS

We can postulate that mathematics is a study of quantitics represented by symbolic nonenclature, numbers, shapes, and the ruies governing these quantities.

GOALS FOR MATHEMATICS PROGRAM

at
PUEBLO ELEMENTARY SCHOOL

Abstract

The general goals for Pueblo Elementary School which were prepared by a committee of the Parent Council, contain such statements as developing the ability to reason and solve problems and developing the skills necessary to function well in society.

Each Pueblo Elementary School student should, at his own intellectual and maturational level, possess both problem solving and computational skills sufficient to enable him to function effectively in his day-to-day experiences as well as in the future.

GRADE

i.

1
As each concept is taught within each grade level, there :s a spiraling of skills development commensurate with each student's ability at that level.

SETS

KINDERGARTEN

Set recognition
Set comparison
1ST GRADE
Set membership
Set comparison
Set identification

- Equivalent, non-equivalent

Cardinal numbers
-through 6
2ND GRADE
Set comparison
Set membership
Set identification

- Equivalent, non-eq̧uivalent

Cardinal numbers

- through 10

Inequalities
Union-joining sets
3 3n GRADE
Set comparison
Set description
Set identification

- Equivalent, non-equivalent
- subset

Cardinal numbers
$\dot{4 T H}$ GRADE
Set description
Set identification
Equivalent, non-equivalent

- Universal

Inequalities
5TH GRADE
Set identification

- subset
- superset
- universal
-symbols
Union, intersection
Cardinal number
-cross product

6TH GRADE

Set ilentification (recognition, description)

- subset, superset.
- empty, universal (replacement)
- disjoint
- finite, infinite
-solution-equalities, inequalities
Cardinal numbers
- crossproduct

Union, intersection

7TH GRADE

Set description

- symbols $\underset{=}{\infty}, \subset, C$ -proper, improper
-one-to-one correspondence

8TH GRADE

Set description

- symbols
- replacement

Set builder notation
Venn diagrams

OPERATIONS

KINDERGARTEN

Addition

- properties
- intuitive development
- joining sets
- combinations for 2 through 5

IST GRADE

Addition

- joining sets
- symbolism
- 0 to 5
- 0 to 10
- missing addend 0 to 5
- missing addend 0 to 10
- three addends
- properties
- zero as al. identity element
- associative
- commutative
- story problems

Subtraction

- separating sets
- symbolism
-o to 5
-0 to 10
-missing numeral 0 co 5
-missing numeral 0 to 10
-story problems
Addition ar ${ }^{2}$ subtraction -0 to 10
- missing addend 0 to 10
- story problems

2ND GRADE

Addition

- jozning sets
- terminology
- properties
- associative
- commutative
- 10 to 18
- equations-families of facts to 18
- two digit without regrouping
- two digit with regrouping
- three addends
- story problems

Subtraction

- separating sets
- terminology
- properties
- non-commutative
- non-associative
- 10 to 18
- dquations - families of facts to 18
- two digit without regrouping
- two digit with regrouping
- story problems

Addition and subtraction

- 0 to 10
- missing addend to 10
- 10 to 18
- two digit vithout regrouping
- two digit with regrouping
- three addends
- story problems

CONCEPT

OPERATIONS

3RD GRADE

Addition
-properties

- associative
- commutative
-symbols/terminology
- equalities
- inequalities
- two digit without \& with regrouping
- three digit without \& with regrouping
- with three or more addends
- facts to 18
- zero as a factor
- story problems

Subtraction

- properties
- two digit without \& with regrouping
- three digit without \& with regrouping
- with three or more numerals
- Facts to 18
- zero as a factor
- story problems

Addition and subtraction

- inverse operations
- families of facts to 10
- add. \& subt. of whole numbers to 3 or 4 place
- missing addend to 20
- missing subtrehend to 20
- story problems

Multiplication

- propertics
- associative
- commutative
- distributive
- repeated addition
- symbols/terminology
- facts to 9×9
- mult. by 1 digit to 3 places
- mult. by $10,10 \theta \& 1,000$
- familias of facts
- 0 fn multiplication
- multiplicative identity of one
- story problem:

OPERATIONS

3RD GRADE (cont.)

Division

- properties
- inverse operation of mult.
- dist:ributive
- symbols/terminology
- one digit divisor with no reaminder
- one digit divisor with a remainder
- one digit divisor with 2 digit quotient
- family of facts (division reverse of multiplication)
- story problens

Fractions

- recognition of fractional regions throught 10 parts
- addition with like denominators
- recognizing equivalents
- story problems

4 TH GRADE

Addition

- number sentences - open and closed
- 3 digit without and with regrouping
- with 3 or more addends
- place value in addition
- story problems

Subtraction

- number sentences - open and closed
- 3 digit without and with regrouping
- with 3 or more nu-irals
- place value in subtraction -
- story problems

Addition-subtracsion

- inverse operations
- wh le numbers with 3 or more numbrals
- story problems

Multiplication

- properties
- associative
- commutative
- distributiva
- repeated acdition
- one factor, 2 digits
- one factor - 3 or more digits
zwo, 2 digit factors
- zero and one in multiplication
- one factor greater than 1000
- place value in multiplicatian
- story problems

Division

- properties
- distributive
- two digit divisor w/o remi..ncier.
- two digit divisor with remainde:
- story problems

Fractions

- propertics
- distributive
- equivelent fractions and =ocions
- subtraction-like denominators
- addition with unlike denominat.ors
- subtraction " "
- story problems

CONCEPT

OPERATIONS

5TH GRADE

Addition
-whole numbers greater than 10,000

- 2 and 3 place without and with regrouping
- 2 and 3 place with regrouping
- story problems
- equations
- denominate numbers

Subtraction

- whole numbers greater than 1,000
- 2 and 3 place without regrouping
- 2 and 3 place with regrouping
- story problems
- equations
- denominate numbers

Multiplication

- terminology
- factors, product
- factors greater than 10 with multiples of 100
- multiplication with factors of 2 and 3 digits
- story problems
- equations
- denominate numbers

Division

- estimation of
- quotients
- remainders
- 2 digit divisor with remainders
-2 digit divisor with dividend of more than 3 digits
- story problems

Fractions

- equivalent - renaming
-addition, subtraction - like denominators
- addition, subtraction - unlike denominators
- multiplication
- fraction x whole number
- fraction x fraction
- improper fractions
- addition, subraction whole numbers and mixed fractions
- story problems

OPERATIONS

6TH GRADE

Addition

- properties:
- associative
- commutative
- distributive

Subtraction

- properties
- opposite of addition
- non-cummutative

Multiplication

- properties
- associative
- commutative
- distributive
- factors with 3 digits or more
- product estimation

Division

- properties
- distributive
- 3 or more digit divisor w/o and with remainder
- estimation of
- quotients
- remainder

Fractions

- equivalent
- improper- number greater than 1
- addition and subtraction
- addition, subtraction - unlike denominator
- addition, subtraction - both addends greater than 1
- multiplication
- whole number x fraction
- unit fraction x unit fraction
- unit fraction x numbers greater than 1
- greatest common factor
- numbers greater than $1 \times$ numbers greater than 1
- division
- inverse operations
- reciprocals
- both factors greater than 1

Decimals

- addition through 100s
- subtraction through 100s
- multiplicition through 100 s
- division through 100s

Story Problems

- + whole numbers, fractions, decimals
- - whole numbers, fractions, decimals
- x whole numbers, fractions, decimals
- \div whole numbers, fractions, decimals
- two or more operations

OPERATIONS

7TH GRADE

Rational numbers
--laws

- addition
- properties
- associative
- commutative
- addition algorithms
- subtraction
- properties
- algorithms
- multiplication
- properties
- commutative
- associative
- distributive
- simplifying
- properties of zero
- properties of one
- algorithm
- division
- algorithm

Decimals

- place value
- addition, subtraction, multiplication, division algorithas
- renaming decimals and fractions

Intergers

- negative numbers
- positive numbers
- addition
- subtraction
?ercentage
- ratio and proportion
- ratio and percent
- appliこations
- perccits and graphs
- statistics

8TH GRADE

Rational numbers

- comparison of
- addition
- subtraction
- multiplication
- division

Decimals

- renaming decimals for rational numbers
- repeating decimals

Real numbers

- irrational, rational

Integers

- addition
- subtraction
- multiplication
- division

CONCEPT

NUMBER THEORY

KINDERGARTEN

Cardinal numbers
Rote counting 0 to 10
Order 0 to 10
Writing numerals 0 to 10

GRiDE 1

Notation

- writing 0 to 10
- writing 0 to 100
- sequencing
- skip counting through 2's and 5's
- zero

Place Value

- ones, tens
- number line
- expanded notation

Order

- inequalities, equalities
- symbols
- before, after, between
- many names - same numbers

Odd and even numbers
GRADE 2
Notation

- writing 100 to 1000
- sequencing
- skip counting 10 's to 100
- zero
- one

Place Value
-100's

- number line
- expanded notation

Order

- inequalities, equalities
- symbols
- different nares/same numbers
- ordinal numbers to 10^{\prime} s

Odd/even numbeis.

CONCEPT

NUMBER THEORY

GRADE 3

Notation

- recognize and write 10 through 99
- recognize and write numbers less than 1000
- odd and even
- multiples to 100.
- before, after, between
- number patterns
- skip counting through the $8^{\prime \prime}$ s

Place Value

- two digit 10 's and l's
- three digits 1000 's $100^{\prime} \mathrm{s} \quad 10$'s and l's
- expanded notation - $100^{\prime} \mathrm{s}$

Order

- ordinal numbers to 100 's
- counting/sequencing

Prime Numbers
Identity element of 0,1
Factors
Symbols

- when to use, - addition, subtraction, multiplication, division, greater than, less than, and equal to, synbols

GRADF 4

Notation

- recognize and write numbers greater than 1000
- recognize and write primes and composites
- number patterns .. order
- Romain numerals
- exponential
- recognize and write inequlities

Place Value

- three digits 1000 's, $100^{\prime} \mathrm{s}, 10$'s and $\mathrm{l}^{\prime} \mathrm{s}$
- expanded notation
- Base 8

Factors

- common
- greatest common
- prime numbers

Multiples

- common
- least

Estimation of whole numbers

CONCEPT

NURBER THEORY
GRADE 5
Notation

- numbers greater than 1000
- prime and composite numbers
- sequence- patterns
- exponential
- squaring
- percents

Place Value

- 3 or more digits
- Base 5

Factors

- common
-greatest
- prime

Multiples

- common
- Least, greatest

Estimation of whole numbers

- addition, subtraction

Ratio
1

- scale drawings

CONCEPT

NUMBER THEORY

GRADE 6

Notation

- prime and composite numbers
- Roman numerals
- scientific
- e`ponents
- squaring
- percents

Place Value

- Base 2

Factors

- common
- greatest
- prime

Multiples

- common
- least, greatest

Estimation of whole numbers

- multiplication, division

Ration and Proportion

- comparisons

Integers

- number line

Rational numbers

- number line

Percents

- decimal fractions to 100 's
- decimal fractions to 1000^{\prime} s

Probability

- occurance
- independent

NUMBER THEORY

GRADE 7
Notation

- prime and composite numbers
- relativel.y prime numbers
- perfect rumbers

Place Value

- Base 2, 3, 12
- exponents
- powers
- squares
- square roots
- decimals

Factors

- prime numbers

Multiples

- divisibility tests

Statistics
-frequency distribution

- graphs

Real numbers

- number line

GRADE-8
Place Value

- scientific notation
\because product, quotients
- exponents
- zero
- negative
- square roots
- estimation
- rational approximations

Integers

- number line

Rational numbers

- absolute value
- comparing

Probability

- occurance of events
- combined erents
- empirical
- random sampling
- predictions

Real Numbers

- comparing
- completeness property

Estimation

- slide rule

CONCEPT

MEASUREMENT

KINDERGARTEN

Comparison ot. or than shape
and number

- larger/smaller
- length
- height
- weight
- inside/outside
- time
- calendar

1ST GRADE
Money

- 1 cent to 1 dime

Time

- hour, half-hour, quarter-hour
- day, week, month, year

Linear

- inch
- half-inch

Capacity

- cup, pint, quart

2ND GRADE

Money

- recognizing coins
- 1 cent to 1 dollar
- making change to one dollar

Time

- measuring
- half-hour, hour
- 1 day to 1 year
- cal.endar

Linear

- measuring
- inch, foot

3RD GRADE
Money

- recognize U.S. currency
- make change to $\$ 5.00$

Time

- telling time
- calendar - day through year

Linear

- English ruler to $\frac{1 / 4}{4}$
- foot and yard

Capacity

- equivalent amounts in American system

Weights

- equivalent amounts in American system

Graphs

- bar
- interpretation

4 TH GRADE

Linear

- measuring
- area

Capacity

- Measuring equivalent amount in American system
- volume

Weight

- measuring equivalent amounts in American system
Graphs
- number plane
- data
- graphing
- bar graphs
- average

Temperature

- Faharenheit degree

Systems of Measurement

- English
- Metric

MEASUREMENT

5TH GRADE
Money

- addition, subtraction
- multiplication

Time

- second, year, century
- conversior within American system

Linear

- conversion within American system
- area
- formulas and measuring

Weight

- conversion within American system Capacity
- ounce
- conversion within American system
- volume
- formulas and measuring

Graphs

- bar
- line
- tables of data
- formulation
- interpretation
- construction
- average
- ordered pairs

Metric

- recognition

6TH GRADE
Money

- division

Time

- International
- latitude-longitude

Linear

- conversion within American systen.
- area, surface area

Weight

- conversior within American system

Capacity

- conversion
- volume

Graphs

- double bar graphs
- range, average, mode, median
- construction
- ordered pairs
- coordinate system
- symmetry'

Metric

- recognition
- conversion within Metric system

7TH GRADE

Linear

- conversion within American system
- perimeter

Weight

- conversion within American system Capacity
- conversion within American system

Graphs

- line
- range, average, median, mode
- interpretation

Metric

- conversion within and outside the system
Precision ancuracy
Areas
- lateral
- metric areas

8TH GRADE

Capacity

- volume

Metric

- conversion of
- Linear units
- area
- volume

Graphs

- rectangular coordinate systems
- Linear functions
- linear inequalities

Precision

- greatest possible error

Accuracy

- relative error

CONCEPT

GEOMETRY

KINUERGARTEN

Comparison of shade
Comparison of size
, - Recognition of a closed curve

- Rectangular regions
- Triangular regions
- Square

1ST GRADE

Identification of shapes
Naming regions

- partial regions - one-half, one-quarter

Line segments
2ND GRADE
Simple closed curves
Naming Regions

- partional regions, - halves, quarters, thirds
- areas

Line segments
=properties
-measurement

3RD GRADE

Simple closed curves
-. identification

- circle, square, triangle, rectangle
- construction
- protractor
- compass

Regions

- identification - circular, square, rectangular, rectangular
- measurement
-areas
Line segments
- points, end points
- rays
- planes, space

Angles
=identification
Symmetry

- figures
- parallel

CONCEPT

GEOMETRY ${ }^{*}$ (cont.)

4 TH GRADE
Simple closed cuives

- identification
- polygons, pyramid, cone, sphere, cube, cylinder, quakrilateral, parallelogram, ellipse
Planes
- identification
- properties
- number planes
- data
- graphing

Angles

- identification
- right angle
- perpendicular

Symmetry

- paralles
- congruence

Circles

- diameter, radius

Measurement of geometric figures

- length
- perimeter
- area

Volume

- identification by shape

CONCEPT

GEOMETRX

STH GRADE

Points, lines, curves, line segments, rays, planes

- properties
- measuring

Shapes - polygón

- recognition
- definition
- construction

Angles

- identification
- right angle
- perpendicular
- definition
- properties
-measuring
- construction

Closed surfaces

- properties of polyhedrons

Circles

- arc, chord
- construction

Ellipse

- properties

Measurement

- perimeter
- area
- formula
- volume
- formula
- surface area

Similarity - congruence

CONCEPT

GEOMETRY

6TH GRADE
Points and Lines in a Plane

- properties
- relationships
- construction
- intersections

Shapes

- properties

Poly'sons

- properties
- construction
- measurement

Angles

- construction
- measuring - protractor
- right angle
- perpendicular
- linear pairs
- bjisector

Closed surfaces

- charicteristics
- intersections

Circles.

- circumference
- area

Ellipse
Triangles

- right, isoceles, equilateral
- construction
- ratio
- Pythagorean Theorem

Measurement

- area
- surface area
- volume
- formula

Similarity-congruence
Symmetry

CONCEPT

GEOMETRY
7TH GRADE
Figures in Space

- points
- lines
-planes
Intersections in Space
- lines and planes

Lines, points, p’anes

- co-linear
- co-planer
- co-incident
- concurrent

Angles

- straighi
- vertical
- congru ent

Measurement-Construction

- segnents
-length
- polygons
-perimeter
- angles
-suppiementary, complementary
- regions in a plane
- triangles
- quadrilaterals
- circles
- regions in space
- right angles
- rectangular prisms

Similarity - Congruence Symmetry

GEOMETRX

8TH GRADE

Figures in Space

- points
- lines
- planes
- tetrahedron and other pyramids
- prisms
- cones, cylinders
- sphers
- circles

Measurement - Construction

- segments
- length
- polygons
- perimeter, area
- angles
- parallel, perpendicular
- triangles
- Pythagorean Theore:
- right triangles
- prisms
- surface area, volume
- pyramids
- surface area, volume
- cones, cylinders, spheres - surface area, volumes
- circles - area, circumference Similarity - Congruence
- recognition of figures
- properties
- construction

Symmetry

- line
- axis

CONCEPT

NUMBER SENTENCES

KINDERGARTEN

Equalities/inequalities

- comparison

Sequence pictures

1ST GRADE

Equalities/inequalities

- comparisons

Symbols in number sentences
$-\langle\rangle=,,+$,
Measurement

- liquid
- money

Story Problems

- verbal, written
- completing picture problems

2ND GRADE

Equalities/inequalities
Symbols
$-\langle\rangle,,=,+,-$
Measuremant

- liquid
- money

Story problems

- verbal, written
- writing from picture problems

3RD GRADE
Symbols in number sentences
$-+,-x, \div,<,\rangle=$
Measurement

- liquid
- money
- linear
- rates
- time

Parentheses

- associativicy
- grouping

Story Problems

4TH GRADE

Symbols $-+, x, \div,><,=, \neq$
Measurement

- money
- linear
- rates
- volume
- metric

Story Problems

- developing equations
- fractions
- 2 or more variables

Logic

- quantifiers
- conditionals

5TH GRADE

Symbols
$-+,-x, \div,\langle\rangle=,, \frac{t}{7}$

- unknowns

Measurement

- money
- linear
- rates
- capacity
- metric
- weights

Story Problems

- developing equations
- fractions
- exponents
- 2 or more variables

Logic

- quantifiers
- conditionals
- negating statements

CONCEPT

NUMBER SENTENCES

6TH GRADE

Symbols
$-+,-x, \div,\langle\rangle,,=, \neq$

- unknowns

Measurement

- metric
- statistics

Story Problems

- developing equations
- developing inequalities
- exponents
- decimals
- 2 or more variables

Logic

- quantifiers
- conditionals
- negating statements

7TH GRADE

Equations, inequalities
Measurement
Equations into variables
Quantifiers
Logic

- compound statements

8TH GRADE

Equations, inequalities, phrases, statements Equations into variables

- powers

English sentences to number sentences
Systems of linear equations

- graphing
- solution

Step-by-step problem solving procedures
Logic

- biconditionals
- syllogistic deduction

COMMONALITY

 PROCESSMATH CONCEPT
MEASUREMENT
$\cdot 5,6,7,8,9,10,11,12,13$
a- h
SETS
$1,3,4,7,12$
a - h
OPERATIONS
NUMBER THEORY
$1,2,4,5,6,7,8,9-13$
$a-h$
a-h
GEOMETRX
7,9,10,13
a-h
number Sentences 1-13
a-h

REPRESENTATIVE MATHEMATICS UNITS

 CODED TOMATHEMATICS SCOPE AND SEQUENCE

STAFF UTILIZATION FOR CONTINUOUS PROGRESS EDUCATION PROJECT

E.S.E.A. TITLE III

Developed by:
Rita Freeman, Mathematics Curriculum Leader

Mary Lou Nevin, 1-2
Raymond Brie, 1-2
Geraldine Dwight, 3-4
Rita Freeman, 5-6
Edward Coats, 7-8

Column 1	Subject area identification
La	Language Arts
MA	Mathematics
SC	Science
SS	Social Studies
AR	Art
VM	Vocal Music
IM	Instrumental Music
PE	Physical Education
Column 2	Grade level designation
0	Kindergarten
1	First grade
2	Second grade
3	Third grade
4	Fourth grade
5	Fifth grade
6	Sixth grade
7	Seventh grade
8	Eighth grade
Column 3	Major Concepts\%
S	Sets
0	Operations
$\mathrm{N}^{\text {T }}$	Number Theory
M	Measurement
.G	Geometry
NS	Number Sentences

NOTE: An X means all categories in that column are included.
*Please note that in the math coding scheme each item of Column 3 has a separate soding for Columns 4 and 5. These are listed on the following pages.

SETS*

COLUMN 4

1. Set recognition
2. Set membenship
3. Set comparisen
4. Set identification
5. Cardinal numbers
6. Inequalities
7. Union, intersection
8. Set description
9. Set builder notation
10. Venn diagrams

COLUMN 4
1.
2.
3.
4.
4.
4.
4.
4.
4.
4.
4.
4.
5.
5.
5.
6.
7.
8.
8.
8.
8.
9.
10.

COLUMN 5
--..
--..
a. equivalent, non-equivalent
b. subset
c. empty
d. universal
e. superset
f. symbols
g. disjoint
h. finite, infinite
i. solution
a. through 6
b. through 10
c. cross product
a. symbols $\epsilon, \notin, c, \varnothing, \varnothing$
b. proper, improper
c. one-to-one correspondence
d. replacement

[^0]
OPERATIONS

COLUMN 4

1. Addition
2. Subtraction
3. Addition and Subtraction
4. Multiplication
5. Division
6. Fractions
7. Decimals
8. Story problems
9. Rational numbers
10. Integers
11. Percentage
12. Real numbers

COLUMN 5

1. a. properties
b. joining sets
c. combinations for 2 through 5
d. terminolohy/symbols
e. 0 to 5
f. 0 to 10
g. missing addend 0 to 5
h. missing addend 0 to 10
i. 10 to 18
j. equations - families of facts to 18
k. 2 digit without regrouping
2. 2 digit with regrouping
m. 3 addends
n. story problems

0 . 3 digit w/o and with regrouping
p. with 3 or more addends
q. zero as a factor
r. number sentences - open and closed
2. a. separating sets
b. combination for 2 through 5
c. symbolisa/terminology
d. 0 to 5
e. 0 to 10
f. missing numeral 0 co 5
g. missing numeral 0 to 10
h. story problems
i. properties
j. 10 to 18
k. equations families of facts to 18

1. two digit without regrouping
m. two digit with regrouping
n. 3 digit without and with regrouping
o. with 3 or more numerals
p. zero as a factor
q. number sentences - open and closed
r. place value in subtraction
s. whole numbers greater than 1000

OPERATIONS (cont:.)

COLUMN 5

3. a. 0 to 10

b. missing iddend 0 to 10
c. story probler.
d. 10 to 18
e. 2 digit without regrouping
f. 2 digit with regrouping
g. three addends
h. story problems
i. inverse operations
j. Samilies of facts to 10
k. addition and subtraction of whole numbers to 3 or 4 place

1. column addition to 3 or 4 place
m . missing addend to 20
n. missing subtrahend to 20
2. a. properties
b. syuvols/terminology
c. facts to 9×9
d. multiplication by 1 dig't to 3 rlaces
e. multiplication by 10,100 , and 1000
f. families of facts
g. θ in multiplication
h. multiplicative identity of one
i. story problems
j. one factor, 2 digits
k. one factor, 3 or more digits
3. 2, 2 digit factors
m . one factor greater than 1000
n. place value in multiplication
o. factors greater than 10 with multiples of 100
p. multiplication with factors of 2 and 3 digits
q. factors with 3 digits or more
r. produc estimation
4. a. properties
b. symbols/zerminology
c. one digit division with no remainder
d. one digit division with a remainder
e. one digit division with 2 digit quotient
f. family of facts (division reverse of multiplication
g. story problems
h. 2 digit divisor without remainder
i. 2 digit livisor witha remainder
j. estimation
k. 2 digit divisor with divident of more than 3 digits
5. 3 or more digit divisor without and with a remainder.

OPERATIONS

COLUMN 6.

1. a. 1. intuitive development
2. zero as an identity element
3. associative
4. commutative
d. 1. equalities
5. inequalities
n. 1. equations
6. denominate numbers
7. h. 1. equations
8. denominate numbers
i. 1. non-commutative
9. non-associative
10. oppe:ite of addition
11. \qquad
12. a. 1. associative
13. commutative
14. distributive
15. repeated addition
b. 1. factors, product
i. 1. equations, denominate numbers
16. a. 1. inverse ope iation of multiplication 2. distributive
j. 1. quotients
17. remainders
18. e. 1. distributive
k. l. fraction x whole number
19. fraction x fraction
20. anit fraction x unit fraction 4. unit fraction x numbers greater than 1
21. greatest common factor 6. numbers greater than $2 \times$ numbers greater than 1
22. 23. 1 addition and subtraction
1. 2. i inverse operations ($a \times \frac{1}{N}=a \div N$)
1. reciprocals
e. l. both factors greater than 1
2. \qquad
3. \qquad

OPERATIONS

COLUMN 6
9. b. 1. properties
2. algori thms
c. 1. properties
2. algorithms
d. 1. propertics
2. simplifying
3. propertics of zero
4. properties of one
5. algorithms
e. 1. algorithm
10. \qquad
11. d. l. statistics
12. \qquad

COLUMN 7
1.
2.
\qquad
3. \qquad
4. \qquad
6. \qquad
8.
b. 1.a. associative
b. commutative
d. 1. a. associative
b. commutative c. distributive

NUMBER THEORY

COLUMN 4

1. Cardinal numbers
2. Rote counting 0 to 10
3. Order
4. Writing numerals
5. Odd and even numbers
6. Notation
7. Place Value
8. Prime numbers
9. Identity element of zero, one
10. Factors
11. Symbols
12. Multiples
13. Estimation of whole numbers
14. Ratio and proportion
15. Integers
16. Rational numbers
17. Percents
18. Probability
19. Statisicics
20. Real numbers

columis

1.
2.
3. a. inequalities, equalities
b. before, after, between
c. many names - same number
d. ordinal numbers
e. counting, sequencing
4.
5.
6. a. writing numerals 0 to 10
b. writing numerals 0 to 100
c. sequencing
d. skip counting through 2's, 5's
e. zero
f. writing 100 to 1000
g. skip counting 10 's to 100
h. one
i. recognize and write 10 through 99
j. recognize and write numbers less than 1000
k . odd and even
7. multiples of 100
m. before, after, between
n. number patterns
o. skjp counting through the 8 's
p. recognize and write numbers greater than 1000
q. recognize and write primes and composites
r. Roman numerals
s. exponential
t. recognize and write inequalities
u. squaring
v. scientific
w. percents

NUMBER THEORY

COLUMN 5

7. a. ones, tens
b. number line
c. expanded notation
d. 100 's
e. two digit $10^{\prime} \mathrm{s}$ and $\mathrm{l}^{\prime} \mathrm{s}$
f. three digit $1000^{\prime} \mathrm{s}, 100^{\prime} \mathrm{s}, 10^{\prime} \mathrm{s}$ and $1^{\prime} \mathrm{s}$
g. base 8
h. 3 or more digits
i. base 5
j. base 2
k. base 3, 12
8. exponents
m. powers
n. squares
o. square roots
p. decimals
q. scientific notation
9.
10.
11. a. common
b. greatest common
c. prime numbers
12. a. when to use
13. a. common
b: least, greatest
c. divisibility test
14. a. addition, subtraction
b. multiplication, division
c. slide rule
15. a. scale drawings
b. comparisons
16. a. number line
17. a. number line
b. absolute value
c. comparing
18. a. decimal fractions to 100 's
b. decimal fractions to 1000 's
19. a. occurance
b. independent
c. combined events
d. empirical
e. random ;ampling
f. predictions
20. a. frequency distribution
b. graphs
21. a. number lines
b. comparin:g
c. completeness property

COLUMN 6

1.
2.
3. a. 1. symbols
4.
5.
6. q. 1. relatively prime numbers 2. perfect numbers
v. 1. exponents
7. squaring
8. 9. 10. zero
1. negative
2. 3. estimation
1. rational approximations
q. 1. product, quotient
2.
3.
4.
5.
6. a. 1. least
7.
8.
9. \qquad
10.
11. \qquad
12. \qquad

MEASUREMENT*

COLUMN 4

1. Comparisons other than shape and number
2. Money
3. Time
4. Linear
5. Capacity
6. Weight
7. Graphs
8. Temperature
9. Systems of Measurement
10. Metric
11. Precision - accuracy
12. Areas
13. Precision
14. Accuracy

COLUMN 5

1. a. larger/smaller
2. a. 1 cent to 1 dime
b. recognizing coins
c. 1 cent to 1 dollar
d. making change to one dollar
e. recognize U.S. currency
f. make change to $\$ 5.00$
g. addition, subtraction
h. multiplication
i. division
3. a. hour, half-hour, quarter-hour
b. day, week, month, year
c. measuring
d. 1 day to 1 year
e. calendar
f. telling time
g. second, year, century
h. conversion within American system
i. International
j. latitude-longtitude
4. a. inch
b. half-inch
c. measuring
d. English ruler to $\frac{1}{4}$ "
e. foot and yard
f. area
g. conversion within American system
h. surface area
5. a. cup, pint, quart
b. equivalent amounts in American system
c. volume
d. ounce
6. a. equivalent amounts in American system
b. measurirg equivalent amounts in American system
c. conversion within American system

MEASUREMENT*

COLUMN• 5

1. a. l. length
2. height
3. weight
4. inside/outside
5. time
6. \qquad
7.
8. f. 1. formulas and measuring
9. c. 1. formulas and measuring
10.
11. a. 1. interpretation g. 1. formulation
12. interpretation
h. 1. ordered pairs
13. coordinate system
14. symmetry
15.

\qquad
10. \qquad
11. \qquad
13. \qquad

COLUMN 6

1. a.r.a. calendar
2. \qquad
\qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7.

\qquad
11 \qquad
12. \qquad
. \qquad

GEOMETRY*

COLUMN 4

1. Comparisct of Shape
2. Compariso: of Size
3. Recognition
4. Identification
5. Naming regions
6. Line segments
7. Simple closed curves
8. Regions
9. Angles
10. Symmetry
11. Planes
12. Circles
13. Meastremeat of geometric figures
14. Volumne
15. Points
16. Polygons
17. Closed surfaces
18. Ellipse
19. Similarity - congruence
20. Points and Lines in a plane
21. Shapes
22. Triangles
23. Figures in space
24. Intersections in space
25. Construction
*In the math coding scheme each section of Column 3 has a separate coding for Col-mns 4 and 5.

COLUMN

1. \qquad
2. \qquad
3. a. closed curve
b. rectangular regions
c. triangular regions
d. square
4. \qquad
5. \bar{a}. partial regions
b. areas
6. a. properties
b. measurement
c. points, end points
d. rays
e. planes, space
f. co-linear
g. co-planer
h. co-incident
i. concurrent
7. a. identification
b. construction
8. a. identification
b. measurement
c. areas
9. a. identification
b. right angle
c. perpendicular
d. definition
e. properties
f. measuring
g. construction
h. linear pairs
i. bisector
j. straight
k. vertical
10. congruent
11. a. figures
b. parallel
c. congruence
d. line
e. axis
12. a. identification
b. properties
c. number planes
c. co-linear
e. co-planer
f. co-incident
g. concurrent
13. a. diameter, radius
b. arc, chord
c. construction
d. circumierence
e. area
14. a. length
b. perimeter
c. area
d. volume
e. surface area

14 a. icentification by shape
15. a. properties
b. measuring
c. co-linear
d. co-planer
e. co-incident
f. concurrent
16. a. properties
b. construction
d. measurement
17. a. propertics of polyhedrons
b. characteristics
c. intersections
18. a. properties
19. a. recognition of figures
b. properties
c. construction
20. a. properties
b. relationships
c. construction
d. intersection
21. a. recognition
b. definition
c. construction
d. properties
22. a. right, isoceles, equilateral
b. construction
c. ratio
d. Pythoagorean Theorem
23. a. points
b. lines
c. planes
d. tetrahedron and other pyramids
e. prisms
f. cones, cylinders
g. spheres
h. circles
24. a. lines and planes
25. a. segments
b. polygons
c. angles
d. regjions in a plane
e. regions in space
f. triangles
g. prisins
h. pyramids
i. cones, cylinders, spheres
j. circles
*In the math coding scheme each section of Column 3 has a separate coding for Columns 4 and 5.

GEOMETRY*

COLUMN 6

1. \qquad
2. \qquad
3.

\qquad
5. \qquad
6.
a. 1. c
b. l. protractor
2. compass
8. \qquad
f. 1. protractor
10.
c. 1. data
2. graphing
12. \qquad
c. l. formula
d. 1. formula
14. \qquad
15. \qquad
16. \qquad
17. \qquad
18. \qquad
19. \qquad
20. \qquad
21. \qquad
23. \qquad
24. \qquad
25. a. l. length
b. 1. perimeter, area
c. 1. supplementary, complementary
2. parallel, perpendicular
d. 1. triangles
2. quadrilaterals
3. circles
e. 1. right angles
2. rectangular prisms
f. 1. Pythagorean Theorem
2. right traiangles
g. 1. surface area, volume
h. l. surface area, volume
i. 1. surface area, volume
j. 1. area, circumference
*In the math coding scheme each section of Column 3 has a separate coding for Columns 4 and 5.

Number sentences*

COLUNN 4

1. Equalities/inequalities
2. Sequence pictures
3. Symbols in number sentences
4. Families of facts
5. Measurement
6. Story problems
7. Parentheses.
8. Logic
9. Quantifiers
10. Equations into variables
11. Equations, inequalities, phrases, statements
12. English sentences to number sentences
13. Systems of linear equations
14. Step-by-step problem solving procedures
15. \qquad
i.0. a. powers
16. \qquad
17. \qquad
18. a. graphing b. solution
19. \qquad

INSTRUCTIONAL UNITS

As instructional units are prepared for the concepts within the Mathematics Scope and Sequence they will all follow a similar format. Those that exist at present will be revised. Each unit will be titled from the Scope and Sequence chart with the concept and subconcept to which it refers. Performance objectives will be stated. Any pertinent teacher information regarding content will be included but under separate cover. Either a pre-test or information regarding the retrieval of one will be included. An outline of the content, a list of the varijus iearning activities, directions for their use, and resource materials will be identified. Finally, the post-test or other appropriate evaluation procedure will be included.

All units will be coded from the scope and sequence code for easy retrieval. Manipulative games and enrichment materials will also be coded and stored in a centzal location.

E. C. E. UNITS OF INSTRUCTION

STAFF UTILIZATION FOR CONTINUOUS

PROGRESS EDUCATION PROJECT
E.S.E.A. TITLE III

Developed by:
Geraldine Clifford
Jane Froment

COMPARISON AND IDENTIFICATION OF SHAPES

GOALS: Introduce geometric shape and some of their specific propertics.
Comparison of triangle, circle, oval by shape.
Comparison of specific shapes by size.
OBJECTIVES: When given different geometric shapes child will be able to identify and name triangle, square, circle, oval and rectangle.

When given a geometric shape, the child will be able to compare size of shape from smallest to largest.

When given different geometric shapes, the child will be able to identify those of same shape.

MATERIALS: Individual fclders with objects made from specific shapes. Bingo game - a game for children.

Tactile geometric shapes.
Large charts with comparison of shapes.

EVALUATION: When shown a specific shape child will be able to name shape and identify simple properties.

ManIpulative Mailit KIT

GOAL: To develop various mathmatical concepts to be determined by the unit of instruction.

OBJECIIVES:

1. Given a collection of felt objects the child will be able to identify a set as a collection or a group of things.
2. Given different sets of felt objects the child will be able to compare sets that are more, less and equal.
3. Given different sets of felt objects the child will be able to explore the idea that the joining of two sets results in a new set with more elements.
4. Given a set of objects the child will be able to count the elements in a set.
5. Given a set of objects the child will be able to explore a one-to-one correspondence.
6. Given a circle, square, and triangle the child will be able to identify geometric figures.
7. Given a circle, square, and triangle the child will be able to compare geometric figures.
8. Using different manipulative materials such as: yarn, toothpicks, the child will be able to identify lines and line segments.
9. Using different manipulative materials such as: yarn and toothpicks the child will be able to identify simple closed and open curves.
10. Given different materials the child will be able to compare size s.lch as: long-short, large-small.

MATERIALS TO BE USED:

felt board pieces of felt toothpicks crayon writing surface
manipulative felt materials in a circle, square andrectangle.

EVALUATION: Observation by teacher of correct verbal and manipulative response when using kits.

GOALS: Provide opportunity to identify sets and their properties. Provide opportunity to identify sets 0 to 10.
Provide experiences in counting as a means of identifying a set. Introduce numerals 0 to 10. Provide opportunity for identification of numerals as a property of a set and tells how many.
Provide'kinesthetic and tactile experience for writing numerals. Provide opportunity to practive forming and writing numerals.

[^1]
TACTILE BIG BOOK

GOALS: Provide opportunity to identify sets l-5.
Provide experiences in counting as a mean ef identifying a set. Introduce numerals 1 - 5.
Provide kinesthetic and tactile experience for numerals l-5.

OBJECTIVES: Given a set of objects the child will count objects and identify how many elements in a set.
Given a set and numeral the child will identify numeral as a symbol telling how many elements in a set.
After identification of set and corresponding numeral the chila will be able to identify it.
Given tactile numerals the child will trace over numeral with finger in preparation for writing it.

MATERIALS: Tactile numeral in big book, child's finger or hand.
EVALUARION: When shown numeral the child will be able to verbally identify it with 100 accuracy.
When given a set of given amount, the child will be able to identify amount with 100% accuracy.

MATHEMATICS

EXEMPLARY UNIT FOR LEVELS 1 and 2

 ENRICHMENT ACTIVITIES
STAFF UTILIZATION FOR CONTINUOUS

 PROGRESS EDUCATION PROJECTE.S.E.A. TITLE III

Developed by:
Mary Lou Nevin
Raymond Brie

GOING FISHING

GOAL: Review numerals.

OBJECTIVE: The child will be able to identify numerals.

MATERIALS: Fish pole with magnets.
Container used as fish bowl. Fish with numerals written on them. Paper clips in fish mouth.

EVALUATION: Child will see numeral and then name it.

CONCENTRATION GAMES

GOALS: To provide experience to match sets which are equal. To provide opportunity to match numeral which are the same. To provide practice in visual memory skills.

OBJECTIVES: When given set of cards with different sets, the child will be able to compare sets and find the sets which are equal. When given set of cards with different numerals the chil' will be able to compare numerals and find the one which are t e same.

MATERIALS: Cards with sets and numerals.

EVALUSTION: When given a set of cards with different set of objects the child will be able to match equal sets with 100% accuracy. When given a set of cards with different sets of numerals the child will be able to match equal numerals with 100% accuracy.

MATHEPLATICS

EXEMPLARY UNIT FOR LEVELS 1 and 2
ENRICMMENT ACTIVITIES

STAFF UTILIZATION FOR CONTINUOUS

PROGRESS EDUCATION PROJECT

E.S.E.A. TITLE III

Developed by:
Mary Lou Nevin
Raymond Brie

INSTRUCTIONAL UNIT

1-2
Objective:
The purpose of this instructional unit is to provide enrichment activities for children in the 1-2 L.C. Each major heading under the scope and sequence has supportive materials.

Activities:

There are three major activities for individual reinforcement, remediation or enrichment activities.

1. Concept coded individual activity cards.
2. Fraction bowls for manipulative regions of fractional regions. $(1 / 2,1 / 3,1 / 4,1 / 5,1 / 8,1 / 16)$
3. Spinners for random selection of addends, subtrahends, minuends and place value.

Materials:

Concept coded individual activity cards were constructed in 11
different colors of bristol board cut to $81 / 2$ by 11 inches. Selected work pages were added and covered with clear contact. This will enable the student to use crayons or china markers to make the materials reuseable.

Fraction bowls were constructed from plastic bowls and bristol board. The lids were used for patterns of $1 / 2,1 / 3,1 / 4,1 / 5,1 / 8$, and $1 / 16$. The fractions will fit into the lids.

Small plastic bowl with spinners on the lids. The spinner is made out of oak, cag with numbers from $0-9$ on top and covered with clear contact. The spinner is made from bristol board and fastened to the spinners with a brad.

Evaluation Technique:
It was intended this material be used with little teacher help. If teacher assistance is in temand, the program needs revision. The materials will be checked by the teacher on the spot for imnediate reinforcement.

MATHEMATICS

EXEMPLARY UNIT FOR LEVELS 3 and 4 GEONETRIC SHAPES IN ACTION

STAFF UTILIZATION FOR CONTINUOUS

PROGRESS EDUCATION PROJECT
E.S.E.A. TITLE III

Developed by:
Geraldine Dwight

GEOMETRIC SHAPES IN ACTION

Objectives:
As a result of this unit the student will be able to:

1. Name and recognize the following geomeric figures: pyramid, cone, sphere, cube, polygon, cylinder, quadrilateral, parrallelogram, ellipse, square, circle, rectangle, sphere, triangle.
2. Identify and recognize properties of: triangles and triangular regions, rectangles and rectangular regions, squares and square regions, circles and circular regions, parallelograms, quadrilaterals.
3. Recognize the properties of and construct the folluwing figures: curve, closed curve, simple closed curve, line, line segment, congruent lines, place, ray, point.
4. Use a compass, protractor and ruler to construct simple geometric figures.
5. Recognize the properties of and construct a right angle.
6. Recognize and show line symmetry in circles, squares and general shapes.
7. Find the diameter and radius of a circle.
8. Count units to find the area of: square, rectangle, triangle, and polygon.
9. Count cubic units to find volume.
10. Use geometric shapes and properties to construct his own creative figures.

Activities:

1. Examine and discuss properties af models of geometric figures.
2. Collect, label and display a variety of geometric figures.
3. Using a ruler, compass and protractor, construct plane geometric figures.
4. Draw esthetic geometric designs with ruler, compass and protractor.
5. Construct figures in space using straws, toothpicks, blocks.
6. Use needle and thread to construct plane geometric designs.
7. Construct three-aimensional geometric figures using any materials that are available, i.e. show boxes and string, cardboard, etc.

GEOMETRIC SHAPES IN ACTION (contd)

$!$
 Materials Available to Stude:

Compass, ruler, protractor, scissors, cardboard, paper, osk tag, boxes, flannel board, colored rods, squared paper, graph paper, yarn, needlea, thread, shoe boxes. Large and small models of square, circle, rectangle, polygon, cube, sphere, cone, cylinder, prism, pyramid.

Evaluation Technique:

Given a group of objects student will be able to describe and classify the properties of 15 geometric figures.

MATHEMATICS

EXEMPIARY UNIT FOR LEVEL 5

Sets

STAFE UTILIZATION FOR CONTINUOUS

PRDGRESS EDUCATION PROJECT
E.S.E.A. TITLE III

Daveloped by:
Rita Freeman

OBJECTIVE:

To provide the atudent with a variety of learning activities related to the concept Sets.

ACTIVITIES:

After teacher presentation and pre-testing each student would be placed at an appropriate level of the unit. Each packet for a concept provides for remediation, grade level success, and enrichment. Materials are individualized with teacher supervision. They include a variety such as tapes, manipulative, worksheets, workbooks and one-toone help.

MATERIALS:

1. Houghton Mifflin Math Series
2. SRA
3. Attribute games
4. Teacher made materials

EVALUATION:

As the gtudent progresses ihrough each level of the concept evaluation will be a 90% efficiency based on the student's ability and accomplishments throughou: a segment of the concept.

mathematics

EXEMPLARY UNIT FOR LEVEL 8

SLIDE RULE USAGE.

STAFF UTILIZATION FOR CONTINUOUS

PROGRESS EDUCATION PROJECT
E.S.E.A. TXTLE III

Developed by:
Edward Coats

OBJECTIVES:

The student will be able to multiply and divide using the slide rule. Through the use of the slide rule, the student will be able to write estimations at different place values.

MATERTALS:

Four foot demonstrator slide rule; slide rule demonstration transparencies; overhead projector; 12×18 card, bristol board or balsa sheet; ruler; pencil; several sheets of ditto paper; scissors; glue.

ACTIVITIES:

1. Construction of one slide; see attached instruction sheet.
2. Reading $\simeq E$ slide rule scales.
3. Multiplication processes.
4. Division processes.
5. Extended activities--
a. Squaring and square root processes.
b. Cubing and cube root processes.
c. Percentages.
d. Logarithms.

EVALUATION TECHNIQUES:

1. The student will demonstrate his ability to manipulate che slide rule in the presence of a teacher.
2. A set of 25 multiplication and division problems with which to test the student's ability.
3. Direct feedback from science department when knowledge put to practical use in other classes.

A FOUR WEEK UNIT

STAFF UT:LIZATION FOR CONTINUOUS

PROGRESS EDUCATION PROJECT
E.S.E.A. TITLE III

Plans for the First Heel of School

Objective:
To develop the concept of a set:
Suggested Activitios:
I. The child will have the opportunity to manipulatc at
least 5 difforent kinds of objects to make a sct.

1. Wake a set of all the squares.
2. Make a set of all the red objects.
3. Make a set of all the long ballons.
4. Kake a set of all the larco beans.
5. Kake the yarn circle all of the red apples on the
flannel board.
II. The child vill have the opportunity to look aroun? :.i. prat and show the class a set of objccts he has found.
6. The set of all the chairs in the roore
7. The set of chalkboards.
8. The set of tables.
9. The soti of boys or eirls.
10. The set of a clocir.
III. Bach child will have the opportunity to cutand paste a picture on one of the set cherts.
11. Decide what kinds of sets the class wishes to irelude such. as color words, animals, houses, peonle.
12. Each cinild will look at his magazine and find a aicture to add to the set chart.
13. Each caile wit place bis own picture any whe on the chart.
14. the finjebe" chart ajn bo displayod for easy re"erence.
IV. Each child rill have the opportunity some time curine the week to play the clom game. (This gane could also be used in freo time as an interest center)

Clown Game

For this game you will need a clown and several sets of bellons. the ballons should be in various colors and shapes--sone round, come shoped lite animals, some sausare-shanod, some tristed, and so forth. One set could be equivalent to the set of strinss, one could have one more ballon that the set oi strings, and one could have one less. After you have provided some dijection throuch your questions, let small groups of children emoriment freely bith these materials to find out for themselves wich sets are equivajent and wich are not.

Group Sise: small or lige group
Materials Needed: Clown and set of ballons.
(Aready flade and located in the math cupboard)
V. Each child will do the Teacher directed pages $1,2,3,4$ in the loughton Kifflin workbook. (attached)

Sugecsted Froe-Tıme Activities

Interest centers are a vital part of the reinforcement of a Math idea. Some sugeested interest centers are listea below.

1. Lotto Games

Make a set of I2 round circles, Pair sets of objects from
1 to 6 on each. Cover with clear plastic and store in plastje tubs. The child will be able to go to the Nath Center and get a tub with a red marker on it for free time activity. He can either play by himself or with a partner.

The child turns all of the circles upside down and mixes them up. He then turns one over placing it face up in frent of him. Then he chooses one more cara and if it matches se gets to keep them. If not he places both of them face do:n

In the playine pile.

The circles are $2^{\prime \prime}$ circles. The design on the epro shoula be identical for the firet ganes.
2. Concent Coded Individual Activity Cards.

These cards are made from $9 \mathbf{~ X ~ 1 2 " ~ b r i s t o l ~ b o a r d . ~ S e l c e i ~} d$ workenents fnom old wrimboks are pasted on these bonds and then they are corerod with clear plastic. (The onos doalin: uth sots will be cocied rec. The child uses a black orayon or a china ball marker to mark his answer. The answer is chocked as soon as possibjo for immediate reinforcoment.

These can be stored in a cardboard box, such as a detoreent boy, in the lath Centor so the children can get then whenover thoy want to. This could also be used for checring a cortain child on a concept.

3. Extra pages put in plastic.

These pages can be old workbook pages or oxtra ditto pages. The use of the plastic pocket makes their use vory flexible. They can be used as on enrichment activity for free time or a way to check a certein child on a math idea that hos been presented. The sheets can be changed as frequently as the teacher desires. When these sheets are used for sets, they will be coded red.

Materials:

I. Suggested Fanipulative objects.

These objects will be located in the lath cupboard which should be centrally located, especially in a team situation. 2. Macroni

Give each child a handful of different sizes and shapes of macroni and have them sort them out. (Macroni can also be colored)

2. Geometric shapes.

Many different Geometric shapes can be cut from construction paper or oak tag. To start out use squares, retangles and triangles. Give the students two different sizes of the same shape the first time. Then add more shapes until you have large and small squares, large and small retangles and large and small triangles. Then have them sort them into sets by hape, color, size, etc. All the large shapes could be onc color, such as groon and all the small shapes blue.

3. Beans

Different kinds of beans can be mixed up and each child given a handful. Have him sort them into kinds, colors and size.
4. Pencils.

Have a group of pencil: available, and have the cinildren see if they have enough for a certain group, or the whole class.

5. Cuisinaire Rods.

These rods are excellent for manipulative iceas. The children could natch the rods with a set of rods you have slown them. They can use them to sort out colors. These are very good for free time.
6. Flannel Board, objects, and yarn to circle objects. The flannel board can be used to have the children show you sets of objects. If there are enough chapes available, the child ean have their own obects and ma're the sets on their boerds. The yarn is used to ring or circle certain objects.
7. Dittoes (ifneeded)

Evaluation:
Pre-lest: The child will be given a set of objects and alloved jo play with the objects and manipulate then in any way he rants to. This will help him get acquainted with manipulating objects, and putting them in different groups.
Post-Test: The teacher will obscrve the child demonstrating his ability to reco,nize the concept of a set by manipulating objects, such as: Show me a set of red objects. Show me a set of all of the souares. The teacher will record on a sheet the children that are having difficulties and need additional relp.

Additional Activities

I. Enrichment Activities.

Each child who has shown his or her ability to understand sets and has successfully passed the post test, will have the opportunity to help another child or construct a "Color Domino" gae for the class to use.
"Color Domino"
Give the Children a $3^{\prime \prime} \times 6^{\prime \prime}$ card and have them draw colored nictures at ejther end. Children play the game by placeing pictures oi the sare color noxt to each other.

II. Extended Activities.

Each child who was having difficulty during the post test will have the opportunity to have additional help through extended activities:

1. Read the story of "The Three Bears" (use flannel board story if possible) Discuss the story and see if the children will discover the sots in the story. 2. Kanipulate objects that have meaning to thom.

Natch equal number of cups and saucers.
Take cups and saucers and put ther in piles.to make a sot of cups and a cet of saucers.

Direct the child to put some trees on the flannel board - lead him to discover he has put a set on the bonend.

1ath - SERS -Levol Cne.

Plans for the Second Week of School.

Objective:

To introduce the concept of equivalent and non-ecuivalent sets.

To introduce the terms more and fewer.

Sugcested Activities:
I. The child will have the oportunity to manipulate and compare at least 5 sets.

1. Compare the squares with the triangles. Do you have the same number? Which do you hove more of? Which do you have fever of?
2. Compare the red circles with the blue circles. Do you have the same number? Which do you have more of? Which do you heve fewer of?
3. Compare your file of macroni. Separaie it into piles of macroni that are the same kind and size. Which pile do you have more of? etc.
4. Compare the white cujsinaire rods with the green cuisinaire rods. Do you have the same number? etc.
5. Make two sets on your flannel board. Do the sets have the equal mombers? Did you make one sct with more objects. Did you make one set with fever objects?
II. Each child will have the opportunity to shov equivalent and non-ecuivalent sets in the room.
6. Have a child put come chairs in the front. Let another chila choose enough children to fill the chairs. Discuss what he did. Did he havo equivalent sets or nonequivalent sets.
7. Natch the nunber of boys and girls in the room. Discuss how they compare.
8. Give some child a pile of books and have him hand then out to a certain table. Discuss what happened.
9. Match the number of children to the number of chairs in the room, or the number of tables. Discuss.
10. Natch the doors and windous in your room. Discuss how they compare.
III. Each child will heve the opportunity to participate in the "ratch the Sets" game.

Match the Sets:

Pass out set card to the class. Draw a set of objects on tho board to form a set on objects. (or use flomel boarā) Those students whose Set Cards show more objects than the displayed set should hold up their caris. Fame a student to cone forvard with their cord and hold it up. Have hilh name another student tho is to ioll whether his card has noro than, fever than, or the sane number of objects as the first students card. If the student is correct he then chooses another student.

Set Cards would show proups of from: $0-70$ on the cards. If the child is correct, have him cive his card to a student roo does not have a curd and continue on with the fame.

These cards can be made from ouk tag and dot pasted on to malec the desired set.

Group Size: Large group
Materials Needed: Set Cards.
IV. Each child will have the opportunity somontime during the week to play the clorm game.

Use the same game as used in weok one, only this time use the non-equivalent sets of ballons.
V. Each child will have the onportunity to play the game "Musical Chairs"

Place 10 chajns turned in alternating directions in a row. Call on a child to sit in each chair. There are nov equivalent sets of chairs and children. Ask tho children to stand and be roady to march when the music begins. Romove 1 chair. I'clj the childrento march around the chairs until the music stops and then sit rown in a chair. They vill soon find that the sots are no longer equivalent. The child tithout a chir is retired irom the game. Another chair is removed and the same continues.
VI. Each cinild will do the Teacher directed pages 5, $6,7,8,9,10$ in the Houghton kinflin worlibook. (attached)

Sugeested Free Time Activities.
The same intcrest centers can be used as were used in veelrone with a fer modifications.

1. Lotto Games.

Use the lotto cards again, but this time if the child can match a set that is more than the first one he turned orrer, he gets to keep the card. This could also be used if the second card had fewer objects, he could keep it. Befo:e the game is started on agreement much be reached as to weathor they will use more or fewer on this game.
2. Concept Cocied Individual Activity Cards.

These $9^{\prime \prime} \times 12^{\prime \prime}$ cards will be similar to those used the first veek. Cards with non-equivalent sets will bo added to those that are already in the liath Center. All of theso cards vill be coded rod.
3. Extra pares put in plastic.

The workshects in the plastic onvelopes will now need to be changed to non-cquivalent sets. (iowever, if sone children are still having pro:lem vith equivalont, so:e should be lert for ti.em to use) The procedure for the use of these sheets is the same as week one.

Materials:

I. Suģested Hanipulative Objects.

These objects will be located in the liath. Cuphoard which should be centerally locatod, especially in a toam situation.

1. Kacroni

Give the children a hendful of different sizos and shapes of macronf. Have then see which sets are equal, thich has more and which has fever.
2. Geometric Shapes.

Have tho children compare the different geometric shapes used in week one. You may wisn to vary the numbors in the sets so you can show those that are equal or equivalent and those which have more or fever. 3. Boans

Give the children a handful of beans of different sizos and colors. Have them sort then into piles of likebeans. Haye then see which gets are equivalent and non-equivalent.
4. Pencils

Have a child give out a pile of pencils. Discuss how they compare to the members of the class.
5. Cuisinaire'Rods

Choose two or three dif.'erent colors of rods and have the children compare then.
6. Flannel Board and objects.

Place two different froups of objects on the flannet boará. Use pieces of yard and have the children match them, and toll if the sets are equivalent or non-equivalent. (this could be extended into a fee time activity for the children.

Evaluation:

Pre-Test: Each child will je given a set of objects and alloweā to play with the objects and manipulate them in any way he wants to. This will hlep him get: acquinted with the idea of equivalent and non-equivalent sets.

Post-Test: The teacher will give each child a hindful of small colored marshellow. She uill obsorve the children sorting thom out into piles according to colors. After the child has sorted the colors and knows in he has equivalent or non-equivalent sets, he tells the teacher about his sets of marsimellow. If he is correct he gets to eat his marshmellows. If: he is not, his nome is recorded and he is helped, so he will also be able to eat his or her marshmellows.

Each child will have a different number of marshmellows, so it will be easy to chock to see if he is sure of the concept.

Additional Activities:

I. Enrichment Activities.

Each child who has shown his or her own ability to understand the concept of equivalent or non-cquivalent sets will have the opportunity to help another child, or manipulate objects to make groups of joining and disjoining sets - through the discovery method.
II. Extended Activitjes.

Each child who was having dirficulty duringthe post test will have the opporturity to ave acaltional help through nanipu-ative extended activities.

1. Use the flannel board to match sets of objects.
2. Use an incividual challcboara. Have the child draw 3 dots. Have him add nother dot. Does he have the same amount as he had before. Why or why not?
3. Use sets of chairs. Send a fow children to sit down on the chairs. Were there encugh children? Were there too many? Why?
4. Use sets of boys and girls. Have them hria honds. How do the groups compare?
5. Show me a set of sauares. Shov me a set of triangles. Put the triangle on top of the square. Do you have any left? Did you have enongh? How do they compare:

Wath - SELS - LRVEL ONE
Plans for the Third and Fourth Vecks of Scinool

Objective:
To introduce the scts with cardinal numbers.
To provide practice in recognizing sets in comparison with other sets.

Suggested Activitics:
I. The child will have the opportunity to monipulate objects to show sets of from 0-6.

1. Show me a set of 4 objects.
2. Hold up a numeral such as 3 and see if the child can form a set of 3 objects.
3. Lake a set of 4 objects. Aid I more object. How many objects do you have now? Can you find me the numeral 5?
4. Make several sets on one side of the flannel board. Put the numerals on the other sicie. Have some children match the objects with the numerals, using yard.
5. Make a set of objects on the flanncl board. Under the set of objcets, place 4 different numerals. Have the children tell how many obiects are in the set and circle the correct numoral.
II. The child will have the opportunity to show that he knows his numerals from $0-6$ by showing how many beads on the bead freme aro needed for the numberal shomi him.
6. Shown the numeral 5, the child will use his hand and cover all of the teads excopt for 5.
III. The child will have to opportunity to dravs the correct numior of objects on his incivicual chalkboasd after a numeral cord has boen shoun to iain. 72

$\because \cdots \therefore \therefore \because \because \quad \therefore \quad \therefore$

$$
\ldots: \quad: \quad \because \cdot \quad \because \cdots \quad \because \because
$$

\square

Elain Benjañin - Six Foolish Fishorman Loonhe, Sorche aice - All in the iomins barly
VII. Each child will have the opportunity to bring an object for an object train.

1. The train can be made from mill cartons or shoe boyes, depending on the size vanted. The numerals from $0-6$ are witten on the ouside of each box. The childron will then put the correct number of objects in each box. A free tine activity could be for a child to check the train to make sure each car has the right amount of objects.
VIII. Each child will have the opportunityto play the game, "Feel the lumber" some time durins the two wook period.

Fecl the Iumber
A child is blindiolded and askedto focl a sancipaper nuneral. Aftor he has folt the nuneral he tolls wht he thinks it is. The blindfold is then removed and in he is correct, he chooses another child to be blinnifolied and he getz to choose the number for than child to feel.

Group Size: Small or lergo group
Hate ials neoded: Sandpaner numerals and blindfold.

Suggested Free-Time Activities.
I. Lotto Game.

The lotto cane will now be changed to match the numbral and sets. Use the numerals $0-6$ and objects to match each card.

2. Numeral Puczles.

Write a numoral on a pieco of 9×12 paper. If the numeral is 2, cut the puzzle in 2 partis. Wrjite a small nuncral 2 on the back so the puzzle piecos will not be conricen.

Cutting line-

3. Sardpaper fumerals.

Sandpaper numerals can be pased on pieces of paper. If the rumiver 6 is pasted on, then there could be 6 squares of sendparer to help relate the sets with the c:rdinal number.
4. Dominc Puzzies

Use a $3^{\prime \prime} \times 6^{2 \prime \prime}$ piece of oalta:. On one
side put the numoral and on the other side a set of objects. (Thesc conld also be done in sampaper) Cut the two apart to naise a puzzle.

5. Fish in the Pond.

Cut out 7 small lakes. Write the numerals $0-6$ on each one. liake 21 small fish. Fut a paper clip on the fish. lake a fishing pole from a stich, piece of string and a macnet.
the child puts dowa his small -akes. then he turns all of the rish face corn. He fishes for a fish and puts his fish in the correct lake. Lake 0 wo't have any fish while Lake 6 will have 6 fish in it.

6. Color Coded Activity Gards.

The cards will be the ones that hove to do with the cardincl number of a sct. They will aci.in be coded red for sets.
7. Extra paces put in plastic.

The worksheet in the plestic will now need to be changed to cardinal numbers of a set. The procodure
is the same as startra the first week of school
8. Boxes Φ Sand or Cornmeal.

These bozes are used for practice in draming sets of objects. If the child makes a mistake, he can imediatoly correct it vithout any trouble.

Haterials iloeded:

Sugcesteá linipulative Objects.

1. Objects such as macroni, beans, pencils, ctc. can still be used to sho:' a cortajin number.
2. Indiviaual Chalkbonrds.

Have the children drow a set of 3 or a rat of
5. After they have drawn the set, they turn thosir cholkhoard around and show it to ine teacher.
3. Individual "lannel Boards

Have the children use small pieces of folt to show a set of objects to match the cardinal number.

Heke a set of objects o! the big flannel board. Allew the children a fen rinvies to look at it and ther take it down. See if thoy cen reproduce the set with the same number of objects. 4. Rumozal Gards with the numerals from $0-6$. 5. Sandroper mumerals from 0-6. 77
6. hoves of commeal or sam,

Evaluation:
Pre Test: The children will be asied to show a set of objects from 0-6. ir is my be done with the flannel board or chollboard. This wil. give the teacher an idea if sone of the stud ints are ready for Gardinol Humbers.

Post Test: The children will do pages 16 and 17 of the Hourhton Mifflin Workbook with 95% accuracy.

Additional Activities:
I. Enrichment istivities.

Each child tho has shown that he knows his carnatial numbers will have the opportunity to use the cormoal box, sand fillod bor, or the chalkboard to drav sets of objects and write the numerals for those objects.

He will hove the opportunity to help another child by draving a sct of objects in cither the cornmeal or sand box. He will ask the other child to regoduco tho sele number of objects. Then he will ask the child how many objocts ho drer.

He will have the opporiunity to write a numeral on a challwond with a paintorush dipped in water. He will then ast the child to d an whe correct number of objects.
II. Extended sctivitios.
I. nrine child will use the cormeal or sand boz to draw sets of objects. Ile will be inmediately chocired and if there is an error, he shakes the bor and starts over.
2. The child will have the opportunity to use a paint brush djppod in vater to paint the correct numer of objects.
3. The chila will have the opportunity to manipulate flannel boord numbers and objacts.
4. Ihe child vill be able to manipulate the sand paper nunerals and match objects to the numerals.
5. The child will have the oportunity to woris with peg boaras using peg-board pattarns. (Ist row - 1 green peg.

Soparate corc unth colored mathens to show hov many pers go in toc firct ron, etc.
6. Phe Child will have the opportunity to work with beods and nake bead patterns.

Addison-ivesley - - Elomentary School lathematics, Eook 1 American Book Company - - lieeting Hathematics, Book I
Harperpe Rov -. Mew Dimensions in Hathematics Teachors Bdition, Grade 1
Houghton-1Hfflin - Modern School Mathenatic -- Book I
Nacmillian \rightarrow Devoloping Hathematics One
Karks, Purdy, Kinney -- Teaching Elementary School liathematics for Understanding
Piaget -.. Yiagetian Fesearch and Mathematical Educatjon
Silver Burdett Company -- Kodem liatheratics, Book 1

ADDITION OF LIKE FRACTIONS

STAFF UTILIZATION FOR CONTINUOUS

PROGRESS EDUCATION PROJECT
E.S.E.A. TITLE III

ADDITION OF LIKE FRACTIOVS

Behavorial Objective:

The student will be able to satisfactorily add like fractions using manipulative materiels and with paper and pencil, as measured in the evaluation.

Entering Behavior:
The student must be able to: 1 . write a number sentence.
2. add whole numbers.
3. reduce fractions.
4. distinguish colors.
5. recognize a circle, a roctangle. and a footlong ruler.
6. racopnize a mixed numeral.
7. recognize the names and know the meanings of the parts of a fractjon.

Matertal:

1. Five red fifths
2. Four green fourths
3. Seven blue seventh;
4. A board large enough to hold the outlines of a circle (fifths), a square (sevenths) and a rectangle (fourths).

ADDITION OF LIKE FZACTIONS

PRETEST

1. Write the name for each part of the fraction $3 / 4: 3$ is the \qquad
4 is the
2. A. The top number in a fraction tells the \qquad .
3. $A D D$

5
4
2
6
6
$\begin{array}{r}6 \\ 8 \\ \hline 8\end{array}$
$\begin{array}{r}16 \\ 8 \\ \hline\end{array}$
11
4
$\begin{array}{llll}12 & 7 & 9 & 8 \\ 5 & \underline{8} & 7 & 2\end{array}$
4. Write a number sentence for the followine situation. John has six marbles and wins three more. How many marbles does he have.
5. Reduce the following fractions to lowest terms.
$2 / 4=$
$3 / 9=$
$4 / 10=$
$5 / 15=$
$5 / 8=$
6. Natch the following fractions with the proper name.
1/2
2/4 \qquad $11 / 2$ \qquad A. Proper
$3 / 2-3 / 1-43 / 8-$
B. Improper
$2 / 3-6 / 5-56 / 7-$
c. Kixed
7. Match the figure with the name.
A. circle
D. $\frac{3}{3}:$
B. square
E. 0
C. rectangle \qquad F. $5^{\frac{1}{4}}$
8. Match the correct color with the name.

A.	D. A Arex		1.	blue	4.	green
	E. $\mathrm{F}_{6} \mathrm{~F}$				5.	oranige
c.	F.			yellow	6.	black

Direction 71

Go to tine fraction kit and get the 5 red pieces and the fraction board. Return to your seat and place the red pieces on the circular outline on the board so you create a circle.

Question \#1

The circular region made with the red pieces is divided into how many
parts? \qquad
Question ${ }^{\text {\# }} 2$
The name of each red piece is \qquad -

Direction:2

Take all rad pieces off the board, then place one piece bsck. Question ${ }^{0}$

How many pleces (fifths) do jou have on the board? \qquad

Question

How much of the circular region do you now have on the board? \qquad

Question \#5

What is the name of the piece you put on the board? \qquad

Diroction 3

Add one piece to the board.
Question \#6
How much of the ciroular rogion did you add to the $1 / 5$ already on the board? \qquad
Question \#?
How many fifths do you now have on the board? \qquad
Question 18
How much of the circular region do you now have on the board? \qquad

Direction 4

Write a number sentence for the addition you performod. Bogin with the third set of directions, and remember, you already had $1 / 5$ of the circular region on the board. \qquad

Direction $\$ 5$

Return the red pieces or fitths to the materials kit and take the blue pieces to your work area. There should bs seven blus pleces.

Place all the blue pieces on the board so you make a square region with them. Make sure your pieces match the region on the board.

Question \#9
This square is divided into how many pieces? \qquad
Question $\# 10$
The namo of each plece is \qquad -

Diruction 6

Take all the piecas off the board. Place two of these pieces bick on the board. Question \#1I

How many sevenths do you have on the board? \qquad
Question \#12

- How much of the square region do you now have on the boardy \qquad

Directions \#?

Add four pleces of the square ragion to the board.

Question \$13

How much of the square region did you add to the two pieces already on the board? \qquad

Question \#14

How many savenths do you now have on the board? \qquad

Question $\$ 15$

How mach of the square region do you now have on the board? \qquad

Direction 48

Write a number sentence for what you did when you followed direction 7 7. Pemember you had tro sevenths and added 4 ssvenths.

Direction \#9

Return the sevenths (blue pieces) to the materials hit and take the green pieces to your work area. There should be four green pieces.

Place all the grasn pleses on the board so that they look like a reler. Make sure your pieces match the region on the board.

Question \#16
This rectangular region is divided into how many parts? \qquad

Question 117

The name of each piece is \qquad

Direction \#10

Remove all the pieces from the board. Place one piece on the board.
Question A18
Hou many fourths do you have on the board? \qquad

Question ${ }^{*} 19$

What is the name for the part of the stick you have on the board? \qquad Directionstil

Add $2 / 4$ or two green pieces to the $1 / 4$ or one green piece already on the board. Question \#20

How much of the rectangular reaion did you add to the board in direction 11? Question \#21

How many pieoes or four ths do you now have on the board? \qquad

Question $\# 22$

How much of the rectangular region do you rou have on the board? \qquad
Direction 712

Write a number sentence for what you did when you followed dírection 11. Remember, you already had $1 / 4$ on the board and then added 2/4.

Direction \#13

Take all the green pieces off the board. Place on e plece back on the board. Question \#23.
How many fourths do you now have on the board? \qquad

Diroction 424

Question $\# 24$
How many fourths do you now have on the board? \qquad
Question 25
What part of the rectangular region do you now have on the board?

Direation 15

Question 26
How many fourths do you now have on the board? \qquad
Question \#27
What part of the rectangular region do you now have on the bo?rd? \qquad

Direction 416

Write a number sentence to tell what you did with the green vieces when you followed directions $\# 14$ and 125 . \qquad

CONCLUSION

Question *1
What did you do with the denominators in the number sentences you wrote for Directions 4, 8, 12 and 16 to get your answers?

Question :2

What did you do with your numerators in thess number sentences to get your answers?
\qquad

Question *3

Give me a rule for adding like fractions.

EVALUATION

1. Write number sentences for the following drawings.

2. Draw pictures to represent the following sentences.

$$
\frac{3}{5}+\frac{1}{6}=\frac{4}{6}
$$

$\frac{3}{7}+\frac{2}{7}=\frac{5}{7}$
3. Add
$\frac{2}{8}$
$\frac{2}{8}$
$\xrightarrow{\frac{1}{8}}$
$\frac{1}{3}$
$\frac{3}{5}$
$\frac{8}{6}$
$\frac{2}{7}$
$\frac{6}{9}$
$1 \frac{8}{0}$
$\stackrel{\boxed{8}}{8}$
$\begin{array}{r}\frac{1}{5} \\ \hline\end{array}$
$\begin{array}{r}3 \\ 6 \\ \hline\end{array}$
$-\frac{4}{7}$
$\begin{array}{r}\frac{2}{9} \\ \hline\end{array}$
$\begin{array}{r}1 \\ 10 \\ \hline\end{array}$

ADDITION OF IKE FRACTIONS
WORKSHEET

$$
\begin{array}{lll}
3 / 4+6 / 4= & 2 / 3+5 / 3= & 7 / 8+3 / 8= \\
1 / 2+1 / 2= & 2 / 5+2 / 5= & 1 / 6+4 / 6= \\
2 / 4+3 / 4= & 2 / 8+3 / 8= \\
7 / 9+1 / 9= & 5 / 3+3 / 3= & 5+4 / 9= \\
2 / 6+3 / 6= & 2 / 5+4 / 5= & 4 / 7+3 / 7=
\end{array}
$$

Supplemental Practice Materiel

SETS

FIFTH GRADE

STAFF UITLIZATION FOR CONTINUOUS PROGRESS EDUCATION PROJECT

E.S.E.A. TITLE III

Developed by:
Rita Freeman

List the members of the sets.

1. $\{$ Whole numbers between 50 and 55$\}=$ \qquad
2. \{vowels\} $=$ \qquad
3. \{Number of players on a baseball team\}

Describe the sets
4. $\{$ North, south, east, west\} $=$ \qquad
5. $\{$ Touch, taste, sight, hearing, smell\} ~ $=$ \qquad

Name the subset and superset
$A=\{$ Dave, Jim, Mike\}
$B=\{$ Don, Mike $\}$
6.
7.
$C=\{$ animals $\}$
$D=\{$ Cat, dog, pig $\}$
8.
9.

Name a universal for each
10. $\{$ Alaska, Arizona, Kansas $\}=$ \qquad
il. $\{$ Ohio, Mississippi, Nil\} $\}=$

12. $\{1,3,5,7,9,11 \ldots\}=$ \qquad
\qquad
\qquad

SETS, SUBSETS, SUPERSETS

List the objects in these sets.

3. \{the odd numbers from 0 to 10$\}$
4. \{the even numbers from 11 to 20$\}$

Describe these sets.

6. \{January, June, July\}
7. $\{a, b, c, d, e\}$

8. \{touch, see, hear, taste, smell\} -3

Complete these charts. The first one is done for you.
9.

Words	Symbols
B is a subset of A	B C A
A is a superset of B	$A \quad B$

Words	Symbols
$-\infty$ is a subset of $-\cdots$	
- is a superset of-...	

Objective

Intersection and Union:
Each 5th grade student will demonstrate his mastery of the concepts intersection and union and the symbols for them by completing 85% of the given problems correctly.

Large Group
Sheet 2 as Pre-Test 85% necessary for mastery
Extra work for those needing it. Workbook Page 3
Post-Test
Sheet 2 again for those not achieving 85\%
\qquad
\qquad

UNION AND INTEPSECTION OF SETS

Use the diagrams to help you answer the questions

Use the given information to help you fill in the blanks. Then draw the set diagrams.

$$
\begin{aligned}
& \text { 17. } I=\{1,2,3,4,5\} \\
& \text { 18. } J=\{2,4,6,8,10\} \\
& \text { 19. IUJ }=\{1,2,3,4,5,6,8,10\} \\
& \text { 20. I I JJ }\{-
\end{aligned}
$$

22. $L=\{y, o, u\}$

$$
95 \text { 24. } K \cap L=
$$

CONCEPT

SETS

Objective

The 5th grade pueblo student will demonstrate his knowledge of Cross proaucts and Cardinal numbers by attaining an 85% score on a given post-iest.

Activities

Materials to be used:
Pre-Test - Sheet 26 (Houghton Mifflin)

1. Track I

Track II - Page 32 Houghton Mifflin Workbook
Track III
2. Overhead visuals (See attached example)
3. Manipulative materials - students will use dice and marbles to demonstrate cross product.
4. Sheet 26 - as Post-Test
5. Houghton Mifflin Test 5 - used in enrichment

REPRODUCED ON A TRANSPARENCY FOR CLASS DISCUSSION

Find $A \otimes D$

$$
\begin{aligned}
A= & \{1,2,3\} \\
D= & \{a, b, c\} \\
& \{1, a, 1, b, 10, c, 2-, \ldots, \ldots, \ldots-\infty,\}
\end{aligned}
$$

Find $A B B$

$$
\begin{aligned}
& A=\{[, 0, \Delta\} \\
& B=\{1,2,3,4\}
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\square_{0} 1, \square,--,--,-,-\cdots, \cdots,\right. \\
& \quad--,-\cdots,-\infty,--\}
\end{aligned}
$$

\qquad

CROSS PRODCCT SET'S

Set $C=\{\mathrm{Jim}, \mathrm{BOb}, \mathrm{Sam}\}$
Set $D=\{b o o k$, pencil, paper, eraser $\}$

Write the members of $C \otimes D$.

1. \qquad
Jime Eook

Sam, kook
\qquad

\qquad

Name the cardinal number for the sets above.
2. $\mathrm{n}(\mathrm{C})=$ \qquad 3. $n(D)=$ \qquad 4. $n(C \otimes D)=$
\qquad
Use the sets below to name the cardinal numbers.

$$
\begin{array}{ll}
G=\{1,2,3,4\} & K=\{\oslash, 0, \square, 0 \Delta\} \\
S=\{a, e, i, 0, u, y\} & T=\{\text { Mary, Jane }\}
\end{array}
$$

5. $\mathrm{n}(\mathrm{G})=$ \qquad
6. $n(K)=$ \qquad
7. $n(G Q K)=$ \qquad
E. $n(G)=$ \qquad
8. $n(T)=$ \qquad 10. $\mathrm{n}(\mathrm{G} Q \mathrm{~T})=$ \qquad
9. $\mathrm{n}(\mathrm{S})=$ \qquad 17. $n(S)=$ \qquad
1之. $n(K)=$ \qquad 18. $\mathrm{n}(\mathrm{T})=$ \qquad
10. $n(S \otimes K)$ \qquad
11. $\mathrm{n}(\mathrm{S} \otimes \mathrm{T})=$
\qquad
12. $n(G)=$ \qquad 20. $n(K)=$ \qquad
13. $n(S)=$ \qquad 21. $n(T)=$ \qquad
14. $n(C \in S)=$ \qquad 22. $n(K 《 T)=$ \qquad

How many pairings can be formed from each pair of sets?
23. 3 chairs and 7 girls \qquad 25. 5 dresses and 2 sweaters \qquad
24. 5 boys and 8 bats \qquad 264 pants and 9 shirts \qquad

STAFF UTILIIZATTON FOR CONTINUOUS

PROGRESS EDUCATION PROJECT
E.S.e.A. title III

Developed by:
Rita Freeman

Objective:

The fth year student will be able to recall the meaning of set, subset, superset, and empty set introduced in previous grades by achieving 90% accuracy on a post-test.

Materials and Activities

a) In a small group the student will answer orally at least 8 problems presented by the instructor similar to those on page 2 and 3 of the Houghton Mifflis text.
b) Answer in discussion Page 1 of the Hough'. ${ }^{\text {b }}$ on Mifflin workbook. (See attached sheet.)
c) The student can make a small bulletin board to show subsets and supersets.
d) The student can build a mobile to demonstrate the meaning of sets, subsets, and supersets either by himself or with a partner.

Sample Questions

1. List the objects ir. the set.
$A=\{$ odd numbers less than 30$\}$
2. Describe the members of the set.
$A=\{0,2,4,6,8,10,12\}$
3. Name the subset and superset.
$\dot{A}=\{1,3,5,7,9\}$
$C=\{1,3\}$
4. $A=\{2,4,6\}$
$B=\{3$

Sets

Key
List the objects in the sets.

1. $A=$ \{the last 5 letters in the alphabet\} V, W, X, Y, Z
2. $H=$ SHames of the 4 oceans in the world

Pacific, Atlantic, Indian, Antarctic

Describe the objects in the sets.
3. $B=\{a, e, i, o, u\}$

Vowel is
4. $D=$ spring, fall, winter, summer?

Seas on
Name the subset and superset.
5. $A=\{1,2,3,4\}$
$C=\{1,2,3\}$
5. $A=\{r e d$, yellow, green, blue\}
$B=\{y e 11$ w $\bar{\xi}$
Subset 1, 2, 3
Superset 1, 2, 3, 4
Subset - yellow
Superset - red, blue, yellow, green
7. The subset of these two sets would be -
$A=$ Prime Numbers ${ }_{\xi} \quad$ Subset $\sum_{i} \xi$
$B=\{e v e n$ Numbers?
8. Describe the members of the following set.
$A=S^{2} \quad 3$

SETS

Objective

The student will be able to identify that a number is a solution of a number sentence if it makes the sentence true. In solving a number sentence the student must know the set from which the replacement for the placeholder can be chosen.

Activities
a.) Houghton Mifflin Modern School Mathematics P. 130-131, 8-12 selected problems as to the individual's need.
b.) Houghton Mifflin Modern School Mathematics P. 43-44, selected prcblems. (See attached sheet.)
c.) Addis on Wesley Activity Cards, E-11, F-6, F-21, 6-19.
d.) Transparencies (teacher constructed).

Evaluation

Houghton Mifflin Diagnostic Test 11, Secti \& A \& C. (See attached sheet.)

Objective

Once the student has recoonized the meaning of empty sets he will be ablc to recognize that sets are disjoint if they have no members in common.

ACTIVITIES:

1. a. Arrange students into rows and columns. Let lst row be Set A, and lst column Set B.
b. Establish $\triangle \cup_{B}$
c. Establish $A \cap B$
d. Row $2=C$
e. Row $4=D$
f. Establish CUD is empty
2. a. List 3 sets on board
$A=\{a, b, c\}$
$B=\{b, c, d, e\}$
$c=\{d, e, f\}$
b: Identify: $\pi \cup B$
c. Identify: $A \cup D$
3. Attribute Games - McCraw Hill

Additional Materials

1. Houghton Mifflin Co. Modern School Mathematics
2. Harcourt Brace Elementary N"athmetics
3. Houghton Vifflin Co.- (Use for a small group of programmed Practice independent workers.)
4. Houghton Nifflin Co.

Workbook - Vodern School Mathematics

Evaluation:

1. Diagncstic Test

Moderr Schooi Mathematics Houghton Mifflin Test 13
2. Duplic:ating Faster Sheets Moderr School Mathematics Houghton Mifflin Sheet I

Objective

The student will be able to identify finite and infinite sets by achieving 90\% accuracy on a post-test.

Activities

a.) In a large group all students will participate in a discussion of Page 7 in the Houghton Mifflin Text.
b.) Students can illustrate their knowledge of finite and infinite sets by diagrams or diaramas.

Post-Test

Tell whether the following sets are finite or infinite.

1. $\{$ animals $\}=\underline{F}$
2. $\{$ people in the world\} $=-\underline{F}$
3. $\{$ heaven 1 y bodies $\}=\underline{I}$
4. \{even numberies\} $=\underline{I}$

Give examples of the following.
5. Finite set. \qquad
6. Infinite set. \qquad
7. Explain that the set of counting numbers is infinite. \qquad

Objective:

The student will deronstrate that the solution to an open sentence is the number that rakes a sentence true.

Activities:

1. Write on chalkboard a set of:
a. equivalent open equations

$$
\begin{array}{lll}
\text { ex. } & n=3 & n+4=7 \\
& n+1=4 & n+3=6
\end{array}
$$

b. Have students make up own set.
2. Write on challbaord 2 pairs of equivalent inequlities.
ex. $7 \times n=28$
$3 \times n=30$
n 4
n 10
3. Draw a 26×26 number plane on chalkboard. Have each student write a number pair from the first letters of his first name and surname, numbering the letters according to their place in the alphabet:
ex.

References/enrichment

1. Page 5-Houghton Pifflin Workbook All stucents
2. Duplicating Master Sheets $\ddagger 6,8,9,10,31,32$

All students
3. Programed pages 9-11, 13-14, 51, 54, 55

Advanced studerts
4. Work books pps. 11, 12, 14, 43, 46

Remerial Students

objective

To develop the concept of an ordered pair and the cross product of 2 sets.

Activities
a.) The students will list all of the batteries that can be formed from a set of pitchers and catchers.
b.) Using colored beads the students can demonstrate their knowledge of cross product.
c.) Modern School Mathematics Workbook Activities (P. 4) 85% efficiency. (See attached sheets.)
d.) Houghton Mifflin Modern School Mathematics (P. 8-9) to be used for classroom discussion.
e.) Houghton Mifflin Modern School Mathematics Workbook (P. 4) - see attached sheet.
f.) Attribute Games - (McGraw Hill) - in the guide manual for this set is a number of games that can be used to reinforce this concept.

Post-Test

85% proficiency - problems similar to those on the worksheet.

Name \qquad Score

Equivalent Sets and Cross Products
Use the sets below to answer the questions.

```
A={p,b,t,d,c}
F={f}
B}={h,l,x},GG={girls ovex 200 years old}
C={days of the week}
H={a,b}
D = {numerals on a telephone dia}} I = {odd numbers less than 10}
E}={\mathrm{ nickel, dime, quarter}}}\quadJ={p,h,l
1. \(\mathrm{n}(A)=\)
``` \(\qquad\)
``` 4. \(n(G)=\) 7. \(n(J \cup B)=\)
``` \(\qquad\)
```

2. $n(C)=$
``` \(\qquad\)
5. \(n(I)=\) \(\qquad\)
``` 8. \(\mathrm{n}(\mathrm{C} \cup \mathrm{H})=\)
``` \(\qquad\)
```

3. $\mathrm{n}(\mathrm{D})=$
``` \(\qquad\)
``` 6. \(n(A \cup B)=\)
``` \(\qquad\)
``` 9. \(n(E \cup C)=\)
``` \(\qquad\)
10. Name the sets equivalent to B : \(\qquad\)
11. Name the sets equivalent to \(A\) : \(\qquad\)
12. Name the sets equivalent to \(F\) : \(\qquad\)

Name the cross products.
13. \(\mathrm{B} \otimes \mathrm{H}=\) \(\qquad\)
14. Ј © \(B=\) \(\qquad\)
15. \(\mathrm{A} \otimes \mathrm{F}=\) \(\qquad\)
16. F E = \(\qquad\)

Name the cardinal numbers.
17. \(n(B Q H)=\) \(\qquad\) 20. \(n(D \otimes 1)=\) \(\qquad\)
18. \(\mathrm{n}(J \otimes B)=\)
21. \(n(D \otimes G)=\) \(\qquad\)
19. \(\mathrm{n}(\mathrm{A} \otimes \mathrm{F})=\) \(\qquad\) 22. \(n(B \otimes C)=\) \(\qquad\)

\section*{Objective}

The student will be able to describe the set that is the intersection of 2 given sets and also the set that is the union of 2 given sets.

\section*{Activities}
a.) In a small group discussion the student will demonstrate his mastery of the objective by answering orally at least 8 problems from P. 4 and P. 5 of his text book. (Houghton Mifflin)
b.) With \(85 \%\) accuracy the student will complete P. 2 of the workbook. (See attached sheet.)
c.) The student can show his understanding through the use of manipulative objects to describe union and intersection.
d.) As an enrichment activity, the students in groups of 2-10 can play an "Attribute Game", McGraw Hill.

\section*{Materials}
a.) Houghton Mifflin - Modern School Math Workbook
b.) Houghtor Mifflin - Modern School Math Programmed
c.) Attribute Games - McGraw Hill
d.) Houghton Miff 1 in Test - P. 18, pgs. 9-17

Worksheet 1 - Houghton Mifflin Modern School Mathematics \(85 \%\) accuracy; see attached sheet.

Name \(\qquad\) Score \(\qquad\)

SETS; Union and Intersection
Name the sets by listing the members.
1. \(P=\) the letters between \(g\) and \(m\) in the alphabet \(\}=\) \(\qquad\)
2. \(Q=\{\) the letters in the word "chicken"\}= \(\qquad\)
3. \(R=\{\) the letters in the word "electric"\}= \(\qquad\)
4. \(S=\{\) whole numbers between 5 and 9\(\}=\) \(\qquad\)
5. \(T=\{\) odd numbers less than 10\(\}=\) \(\qquad\)
6. \(V=\{\) even numbers between 1 and 7\(\}=\) \(\qquad\)
Use the sets in Exercises \(1-6\) to complete the following.
7. \(P \cap Q=\) \(\qquad\) 13. \(\mathrm{PV} \mathrm{K}=\) \(\qquad\)
8. \(\mathrm{S} \cap \mathrm{V}=\ldots\) 14. \(\mathrm{S} \cup \mathrm{T}=\) \(\qquad\)
9. \(\mathrm{T} \cap \mathrm{V}=\) \(\qquad\) 15. \(Q \cap R=\) \(\qquad\)
10. \(\mathrm{SUV}=\) \(\qquad\) 16. \(\mathrm{VUP}=\) \(\qquad\)
11. \(P \cap R=\) \(\qquad\) 17. \(P \cup Q=\) \(\qquad\)
12. \(\mathrm{S} \cap \mathrm{T}=\) \(\qquad\) 18. \(\mathrm{Q} \cup \mathrm{F}=\) \(\qquad\)
Use the sets in Exercises l-6 to draw diagrams showing the intersections of the following pairs of sets.

In exercises 19 and \(20, \mathrm{U}=\{\) Whole numbers \(\}\)
19. \(S\) and \(T\)

20. T and V

In Exercises 21 and 22, \(U=\{\) letters oi the alphabet \(\}\)
2.2. \(P\) and \(R\)
22. \(Q\) and \(R\)

\title{
STAFF UTXLXZATION FOR CONTINUOUS
}

PROGRESS EDUCATION PROJECT
E.S.E.A. TITLE III

Developed by:
Imogene Lacey Don Bennett

\section*{MATHEMATICS AND SCIENCE COOPDINATED CURRICULUM FOR SEVENTH GPADE}

\section*{Statement of Purpose}

In an effort to coordinate the math-science curriculums at pueblo School, it was felt the following items were essential:
1) that both areas should use and define vocabulary in the same manner.
2) that units be secuenced so that mathematical processes used in science be taught prior to their application in an actual science experience.
3) that processes and structures used in both areas be well-outlined to minimize student confusion.
4) that seventh grade students receive an adequate backaround to prepare them for their eighth grade math and science courses.
5) that the present seventh grade mathematics textbook be used, not necessarily in the exact secuence outlined by the publisher, but in a logical order which will facilitate our program.
6) that not only the textbook be used, but also a series of supplemental work sheets and labs to be coordinated from variclis other sources.
7) that all students have and maintain a math-science notebock in the manner described in the enclosed letter to their parents.
fI. Nastery of the following matheratical skills is necessary for any student to work competantly in his science sourses:
1. AVERACE -- The student will always be required to show the total which he obtained in adding a series of figures, kefore dividing by the number of figures added.to obtain the average.
2. PEPCENTACES -. When figuring a per cent, the student may use one of the two following methods: a) Move the decimal point to the right two places in the dividend, and then divide. Example \(-4 / 5=5 \sqrt{400}\) b) Divide the number and obtain a decimal quotient. Then multiply this quotient by 100 to get the final percent. Example \(\quad 4 / 5=5 \sqrt{4.00} \quad .80 \times 100=80 \%\) 3. SIATISIICS -- Tables and Graphs.
a. joth should always have a title.
1. Both shculd be drawn with a ruler.
c. All scales should be evenly spaced on graphs.
d. Both scales shculd be labeled on the graphs.
e. To skip a large arrount of numbers on a scale, a zig-zaca line can be used from the origin to the number with which the scale begins.
f. Nll graphs should have their origin at the point zero-zero.
G. Scales should not oo much higher than the largest. number to be granied.
4. METRIC. SYSTEM -- In mathematics the student will learn the relationship between retric units and their relative sizes. The primary measuring units will be mm. and cm.
5. SCIENTIFIC NOTATION -- This is used primarily in calculations performed in eighth grade science. \(\Lambda\) brief background will be given to the seventh graders. Rule: All numbers will be rownded off to the hundredths place when calculating in scientific notation, unless otherwise stated.
6. RATIO AND PFOPOPTION -- Patios may be written as fractions (Three is to four \(=3 / 4\)). The proportion Three is to four as six is to \(x\), ray be written and solved as follows: \(\quad 3 / 4=6 / \mathrm{X}\)
\[
\begin{aligned}
& 3 x=6.4 \quad(6.4=24) \\
& x=8
\end{aligned}
\]
7. AREAS, FERIMETEFS, AND VOLUNES -- Accent here will be on applying metric measures to various formulas in geometry. This is also a preliminary unit for eighth crade use.
8. NEASURINC ANCLES -- Simple use cf a protractor will be demonstrated.
9. GENERAL SKILLS -- Students should be able to manipulate fractions, decimals, and whole numbers in all basic mathematical processes (addition, subtraction, multiplication, and division).

\section*{SEQUENCE OF UNITS}

Key to Materials
NSC - Modern School Mathematics Text
AM - Aftermath Book Text
\(M A 7-\) Mathematics 7 th orade Text
EM - Experiments in Math Text
D - Dittos
MS - Nathset

Weeks

Dates

Sept. 5-8

Sept. 11-15 MSC Sectirns 13-1, 13-2 Dl3A, Dl3B, AM 4-25 Section Test
Sept. 18-22 N'SC Sections 13-3, 13-4 Section Test
Sept. 25-29 MSC Section 13-5, 13-6 D 13C
Battleship gam AN3-72 AM3-73 Am 3-70 AM 3-83 18A, 18B
Oct. 2-6 NS Graphing 29A, 29B, 29C. 29D
MSC Section 13-7, AM2-8 AN:2-9, AM 4-45, AM 3-86 Section and Chapter Tests
Oct. 9-13 NSC Section 2-2, 2-4, 2-5 Section Test, Chapter Test
Oct. 16-20 MSC 5-1, 5-2, D-5A, D-5B AM 2-37, AM 4-28
Section Test
Oct. 23-27 I'SC 5-3, 5-4, D-5C, D-5D D 5E Section Test
Oct. 30- MSC 10-1 (Vocab only)
Nov. 3 MSC 1-2 Section Test
Nov. 6-10 NSC 10-3, 10-4, 10-5 M7-36, 37, 38,39 AN 3-75 AM 3-76, D-10A, D-10B
Nov. 13-17 N.SC 10-6, 10-7, 10-8 Chapter Test
Nov. 20-24 MSC 11-1, 11-2, N7-52 M7-13, D 11A, D 11B, DllC section Test
Nov. 27- MSC 11-3, 11-4, M7-27
Dec. 1 M7-54, D 11D, D-11E Section Test
Dec. 4-8 NSC 11-5, 11-6, N.7-53 Section Test

Dec. 11-20 MSC 11-7, 11-8 M7-57 M7-61, Chapter Test

Units
Orientation and Review of Operations

Ratio and Proposition
Percents and Percentages
Statestics, Bar and Broken line graphs

Freauency Distributions graphs, Averages Mean

Assoc., Communities, Dist., Properties

Additicns and Substractions Algorithms Bases

Multiplication and Division Algorithms Basic Laws of rational Numbers

Adding and Substracting
Rational Numbers Multiplication \& Div. Fational Numbers

Decimal Numeration
Algorethms of Add. \& sub. of Decimals Approximations Renaming Decimals \& Fractions, Terminating and Repeating Decimals Algorithm of Mult. \& Div. of Decimals

Addition and Sub. of eegative Numbers

Multiplication \& Div. of 'egative Numbers

Metric system length and Perimeter Angle Measurement

Trianales \& Quadrilaterol Area, circlos

Right Ancles hectangular Prisme

Sets and their uses
Intersection and UTion of sets

Ancient Number aystems Exponents \& Power
Power of Ten, Sa. Roots Expandec Netation
Scientific Notation
Pointe Lines
Planes
Intersection of Lines
Vocabulary
Prime Numbers
Divisibility Tests
Prime Nambers GCF, LO心
Line Segments Angles, Conruent, Segments Anales

1

1

Developed by:
Ed Coats
1. sets of numbers
2. opposites or negatives
3. order and comparison of rational numbers
4. absolute value

OBJECTIVES: 1. Be able to write in set notation the sets of integers, natural numbers and whole numbers. 2. Be able to graph any rational number on a numbers line.
3. Be able to indicate whether one rational number is less than, greater than or equal to a second rational number.
4. Given a starting point coordinate on a number
line, be able to indicate with a directed line segment (a ray) the addition of any positive or negative rational number.
5. Be able to determine the absolute value of any signed number.

\section*{PRE-TEST: Sets and Rational Numbers}
I. Solve the following, using set braces where necessary:
1. The set of all the days of the week is
2. The set of all the numerals on a clock is
3. The number you would use to describe a temperature of 5 degrees below zero is \(\qquad\)
4. The opposite or negative of 6 is \(\qquad\)
5. The union of the two sets \((2,5,6,8)\) and \((2,3,5,8,9)\) is the set \(\qquad\)
6. Specify the members of the set of all whole numbers less than 5 \(\qquad\)
II. Insert one of the symbols \(\langle,=\), or \(>80\) that the following statements are true.
7. 3 \(\qquad\) 5
8. 4 \(\qquad\) \(-2\)
9. -5 \(\qquad\) \(-6\)
10. \(|-5| \ldots|-3|\)

\section*{Outline of Content and Activitics for Sets}

Textbook study in Modern Sshool Mathematics - Chapter 1 pages 1-25
Transparencies for review:
Sets and Subsets
Using Sets
Intersection and Union of Sets
Transparencies for developmenc and expansion
Sets of Numbers
Order of Numbers
Arrows on the Number Line
Small group work:
Use city attribute game to teach recognition of sets by characteristics. Continue with groups until everyone completely understands.

Written textbook exercises:
In each assignment, assign section \(A\) for students having diff-
iculty; sections \(A\) and \(B\) for those average students; sections
A, B and C for the superior students.
Written Exercises: 1-20 Page 5
1-32 Page 12-1.3
1-22 Page 16
1-26 Page 20-21
1-31 Page 24-25
Suggested Resource Materials
Modern School Mathematics Course 2 - Houghton Mifflin
Math Applications Kit - SRA
Plus (A handbook of math experiments and activities)
Singer Mati Kit DD - L. W. Singer Co., Inc.

\section*{Suggestions for Correlation}

ART: Use of colored overlays to demonstrate sets and subsets of colors.

SCIENCE: Use of attribuce games to teach relationships by attributes or characteristics.

LIBRARY SCIENCE: Application of the study of sets to a study of the library decimal usage with its sets of numbers ranging from one to another depending ':pon the category of the books.

Physical Education: Study of the rlympic grmastics point system, the set of rational numbers between 0 and 10.

SOCIAL STUDIES: Use the "set" terms in describing those groaps of people voting for President Nixon, etc. in the upcoming election; those states voting Republican or Democrat.
I. Solve or complete the following, using set braces where necessary. 1. The intersection of the two sets \((2,5,7,8)\) and \((4,5,8,9)\) is the set \(\qquad\) .
2. The set of all numbers having numerals that are fractions \(\frac{9}{6}\), where \(\underline{a}\) is a. whole number and 6 is a counting number, and the negative of such numbers is called the set of \(\qquad\) numbera.
3. Because the \(g \cdot 3 \mathrm{ph}\) of -7 lies to the left of the graph of -6 on a horizontal number 1 ine, \(\qquad\)
\(\qquad\) -
4. The negative of a negative number is a \(\qquad\) number.
5. Specify the members of the set of all negative integers greater than -5.
6. The absolute value of +4 is \(\qquad\) .
II. If \(S=(-3,-2,-1,0,1,2,3)\), solve the following:
7. Specify the members of the subset of \(S\) that consist of all the whole numbers in \(S\) \(\qquad\) .
8. Specify the members that consist of all the integers -
III. Let \(T=\left(-\frac{4}{3},-1,0, \frac{2}{3}, 3, \frac{4}{1}, 6 \frac{2}{5}\right)\). Specify the urmbers of the subset of \(T\) that consists of:
9. All the non-negative numbers in \(T\) \(\qquad\) .
10. All the rational numbers in \(T\) \(\qquad\) .

RATIO AND PROPORTION
GRADE 8

昜

3

量
STAFF UTILIZATION FOR SONTINUOUS
PROGRESS EDUCATION PROJECT
怱
E．S．E．A．TITLE III
？

3

量

童

3
Developed by：
Ed Coats

\section*{OBJECTIVES}

Pueblo's 8th grade math program for 1972-73 is a combination of demonstration, exploration and individualization. For the most part, all students are studying the same concepts at the same time only with variations of assionments. The upper and lower level students are plugged intc individualized programs where possible, depending uron the materials available and the availibility of assistance. The self-pacinc material, then, is not a seperate indepencent course but a temporary course for remedial help and enrichment.

The eighth grade math is being directly corrclated with eichth gracie science. Therefore, nost nath concopts incluce objectives that are science related. Folloving are the objectives of the first concepts to be taught, ratio ano propcrtion:
1. Be able to interpret data given as a ratio.
2. Be able to express given data as a ratio.
3. Be able to interpret data given as a proportion.,
4. Be able to express given data as a proportion.

5, Be able to sclve for the missing part of a proportion.

\section*{Outline of Evaluative Techniques}

Pre-test: The individual whe can attain nearly 908 accuracy on a pro-test is given alternatives to math study and/or enrichnent that include the followino: freparation of class materials; independent individual or srall croup projects for presentaticr ; individualized instruction and study throuch the use of Incijvicual.zzed Fathematics, the Continuous rrocress Learning lalooratory cr any one of the several sumplementary sources availalie (see the list under Retrieval System.)
rost-test: This is used primarily as a skill test to check mastery of objectives outlined under the particular concept. Any real low score here indicates need for further work on the concept, probably throuch placement into one of the lower level supplementary sources for a short period of tire with the aid of an instructer, pessibly another student. Preferably nost remedial individual vork should Le done during independent study so that the sucent right renain with the lerge group for introductory material and interaction with the group; this depends upen the student and the material presented.

Math iotebook: Each student maintains a current math notebook wich is evaluated much like a lab manual. The notelook contains dated daily lessons, answer shects to all self-pacing proc̣rams, quizzes, records of experiments performed and projects corpleted, anc ranipulative materials used. Each of the headings is sectioned off within the notebock by tabs appropriately labeled on the divisors.

Personal File Folder: Each student has a personal file folder kept in the classroom which contains the pre-test and unit tests given throuchout the year, the skill sheet, plus any other math work appropriate for a personal folder where safekeeping is important.

Crades: Depencing upon the individual, the grading system varies from a very indiviciually subjective one to a sophisticated objective one. Generally speaking, the objective point systen is uscà. Crades are then based upon the average cbtained from the following criteria: indivicual initiative (20\%), daily work (20\%), unit tests (20\%), scheciuled quizzes (15q), maintenance of math notelock (15\%), pop cuizzes (108). Individual initiative is determined by any attempt to seek help; to research and write about discoveries; to devise and present experiments and/or problems; to participate in and offer constructive suggestions to a small group.

Skill Sheet: Each student maintairs a current sheet showing test results and any follow-up procedure for each skill tested.

\section*{Pre-test: Ratio and Proportion}

Note to stucent: It is not expected that you can do all or even many of the following excrcises, but it is necessery thet I know your level of understending of them before we study similer problems.
I. Fill in the missing numerals.
1) \(\frac{5}{4}=\frac{5 \times 9}{4} \frac{x}{x}\)
2) \(\frac{33}{22}=\frac{33 \div}{22 \div 11}\)
3) \(\frac{15}{7}=30\)
4) If \(\frac{4}{y}=\frac{3}{7}\), then \(4 \times 7=y x\)
5) If \(\frac{n}{2}=\frac{6}{5}\), then \(n \times 5=2 \times-\)
II. Solve the following:
1) Find \(y\) if \(\frac{y}{3}=\frac{8}{12}\)
2) Find w if \(\frac{12}{9}=\frac{W}{3}\)
3) If there are 180 boys in a school and the ratio of boys to girls is \(4: 3\), then how many girls are there in the school?
4) Find the batting average of a player whose ratio of hits to times et bat wes \(3: 8\).
5) Bill can read 15 pages in 6 minutes. How many pages can he read in 8 minutes?

Ratio and Proportion
Worksheet \#1: Basic Property of Frections
- If \(a, b\), and \(c\) denote whole numbers, and if \(b \neq 0\) and \(c \neq 0\), then:
1. \(\frac{a}{b}=\frac{a x c}{b} \frac{x}{x c}\) and 2. \(\frac{a \div c}{b \div c}=\frac{a}{b}\)

IUse the basic property of frections to help you name the velue of \(\underline{n}\) for which each of the following stetements is true,
1) \(\frac{1}{2}=\frac{n}{6}\)
2) \(\frac{3}{7}=\frac{n}{4}\)
3) \(\frac{n}{5}=\frac{20}{20}\)
4) \(\frac{9}{4}=\frac{18}{n}\)
5) \(\frac{5}{n}=\frac{35}{28}\)
6) \(\frac{4}{n}=\frac{24}{30}\)
7) \(\frac{55}{11}=\frac{5}{n}\)
8) \(\frac{17}{34}=\frac{n}{2}\)
9) \(\frac{10}{6}=\frac{20}{n}\)
10) \(\frac{n}{4}=\frac{2}{12}\)
II. Name a frection in lowest terms or a simple numeral for \(e\) whole number that represents eech of the following rational numbers.
1) \(\frac{4}{20}\)
2) \(\frac{6}{48}\)
3) \(\frac{49}{21}\)
4) \(\frac{10}{100}\)
5) \(\frac{22}{33}\)
6) \(\frac{33}{15}\)
7) \(\frac{0}{7}\)
8) \(\frac{2}{3}\)
9) \(\frac{15}{15}\)
10) \(\frac{12}{10}\)

\section*{Ratio and Proportion}

Worksheet \#2, Comperison Property of Frections
If \(a, b, c\), and \(d\) denote whole numbers such that \(b \neq 0\) and \(d \neq 0\), then one and only one of the following statements is true:
\(\frac{a}{b}\left\langle\frac{c}{c}, \frac{a}{b}=\frac{c}{a}, \frac{a}{b}\right\rangle \frac{c}{d}\)
I. Make a true statement by replacing each question rark with the sign \(\langle,=\), or \(\rangle\).
1) \(\frac{5}{8} \frac{2}{16}\)
2) \(\frac{3}{7}\)
3) \(\frac{13}{16}\)
\(\frac{25}{32}\)
4) \(\frac{3}{4} \frac{8}{10}\)
5) \(\frac{17}{22}\)
\(\frac{22}{15}\)
6) \(\frac{36}{48}\)
\(\frac{102}{136}\)
7) \(\frac{23}{18}\)
\(\frac{31}{24}\)
8) \(\frac{17}{25} \frac{10}{17}\)
9) \(\frac{53}{170} \frac{10}{29}\)
10) \(\frac{123}{235} \frac{71}{81}\)
II. Determine the set of ell whole-number vilues of \(n\) for which the given sentence is true.
1) \(\frac{3}{4}<\frac{5}{n}\)
2) \(\frac{7}{9}>n\)
3) \(\frac{1}{n}>\frac{1}{3}\)
4) \(\frac{n}{3} \leqslant \frac{8}{11}\)
5) \(\frac{8}{3}<\frac{6}{n}\)
III. Solve the following:
1) One brine solution conteins 3 pounds of selt dissolved in 45 pounds of weter. fnother brine solution contains 7 pounds of salt dissolved in 106 pounds of water. Which solution is soltier? Why? (Hint: recall the product of the means compared to the product of the extremes.)
2) A pitcher won \(\frac{15}{17}\) of the games that he plsyed. Another pitcher won \(\frac{42}{55}\) of the games that he played. Which pitcher hod the better record? Why?

Ratio and Proportion
Worksheet \#3 (To follow the study of Chopter 13 Section 1 Ratio
 .a review from last year.)

It isolve the following:
1) Find \(y\) if \(\frac{y}{3}=\frac{8}{12}\)
2) Find w if \(\frac{12}{9}=\frac{N}{3}\)
3) If \(\frac{2}{t}=\frac{7}{8}\), what is the ratio of \(t\) to 8 ?
4) If \(\frac{8}{7}=\frac{3}{t}\), whet is the ratio of \(t\) to 7 ?
5) Find the betting average of a player who got 180 hits out of 300 times at bat. (Be sure to express the enswer as a decimal.)
6) A train can trevel 210 miles in \(3 \frac{1}{2}\) hours. At this rate, how far can it travel in 5 hours?
7) IMr. Jones peid a real estate tax of \(\$ 600\) on his house which had an assessed evaluation of \(\$ 9,000\). Mr . Shav paid a reel estate tax of \(\$ 908\). What was the assessed value of lir. Shaw's house?
8) A basebali player's batting average was . 482 and he had 500 times at bat. How many hits did he get?
\(\because \because \cdot\)

RATIC AND PROPOPTION:
Classroom Demonstration
PURPOSE:
Once the idea of ratio and proportion is established in the concrete, it can be better dealt with in the abstract.

\section*{MATERIALS:}

Yard stick, meter stick, 20 smail. hooks or screws, and an assortment of small weights

INSTRUCTIONS:
Screw five hooks at even intervals in each side of center of both the yard stick and meter stick. If the hooks are not placed at even intervals, the sticks will not be balanced at the start of the demonstration. Make a \(1 / 4\) inch hole in the center of each stick (at the 18 " mark on the yard stick and the 50 cm mark on the meter stick) and insert a pencil oi similar object to serve as a fulcrum.

PROCEDURE:
Practice changing weights from hook to hook to maintain balance.

\section*{CONCLUSION:}

It soon becomes evident that there is \(\exists\) relationship (a proportion) between the weight and distance of the weight from the fulcrum on one side and the weight and distance on the other side. This relationship is written in equation form: wt \#1 x dl \(=\mathrm{wt} \# 2 \mathrm{x} \mathrm{d} 2\)

This demonstration shows that: wt\#1 x dl \(=\mathrm{wt} \mathrm{\# 2} \mathrm{x} \mathrm{d} 2\)

Ratio and Proportion, Follow-up assignment to the clessroom demonstration. Worksheet \(\$ 4\).

Using any one of the true proportions errived at in the demonstretion, complete the following table.
\begin{tabular}{|l|l|l|l|}
\hline wt\#1 & d1 & wt/22 & d 2 \\
\hline 5 gm & 3 cm & & 15 cm \\
\hline 50 gm & 25 cm & 100 gm & \\
\hline 10.5 gm & & 63 gm & 6 mm \\
\hline 12.5 gm & 29 cm & 22 gm & 100 mm \\
\hline
\end{tabular}

Question: What ild you have to do if di were given in centimeters and d2 in millimeters and both wt\# 1 and wt \#2 were in grems?

Example: \(\frac{12 \mathrm{gm}}{3 \mathrm{~cm}}=\frac{8 \mathrm{gm}}{\mathrm{mm}}\)

Would the answer be 2 mm ? 20 mm (which equals 2 cm)? What do you think?

Ratio end Proportion: Relsted Scientific Use

In your scierce iless, you will soon discover that ratio and proportion are used to solve many measurement problems. This lesson will help you unceistand some typical science problems.

Problem: Find how much of an lceberg lies below the surface of the watei.

Solution: It is possible to measure the amount or height sticking out of the water, but there is no practicel way of measurisig what lies beneath. But, you do know that on ice cube is representative of an iceberg, end you can measure the depth of en ice cube under weter: so, set up a proportion.

Let's say that the height of the cube sticking out is .3 cm . and the depth of the cube under water is 2.8 cm . Then, if you are told that the height of an iceberg above water is \(100 \mathrm{ft} .\), the depth under water can be figured by setting up a proportions
\[
\frac{.3 \mathrm{~cm}}{2.8 \mathrm{~cm}}=\frac{100 \mathrm{ft}}{\mathrm{n}}
\]

Solving, we have \(\cdot 3 n=280\) or \(n=\frac{280}{.3}\) which gives \(\cdot 3 \longdiv { 2 8 0 . 0 }\) Moving the decimals over one place, we have \(3 \longdiv { 2 8 0 0 . 0 0 }\) rounded to, the neerest hundredth. So, \(n=933.33 \mathrm{fto}_{\mathrm{o}}\)

Problem: A weight hung on a spring or thin wire mey stretch the wire . 1 inch. Twice the weight will stretch it . 2 inch and so on until the wire approaches its breaking point. Given a perticular retio, determine how much different weights will stretch the wire.

Solution: We say that the stretching is proportional to the weight. Or, this may be written mathematically os \(\frac{w 1}{w 2}=\frac{s 1}{s 2}\) where \(\frac{w 1}{w 2}\) is the ratio of the two weights and \(\frac{s 1}{52}\) is the ratio of the stretching for these two weights.

Actuel Probiem: A certain spring will stretch 12 inches befoie nearing its breaking point. If a \(5 \#\) weight stretches the spring 1 inch, tell how much the spring will be stretched by:
1) \(10 \#\)
2) \(1 \#\)
3) \(50 \#\)
4) \(12 \#\)
5) \(40 \%\).

\section*{RATIO MOBILE}

Independent ectivity for several slow students.
Purpose, To establish a concrete ide? of ratio and proportion so thet it cen be better dealt with in the abstract.

Materiels: seissors, poster board, thin wire, ruler and pencil
Instructions to the student: Construct and cut out of poster paper e squere end a triangle with sides of 10 inches each. Then construct and cut out 2 similer figures each with retios to the first ilgure of \(\frac{1}{2}, \frac{2}{5}, \frac{1}{5}, \frac{1}{10}, \frac{4}{5}\), and \(\frac{3}{5}\).
Finally, color or otherwise decorate the geometric figures you heve made and attach them onto wire to form a mobile. We'll hang the mobile from the ceiling to enhance the appearance of the room.

Hopetully your mobile will look at least as nice es the one drewn below.

Independent activity for advanced group of about five students.
(Assumes knowledge of similar triangles.)

Student, Build the following instrument for use in determining unknow distances through use of ratio ond proportion.

Through the fixed straw, sight the object whose distance is desired. Then sight the object through the movable straw. Neasure the angle with the protractor. Then meke a scaledrawing of a similar triangle. Then use proportions to find the desired distance. Be prepered to discuss your results in class.

\section*{Post-test: Ratio and Prportion}

Note to student: You should be eble to achleve \(80 \%\) eccuracy on the following problems. If you do not, please see me efter cless to set up additional help time,
I. Solve the following proportions for the unknown value.
1) \(\frac{50}{100}=\frac{n}{2}\)
2) \(1: 25=4: n\)
3) \(\frac{3 \mathrm{gm}}{12 \mathrm{~cm}}=\frac{20 \mathrm{gm}}{\mathrm{n}}\)
4) \(\frac{.08}{y}=\frac{.12}{.18}\)
5) \(\frac{.4 \mathrm{~cm}}{3.5 \mathrm{~cm}}=\frac{200^{\prime}}{\mathrm{n}}\)
II. Solve by using proportions:
1) Water weighs 1 gram per cur: centimeter. What is the weight of 40 cubic centimeters of \(v:\) ter?
2) Three inches on a mai represents a distance of 73 miles. What distance is represented by 5 inches?
3) A building casts a shadow of 280 ft , at the same time that a 21 ft . pole casts a shadow of 35 ft . . How tall is the building?
4) If a plane travels at a rete of 415 miles per hour, how fer will it travel. in 13 minutes?
Individualized Pathematics Drill and Practice Kit DD
Math Apelications Kit
SRA Cross Number Puzzles
Aftermath 1, 2, 3, 4
Continuous Procress Learning Laboratory Series 700 and Series 800
Experiencing Nathematics Vorkbooks A, B, C, D, E
Individualizing Mathematics Skills and Patterns
Individualizing Nathematics Patterns and Discovery
The Franklin Pathematics Series
Skills and Patterns In-Denth TonicsTuf Base "Two" Flash Card Set
Equations (Came)
Adidion of Integers (Film Loop)

\title{
PHYSICAL SCIENCE AND MATH
} CORRELATION SEQUENCE

EIGHTH GRADE

\section*{STAFF UTILIZATION FOR CONTINUOUS}

PROGRESS EDUCATION PROJECT
E.S.E.A. TITLE III

Developed. by:

Ed Coats Reed E. Done

PHYSICAL SCIENCE/MATH CORRELATION- 8th Grade

THE PRORLEMS

\section*{A. SCIENCE}

The philosophy of the Pueblo School Science Curriculum stresses the importance of student participation and involvement science materials, his environment and thought processes. Since much of science deals with measurement, the ability to use math and measurement techniques correctly in obtaining data is of prime importance. Previous years have shown that students have found difficulty in recalling math concepts and "transferring them" to the subject area of science. The science teacher re-taught the math again-a time consuming, as well as inefficient, duplication of effort.
B. MATH

Students successfully complete a math course only to be stymied by practical application in science class, necessitating re-teaching. Or, in other cases, while students are studying congruence of plane figures in math class, they may be using scientific notation in science class -- without yet having studied scientifis notation in math class.

Thus, the real problem arises: a need to correlate math and science. Students need to see how one complements the other; they need to see and feel a unity of purpose in school instruction instead of a seperation into seemingly unrelated classes.

\title{
1. Determine the scope and sequence of the 8 th grade Physical Science Course.
}
2. Determine, via a time line, the approximate time a particular math concept would be used by the student during the science course.
3. Correlate the 8 th grade math scope and seguence with that of science in order that the student would have the necessary "fresh" math background ready for application in his 8 th grade science course.

It is felt by the authors that both math and science will hold greater meaning for the student and he will have greater level of success in both courses of the above solutions are implimented.

PHYSICAL SCIENCE SEQUENCE FLOW CHART - EXAMPLE
("Time, Space and Matter" modified)
Math and
NOME: Students requiring Math and Measurement Techniques leave the sequence path to aquire said skills via work in Math and Science classes.

Concept Number
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{1.0} & Decimal and percent \\
\hline & 1.1 & Decimal place values \\
\hline & a. & Reading and writing \\
\hline & b. & Writing in expanded form \\
\hline & 1.2 & Comparing and arranging decimal numbers \\
\hline & 1.3 & Adding and subtracting decimals \\
\hline & a. & Algorithm for addition \\
\hline & b. & Algorith for subtraction \\
\hline & 1.4 & Multiplying and dividing decimals \\
\hline & a. & The multiplacation algorithm \\
\hline & b. & The division algorithm \\
\hline & 1.5 & Converting decimals, fractions, and percents \\
\hline & 1.6 & Solving percentage problems \\
\hline & a. & Finding a percent of a number \\
\hline & b. & Finding a number when a percentage of it is known \\
\hline & c. & Finding the percentage one number is of another \\
\hline & d. & Solving interest problems \\
\hline \(\underline{2.0}\) & & Determining fractional parts \\
\hline & 2.1 & Adding rational numbers \\
\hline & a. & Adding rational numbers \\
\hline & b. & Adding negative rational numbers \\
\hline
\end{tabular}

Concept Number
Description
2.2
a.
b.
C.
d.
e.
2.3
2.4
a.
b.
2.5
a.
b.
C.
d.
e.
E.
2.6
3.0

Properties of addition
closure
Commutative
Associative
Additive-identity
Additive-inverse
Subtracting rational numbers
Multiplying ratinnal numbers
Multiplying a rational number and a nonnegative rational number

Multiplying two negative rational numbers

Properties of multiplication
Closure
Commutative
Associative
Multiplicative-identity
Multiplicative-inverse
Distributive
Dividing rational numbers
Multiplies (review)
Determining multiples
using the division algorithm
Approximating multiples of distance
\(4.0 \quad\) Rate
4.1
4.2

Solving general rate problems (speed in MPH, etc.)

Solving specific scientific rate problems (spin/orbit,wear/time,etc.)

Concept Number
6.0
6.1
a.
6.2
a.
b.
C.
d.
e.
6.3
a.
b.
c.
6.4
6.5
6.6
a.
b.
2.
2.
3.

Averaging
Mean, median, mode
Applying to general problems (grade, salaries, etc.)

Applying to specific scientific problems (avg, of shadow angles, avg. of pendulum periods, etc.)

Anales
Constructing geometric figures
Using construction and measuring materials
Determining parallel lines
A transversal
Corresponding angles
Interior and exterior angles
Alternate angles
vertical angles
Angles of a triangle
acute angles
obtuse angles
right angles
Angles of a rectangle
Bisecting an angle
Similarity and congruency
Constructing similar triangles
Constructing congruent triangles
Angles-sidemangle
side-angle-side
side-side-side

Concept Number
7.0
\(\qquad\)
7.1
a.
b.
7.2
a.
7.3
a.
b.
C.
7.4
7.5
a.
7.6
7.8
7.9
8.0
8.1
8.2
8.3
8.4
8.5
8.6
a.
8.7
8.8

Description
Writing and solving equations
Number phrases
using a variable
determining the replacement set Open number phrase
determining the number represented by following directions

Statements and open number sentences an equation
an inequality
a statement
Determining solutions of a mathematical sentence

Using common sense in solving equations
solving by inspection
Solving equations by transformation
Solving inequalities
Applying general equation principles to write and solve practical problems

Decimal estimation and precision
Terminating decimal numerals
Repeating decimal numerals
Irrational, numbers
Real numbers
Rational approximations
Comparison property of numbers
Comparing by decimal ntimerals
Density property of rational numbers
Density property of real numbers 139
\begin{tabular}{|c|c|}
\hline Concept Number & Description \\
\hline 8.9 & Property of completeness of the set of real numbers \\
\hline 8.10 & Greatest possible error in measurement \\
\hline 8.11 & Significant digits in reasurement \\
\hline 8.12 & Rounding off to specified digits \\
\hline 8.13 & Relative error in measurement \\
\hline 8.14 & Making actual precise decimal measurements \\
\hline 8.15 & Making actual estimates of decimal readings and measurement \\
\hline 9.0 & Graphing Technioues \\
\hline 9.1 & Writing data \\
\hline a. & compiling a data table \\
\hline 9.2 & Divided-bar graph \\
\hline 9.3 & Circle-graph \\
\hline a. & sectors \\
\hline 9.4 & Bar and broken-line graphs \\
\hline a. & vertical data \\
\hline b. & horizontal data \\
\hline c. & determining the trend \\
\hline 10.0 & Scientific notation \\
\hline 10.1 & Exponents \\
\hline a. & multiplying in exponential form \\
\hline b. & dividing in exponential form \\
\hline c. & writing decimal numerals as powers of ten \\
\hline 10.2 & zero and negative exponents \\
\hline a. & writing decimal numerals as negative powers of ten \\
\hline 10.3 & Expressing a number in scientific notation 140 \\
\hline
\end{tabular}

\section*{Concept Number}
a.
\(b\).
10.4
a.
11.0
11.1
a.
b.
11.2
a.
b.
c.

2
e.
11.3
a.
b.
C.
\(d\).
e.
12.0
13.0
13.1

\section*{Description}

Finding the "standard position"
Counting from the standard position to the decimal point

Multiplying and dividing in scientific notation
applying to actual scientific problems

Area and volume of aeometric ficures

Understanding units of measurement
square units
cubical units
Plane figures (area)
rectangle
triangle
circle
parallelogram
trapezoid
Solid figures (surface area and volume)
pyramids
prisms
cones
cylinders
spheres
Applying knowledce of arcles
and spheres te practical scientific.
sphericel measurement problems
Formula transposing
Applying the formulas used in textbook problems to actual situations posed in math, science, etc.

PHYSICAL SCIENCE SEQUENCE OUTLINE
("Time,Space, and Matter" Revised Sequence)
\(\frac{\text { SCIENCE }}{\text { TOPIC }}\)
A. Watson-Glaser Test of Critical Think.. ing (pre-test)
B. Recording Data (Standards/Methods)
2. The Physical World
A. Observation vs. Interpreiation
B. Purpose, Precision \& Approximation
C. Microcosm vs. Macrocosm
3. Apparent Celestial Motion
A. Part I Stars
B. Part II Stars, Moon, Sun
4. Earth's Moon Phases
A. Part I* Duplication Model
B. Part II Data Interpretation
5. Jupiter
A. Moons Orbit?
B. Planet Spins?
6. Earth's Moon Spins?
A. Model
7. Stars Orbit?
A. Star "Trails"Interp.
8. Earth Spins?
A. Pendulums
B. Foucault Pendulum
5.0
- 142

Score/Grade Calculations

Fractional Parts of Moons Cycle

Earth, Moon, Sun Relative Distance

Rate of Spin/Orbit

Average of Periods

16. Form \& Substance
A. Melting
B. Eっiling
C. Evaporation cycle
D. Paraaichloro Benzene
17. Solution
A. crystals
B. solubility limit
18. Change \& The Grand Canyon
A. Cause of?
B. Age?
C. Princeton Analogy
10.0
D. Quartz Abrasion rate
E. Topographic maps \(\quad 7.0\)
19. Grand Canyon Dimensions
A. Area \& volume
B. Drainage area
20. Leveling/Uplifting
21. Shape of Earth
A. Apollo Photns
22. Density of Earth
A. Surface \& above
B. First Approximation
23. Size of Earth
A. Shadow Angles
10.0
12.0 5.0
13.0 10.0

Temperature Pattern

Floor abrasion rate \& duration Rate of wearing

Reading contour lines

Area \& volume of canyon
Area of drainage surface
Rate of sediment deposition

Express density of Fizst Approx.

Spherical measurements Measure shadow angles Calculate, radius of earth via the earth's circumference Same
```


[^0]:    *In the math coding scheme each section of Column 3 has a separate coding for Column 4 and 5.

[^1]:    OBJECIIVES: Given a set of objects the child will count objects and identify how many elements in a set. Given a set and numeral, the child will identify numeral as a symbol tellinghow many elements in a set.
    After identification of set and corresponding number the child will be able to identify it.
    Given tactile numerals the child will be able to trace over numeral with finger in preparation for writing it.
    Given a numeral, the child will copy and write it in appropriate places in big book.
    Given a number, the child will draw a set equal to that number.

    MATERIALS: Crayon, writing surface, set of objects for each numeral, tactile numeral in big book, child's finger or hand.

    EVALUATION: When shown numeral the child will be able to verbally identify it with $100 \%$ accuracy.
    When given a sft of given amount, the child will be able to identify amount with $100 \%$ accuracy.

    When given crayon and paper on writing surface, child will be able to write numeral correctly with $80 \%$ accuracy.

