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Preface -

- From very small heginnings during the carly years of the 1960s, interest

by mathematics educators in Piagetiun rescarch broadened until at several
universities students were working on doctoral dissertations that clearly
were almost as elosely related to child- -development psychology us to
mathematical education. E'h -asiliess over little evidence of close cooper-
ation between psychologists and mathematics educators led to persuading
the Nationul Council of Teachers of Mathematics to sponsor jointly with
the Departinent of Mathematical Edueation, Teachers College. Columbia
Cniversity, a conference on the Piaget type of rescarch in mathematieal
cducation. Somewhat apart, from New York City and with facilities for
housing participants, the Greyston Conference Center of Teachers College
was chosen for the site of the conference, held 18-23 October 1970, ~

The primary purpose of the conference was to promote more dinlogue
not only hetween mathematics educators but alse between mathematics
educators and psychologizgts. A daily schedule with mueh free time
scemed _an excellent way to encourage small groups -interested in the
same aspeet of cognitive development to get together for discussions.
Sometimes these were carried on during walks about the grounds of Grey-
ston: sometimes u group gathered-after dmncr in someone’s room, with
the scheduled lectures serving as background information. The dncus-
sions led to new acquaintances and new understandings of both mathe-
matics and child-development psychology.

A grant from the National Science Foundation made possible the papers
that appear in this volume, the volume itself. and the participation’of
some sixty psvchologists, mathematics educators, and doctoral students.
All participants had a deep interest in Piagetian investigations, and all
were enthusiastic about the opportunity to talk with fellow investigators.
Myron F. Rosskopf
Leslic P. Stefie
Stanley Taback

vii

=




. -

ERIC

PAFuiToxt Provided by ERIC

. About the Authors

- =

MILLIE ALMY is professor of psychology and edueation at Teachers College,
Colmnbia University, where she also serves as principal adviser in the Progrium in
Early Childicod Education. She is the author of several books and numerous
articles dealing with ehild development and early childhcod edueation. Her inter-
est in the applications of Piaget’s theory to problems of edueation began a deeade
ago’ when she became concerned with the paucity of intellectual stimulation in

many of the kindergartens she observed. Secking some rieans of appraising the -

children’s level of thinking, she replicated some of Piuget’s experiments .uul
eventually conducted the two longitudinal studies on which her paper is hasged.”
Although Dr. Almy -has-noted ‘with satisfaction the increasing attention given
during the past decade to the- ihtcllecm al aspeets of educational progrims for
young children, shie believes that concern with the cognitive has sometimes been
at the expense of the affeetive, expressive, and uesthetic. Her eurrent work,
largely exploratory in nature, deals with children’s play, which she helieves reflects
all these aspects. Withont an understanding of the role of play in the life of the
voung child, it seems to her impossible to plan adequately for his edueation.

HARRY BEILIN is a professor in-the City University of New York Graduate
Center and is active in both the developmental psychology and the educational
psvelology doctoral programs. He has previously served as head of each of these
programs. Presently he ix editor of the Journal of Ezperimental Child Psycholagy.

Dr. Beilin's area of specialization is coguitive development, and e has pub-
lished widely in-the field of children’s langnage and cognition. Ifis researeh has
been supported for the past ten years by grants from, the National Institute of
Child Health and Human Developient and the 1 :m(m.ll Institute of Mental
Health.

PETER DODWELL was edueated in England, obtaining B.A.,, M.A., and D.Phil.
degrees from Oxford University, thelatter in 1958. Origimlly intending to become
2 nathematician, he was sedueed away by an interest in logic and epistemology,
0 coming ev cmu.nll\ to experimental psyehology by way of philosophy.

Dr. Dodwell mught in the University of London, England, for three years before
moving to Canada in 1958. Sinee that time he has been attached to Quicen’s Uni-
versity at Kingston, Outario, with interludes at London University as a C. D.
Howe Fellow and visiting drofessor, at the Center for Advanced Study in the
Behavioral Sciences, Stanford, on a Guggenheim Fellowship for a year, and at
Harvard for half a vear as visiting professor of psvehology. His recent research

ix




N

W

N

ERIC

PAFullToxt Provided by ERIC

About the Authors

has been in the field of perception, but be still retains an active interest in
research on cognitive development in children.

KENNETH LOVELL ix a graduate of the Cniversity of London and holds the
degrees of BS, M.A,, and Ph.D. He taught in primary and grammar schools and
in colleges of educution, and he'is now professor of educational p=vchology in the
University of Leeds. He has written eight hooks andublished nearly fif*y papers.
One of Dr. Lovell's major interests is that of Piaget’s coguitive-develormental
svstem and its applieation to the analysis of ehildren’s understanding in the cliss-
room—'-p:lrticul:nrl_\' in the fields of mathematics and science. From such amalysis
comes the belief that- curriculum construetion, und the quality of teaching, will
be improved. It is his hope that the papers of this conference will help inathe-
matics educators in two ways: (1) give them sufficient experience of differing
experimental procedures to encourage them to set up their own research projects,
and (2) help them to get their students, who are the future elementary and high
school teachers, to make contaet with their pupils in ways that will enable such
teachers to recognize children’s mathematical conceptions and niisconceptions,

HERMINE SINCLAIR is professor of psycholinguisties at the University of
Geneva and works in Piagetian theory in general and in the learning of cognitive
structures in particular with Biirbel Inhelder and others. She is a coauthor of
sevéral books published by the Genevans and has published widely in the ficld of
children’s cognitive development, Currently in press is an account of investiga-
tions into the development of language in young children.

Dr. Sincluir studied at the University of Ctrecht, concentrating on elassieal
linguages and historical hnguisties. After World War I, travel, and marriage, she
turned to the study of psychology at the University of Geneva. Her chance arrival
in Geneva brought her to Piaget's psychology, and sinee that tine she has beén
working at the Institut des Seiences de I'Education. -
HENRY VAN ENGEX is a graduate of the University of Michigan, where he
earned 2 Ph.ID. in muthematics in 1935. After teaching in junior high schools and at
Western Reserve University in che School of Education, he served as an assistant
.professor of mathematics at Kansas State University, Manhattan, and, from 1938
to 1958, as head of the Department of Mathematics at Northern Iowa University,
then known as Iowa State-Teachers College. In 1958 he was appointed to the
position he now oceupies as professor of education and mathematics at the Uni-
versity of Wisconsin, Madison. At varous times he has served as editor of the
Mathematics Teacher. as a member of the Commission on Mathematics of the
College Entrance Examination Board, and as a member of the Board of Directors
of the National Council of Teachers of Mathematics. He is presently chairman of
the Editorial Panel of the Arithmetic Teacher.

Dr. Van Engen has long been interested in the analysis of meaning in arithmetic
and in eoncept formation, having written major papers in these two areas. Among
the mathematics educators in the United States, he was one of the first to become
keenly interedted in theories of cognitive development and their application to




P

RN - . -

About the Authors

mathematical instruction. Although he believes that research in cognitive develop-
went has nujor implications for nthematical edueation, he also believes the
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HERMINE SINCLAIR

Piagel’s Theory of Development:
The Main Stages

At first sight it would seem that a psyehologieal theory that ix regarded
by its author as a “by-product” of his epistemologieal research and 1s
therefore principally directed toward the investigation of knowledge and
its changes in the history of mankind, as well as in the growing child, is
ideally suited to educational applications. One of the aims of education
is the fostering of knoiledge, the endeavonr’to transmit to the next gen-
eration the experience of its forebears in the hope that the sum total of
knowledge will be expanded. At the same time, for many different rea-
song, there is a general fecling that edycation is not good enough, that
something should be changed. that not enough profit is derived from what
is becoming a considerable number of years spent at school, It is thus

not surprising that-a number of cducators have turned to Piaget's theory

to seek help for new pedagogical approaches. Cnfortunately, many of
them have been disappointed; Piaget’s theoretical approach has seemed
too far removed from classroom reality. Recently, others have become

_very enthusiastic. seduced by the experimental situations Piaget has

imagined, and there seems to be a regrettable tendency to take Piaget’s
problem situations and convert them direetly into teaching situations.
Why I think this is regrettable is probably best explained by a meta-
phor: Piaget’s tasks are like the core samples a geologist takes fremn a
fertile area and from which he 2an infer the general structure of a fertile
soil; but it-is absurd to hope that transplanting these samples to a ficld
of nonfertile soil will make the whole area fertile. A ehild’s reactions to
a few Piagetian tasks will enable a well-trained psychologist to give a
fair description of that child's intellectual level: but teaching the solutions
of these same Plagetian tasks to a group of children does not mean that

ls
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Piagetian Research and Mathematical Education

the children will thereby attain the general intellectual level of the ehild
who can solve-the tasks independently.

Many modern seliool programns emnphasize doing and point out that

seeing and hearing are not enough; such programs are sometimes called
Piugetian, and, indeed, one of Piaget’s basic prineiples is the primmaey of
aciion. However, this does not mean that children should spend all their
early school years digging in sandpits and making mud pies, progressing
to construeting buildings out of bricks- and then to making systems of
pulleys and levers. -
—Educational applications of Piaget’s experimental proeedures and theo-
retical prineiples wiil have to be very indireet—and he-himself has given
hardly any in(}igatiogx of how one could go about it. His experiments
cannot be modified ‘into speeific teaching metuods for specific problemns,
and his principles should not be used simply to set the general tone of
an instruetional program. ’

It would thus seem necessary to study Piaget’s theory as a whole before
deciding whieli parts of it,.if any, could be applied in the elassroom. The
theory is explicitly developmental and maintains that the explanation
of the nature of adult knowledge is found by studying the way-this knowl-
edge has been built. up; in other words, the adoleseent explains the man,
the ehild explains the adolescent, the toddler explains the child, and the
infant explains the toddler. Even though all of you are familiar with
parts of Piaget’s work, a brief deseription of the psychologieal charac-
teristics of eognitive developmnent may be helpful. This will perhaps in-
volve a certain amount of tedious repetition of facts known to all of you.
My apologies!

According to Piaget, action, rather than pereeption, is the primary
source of knowledge. To know objeets, onc has to modify themn in some
way—for instance, simply change their position. The nain division into
developinental stages is therefore based on the charaeter of the actions
that link the subjeet to the surrounding world.

FroyM SENSORIMOTOR INTELLIGENCE
170 CONCRETE OPERATIONS

A first period is ealled the sensorimotor stage. It is a preverbal period,
or,speakiug more generally, a period of direet action without representa-
tion. During this stage (lasting until about the middle of the seecond
year) the world around the subjeet becomes more and more stable and
organized. While at first the newborn baby scems to have no awareness
of himself as distinet froimn the objects around -hin), by the end of this
period he can perform the actions that assure the dirret dependencies
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Sinclair / Piaget’s Theory of Development: The Main Stages

between subjeet and objeets. He has now acquired objeet pennaneney, a
first cognitive invariant, as well as a first grouplike structure—the group
of displacements, as Piaget has called it. In view of the paramount imn-
portance Piaget accords to actions that modify reality, it is no accident
that his formalizations of the underlying cognitive structures are all in
terms of groups of transformations—even at the level of sensorimotor
intelligence. Constants, on the one hand, and action or operation strue-
ture, on the other, eannot be dissociated psychologieally: at all stages
of development they are no more than two sides of the same coin. How-
ever, it seems advisable to separate the invariants from their grouplike
structures for the purposes of this brief sketeh of the eourse of cognitive
development toward the formal operations, which are the only ones that
can be formally expressed in terms of group structures in the mathe-
matieal sense of the word group. ) - ' o

Constants

Let me start with the cognitive constants. Objeet perinaneney, achieved
by the middle of the second year, means above all that the objeets have
now beecome “retricvable” or “retraceable”’—the child no longer aéts as
if they disappear completely onee they go out of his pereeptive field;
moreover, if they are hidden under several sercens, he can recompose
their suecessive diplacements and find them again. Perinanent objeets
are objects one can start “knowing”—they are no longer only objeets to
which one can react. A little later, objeets-acquire an identity that is no
longer simply a funetion of the act of searching for them but that arises
from the child’s realization that several actions can be perforined on the
same object without its basic identity’s being changed. For instance, a
picee of wire can be twisted into the shape of a pair of glasses or seissors,
but these different shapes do not alter the “sameness” of the picce of
wire that was used to produce them. Although the child may put the
glasses on his. nose and pretend to look through them, he knows, and will
say so if asked, that it is the same picee of wire that was used earlier for
something else. The next step toward the establishment of quantitative
constants is taken when the child begins to mnake a distinction between
permnanent and impermanent qualities of objeets. The colour, suppleness,
and material of the wire are permanent, but its shape is not. For children
below the age of, say, seven, certain changes of shape imply a change in
length. Nevertheless, the identity of objects has become more objective
in the sense that it is now based on the objects’ qualitics rather than on
the actions the subjeet performs on them.

The great novelty of the concrete-operationel period is the change from
qualitative identities toward quantitative constants. The first of these

3
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quantitative constants is numerical conservation, which nanifests itself
in correct answers to thé¢ well-known questions about the numerieal
cquivalenee of two collections of objects. For an example, consider the
experiment in which red and blue counters are used. Starting from two
rows, one red and one blue, arranged in a visual one-to-one eorrespondence.
the experimenter spreads out the blue counters so that they go beyond
the limits of the red row. The ehild is-then asked whether there are still
just enough red_counters to cover the blue ones, or whether there will be
some blue eotnters left over, or whether there will not be enough, and
s0 on. Before the age of five or six, the child will say that there are not
enough red eounters to cover the blue, that some blue ones will be left
over, t. t there are more blue ones than red ones, and so on. But from
five or six%nﬁ‘ard, the child affirms that the number has not changed and
he ean give arguments to explain his judgment: “You didn’t add any”;
“You ean put them back like they were”; “They’re just spread farther

apart”; and so on.
H

Structures ) L

We now come to the seeond aspect, that of the structure of actions: the
action group of displacements, which is completely bound up with objeet
permancency, slowly becomes elaborated during the sensorimotor period
from very clementary, often” hereditary action patterns. These action
patterns (sucking, looking, grasping) at first form isolated entities, but
sc.u they assimilate other objeets (sueking thumbs, toys, ete.) and be-
come coordinated (grasping and looking, ecte.j. Gradually, instead of
several little isolated actions, there are more and finer coordinations,
which culminate in an intended conneetion between a definite goal and
the action sequence necessary for reaching that goal. During the first
period of postsensorimotor but preoperational intelligence, the child starts
to build up what Piaget calls a semilogic, that is to say, a logie of one-way
mappings. In psyehologieal terms, this means that the ehild understands
that when one pulls the cord of a curtain, the eurtain opens; the farther
one pulls, the farther the curtain opens. These funetional dependencies
imply a real, physical link betwéen eause and effeet just as much as a

" conceptual dependency. Pulling (y) akes the eurtain move (z), where
& == {(y) ; but you also have to know how far to pull to make the curtain
go all the way back—knowledge of depends on knowledge of y. These
dependencies constitute a kind of semilogie, and their one-way charaeter
has been demonstrated in several studies,

In the following experiment, devised by N. van den Bogearts in 1968,
the ehild is shown a toy truek which pieks up eounters in front of five
different dolls. Eaeh counter is put inside the truck in a line so that the

4
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arrangement of counters mirrors the itinerary. The eolours of the counters
correspond to those of the dolls’ dresses. The dolls are arranged on the
table in a fixed pattern, but neither in a straight line nor in a cirele. The,
first questions coneern the arrangement of the counters inside the truek:

- “Whieh will be first?” “Which will be last?” “Why is the red one next to

the yellow one?”’ The four-yc’ﬂ-old child understands and explains that
the order of the eounters in the truek is dependent on thc itinerary of the
truek: if it goes to the blue doll first, the blue counter is first; if it goes
to the yellow doll next, the vellow counter witl be next to the blue counter;
and , on. But, surprisingly, if the ehild is asked to reconstruet the truck’s
itinerary, he is-ineapable of doing so: the mapping is.only onc way, and
he does not understand that the order of the eounters in the truck deter-
mines the itinerary ]llSo as the itinerary determines the order of the
counters.

Incomplete though it may bc, tlns semilogic is an important develop-
ment and a neeessary stage whieh the child has to pass through before
he ean acquire reversibility. The well-known experiment with the balls
of clay can be reformulated in terms of functional dependencies. At first,
a dependeney is established between actions and their effeets. If one rolls
the elay (2}, it becomes longer (y1) :

.= i(x).

~ But if one rolls the elay (x), it also beeomes thinner (y.):

y: = f(x).

Both dependeneies may be thought to covary; that is, if one rolls the clay,
it gets longer and thinner. TFinally, the child is able to express this co-
rariation between ¥, and 2 dircetly, without the neeessity of linking it
to the action of rolling, itself. A function (f) that is reversible (f) is
seen to exist between y, and ys, wherehy getting longer is exactly com-
pensated for by getting thinner, and viee versa:

Y = f(y2) and = ).

/I«‘Tt}.\r CoNcRETE OpERATIONS TO FORMAL OPERATIONS

Around the age of six or seven the semilogic of the preoperational
period starts to. turn into logie. At first this remains a limited logie—
Lonee the term concrete operations—in contrast with the “full” logie of
formal operations. However, this term does not mean that the child can

think logically only if he can at the same time manipulate objects. Even

less does it coineide with the (rather difficult to define) distinetion be-
tween abstraet and conerete. Concrete, in the Piagetian sense, means that
the child can think in a logically eoherent manner about Ob]CCtb that do
exist and have real properties and about actions that arc_possiblc; lie can
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perform the mental operations involved both when asked purely verbal
questions and when manipulating objeets. The latter situation is far
preferable to the former, mainly for reasons of elarity, but the actual
presence of objects is no intrinsic condition. Nor is the reverse—that is
to say, the absence of objeets—a condition for formal operations; these
may indeed involve ‘the solving of problems dealing only with proposi-
tions, but they inay, arl usually do, apply to quite conerete situations.

Among che many problems that come within the reach of adolescents
at the level of formal operations, there is one (designed-by B. Inhelder)
that, I think, makes ihis aspect of the distinetion quite clear. The ex-
perimenter shows the child a edlleetion of metal bars (some made of brass.
others of aluminum; some eylindrical, others with a square cross seetion;
all of various lengths) which can be fixed above a board and then weighted
at the end so that they will bend. The ‘problem the child has to solve

(whieh is unsolvable until about the age of twelve, i.c., the formal-opera-
tional period) is, Which bar bends most? The various questions are
posed: “A long, brass, eylirdrical one? A short, brass, cylindrical one?
A long, aluminum, eylindrical one? A long, alumniwm, square one? ., . .?”
_To.work out this problem, all the properties exeept one mnust be kept
Gonstant during the comparisons: for example, the child might compare
two brass rods of the same length to sce if the round (cylindrical) one
bends more than the square one. The problem cannot be solved in any
direet way. A dircet, conerete solution would necessitate the existence of
rods that are not tmade of anything at all, have no cross seetion and no
length. Such rods do not exist—in fact, cannot exist—and one cannot
even have a mental image of them. But by comparing two rods made of
the same ietal, with the same eross section and of different lengths, one
creates impossible rods—in this case, rods that have_only length. The
conerete-operational 2hild ean do no such thing; he ran manipulate and
think about real objeets, but he eannot work with hypothetical entities.
He will not be able to solve the problem until about the age of twelve,
when he attains the formal-operational period.

The stage of ‘concrete operations results in an important change in
children’s manner of thought. They now possess what Piaget has called
the structure of groupement (an incomplete but grouplike structure of
transformations comprising invariants).

The term structures has given rise to many controversies, Questions
such as the following are frequently asked in connection with Piaget’s
structural approach to intelligence: Have the structures any peychological
reality? - Or are they no more than a psychological artifice? What is the
use, if any, of the search for such struetures?

Many disciplines reach a point in history where their subject matter
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beeoines so varied and the types of problems dealt with so large in numn-
ber that the need is felt for some kind of unification. In mathematies, for—
instanee. the foundations for organizational principles were laid in the
beginning of the twenticth century and led to the mathematical theory
of sets and mathematical logie. In psyehological development, a similar
need is-at the basis of Piaget’s search for structures. |

At.a certain stage the child becomes eapable of dealing with a great
variety of problems. Obviously, he is not aware that he is rcasoning
according to-certain well-defined principles, much less that he is using
struetures. But the way in whieh he reasons clearly indicates that there
is some kind of organisation. What type of organisation and what sort
of general mental operations can aceount for the way a child at a par-

. ticular stage solves certain probiems and yet fails to solve others? It is

casy to observe whether a child gives the right answer to a certain
problem; it is mueh more difficult to observe how hé goes about solving

“it. Toaccount for the method of solving (or of failing to solve) a variety

of problems, one has to go beyond observation and suppose the existence
of an underlying system of operations (a structure).
Concrete operations

The operations that form the conercte “grouping” are of the most
general kind (putting objcets together into a class, separating a collce-

tion into subelasses, ordering clements, ordering events in time, cte.).

These operations are transformations that are reversible, either through
annulment (as in the case of adding, annulled by subtraeting) or through
reciproeity (as in the ease of relationships: A is the son of B, B is the
father of A). -

The importanec of the coneept of group struetures goes beyond the
realm of mathematics. In the natural sciences one ean, in certain eascs,
postulate the existence of a grouplike structure. When one-then considers
the effeet of eertain transformations on a set of objeet states (elements),
it becomes possible to hypothesize the existenee and @ven the nature of
some previously unobserved objeet states.

Groups of transformations possess an identity operation. Similarly,
when one deals with aetual problem situations where objects are dis-
placed or ehanged in form, certain modifications have no cffeet on certain
quantitative properties. For cxample: pouring a liquid into a different
glass has no effect on its volume; kneading a substance has no effeet on
its mass; spreading out counters does not ehange their total number.

In Piaget’s approach, one learns about the struetures of thought by
studying, for instance, at what age and in what manner children con-
ceptualize the invariance of quantitative properties such as weight and

7
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volume. These are, of eourse, the famoys “conservation experiments.”
Because of the fact that invariants are always invariants of a system of
operations, the acquisition of the conservation coneepts is an excellent
indieator of the level of intellectual development.

For--the eoncrete-operational period, Piaget distinguishes the basic
transformational struetures of classes on the one hand and those of
relations on the other. Classification implies the grouping of objects
according to their similarities; seriation implies the ordering of objects
according to their differences.

The system of* operations that aceounts for the problems in classifica- -

tion that eight- or nine-year-olds can deal with can be formnalized as
follows:

1f 4, B, C, and so on, are classes that are included one in the other and
A’, B’, C’, and so on, their complementary classes, the followirig operations
pertain.! ’ ’ ’

LA4+4"=B;B+4 B =C;andso on.

2B —A"=44;C =B =B;and so on.

3.4 40=4.

4 A 4+1=4; B 4+ B = B; and so on.

5.4 4+ A4 +B=A4 (4 + B, but (4 + A) — 444 4

(4 — A). . 5~

" In this system of operations, reversibility is annulment: adding A’ to A
gives I3; subtracting A’ from B gives A. :

This structure accounts for the success achieved by children at this

. N -

L. Evttor’s FoorNote. It i« instruetive to translate Piaget's language and symbolisin
into current mathematical language and symbolism. Readers with a mathematies
background will be more familigr with the latter. There are certain correspondences
between symbols and words which should first be made clear: class «— set; + >
U; “’” conesponds t6 set. difference—that is, A* is not the complement of A but is the
set difference relative to u sel B; and A’ = B —d, where “B — A" denotes a set con-
sisting of those elements of B that e not elements of A.

Piaget's language .. Mathematical language
1. A4 A'=p 1. AUB=A)=8
B+B=C . BU(C~B)=C
2. B— =4 @\ 2 B—(B—d)=4
C—B =8 2 oS SN C—(C—B =8
3.A4+0=4 PR i } 3. AUP=4
4. A4A=4 = 4. AUA=4
B+B=8 // BUB=R8
5 (A+A4Y+B = — 5. (AUB—-ANU(C—-B) =
A4 A+ B AUB=A) U -B)
but (4 4 A4) ~ 4 % but (AUA4)— A4
A+ (4—4) AU4—A)
8
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*le\'gl when dealing with several problems in classification: (1) the quanti-
fication of class inclnsion—they can answer questions on the relative
numerical extension of a general class B compared with a subclass A;
(2) multiplication of elasses—they can find missing clements in double-
entry tables; and (3) interscction problems—given, for instance, a col-
lection of pictures of green objects and a collection of pictures of leaves,
they can find the green leaves which form the intersection. .

Seriation implies reversibility by reciprocity and not by annulment.
For instance, in seriating lengths, one has to understand that element E
is simultaneously bigger than all the preceding ones and smaller than the
succeeding (E > D, and, the reciprocal relationship, I) < I£). Morgover,
once this problem is clearly understood, a new deductive way of composi-

- tion becomes possible through the application of a transitivity argument:

it A(R)B and B(R)C, then A(R)C-

The existence of this structure, very similar to that of classification,
accoupts for the success achieved from seven vears onward in problems
such as: (1) ordering sticks in an operational manuner—that is, first tak-
ing the smallest (or biggest) of all, then the smllest (or biggest) of
those left, and so on; (2) ordering dolls, walking sticks, and rucksacks of
different sizes so that one obtains corresponding seriations; and (3) order-
ing according to two different properties—for instance, counters of various
shades of blue and various sizes to be arranged in a double-entry matrix
(e.g., keeping size constant horizontally, colour ordered from pale to dark,
and keeping colour constant vertically, size ordered from sinall to big).

This concrete-operational period stretches from age seven to age twelve
and at the same time constitutes a complete elaboration of the types of -
reasoning made possible by these operations, an applicatior: of their power
to more and more difficult contents, and a preparation for the much more
powerful formal operations.

Formal operations

Since the concrete operations, as I have just said, bear only on reality
in the sense that they -are applicable to true and observable situations -
(whether the situation is actually present or not), the novelty of formal
operations is that they can bear on hypotheses—that is to say, on state-
ments that are not known, nor supposed to be true at the outset—and on
behaviour and propertics of objeets that cannot be directly observed. In
formalized terms, this means that propositional logic becomes possible,
admitting implication (if . . . then), disjunction (cither or both . . . or).
exclusion (either .. . or), incompatibility (or ... or. .. or neither nor),
and so on, between propositions. In terms of groups of transformations,
this implies that annulment by inversion and reeiprocity become com-
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bined and that therefore every transforinatior: is now at the same time the
inverse of another and the reciproeal of a third. -

Let me give just one example of the Jossib.dities that are now opened
up as far as the reasoning of ehildren at this level is coneerned. In a sit-
uation where an objeet is shown to mov and to stop whil» a light comes
on or goes out, a child of this age is capable of the following reasoning—
which ean be observed through the experiments he does, sinee -he can
manipulate the object. The first hypothesis might be that the light is the
cause of the stops ({ = s). This would mean that [ . §=0. But there
could still be stops without light (. s need not be 0).2 If, on the other
hand, the stop causes the light, then there could not be a stop without
light (.5 = 0), but there eould be light without stop (I . § need not
be 0). Therefore: (1) if [ = 8, then 1.5=0; and (2) if s =1, then
1.s=0. If, on the one hand, the light occasionally eomes on without the
object’s stopping, then hypothesis (1) is invalidated; if, on the other hand,
the object stops occasionally without a light, then hypothesis (2) is in-
validated. In Piaget’s formalization, these operations constitute a group
of four transformations such that N — RC,"R=NC, C=NR, and
I =NRC. Here I represents the identity transformation; N represents
the negation transformation; R represents the reciprocity transformnation:
and C represents the correlativity transformation. The.group table is
shown in figure 1. From the table one sees, for example, that RC = N
(from the R-row and C-column intersection), NC = R, and (NR)C = L.
This system unites both inversions and reeiprocities, which remained
separate in the incomplete grouplike structure of the concrete operations.

| 1 N R ¢

I I N R C

N | N g C R

R/ R Cc 1 N

¢cic R N 1
" Fig. 1

This very brief sketch of the main stages of cognitive deveiopment
leaves many aspects untouched. In particular, nothing has heen said
about what 1s called the semiotic function, the peculiarly human capacity
to represent objects and events by something else. This “something clse”
is not necessarily language, although language is certainly the most im-
portant part of the semiotic function; inental images, gestures, symbolic
play, and, even before any of these behavionrs can be observed or inferred,

2. Eorror’s Note. Here “.” means and and “0” means false.
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imitation in the absence of the model, are all part of this capacity to
represent reality (in the largest sense of the word). Evidently, this ca-
pacity of re-presenting reality—that is to say, of rendering it present—
extends the field of mental action enormously. Itliberates the child from
the-limiting constraints of the here and now: it enables him to recapitu-
late past events and to -anticipate future events. “In short, from an
organisin that reacts and acts in the face of present circumstances {ac-
cording to the actual situation), the infant becomes an individual v-ho
can begin to “know” and to plan. -

I have been asked to devote one period to the Genevan language experi-
ments, and a longer discussion on the semiotic funetion is needed as an
introduction to that paper. However, the representation of reality will
expression, drawings) when I talk about the different types of knowledge.
In faet, if this first sketeh has given the impression that cognitive devel-
opment is primarily or even uniquely a development of logie, I hasten to
emnphasize that this is not the ease. There are many different types of
operational structurations, and certain types are theoretieally distin--
guished one from the other. ’
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Some- Aspects of the Growth of
the Concept of a Function

&

The study I am going to deseribe attempted to measure the extent to
which the concept of a funetion had been mastered. It was earried out
at Leeds by A. Orton (1970), - - T

Recent work by the Geneva sehool ( Piaget. Szeminska, and Bang
1968) deals with the growth of understanding of some aspeets of the
concept of a function. It ean be shown that thé thinking of the preseliool
child may be eharacterised by a number of one-way mappings or fune-
tions, whieh contain qualitative identities but no real invariants. For
Piaget and his colleagues these one-way functions, functions in proeess
of formation, or contributary functions—however we cafe to call them—
represent, as it were, points of departure for the claboration of what
Geneva calls well-formed functions. However, it must be pointed out
that the experiments that Piaget, Szeminska, and Bang used to study
the growth of these well-formed funetions were linked with the scheme
of proportionality, for only those functigns in which laws of variation
play a part were considered. A function was considered as a rclation
between the magnitude of two quantities, the variation in one bringing
about the variation in the other in the same proportion,

The present-day mathematical definition of a funetion is more general
than that considered by Piaget. A function from a set X to a set Visa
relation such that if r € X, then there exists a unique y € Y that corre-
sponds to it. Nevertheless, an understanding of a function as now defined
in mathematies is dependent on Piaget’s stage of formnal operational
thought and the elaboration of second-order operations. The pupil must
be able to handle ratios between ordered values of variables and also the
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coneepts of continuity and limit, all of which are sometimes involved in
an understanding of functionality.

The only previous study of the development of the concept of a fune-
tion in mathematics in pupils of high school age was carried out by
Thomas (1969). Indeed, this was the pioncer study. Thomas used a
group fest on functions with 201 seventh- and eighth-grade pupils with
an average age of thirteen years. The mean 1.Q. of those for whom an

1.Q. was available was 125, so he appears to have been studying pupils

who were well above average in_ability. The next phase of -hix study
involved the selection of twenty subjects fer individual testing. This
was effected by random selection from subsets, these subsets being de-
fined by group-test response patterns, by age, and by sex. The responses
to sixteen tasks suggested four stages in thie growth of the idea of a
function. )

Tue Lerps Srupy

In the Leeds study all the pupils involved had a background knowledge
of sets, operations on sets, ordered pairs used for a variety of purposes,
graphical representation of ordered pairs, and clementary directed num-
bers introduced through the manipulation of vectors defined as directed
line segments and expressed as ordered pairs, Other work often demanded

a revision and extension of the eoneept of a function—for example, the-

study of geometrical transformations in two dimensions as a mapping of
one set of points to another, or the study of differentiation as a -limit
conneeted with the ratio of intervals of the number line mapped onto
itself. The point is that the eonecpts of relations and functions were
present in mathematics from the moment they were introduced, and no
pupil eould avoid meeting them in each year of sehool mathematies after
their first introduction.

It should perhaps be said ‘that for the purpose of this study, and gen-
erally for British school mathematies, function is used in the sense of
single-valued function. The function y = f(x), defined on X as domain
and with a subset of ¥ as range, gives a mapping of the set X into the
set ¥ such that for each » € X there is a unique image f(z) € Y.

The subjects

The subjects were all pupils in a mixed, comprehensive sceondary
school (ineluding eleven- through eighteen-year-olds). Eight boys and
eight girls were seleeted from each of the second through the fifth years,
together with eight students in the sixth year. This gave a total of
seventy-two subjects whe se ages ranged from twelve to seventeen years.
The cight pupils in their sixth year were highly select in that all were

-
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studying courses leading to the G.C.E. A-level mathematies examination.
There were only two girls in this group. The pupils from the other year
groups were chosen from the top four mathematics sets, so that almost
all the subjects were from the upper half of the ability range. But
subjects were chosen to give a spread of mathematical ability within
each set, such ability being judged by the students’ pravious examination
results together with the opinion of their” mathematics teachers for tie
year.

The function tasks

The function tasks given are indieated in the Appendix t: "= paper.
The fourteen tasks in part  tested a wide range of situation: and pre-
sented relations in all of the major representations—by diagram, by
graph, by ordered pairs, by table, and by equation. Further, in addition
to the ability to recognise a function, the forfiiation of the appropriate
range from a given rule and domain was eonsidered to be an important
part of the tasks. The idea of an inverse was introduced in task 9 and
was used thereafter.

It was not until the fourth year that pupils were introduced to the idea
of the composition of two functions. Thus, part 2 tasks were given only
to pupils in years four, five, and six. In addition, the part 2 tasks used a
more advaneed notation, the f-notation, and used rather harder relations
throughout.

Each pupi! was interviewed individually. the time required forzla?;

. . . . . YL -4
Interview ranging from 1 to 214 hours, with an average time 8f 134 hourd

The tasks were presented on individual cards, but follow-up and supple-
mentary questions were given orally. There was no time limit for any
task. Pupils’ responses were tape-recorded and later transeribed.

Function items and scoring procedure
>

The responses to the subdivisions of the function tasks were regrouped
to form items, each item relating to just one aspect of functionality. Thus
item 1 brought together all responses to “Is the relation a function?”
when the relation was presented as an arrow diagram. The relevant tasks
for this item were 1(vi), 2(iii), 2(iv), 2tv). and, to a lesser extent, 6(iv)
and 10, used only when additional evidenee was required. The subdivi-
sions of the function tasks were regrouped into sixteen scoring items’ for
part 1 and a further six for part 2. The iteins for part 1 were as given
below with the corresponding task numbers in brackets.

1. Does the arrow diagram represent a function? [1(vi); 2(iii), (iv),
(v); 6(iv)]

= 14
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Does the rule define a funetion? [3a (iii), 3b(iii), 4(ii3, (iii)]
How must the arrow diagram be altered? [2(iv), (v)]
Stating a discreie range. [4(iii)]
Stating a continuous range. [3a(ii). 3b(ii), 4(iii)]
* Describe the relationship in words. [3a(ii), 3b (i), 4(iii)]
Finding images and pre-images from graphs. [5(i). (ii): 7(i), (ii)]
Domain and range from a graph. [6(i), (ii)]
Convert a graph into an arrow diagram. [6(iii)]
Does the graph represent a function? [5(iii), 7(iii))
Ordered pairs. [8(i). (ii) ; 14(v), (vi)] )
Tabular form. [9a(i), tii); 9b(i), (i1)]
Problem concerning lockers. [11 and 12]
Mapping of square to circle. [13]
Time/height/weight/speed problems. [14(i),(i1), (iii)]

Difference between relation and function. [14(iv), some reference
to 14(v), (x1)]

The items for part 2 were the following:

17.
18.

19.
20.
21.
22..

Composition of functions defined on discrete domains. [15b]

Composition of inverse relations defined on discrete domains.
[16a. 0]

Range for mappings of real numbers. [17a]

Composite functions with equations. [17b]

Composition of inverses of functions with equations. [18] .
Equations for inverses and for composite relations. [17b, 18]

Responses to the items were assessed on a five-point scale. In order
to define the criteria for the scores for each item, each of the responses
was studied and common levels noted. For example, the criteria for tne
five levels of response to item 15 were the following:

1.
2.

Unable to attempt or incorreet attempt

A realization of what the situations are about and an attempt to
explain in terms of type of relation or arrows, but not up to level 3
Correet answers and explanation for task 14(i), but considerable
confusion over cither 14(ii) or (iif)

Correct answers to all parts, but explanations showing some con-
fusion or unnecessary complication

All parts answered well

15
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The criterid for the five levels of response in respect to item 20 were:

1. Unable to attempt or incorrect attempt

-2. Able fo make some correct statements about domain and range,
probably in terms of “first set,” “iniddle set,” and so on

3. .ble to answer (i) correctly with or without further questioning,
but unable to complete (ii) even with further questioning

4. Able to answer (i) correctly without further questioning and able
to complete (i1) after further questioning

5. Able to answer both parts without further questioning

Other tests

All subjects worked the AH4 test—a test of verbal and nonverbal
reasoning. It is often used in Britain as a reasoning or general-ability
test. In addition all pupils worked, individually, five tasks involving
number sequences and proportionality. The verbal responses of each
pupil were tape-recorded as in the other tasks. These tasks were taken,
with some amendment, from those used by Lovell and Butterworth
(1966). But in the analysis of the results, only the scores on the last two
tasks were used, since thesc are most closely linked with numerical appli-+”
cations of the concept of preportion. Thus task 4 involved the pupil’s
finding the missing number in the following example and explaining how
lie obtained it: -

8 ix related to 6
28 is 1elated to 21
10 is related to 7%

? is related to 9

The scores awarded were:

1. The subject recognises that the answer should be larger.

2. The subject attempts unsuccessfully to apply trial hypotheses - ther
than differencing,

The subject attempts differencing.
The subject obtainsa correct answer with differencing.
The subject obtains a correct answer with intuitive use of 3.

The subject can symbolise or otherwise verbalize the 4 correspond-
ence.

B W

o o

Analysis of the results -

We have already said that Thomas suggested four stages in the growth
of the idea of-a function (1969). But in view of the facts that tasks in-
volving operations on functions were not included in part 1 of the present
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study and that one of the purposes of part 2 was a study of the operation
of composition, it was necessary to redefine the stz;ges in order to classify
responses to the function items. Stages 1 and 2 as proposed by Thomas
were found to be almost dircetly relevant to the present study. Orton's
(1970) stage 3 for part 1 corresponds elosely with substage 3a proposed
by Thomas, while Orton’s stage 4 for part 1 corresponds to thei* . ration
of substages 3a and 3b of Thomas, with a greater degree of gener. 1;-y being
shown in the diseussion of the eoneept. The deseriptions of the stages
used by Thomas have been kept as far as possible in order that the two
studies may be compared. Thus part 1 responses were elassified by stages
aceording to the following eriteria:

Stage 1. The thinking of the pupil is essentially intuitive or conerete in
) nature. He ean earry out processes assoeiated with the fune-
tion concept when they are essentially arithmetic in character
or when the numbers of one set are assigned to those of another
by means of a line graph or table. The pupil interprets a rule
sueh as
) - r—>2r+44
as a sequence of operations to be performed on some specifie
numnber. But the coneept of a funetion as a speeial kind of re-
lation has not been mastered, and the extension of representa-
tion to new and less familiar forms such as the ordered-pair
graph is limited.

Stage 2. Pupils still do not understand the basic eriteria necessary for a
relation to be a funetion. But they do show a good grasp of
the relational aspeets of the egneept of funetion, in the sense
-that for all forms of representations of a funection useéd pupils
can find images, pre-images, and sets of images. Further, they
_are able to identify the domain as that set of elements that
are assigned images, while rules such as “add 15,” and
-2t 44

are now thought of as operating on any nunber of the specified
domain.

Staze 3. The basic charaeteristic of this stage is that subjects can
identify relations in several types of representation of funetions
and not functions and ean gi. . Adequate eriteria for each such
discrimination, Subjects have mastered the basie eoneept of
a funetion. They can identify inverse relations as functions or
not functions, but they do not always take care to check the
uniqueness of images or to check that they have defined & rcor-
reet domain for the inverse.
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Stage 4. Pupils now display mastery of the basic coneept of a funetion
to a greater degree of generality than that of subjects at stage
3. All representations of relations can be elassified as funetions
or not functions, with a preeise analysis of the uniqueness eri-
terion. Inverse relations are defined with correct domain, and
uniqueness of images is checked.

In most eases, stages 1, 2, 3, and 4 of part 1 eorrespond to item seores
of 2,-3, 4, and 5 respeectively, but there were some-exeeptions. Item 4, on
stating a diserete range, produced very few spontaneous correet responses
(score 5), and an item seore of 4 must be considered to represent a stage
4 response, there being no item score equivalent to a stage 3 response.

For part 2 responses, in which the emphasis of the tasks was on the
composition of relations, together with the use of notation (f, 11, ete.),
it was more difficult to define directly comparable stages. However, the
Leeds stages are:

Stage A. Suceess with tasks related to the composition of functions and
relations, and of their inverses, is limited to finding images by
sequeneing assignments in the comnpositions. Domain and range
can only be identified in simple cases and by direet reference
to a diagram. T

“~«e B. Subjects are successful with some of the tasks involving com-
position, and, in particular, are able to define domain ‘and range
in simple cases without being restrieted to those members con-
tained in a diagram.

Stage C. Pupils can complete tasks involving eomposition, with some
indieation that the processes ean be thought of as operations
on a set of functions. Subjects are able to identify domain and
range, including domain and range for composition of inverse
relations, but they have difficulty in checking the uniqueness
eriterion in inverses.

Stage D. At this stage complete mastery over compositions is exhibited
and classification of relations as functions or not funetions is
consistent. Even in the eomposition of inverse relations the
domain is eorreetly defined and the uniqueness ecriterion
checked.

In part 2, one item, 19, should be singled out as being more appropri-
ately connected with the stages of part 1, sinee this item did not involve
the composition of relations and functions but involved the Tonsideration
of the range v: functions defined by equations. However, the definition
of the part 2 stages corresponds with the definition of part 1 stages with
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respeet to eoneept formation, and thus for eonvenienee this item’s re-
sponses were elassified on A, B, C, and D stages. For all the part 2 items,
the scores of 2, 3, 4, and 5 eorrespond to the stages A, B, C, and D re-
speetively.

Results

Table 1 shows the number of part 1 responses at stages 1-4, with the
figures in parentheses indicating the percentage of responses. There were
256 responses for each of the years two to five and 128 responses for
year-six subjeets. In some instanees subjeets had not even reached stage
1, so that the figures for a year group do not add up fo 256 or 128.

" TABLE 1

Distribution of Responser by Year Group and Stage: Part 1

Year Stage
Group 1 2 3 P
Second 65 (254) 32 (125) 27 (10.5) 64 (25)
Third 39 (152) 49 (19.1) 42 (164) 107 (41.8)
Fourth 45 (17.6) 38 (14.0) 24 (94) 130 (50.8)
Fifth 28 (10.9) 50 (195) 40 (156) 132 (51.6)
Sixth 3 (23) g9 (8.0 18 (14.0) 94 (734)

" One single sixth-forin pupil aceounted for all the responses that were
below stage 1 in that year group.

Table 2 shows the number of part 2 responses at stages A-D, with the
corresponding pereentages in parentheses. There were 96 responses in
cach of the fourth and fifth years and 48 responses in the sixth year.

TABLE 2

Distribution of Responses by Year Group and Stage: Part 2

Year  : Stage

Group ) A B C D
Fourth 37 (385) 36 (375) 7. (13) - 7 (13)
Fifth 30 (31.3) 30 (313) 19 (19.8) 8 (83)
Sixth 5 (104) 12 (25) 18 (37.5) 13 (27.1)

Table 3 shows the mean seores for the proportion and funetion iteins
as a pereentage of the maximum possible. The maximum seore for the
funetion items was 5 and for the proportion items 6, these being the
seores awarded for the answers for whieh the teacher would hope and
strive. Table 3 shows that the part 1 items are, on our system of seoring,
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TABLE 3

Means: Proportion and Function Items ’
(Expressed as Percentage Conect)

Year
Group Proportiaon Function (part 1) Function (part 2)
Second 442 58.6
Third 56.7 754 e
Fourth 658 772 53.0
Fifth 65.0 820 574
Sixth 775 89.0 764

casier than the proportion items, with the latter being casier than the
part 2 items.

Intercorrelations were eomputed between the scores obtained on the
function tasks in part 1, the AH4 test, and the proportionality task scores.
The scores on the proportionality tasks correlated highest with the AH4
scores. The intercorrelation matrix was subjeeted to.a principal-compo-
nents analysis whieh yiclded a general factor aceounting for 48 pereent
of the variance. All the loadings on this ecomponent were positive and
significant. For example, items 11, 10, 12, 1, and 15 all correlated greater
than 0.8 with this component. It appears to refleet a strong intelleetual
and edueational dimension at the centre of the pupils’ knowledge and
recognition of funetions in all the different ineans of representation; it
also corrclated highly with the items involving problem situations.
Finally the scores obtained by the second- and third-year pupils on part 1
of the funetions items, also those obtained by the fourth- and fifth-year
pupils, were separately subjeeted to analysis of variance. There were
significant differences due to age, ability (score on the AH4 test), and
item in both instances, but in necither analysis was there a sccond or
higher-order interaction.

Discussion GENERATED BY THE Leeps RestLTs

There is now some discussion of issues arising out of this study which
need investigating further. The following points are made by Orton
(1970).

-

Functions and proportions

It has already been indicated that the basic coreept of a funetion is
less related to intelligence than is the concept of proportion. At the same
time, many functions defined by simple rules do involve proportion. For
example, task 4 involves the proportion .
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y—5:x=2:1.

In this respect the older definition of a funetion—which required an equa-
vion or a law of variation, or a table of values sueh as would arise from
an cquation or law—is more assoeiated with proportion than is the more
general definition used currently in mathematies. With the present defi-
nition of a funection it is possible to study functions and relations without
the added complication of proportion. But the modern definition does
have the disadvantage that it introduces technieal terms and some addi-
tional notation. And. of course, when functions are defined in the present,
more general way, as a type of relation, sooner or later simple equations
that involve proportionality must be introduced. The functions defined
by equations which summarize more complicated rules of variation, such
as the trigonometric functions, would thus appear to be more difficult
than sonie algebraie functions in whieh the law is relatively simple. Here
is a topic that needs investigating.

Many of the sceond-year pupils had not grasped the basie idea of a
funetion and did not recognise a function even in sinple eases. In this
age group, some children wanted to define a function as a relation that
produced a pattern, or a combination of patterns, when plotted on an
ordered-pair graph. The pupil who tries to use patterns to identify func-
tions is using an incorrect definition of funetion, but it is one that is more
closely connected with the old definition of function than with the new.
The type of function which produees a straight-line graph, and so involves
a law of proportion, was more readily identified by some of the younger
children as being a function simply because they had not learned the
basic definition of function, and not because funetions involving pro-
portionality per sc arc more readily identifiable. The confusion of many
second-year pupils and their desire for pattern suggests that if the mod-
cern definition of function is to be used, the property possessed by some
elementary funetions—namely, that points on the graph form a particular
kind of pattern—should not be mentioned too soon. There is insufficient
evidence from this-study to suggest good ways of introducing functions
that involve proportion, but it would seem inadvisable to study such
functions until pupils have considerable experience with the general case
outlined by the basie definition. The growth in understanding of that
subset of funetions involving proportionality is a researeh area that needs
attention at once. .

Types of relation

A function ean be defined as a one-to-one or many-to-one relation, hut
a serious disadvantage of this approach to a definition of a function was
apparent in the younger age groups. There was considerable confusion
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between the meaning of many-to-one and of one-to-many. The clearest
indication of a reason for this confusion was provided by those subjects
who said that the diagram shown in figure 1 is an arrow diagram for a
many-to-one relation because many pre-images are mapped onto one
image. However, they said, if the number of arrows associated with
each member of the sets is counted, then there is one arrow leaving each
member of the domain, but many arrows arriving at a single image, hence
one-to-many,

X

Fig. 1

Our evidence suggests that it may be better to attempt to define a
function at first in terms of uniqueness of images of members of the
domain—in an arrow diagram only one arrow leaves each member of the
domain. The classification of relations into types is also important, but
it might be wiser to keep the work on relations apart from the definition
of a function at first. One must, of course, admit that in Piagetian terms
the failure of pupils to separate the meanings of one-to-many and many-
to-one indicates a lack of operative knowing. For in operative knowing,
knowing is related to the construction and functioning of the known
thing—in, our case, a mathematical function. The issue raised in this
section needs investigating further. '

Graphs of relations

Many of the second- and third-year pupils were unable to interpret the
graphical (Cartesiun) t s with confidence. The principal-components
analysis suggested tha: iae interpretation of graphs is related to age.
There seems to be a strong clement of practice or experience involved in
the ability to interpret graphs of relations and functions. The graphical
tasks involving finding images for given pre-images and vice versa, listing
the members of the domain and the range from a graph, and converting
the graph of a relation into an arrow diagram or into a set of ordered
pairs were difficult for vounger pupils. There is a need for further re-
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seareh into the difficultics of pupils in the early stages of learning about
graphs of funetions.

2

Relations and functions

The results obtained from item 16, involving'the difference between a
relation and a funetion, demand speeial mention, for many of the re-
sponses were unsatisfactory. If funetions are approached through a study o
of sets and relations, there appear to be diffieulties. The main difficulty
. - — seems to be that many pupils are not elear about the meaning of the
teehnical term relation in mathematies. The distinetion between the
terms relation and relationship is subtle and not appreeiated by younger ~
pupils, and some mathematicians may deny there is any point in making
the distinetion. It is<the relationship or rule defining the relation which
children want to take as the relation itself. The erm relation has more -
general and varied meanings in everyday life than in inathematies, and
children use the word when relationship may be a better term mathe-
) matically speaking. If the definition of function is to be based on a
- definition of relation, then it must be made clear that the term relation
in mathematics does not mean exactly the same as the identieal word
used in other contexts. Our study aimed to investigate the growth of
childrer’s understanding of functionality, and only ineidentally has the
concept of relation eome inte it; but it appears that researeh into ehil-
dren’s understanding of relations themselves is necessary.

Continuity

Although the eoncept of continuity is distinet from that of funetion
the former is, nevertheless, involved in the study of many functions,
particularly when the funetions are defined by equations. In the prin-
cipal-components analysis it was found that performanee on those items
that involved eontinuous sets or ideas of infinite sets appears to be related
more to measured intelligence than to age.

The number line was not used in this study, but research nceds to be

- carried out to establish if with items involving a eontinuous domain, the
number line is a more appropriate pietorial representation than the arrow
diagrani. It would be worthwhile to establish if the line leads to a greater

. understanding of mappings defined on the set of real numbers than did
the arrow diagram ugsed throughout the present study.

Item 14 also produeed interesting results with respeet to »- ‘inuity. In
mapping the points around a square onto a cirele, and ,/.thc inverse

. mapping, some of the older subjeets had to think very hard about whether
the mapping was one-to-one, and they were clearly eonsidering what
happened to points that were eclose together. This was a diffieulty that

-
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younger subjects did not, in general, appreciate. for many of the responses
from younger children indicated that they. were thinking in ters of dis-
crete sets anyhow. In contrast, the placing of (', at the corner of the
square, thus making it coincide with a point on the circle, while confusing
many younger subjeets, did not prove difficult for older oies.

Problem items -

*

Perforinance onitems 13. 14, and 15 was more closely related to intelli-
gence and age than was performance on items that demanded recognition
of functions from arrow diagrams, rules, graphs, and ordered pairs. The
responses to the question involving school lockers were poorer than ex-
pected. although the situation was concrete and familiar to the pupils.
Two rearons may be advanced. First, the unused lockers of situation
11(ii) caused confusion, there being a failure to discriminate codomain
and range. Sccond—and more imnportant—the presentation of a many-to-
one relation and a one-to-many relation in the last two parts. (iii) and
(iv). led to the usual confusion between these types of relation.

Item 15 produced a distinct range of difficulty of questions. The easiest
task was the relation that mapped

{age} = {height},
for in this nearly all pupils realised and used the fact that age can only
increase. This was not the case in part (iii), which involved time: here
pupils did not appreciate that time can only inerease. The relation of
part (ii),

“

{height} = {weight},
proved to be a very good vehicle for testing understanding of the concept
of a funetion. It was necessary for subjects to consider all the possibilities
that con arise in the

{beight} - {weight}
relation. Those subjects who assumed that height and weight varied
together were reminded that adults, who normally stay the same height,
can fluctuate in weight and that inerease in height does not necessarily
involve a change in weight. This presented subjects with a variety of
possibilities to analyse, some of which implied funetionality and others
not. Tasks involving familiar situations may pose unexpected difficultics.

Composition

A clear conclusion to be drawn from the responses to tasks involving
the composition of functions is the need, among many pupilg, for a dia-
gram showing the successive stages in the comnposition. This argues a
lack of understanding of the operational nature of composition. In par-
ticular, it was noted that where the diagram accompanying a task de-
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picted gf—that is, f first followed by g—responses to gf were relatively
good but responses to fg were very poor. An understanding of the com-
position of functions was arrived at by a few of the abler subjects in
the fourth and fifth vears.

Equations

Subjects were asked to find cquations only in the last two tasks of
part 2. The easiest questions were those that involved finding the inlverse
of a relation for which the cquation was given. Much harder was the
problem of finding the equation for a eomposite relation when a diagram
was available illustrating the suceessive assignments. Hardest of all_was
the problem of finding the equation when there was no diagram availalle
to show successive assignments, irrespeetive of whether this composition
involved inverses or not. Further research is needed to confirm our view
that the study of inverses of relations and of the most elementary eom-
pdSitions-is appropriate for the nore able pupils in the fourth and fifth
years”

Conclusions

Some aspeets of the concept of a function, introduced in a very con-
crete manner, ean be grasped by pupils in the clementary school who are
at Piaget’s stage of concrete-operational thought. But it scems that at-
tainment of the eariyy stages of formal-operational thought—Piaget’s
stage IITa—is necessary before pupils are able to tackle the tasks indi-
cated in part 1 of this study. The tasks set in part 2 demand a more
developed and flexible formal thought, characterised by Piaget's stage
IITb. As in all other content areas, the more the pupil is familiar with
the ideas involved in the concept of a funetion and the more expericiee
lie has of handling functions, the more likely—other things being equal—
it is that formal thought will be available to him in this eontent arca and
hence that an understanding of the concept of a function will develop.

APPENDIX

Part |

1. Study the arrow diagram shown in figure 2 for a relation that maps
{=3, =2. -1,0,1, 2, 3}
into

{0, 1.2. 3. 4},
25
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Fig. 2

(i) Write down each image of 2.
(ii) Write down each number that has 2 as its image.
(iii) Write down the domain for this relation.
(iv) Write down the set of imnages.
(v) Write down the range for this relation.
(vi) Is this relation a function? o
2. The arrow diagram in figure 3 shows the relationship “has this nun-
ber of prime factors” from
{3. 4. 6. 18. 30}
to
{1, 2, 3}.

Fig. 3

2

(i) What is the domain for this relation?

(ii) What is the range for this relation?

(iii) Is this relation a function?

(iv) If the clement 12 is added to the first set, how must the
arrow diagram be altered?

(v) If, instead, the element 4 is added to the second set, how
must the arrow diagram be altered? Is this new relation a
function?

I
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3. a. The arrow diagram shown in figure 4 is for the relation given by

the rule ‘
r=>r45 7

The domain is the set of real numbers, and a few examples are

shown.

I
w

~ Fig. 4

(i) What is the image of 57
(ii) What is the range?
(iii) Is the relation a function?
(iv) Describe the relationship in words.
b. The arrow diagram shown in figure 5 is for the relation given by

L the rule
z-» 37.
The domain is again the set of real numbers, and a few examples
are shown.

Fig. 5

(i) What is the image of 67
(i) What is the range?
(ii1) Is the relation a funection?
(iv) Describe the relationship in words.
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4. A relation is given by the rule
r=>2r-5.
(i) What ix the image of 4?
(i) If r is a natural number, that is,
ref{l,2.3.45.6,...},
what is the range? Is the relation a function?
(iii) If 2 is any real number, what is the range? Is the relation
a function?
{iv) Deseribe the relationship in words.
5. The ordered pairs of a relation are shown on the graph in figure 6.

5
) !
i
3
2 ®
| ® ®
- ® -
- 2 40 1 2 3 4 5 &
G CTR ®
@2’{
® 3;
Fig. 6

(in Write down each image of 4.
(i) ‘Write down each integer that has 1 as its image.
(iii} Is this relation a funetion?
6. For the previous relation,
(i) Write down all the members of the domain.
(ii} Write down the set of images.
(iii) Draw the mrrow diagram for this relation.
(iv) Look at your arrow diagram; is this relation a function?
7. Study the graph of ordered pairs for a relation shown in figure 7.
(i) Write down cach image of 3.
(i3 Write down cach integer that has 2 as image.
(iii} Is thix relation a funetion?
8. For the previous relation
(1) Write down the set of ordered pairs.
(ii) Looking at the =et of ordered pairs is this relation a
function? }
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5 ®
3 4 ®
3; ®
2 ®
1 ®©
i &
f . 4
210 1 23 45 6
“]+ @
. 2 @
-39
Fig. 7

9. a. The table in figure 8 shows the pairs of values for a relation
x>

_ Fig. 8

(i) Is the relation a function?
(ii) Is the inversc relation a function?

b. The table i figure 9 shows the pairs of values for anothier rela-
tion, r — y.

Fig. 9

(i) Is the relation a funetion?
(ii) Is theinverse relation a function?

10. a. The arrow diagram in figure 10 shows a relation between tivo sets
of numbers. -

(i) Is the relation a function?
(i) Is the inverse relation a function?
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i

(ii)

(iii)

Fig. 11

(i) Is the relation a funetion?
(i1) Is the inverse relation a funetion?

11. Class 2X, whose forin room is a laboratory, was given lockers out-
side the room. ‘ :

Ly

(i) Every member of the class was given a locker, and there

were no lockers left over. Is the relation

(Members of 2X) — (Lockers)
a function?
If there were tro wany lockers but each pupil was only
allowed one locker so that some lockers were left unused,
is the relation

(Members of 2X) — (Lockers)
a funetion?
If there were too many lockers and some members of the
class took an extra locker so that a few of the class had two
lockers, is the relation
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(Members of 2Y) — (Lockers)
a funetion?
{iv) If there were not enough lockers to go around and some
pupils had to share a locker with someone else in 2X, is the
relation

(Members of 2X) = (Lockers)
a function?

12. Consider the inveise relations of those in question 11 and decide
which, if any, are functions.

13. The diagram in figure 12 shows a relation between points on a square
and points on the circle that is drawn through the four corners of the
square. The points and their images are all drawn so that lines con-
necting them would pass through the center of the circle, marked 0
on the diagram. Consider the inverse relation of this.

Az

/ A1 Az
6 that is. 4: is the
image of 4..

3 /C'

Ing. 12

(1) Find the image of D. in the inverse relation.
(ii; Is the inverse relation a function?
14. Consider the following:
(1) Is the relation (Your age) — (Your height) a function?
(i1) Isthe relation (Your height) — (Your weight) a function?
(iii) Is the relation (Time) — (Speed of a car) a function?
(iv) What is the difference between a relation and a function?
(v) Write down a set of ordered pairs which is a relation but
not a function.

Part 2

15. A function f maps a set A onto a set B, and a function g maps set B
to ot C, as snown in the diagram in figure 13.
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Fig. 13

a. Write down:
iy f(hy

— (i) ¢(2)

(iii) ¢f (3
(iv) fgt(1)
b. Answer the following:
(1) What is the domain for gf? What is the range for gff s
gf a function?
(i) What is the_domain for fo? What is the range for fg? Is
fg a fu ction?

16. Draw the arrow diagram for the inverses of fand ¢ in the previous
question, using the same sets, and use vour diagram to answer «
and b.

a. Write down:

ti) f1(3)

iy g2 '

(i frgM 1) B

tiv) g*f1(2) -
b. Answer the following questions:

(i) What are the domain and range for f1? Is f' a function?

(i) What are the domain and range for g2 Is g™ a function?

(ili) What are the domain and range for f1g1? Is g a

function?
(iv) What ave the domain and range for ¢'f1*? Is ¢if1 a
function?

17. a. Consider the following:
(1) What is the range if f is the functionx = 2 4+ 1 whereris a
real number? .
{ii) What ix the range if ¢ is the function & — 2* where # is a
real number?
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(111) Complete the diagram shown in figure 14, which shows the
two functions together. Four real numbers are used as
examples in the domain for f.

~

Ve > RN // ’ ‘\\\
/ o * \ —— / \\ A //
/

\
|
i Y ;

'.\ 3 / /’ \ . ; / \ ) /"
N / \ / K S
S AN - // -

Fig. 14

b. Answer the following questions:
(1) What is the range for gf? Is gf a function? What is gf in
the form r — y?
(1) What is the range for fg? Is fg a function? What is fg in
. the form z — y?
18. Complete the arrow diagram in the previous question for the inverses
of fand g.
(i) Is f! a function? What is f1'in the form x — y?
(i1} Is g* a function? What is ¢! in the form z — y?
(iii) Is f'g’! a function? What is f7g™ in the form xr — y?
(ivy Is ¢7'f1 a function? What is g71f"% in-the form x — y?
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Epistemology, Research, and
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o

In 1927 P. W. Bridgeman’s book The Logic of Modern Physics appeared
on the Ameriean scene. Bridgeman was eoncerned about the semantic
difficulties physieists wcre having with sueh mundane terms as length
and time. These difficultics were brought to the forefront by the Einstein
theory of relativity. Bridgeman caine to the conelusion that one knows
,the meaning of a term if it is possible to point to some overt action to
whieh the term refers. In fact, in this book (p. 5) he says: “The concept
Is synonymous with the corresponding set of operations.” Attempts have
been made to apply Bridgeman’s line of thinking to psychology (Stevens
1935). However, it seeins to have had few followers.

At about the same time that Bridgeman’s work appeared, Piaget’s
The Language and Thought of the Child was published in English
(1926). Piaget, like Bridgeman, places the emphasis on overt actions,
or operations.

An operation is thus the essence of knowledge. For instance, an operation
would consist of joining objects in a class to construct a classification. Or an
operation would consist of ordering, or putting things in a series. Or an opera-
tion would consist of counting, or of measuring. In other words, it is a set of
aetions modifying the objeet, and enabling the knower to get at the structures
of the transformation. [Piaget 1964, p. 8]

Whether Piaget and Bridgeman ever heard of each other, I do not
know. Most certainly as epistemologists they have much in eommon.
The twn influenced two entirely different sets of people. In the main,
Bridgeman’s work was taken up by the philosophers. Piaget's work, on
the other hand, has had its major impaet on the psychologists.
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It is well known to all attending this conference that the ideas of
Piaget have stimulated inuch research on the thought proeesses <. chil-
dren. Many of these studies have been of interest to those of us inter-
ested in mnathematies instruetion. However, as a teaeher of mathematies,
I am concerned about the ambiguity and, at tines, mathematieal error
that creeps into the reports of some excellent research. In the words of
Parsons (1660), who reviewed Inhelder and Piaget’s The Growth of
Logical Thinking, “One nust protest against so mueh ambiguity and
obseurity in the use of logical symbolism” (p. 78). Most certainly,
research would be enhaneed and comnmunication channels more clearly
established if the researcher explieitly stated how certain key words
“iere used and how they fitted into a strueture of the subject under con-
sideration. Vague usec of sueh relational ternis as more than and shorter
than, as well as terins referring to various aspects of number, too fre-
quently leaves the reader in a quandary. This vagueness also affects the
interpretation of the results of the researeh. Relational terms can be
operationally defined and must be so defined for the ehild in any instrue-
tional program. It is the first major task of this paper to clarify and

_ strueture some of the ideas that are found in the researeh literature and

B

. in instruetional programs. The foundational terins for research and
instruetion are the same. This is not surprising, sinee research and
instruetion have related goals.

OreratioNnan DeriNiTioONs oF CERTAIN RELATIONS

The key idea underlying the developinent of mathematiea! eoneepts,
even that of conservation of number, is the idea of relation. Relations
ean, and must, be “operationalized” in order that they ean later be
applied to number. A speecifie illustration or two will help elarify the
import of sueh a statement.

The tenns longer than or as long as are frequently thought of as being
based on number. It is, of course, possible for an adult to reduee any
sentence containing these terins to a number eomparison—that is, to
restate the problem in terms of a relation between two nuinbers. How-
ever, to think of relations between numbers presupposes the econeept of
number. For the young ehild whose coneept of number is immature this
is not possiblc.

To define longer than operationally, stick A and stick B are laid side
by side so that one end of A coineides with an end of B. Then if the
second end of 4 extends beyond that of B, we can say that stick A is
longer than stick B. This immediately leads to the study of the relation
longer than. We diseover, by overt actions, that:
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1. A isnot longer than A.
2. If Aislonger than B. then 1 is not longer than .
3. If A is longer than B and B longer than ', then A ix longer than .

All these ideas can be established, if it scems desirable, without number
and by usc of overt actions.

In mnuch the same way, it is possible to define operationally as long as
and discover that (here “R” stands for as long as) :

1. AR thati& A is as long as A.

2. If ARB, then BRA.

3. If ARB and BRC'. then ARC.

The second illustration involves the elassical situation in whieh two
rows of objects are placed the one under the other and in one-to-one
correspondence. This situation involves the term as many as. Here again
number is-not the fundamental ingredient. .

What does the term as many as mean? We say there are as many
apples in basket 4 as in basket B if we can mateh each apple in A with
just one apple in B and each apple in B with just one apple in A. These
operations define as many as in a specific case. The child then learns
that we use the term as many as whenever there is a matching of elements
in set A with elements in set B. This matching must be a one-to-onc
correspondence. ]

As many as is also a relation. If “R” represents as many as and A, B,
and (" represent sets, then we write:

1. ARA.
2. If ARB, then BRA.
3. If ARB and BRC, then ARC.

In fact, as many as has the same properties that as long as has. This is
not surprising in view of the way we use these terms. Piaget (1952, p. 55)
calls these terms quantitative relationships. From a mathematical point
of view, these are relations between sets of objects and not necessarily
relations between numbers. Operationally, they are casily defined in
terms of actions that do not involve number or quantity. What impli-
cation does this have for the classical situation used to test for conserva-
tion of number? Suppose we have a row of nickels and another row of
candies, with candies and nickels in one-to-one correspondence. We ask
a four-year-old child, Are there as many candies as nickels? If the chid
answers in the affirmative, does this mean that he has some concept of
number? Not at all. It niay mean that the child has learned how adults
use the term as many as and observes that the apples and nickels are
properly matched. He may have no concept of number,

Now suppose we spread the candies out so that the row of candies
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is longer than the row of nickels and ask the same question. Suppose
the answer is in the affinative. Does this mean the child conserves
number? Not necessarily. It may mean he conserves the one-to-one
correspondence. If he answers in the negative. it could mean that he
failed to observe that moving the candies did not destroy the corre-
spondence. The conscrvation of one-te-one correspondence is the key
idea in this situation and not-the cons.rvation of number. tIn this con-
nection, it is interesting to observe that there is a basic theorem in
mathematies which states that if two sets are in one-to-one correspond-
ence, then they are in one-to-one correspondence regardless of how the
clements are arranged. It would be interesting to observe when children
~ense this basie theorem.)

There are a number of other relational terms that can be operationally
defined for children and should be so defined for research studics.
Among these are fewer than and less than. It is cssential that relational
terms be understood (internalized) by the child because he must use such
terms to study the order relations for numbers. Failure to recognize these
terms as relational terns, and not numerieal terms, leads to questionable
interpretation of experimental results, For example, Piaget’s (1952, pp.
123-57) elassical staircase problem (ordering a number of sticks in order
of size) is clearly a study of one characteristic of the order relation
bigger than and is not necessarily a study of ordinal numbers,

But where does nuinber enter into the pieture and how? What is
number? We now turn our attention to these erucial questions.

Waat Is NvMBER?

There is more confusion surroundling the concept of number in both
instruction and researeh than surrounding ahnost any other mathematical
coneept. There really should be no more mystery surrounding the use
of this term than there is surrounding the use of the word cat. As a result
of this confusion children are confused, teachers are confused, and re-
searchers block lines of communication.

Number involves relations between sets. Two sets A and B are equiva-
lent, written “A ~ B, if to each element of A there is a unique element
of B and to each element of B there is a unique clement of A. Under this
condition the following relations hold:

1. A~ A (reflexive).
2. If A ~ B, then B ~ A (symmetric).
3. If A ~Band B~ C.then A ~ C (transitive).

Now number for the child is simply a noise we all agree to make
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whenever we see a set A or any set equivalent to A. Thus, the noise
“five” is uttered whenever one is referring to the collection of fingers on
one hand. We agree to make this same noise when referring to the col-
lection of pennies equivalent to a nickel. This may startle some peeple,
but it ean be put on a sound mathematical basis. This will be done in
the next fo.: paragraphs. However, let’s look at an analogue. What is a
hook?

A book is. at times, a collection of objects having the set of properties
{P1. P2, Py, ..., P,}. The symbol book then denotes the set of objects
having the properties Py, Py, Py, . . ., P,. The sentence “The book is
the foundation of American education” illustrates how the word book
can be used to denote a class of objects.

On the other hand, book also denotes a member of a class. The sen-
tence “The book you see on my desk is not mine” illustrates how, at
times, book denotes a member of a class of objects. ’

A child first learns the member-of-a-class meaning of book and later
the class meaning. In this sense, the child learns to make the noise
“book” whenever presented with an object having the necessary
properties.

In much the same way. a number, such as four, is a class of objcsts,
namely sets, having certain properties. From the point of view of mathe-
matics, “relations between cardinal numbers are merely a more con-
venient way to eypress relations between sets” (Hausdorff 1957, p. 29).
That this is a natural way to think about cardinal numbers is brought
out by the “empty hat” approach to cardinals. Taking this approach, we
define zero to be the empty set.

DeriviTion: 0= { ).
Then we set up a means to get a successor to zero. In effect, it is simply
“adding one more elerment”’ to each sot.

DeriNimios: The set A U {A} is the successor of the set A.
It is now casy to write down all the cardinal numbers in terms’ of set
relations:

1=0U{0} = {0}

2 =1U{1} = {0,1)

3 =2U(2} = {0,1,2)
4=3U {3} = {0,1,2,3)

N4+1=NUN} ={0,1,2...,N)

From the above standpoint, the cardinal numbers are only sets of a
particular kind. To establish the cardinality of a set K, we find a set
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Z in our table of standard sets that is equivalent to K. In actual praetice
the eounting set
{1,2,3,4,. .., \}

is used to establish cardinality. The important point to remember is that
“four” is a particular set. Then “four” is transferred to all sets that are
equivalent to it and ealled the number of the set. Thus the set of legs
of a horse is equivalent to the set {0, 1, 2, 3}, whose name is “4.” This
enables us to say that a horse has four legs.

As has been observed, in actual practice we order the cardinal numbers
and forin an ordered set whieh we call the counting set. To say that a
partieular number is a set of a particular kind and that the symbol for
that set is the symbol for the last element in the ecounting set is not at
all mysterious. Certainly it is no more mysterious than naming a dog.
The child learns dog as the word applies to a partieular dog, maybe a
police dog. He then learns to apply it to ecollies, poodles, St. Bernards,
and so on. In faet, he applies it to any nember of a whole assemblage
of animals. In the samne way, a child learns to apply five to the set of
fingers on one hand. He then learns that five is applied to any discrete
set of objects that are equivalent to his set of fingers. Five is applied
to a whole assemblage of sets and we say, “The number in the set is five.”
All we mean is that the clements of the set can be plaeced in one-to-one
correspondence with the set {1, 2, 3, 4, 5}.

To complete the mathematieal foundation, it would be necessary to
establish a system of names, an ordering relation, definitions of addition
and multiplieation, and so forth. We do not have time to do this. How-
ever, a few paragraphs must be devoted to ordinal numbers. It would not
be profitable to give a mathematieal foundation for ordinals. Henee, I
shall sketeh the basic idea of ordinal nuinbers.

OrpinAL NUMBERS

For cardinal numbers the basic idea is that of equivalence. For ordinal
numbers the basie idea is that of similarity. An ordinal number, like a
vardinal number, is merely an abbreviated way of talking about sets.

Two ordered sets M and N are similar when the elements of M and
.V can be placed in one-to-one eorrespondence in such a manner that

if for any two elements of M, m, and m;, the relation m®Rm; holds,

then for the eorresponding elements of N the relation nRn; holds.

On the basis of similarity, ordered sets can be classified and assigned an
ordinal-type. If the set is sueh that it and all its subsets have a first
element, then we speak of an ordinal nuinber.
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Finite sets that are equivalent are also similiar. Hence, all sets having
the same finite eardinal number also have the same ‘ordinal-type or
ordinal number. For practieal reasons, we use the same symbol for the
ordinal aumber that we use for the cardinal number when the sets are
finite. Herein lies a vast sea of confusion. Both in rescareh and in
instruction, the terms ordinal and cardinal are frecly used and almost
never defined operationally for the ehild and in terms of mathematieal
strueture for the resecarcher.

In the physical world there are events that have a natwral order from
the point of view of time,_place. or arrangement. We could use the
alphabet and speak of the bth individual to enter a room. This is not
usually the case. Instead, we use the standard counting set, which is a .
well-ordered set, and assign the eleiments of this set to the individuals
entering the room in a preseribed way. The important feature to note
here is that “4” is assigned to one and only one object. This is in con-
trast to the use in the cardinal-number sense where the four is assigned
to a whole set. Sinee the counting set is ordered. we use tlis ordered
set as a communication instrumnt to order sets of obicets. This is the
“practical use” of the cardinal symbols to express order,

The development of the cardinals, sketehed in this paper, is simple
and straightforward, There is no mystery attached. It is possible to
define *t operationally for the child—a highly important feature. Fur-
ther .ove, it is not a conglomeration of ideas. In this respeet one must
disagree with Piaget when he says:

’

The whole number is neither a simple system of class inclusions, nor a
simple seriation, but an indissociable svnthesis of inclusion and seriation. Lo~
The synthesis derives from the abstraction of qualities and from the fact that
these two systems (elassifieation and seriation), which are distinet when their
qualitics are conserved, beeome fused as soon as their qualitics are abstraeted. -
[ Piaget 1967, p. 83]

The difficulty with this conception of number is that it does not dis-
tinguish between the clements of a set and the relation that exists be-
tween two or more elements of ths set. The study of the order of whole
numbers is the study of a relation thdt exists between two numbers and ’§
has the usual properties of an ordér relation. It is one of the many types
of relations existing in mathematies. One should not say that these rela-
tions arc an integral part of the concept of a number, such as six. Assign-
ing the property of a set of objects to individual objects is a common
error. This confusion ean only block communication, obfusecate essential
issues, and delay obtaining reliable answers to rescareh problems.

In much of the reading of psychological foundations of number, one
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eries in vain for a preeise statement of the experimenter’s coneept of the
ideas under investigation. For example:

Number is at the same time 2 class and an asymmetricat relation, the units
of which it is composed being simultancously added because they are equiva-
lent, and seriated beeause they are difierent from one another. [ Piaget 1952,
p. 184]

Additive and multiplicative operations are already implied in number as
sueh, since number is an additive union of units, and ohe-to-one correspond-
ence between two sets entails multiplication. [Piaget 1952, p. 161]

These statements and Others like them, make the reader demand an
explicit statement of the author's conception of number—ecardinal and
ordinal—and the strueture in which number is embedded. This is essen-

~tial, becavse the experimenter’s interpretations of the child’s reactions to
mathematieal ideas will depend on his, the experimenter’s, conception of
the mathematieal object involved. Henee, in research it is more important
to define the objeot heing investigated than to take eare of all the statisti-
cal niceties. i .

Beeause of this failure to state explicitly what ideas are involved, there
1s reason to question Piaget's conclusions about the interdependence of
cardinal and erdinal numbers. Mathematieally they are like two parallel
roads that are not far apart. One can step from one to the other without
much difficulty, but they are different roads and ean be traveled inde-
pendently.  Piaget's results are, possibly, only the results of a culture
tand schools) that does not make any distinetion between the eardinal
and the ordinal number. Operationally there is a differsnce, as will be
seen in a later seetion.

The difficulty with these ideas is nicely illustrated by the title chapters
of an excellent little book written for “those interested in children” by
Lovell (1961). The chapter titles include “The Concept of Substunce,”
“The Concept of Weight,” “The Conceept of Time,” and similar titles.
But on the subjeet of number the chapter titles are these: “Some Ap-
proaches to Number Coneepts 1”7 and “Some Approaches to Number Con-
cepts IL” Number is a difficult topie!

We now turn our attention to operational definitions of cardinal and
ordinal number. -

IMPLICATIONS FOR TEACHING AND Researcu

Up to this time, the emphasis has been placed on relations and number.
But what do we do to distinguish between cardinal and ordinal number
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for the child when testing children and for the purpose of research? We
must remember that number is a brief way to talk about certain cets.
Instead of saying that the number of fingers on my one hand is {0, 1, 2, 3,
4}, we say that 5 is the number of fingers on my hand. ‘Here, since 5 =
{0, 1, 2, 3, 4}, it makes no difference which response we give. The need
for brevity forces us to use “5,” however.

When teaching a child how to use these standard sets, we have a
choice. We can teach him to associate standard sets (number) with vari-
ous appropriate sets of objects and then order themn, or we can teach the
child the standard sets in order. For the purposes of this paper, we
choose the latter.

The child must learn to associate one with some set composed of a
single element and all sets equivalent to it. In the same way he must
associate two with every set containing a pair of elements; three with
every set containing a triple, and so forth. We can then order these sets
on the basis of “one more” and learn counting.

Oone; OO two; O [J [ three: | 0O O O four; cte.

®one; * e two; « « & three; « « « o four; ete.
Bone; 5 5 two; & 5 & three; & & & & four: ete.

The child should not learn to count as he does on Sesame Street by
setting up a one-to-one correspondence between the standard sets and

the objects, For examnple, the following figure illustrates this confusing -

procedure for counting five objects:

O O O O O

one two three four five

In the initia: stages, the count of five objects should proceed as illustrated
below:

O (. ogoo 0o0oag
one two three four
O0o0oag
five

The succession of diagrams is supposed to illustrate that a ¢hild should
set down one block and say “one”; put another block beside the first and
say “two”; etc. In this way the child learns that the cardinal number is
associated with the whole set and not with an element of the set.

If one wishes to teach ordinal number, one proceeds as in the first
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illustration. Here caeh svibol is assoeiated with one and only onc
object which indieates the order in which the set has been arranged.

We now have the necessary information to develop further the dis-
cussion on conservation of one-to-one correspondence and couservation
of number.

CONSERVATION OF NUMBER

Suppo=e that the clild has responded negatively to the question “Are
there as many red disks in the bottom row as there are blaek disks in
the top row?"” (Assume the same number of disks in eaeh row.) What
might the sitnation be? It might be that the ehild does not know how
adults use the relational term as many as. That is, he does not know
that we are asking him to test for one-to-one correspondenee between
the two sets of disks. On the other hand, an affirmative reply does not
necessarily mean that the child knows there are the same nmnber of disks
in eaeh row. He may have only observed the correspondence.

After spreading out one row, the experimenter repeats the question.
What conclusions can be safely drawn? 1f the child has responded
affirmatively in this instance, it may well be that the response is based
on the perception of the conservation us one-to-one correspondence, not
on nuber. On the other hand, a negative response does not necessarily
indieate failure to conserve number. It may indieate failure to conserve
one-to-one correspondence.

But what is conservation of number? An aetivity that would more
nearly indieate conservation of number ean be deseribed as follows:
Suppose a child frecly assoeiates fen with a set of ten objeets. In other
words, he knows what is meant by “the number of disks in this pile.”
Then the experimenter reshapes the pile of disks, splits it into two or
three piles or in any way rearranges the disks and asks the question
“Now how many disks are on the table?” If the child freely, without
recounting, responds “Ten.” then it would seem that we eould say that
this ehild conserves number. -

The ability to recognize that tihe number remains invariant with the
arrangement of the objects is of utinost importance for the understanding
of addition and multiplication. Most eertainly a child must eomprehend
that a set of three objeets joined to a set of two objeets is the same as a
set of five objects. That is, munber is invariant under this transformation,
When this stage is attained, the ehild ean comprehend that “3 + 2" and
“5" are really tw) names for the same number and say, “3 + 2 = 5.”

Now let us turn our attention to a restricted list of studies that were
done in the Piagetian spirit. They are in a sense side issues insofar as
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the main-line theory is coneerned. but they are important since they cast
light on classroom conditions.
£

Tiue Wiscoxsix S1UDIES

Outstanding progress has been made in developing a framework of
genetic epistemology based on Piaget’s work. For this the teachers of
arithmetic should be cterpally grateful. Similar progress must be made
on classroom applications of Piagetian theory.

One of the early studies in the Wisconsin series was earried out by
Zweng (1963). She studied second-grade public school children. Using
an operational definition of division, and working with children who had
not been introduced to division in the school program, she studied their
reactions to the two types of division situations, commonly called parti-
tive division and measurement division. She obtained scores on a set of
one-group tasks. A one-group measurement task involved eight pencils
to be separated into sets of two pencils each. A two-group measurement
task situation involved eight .p:ils to be placed in boxes with two
pencils in each hox. Mathematic...ly, and operationally, there is no dif-
ference between these two situations; yet the presence of the boxes
seemed to be a distraction. Zweng found significant differences between
the mean performance of children in one-group situations and that of
children in two-gron, ituations. These differences were in favor of the
one-group situations. The implications for classroom instruction are
dbvious.

Van Engen and Steffe (1966) studied the performanee of first-grade
public sehool children. These ehildren had studied arithmetie for approxi-
mately one school year. A study by Feigenbaum 1963) had suggested
that the number of objects in a colleetion may affect the child’s ability
to ignore his perception. In reality, the Van Engen-Steffe study was a
study of number conservation, although it was not perceived as such at
the time.

One hundred first-grade children (fifty boys and fifty girls) were ran-
domly selceted and given four tasks. The central idea involved recog-
nizing a number of objeets, first as two discrete sets; then, as the experi- -
menter pushed the two sets together so as perceptually to form one set,
the children were asked to indicate whether there were the same number

of objects present. Initially the experimenters thought that all ehildren
would recognize the invariance of the number of objects for “small” sets
like two and three, but for larger sets they might not have made the
obvious, to an adult, generalization.
Four tasks were formulated. In task 1 the child was confronted with
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two sets of candies, a set of two candies and a set of three candies. The
child was asked: “If I let you take these candies for your friends, would
vou take the two piles of candy or the one pile [here the experimenter put
the candies into one pile] after I put them together. or does it make any
difference? . . . Why?" Task 2 was similar but involved a set of four
candies and a set of five. Task 3 involved ten candies and fifteen. Task 4
involved twenty-five candies and twenty-five.

Sinee the children kuew some basic addition facts, they were tested
on the combinations they were likely to know, namely, 2 + 3 and 4 + 5.
All but one of the children gave the correct response to 2 4 3 on a paper-
and-peneil test. All but six knew that4 4+ 5=29. -

Satisfuctory responses to the question for each task were categorized
under the headings “Same Number,” “Same Candy,” “Just Know,” "No
Reason.” and the inevitable “Others.” A similar classification was made

“of the unsatisfactory responses, In table 1, the responses to cach task

are classified.

TABLE 1

Frequencies: Cottect Responses by Tusk and Total Score. N = 100

Task ‘ Tolal Score
1 2 3 4 ] 1 2 3 4
Frequency BT ] 45 45 42 26 27 10 9 28

One does not need to know all about analysis of variance to see the
implications of this array of data. All but one of the one hundred chil-
dren could respond correctly to 2 -+ 3 on a paper-and-pencil test, yet
only fifty-four knew that the number of candies remained invariant.
What have the remaining forty-six children learned about arithmetic?
The frequency of total correct scores is also revealing,

The twenty-six children who scorcd zero on the four tasks are most
certainly not in any position to benefit from arithmetic instruection as
usually practiced in our elementary schools, The situation is even more
serious when one considers that the experimenters were actually giving
the children an operational definition of addition, aithough this was not
brought to the child’s attention. Most certainly the child should not
study addition if he does not know that the number of objeets is invariant
under such transformations as made in this study. A child must be able
to conserve number in order to associate meaningfully “2 + 3” and “5”
with the union of a set of two objects with a set of three objeets,

In 1966, Steffe studied the performance of children on a test covering
addition problems. On the basis of a numerousness test, the children
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were classified in four levels of conservation of numerousness and, by
means of an intelligence test, three 1.Q. levels. The problem-solving tasks
were classified as to:

1. Physical aids with an explicit transformation
(Example: Four jacks in a pile and three more jacks put with
them)

2. Physical aids without a transformation
(Example: Four cars in one parking lot and three cars in another
lot) -

3. Pictorial aids with a transformation
(Example: Like first example above, but pictorial aids present
only)

4. Pictorial aids without a transformation

No aids present: verbal description of a transfonmation

6. No aids present: verbal description of a situation without a trans-

formation

.CJY

The central question involved the difference, if any, in performance of
these twelve groups of first graders randomly selected from some 2,100
first-grade public school children. The principal findings of this study
are the following: .

-t

1. The problems with no transformations were significantly more diffi-
cult than those of all other types, and the problems with physical
aids with a transformation were significantly easier than those
without a transformation and verbal problems with a transforma-
tion. .

2. The children in the lowest numerousness level and 1.Q. group scored
significantly lower than all other groups with exception of four
groups-in the lower brackets of the 3-by-4 table.

3. The children in the top tiiree levels of conservation perforined sig-
nificantly better than the children in the lower level.

4. The probleis with no accompanying aids were significantly more
difficult than those with aids.

5. Problems that involved a deseribed transformation were signifi-
cantly easier than problems without a described transformation.

6. The incan perforinance in the low 1.Q. group was significantly lower
than that of the other 1.Q. groups.

LeBlanc (1968) studied the performance of children on subtraction
problems, using the same population Steffe used, the same classification
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of problems, and the same statistical design. Two tables taken from
LeBlane’s study are of interest. The possible total score is 3.

TABLE 2

Mean Scores
(LQ. by Aids by Transformational Ty;se)

; Transformation No Transformation
Q- Physical ~ Pictorial  No Alds Physical  Pictorial - No Avls
1 273 2.59 221 241 2.46 1.71
2 2.57 2,55 2.07 2.16 2.25 1.55
3 257 2.50 1.84 1.77 2.09 - 1.07
TABLE 3
Mean Scores
(Conservation Level by Aids by Transformational Type)
o ﬁ’l'):rinz.sjn;r;;ali:n; T _,\',; Transformation -
Level = —- Faiten it e
e Physical ~ Pictorial  No Aids Physical Pictarial  No Aids
1 291 2.94 2.70 236 285 191
2 273 2.82 2.06 224 2,58 1.73
3 261 249 1.88 236 2.09_ 1.39
4 242 1.04 1.55 149 1.55 N 073

v

The results of LeBlanc’s study agree substantially with those of Steffe.
I quote from LeBlane’s (1968) study:

The most significant outeome of this study is the relationship of conserva-
tion of numerousness as measured by the pretest to children’s performance on
2 problem-zolving test. Although all children received training based on the
same curriculum, the performances of the children, eategorized into four
levels of conservation of numerousness, were significantly different. The chil-
dren who did well on the conservation test, did well on the problem solving
test. Likewise, the children who did poorly on the conservation test did poerly
on the problem solving test. [Pp. 154-55]

As related to whether conservation or 1.Q. was the stronger indicator
of success in problem solving, LeBlanc says:

With one exeeption, it was found that, in 2xamining the means of the
twelve groups, the conservation pretest related better to problem solving
suceess than 1.Q. did. Thus, all the mean performances of the children
in the three 1.Q. groups of Level 1 were higher than any of the 1.Q. groups
of Level 2. ... Thus, the performance on the pretest of conservation of
numerousness was a stronger predictor of success on the problem solving test
than the group 1.Q. test was. However, the two tests . . . taken together
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were found to be a shighitly better predictor of success in problem solving 1han
cither test nsed ~eparately. [P. 156]

These two studics supply <ome pretty good evidence that a sizable per-
centage of our first-grade children are studying arithmetic under adverse
leaming conditions. This is not only true of the low 1.Q. nonconserving
group; it is also true of the high 1.(), nonconserving group. It would seem
that for these children, the schools should center their attention on activi-
ties that might enhanee conservation rather than:on our traditional
arithmetic_curriculum. Furthermore, the implicutions of these studies for
the kindergarten program are quite clear. . .

Ax a result of the Steffe and LeBlane studies, the question arose as to
whether specifically designed experiences for use in the classroom would
affect the ability of kindergarten and first-grade chivdren to conserve
nunmierousness. Iarper and Stefic (1968) carricd out a study to measure
the effect of a sequence of welve lessons earried out over a period of
twelve weeks. The investigators were well aware of the previous work
that had been done by sueh researchers as Churehill, Dodwell, Elkind,
and others. This study differed from previous studies in that the test had
previously been used in the studies of LeBlane and Steffe and it was car-
ried out under classroom conditions by a classroom teaeher.

Two pretests were administered to experimental and control groups in
kindergarten and first-grade elasses—the Lorge-Thorndike intelligence
test and a test of conservation. One posttest was administered. the test
on conservation. Analysis of covariance was used at each grade level
where the covariates were the scores from the two pretests and the de-
pendent measure was the score obtained from the test of numerousness,
Significant differences were observed between adjusted means of the
experimental and eontrol groups at the kindergarten . vel in favor of the
experimental group, even though both groups had gained,

Skypeck (19665 studied the relationship of socioeconomic status to the
development of eonservation, She used three of the conservation tasks in
standardized interview-interrogation procedures suggested by Dodwell.
The sample for the study was drawn from children in the five-to-cight
age bracket found in a large southern city.,

Statistically significant differences were found to exist between the
scores on the conservation tasks for low socioeconomic groups and average
and high socireconomic g in favor of the latter groups. The relation-
ship of race to Piagetian development stages was not significant. The
findings of this study support the hypothesis that ehildren from low
socioeconomic urban environments suffer retardation in cognitive struc-
tures related to the conecist of cardinal number.
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Boe (1966) undertook to investigate the ability of sccondary school
pupils to section solids. She randomly =clected seventy-two pupils from
the schools located in a large Wisconsin city. Twenty-four pupils were
randomly selected from cach of three grades—grades 8. 10, and 12. The
subjects were stratified according to sex, gr «de. and ability. The problem
originated, in part. as a result of ~ome vears of experience as a teacher
of sccondary ~chool mathematics and a study of Piaget and Inhelder's
theory of space representation. The basie problem involved the seetion-
ing of solids, mentioned by Piaget and Inhelder (1963) in The Child's
Conceplion of Space. The subjeets were asked to represent the section
by a drawing and to seleet the seetion from a group of drawings presented
by the experimenter. Ax a result of her study, Boe reported:

1. There are significant differences in the responses made by pupils of
differing al)il,ity. .

2. There are signifieint differences in the responses to the two tasks
namely, selecting a representation of the section and drawing :
picture of the scetion.

14

3. Piaget and Inhelder report that by the age of twelve years, all geo-
metric sections had been mastered. This study used sixteen seetions
included in the Piaget-Inhelder study. Only ten of the sevonty-two
subjects were suceessful in the sixteen tasks in the two tests. No
subject received a perfect score.

4. Piaget and Inhelder claim that the two tasks are equivalen
measures of the same ability. This study reports a low correlation
{0.551 vetween the scores on the two tests,

5. There are significant differences among the responses to the various
solid figures. Piaget and Inhelder (1963) state, “The child has
mo greater difficulty’ with the eylinder, the prism, and the
parallelepiped™ (p. 175).

6. Age, as measured by grade in school, was not a significant factor.
Ability level. however, was significantly different for both methods
of responsc,

Most eertainly this stady should be replicated and extended. From the
teacher’s point of view, st has great potential for supplying useful infor-
mation. Qur schools do far too little to develop spatial imagery.

There are educators who contend that the overt actions used to demon-
strate ratio and proportion are different from those actions used to dem-
onstrate rational numbers. Mathematically, in one case one has a linear
veetor space and in the other an ordered field. Steffe and Parr (1968)
devised a series of tests, four on a pictorial level and two on a symbolic
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level, to study the performance of fourth-, fifth-, and sixth-grade children
in two school systems when_confronted with ratio situations and rational
number situations. They were interested in equal ratio and fraction sit-
uations with inissing numerators and missing denominators. For example,
the child is shown a picture of two squares and six cireles and asked,
“If there are two squares for every six cireles, for one square there would
be how many circles?” The following results were common to both school
systems:

1. The pietorial test involving ratios_with missing denominators was
significantly easier than the corresponding fraction-denominator test
for the low and middle ability groups in each grade.

2. The missing-numerator pictorial test for fractions was significantly
easier than the missing-denominator test for each ability group in
each grade.

3. The high-ability children performed significantly better than the
low-ability children on each of the four pictorial tests and two sym-
bolic tests.

4. The fifth and sixth graders performed significantly better than
fourth graders on all tests.

5. Very low correlations exist between the scores on the symbolic tests
and scores on the pictorial tests. )

6. The fraction-denominator pictorial test was the most difficult for

" each ability group in all grades.

CoxcLUDING REMARKS

For purposcs of research and instruction, Ameriean schools and uni-
versities need a careful analysis of the relationship that exists between a
system of overt acts and the fundamental mathematical ideas studied in
the elementary schools. There exists enough evidence, even at this time,
that concepts arrive out of physical expericnee. The study of those experi-
ences that enhance the development of mathematical concepts is sorely
needed. The studies reviewed in this paper supply some evidence that the
models for physical situations that adults take for granted as being ob-
vious are not obvious to the child. There is some evidence that the
absence of an expressed transformation is an impediment to arriving at
a solution to a problem. Since this is true, what further difficulties exist in
learning to cope with situations for which “z + 2 == 8” and “9 = n — 2”
are models? Some fundamental problems in learning mathematics exist
in this general area. Answers to these problems should help us to devise
strategies for teaching basic number ideas and mathematical operations.
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From the point of view of rescarching these ideas, we need two things:
(1) We need an analysis of basic mathematical ideas in terms of those
actions to which these ideas may be isomorphic. (2) Resc cchers in
mathematics education must be more explicit in stating the machematical
structure in which their ideas are embedded and the actions they iwill
accept as evidence that children are in possession of these ideas. Most
certainly, a researcher’s interpretation of a child’s reaction to a given
task will be colored by the researcher’s own concept of the mathematical
idea supposedly under investigation. Furthermore, the tasks used to
gather data in an experiment will be conditioned by the researcher’s con-
cept of the basic idea. the overt acts he accepts as isomorphic to the idea,
and his conception of how this idea fits into a given mathematical
strueture.

What mathematics cducation needs is a team of researchers attacking
common problems. Studies up to the present have, of necessity, been
carried out by one or two individuals. The problems to be solved have
epistemological, psychological, instructional, and mathematical tones and
overtones. One individual cannot eope with all these aspects. The prob-
lems are so broad that any attempt to find solutions nceds a teamn of
people who have similar interests but different backgrounds. Let us hope
that this conference will point up this need and, in some way, lead to a
team approach to the inportant problems facing the American schools.
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HERMINE SINCLAIR

Different Types
of Operatory Structures

2o

Having given a brief sketch of what Piaget considers the characteristics
of the main stages in intellectual development, I shall now deal with some
of the problems that arise ffom this theory. Granted that children are,
of course, totally unaware of these structures and that the operations only
formalize what children can do and how they go about doing eertain tasks,
it still looks as if these operations are mainly logico-algebraic in charaeter.
Are they applied in other fields of activity also? Or, to narrow the ques-
tion, are they applied in sueh subjcets as physics, chernistry, geometry?
If s0, how?

It zeems useful to introduee a distinetion on which Piaget has often
insisted, that of the two poles of knowledge. The two types of knowledge
that exemplify these two poles are called logical knowledge and physical
knowledge. In the ease of logic, our knowledge stems mainly from our
own actions or operations and their coordination. To take Piaget’s ex-
ample: a child is playing with a number of pebbles; he arranges them
first in sm1l groups, say 2, 4, 6; and then rearranges them so that there
are 5, 3, 4: from this he discovers that the total number of pebbles does
not change. But the properties of the pebbles have little or nothing to do
with this knowledge. The same actions could have been perforined upon,
and the same conclusion drawn from, a collection of sweets, dolls, and
s0 forth. Only one condition pertains to the objeets themselves: they
should be clearly separate and should stay where one puts them. Water
or milk would not be mueh good!

By contrast, when a child wants to find out something about floating,
it is imperative that the properties of the objeets used in the experiment
be’ taken into account. In fact. it is the properties that become the main
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source of knowledge. Nothing can be found out about floating without
observing how solid and liquid interact. This physieal type of knowledge
iz mueh less pure” than the former; in fact. observations by themselves
lead only to fragmentary. ad hoc knowicdge. To he able to induce laws
and regularities and to imagine experiments, a logical framework is neces-
sary. As far as actual situations are concerned, either in real life or in
the tasks psyehologists propose to children, the two aspeets are usually
both present but in different ratios. Furthermore, one and the same
situation can frequently be used to explore knowledge of different kinds.
For instance, the well-known concept of conservation of weight is at first
only a conservation of an invariant property of objeets: logical operations
of addition and compozition are sufficient to maintain that weight does
not change with a change in shape. But the conservation of weight is all
the same more difficult than that of simple substance. a global quantita-
tive coneept; and with their growing knowledge of the physical world.
children begin to see difficulties they had not considered in the conserva-
tion-of-weight problem. Apparent regressions may oceur, as in the case
of children who begin to wonder whether the ball of clay divided into
little bits does not weigh less than the whole ball, since the little bits
“press” on more of the surface of the scale, asaf an intepsive property
like pressure were cquivalent to an extensive property such as weight.
They also often think that the weight of an object diminishes when its
movement inereases. When one asks the same questions for conservation
of weight— (1) after putting the two quantities of plasticine on a double
scale; (2) after.hanging them underneath the seales: and (3) after hang-
ing two balls at the same height on one side and two halls, one underneath
the other. on the other—the children’s answers will be quite different at
certain stages and there may be apparent regressions. The distinetion of
the two opposite poles of knowledge is therefore to be seen as theoretieal
and heuristic: in real situations the, type of reasoning applied is some-
where in between the two extremes.

Another question comes to mind concerning this distinetion. Given the
fact that, starting in the sensorimotor period, all knowledge proceeds
from action and that all action implies the transposing or transforming of
objeets (including the subject’s own displacements in space), is the dis-
tinction valid at all levels, right from the start of the development of
intelligence?

According to Piaget. even at the very eaily stage of sensorimotor in-
telligence, that is to say around six months of age, it is possible to
distinguish the roots of the two types of knowledge. In one, which will
later develop into logieal operations, it is mainly the action patterns
themselves that become coordinated and integrated. This oceurs when-
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ever the baby has a speeifie goal and combines two movements to reach it.
In the other. coordination also occurs, but the new knowledge comes
mainly: from the objeets themselves, as in the case of the baby who dis-
covers that if a certain object is pushed and starts swinging. it not only
moves (he follows the movement with his eves) but also makes a sound
the listens to the sound). In a research project on svmbolie behavior,
carried out in collaboration with Irene Lezine and Myra Stambak, we
have examples of ehildren from the age of thirteen or fourteen months
onward performing actions that can be classified according to the two
types: sometimes they push one object with another; they shake the
objeets; they tap the floor with them; they explore them carcfully with
their forefinger. In other instances they spend quite some time (that is,
a minute or s0) aligning the objects. putting one on top of another, and
so on. In the one case, they are learning about the properties of the ob-
jects themselves—soft, supple, prickly, and so on—or about the effcet of
one object on another—one ean push the spoon right inside the bristles
of a brush but not inside a mirror. In the other ease. they seem to be
introducing some organization into the objects around them—they put a
spoon next to a toy broom and a feather duster—and contemplate the
patterns that result from their own organizing action. But most of the
time the two types of activity seem at that age to be inextrieably inter-
woven. It is only with continuing development that the activities leading
to the two types of knowledge can be more easily distinguished.

There is, apart from the theoretical reasons, an educational use to he
made of the distinetion. In the case of knowledge of the physical type,
reality flatly contradicts an incorrect idea; it is possible to show the child
that he is wrong. If a six-year-old thinks that a small picec of iron will
float *‘beeause it's so light.” one has only to perform the experiment for
him to see that his prediction is not correct. This does not, of course,
mean that he will give up his idea; at first the child is incapable of form-
ing a different hypothesis and will regard counterexamples as “funny”
cases. But such a demonstration is totally impossible in the case of a
logical problem. For example, if a child affirns that there are more apples
than fruit (items of fruit) in the bowl, makirfg him count first the fruit
and then the apples is not going to have any influence at all. If he can
already count and finds that there are six items and four apples, that
docs not prove to him that there is more fruit than apples. Counting, in
this case, can be compared to naming; the fact that the last person named
i1 called Peter does not tell anyone anything about the number of people
in the rooin. i

However, there scems to be a bit of a paradox here, which I cannot
resolve. Sinee “wrong” ideas in physics scem to be casily demonstrable
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and “wrong” ideas in logic very difficult. why do educational curricula
always introduee physics so muelr later than arithmetic? Is it because
every day we make use of technological marvels that only a few of us
really understand, whereas our daily contact with mathematies is limited
to fairly simple problems sueh as adding and subtracting money or work-
ing out how many rolls of wallpaper are necessary to cover a certain sur-
face? Or is it precisely because wrong ideas in physies are so obviously
wrong that it scems hopeless to start teaching physics early? When one
constructs the syllogism “Jolnny has two eyes; Jolmny is a boy; there-
fore all boys have two eyes,” one has all one’s faets right. but the logic is
way off. On the other hand, when one says, “All boys have two noses;
Johnuy is a boy; therefore Johnny has two noses,” the logie is impec-
cable, but one of the premises is false. The first type of reasoning, wrong
as it is, scems somehow less false than the second!

In his epistemologieal work Piaget seems to indicate a more profound
reason. In many cases, it is only after many aspects of a branch of scicnee
have been elaborated that science discovers (or at least explicitly formu-
lates) basic concepts that are aequired carly in eognitive development.
Sueh is the case with topologieal structures. Topology became a branch
of mathematies well after Euelidian geometry, but we find that the child
can handle relationships of closure as opposed to openness of figures, of
being adjacent as opposed to nonadjacent, of overlapping, and so on, well
before he can deal with the relations between parallel as opposed to inter-
seeting, eurves as opposed to straight lines, and so on. Similarly, one-to-
one correspondenee, which is at the base of set theory (another recently
formulated theory), is one of the earliest established eoneepts in the eliild.
Possibly awareness and explicit -forinulation of deeply ingrained, basie
coneepts comes later than that of more complex achievements. Fowever
that may be, a similar phenomenon exists as regards physies, where cer-
tain of the most difficult notions of modern physies secin to exist in a
primitive, intuitive form in children—but then they look completely
“wrong.” The concept of tine seems to provide an example of this. Very
young children have an intuition .of speed; this is based purely on the
eventual “overtakings” or “catchings up.” Time, however—that is to say,
duration—remains linked to distance covered or to the amount of work
done. Unuil nine years of age there is confusion when comparing two
moving objects or persons as regards the time taken and the distance
covered; going further usually implies having taken more time. It is very
difficult for children of this age to admit that time is something that ean
be measured independently of what has been aceomplished during the
time. In fact, they think that a wateh does not work in the same way
when it is worn by someone who is running as when it is on the wrist of
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someone who is walking slowly. For them. there is no conmon, homo-
geneous time. The insufficiency of this postulate in physies hecame elear
only when Einstein used the eonstancy of the velocity of light, as demon-
strated in* the Michelson-Morley experiment, to derive his prineiple of
relativity. It zeems that. once again. ehildren’s intuition has something
in common with late developments in seienee.

The findings of developmental psyehology indicate a very clear parallel
between the child’s reasoning in logico-mathematical problems and his
way of attacking problems in physies igenerally. to start with. in simple
m¢chanies). For instanee, even in the preoperational period, when his
logie is still a semilogic of one-way mappings, when a ehild is asked about
the respective lengths of a piece of string in the situation pictured in
figure 1, he knows very well that if one pulls on the extremity of A (for
instance, by hanging a weight on it), 4 will get longer and B will et
shorter: but since he is as yet incapable of quantifi -ation. he will not
suppose that A4 = AB. In general. the child thinks that the gain in the
length of A is more than the loss in the length of B; aiter all. A is “where
the pull is” (Piaget et al. 1968). To take another example. where the
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Fig. 1. Spring. strmg. and piilley task operations
.
apparent dizscrepaney between 'knowlodgc of physical phenomena and
logico-mathematieal reasoning is move striking, at the stage of concrete
operations, in the following situation (Piaget 1970) a rubber band is
marked with a elip at one third of its length and then is stretehed out.
Children initially think tnat the stretehing occurs only at the ends and
then. shortly afterward. at the end of cach segment. However. applying
the additive comporitions of whieh they are capable at this stage. they
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think that the change in length is the same for both parts, despite their

initial inequality. They ecan then observe that their predictions were
wrong; but since at this stage they are still incapable of understanding
proportion, they will content themselves with the following explanation :
“The long bit gets more added to it, the small bit less.” The logic of this
reasoning is perfectly complchcnaxblo, but it is eombined with the idea,

fas regards the physies of the phenomenon, that, the “pull” is not distrib-

uted over the whole rubber band but seems to result in “bits” added at the
dids. Somehow or other, this idea seems to many people more “wrong”
than the 00110=pondmg logical coneepts, waich do not vet enable children
to deal with proportionality. Tnterestingly, as soon as children understand
proportionality, they concctly prediet the length in-this- proh‘lcm and then

(as regards the physical;aspect) immediately maintain that the “pull”
goes through the whole rubber band and that therefore the foree is evenly
distributed over the whole length.

However, despite this elose parallel, a certain time lag in the construc-
tion of physics concepts is comprehensible. The logical operations open
the way to deduction and do not need aiy c¢hecking with reality, but the
physical concepts demand constant checking by experiment. For instance, 4
from very simple premises we ean find the foillowing conclusion: if clay
retains its total volume when it is split up into little bits (as in the
volume-immersion test) and if any shape of clay can be fired to produce
a piece of fired clay of the same volume, we can deduce that a picee of
fired clay also maintains its volume on fragmentation. In this case, the
experimental cheek is extremely simple, but often such checks are very
complex. It may well be that it is this complexity which accounts for the
historical time lag between the development of logie and mathematics and
that of physies. However, the parallel of the two types of knnwledge in
child development would suggest that, educationally, the two subjeets
might be taught in much closer connection than is usually the case.

* Where in this scheme of things does one place geometry? Historically,
geometry went hand in hand with logie. But in school programs the two
became separated. Only recently have educators begun to follow Piaget’s
practice of amalgamating logic and mathematics (and therefoie geoni-
etry) in one whole: logico-mathematieal knowledge. Once again, experi-
mental psychological findings reveal a remarkable parallel; cognitive
develepment is an indivisible entity, and its laws and the progression of
its structures may have different manifestations in different types of
problems but nevertheless remain basically the same. In fact, in many
experiments a child’s physical explanations and logieal and geometrical
solutions are inextricably linked (as was the case in the experiment on
the puliing of the rubber band).
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To take an example that has clearer, geometrical implications, corsider
the following experiment (Piaget and Inhelder [a] 1947). The clnld is
shown a squat, angular bottle of ink (see fig. 2¢). This bottle is put info
a cover so that the level of ink is invisible. The child is then asked to
draw, in a prepared frame that shows the bottle and the table (sce fig. 2b).
the ink level (i.e., indieate where it is), then to draw its level if the bottle
is tilted, put on its side, or turned upside down (all the positions are
shown, but with the cover). The first drawings (in the preoperational
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(b)
Fig. 2. («) Bottle wath ink. (b) Frame positions showing line of the table.

stage) show scribbles that fill the whole bottle (and go beyond as well!).
At a second stage, the level of the ink is drawn in all situations as parallel
to the hotton of the bottle, and in the upside-down position the ink may
be hanging from the top (see fig. 3). In the next stage, certain modifica-
tions are introduced, mainly by having the ink go toward the opening and
drawing oblique lines that connect the corners (sce fig. 4). Finally, of

\;]- 2 <

Fig. 3. Examples of drawings at an early second stage

Fig. 4. Examplex of drawings at late second stage
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course, at about the age of nine or ten, all the drawings are correct. Now
these difterent drawings ean be interpreted in a quasi-geometrical way: at
first. the only relationship that counts is that the jnk be inside (or mainly
inside) the bottle. Secondly. the child keeps the intrafigural relationships
constant: the level always keeps its relation to the shape of the bottle.
It is only at the third stage that extrafigural indieations are taken info
aceount and the drawing of the table in the model sketeh begins to attract
their attention. Finally. a svstem of coordinates is established. and the
children say that the level ~hould always be “straight” or “just like-the
table.”  However, their remitiks concerning the physical nature of the
problem provide a parallel explanation: at first. the ink just stays inside:
then, the ink has the tendeney to go toward the opening of the bottle {(even
if. s is obviously the case in this experiment. the opening is sealed). Only
in the final stage do thev explain that water always goes down as far as
it can. that it goes down on all sides. that 2all bits of water arrange them-
sclves so that the level is horizontal—as long as it ix not, bits of water
will be higher and roll down toward the lower level until an equilibrium
i~ reached.

Other experiments-ceneern the copying of geometrieal figures and, more
interestingly. anticipatory images of simple geometrieal shapes when they
are rotated or translated.

A first example is provided by the following (Piaget and fulc!er [b]
1966). "The child is shown two eardboard squares (H ¢in by 4 em). one
placed above the other. touching along one ~ide (=ce fig, 5a). He is then
asked to copy this situation. and only if he can make a nore or lexs
correet copy i~ he retained for the rest of <he experiment. Now the ehild
i~ axked to imagine xomething: “Iow would it look if 1 pushed the top
square a little bit to the right?” (the gesture is sketehed but the square
ix not moved). Onee the child has understood this instruction. he is asked
to draw tand sometimes to indicate by gestures, but we shall not go into
those resultsy “how—it Will Tlook.” Finally. the experinienter actually
pushes the top ~quare, and the child is asked to copy thi~ final situation,
fignre 55, The subjeets were ehildren between four an(l,:('.vvlr}'vurl‘}< of age.

!
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(a) (b)
Fur 5, Task with two squates, 5 em by 5 em
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“‘Surprisingly. the dvawing by anticipation ix correct (77 pereent sucecess
rate) only at the age of seven. Interestingly, even the simple copy of the
final state is corrcet (76 pereent) only at five-and-a-half yvears. Kven
more interestingly, the deformations introduced in the copy are of exactly
the same type as those in the anticipatory drawing. but they appear two
vears carlier. This fact alone is full of interest and proves once again
that it is not sufficient to have the model in front of one’s eves to he able
to reproduce its strueture. The following types of drawings were observed
there reproduced schematically) :

1. The very simplest solution consists in a simple copy of the initial
situation, or in a horizontal recombination (sce fig. 6).

e e—
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2. Next tat about the same ages) the two ~quares are (h':n\'rn one apart
from the othier and the top ~quare is moved up instead of -sideways (see
fig. 7v. Fifty-five percent of the drawings of the five-year-olds are of
this type.

Fig. 7

3. A very interesting series of drawings i~ found at the next level (see
fig. 8). “They ~eenn to indicate that the main dificulty resides in the prob-

InE ]
| 1 B T
| N A
(a) (h)
i1, 8
. 61

T




ERIC

Aruitoxt provided by Eic:

Piagetian Research and Mathematical Education

tem of what happens to the right vertical side of the top square when its
left vertieal side i displaced away from the corresponding left side of the
bottom square. The displacement of the right side is represented cither
as synmnetrical to that of the left or vice versa tdrawing 8¢). In other
cases, one of the top square's sides is correctly placed relative to the
corresponding side of the bottom square: but the top square’s other side
is drawn in vertical extension of the corresponding bottom square's side
(original position), as in drawing 8b.

4. Finally, of course, the problem is solved. However, when little ver-
tical strokes are draws on the squares, on the bottom one to the risht of
the top sid¢ and on the top square to the left of the bottom side. the prob-
lem heecomes more diffieult (sce fig. 91. As one of the subjects said: “One
of the strokes is near one side and the other one near the other side. so
they can never conie together.” It scems evident that neither remarks
such as this nor the deformed drawings can be the result of faulty per-
ception. or of optical illusions. Again, the only way to cxplain them
would scem to be by taking into account the particular character of
preoperational 1nought.

Fig. 9

The solutions indicate that the main problem is ordinal. The relation-
ship between the vertical sides of the top square and those of the hottom
square is what the child works on (and fails to solve before the age
of seven). The horizontal distance between the two vertical sides is
neglected: the shape of the whole (and all children of this age recognize
a square when they sce one!) is sacrificed. Either the intrafigural rela-
tionships are conserved, s in the first stages, or an attempt is made to
represent the interfigural relationships, but the two cannot vet be
coordinated.

Another characteristic of early “geometric” representation is that cor-

rect drawings can be made of the initial and final states of a figure that
changes its position in space, but the intermediate stages cannot be repre-
sented. In the very simple case of a vertical stick (20 e long, 2 mm in
diameter [Piaget and Inhelder (b) 1266)) that pivots on its base, fixed by
a support, children are first asked to draw the stick when “it has fallen a
bit” (the movement can be quickly shown by pulling the stick down
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through an angle of 20° and 30°). After this drawing, the child is asked
to draw the stick in several positions: first when it is upright, then at
several points on the way down.” and finally when it “has fallen right
down, flat on the wooden support.” The experimenter directs the child's
attention to the pivot and makes it clear that the stick cannot move away
from that point. There ix little difficulty, even at the age of four-to-five
vears, in drawing the two extreme positions. The interesting ervors con-
cern the intermediary positions. Figure 10 shows schanatized repre-
sentations of typical errors in indicating the intermediary positions of
the stick: the dotted lines represent the (correct) initial and final posi-
tions, Solution 3 ix particularly popuiar at four and five years of age.
Solutions 4 to 8 are more or less coniemporuneous (at five-to-six vears
of age), and they all show the diffienlty of coordinating the movement
of the top extremity of the stick (which describes & quarter of a cirele)
and the suecessive positions of the whole stick. The curves in solutions
6 wnd 7 are particularly interesting and represent an ineapacity to con-
ciliate the (curved) trajectory of the extremity and the fact that the
stick itself does not change its shape.
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Fig. 10

Should we conclude that geometry follows exactly the same develop-
mental line as that of logical and arithmetical operation=? What about
the famous mathematical intuition and its supposed relianee on mental
images? According to Piaget, this iz partly true—especially for the carly
period—until the first grouplike =tructure of transformations ix firmly
extablished. However, geometry remains a case apart because of the very

- closc cotrespondence between its operations and their spatiad representa-
' ’ tions tdrawing, models), Other experiments have shown how. once the
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attachment to the initial and final states js overcome, children around
seven or eight yvears can solve problems with complete and clegant rea-
soning, whereas young children, though often able to answer correetly,
cither cannot justify their answers or clse cite the wrong reasons. In one
experiment the ehildren were presented with a number of drawings
(Piaget and Inhelder [b] 1966) such as those in figure 11. They were
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Fig. 11

asked which one of the two lines (two roads, two bits of string) in each
drawing was longer, or were they theasame? Without giving a detailed
analysis of the various stages that charneterize children’s responses, the
following are the main points. At first, from the age of four-to-six vears,
ehiilien think that there is a total correspondence between surface and
perimeter, although neither is conserved. Then (seven-to-eight or even
up to nine years) the first conservations lead to “wrong” conservation:
change of shape of a surface (for instance, when a square of eardhoard
is cut into strips which are then glued together into a long rectangle) is
no longer thought to change its area. *“therefore” the children think that
its perimeter cannot have changed either! Conversely, a change in the
form of a perimeter (a wire) is thought not to change the surface it
deiisitates (Lunzer and Bang 1965). In the case of the four figures we
have taken in our example, the problem concerning 1 and 3 can be an-
swered correctly by means of simple notions of topology (one suréace is
included in the other: therefore the outer line is longer., since the inseribed
surface is smaller than the including. surface). The same tvpe of reason-
ing. however. leads to wrong answers in cases 2 and 4. In other cases,
children below cight vears may answer on a numerical basis, this time
already reasoning only on the lines and not on the surfaces. In drawing 3,
for instance. this may lead to the answer that both lines are the same
length: “They each have four bits.! - .

From seven years onward. correet answers are given to situations 2 and
4. and the arguments beeome based on the possikle transformations that
would permit a direet comparisen: “If vou put one of the lines in straight
bits like the other. you know it's longer.”

It secms clear that in a eertain sense geometry constitutes a special
ease, where representation and mental images are mueh more adequate
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syathesis than in any other domain,
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effeetive problem solver need “masses of structurally organised knowl-
. __ edge.” However, Piaget's position makes clearer the general finding that
the level of thought determines the degree of coneeptualization, and the
degree of conceptualisation facilitates strategies of thinking. For, m the
. view of Piaget, to know is to assimilate reality into systems of transfor-
inations=—to know i~ to understand how wu certain state is brought about.
Reynolds also takes up the question of the construction an testing of
hypotheses. He points out- that, in PiagetUsayiew, when a pupil begins to
think formally, his construction and testing of hypotheses develop to-
gether, The results of the study do not fully support this claim. There
were oceasions when a hypothesis wasx not recvgnized as such, when
hypotheses were not syvstematically constructed. and when hypotheses
were constructed or recognised but not tested. The questions relating to
the potatoes and hard-working scientists and Mr. Smith presented hypo-
thetical situations. The premises in each question were required to be
accepted, although no construction of hypotheses was invoived, and de-
ductions were to be made only within the framework provided. Tt might
he expected that all pupils at the stage of formal-operational thought
would be willing to accept and think within a hypothetieal framework,
but tl: - results showed that thix was not so.
‘ b .. - Finallv we may, note that some of the answers confused data and con-
ERIC clusion. Thix confusion revealed inadequate notions of the converse of a
statement and showed that reversible operations could not wway= be

Aruitoxt provided by Eic:




v Lo veoiupiiciie O1 uie
Concept of Mathematical Proof
in Abler Pupils

h

The concept of proof i mathematies will always be important whatever
may be the nature of the eurriculum. Professional mathematicians have,
of eourse, analysed the concept of proof—as. for example, in The World
. of Mathematics (Newman 1960). Allendoerfer (19571 is one of a number
of people who have given methods of proof together with illustrations at
high school level. Again, Faweett (1938) attempted to teaeh the nature
« .of deduetive proof to high school pupils.  But the studs of Reynolds
(1967), on which this paper is based, is the only one known to me that
studied the ways in which pupils of junior and senior high school age -
develop their coneept of proof. The aim of this study was to investigate
the deveiopment of the understanding of mathematieal proof in pupils
in British seleetive (grammar and- teehnjeal) sceondary sehools and to
see how well thix development is explained by the framework provided
by Piaget's genctie psychology.
Reynolds starts from the position that a scheme, a generalizable plan
of action, ur strateay of proof may be characterised as the combination .
of two processes: the construction of a hypothesis to solve a problem or
explain an event. and the construction of a proof or disproof of the
hypothesis. In the construction of the hypothesis the rules of logie are
—- generally efittle value, for it requires some new combination of the
- problem solver's knowledge and the data of the problem—there is an
attempt to “close a gap.” It might be hypothesised. for example, that a
eertain relationship exists between some variables in a problem. or that a
broper‘y observed in a finite number of instanees can be extended to a

»
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other concepts, what the cffects are of continuous teaching from grade

one involving small-group work, opportunitics of the child to net on . -
reality. much discussion between teacher and pupil and pupil and peerg,

and a teacher who knows something of the structure of the subjeet matté?

This study_only begins to toueh this important topie. Lot
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wider elass of clements. To the hypothesis and the data of the problem
the rules of logic may be applied in an atteupt to arrive at 2 proof or
disproof. -

Thus when a hypothesis has been constructed its validity must” he
sought, and for this. methods of proof and disproof are available.
Reyvnolds lists five methods of proof and two of disproof. These are:
direet proof: proof by the use of contrapositive: reductio ad absurdum
method: proof by enumeration: proof by existence; disproof hy contra-
diction: and disproof by the counter-example method. These will not,
however, be discuszed here,

AsreEcTs oF Proor CONSIDERED

Tests were constructed to involve the following aspects of proof: gen-
sralisations, symbols, assumptions, and methods of proof. These were
cho:en for the reasons now bricily indicated., i

A generalisation in mathematics is o statement that a property holds
for every member of a particular elas=. In the tests given all such gen-
eralisations sprang from a finite number of examples, Thus cach generali-
~ation is a hypothesis, and in schemes of proof the making of hypotheses
ad reasoning from them are important. Assumptions are essential in
any argument, x1d no conelusion i» worth more than the assumptions on
which it rests. Pupils must be able to recognise their own assumptions
and those of others, Again, if pupils are to construct proofs; they must
have some awareness of rules of inference and of methods of proof.
Attention siust be paid to the use of implication and the forts associated
with it, Morcover, the reduetio ad absardunm method was involved in
some questions as it concerns hypothieses and the handling of contra-
dictions, Failure to ~cc n eireular argument shows lack of awareness of
rales of inference. Finally, facility is needed in the use of ~vmbols; ~o0
questions were ~et to see how pupils viewed mathematical symbols in
certain situations, and they were also asked to state a purpose of symbols,

THE EXPERIMENT

Sample

Subjects were selected from six grammar schools and one technical
school. Table 1 shows how the pupild were spread among the age groups.
All the pupils took paper-and-pencii tests, In addition, 80 pupils were
interviewed individually. These were 14 girls and 17 boys from the first
forms, 11 girls and 6 boys from the third forms, 9 girls and 7 boys from
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TABLE 1

Distiibution of Pupils by Age

Test! Test2

Group ——— — ———— e

Girls Boys Grls Boys

< First form s 222 243 186 193

Third form 245 280 240 207

Fifth form 169 199 185 120
Nonmathematical .

sixsth (NM) foim 104 22 108 81

Sixth (M) form 29. 29 28 67

Totl g 1769 769 47 671

—_— By B — e e e e =

the fifth forms. 5 sixth-form boys who did not take mathematics, and
11 sixth formers who did.

The tests SNy

Test 1 contained 21 questions. and cach was answered by every pupil.
In test 2 there were 11 questions which were attempted i)_\' all pupils; in
addition, there were 9 questions set for the first and third forms, and 9
other questions for fifth- and ixth-form pupils. By means of the common
questions to every age group it was possible to get =some idea of the
development with age of tne understanding and use of the aspeets of proof
considered. Eighty minutes was allowed for cach of the paper-and-pencil
tests. ax a pilot study had indicated that this time was ample for most.
pupils.

The questions in the two tests were placed in six scetions for analysis
corresponding to the aspeets of proof considered. namely. generalisations,
symbols. assumptions, and three methods of proof—those using the con-
verse, reductio ad absurdum, and deduetion, Examples of questions in
‘ach section are now given.

Cleneralisations. From answers to questions in ‘nis gection it was hoped
to discover how far children accept a -generalisation on inadequate evi-
dence, how far they suspend judgment. and what reasons they give for
the rejection of a generalisation. An example set for all groups was:

Pl .

+

Study the list given:
2=141 6=3+3 10=545 M= 747
4=:2341 8=1543 12=547 16 =11 45

[and =0 on. to 16 instances concluding 32 = 3 - 29]

Do these facts show that everyeeven number can be put as the sum

of two prime numbers? “\\.
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As you know, this question concerns Goldbach’s conjeeture, whose
truth or fulsity remains unknown. The sixteen instances given were
consecutive and easy to check. Another example was:

Which of 22 and 2n 4= 1= larger when n = 1?
Whieh is larger when n = 2?

Do these values suggest anything about 2% and 2n 4- 1 when n is .

given other values?

Symbols. As already stated. questions were set to find out how pupils
viewed mathematical symbols in certain situations. An example of a
question set to all groups was: ’

[s —p negative?
Other oxﬂmplos were:
Isit provable that 2 4- 3 = 57
What ix the putpose of symbols in mathematics?

It wax expeceted that pupils would mdicate how they regarded the symbol
“—="and any assumption they made about the range of values of p.

Assumptions. A question set to all pupils was:
What do we mean by a logical statement?
Al pupils will have heard the word logical used, particularly in support
of the way in which a conclusion ix reached in an argument. This exereise
wax an attempt to find out what pupils understand by a logical statement.
Another question asked was:
What do we mean by a hypothesi=? Give an example if vou wish.
e
Converses. Two questions set to all-pupils in the seetion were:
1. All successful scientizts work hard, and Mr, Smith is 2 scientist
who works hard. Can we =ay from this that Mr. Smith is a sue-
cessful scientist?

w

If all the angles in a polygon are equal. do the sides have to be
equal?

Reductio ad absurdum method. An exanple attempted by all subjeets
was:

In figure 1 we are told that AB is not parallel to €D, and we wish
to show that p and ¢ have different values. omplete the argu-
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Deductions. One qu<~~tlon given to all subjeets was taken from Loewis
- Carroli’s Symbolic Logie, Tt read:

(Giive the conelusion that follows from these three statements:
I No potatoes of mine, that are new. have been boiled.
2. Al my potatoes in this dish are fit to eat.

3. No unboiled potatoes of mine are fit to eat.

A more difficult question (consisting of two parts) given only to the
fifth- and sixth-form pupils is given below. It is taken from the ~eetion
01 converses,
What do we mean by the econverse of a theorem? Give an example
if you wish
What is the converse of: “If a quadrilateral is a ree tungle, then its
diagonals are equal’”?

It will be appreciated that there were 50 questions in the fwo tests,
with 1.538 answers to each question in test | and 1.418 answers to cach
question in test 2, quite apart from the answers obtained b the individual
interrogation of 80 pupils. In order to reduce the amount of work, Rey-
. nolds analyse |, in detail, the responses to 22 questions drawn from the
six sections and from the two tests.

REstLTs

To summarize the findings in limited space is a very difficult task. It
will, perhaps, be best done by considering a question taken from each
section. I must point out, however, that I have greatly simplified the -
findings—perhaps ‘ov~rsimplified them—and the percentages expressed )
below have been well rounded. o

Generalisations

Let us consider the responses made to the example that involved
Goldbach’s conjecture, Some 40 percent of the first-, third-, and fifth-
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~ late Piagetian theory into stimulus-response terms such as “‘internal
reinforcements" and “transformation responses™ is seen by Piaget as little >
more than a language game. .
The sccond gencration of studies reflects a dissatisfaction with the
. Piagetian position in two ~enses. First is the convietion that Pi jagetian
stage theory places {00 rigid a limitation on logical thought acquisition. .
It is asserted by a number of investigators that the logieal structures
[ N delincated by ng,(-t can be acquired cuhcr through various kinds of
training than is implied by the Genevan “norms.” In turn, Pi iaget is often
critical of the (principally American and Soviet) “ol»cwon with acceler-
ating logical thought development.
Second, many investigators are unwilling to aceept the cquilibration
model as the explanation for logieal thought acquisition nor the speeific
logical operations and structures said to be involved in particular kinds of
thinking. In regard to conservation, for example, they do not aceept the
role of reversibility nor inversion and compensation strategies as necessary
to successful performance. Nor are they willing to accept transitivity as -
neeessary (o serlation, or the elassification logice ax necessary to whole-part
relations and ¢lass inelusion, and so on. Many erities undertake training
studies for the purpose of eXposing the “true” mechanisms of thought, or
o at least to reduce them to the simplest objectively observed constituents,
EMC In general, these studies can be divided into those concerned with the
- *echnology of training or learning and those concerned with the mecha-
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subjeets were ll\\.l\\ unaware ()t an mhmt(- ('l inx (llth()n"n tln~ s very
i unlikely in the ease of the younger ehildren), but that they extended the
generalisation only to instanees close to the given ones, Aronnd 10 per-
cent of the first-vear children answered in this way. deeressing to nil in
the M sixth. A pupils who answered on the basis of “evi-'ence sufficient”
were elearly at a conerete-operational level of thinking in respeet of this

problem.
A third group of responses (aceraging from 10 to 12 pereent of the
rephes up to the fifth form, then deerensing to 7 pereent) answered *Yes” o,

but made use of the converse, Sueh children seleeted two odd prime
numhers and by addition found an even one. Sueh a proeess, of course,
always gives an even nmumber, but there i» no certainty that all even
mmnbers will be determined by it. The answers revealed a failure to
realise the direction of the given proeess and to give consideration to the
universe of discomse. A few also glossed over the distinetion between
prime and odd numbers,

The pereentage of pupils who neeepted the generalization, “with doubt.”
inereased slowly up to the NM =ixth form and then jumped suddenly to
around 12 percent. Subjeets readised that the evidence for the generali-
sation wus insufficient; they looked on the generalisation as a hypothesis,
although they made no attempt to test it, as might have been expeeted
from Piaget’s theoretieal position.

TFinally, there was a gronp of pupils who realised the laek of evidenee
for the generalisation. The pereentage of answers of this type inereased
slowly with age until the sixth form, when it inereased abruptly to some-
what over 20 pereent, Subjeets realised that the evidenee from a number
of positive instanees conld never be adequate to prove the generalisation
for all even numbers, They emphasised the need for a more general proof
hefore a conelusion could be reached. This more advanced view presup-
s . poses an adequate notion of a mathematical generalisation, that is, that
‘ it states a property of every clement of a definite set. But it is interesting

to note that not a single pupil made a complete test of the possibilities,
If pis =2 is an even number” and ¢ is x ix expressible as the sum of two
primes,” the generalisation would be p— ¢. No pupit considered testing
s the truth values of the four expressions
PN G PN ~qG ~p N G ~p N ~q.

£
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The training studies will now be examined in some detail. It is a curious
- fact that from the entire range of interesting and important Piagetian :
experiments and observations, the most studied has been the conservation
phenomenon. There i no doubt that conzervation lends itself to eusy
experimentation, and that it is mtimately tied 'to the general theory. but *
its attraction probably lies in the fact that it appears tozbe the case where
a erucial test ean be made of Piagetian theory. Many training studies are
R designed to make such a test.

TRrANING STUDMES OF CONSERVATION

The ability to conserve is inherent in the development of quantitative
eone s, sin~e ~uch _coneepts require thc ablht\' to maintain the invariance
of the c.)n(-cptﬂn* ~|ntc of unrelated or related attribute transformations. -
[n a recent statement of his ideas about conservation, Piaget ([e] 1968)
emphasizes that eonservation is possible only when there is a composition
. of quantitative variations whieh takes the form of a compensation of
relations (higher X thimer = same amount), or an additive composition- -
tnothing added, nothing taken away = same amount). The additive and

compensatory compositions involve two types of reversibility, reversibility

L by inversion (a return to the original state), and reversibility by com-
ERIC pensation, plus the identity operation (nothing added, or taken away,
The identity operation occurs only in relation to the other operations and
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While a partial test of these expressions may be expected of the twelve-
to-fourteen age range, the full test might be expeeted in tine fourteen-to-
cighteen age range. Pupils who rejected the generalisation on lack of
evidence showed a move to formal thought and « need for a general proof,
but they did not test the hypothesis.

o

Symbols

We discuss the responses to the question “Is ~p negative?” Sinee -p is

not part of an algebraic expression, many children think of it as indieat-

ing a state (e.g., position on a number line) or as an operation (i.e., to
subtrae. p from a eertain quantity). .

Of those who answered *Yes to the guestion, the following percentages
thought of p as indicating a state : around 28 pereent in the first year, 55
t2 60 percent in.the third and fifth years, 45 percent in the N sixth, and
18 percent in the M sixth, A typical reply was Y=p is less than 0; uny

minus quantity is negative.” Those pupils who answer, cffectively; “Yes,

a state.” l:ave a restrictive universe of diseourse for values of p. although
they are not aware of this, Very few subjects (nil in the M sixth) thought
of - as indicating an operation. Those who did eoneentrated on what
the symbol indicated should he done to p and not on the range of valucs
of p. Anctacr-group of pupils who answered “Yes"—mainly in the first

and third vears—appeared to think that p was a different kind of num-

ber. Their replies were of the-type, “It does not exist,” “It does not
represent a number of articles.” With these pupils the individual-inter-
views clearly showed that a negative number was notregarded as a “real”
number. Overall, the first-vear pupils showed neh uncertainty both in
answering the question aid in respeet of their eoneept of negative num-
bers generally. Nearly onc-third deelined to attempt the exercise. Of
those who did atlenipt it, many showed they had <ome familiarity with
numerieal terms like 43, —2 (e.g., as temperature) but their understand-
ing was intuitive. This evidence is in line with the view that until the
onset of formal-operational thought a child’s grasp of negative numbers
is intuitive.

There were. of course, pupils who responded in effect “not neeessarilv”;
hardly anyone did so in the 1.3t year, but the ratio rose to around one-
third in the fifth and NM sixth forms, and to three-quarters in the M
sixth form. These pupils may not have explicitly decided to take the set
of integers or the set of real numbers as their universe. Indeed. they may
have coisidered only a'very limited range of positive and negative integers
for p. but their acceptance of some positive and negative integers for p
showed a better appreciation of the position than thosc who considered
only positive values. There were also some 10 percent of the subjeets in
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the first vear who answered *No” but whose responses otherwise showed
poorly developed eoncepts of negative numbers, {1) the other year groups
there were very few replies of this type. =

Assumptions - .

The responses tc the question “What do we mean by a hypothesix®”
were divided into those whieh showed some appreeiation of a hypothesis
and those in whieh the ideas expressed were of little value. Examples of
good answers were of the type “Something supposced” and “Something
taken for the sake of argument.” Pupils whose replies fell in this eate-
gory gave the impression that they regarded a hypothesis as a statement
tentatively aecepted and to be used as a basis for reagoning. Very few
responses in the first and third vears were of thiz kind, the percentage
rising to around 15 in the fifth year, and to about 40 in the N)M, and to a
Iitte over 50 in the M, sixth forms. :

Nearly 21l the answers in the poor eategory centered around one or
more of four possibilities: a hypothesis is a true statement, an untrue
statement, a proved statement, or one that cannot be proved: The per-
centage of poor answers varied front 5 percent. in years one and three,
to some 25 in thE-NM, and to 20 in the M. sixth forms. It will be appre-
clated_from the figures given above that in each of years onc and three
over 90 pereent of the pupils did not respond to the question, this figure
dsepping to 20 pereent in the M sixth’form.

Converse -

Here we disenss the replies to the exereise: “All suecessful seientists
work hard. and Mr. Smith is a seientist who works hard. Can we say
from this that Mr. Smith is a suecessful seientisi?”

Some 25 pereent of the responses of the first- and third-form pupils
answered “Yes" iy one form or another. This figute deercased in the fifth
form. until in the M sixth form only 1 to 2 pereent answered in this way.
None of the subjects who so responded realised that they had aceepted
the converse of “all suceessful seientists work hard™ or had cquated the
set of suecessful scientists with the set of hard-working seientists. A typical
reply was “Mr. Smith works hard and those scientists who work hard
are sueeessful.” This kind of reply rcgarded as empty the set of scien-
tists who work hard and are not sucecessful. Other pupils who put “Yes”
regarded the situation as one refleeting real-life eonditions rather than
as a hypothetieai one. Their view was that if you worked hard enough,
then in the end you should be suecessful; and the answer * Yes” was given
in spite of exceptiofis. - .

There wers two categories o: reasons for “No.” In the one a good
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reason was given; in the other the: reaso:n advanced was notRadequate.
Those pupils in the “No, good reason” category realised that it could
not he said witlr eertainty that all hard-working seientists were suecessful.
Yet even though the pupils understood that the converse of the first state-
ment.of the exercize was not necessarilv true. a few supported their con-
clusion by reference to real-life situations and argued that other factors
sueh as intelligence or skill might well affect success. These children,

~ tog, were looking Lbon the situation as a praetical one. However, around

3 Percent of pupils in the first and third forms gave a “No, good reason”

- type of reply. the figure rising to 85 to 90 pereent in the NM, and to over

90 pereent in the M sixth form. Abont 18 pereent of first- and third-form
pupils gave a “No, peor reason” type of response, but among the older
pupils the numbers of sueh replies were negligible.

This question involved the inelusion relation between two classes:
the class of suceessful scienlists X, and tI® class of those who work
hard Y. The relation was X € Y. if X”is the complement of X in Y, then
N 4 X’ = Y. So the problem was concerned with three classes, X, X", Y,
connected hy X' - X’ = V. This type of problem ean, of course, be
solved at the stage of eonerete-operational thought. But two features
make it difficult to solve it at this stage of thought. First, the situat ,n
is not casily imageable. and since it is certainly not pereeptible it is not
casily intuitable. Second. X” was not explieitly mentioned. One would
expeet, therefore, a good pereentage in first and third forms giving a
“No. good reason” type of reply, and a rapid inerease with the develop-

“ment of advaneed formal thinking. This is broadly what was found.
Reductio ad absurdum method—~ -

.

Here we disenss the responses to the exereige: “In figure 1 we are told
that AR is not parallel to ('D, and we wish to show that p and ¢ have
different values. Complete tne argument that starts, ‘Either p and g
are equal orthey are different; if p and ¢ are equal then. ., .)”

In the schools used in this investigation, parallel lines were studied in
the first forms, and all pupils knew that when parallel lines are cut by a
transversal the alternate angles are cqual and the corresponding angles
are equal. / o

The responses fell into four categories. The first category was poor;
in this no effective contribution was made to the arsument. There were
comments on p or ¢ or on-the-diagram (e.g.. “p and ¢ are alternate” or
“CB is a transversdl of AB and D™}, but no attempe was made at any
argument. The percentage ol pupils responding in this general sway de-
clined from some 25 in the first form to 6 in the fifth form, and nil there-
after.
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Category two included the replies in whieh it was deduced that AB
was parallel to CD fivm the hypothesis p = ¢. Some pupils whose re-
sponses were put in this category made the other unjustified assumption:
that is, "As p and ¢ are not equal, lines AB and €D are not parallel.”
The number of pupils in this category steadily declined from around
35 percent in the first year to 14 percent in the M sixthi form. In general
the pupils whose replies were so eategorised failed to realise the role of
the original hypothesis, p =  which became t.ie source of a deduction
that contradicted the date=. They were unable to compare their conclusion
with the data that AB and CD ave not paraltel, It is also worth noting
that gver half the first-form pupils interviewed said that alternate angles
were always equal. -

The third category of responses was termed contradiction reached, for
the pupils indicated that-they had arrived at a contradiction but did not
knpw how to deal with it. Put in another way. all the pupils realised
that a contradict*>n had been reached but they did not sce, that the
source_of it.was the hypothesis p = ¢. A typical reply was “AB parallel
to ("D, which is not =0.”” Remarkably, the pereentage of pupils giving this
kind of response remained steady and ranged only from 12 percent to
18 pereent across the forms. o

The percentage of answers in the fourth, or good, category increased
from 14 in form one, to 38 in form three, to around 60 in the fifth and
NM sixth forms, to close to 70 in the M sixth form. All the pupils whose
responses fell into this classifieation recognised that the deduction
AB |} CD was inconsistent with the data and realised that the source of
the contradiction was the hypothesis p = ¢. So this was discarded and
the only other alternate p 5= ¢ accepted.

Deductions - —

Responses to the potato guestion taken from Carroll’s logic ave'now
examined. Five types of answer were found:-those correct, those that
did not ‘reach a solution but that showed no inconsisteney, those that
made a contradiction, those that added new information, and those that
treated the three statements as urrelated.

The percentage of eorreet responses_increased from around 32 in form
one to 75 to 80 in the M sixth form. There was a remarkably steady
percentage of replies in the sccond category—around 25 up.to and in-
cluding the NM sixth form, thereafter the figure fell to 9. Examples of
these incomplete replies were “New potfitoes are unfit to eat”; “The
potatoes in the dish are boiled”; “No new unboiled potatoes.are fit to cat.”
For ease of diseussion let us consider these categories of response first.
To reach a solution a number of steps are neeessary. From the three
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statements a suitable pair must be selected and a deduction made, This
deduction must now he regarded as a statement about the potiutoes, and
combined with the unused statement of the original three to draw the
final conclusion. Apart from a fow answers in the second ¢ategory which
gave one of the original statements in another form (e, “All my un-
boiled potatoes are not fit to eat”) no one had any difliculty in reaching
the deduction from one of the suitable pairs of statements. But two
diffieultics appeared to hinder the soluticn. -First, the deduction v as
regaived as having to be combined with the unused statement of the
original three. Second. the combination of thesde luetion and the second
statement (of the three) seemed casier when the deduction wis in the
farm “My potatoes which are fit to cat are not new” than in the form
" Allmy new potatoes are unfit to cat.”

When we turn to the other categories of response. we find that some
15 percent of pupils in years one and three provided a contradiction. the
corresponding figures for the other years becoming very small, In very
few instances in each age group new information was added (category
four type of response) . while around 13 pereent in the first véar but very
few thereafter treated the statements as unrelated (category-five re-
sponse). .

The responses that vielded the contradictions are mteresting; all gave
a reply inconsistent with the data orwith a deduction from them. State-
ments one and three are both in negative forns; i.c., one set was said to
have no clement in common with another set. Contradictions such as
“The new potatoes are boiled™ and “All my potatoes are boiled and fit
to c}ﬁ’{'('ro attempts to put these stateents in a positive form. Other
respor=es in this category involved crrors regarding the age and state of
the potatoes (e.g.. “The new potatoes ar. fit to cat”). A common failing
was the lack of cheek between the answor and the data given.

Tue Resvrrs iy rue Licnr or
Pracer’s DevenorMexsaL SYSTEM

Since all the subjects were above average in attainment and measured
intelligenee, it is reasonable to suppose that those in the first. and third
forms would be acquiring formal-operational thonght and be at Piaget’s
stage IILA. Those-in the fifth and sixth forms would be aged-FH4- to 184-
vears and might be expeeted to make full use of formal-operational
thought and be at Piaget’s stage IITB. However. because of individual
differences in ability which sould make some very bright third formers
more intellectually adwmiced than some fifth formers. some overlap in
respeet of performance must be expeeted. Tndeed. this is what happened.
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for there were common approaches to the_questions in all age groups.
But the occasions of notable improvement in the fifth=" and sixths’ an- -
. swers in the questions we listed were:
1. In the questions dealing with generalisations -
Here there was a elear move to emphasise the lack of evidence for
a generalisation based on a number of instances. and the increased
- pereentage of the replies that indicited the generalisation 27 >
20 4-1. 023 } ]
2. The emphasis - *he value of symbols for generalising T

3. The better understanding of the meaning of hypothesis and logical = =
statement
© 4. In the percentages answering correetly the exercise relating to Mr.
smith and the hard-working scientist~ in the seetion on converses

-t

The inerease in the percentage of responses in *he good category to
the problem bhased on the reductio ad absurdun: method

6. In the pereentages giving a coffcet response to the problem taken
from Lewis Carroll’s Symbolic Logic in the deduetion section

However. to some questions the answers of the fifth- and sixth-form
pupils showed only a gradual improvement over those in the first and
third forms. Nevertheless Piaget’s formulations regarding stages of
thinking account for a good deal in the nature of the replies. Answers
that were characteristic of the coners te-operational stage of thinking
appeared regularly. but the answers also indicated an_increasing ability
to use formal-operational thought with age.

A
SOME PoINTs FOR CONSIDERATION

The questions posed to the subyects <howed considerable variation in
the degree of their structure. from the fully structured. precise situation
involved in the potato question to the following situatiomfpresented to
all pupil=):

If all the men who are on Committee 4 are put on Committee B,
which of the foflowing stutemuents are true. false, or cannot he .
vdecided? '
- i 1 Every man who js on Bi<on 4.
2. Anyman whois»  or 2 cannot be on A. il
3. Every womar v on Baygnot on A.

In this problem only tisgiven. v
L Reynolds afgues Laat there are a «omber of reasons why the neat ~
' 77
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theoretical framework in respect of formal-operational thought arising
out of Inhelder and Piaget's experimental tasks did not explain all the
findings in this study. He maintains. for example. that the degree of
structure of the problem is relevant, The advantage of a well-structured
problem lies in the faet that its assumptions, variables, and universes of
discourse of the variables are ecasily identifiable, The problem solver
then has no need {o introduce assumptions or hypotheses from outside
the situation as he attempts to sclve the problem. He can construct
hypothesex by relating in various way= the variables of the situation,
deduce the consequences of the hypotheses, and then test them,

In a loosely structured problem either all the assumptions are not
stated or the variables are not easily identifiable or the universes of dis-
course of all the variables are not given. To such a problem the solver
must bring his own assumptions and universes of discourse drawn from his
own expericnce. For example-in the question that asked whether P was
always negative. those who replied. in effeet. “Yes, a state,” assumed that
p took positive values: hut the fact that this czused a restriction was not
recogni=ed. .

In the question relating to the committee in the deductica seetion,
some of the assumptions niade were: '

No woman ix on hoth A and B,

There are no women on .

There are no women on A or B. '

After the change there is only one committee,
Some women on 8 ean be on .1.

These assumptions gave a more definite strueture to the situation and
led to erroncous conclusions. Reynolds argues that in Inhelder's experi-
ments a pupil had a better opportunity to rectify o wrong assumption by
practical manipulation. We must also note. however. that Reynolds does
not make clear any differences he found between the written answers and
the answers ~htained by oral questioning: in the latter instance supple-
mentary questions could have helped the subject to sce the consequences
of hix assumptions and »o arrive at inconsistencies. 1 persona]ly feel that,
throughout the study. pupils would perform rather better at the indi-
vidually administered tasks than on the written tests, and I think
Reynolds would agree.,

So much for the structure of the questions. ®hen we turn to the sub-
jeet’s knowledge of the concepts involved. we nnd. as in all other studies;
that the level of his understanding of mathematieal coneepts has an
effcet on the quality of his answers. There is much in commnon here with
Aiagnd's viewpoint. namely. :nat strategies of thought for use by the
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~ - I'he Training and Acquisition .
- of Logical Operations o
Mathematicians and mathenatics educators are mterested in Piaget s ,
theory of cognitive development because it explains how mental operations
basie to mathen:atical thought develop. They do not, o+ the whole, have
much interest in Piaget's views of fundamental logical or mathematiea)
4

relations, such as his ideas about the logical properties of mnuber.-~Since,

according to a number of philosophers of science, it is desivable to isolate

philozophie and logical systems from psyehologizing. mathematicians and

~logicians arc able to view the pxyehologieal implications of Piaget's theory

quite in-fependently from its mathematics. even though a significant part

of the psyehological theory hax imathematieal and logical content. - A

Beyond this, interest in Piaget's theory is eentered on two of its features.

- _ First is the identification of the functional and structural popuities of
thought as they undergo change with age. The theory holds that while

adult forms of thought have their precwrsors in the structures of ¢hild

thought. they age qualitatively different from the thought of carlier

periods. The early forms are not suited to particular kinds of problem

e sslving. Problems that entail the use of proporsitional logic. for example,
are approached by children with =trategies that lead to immature and

incorreet solutions. This view ~tands in opposition to theories of thinking

and development that assume that cognitive processes are the same for

Preparation of this paper was aided in part by NICHD Giant
HD-00925-09-10, -

The authot is grateful to Joan Kay Clayton and Carol Doyle for their
aesistanee in the prepaation of the bibliographic materials,
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all ages, with the child’s thought only a less complex and quantitatively
reduced form of the adult’s -

The second aspeet of the theory that is of theoretical and practieal
import is the position it espouses vis-a-vis learning. Piaget’s theory is a
developmental theory that subsumes learning to development, in contrast
with behavioristic theories that explain development in terms of the
processes of learning. Piaget’s view is that experience results in learning
only to the extent that the elements of experience are assimilable to exist-
ing cognitive structure. Experience, whether it involves practice, rein-
forcement. need reduction. or verbal rule learning. yiclds no persisting
residue if it does not take p].uo in the context of appropriately available
intelleetual resourees. This is a very strong clains snd it has not gone
unel l]lcngcd It is the intent of this review to examine a variety of studies
that have questioned. defended. or examined the Piagetian thesis concern-
ing the relation of learning to logical thought development.

In Piaget’s conception of cognitive development there is continuous
change in whieh the child’s thought emerges out of the actions he performs
upon the objects in the world about him, These actions upon objects consti-
aute the model for later thinking, sinee the most important element in both
the child’s and adult’s thought processes. the logical “operations.” are asso-
ciated with aetion. Logical thought is coneeived as a form of implicit
action. Action is represented in the general property called “reversibility,”
a form ofaction that - n be eanceled by a reverse action. In its logieal
form. an operaticn ear: & .- eanceled by an inverse or compensating opera-
tion, as in the case where the eddition of a unit is eanceled b the sub-
traction of the came unit. This eharacteristic of thought is embodied in
all logical thought. and for the Genevans is eriti~al in detenmining true or
complete. “operativity.” that i<, the full achicvement of a logical thought
svstem. The flexibility of operations represented by reversibility is the
feature that distinguishes operative from nonoperative; thought. It is a
flexibility. nonetheless, that develops within a structured system organized
in accord with logical principles that are codified by Piaget as the logic of
classification. the logic of relations, and the propositional logie. Reversi-
bility and concrete-operational thinl&ing develop.at about the age of six
or seven years. Preoperative thought, which exists from the end of the
sensorimotor period (about the age of ecighteen months to two years),
while not without its logieal properties, is at most a limited logic (a semi-
logic, as Piaget puts it), and it lacks the key reversibility feature. The
entire system of logieal thought develops under the control of « self--
regulating mechanism which Piaget denotes as equilibration. Equilibra-
tion, operating in conjunetion with maturation and expericuee, is the
eentral mechanisin by which development oceurs. 1t s ‘the piocess hy
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virtue of whieh the individual eonstruets logical schemes out of the cle- -

ments of his experience as well as from alreadv construeted operations.

The Genevans first beeame interested in learning (or training) studies
as a defense of the equiibration model. The most important theorctical
altermative as tw it was the general behavioristie model connmon.to
Hull, Skinner, Pavlov, and others. Whatever other features they might
stress, such as need reduction, eontiguity, or feedback, they.have in
comynon the attribution of learning to thc _external 1cmtoucmcnt of
responses made by the subject. For Piaget, lear ning in this sense is “pro-
voked b\gltuatlon\ It is provoked as opposed to being’ spontalieous,
which is the prime characteristic of development. The Genevans felt it
necessary to attack the behavioristie alternative to equilibration theory
because of its appeal to learning theory as—tle pnn(lpal alternative
explanation for the phenomena of development. -

" Among the training studies that followed one can delineate three gencra-
tions of researches. The first was by the Piagetians themsclves, the
zeeond by those with a variety of theoretical oncn‘f.molh and mcthons
The third generation reflects a return to the training 'studies by the
Genevans. In the first generation an attempt was made, as indicated, to
huttress the equilibration model agains. behaviorist attack. The studies by
Smedslund ([a] 1959; [b] 1961), Wohlwill ([a] 1959, and the Genevans
themselves (Piaget [a] 1959) are significant. Smedslund eontrasted external
reinforcement training with conflict-equilibration training and showed that
while reinforeement might be effect’ve for learning it did not compare with
the effectiveness of a confliet-equilibration procednre, He also emphasized
that when learning did oecur it was with subjeets who already had the
rudiments of operational structures available to them. Piaget (Th] 1964),
in connnenting on the Smedslund studies, observed that while Simedsiund
was =uccessful in indueing weight conservation with his method, he was
not suceessful with transitivity training with the same method. This led
Piaget to make a distinetion between training physical relations and train-
ing logicomathematical relations. He argued that tlammg. could be sue-
cessful for physical experience but not for the construction of logicomathe-
matical structures. He also took note of what he saw as Wohlwill’s success
in inducing mumber conservation through additive operations. He cited
this to be an example of learning when one bases a more complex structure
on simpler struetures if there is a natural (i.c.. logical) relation between
them. What is common to Siedslund’s, Wollwill’s, and other Piagetians'
experiments in this area is the rcjccti6n of “external reinforcement™ ax a
model for the acquisition of logical and infralogical structures.

In this period Piaget also rejeeted attempts at a theoretieal rapproche-
ment with neoassociationism. The effort by Berlyne (c.g., 1965) to trans-
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demonstrate the-validity of this argument, they condueted a perceptual
sereening experiment with four-;, five-, six-, and seven-vear-old ¢hildren.-
The essence of the experiment involved requiring the child to make deci-
sion= about the quantity of water poured-from one contamer to another in

-a variety of conditions, witl, and-without sereens. The ehild made com-
parisons between the predicted height of the water and the actual height.
The purpose of the sereen was to foree the child to-base his judgments
upon the-identity of the water, which would help him “resist” the effeets of
changes in the appearance of the water, Resistance to the alternations in
water shape was considered to result from the linguistic representation of
the pereeptudl relationships viewed in the experiment. The effeet of the

'tlammg, by sereening was shown to be considerable m the-fives, six-;"and
seven-year-old groups. The four-year-olds, howev 01, ~showed no improve=

~ment in the transier posttest. - —

Piaget ([c] 1968) is specif fically eritieal of these xtudlcﬂ First, lie
imphc\ ‘that “Bruner’s subjeets attained a type of pseudoconser v'mon
whose trne status would be exposed by the use of a simple control pro-
cedure. Piaget is also eritical of Bumcr C(.IICC])tloll of logical compensa-
tion, suggcmn" that Brunér fails to distinguish “Tunctional covariation”
from “operational compensation,” as well as failing to distinguish “reversi-

‘bility” (which is logical and operative) from-“cmpirical return” (which

is a “physical notion””). His most important observations, however, are -
' b

~ made in regard to identity. Piaget elaborates a developmental sequence for
identity in which a preoperative type of identity progressively yields to
an-operative identity that reaches maturity concurrently with the related
conservation operations. Preoperational identity which Bruner is addrcss-
ing, says Piaget, can only lead fo pseudoconservation. Piaget is addition-
ally quite eritical of Bruner’s linguistic argument, citing evidence that
language is subordinate to operations and “does not constitute the forma-
tive mechanism of the operations” (Piaget [c] 1968, p. 33).
“The effects of Biunet’s sereening procedure have been interpreted in a
broader context clsewhere (Beilin [e] 1969). The lingwistic forms in which
the pereeptual data are coded are scen to encapsulate thc rules governing
~the- conservatiGin operations. The statements thus act as - algorithms for
the processing of perceptual input. This leads, as a rule, to limited classes
of correct solution that lack the flexibility of true reversible operations,
More will be said on this score later.) In any case, it is evident that a
substantial number of nonconservers from age five on can be-indiced to
conserve with the sereening procedure, although the fact that four-year-
olds were not able to profit from the procedure is not adequately accounted
for by Bruner, even though four-year-olds have a qophlstlcated linguistic
system available to them.
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in an attempt. to systematically formalize the distinction between ) -
. identity and. equivalence conservation, Northman and Gruen (1970) ) 7
tested children on & variety of tasks involving identity and equivalence -
procedures. They were not able to substantiate their predietion that — ——
-identity conservation would precede equivalence conservation. although
they did find that-transitivity emerges at about the same time as the ’ -
operations necessary for conservation. :
Although the so-called identity and equivalenee tasks represent i\\o e ) - I BB
different ways of testing conservation, the mechanisims underlying tl}(:m N T -
are not subat.mtmlly different. An- understunding of transitivity would - o . ]
- seem to be required in the equi ‘alence conservation test, =i11ce one of the . o
_clements-is used-as a common measure. Sinee the common measure is-- - . —
transformed or relocated, however, it would seein Jlogically required that - T
conservation is a requigite for transifivity rather than transitivity for B
o _ conservation. In addition, if the- identity notion undergoes operational - - -
’ development in the way Piaget suggests, then the reduction of conserva- =
-tion to a single identity mechanism would seem inadequate. particularly :
if this form of-identity is akin to a notion of object constancy. : . .
The attempt to reduce the notion of conservation to identity relates to -
another problem which- pervades the conservation literature. It involves - .
the definition of eomservation.- With an appropriate definition, conserva- E ) :
= tion can be demonstrated at a-very early age, as Bruner and others (19661 7 i '
B and Mchler and Bever (1967) atfempt to do. If conservation..is defined o ’
closer to Piaget’s meaning, however, it is seen as a later. em@rgm" achieve- -
ment. Gruen ([b] 1966) shows tlm to be true in the use of weak aml )
strong criteria for evaluating a <ub1ect’: conservation responses.. A con-
_ceptual analysis of the_conservation notion (Beilin [¢] 19697 reveals that - T
certain nses made of the term, sucl as Bruner’s, distort the meaning and
~15mﬁcancc of the phenomenon. The association of “same” in relation to .
“number,” for example, involves the conceptual attributes of number, ) :
Dealing with the coneeptual attributes of number requires cognitive o
(‘:d])'lCltlc< in the child which are different in kind from those in_which .
same” is used in relation to the notion of “object” fe.g., water). The - ’ -
cognitive mechanics needed to deal with “sze number” are more sophis- 7
ticated than those required for de::} :!ng with “stme water.” The hierarchi-
cal relation between the concepts is paralleled by a hierarchical relation -
between the thought processes required to conceptualize them. Attemipts at
reduction from one level to another on a logical basis alone are not likely
to succeed. Attempts (such as those of Brainerd and Allen 1971) to
show that the eriterion problem is not a signifieant one are misleading, . .
particularly if the argument is that both suceessfur and unsuceessful train- i L
ing studies have used stringent eriteria-for assessing conservation perforn-

-y
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ance. Stringent operational criteria are not the same as demanding con—

ceptual eriteria; and the failure to distinguish them-is ¢ féeriousfoﬁvcrsiglxt.

While some studies involve what appear to be eoneeptual or theoretical
differences from the Piagetian model, others treat experimental issues.
The Mchler and Bever studies mvol\e both and represent instances in
which Piaget’s theory conecrning conservation-is vigorously refuted with
ostensive conservation experiments (Mehler and Bever 1967; Bever,
Mehler, and Epstein 1968). In response to critical reactionshowever, these
are later identified as something other than conservation (Mehler and
Bever 1967; Beilin [l)J 1968; Be\cr \Iohlcr, and E[)<t01n 1968; Piaget

d) e - , .

Cognitive conﬂzct -l = - B

Another series of training studies (lcalc with an acquisition model that

_also derives fronr Piagetian-theory. These training studies start with the

work of Smedslund ([a] 1959; [b] 1961), who posits that cognitive change -
oceurs from the confliet between strategies orschemnes that are constructed
out of the child’s experience. The conflict is not between an existing

_ scheme and data from perceptual or sensory experience but between ideas -

themselves, that is, between an existing- <cheme and one newly dev (,lopul
from experience. -
Smedslund uses two methods to create conflict: a deformation procedure,

“whereby “a transformation oceurs threugh a deformation-of the objeet or
" its location, and an addition/subtraction (A/S)- procedure, whereby addi-

tions to and subtractions from an object or an array of objects are made.
Smedslund’s studies show that-when the proeedures are effeetive in chang-
ing nonconservers into conservers (and- they are not always successful) it
is usually when there is already some evidence of conservation in the-
child’s performance. The test he makes of the cﬁcef1vencs~ of other pro-
eedures to induee conservation (part:culm‘ly reinforeed practice) shows
them to be ineffective. Other investigators are divided on the efficacy of
Smedslund’s confliet methods. Beilin ([a] 19651, who tested the deforma-
tion procedure, found it to be ineffective; and Smith (1968), who used the
A/S proeedure, found it to be equally unproductive. Mermelstein and
Meyer (1969) obtained no significant changes in performance with a
procedure that.purports to be an approximation to-a deformation pro-
cedure, although they obtained no positive 1c<ults with any other training
procedure.

A study by Winer (1968) eonceives of the A/S procedure, following the
proposal by Wohlwill and Lowe ( 1962), as a set- trammg procedure that
leads to the development of inferences. He finds that A/S training is
effeetive in improving conser vatlon but “eonflict trials” in which addition/
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subtraction is tied to a deformation procedure were even more effective.
In spite of this finding, Winer considers the effeet of the conflict proeedure
to be minimal. One may with equal justification, however, consider—the
results as supporting the confliet. interpretation. Smedslund ([d] 1963},

Ju training for conservation of length, obtained the greatest gaing from

the use of a method that .equired subjeet anticipations of object displace.
ments (a deformation procedure), whereas he found that inereasing-illu-—

sion effeets with the Muller-Lyer illusion led to the smallest gains,

Murray (1968), who also used the Muller-Lyer illusion {o create cognitive—
conflict, did obtain significant inereases in conservation compared with a
control. Conservation-acquisition did not transfer to an arca conservation
tdsk, however, and as would be expected, older Ss showed greater gains in
conservation than younger Ss. Wohlwill and Lowe (19621, employing an

A/8 procedure, obtained little inerease in conservation performance. In
interpreting the experiment’s dynmunies they hold, -however, that the A/8
procedure leads to the ehild’s de\clopmcnt of an inference from-the con-
trast of the A/S condition with the condition without A/S. In the Genevan
sense two schemes are being contrasted by the procedure, and the result-
ing confliet leads to a new organization of sehemes. The inference hypoth-
csiy, on the other hand, implies a process of induction, the nature of which
is as little understood as that of schema construction, although it is more
oftenidentified with beli sioristie interpretations.

Gruen ([a] 19651, using the Wollwill and Lowe A/S .1])])‘1mtu and pro-
cedure, found that Ss given confliet training outperformed Ss given direct
training on the apparatus in which there-was no A/S procedure. He found
very little transfer, however, from number training to length and substance
conservation. - =

In spite of the few ncgttne ~tud‘cs, the conflict pmccdmc appears
capable of leading to improved conserv ation performanee. Addition/
subtraction is superior to the deformation procedure, ¢ven though Smeds-
lund found the effects of deformation demonstrations to be superior and
Wohlwill himself felt A/S training to be of relatively little help except for
implicitly demonstrating reversibility. Confliet training is more effective

“with-older children and does not transfer to types of conservation not

trained, Another findirg which appears consistently in these studies is
that the conservation of discontinuous quantities (number) is achieved
prior to other types of conservation.

Reversibility

Piaget, as indicated, puts great stress on reversibility as the key to
conservation. In a recent discussion of the subject (Piaget [e] 1968),
reversibility is associated with both inversion and compensation strategies
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in conservation thinking., The ecarlier version of the theory, which =till
. placed considerable stress on reversibility, prompted Wallach and Sprott
) ) {1964) to directly train for reversibility as a means of promoting conserf’a-
- _ _ & tion. First-grade cuildren were given training designed to show, through
the reversibility of rearrangements of order, the invariance -of number.
This was done by showing that a fixed number of dolls could be fitted back
into their beds after they had been removed and either spread out or
bunched together, Tn a later experiment {Wallach, Wall, and Anderson —
1967). however, children did not necessarily conserve even though fully
s . ~ cognizant of reversibility (Wallach 1969). This led Wallach to question -
- i ~ whether training really induced reversibility “or merely- led=the child to-
) recognize that-a misleading cue was in fact misleading, a fact thati= not’
: ) - sufficientfor (-011-01'\'at10n 7
7 - - A-study by Roll (1970) shows-that reversibility training-does le*x(l to-
- S improved conservation performance compared with that of-a-control, as
does a study by Brison (19661. The latter does not identify. his procedure
as a reversibility proeedure, although it-utilizes transformations of Jiquids
from differently proportioned jars and then retransformations (reversal)
- - to the original jars. The liquids in-the original jar~; are unequal, so the
e conservation is ostensibly one of inequalities. Brison reports transfer to
- conservation of substance. A study by Carey. and Steffe-(1968) that Jus
- reversibility training as the key to its instructional procedures reports
- ) Co= inereases in“both _conservation of equalities and inequalities as a function’
of the training.

It appears from this lnmtcd unumber of =tu(hca that the reversibility
proeedure itself is capable of inducing conservation, The subject verbal-
ization data of the Walldach study, however, make it unclear as to what is

- occurring in the training task. The reversibility training “method” may
. © not be leading to the construetion of a reversibility meelianism even
though-it leads to improved conservation performance.

Lcarnzng studies )

- o “The prior sections lnvc in commnion the fact that the niechanisms pro-

C posed to be basie to the acquisition of conservation are at least in some

- senge” within Piagetian theory. The training studies to be cited here go
outside the Piagetian explanatory system for at least part of their logic
of justification. In these studies an attempt is made to foster the aequisi-
tion of conservation by (1) training the child to disregard orignore mis-
leading pereeptual cues, (2) training the child to attend to the relevant
attribute (with or without learning to ignore “irrelevant” cues), and (3)
training the subject to differentiate the “real” from the “apparent.”

! - The method of choice in these studies usually involves the use of a con-

i
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) —cept-formation procedure based on a discrimination model in which dis- - .
- crimination_and concept acquisition is achieved by the reinforcement of ) ’ —— £
- correct responses, These procedures are usually associated with behav-

) ioristically oriented ‘research, :lthough the rescarcher who uses these : -
) < - ~ methods may be neutral or even negative in his regard for hehavioristie ’ .
) -theory. It may be held. though, that the very use-of a reinforcement pro- : ;

oo ) . cedure commits the researcher implicitly to a- belm ioristic interpretation  — - - . o=
] - - - of learning-and development. - ) ) ) )
- - The discrimination-based (oncept-fornmtion procedure is idu)tiﬁcd -
- .o . quite diffcrently in different studies. With slight modlf‘@.ttlon, for = - - }

) _ example, it-becomes training-for- “learning-sets.™> -7 =
f—_,An explanation- of- conservation-acquisition -in- terms. of ““set’ receives -
carly expression in Anmleaf(1963)ﬁ Con<er\"lhon -i§ mtupxctcd~ (El) ;
tendency to u:pond witlr- consistency™-to--a _conceptual property (e o =
__number)- rather -than '1(:(:01'(11:1;1 to other (e.g;, pth criteria. Zimiles, o z
~ however, undertakes no research to substantiate this thesis. Attunpta to - ] i B
_ train-childreni by drawing attention to the-relevant-dimension in-a eon-. - - - - e B
s ] “servation task-with « “reinforcement procedure-have-heen: reported botl, as Soen T - S D
- - S _ - -unsuccessful- (Bexlm 1965;: \mC(Hund {b 11, IH, ¥, VI] 19615 Hatano . ~ ) D PR
- - = : -and-Suga 1969; Smitlr 1968) -and-ns successful= Uxmg~ley and Hall 1967; T . - .
, ~ - -Gelman-1969; Eull and-Silverman 1970) - Kingsley and-Hall {1967}, ina- : T - E
— - R study- conccptually grounded in- qune s “(behavioristic) theory of coneept ' e i
- . B acquxsntlon, used: a learning set procedure for-training -weight and length
o nservation -with Smedslund’s extinetion procedure as -a test of the :
.\duevunent of conservation. “There was. a significant improvement in - - o ’ -
- ])erforxmnce, including transfer to a conservation of substance task. How- ) : T -
. o ever, only 3 of 17 trained S5 who achieved conservation resisted extinetion, ) - :
= ' - and no natural conserver resisted extinetion. Hall and Kingsley (1968) : - RN
- : emphasize in another study that experithental -¢onditions have an impor- - ) B
tant bearing on the outcome of conservation experiments. They particu- = - - ~ - .
- - larly identify the role of visual cues; verbal instructiofis, and labels in . — =
- - affecting conservation performance. They -also show that it -is possible to : - . -
. ) . obtain extinetion of conservation among cellege students, which_ contra- - - ' aE &
- ~ diets some:of Smedshund’s assumptions about-the “counter-suggestion” or ' —
- extinetion procedure, These findings and similar results of others place in : o
’ - doubt the extinction procedure as a strong test of opemtmtv Gelman
.= . (1969) holds-thab the failure of children to conserve is duc to inattention” ’ -
— T . to relevant qualitative attributes or to attention to the irrclevant features )
. - " of a display. The theoretical basis for conservation and other conceptual ) N -
. learning situations is interpreted to-be associated with the function of . ~ i
) attention, Gelman provided Jearning set training with feedback in both
- length and number conservation. The training consisted of 32 six-trial - :

|
man
'
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- . : o ) 7 - )

oddity problems cmp}ovmg threg ~t1mulu~ objeets. Half of the series ’ o .-
- - ) «aried in number and half in length. There was within- and between- ' - .
’ - - problem variation in color, size, shape. starting arrangement, and com- - g

- ! _ Linations of quantity, The results indicate that learning was effectively T - 7

S ST achieved. There was-almost perfeet speeifie-transfer (ie.. to the same *

] ] ’ type of task for which the S was trained), and about 35 to- 58-pereent

S nonspecifie transfer to- liquid- and mass conservation, Finding a Jarge

- . e amount of nonspecmc transfer-is most striking. ” Another unusual aspeet

T of the etudv is-the report of “correct” verbal justification of conservation—

al-t ~tud\ that

*ollowmg an o~tcnax\-cly nonverhal- tr.umng procedurc A

(1910), wlm use’ thc -um rc\'crﬂlnhty
deseribe tn.ummr in“terms of * dhcrlmmah i ~cts‘., ’lev rcport,%

positive,- but. not umqmvocal results of tmmmg. Tn thc p(Mfc L, an.
1.1eqlmhtv “set” is responded—fo- correctly- by moreconservation- f.nli"g -~

control subjects than conccrvatmn-ﬁﬂmg c\pcrnnenhl subjects—=a- fact =

that is c\plamcd by-the dubious observation. that-conservation.of: mcqual- -
ity is easier’than conservation of- equ-lhtv when the order of- “difficulty-is. .
usually the reverse (Beilin [¢]71969). The autliors” attribute suceese-of 7~ .
training not to- I‘C\’Cr‘albllltv lmt, to g(,ts” 'nduccd bv the dx=cnmmatlon
- mecdure. - : = - - - - - - -
Reinforcement cffeets- h‘we bccn teqtcd ina numbm of mvc;tlgatmn A
—recent study of weight censervation (Overbeck and-Schwartz 19701 com-- L )
pares the effeets of reinforcement with passive and. active subjcet partici- - - B ’ R
pation, In fhe procéss it exposes-a phenomenon common-to many con- I 7 -

_servation fraining studies, It is rarely clear from the report: of these : T - -

* experiments-zs to how much verbal interaction -has taken- -place between . ) i N
e\pcnmcnt(,r and subject, except in those studies that make a point of . !
measuring the effect of verbal variables. In the Overbeck and Schwartz - - - E
study, rcinforcement is identified as verbal feedback-for correet and R ) -

incorreet responses, .md also by the provision of a vcrlnl rule appropriate
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] to the-problem, Verbal rule instruction, iowever, is more-than a reinforee-

: ment pmculure. It becomies extremely” diffienlt; then. to clearly identify- S ) -

the experimenter’s manipulations and determine what may be causally - - :

- L related to-experitent outcomes, Reinforeement: is 1eportcd as J(‘llltdf.lll;: ’

o o ~ performance, with no differential eﬂccts for active or passive participa- ) 7*7
= =  “tion. “The-authors make the genera? observ: ation- that: the pmu,du“?;"ii“t
) .q)p.u ently suceeed in tmnnng conservy mon \\cwht have one,tvpe of
“reinforcement”-in- common: verbal rule-instruction! - - -

Using a. mcthod in- \\lnch O l)hmlfuldcd eubjcct drop qu, numl)cx f—
ad- into. two jars - 3 g .

[
1

clnld to. re<pond'm! d

ch«on”ii%m reports:
ment -procedures based:-or
‘improved- -performancc=:in “a - conécrvatlon ,contmuous qmntlty taak“
~ which- transferred fo avea, ‘mass, quantity, mnnbcr, and kngtll tasks. A~
group.of-Soviet studies-are-also-hased-on:the use of2measurement strategies. -
Thetheorctlcql framework of-these.studies-employs concepts very similar .

I - to those emnployed by -Gagné in which -task. analy«ec*"é’f’ﬁerarclncal - - s e

. - - nature are developed. They-also employ notions-similar to-those involving-» - .-

L ~  learning sets, but the theory “also-goes far -beyond. these notions. The S B e

R ~ Soviet position, which like Piaget’s-procecds—from_the assumption tha. I - -
- - ° actionis the central problem of p‘:\cholngv dm’er< in- xmportant ways from E - -
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"Piaget’s (Galperin.1966i. One of these is in the emphasis puf on the

ofienting mechanism and ite construction. The orienting mechanisim has

~ - txo components: the -hasic conceptual scheme of the real-world_phenom-

-enon, and the algorithm of actions involved-in identifying or reproducing

this scheme. _ Experimenter-constructed models or instructional stratesies

- aregiven-to the child himself-before-he ‘begins-to-learn to serve as a guide |
to his- actions, .Chcv also-act-us a- frde to- the trainer. ‘In the case of -

_CONSery ation, thc mode]s are b'hed on- the ‘use-of measurement, umrl\cr~

-md the tr.nmng s div ided into thI‘QL parts: (1) {he u~ecf marker~ for the

mamtam:ﬂmt ,hc éonservmg hild-a
’attribu't(:é) and 1gnorc= the 1rrele\ ant one

) not a -ufﬁcmnt explanatxo
_it is a neces: :uy ingredient to-an -a eqnafe evpl‘matxon
differences-in-approach-to the-attentional-notion are thos
what one considers attention to-be-in-the-serviée of . —Bel <
* Zeaman and. Hotise (1963) hold-that-attention ,penmts associative- Ie-n'u- :

- ing processes to come into- play-in concept .xcqumtmn. Othcr behaviorists -
may be inclined: to view attentmn as leading=to the use of * mfex:cnce _
processes.”™ An equilibration theorist, on:thé other'hand, -holds: tlmt*xttcn- S
tion i5 in the service of ‘cognitive - opermom ‘Attention i in: ‘this sense-is
part of a performance model-of- acquisition. and -not -a-competence- mogel,

to use an analogy fronr generative -tmn~fonmhona! Imgulstlcs. Although

- 9-
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-, - =T L e of conservation, the} do noisucceed in doing so because even where suceess
- R - is- demonstmted. as inthe learning sct & experiments, they do not:constifu e
S e =~ . _ -~ crudal experiments -that “eonfinn one theoretlc'll cxpl'm'ltmu _against
’ . ~ all others, -In addition; alternative explanations are u~ua]l\ pussible and-

st p():sﬂ)lc to take a behavioristic experimental procedure and -explain
~ zthe results in- cogmtw e and equilibration-terms.” In-addition, the factthat
- aclne\‘emcnt r&ulL (rom i pamcul'u tr umng procpdure (eum as. the

Iund iype of A/S procedure. Only the VRI groups =ho“ed sxgmﬁcantly

better performance than the control.f

E = - - _equally pl.umb]e for the same- w:ulta. In the same manner th.\l bdx.u-:;
- joriste use Piagetian-procedures but &\plmn thun in"their own terms, so =

these learning s stucies attempt in the main to 1llumm.1te the. meclmnmm -




i

»

- = —.nuvucd tfnt thu clu](hén lmvcmtumll\"
f(:dgc of the:
acquisition through-training;in itself, docsTittle:0 extend: knowledge of the
meéhanisms-of -thought=or the w ay-“they develop and funetion,

“The Overbeck and Schwartz-study 119701 already cited also used verbal-
rule-instruetion, but the téelmigue was xo_confounded with other procedures
~that it js difficult to assessits effeet, although it did lead to improved
wn:er\'.}tmn performance, “Thestudy by Peters (1970)-also confirms the -
—effectivéness of the VRT _procedure. .nlthou«rh it was ~ho\\n th.u T

- “perceptually-guided eue diseriniingtion” procedure was
The latter procedure, }).llLﬂt]lC’lC'\”\"J.;ﬂ “eonceptual” plompimgmuhod

fm th.!t:c(mfjulaﬁ()n of (]oL rcprgammn" dxfiucnt numl)eh th as on_

cqun( d c(unec:omt.tmntfl\m)\\ -
phmomenon. Second; theimere-demr m~n' ation-of-conservation

“The type-of study _that “is minimally required is one that makes -it.

[)0~<1|)]C o associate c\pcrmmntcr nnmpul'ltlonc with specifie learning
- ‘nclnc\'umnt;., Some_studies,

_ contain so.many experimenter m'mxpuhtmn as to make them of limited

such-as-Kohnstamm's ([a] 1963, [b] 1967),

-alue -as - cmnuﬁc 1n~frmnent:~, alﬁlotng]x they may be- note\\orthy ag
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_educational. polemics. Some mvc.,twator~ exercise more care in thcn
“_Z-proredures but alz emerge with results that cannot be related to a single
experimental mant ‘pulation. A- ‘multiple method study b\' Rothcnbcrg and -
Orast {1969, for example, is based on-the_teaching of the “component”
_skils of_conservation that have.beeiifound effective in prior=studics. The -

—techniques used by, W ollwill and Lowe, Gruen, and Wallacltare mployed=—:_
in the-course of =1.unmg mLht wmponcrt “eoneepts. *\mnﬁcanLnnprou— )
ment in- (on-cr vation performance is xeportul but-no: mdlczmon is given
_of which -components7are neeessary-for -conserv ation ,I:g; rev cmblhiv
certam verbal terms. [1norc-~ome] ete. ’). T he. .mthor- commcnt that an- -
'ther setzof-componen ek1l1~ Anight._ s

= ‘c.zfor:, ‘m
kind-of- Lonjen’fnt;qn \\ln('
: 'ﬁfnmu ¢S,
;; ~L1d\

_ pecessary or conser mon (\1;,01 Roepcr. rmd Hoopm 1966} undcrtook )
witha smgll’ nimber of subjects to test whetlier trammg that cmphqc; es
-discussionf: hetween subject and e\pcrnnentcn»could ‘be suecessful.=The - =

—rexults inflicate that the cxpcrlment'd, Mll)J(’d:: proﬁtcd to--some extent
from ﬂxe’( raining: “Fhe control group- (some: of-whom-were: lb -hy attri- -
tion) ~lng£3\\'c(l no-gains. This study is another-example in-which it is- ot
possible-to identify“the elements that-accountfor the outcome. (E)ne can=
“not assume, as these studics imp.y, that all= the _clerents in the ‘misture
~~contribute to changesin subjeet performance. It isquite likely-that some
. clements inhibit acquisition or neutralize the-effects of other pmccdurcs;
These multiple method: ~tud:c:~, ncvcrthclc“, a l] repor’ -success in the
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one may wish an edueated citizenry who merely reeeive and transmit the

- 7 knowledge of the culture, or one may wish the members of a society to be
creators of knowledge who respond-constructively to their experience. If

the latter is the case; then another alternative in edueation is required.

Piaget obviously opts for and recommends the latter course of action,

- ) with the implication that an-educational approach that embodies the
elements and principles of the cliical method would serve this objective,

- .1lthough Piaget and the Genevanshave been loath to specify what an
- - - - edueational curriculuin should be either programmatically or in detail

o

i -z (Constance Kamii is a notable exception). There are three difficultics

concurs-in-his soeial- objective. First;
proach to knowledge acquisition

w ith: thc Plagctmn theqs, even: 1f one

‘acquired-by:“rote” or didactic: mcthods .
nuinber system (i.c., -learning. the %qucnce the <ymboL, ctc) is Tex
,,qmrcd for e\amplc, in- ‘order that-a- child=be: able to think constructive 1y
- in- reg'ud to-number: relations-or- claesmcaﬁona? In. ngctmn experiments
these aspects are ll\U'l"V ‘taken for- grantcd They are not irrelevant,

srieulum; -Second; ‘and -more important, 4s - reqmred recognition of the
“state-of present-day” education: Educatxon ‘everywhere in the world, ex-—
-cept for-a very privileged. mmomty, is -group -education. Tt is_becoming
‘increasingly orgflmzcd in-terms-of-a-mass-technology, with more children
per teacher, more: materials and- more- ms’Lrumcnt.xtlon per class The
‘time spent by a teacher with an- mdmdual child-is eonstantly dnmmshmg,

individualization is also a myth, as has -been pointed out by Piagetians
themselves. Th(. Piagetian inethot, on the other hand, places its.primary
emphasis on one-to-one teacher-student interaction with individualized

day’s. increasingly crowded schools.” What is needed, on the other hand,
is_vigorous pursuit of how “constructive” educational approaches ean be
realized with groups of children, which would require instructional
strategies different from the one-to-one “clinical method.” Thirdly,
Piaget’s skepticis of verbal instructional -approaches scems limiting for
both theoretical and practical reasons. The relationship between language
and cognition is not very well understood. Piaget's view that language
develops as a system for the representation of thought, although it has
evidence to support it (e.g., Inhelder and Sinclair 1969; Beilin [c] 1969),
-0 is far from explaining the full nature of the relationship! It is.evident

: that language data are utilized in the construction-of thought, even if for
the young child the) do not, have the same salience as sensory and per-

. , ' - 115 L
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rior knowlcdgc tlmt can- only bef

ndmduahzmg, insfruction is mcrea~mgly a myth, and instrumented -

teacher ‘response. This is cconomncfllly -and tactically nnpomble in to-

TLewever, to a- con<1(lcratlon of -what is- rcqunred in an cducational curs -

(1




- cognitive attainments,
-mental -actions, that is, mental surrogates for actions such as are repre-
“serted-in mental transformations: These “actions” can-occur.in linguistie - }

~ constructed itito knowledge is-not addressed=hy -the l’mgetnnc Anstead,
verbal-data-are- Ainterpreted-as concentrating:attention-on ¥ arious-features _°

“the acquisition of Knowledge: Wehat would e.ulvax.zgctnn acquisitions.

“in respect to language acquisition. Many of the studies that are critical T

‘servation and the logical opérations that are more in accord with a per-

Piagyn'an Research and Mathematical Education

ceptual experience. It iz important that this be recognizdd, since many

of the significant cognitive experiences of the child are mediated through
language, particularly where interactions between parent and -child are
concerned. As Piaget himself makes clear, while action is the basis for
the critical actions are not physical but implieit -

as-well as nonlinguistic contexts. The evidence that reversibility trans- -
formations “oceur in the syntax of natural languages (e, in the '
aclive-passive transformation) supports this view. The question-of how

linguistic information-that-sehematizes-the operations.of thought can-be -

of visual d1<p|1y§ or-on-the tr mtform.mon of such-dizplays: Even- \\hen -
verbal- concepts are studied; as in whole- p'ut classification- c\perlments,

the Genevan: cmplm~1~ is.still- on nonlmguwtlctphenomcm, .xlthough the -
-pheiomena are- lmguMm in- xlgmﬁc'mt respects. - Although-Piaget is“cor- -~
rect in -cniphasizing: tlmt prc*chool and carly school. education -often
concentrate too nuch on" language learning; more information’ is needed
of the extent to-which language provides- the necessary architecture for

be like, in- fact, without the language context in which tliey are usually -
mqune(l A more desirable stance-fo-take vissa=vis-language in-education,
then,=is one aimed at discovering how it can help in the-construction- of
knowledge. What the studies here reviewed suggest is that the linguistic

interchange between experimenter: and child is-a significant feature of all. R
“training meth~ ls—including the Piagetian and behavioristic methods, N
evarl wlien their focus is-not-on-linguistic contents. It iz unrcalistic to - =

believe -that the linguistic conununication-system is completely neutral )
relative to the contents communicated. Piaget’s point that language 7 ’
teaching is not sufficient to the acquisition of logical reasoning in children, R
then, neglects the prospect that language data provide clements that are S
capable of being constructed into knm\lcdge and that l:?nglxagc is itself
an activity that embodies operations. S

The training studies discussed.here can be mcanmg,fullv mterplctcd in B
terms of the competence-performance distinetion proposed by Chomsky SR

of Piaget's cognitive theory are in effect proposing explanations of con- -

formance model than a competence model (Flavell and Wohlwxll 1969).
The phenomena of attention, learning sets, analytic-<ets, and others -
represent psychological properties that affect- the -expression of basie

o ne - .-
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“competence and do not touch on the competencies themselves. The com-
petencies are more approvriately represented by -the equilibration
mechanisins that Piaget is positing as fundamental to the development
} ~ of cognition. Although saeh factors as-attention and various features of
learning are intimately related to the child’s ability to perform and to
the realization of basic competencies, they do not dircetly relate to the
formation of the competencies. While these experience-bound parameters
- have a great deal to do with the development of strategies’ by which
cognitive structures are made functional, at this point little i is known as
to how this ocenrs. . ST
i ) . Lovell- (19661, in addréssing himself to-the implications. of Piagetian
research for mathematics edueation, pointed to both the assets and-the
- limitations of the Piagetian theory. By way of <unnmrv, ‘we might add
BT to Lovell’s ahloguc the follomng -

1. While Piagetian re~carcl1 has shown how coxmglcx a -process the
growth of mathematical concepts ¢an be, it has not demonstrated how it
can be made easier.- Althouglh Piaget describes the processes by which
- thinking dev clops as a series of - constructlons, he does not_suggest an
educational technology by which such constructions can-be made to occur.
The direct translation of the clinical method, which is useful as a tech-
nique in the diseovery of the constructive processes, to a technology of
cducational instruction is- at this- stage unwarranted. While the tech--
nology for achieving change has to be -related to the mechanisms of
change, it does not require that the constructive mcclmm=m~ themtcl\ es
serve as the technological model. ’

2. The -idea that the child has to be active in -contrived situations
- - involving conflict to_acquire logical reasoning is not substantiated by the
: available research. Neither active problemn-creating conditions nor con-
: flict-cresting situations are necessary for logical thinking to be acquired. —
A wide variety of techniques and contextual conditions contribute to or,
] at the least, perinit concept acquisition. Nevertheless, as the data show,
- there is a limit placed on these acquisitions by the developmental level
o of the child. No logical or mathematical learning is likely to oceur, at
least, witlout great difficulty and. tenuousness, if the concepts to be
learned are far beyond the operational level of the child’s available

cognitions: 7

- - 3. While fairly clear divisions ean be made between gross levels of
’ mathematical abstraction, it is not clear that even gross hierarchic sys-
} ' ) tems can be easily established on fan a priori or even empirical basis.
Differences of opinion inevitably occur as to the nature of conceptual or
operational hierarchies. Even_an a priori system that is empirically
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tested will encounter differences in interpretation--nevertheless, this is
still the best inethod available for determining the order in which mathe-
matical concepts should be taught. Using empirical as well as logical
methods is-the only reliable way to establish vertical hierarchies, branch-
ing hicrarchies, or other complex relationships among concepts and
conceptual systems. Mathematicians who choose to teach a sequence of
mathematical coneepts and funetions on purely a priori bases may en-
counter great diffieulty in having these concepts learned. Logical relations
are not inevitably paralleled by psychologieal relations. Unfortunately,
little effort has been expended in testing the relations between the con-
ceptual systems of mathematies.-and the eorrmtwe system of the child
‘except in the most limited of circumstances. ~ - -

4.-While Piaget has noted that the cultural context can inhibit or
facilitate learning, he does not define the -conditions that specifieally
determine these effects. In some instances, he suggests, the technological
demands of a culture create pressures for the attainment of highest levels
of opcmhoml thought. Little clse is done, however, to suggest how cul-
tuml experience ereates cogmtwe ch.mg (Sigel 1968) - -

5. Transfer of training has been a cha llenge to both psychology and
education. The limits of transfer through training have been apparent-in
a long history of studies, and the Piagetian -studies are no exception.
Piagetian theory has bcen interpreted by many -to imply that transfer
should be casy by the very notion of common schemes or operations
functioning within a developmental level, Functions or struetures con-
taining common eclements_are usually considered to transfer more cusil'{'
than those lacking common clements. While the data are ¢quivoeal,

~ scems that there is a great deal less transfer among Piagetian oper'mons

than one would expect. The notion of horizontal décalage, while it gives
a label to the disparities in transfer, does not adequately explain why
transfer is difficult wheu common operations are involved. While some
training data show that closely related operations transfer more casily

-than less closely related operations, the issue is far from settled.

“dev -clopment of ofcrative thinking, it is  «-thing to assert that Piaget

6. Whilc*h{*isitlon of knowledge is not aceounted for solely by the

gives little heed to other factors in deveiopient, it is another to say he
deprecates thera. Althcugh Piaget does not ignore motivation, learning,
and langquc, he does subordinate them to development. Although he
does not say that learning is fo be accounted for by development (i.c.,
“learning is development,” as the contrary “development is leammg”),
he does hold that these phenomena undergo change only as a function

of-the controls exercised by (IC\’clopment It is another way of saying that-
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learning, language, and possibly motivation operate under the control of
. : ) - a genetic guidance system. The evidence would seem to support this; but
) o ’ once the fact is accepted, it is still not known how these systems interact.
Piaget has contributed enormously to understanding these relationships,
but the story is not yet told.
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In the-short- ~l\etch -of thc main -t'1ffeL ofF wgmnve (lc\'(,lopmcnf Tmen-

7t)mmd oul\ lmdl\ dn nnpmmmt ('omple\ .of hehaviors_fhiat all- helong to.
] [Ci i -, -function” At the-end of the

~. sensor mwtor pmod we ob~er\cthc emcr«rc,nce of* ~vmbol1c pl.w Tanguage,
‘m(l in-general; activities-that could not take- place without some kind of *
rcprc-cntdtxou of :absent objects-or- events that are not taking place ‘at
the ;precise _moment, .One of Piaget’s: \\cll-l\no\\u -examples concerns
Ia(qudmo (Piaget 19351, who, at the age of twenty -months, comes into -

_-aroomw-with asbuneliof-grass in: c.wh hand? to open‘the ‘door (which opens

—mwml) -she put»dm\ n the grass, turns the handle, pushes, picks up the
grass lg_,'un. .m(l enters.” A little Inter she wants to go -outside; she puts
~the gl.n« <down again in the same way as-she had when she cntmul the
" room, that iz to say,-at the tlireshold. However, she clmn;p(w her mind,
picks itup. and-moves it farther b.nck into the room so-that it is-not hit
“hy the door when it-opens. Such behavi ior, of which many exanples have
= ben ohserved; -does” 1ot oceur before th(: hc"mmng of the second_year
and “eanuot be interpreted without supposing that some kind of repre-
senfation (('g, of- 1lu- door's. mov emcnt 4in the 11)0"0 ex unple) h.h taken
_place. - - :

l’o~t-~mun iimotor mtc]hgeucc acquires a uc\\ (Innemmn, which frees

the a(tmu from the strict hic ef nunc and——:mportantlv in view of what
is one. of the main characteristies of formal operations (the insertion of
the actual into the full range of the possible)—it now becomes possible to
perform one aetion while envisaging the pvri'm mance of others. Repre-
~cn('mon enlarges the field of action immensely, both in space and.in
time; actual actions ean-be accompanied by rcprcwmmnom which almost
) ~nuult'm(on~l\ cncompass actions and events in the past or the esent,
in the immediate \')c)mt\' or i long way away. -
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These new representational capacities of the child in his seeond year
are expressed in many different types of behavior. On the one hand,
there is imitative Lehavior, not (as during the sensorimotor period) in
the presence of the model, but in its absence. In faet, this imitative be-
havior scems to be a common aspeet of all representations: in symbolic
play (where the child can use objects to stand for other objects), in
intelligent acting (such as Jacqueline's pushing the grass out of the way
of the door’s trajectory) which necessitates some kind of mental image,
and in the beginnings of language. If we say that imitation is the com-
mon factor, this'does not mean that representational behavior is a simple
copying of reality. On the contrary—and far more than is usually sup-
posed—the subject constructs his own representations according to his
particular needs and capacities. Since the means of knowing is essen-
tially through actions performed on reality, representation far more often
reflects the way a person deals with a problem in action than a simple
copy-image of the situation involved. ’

In his well-known studies on children’s drawings, Luquet (1927)
showed the existerice of a period of what he ealled “intellectual realism,”
when the six- or seven-year-old draws what he knows rather than what he
sees. In this period we observe drawings of faces seen in profile but with
two eyes, of a field with flowers and with potatoes visible in the soil, or
of trucks with four complete wheels as if they were transparent. In the
same way, whatever the children cannot yet apprehend cognitively is
deformed; for example, there is no coordination of different points of
view, and in one drawing one can observe a table top as seen from above,
with a toy car on top of it as seen from the side, and so on. Moreover,
it is not only the drawings that are made spontaneously without a model
that exhibit these characteristics but also those of figures that are in
front of the child as he draws. Before the age of four, all closed ﬁgurés

rquares, rectangles, ellipses, circles, ete.) are copied as a curved, closed

line, while erosses, 's. curved lines. and so forth, are copied as “open”
figures. But with ehildren as young &s three years of age, one can observe
copies of drawings that essentially represent opological relationships
(such as inside, next to, on the boundary of) which correctly rejresent
these relations (sec fig. 1).

In all education we rely heavily on representation. Aetual demonstra-
tion with pupils manipulating is rather restricted in scope; and, even
when applieable, its pertinent aspeets are underlined verbally or through
algebraie, geometrie, or other notation. If the child himself represents
reality in a distorted way, how does he apprehend information which the
adult presents to him in & representational manner? An extensive series
of experiments on ‘memory images (observed either through drawings,
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gestures, or verbal explanation) has revealed many distortions—in fact,
there often was as much distortion when the memory was tested mme-
diately after presentation as there was one hour later, one week later, and
even several months later (Piaget and Inhelder 1968). In every case, the
deformations were due to a different way of interpreting the situation and
not to simple memory factors; it iz always possible to check for this

eventuality by presenting similar situations that are cognitively “easier” -

but pereeptually equivalent—For instanee, in verbal memory “The  table
is laid by Mary and Peter” gives oceasion for deformations, whereas
* Peter lays the table, and Mary makes the salad” does not. Similarly,
to draw a little cirele on the perimeter-of a bigger one does not scem to
he “casier” than to draw a rectangle, however clumsily; in fact, to 1ne
the reverse would seem to be true. o

Before giving a few examples of how children distort situations that
they have been asked to memorize. it scems worthwhile to say a few
words on the general subject of memory, another crucial factor’ in edu-
cation. ) o

There exist two types of memory. The first one is recognition; that is
to sav. of an objeet or situation already encountered. Recognition mem-
ory is very primitive: it exists even in nonvertebrates and, of ‘course. in
babies during the sensorimotor period. The second type of memory be-
longs to a higher level of development and does not scem to exist before
the beginnings of representation; in fact, it is a kind of representation
and consists in the evocation of situations already encountered but
absent at the moment-of recall. When we claim to have an excellent
memory of faces but a bad memory for names, we are really saying that
on seeing somehody, recognition memwory works well (we recognize the
face) but we eannot evoke the name, in fact, as soon as we are told the
nanie. we recognize it just ag well,

Piaget and Inhelder’s book 11968) on memory councerns evocation
memory and deals with a speeial aspeet of it; that is, its relationship
to different levels of cognitive development. Mental images are symbols
of reality and cau be used either mtellectually (to solve a problem), for
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fil:ny and fantasy, or for art. Mental images also serve memory for the
reconstitution of past events. In this fense, memory is a type of knowl-
edge, not attached to the present (as is pereeption) and not bearing
dircetly on the solving of new problems (as js intelligence}, but on the
past. Developmentally, it has often been thought that fundamentally
memory mechanisms are the same in the adult as in the child. There are
obvious differences, beeause the child is not interested in certain prob-

lems and he does not understand eertain situations; therefore~he does _

not store them. However. if he does understand them. the mechanisms
of retention are supposed to be the same as those of the acdult. the only
differences being quantitative, pertaining to span. extinction curves, and
£0 on,

Piaget. on the other hand. maintzins that there is a qualitative dif-
ference according fo developmental levels: encoding and decoding proce-
esses depend on the code used by the subjeet. and it is preeisely this
code that changes with cogpitive development. In fact, the amount of
information transmitted by a certain number of signals depends on the
number of elements and the rules of the code. To give a very simple
example: if Ianmt shown a bottle held obliquely with wine running out
of it, I do not have to “remember” that the bottle was not corked and
sealed. Knowing what happens 3 open bottles when one turns them
upside down makes the information of the absence of the cork redundant.
I it is true that intelligence ehanges the code according to which memory
encodes and decodes, the same situation presented to children at different
levels will carry a different information load and will be encoded in a

different way. .

In many experiments on meniory, striking exaniples were found in the
schematizationgdf the situations presented, QOne example eoncerned num-
ber. The child was shown the arrangement of counters of figure 2. A
collection of differently colored counters was used to demonstrate (after
having asked the child to anticipate the result) that the same six counters
an exactly cover all three lines in the arrangement to he memorized.
Finally, the subject’s cognitive level -was determined by the numerieal
conservation test. A few minutes after presentation and once again a
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week later, the ehild was asked to reproduce the situation by a drawing.
by gestures, and by reconstituting what he had seen with a collection of
counters. - 7

Types of memory productions were closely linked to operational levels.

A first type. observed with the youngest ehildren (four-vear-olds), was
the following: no numerical equivalence between the three lines and no
attempt to make the lines more or less the same length. Both in the
drawings and reconstitutions, the number of counters in the three lines
was very different: 12, 8, and 9, or even 4. 13, and 15, and so on. But
there was usually tat least in two lines) a division into groups.

A sceond type was more involved (four years six months to five years):
three lines with more or less the same number of counters and coincidence
of their extremities (15, 13, and 13 or 7,6, and 6. cte.). In a way, these
reproductions are figuratively less “‘true” to the model, since in this type
there is absolutely no indieation of the =abgroups. However, there is

- progress in that there is an indication of numerical equality:.

A third type reveals furthier progress, Once_again the lines have coin-

“ciding extreivitics, and the numericai equality is more marked: at least

two of the lines have the same number. Moreover, this time the sub-
groups are marked. although in a peculiar way: in the lines with exact
numerical-equality, the subgroups are also equal, for example, twice 1
and 4 or twice 1 and 3. The synthesis between the spatial disposition in
subgroups (present. in an isolated mammer in. type 1) and numerical
equality (indicated in type 21 is not vet possible, :

Finally, at five to six years, numerical cquality is correet; all three
lines have the same number of counters. But only one child (out of
cight) reproduced 6 counters per line and exactly the arrangement of the
original. The other seven associated the numbers in their own personal
way (3-F3,2+4 and1 4+5;0r3 3.1 F+4 -+ 1,and 1 + 5; cte).

All ehildren who produeed type 4 drawings or reconstitutions sueceeded
in the numerical conservation task (also one child of only four years and
nine monthsj.

It iz interesting to see what happens to this memory some six to ten
months later. Without any new presentation of the situation, almost all

the children had some recollection of what they had been shown. This, |

in itself, i3 rather remarkable and indeed encouraging for educators. At
the end of this long period, the two aspects, numerical equality and spatial
disposition, scem to have become more separated. Again, ost of the
chiidren tried to represent the numerical equality but seemed to have
completely forgotten the spatial disposition. Howewer, two new types of
drawings and reconstitutions appeared that are of particular interest
(see fig. 3). The first type is a sertation.: we find lines of 6, 5., 4,3. 2, and 1

——
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counters, placed one above the other as in figure 3a. More often, there
are’only three lines as in the ‘model, but again seriation; for instance, in
figure 3b the top line has 7 counters, the next 6, and the last 5. The second
type (fig. 3¢) is a symmetrical arrangement: 4, 1,4;3,1,3; 2,1, 2.

As might be expeeted, memory of the situation becomes inereasingly
schematized as time goes by However, the remarkable appearance of
seriations and symmetries (which are a type of figurative classification)
is more interesting than a schematization. According to Piaget’s analysis
of the coneept of number, this concept is attained by a synthesis of the
two types of grouplike structures, that of seriation and that of elassifi- -
eation. - 7

In another experiment, a problem of transitivity was involved. If there
is more liquid in glass B than in glass A and more liquid in ¢ than in B,
is there more liquid in C than in A? However, it is not the logieal prob-
lem (which is difficult to solve and to remember even after the age of
seven) that I want to present here, but a curious plicnomenon that reveals
how even a simple action such as the pouring of liquid from one glass to
another ean be deformed in memory. The experiment ~involved four
glasses—one with red liquid, one with vellow, and two empty., The ex-
perimenter pours the yellow liquid into an empty glass and the red liquid
into another empty glass. Then thé yellow liquid is poured into the glass
that originally contained the red and vice versa, o that at {..e end, the
contents of two differently shaped glasses are interehanged. (Sce fig. 4.)

When the children were asked to tell us what they had seen, the four-
and five-year-olds maintained that-we had poured the yellow liquid into
the glass with the red liquid and vice versa, ‘We wondered whether this
was a kind of abbreviated description of what had really happened, and
we showed them the four glasses with the liquids in their original posi-
tions. To our surprise, the children actually took up the two glasses that

130




T

T,
= - -
o v e

- e

i'cllow

=

Sinclair [/ Representation and Memory

were filled with liquid and tried to.pour, simultaneously, the yellow liquid
into the glass with the red liquid and the red into the glass with the
- yellow. Questioned as to whether they realty thought that this_could be
- -done, they maintained their- answer: wyes, if you're clever enough.”

s\on't the yellow and red get

all mixed up?” was our next question.

Many hesitated or simply said Sino.” .One child said, “Yes, maybe, but

it will unmix itself in the end.”

Another memory study concerned a double-cntry table and involved
) wooden buttons (round: and square. blue and red) glued-onto a piece of
heavy paper ag shown in figure 5. (The experiment was designed by

J. Bliss.)

The children’s*xtecollectiéns W

Fig. 5

ere of the following types. A first type,

found only at four to five years, was a simple agglomeration of buttons, -
sometimes only red (or only blue) ones. Neither the figurative disposition
nor the classificatory principle was represented (sec fig. 6).
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. A second type, more involved, showed the beginnings of a classifica-
. - tory principlezin the sense-that two classes were present (red and’ blue
’ squares for instance), but instead of an arrangement hito four groups,

- there was a line (a circle or haphazard arrangement) made np of either —

just two buttons (a red square.and a blue _square or a red round and a
- bluc round) or a great number of <ucl1 couples (see fig, 7)
. 5

— : IQI.I.IQIQIQ“E%Q

Fxg 7

A third type had Tthc correct spatial arringement in four groups, but
again only two classes were represented (very exceptionally three) as in
ﬁ«rme 8. Sometintes there were groups of hutton: .md sometimes only one.
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- ; A fourth type revealed consxder;iblc progress, since the multiplieative
structure was present: all four classes were represented (fig. 9). How-

.- @HOO -

~d

Q

ERI

PAFullToxt Provided by ERIC




bl

3
f

Q

ERIC

- T

Il

e
Sinclair / Representation and Memory

ever, the double-entry-table arrangement was absent; there was an align-

ment either of one element of cach class or of small groups of three or

four elements of each class. ’ : . -
Finally, both the disposition and the classification were remembered,

but again ther¢may be only one element per class, which seems to repre-

sent a group of several elements (sce fig. 10). .- =

&
B0

Fig. 10 - - —- :

It is important to realize that although the situations we presented
all have a cognitive structure which can fareilitate memorization, these
experiments were not simple duplications of the corresponding tasks where .
the ¢hild himself has to-classify clemenits, seriate sticks, and 0 on. In a
very~“broad sense, memory also includes the cognitive structurés that R
permit the solving of new problems. But memory in a more limited sense )
concerns only recognition. reconstitution, or, espeeially, cvocation of -
events located in the past by the subjeet hitmself. In a sense, in these
memory experiments the relationship between memory in the broad and
strick senses was studied. In all cases, the results indicate that it is the
level of cognitive development, that is to say, the particular cognitive
structure of a certain stage or substage, that determines not so much-the
amount as the organization of the information remembered. Usually. our
vounger subjeets do not remember “less™ than thie older ones; in cettain
ases they scem to remember more.- But they remember differently.
Remembering differently in this case does not mean that the yvounger
children picked on certain details and the older children on others; it
means that the total situation was differently organized according to
developmental level. In this conneetion, it ix useful to mention Piaget's
distinetion between a scheme and a schema. A scheme concerns the gen-
cral strueture of actions and operations (e.g.. the scheme that permits
one to arrange clements in an ovdered series). As such, Piaget’s schemes
include such entities az “cognitive strategies,” “conceptual frames,” and -
o on. A schema, by contrast. is merely a simplified imagined representa- - -
tion.of the result af some organizatory activity, A model unites the two:
it is a sehema insofar as it is a simplified representationr of a particular
situation, but it is a scheme insofar as it is a means of generalization.

All our findings suggest that we should not suppose that the hetrer
results obtained in our experiments by the more advanced subjects can
be explained simply by the fact that they possess both more and more
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accurate schemata of representation. Of course, they have encountered
more situations and aceamulated more of these schemata, but more im-
portantly, they approach the situation with different schemes, that is to
say, with a different cognitive organizatory capacity. The active fune-
tioning of this organizatory ability makes mnemonic eneoding and decod-
ing possible and determines its form. In this sense, the nmemonic code
itself is struetured and restructured along with general cognitive -devel-
opinent.

In general, our results strengthen the educational tendency away from
rote learning. It could well be that with excessive emphasis placed on
rote learning, pupils would cease to use-their-organizatory capacity (which -
alone permits economical encoding and decoding) and come to rely only

- on a figurative, eopy type of memory, which does not attain the cfficiency
of cognitively organized remembering, On the other hand, we do not
want to-equate all memory with our particular situations, which appeal

. specifically to this organizing mnemonie capacity. In many subjects

taught in school, a certain amount of rote learning is, in the present sys- -
tem, inevitable. But as regards mathematics and allied disciplines, it
appears that it is the coneept formation itself that should be fostered by
all possible means and that all representation is liable to be deformed
by those pupils who are as yet incapable of a cognitive grasp of the prob-
lem involved. On the other hand, the deformations they introduce in
what seemed to be a perfectly clear model ean be precious indieators of

their cognitive level, .

Some deformations found in verbal memory are similar, although they
are often less clearly linked to cognitive level.- One .of the difficulties in
the presentation of verbal material is that a eertain construction can be
perfeetly well understood in some instances and not at all in others, What
Rlobin has ealled reversible sentences are a good example of this, “Jolmn
kicks Jack” is reversible in the sense that “Jack kicks John” is also a
semantically possible expression; on the other hand. the permufation of
subjeet and object in “John kicks the table” results in the impossible
(or at least very improbable) expression “The table kicks John.” This
distinetion explains many phenomena in children’s cotnprehension  of -
sentenices such as “This is the house that Jack built” and the noncom-
prehension of sentences sueh as “This is the boy that Jack kicked.” In
an experiment on passive sentences, this difference was also found be-
tween sentences such as “The car is washed by the man” and “The car is
followed by a truck”” In an hmmediate-memory experiment, we_found
that half of the four-year-olds quite correetly repeated sentences of the
second type. but without being capable of understanding the relationship
between “actor” and “acted-upon.” At five, these correct repetitions
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“without understanding began to disappear and>in their place we noted
different expressions that correctly indicated the relationship but did not )
- . o -reproduce the passive construction. Many children simply turned the e
. passive into the corresponding active but were convinced that that was ) - - -
. what the experimenter had said (Sinclair and Ferreiro. fortheoming).
.- In general, it scems that representational ability is elosely linked to
- ’ - cognitive level, but with important-difierences s regards the information
represented. Probably beecause in mathematies representation is so close -
to operations, in that diseipline the influence is the elearest. Morcover,
although as yet not much is known about the development of the different - ) :
2 . aspects of the symbolic function, it seems that this development varies ) - -
E S o ) more from one individual to another than does that of cognitive struc-
i 2 ' tures, There are important individual differences in the use of language— -~ - - L &% -
- ) = - = and the same-can he said about painting. musie, and acting. In contrast ) .
I ’ ] ~ with mathematical notational systems; these symbolie representations : o
’ - can. up to a_pomt, he dissociated from what they express. The language = : -
] « of poetzs not more beautiful than that of other people beeause they have - - ]
"o i better conceptsto express. Inversely, poor language and. clumsy drawings - _
= == do not neeessarily. indicate low conceptual levels. - ' 7 B

e -
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- L 7 - it seems common jm fourth formers. say. to be perl’cctlJ at home _ -
- - " with . .. but to be utterly terrified by a problcm in sunple propor- - ooz
tion —\c\\ Scientist, 7 May 1970. T -

‘. o . All experience in the classroom shows that the scheme of proportnon is not_ - -
readily available to the pupil, and since it is so mlport‘mt a scheme, it is ’
w mtln" f some consider; .IM “attention, - - -

. PrororrION : - o

- As you know, Inhelder and Piaget regard the essence of formal-opera-
tional thought us the ability to reverse the direction between reality and
possibility. But we can alsothink of it in other ways. Sinee the pupil now
no longer deals*with the intuitable but rather with verbal clements, a new
kind of thinking—propositional logie—is imposed on the logic of classes - - -
and relations. Again, formal-operational thought may be eharacterized as . o
second-order operations, for-the subject can now structure relations he- - -

- tween relations as in"the case of, say, metric proportion, which involves the

=~ recognition of the equivalence of two ratios. Indeed, the position was
neatly expressed by Inhelder and Piaget (1958, p. 254) : “In this sense pro-
—portion presupposes second degree operations, and the same may be said
of propositional logie itself, since interpropositional operations are per- -
formed on statements whose intrapropositional content consists of class
and relational operations.” It is hecause the scheme of proportion, like a- ) ) —_—
formal grasp of the coneepts of, say, thermal eapaeity or energy, depends )
on second-order operations that the scheme is a late acquisition. Alas, the
e ..o -~ teacher of mathematics and science knows of this lateness as a Jcrsult of
) experienee, but he has not hitherto understood why this is so. . )

T
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Proportion in geometric form

Piaget, Inhelder, and Szeminska (1960) argue that before a child can-

L
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think about similar figures, he can directly perceive whether figures having
different dimensions are similar. So the idea of proportions musy, in thclr

view, be sought in-the perception of figures.

One of the many experiments that they used involved sho“ ing the child

-a horizontal reetangle 1-5 em X 3-0 em as a model and larger rectangles

all of the same width, 4 ém, but varying from 6 to 15 em in length. The
modcl and the figures for comparison were presented in ri indom order and

the subjeet had to-pick the large-one-that “looks like” the little one. It is -
said that-ir making a choice between the alternatives,
“governed by perception.-and tlie Gencva \\orl\u' speak of this exercise as —

a pereeptual estimate. - = - - - T
s also presented \\'1th the same model 1-5 em X 3-0 em

The clnld wi

mtelhgcnce is

and-asked to-draw a box, s square, rectangle - (or whatev er he cares to call
‘it), “the-same but-larger,” on another sheet of paper. One ean either avoid
suggesting any lcngth for the base of the drawing or fix it at two,™ ane,,or
four multiples of the base of thic model. Now in these drawings it is

~ intelligence governing- pereeption, and Piaget and Inhelder speak of this-as

an intellectual con<tmchon Thcv argue for the following broad” ~t.xge

1. Tlle child is unable to make any serious cffort at the tasks.
2. Efforts are usually confined to the attempt to-reproduce what he looks

> upon as the essence of a rectangle—that is, an elongated square. Thus

his drawings tend to exaggerate the lcngth of the rectangle. When it is

laid alongpl(l(, a correctly proportional c¢nlargement, he thinks the

latter too high and wants to-cut it down. There.is no desire to measure.

3. There is now a spontancous attempt at measurement, but the child’s-

cfforts fail beeause he still does not realize that it is a proportional

yather than an absolute increase in size that ix required, with the re-

sult that the length of the rectangle is still exaggerated in his drawings.

However, if he is shown larger rectangles drawn to scale, perceptual-———
estimates are in advance of drawings and appear to guide the latter.
The subject eentres alternately on width and length and appears to he

trying to take into ‘aéeonnt both dimensions simultancously and to

arrive at a conseious conclusion. During the latter part of-the stage,
both length and height are increased, by adding an equal amount to
cach; in an effort to obtain the correct ratio. Once again he finds his
_ pereeptual estimates and intellectual constructions at variance, and
he may alter his caleulutions to suit the estimates. Only,in the case of

simple proportions involving the ratio 1:2 are the answers correet.
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o - This instance needs only concrete-operational thought, since one side . e o
- ) - has to be double the other. ] : : oo o 7
-, ) _ -~ 4 The pupil begins to understand proportionality, thought influences e - -
\ - perception, and he can draw correet constructions when height and T A
o length are in the ratio of, say, 34 or 44. - - =~ - o C ) NE -
~ Our experience at Leeds is that pupils’ responses can,-more or less, be
e ) C placed into these ~categories, although the ages at which stages are
r -

o reached are somewbkat older than Piaget proposes.- However, I do not wish
o to discuss more minor-differences from the Geneva findings but rather to
. : look at something of far greater. importance.- - - . . L

Piaget's notion of scheme” T oL

Youwill notice that in my opening words T feferr
7 " proportion. By the term- scheme Piaget- indicates,. if
U0 - correctly,. the-general-structure. of actions or-operations; i he
LTl eralisable aspect of coordinating éét'ions:,tiiﬁt&;cii'ﬁil)cfapplie}l;—,,to7 alogous” =~ - -
- -7 - situations—So we ean speak-of zz;fschéylc*ofdi‘(Icifing,ia}scliiémrcfpf*c!ag's’iﬁfcgi-' -
R tion, a-scheme of proportion, and_a sclieine-of-probability . “We-arehere
© < dealing with general knowing, -and it would-be in keeping with- Piaget’s
- - general position to suggest that the cliild would-have, - say; substantial - .

L = . classificatory or ordering skills in all areas of-experience once-they were -

- L available in one. This does=not imply that. ,théfé?m‘jz‘—j)'(')’irvar‘igztions in the
- ) ability to use these operational schehigsrzie’colfdingftofc?)ntept; context, sub- —
i .~ Ject area, and so forth, but we would not expectstrength-in one and utter -
- ~ weakness‘in the other (cf. the problem of the horizontal differenfial); The -~ . - : R
- point-is that we need to know far more-about the development-of the T B o
- - . scheme of proportion across a-wide range-of-content areas, Tt is, therefore, - R R F
- - my intention now to outline some further wor'cof the-Geneva‘sehool whiels o = o =
- - lisrelevant to the scheme of proportion, in the hope that T shall encourage o B B

- - " someone to undertake a-longitudinal study involving the growth of this ) T

- - operational scheme across a very wide range of content areas.

W

- Some further work . ] ) ) . - e

- 7 ) - Thus I now turn to discuss some experiments taken frof a more recent . - . =
work of Piaget and others-(1968). Although this work deals primarily : ’ :
_with the move from contributory to well-formed functions and with their -
" ] quantification, some very interesting experiments afe deseribed that
illustrate the growth of the scheme of proportionality. Their findings are
. . suggestive, but they are in great need of confirmation. However, the -
< - upshot of their-findings will only be appreciated if we flavour the experi- - -
ments themselves. - T ) - ) - -
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In one study, tlnec “fish,” .l B, and C, respectively 3, 10 and 15 cm in
: length, were shown to the child. He was told they were eels so that their
length_could increasé without a corresponding increase in girth, ‘Gp. to
- fifty “balls of meat” were available, and .u. child’s task wad to give to
" -cach fish a suitable ‘number ofballs, bearing in mmd that, or_on the -
assumption that, the strength 6f the appetite of a fish corresponded to its
length: “In a second task the fish had to be fed with “biseuits” *hichwere
represented by little - rulcrs that .tppropmtcly vmed Ain length. Unce

;—.-\'jro’r'dimd—:oxz'qugii; ,,
, fish A, B, and C and -
e-order of tlu: qu.mtmm of- foodA, B, ’ - But- the-relations.”
- “between relations, B’z to B as A’ isto- A and:so=forth; seemr-at this -
: ttagc to be expressible onlyin the simplest: car dinal-form of B = A"
1,0 =B + L Morcover, ‘it. appears that this: shge comes a little
later ‘when using the rufers th'm when uxmg the -balls, \\luch are dns-
- -contintious. -

3 True metric proportions-are not vet av mhble, but the cluld uses pre-
' proportmn« that are more coniplex than-those of the ordinal ty pe found
in:stdge 2. In fact, the type of preproportion used is what=Suppes has -
“termed hyperordmal for one s, so to speak, “halfw ay between an
ordinal scale-and metric proportionality. The intervals between A and
B ean'be compared-as more or less than the difference between B-and C.
If the difference between A and B is a-and thatbetween B and C is b,
then the ehild’s. prepmportlonahtv is-of the form a isto o’ as.b i is to b’
but in whieh the equahtv of cross products is mlssmg '
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4. Relations between relations are understood and metrie proportionality
is realized.

. We have, of course, known-for a long time that some children of ten

© years of age can solve dirithmetic progressions. They can also work many

verbal analogic. of the form “toc is to foot as finger is to hand.” The latter
involves a preproportionality that does not demand the ¢quality of crossed
products, and they can be worked at stage 3 -

I also draw your atfention to five other experiments reported in the -

work previously cited (Piaget et al. 1968). They are very important ones,
for they deal with the scheme of proportion in settings that employ phys-
leal apparatus and arc_germane to the work of the mathematies and
seienee teacher. T would remind you again that Piaget and his colleagues
are here studying the quantification of well-formed functions. X funetion
is considered by them as a relation between the magnitude of two quan--
titics, the variation in one bringing: about a variation in the other in the
same proportion. While their view of a function helps us in our search for
the development of the scheme of proportionality, ' +~ of course, less
general than the present-day mathematieal definition ot .. function.
Altogether, 353 pupils were studied in the five experiments, the ages of

the former varying from six to fourteen years. Unfortunately, the number -
o . -y

of pupils taking any one experiment ranged from 41 to 116. However, the
experiments involved the following:

L. ‘The deerease in length of one side and the increase in length of an
adjacent side of a rectangle that has-a perimeter of constant length
2. Scrial regularities of diameters and positions of rings placed on rods
of different lengths which were themselves st at fixed distances
apart (sce fig. 1) )
3. Reclationship of the size of a wheel and the distance travelled by a
- point on its rim :

~ ) N
100 em ¥ 5 =
1 / o e e
¥ ’ = - B -
i ’ - - -
H 7 _// ’//
~ -
75 em  — = =
-~ -
: / e ,’/ =
1 i -
H 4 -7 -7
¥ - -
H I .
50 em ¢ “@—— N, =
: , L L
1 7 pd e
H - e 7
" H -
e e
I - - -
f P ‘/"‘/} -
10 em  rf—>
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4. Relationship of the size and frequency of rotation of wheels and the

distances-travelled by objeets at the end of strings the other ends of
which encirele the wheels

5. Relationship of the magnitude of a weight and its (lhhnec from the
fulerum when the arm of the balanee is in equilibrium S

The Genevan workers elaim that a child-passes through a number of
rather well defined stages in the growth of his understanding of functional
r2lationships. Once again their results are suggestive; they now need
confirmation. In the first, which lasts up to seven to cight years of age, the

- child has great difficulty in relating the successively ordered values of one
variable to those of another; that is, the successively ordered values -of
zand yin x = f(y). For cxample, in experiment 1 the decrease in licight, -

-- of the reetangle does ot necessarily bring.about any inerease in its width -

) In short, there is an inability to coordinate variables. an
In the second stage, which arises around cight to nine years of age, there

Is growing awarcness of simpte correspondences—that on returning to the-~
- - same state one always finds the same values. “For example, in experiment
7 1 a given height always corresponds to a given width; in 3 a certain dis-

“tance is always covered by a point on  the rim of a wheel of given size in ~

b 2 rotating once; while in experiment 5 a given-weight is always suspended
) ) from a point that is at the same distance from the fuleruin when the
) balance iz in equilibrium. This, in the view of the Geneva sehool, is the
_ starting.point for constructing all functional varintion . But at this stage

7 : " - two problems remain. First, there is that of comparing ahsolute difference.-

N - In experiment 2 -this involves, at this stage, placing rings in position -

entirely in terms of qu: alitative seriations rather than in terms of relative

— . differenc. , which involves comparing the difference between the diameters -

‘ of rings, say X and Y, with that between the diameters of ¥ and Z. Sce-

) ond, there remains the problem of direct or inverse compensation in ques-

] tions of quantification. -

In the next stage, said by the i icneva school toarise hetween ten and
I &g‘elve years’ afade; g\lthough in my view the age is mueh later in children
V= the beginniligs of a-solution to these problems are seen.

ofﬁu rerage abill
In experiment 2, the child places ring 7 nearer to ring 10 on the rods than
he does to ring 1. That is, he plaees the rings along the rods at distances
-from the end that are in approximate ratio to the rings’ diameters. More-
over, when the rods of length 100, 75, 50, 25, and 10 em had to be seriated
in that experiment, younger pupils had placed the rods at -equal intervals,
- - whereas ten- to twelve-year-olds realized that thie distance between the

) 25-cm and 10-cm rods is less than the difference between the 50- and -
- ) 25-cm rods. Again in experiment 5, although the distance of a weight
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from thie eentre of the arm is regarded as one-unit—what is taken as umtv
may change from instance to instance—all _other distanees in a particular
instanee must be ealeulated in terms of that unit. Finally, in respeet of
inverse proportion, the child in experiment 4 can conneet four terms—a
small turn for a large wheel and a large turn for a small wheel—in order
to give equal distanees travelled by the objeets,

It is the search for a law of progression for the actual values of the
variables which marks the passage to the fourth stage. In Planet’s view,
two conditions must be fulfilled before this stage is fully reached: the
pupil must be able both to handie the boundary eonditions of the variables

-and the ratios between the suceessive ordered values of the variables, - If

the funetiongl law is to be expressed only in qualitative form, it is sufficient
merely to relate the variables: height deereases as width grows, the larger
the wheel the greater the distanee a pomt on the rim eovers, the heavier

_ the weight the nearer the centre we must hang it. The ten-year-old

understands the% relationships. But it is from twelve years of age

“onwur ds for ngcb——-m my view twelve_for the brightest and fifteen for

more ordinary pupils—that the boundary conditions can be established
and the intervals precisely defined. -
Thus in experiment 1 the limits are -between the sides of thc orl;_,mal
reetangle and a-height of zero and a-width equal in length to half the orig-
inal perimeter; that is, as w —> semiperimeter, The child has to be

~ able to appreciate the necessary™~and reciproeal compensations to regulate

for all the transformations as the rectangle underg goes the various ehanges.
As faras the ratios between the successive ordered values of-the variables
are coneerned, it iz instructive to note changes in behaviour. Eailier in
experiment 2 the position of each ring is determined by its rank, that is
according to qualitative seriation. It is also- placed aceording to the
relevant and corresponding fraction of the rod, so that ring 7 is placed %g
of the way along the rod. Finally, the pupil can construet true proportion-
alities so that the ratio of the diameters of any two rings is equal to that
of the ratio of their distances from the end of the rod. Again, in o\pu i~
ments 3 and-4 the final stage is reached only when the size of wheels,
size of wheels and frequency of rev olution, ean be put into precise pro-

portionality with the distance travelied. Even so, according to the Geneva

evidence, relations of inverse proportlon'lhtv come later than thone of
dircet proportionality, :

So it scemis that the child only slowly and laboriously grasps thc lclq-
tion between the magnitude of two quantities when the variation in one

~ brings about the variation in the other in the same proportion. At the

outset it is a mere putting into correspondence two values—for example, a
larger wheel and a greater distance—~or it appears in the form of some"
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causal dependency—for example, the weight of a piece of iron depends on
its size. The final stage depends on the claboration of formal thought, for
then the ratios between suceessive pairs of ordered values of a variable
can be handled. - ) T
Many other studies have confirmed- the lateness of thc growth of pupils’
ability to handle metric proportion—around twelve years of -age in_able
children and fifteen or later in ordinary “ones. - These studies have been
carried out in a variety of content areas: -

1. Inhelder and Piaget (19581, using thc balance, al~o the mw: and
- shadoWws éxper iments i -
2. Lovell (1961), using the xamc C\perlmcutﬂ as Inheldcl and PLI;..C[
3. Luuzer (19651, 0111p10v1ng number series ana number .mfllo”u\
4. Lovell and Butterworth (1966} - -
“This study involved the schéme proportion usmg uumber .m.xlo- :
gies; the balance, also the rings and shadows experiments; felation

between the size of the external angle of a regular polygon and-the- o

number of-its sides; ratio of the areas cf similar-triangles given-the

dimensions of a pair of corresponding sides; and so ferth. A princi-

pal—cmnponcnts analysis showed that a marked _general factor was

in evidence, whiclr cmrd.xtcd Thighly-with tasks involving the scheme-

of proportion. At the same time, however, there were v 1r1.mons in
- thelevel of perforinance of subjeets across the tasks. }

. Steffe and Par. (1968}, using problems classified as ratios or frac-

tions and presented in pictorial or svmbohc form -

But no one has yet {aken representative sample~ of cluldren and tr.xccd
their growth long,ltﬁdm.xllv in respeet of the seheme of proportion, across
many content areas. My foregast is, based on other work at-Leeds, that
_the older the pupil the more the schcmc will be available in widely sepa-

rated contexts. Likewise, the abler the pupil the more likely it is that the
scheme will be in-evidence across different content areas. Inhelder (1969)
has also pomtcd out, .xlthou&,h not-in relation to the seheme of proportion,
_that for pupils whose performance on the tests sct was above average for
their age, the differences- between their results in one field and those in

e

another were less than that for pupils of average and low levels of per- - -

formance. Inhelder stated; “Their behaviour was mose colierent in very
different ficlds like space or time on the one hand, and logic on the other.”
Below-average subjects showed far greater inconsistencics. We need to
kiow, too, what influence progress in respect of the elaboration of the
scheme of proportion in geometric examples has on its 1mplemcnt‘xtlon in
nongeometric contexts. Again, we want more information on the develop-
mental process and the specific difficulties pupils encounter: Most of the
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time we have to aceept cross-zeetional atu(he but these t00 often fail to o
] attain the fleeting, transitional stages and the subtle inter aetion-between : e N 4
- o ) learning in different ﬁel(L. Onl\' fongitudinal studies will answ ersome-of - . S
: : the questions we-want to ask invespect of the scheme of proportion, Such - o —
] o =—studies alone will reveal if some contents and contexts.are more facilitat- S - -
77 ingso to speak, than others and whether there are large individual. differ- S -
____enecs between pupils with respect to content, For mathematies and-science - e R
-~ teachers who depend greatly- on their pupils’ having av all'lb!e the scheme : = Lo :
of ptopm,uon sueh work would l)e of greot vaIue = 7

undehtandm o vchan(z(, dnd ])1 l)alnht

lowmg tln, lie
’cach of. ﬂl

a- (31'0:: -

Qf two counters. ‘md two érosses out Cof five cotmtcr“ The upgﬂ]t '\\fz fhat -
~childrenin: aniddle childhood made soine-attempt- to quantify-probabilities®
but thmr prullctxons \wre al\:'uw made on-the hasis of-the “absolute-num- - e =
ber of-counters with erossesin- the-groups and-noton’tue basis of the ritio - S -
of the numl)m of counter- witl crosses to_the total number of colmten. . ) T )
That is-to s say, the-child at this stage seems to be able to compare: muos- -
he-eanmnot reason. in_terms of the pmpm tions-of-counters with crosses to - S o -
total counters, Tndesdsim-Piaget's  view the qu.umﬁ(-ahon of pmhablhtv e o ]
~ demands the onset-of-formal=operational thought. - ’ S - :
But in order to tackle quantitative e-prorability th( child has to be able - - R o .
-to handle, in addition to -quantitative proportion, the per mutations and ) s - =

aw

) ~ combinations according to which -a set of elements are grouped. For - - B
S example, in onestudy it was made clear to-the child tlaf a bag eontained B -
S ~ . twenty rul and twenty blue m'nblea. He had to pretend to draw murhlc-s
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; : &
from the bag two at a time and predict how many pairs would be all-blue,-
how many all red, and how many would contain one red and one blue,
Pupils at the preoperational stage of thought tended to negleet the ran-
domness of the situation and think only in terms of blues and reds.
the conerete-operational stage of thought they realized-that more of mised
colour are likely to-be drawn, but they could not give accurate estimates
of probabilities since combmaim ial operations were not av ailable to them.
But the older pupil does give accurate estimates of probability as “this -

" protocol provided-by the- Geneva school shows (Piaget and Inhcldel 1951, .-
p-223)+- - : - -

- \Iore hl\el\ ‘the nn\ed -ones” ‘——11 Iui.f i“Bccmhe vou- pl\t«m 40 1narble~,

80 there are-more chinces of taking mixed-ones: lialf the chances” —Could

" e have=all mixed- DII('.S‘.—i-"Th'It -would-be-pretty: rlll;ze%i-a{:z(l zf uc draw - -
- _{r«)pﬂlge‘bagénmiy limés‘.’-'"l‘mnnixedfpuii'gf,s red ones, 5 blue ones”. o

A recent sturl V- mwlvmg the tem‘hzng of probabzlttJ

An interes ting study-has.recently been- 1epmted by§ hcpler I1969) HL B
~set-ont with two- -objectiv es:-to-test- the powblhtv of -teaching. topncs in -

probalnht\' md ~t'1t1<t1c to-a clfxm‘-» TS 1\th-gradc pupn's-. .\ml to con-

T\\ent\' ﬁ\'c pup1I~ W cl'c “chosen_ f1 om a popul.xtlon of j}t\' seven -1xth-
_ grade |)upll~ by thie school staff.” All those-wlo under went. the experimental = -
teaching programme’ agr ced-to do s0.” The mean scores-of these-pupilson™ -
" the Lorge Thorndike Intglhg(nce Test, Le.cl 3, Form A,- and on the Towa
_ Tests of Basic Skills were-above average: in-the ease of the former test :
the mean LQ: was 117.7. In other words, the papils i involv ed were average o
to above average in measured .1b1|1tv ‘md they had no reading difficulties. .
~ 1t will,-of_ course. be realized -that the ablest of these pupils must have
_beén bordering on, or perhaps-at, the carlier etagv of formal-oper'xhonal
‘thought (ngct s stage TITAY. : o
) th)lcl s report ouflines eaplier e\pmlmcnta in the te.whmg of plob'l—
bility to sixth-grade pupils and gives details of ‘his own teaching pro-
- graamme, Topies include reading and constructing a bar graph; subjective -~ -
notions and voeabulary of probability; graphing data: probability of an
eveiit- tone dimensional and two dimensionali; performing experiments
(venfvm;! (l@(-1~10n~ m.ld(- m tﬂmi' of probability); ; and «tnn.xtcd proba-=- - .
hility, : - ; ) ’
A pretest was given, z’m—cxbcl]c?xt teaching programme lasting nineteen -
days instituted, and then a posttest was given, There is no doubt from
the results of this study that, given first-class teaching. seleeted sixth-
grade ')uplh can be mtroducud fo notions of prolmblhtv In the posttest
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almost all the questions were an~wucd very \\cl] mdeed Fm' e\'lmple, - ) .
- there was a 100 percent correct response to the following problem: E :
- Spin the spinner (fig, 2) Hlwo.times, Whiat is the probability of gcttmg ’
a “2” on the ﬁr~t ~pm and a “4” on the qccond" - L T

-

ew
I

\"- !
o

: = B - Fsg;'z - S - S o L
-Again there was a hlgh pmccutage of conect 1c~ponac~ to-fhe- fo]]o“mg R
“question: - - - - T - 5

Two dice afe tlnm\ 11; uhe red and-one e white. The sum of thc faces 7 - - -
“= turning up is recor dcd \\ h.zh~ th(- pnob.nlnhtv of- gnttmg a- sum of - T S :

- 20r3? B SV

- AlF que~tlou-« of thiz t\'pe ipvolving small numbcxs fornt mtum\c (htd | .

and they ean be solved” by multiplicative classification.- The\' can, there- -
fore; he ~uccc:ai'ull) tackled- by ])ll])l]\ with very flexibl¢ conerete- opua- s

- tional thought or at the earliest. stages of formal thought,- - - -

- - But there were just two quc~t10u~ in-the -posttest to which the (,omct- ) -
o response rate was low, It wits pmaxble for-only thirteen pupils out of tlie T T
. twenty-five to give the eorreet reﬂpome to the f61lomng qucstlon involving e —_ .- C

. - ~ -estimated probability: :

S T In 6,000 sping of the -pnmc1 ng 3) Bob gets 2().)3 1cd~ What 1 1-«* -

: s - the estimated probability of getting « red on the next spin? - o o -

In this Instanee, although we ure dealing with a finite number of spins, the ) - T

= white

"*lm '
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number is not small and the data are no longer intuitable. Formal-opera-
tional thought is now required. Of these thirteen pupils, some may have
learned to respond in rote fashion, knowing the probability was < 1. In
the other question, which involved an cstimate of a probability using
large numbers, ouly seven pupils obtained the right answer. Piaget’s
dev c]opxnen_a‘lEEycholog,v}ngrg helps us. to-understand what ean, and what
is not likely to, be taught profifably with sixth graders depending on
their general level of ability: )

Probability and statistics .

It is trite to say that an understanding-of probability underpins stu-
- _— dents’ capacity to make progress in statistics. But the point must be
made. Indeed, it is worth looking at the evidenee provided by Inhelder
and Piaget (1958} on the growth of pupile’ uiderstanding of correlation.
o . This work was repeated hy us some ten-years ago (Lovell 19611.

- : - In the task sct, the subjeet was presented with sets of cards on \\luch
"~ were pictures of girls with fairhair-and. blue eyes, fair hair and brown’

) eves, brown hair and blue eyes,-and lnowu hair and brown eycs. Fm,—,
: - example, hecould be presented- with a set of cards for which a = 11.

- : - b=3.c=2.d =8 (sce fig. 41 and-then he questioned ntbout the r(l'mun-

== - = - = ship l)ctwoen h.m colour-and eye colour on the cards.

- i = Blue eyes 7Bmwn eyes

o o - = Fuir hair 7 - n B B
) - : S _ Brown ';:li!‘ - b T Ml =

= - - B Fig. 4 -

) . _ The Geneva school (Inhelder and Piaget 1958, pp. 232 fi.1 Inid down no
- stages helow [TIA—the carliest stage-of formal thouglit—although in our
. : own - work we did lay down criteria for carlier stages However, atstageIITA
- - _the pupil can estimate probabilities-as relationships between positive con-
) - firming cases and those cases that are possibly related to the eharacteristic

in_question. For example, he knows how to judge the chance that a given

girl hag fair hair if she has blue-eyes by comparing a to b or to a -+ b.-

] ~But the subjeet is unable to sum the positive and negative: confinuings

= la -+ 4y and relate these to the sum of the nonconfirming -eases b - ¢
or to the sum of the possible instances, a 4 b 4+ c4d

o= At stage ITIB. however, Geneva claims a spontancous relating of con-

- ] firming to nonconfirming cases and to the sum of all possible eases, This

adding r of @ and d.-also band e, marks the appearance of correlation in the

strict sense of the word. The protoeols given (Inhelder and Pinget 1958,

p. 240 elearly illustrate the stage, In our w. 1k we found pupilz needed

: N ’ 147

0




3

PAFullToxt Provided by ERIC

Piagetian Research and Mathematical Education

more prodding at this stage than the Geneva school suggests, but this
might well have been due to our sample, :

Onee again Piaget’s developmental system helps us to judge better what
aspects of statistics can profitably be introduced - into the clementary

school, such as the graphieal representation of data, simple measures of -

central tendeney, and clementary notions of probability—the last topic
with the abler sixth-grade pupils. But it will be junior high school or later,
depending on the ability of the pupil, before he will be-able to understand
probability in a-more formal sense, thus laying the foundations for statis-
tical inferente. Moreover, from the point of view of investigating the
student’s growing understanding in mathematies, the -foundations and
applieations of statistical inference constitute aresearch-arca that remains

wide open. : : =
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are. ueﬂhu* cqm{ alenf ‘1o completclv* ,contempomneoux Fmallv
~ - although the coneepts of-number-and- “measurement - hay- seenr: rather-dis-
- -similar, thereis a_very™close’ relahomlnp bctwecn thcm as- mgu'ds hcu‘

m(ukof cow-tru(-hon in de\'elopmeuf = ST B
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reeiprocity). To handle a finite collection of objeets from the point of
view of their number, one has first to eliminate all qualities of the indi-
vidual elements so that they become identical and thus interchangeable,
_- whereupon it s still possible to arrange them into classes that are in-
cluded one in the other (serially inclusive) such that )

M<A+FDCUE14+1D, - )
“and:so on. The individual clements must still remain distinguishable;
otherwise the same element might c.ther be counted twice or forgotten.
- Since all individual qualities have been-eliminated, the only way to keep -
the elements apart is by their order (their position in space or their sue-
- cessive appearance in time: 1 -1 - 1=, cte.). Csing both class in-
(luqon and serial order. we amive at o o

, , - ((((1)»1)-91)—»1) - .
R and'so on. -
S Many responses of (hlldlen to problem situations: concerning this de-

wloplm-nt exemplify this theoretical analysis of the construction of
number. The difficulty of divesting individual clements of all their qual-
. - ities, and thus of totally climinating class characteristies except for their
i numerical value, is demonstrated in the following -experiment. Starting
~ - from two-collections of counters, red ones-and blue ones, with theblue
- -~ 7 collection far more numerous than the red, the experimenter and the child -
' - take counters from the two collcetions, the child from the red and the
-expefimenter frony the blue.- They take one counter at a time, always
“ four or five times, the experimenter will-stop the proceedings and ask the
child: “Do we_both have just as many counters? We each took our
“eounters at the same time, you a red onc; and I a blue one, remember?”
Very curiously, the child may answer: “You've got more counters than
I have. Look, you took them from that big heap; I got them from the
small heap.” The child's argument scems to be based on the following
~ thought: All counters from the red collection are red; all counters from

- ’ ~ the numerous collection are numerous (Gréco ot al, 15 563, p. 82).

T The difficulty of understanding the serial inclusion character of number

’ 7 is also illustrated by-an experiment designed by A. Morf (Gréco and

. Morf 1962, pp. 71 fl.). For the dght-ve car-old, it is quite clear that 9

- includes 8 and thit to-get to 9 one has fo pass through 8. To five-year-
olds, hewever, this doés not scem- to be elear at all. In this experiment, -

there is a colleetion of little cubes, 7 or 9. on the table. In front of the

experimenter there is only one cube, und one by one-he adds cubes to his

collection until he has a good deal more than-9. One first makes sure

that the child knows that in the beginning he had more than the experi-
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at the same moment. Having repeated this action of taking a counter -
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E menter (9 as against 1) and also that after the adding of cubes the ]
- experimenter has more, The question now becomes whether there is a
point in the proceedings when both had the same number of cubes, The
five- and sometimes the six-year-olds are not at all sure. Some typieal
- responses are: “You can’t be sure; it could-be first one too few and then — - )
- ) one too many” or, quite explicitly, “There can be more and then less-and : -
. - never the same at all.” These children seem to admit that it is possible -
to jump straight from not enough to too many. . -
Other peculiar behaviors have been found in different experiments, all [ B
o - . showing the complexity of the construction of the number coneept. In . . . -
the numerical conservation experiment a preconservation stage has system- - -
ST - atically” been found (Gréeo and AMorf 1962) where-the following phe- - — = -
nomenon appears. There are two collections of rcd and blue -counters, - . -
first arranged so that one is- undel neath. the-other in an optical one-to-onc .o B ‘.
correspondence and then one is :])le‘l(l out to make a longer line. Before ) i
I -the age of “five or six, children will affirm that -there-are now more blue - - - .-
T - counters (in the longm line) than red-onies, or {hat"there are no longer - - 7 - .
o anougli sed counters to cover every blue one. or that there will be blue - -
. enes left over, and so-on. If they are then asked to count the elements RN
- in the undisturbed colleetion, they find that there -are 7—they may-or - _ I B
may not have counted corrcetly, but we- aceept their-answer. If then: the R o 1
experimenter-covers up the second collection with-a pieee of paper and -~ -
o ° - asks how many counters there are_underncath the paper, children at-this - o . : -
_particular stage will say; “7- too.”-For them, there seems to be no con- =~ - )
“tradietion between the two statements: “There are-more blu¢ counters” oo
and “There are 7 red and 7 blue:” Gréeo (Gréeo and Morf 1962) has B ’ -
I "~ called this phenomenon: tne con(q)t of quotity, which: plc(-edeq tlnt of - .7 - - '
© - . numerical quantity. - . ’ :
- A similar behavior has bc(,n found in a qu.mtlﬁc.xtlon of inelusion - o .
s ~learning experiment. Iere we have two dolls. a boy and.a girl, and the :
= ~ experimenter gives one of them a collection of fruits—for instance, 2 g o
- - apples-and 4 peaches, The child is-then asked to give the other doll “just ’ ) =
) © 7 us many fruits, just as much to.eaf, so that it’s fair, but give vour doll : .
more apples beeause he's very fond of apples.” At a certain stage, ehil- .
dren are eapable of doing this and will give their dolls 4 apples and 2 S
- peaches, 1\(‘L]7]ll§,_, the total numbey of items constant. Towever, when they o L
have assured us that *“now the dolls have just as much to eat; nobody's
= jealous, it's quite fair.? we cover the collemop where they themselves - - - T
have given more apples but the same number of items and_ask them to ’ -
count the-samplé collection. They sa¥. correctly, that the first doll has - -
six items fruits) fo eat. When asked if they ean tell us, without uncov- -
T _ering the other collu'tmn how many fruits the other doll has, they say, . -
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- “Eight, becquce I gave t\\o more apples.” Tln~ is not a simple lapse of
- - memory, hecause when we ask how this is posgible, since they themselves
; ) : - ade sure that everything was quite fair,-they ‘explain: “Yes, it's fan', . .

- they have the same to eat,but one has 8—he's s got 2. apples-more—and - o ’ -
the other has 6. Once again, what to us is a contradietion between two - -
statements to-them is no more than-a linkinig of two compatible affirma-
tions. It is only during the transition stage that children become con- - - :
fused and perplexed by their own answer, a factor that is p'lrtlcularly e T
: . ) . clear in our learning experiments. At that point it is often possible to
’ invent a slightly easier situation where the solution : uddenlv l)e(onm . )
Lo clear to the child. For instance, in the- quqntxﬁcatmn -0 —mclu~mn prob- IR
- : lem, one can then suggest-that the ehild give-only 1pplcn to his doll:- in- .

this- situation he does not need to adjust the_ number~ of the two sub=:
classes, and the numerical problem will hecome. cle.u—-2 apples-and 4~
- peaches are 6 fruzts. and, of course, the other-doll-has also-6,6 apples.” = .
PR Other curious answers have been observed by Gréco in-an- experiment on o ’
the acquisition of the coneept of cmnnmtatlvxtv of addition. To an adult T
~oreven to an ecight-year-old it-is quite clear that-7 4+3=3 + 1, and- i
- it is difficult to imagine that this may be an‘insoluble pmblem to-a five- =
: S . _year-old. The following experiment was effected by P Gréco (Geéeo and e
) - . Morf 1962). Seven yellow cars (not all the_same length) and three red -~ -
. cars are_parked bumper to bumper_ alon;, thé sidewalk- (a wooden Fuler). - -
A parking sign is then placul level with the- back bumper of the last ear. - ST - o
- T Now the cars are taken away and the child is asked to park them again, - : -
L but thiis time the red-ones first and the-yellow ones afterwards. The three - -
7 oz -~ -red cars are- palkcd and” one of the yellow ones-when the e\pm mmmer - : : -
- i © stopx the pmwodmgt and asks the chjld whether the line of parked ears . D
- - - - will exactly reach_the parking sign or £o- furthm or less Lu.: The answer—- oSl T N )
- ) ~may be “Oh less far this time; there’s a-lot of room.” Even ifthe experi- . — -~ - - N
’ ’ menter says, “But we're going to-park-all of them.- -the red ones and the : o
vellow ones, just as before,” they answer, “There aren’t many rcd ones . - LT
R - in the street: the vellow ones won't go too_far . . --there is more rooin S T
. - ) than beforc”’ For such clnld\on 7 -+ 3 is not thc same s 3 —¥- S Lot - SR

i

- - These few examples wxll have to suffice to 1llu~tmtc the cqmpl(\ltv of - S
o . the-construetion-of the number concept. Several other exper iments show o -
T -0 S _the same kiid of paradosical answers and the same confusions, The -~ - - - -
- well-known nuinerieal éonservation tasks donot scem 1 to nnplv an inme- - - )
- diate and complete understanding of the nature of integers. The curious . - :
- responses to several number problems seem to confirm Piaget’s interpre- ’
) . : tation fresulting from his theoretical analysis) that the coneept of number B
o - _is derived. from a synthesis of class inelusion and ser 1atxon
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MEASUREMENT

During the conerete-operational period. the child not only_learns to
~-handle, in a logically ~oherent way. relationships between discontinuous
objects, but he also begins to be able to deal with spatial coneepts. Ac-~
cording to Piaget, this type of operational structuralization is- exactly
parallel to that of: classes, relations, and numbers. The difference lies in
the fact that in spatial operations one has to act on continuous objects
into which- units have to be introduced hefore they can be quantified.
Measurement of lcngth for iustanee, implies. several steps: first, a unit
- has to be-partitioned off and then this unit-has to be displaced without
overlaps or empty intervals, which corresponds to a seriation; second,
~these eontinuous units form inclusions—the first bit one has measured
iz sneluded in-the bit that comprises two units. and so on. Thus, measure-
ment is constructed from a synthesis of displacement and additive par-
titioning, parallel to that .of sertation and mcluﬂon which con~t1tutc~
the nummber concept. - - - -
However. this first measurenient conceept (longth) is a(']n(-vcd r.nth(-
later than that of number; the time lag is between six months and-a year.
There is an even-greater time lag—two to three years—bhetween aequisi-
tion of the corresponding conservation of length coneept and the ~1mple
- numerical conservations.  Although the psyehological construetion is
parallel, dealing with -continuous elements is very much more diffieult
than dealing with (l1~coutmuou~ units. Morcover, there is 10 easy way
to lead the child fronmi-one to the Oﬂl()l as has been amply demonstrated
in a learning cxperiment designed by Magali Bovet {Inhelder and Sin-
clair 19691. Several different situations were set up with the aim of
imaking children, Who ecasily suecceded in the numerical conservation
task, realize that they could apply the same reasoning to lengths, or roads
“ag they _were ealled in the experinient. Matches were glued onto tiny
toy houses so that roads could be constructed (with different contours)
whose lengths could be evaluated by the number of houses along them.
We wondered whether children, who in-a pretest had no trouble under-
standing that a change in the dispesition of one of two lines of houses_
originally set up in= one-to-one cor respondence did not alter the number
of houses (or the numerical extension of the two collections), would im-
mediately understand that the two roads. tthat is, the matches which had
~been glued to the housesi would also remahi the same length, In this
situation it is easy to ask questions alternately on the number of houses
and the length of the roads. For exdiaple: “If you walk along here, do
you go past as many houses as on the other road?” “Are there more
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_houses on this roxd than on the other?” “If you walk along here, do you-

have further to go than if you walk there? Will'you be just as tired, or
more, or maybe less tired?” For some children, there is no couneetion at
all between the two types of questions: the number of liouses is the saue,
but the roads? “The roads are different, one is much longer, beeause it
goes further (the straight road, compared to a zigzag road); you'd be
more tired, heecause you have further to go. . . .” Other children seemed
~ to catch_on and argued, “Same numnber of houses ‘means same number of
matches; same number of matches neans same length of road.”
However, in a second part of the experiment, ehildrenwere asked to
Judgze comparative lengths of road. which the experimenter had eon-
strueted cither using equal-length or unequal-length matehes; in addition,
they were asked to construct roads of the same length as the experi-
menter’s, but this time using shorter matches and following different
contours or starting from a different point. In fact, using only matches
of equal length means that the experimenter has already solved part of
“the problem for the thild. who cannow simply discard his intuitive solu-
tion, whereby e judges distance by points of departure and of arrival,
in favor of a counting procedure where he judges by number of elements,
Having “learned™ in the first series-of problems that the length of -a
road can be judged by counting the number of matcehes, and having cor-
rectly solved a mumber of problems dealing with matches of- equal length,
one of our subjects was faced with the following situation: seven shorter
matehes making a road of length equal to one of six longer matehes, the

two roads being in a straight line. one directly underneath the other (see -

fig.1). -

A > 3 = = 3 > (6 matches }

B = X e S Yo ——3 (7 matches)
Fiz 1

This situation poses 1o problem cven for children \\fhbi,(!g not have any
conservation of length; they eorrectly judge the roads to be equal. After

the learning proeedure, however, one child announces that 4 has less far-

to go than B. since there are six mutches as against seven. She-explicitly
refers to A as being less tired and to B’sroad as being longer. When dis-

cussing the situation with the experimenter, she changes her mind several

times: “Same length, because I can see itx they go just as far; not the -

same length, I've counted the matehes, there are six here and seven there.”

At no point in the discussion does she refer to what would coneiliate these - - .

two differ nt answers, that is, the unequal length of the matches.

154

13

4




W

S

-

- - i ) Sinclair / Number and Measurenient

The following situation (sce fig. 21 was also presented: four matehes

- - in the top road in a straight-line; six matches in the bottomn road in a
zigzag pattern; departure and arrival coineiding; and all matches of equal

- length. .One subject answered: “The roads are exactly the same . . . exeept
; that you've put a bit more in the bottom one so that they're t hc same g - T
length.” An involved bit of reasoning, which left the child himself rather =
perplexed; after a minute’s hesitation, he said: “But-then, why are they - -
the same? _That’s what I'm \\ondermg, about—that’s what's funny.” 7

A ¥ 1) 1} 0 @ . -

~—

- - Fig. 2 7 -
The following is another example from the same learning experiment.
o ’ In the situation where there are fourmatches in a straight line as against
- - five in a zigzag, onc-of our-subjects counts correctly: four at the bottom,
- - ~ five on top. But when we ask him-about the roads. he is convinced that .
= they are the saie. length: “You'dbbe just as_tired ; they go just as far;...." :
Counting once again. has no effect on his judgjnzlént of length. After the. )
same subject-has correctly solved a number of construction problems, we -
Eiak come back to this situation of four as against five matehes. This time -
’ - li"llt.ll'1< dawned and the answer is correct. But the child remembers his -
wrong answers and, when we ask him to explain, says, “Because I didn't
count properly. because that (pomtm;, to the extremities) came’to the S .
sume place.” This answer also takes some working out; in fact he had .-
) = . counted correetly~-five as against four—but he had not been able to )
. 7 make the correct use of Li= l'ountm;,, discarding it in favor of a Judgment
o based on the ordinal propertics of the configuration, .
- The situations where thg child himself had to construet a road equal o -
in length to a model, using matches of different length than those used - - ;
- by the experimmnter (seven small matehes cqual five long matches) were «
— : ’ ) those whown in ﬁg.,m(‘< 3-5. The only sitwition of these three which ean =
’ be solved immediately by a child and whose solution gives the correct -
answor is the problem ~hown in ﬁ;_mo 3, h\e long matches equal seven - s
short ones. i
, The primitive way of judging lengtlivis ordinal. Tt is thmcfom not -sur-
prising that children who do not conserve l(zngth ‘construct their road in
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figure 3 so that its extremities coincide with those of the experimenter’s

, road—in fdet they need only four of their matches to do this.
p— jIn figure 4, however, the ordinal judgment does not come into play
since the roads are too far removed from each othier—the road to be built

without paying attentionto the fact that the matehes are not of the same
lengths and cannot therefore serve as units. ) N

- conservation, since here the right solution is immediately obvious when

- one uses the ordinal eritcrion. But after the other situations, the children
in this experiment often have trouble with this problem. They count the

matehes in the experimenter’s road, five; they take five of their own

matches, put them end to end, and then decide that the problem. is in-

vours.” After a while, however, they will realize that the difference in
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is not dircetly underneath the model. Here we sce the other primitive
way of judging length, that is to say, simply by counting the elements -

Figure 5 would again be easy for a-child who-docs not yet have length

soluble, It can’t be done; my matches are not right, T need matehes like -
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the lengths of the-matehes can be cormpensated for by using more of them.
- By virtue of having =olved the third problem (fig.-5). the children are
now ready to do better on the first and second problems. For the first
7(ﬁg.$)§,‘% one might have expected that now the correet solution would be
given inmediately: seven smalier matches will make the same length as - . : —
- - * five. long ones. This type of reasoning implies a grasp of transitivity,
’ - which. according to the theoretical analysis, is achieved only with the full
structuralization=of the system of transformations. And indeed. the chil-
~dren who progressed this far in their reasoning were capable of solving
. - - all the.problems of eonservation of lengths in our posttest (in which we
- - w— . * used wire that was twisted and 1o units were involved). But many others .
- L eame up with interesting compromise solutions to the first problem. Some ’ s -
. - ' _ —children broke one of their matches into-two picces—thus constructing ’ -
h — . - ~ aroad_that did not go beyond that of the experimenter but which had ) . -
) the smmne number of “pieces”—=with total disregard for the fact that not - ]
- only were the picees in their road different from the experimenter’s units,” -
- " “but the picces themselves were not all the same length: Nunber is cer-
' Lt T tainly beginning to have something to do with length, but in a ratlier ) ) )
- R © gueerway. B : .- :
) - The following is an example of anothier type of solution that scems . —
slightly more advanced.” Again wanting to cqualize numbers i the two
e -ouds, the children used one extra matceh, but they put it verticaily, so as L
_ ’ not to disturb the coincidence and so that, in their opinion, “the roads go - -
just as far;but you need more of the smaller matehes than of the long -

S - “ones.” ) -
) ) A third type of compromise solution goes even further in the right -

. : direetion. These children comply with ‘the instruetion that their road-. S
" . should be straight; they also apply the principle of “more smaller-

. matches” and put one more match on their road, thus “going beyond” the e
) experimenter’s. However, when they look at the configuration, they may 7 o
break off a picce—their road “goes too far.” -

i ~~ The compromise solutions illustrate very-clearly the difficulty oi co-

. ordinating several patterns of reasoning in the problem of- evaluating
lengths. Judging by the points of departure and arrival is one. and in
certain situations this maybe zufficient. Grasping the importance of the - -
number of units is another, whicl, in the case of two lengths already
partitioned into the same units, is sufficient. Grasping the fact that the . . -
number of units only applies if the units are all the same and that if this

— ' - is not the case then compensations have to be made is another step in -
I - the right direction: Finally, in the most difficult situation, only a coordi- :

nation of thesc differentprinciples coupled with an understanding of the -
transitivity principle will lead to the right solution.
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This long analysis of the problem of length seems to providé another
~ illustration of the complexity of the concept and to confirm Piaget’s view
that measurement results from a synthesis of serial displacement and
additive partition, just as number results from seriation and inelusion,
It also illustrates the danger-of presenting childrer with tasks that can
be solved by simple application of an, in itsclf, insufficient type of rea-
soning,. i : ]
“However, in the general framework of cognitive development, these
findings concerning number and length give rise to soine questions. As
we have said, during the beginning of concrete operations the one-way
mappings of the preoperational period and the functional dependencies. - -
which lack quantifieation and reversibility change to operations in the .
Piagetian sense of the-term; that is, interiorized actions- that are re- - - -
versible, form a system -with invariants, and allow new modes of com- - -
position through transitive reasoning. Although this grouplike structure
and the different types of operational structuralizations that derive from
it are characteristic of this whole period, certain tasks prove much easier
and are thercfore solved much carlier than ozhers. In a general way, this
is understandable. -Conerete: operations are c..lled concrete because they - )
are based on real, actually possible actions. Thus the content of a prob-
lem. quite apart from its structure, can make it easier or more difficult.
The- very first conservation is that of numerical quantity—numerosity, -
to avoid the word number. The nature of the series of whole numbers -
itself becomes understood only gradually; in our examples we did not
even touch upon what happens when nﬁmberindb]cms concern large .
. humbers or even infinity. Another basic conservation is that of matter—
a peculiar, se@mingly abstract concept that ix nevertheless grasped before
the more precise conservations of length and weight. Now, it is under-
standable that conservation-of the numerical quantity of a collection of
discontinuous clenuents is achieved earlier than that of a continuous . .
“quantity. But why should the conservation of continuous quantity (as -
ilustrated by the problem of two balls of Plasticine,.one-of whichis - = -

i

changed into a~safsage, a pancake, ctc.) “be-achieved-earlier_than the
corresponding problem of length? The latter problem obviously does not
demand a capacity to understand the abstract concept of length as a line
with no widtli at al!; the children are presented with bits of wire or very
thin sticks and their width does not create any additional difficulties. In
the Plasticine problem they have to deal with three-dimensiona) ob- -
~jeet—why should that be easier?

There is another point, In all conservation problems one of the factors

that accounts for nonconservation is the tendency to make ordinal judg-

ments based on the ideas of going beyond. overtaking: and so on, This is,.

y
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; ) of course, linked to the one-directional way of prcopcmtional thought—-
- without reversibility. However, this same factor is at work in all con-
servation problems; why should its influence be so powerful in the case
- ~ of length? :
- . It does not seem inappropriate to finish a paper on the development of
concepts of number and measurement with a eatalogue of questions. In
fact, it illustrates rather well what Piaget means by -equilibration—the
solution of one problem inmediately leads to a new series of questions,
, which had not been envisaged before. The achievement of one stage in
cognitive development implies at the same time that a new stage is in
e : preparation, Or, as Piaget onee said in answer to a question on how he
) - - felt about the future of pwchologv “T am very optimistic indeed, cvcrv
day I zce new probléins,”
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KENNETH LOVELL

The Development
- of Some ‘Mathematical Ideas
in ]:lje;;nentar,\f Sphoql Pupils’

This paper dcal~ with three 1ssues: (1) properties of the set of natdral

numbers. (23 equalization of differences leading to averages, and (3)
adjustments and combmmn' of odds and evens.

PRO!’LKTH’.-\ OF THE SEgT oF¥ NaTtRAL NUMBERS

A ln ief (I(-~vn|)tmn \\1Il be given biere of tie experimental hndmg~ of
P G. Brown (1969]

Sample

\m:\

Pupils weresdrawn from thc top class of a British mfm[ seliool-and
from cach of the four classes of o junior school, The ages of the children
tested thus 1.u§f«'c(l from ()-1- o 7-~ yewrs in the infant school to 104 to
1 vears at the top of the junior school, However, each school had a
two-clags entry, unstreamed for ability. but with (‘L!SS& ar 1'an;,ed accord-
ing to age, eaclt elass having an age range of approximately six months,
“lel(E%\('lu roughly thirty pupils in cach class. The pupils were said to
fortn a representativesample from an urban area. Both sehools used what

“are degeribed as “traditional mixed” methods, this designation indieating

that there was o greater degree of inquiry and self-critieism with respect
to the methods employed than with the “traditional throughout” method,
THowever, both schools made little use of structural materials. :
From each of the two elasses at cach age level, nine hoys and nine girls
were randomly selected, making 180 pupils in all. At each age level, nine
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standing of the following:

[dentity property—addition

Conmmutative property—addition

Associntive property—addition .

ldentity property—multiplieation -

Commutative property——multiplieation

As=aeiative property—~multiplication -

Distributive property—multiplication and addition
Each -section of the test began with praetice examples, and there then
followed & number of examples to work. All instruetions were given orally,
with practice examples written on the blackboard where necessary.

We are not primarily coneerned with the written tests. However, it is
necessary to indieate the general form of the written tests, sinee the indi-
vidually administered tests paralleled them. Examples for testing a ehild’s
knowledge of just two of the properties are given.

Identity property—addition. Put the correct numbers in the empty
hoxes and underline the one example that is different from the others:

54 0=0
3= 0+0 -
o O+ 6= 6
' 8+ 0= 9
=0+ 7- .

(‘ommutative property—addition. Put the correet numbers in the empty
boxes and wnderline the onie example that is different from the others:

44 2= 240 -
_ 24 5=+ 4
640= 1+ 6 S
O+ 3= 3+ 3 ’
- 14+ 1=0+4+ 7

The individially administered tests

There were nineteen tests, all individually administered. that covered
the areas indicated below., Sometimes there was more than one test used
to examine a law. o
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(Marbles were only added or removed if the child hesitated:
- The following lists the possibilities for other gnestions:
1. Odd 31 2. Even 41

2 3.0dd -1 : 4, Even — 1
5. 0dd -+ 2 6. Odd 4+ 3
7. Even -2
9. Odd — 2
11, Even — 3

10. Even — 2 -
12 Oud —2

Ster 6a. The experimenter asked :

“If you pat an imknownagdd number of marbles into the marble
chute @ nd then add the niydiles from another odd-number ehute,
would the whole row of marbies be odd or even?” T .

I there was hesitation on the part ¥ the ehild. the marbles from suit-
uble-tunes were combined-in the marfje ehute but the sliding cover was
used to prevent dirset verifieatica, hhthis way a test was made for:

1. Odd 4 Odd T2, Even N-Odd 7

3. Even 4 Even

Srr 60, Here a test was made for the effect of combining the st ne odd

ot even imknown number three o more times, The procedure was the
~ame as in Ga. 1 sneeessful in the ease of “three times,” a free rimge
of supplementary questions wax asked: for example.

8. Even 3 -




Closure property—multiplication
) Commutative property—multiplication
.-\z:soc.intive property—multiplication
Distributive property—multiplication over addition
7 . 7 It is impossible to discuss all nincteen tests s indeed, only three will be
_ (l(::llt with in detail. But this will give anidea of the kix’uls (;f tasks set zm;
) 7 - of the form of analysis, Tt will be appreeiated, of course, that tl;e'}i;‘ﬂl two
o tests are based on Piaget’s study of unprovoked con-c;spondencc ;;n(l of
7 additive composition respectively, R
Commutative property—addition. The materials used w
ten blue Cuifix cubes, together with two
- track, each eovered with a e
exaetly,
The jollowing method was used:

ere ten red and
sections of the Stern number
dboard mask into which fourteen eubes fitted

Q".‘ 7,“..7: . T . ‘
STEP Lo The child put eight red cubes, joined together, into the track

leaving a space at one end only. .
Qu‘esnon ‘)1 A!"IIO\\' many blue eubes are needed to fill the space
i exaet]ly? Can you find out by putting the eubes in?”

[ the vesponse was correct, the subjeet took all the cubes from the

track and placed themn in the other track. -
Question 2. “Dues this track hold the same munber of cubes?”

7 ’ StEP 2. The child put cight Blue cubes at the end opposite to whieh the
red ones had-been placed, leaving a space at-one end only.

e H 9§ . = X
Question 3. “How many red cubes are -needed to fill the spice
exactly - E

If the correct response was given, further questions were asked.
Question 4. “Would-five cubes be nougl?”

oS

] ) . H = H i
Quest.lon 5. Could you squeeze~seven in?” ¢The child must not

verify his response by putting cubes in the track.)-

- _ Tuesti &“ s 1] VOl W z Ny 0

v Question 6. “How dld,you work out how many Were-needed?”

"

"

StEP 3. Since there_ were three other possible positions at the end of -the
two tracks at which spaces could be left, the experinenter varied the
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. B the :x(lglnst{q(-llt of unknown odd or_even mnubers, by amounts of from -
one to three, and were more aceurate than at level 2, But nowe deslt
adequately with combining two unknown odd or even nnubers.

Srace TG The adjinstment of known and unknown numbers was very
. accurate compared with Stage TIIa. The combining of unkuown—oded -
: and even numbers was attempted: but the replies suggest that pupils
) believed that the sum of two even numbers wis even but that the =um
. - of any odd numaer and any other numnber, odd-or even, was odd.

S1acE IV, Relevant number substitutes were now made when tombining
unknown add or even numbers. Pupils were very aveurite when con-
sidering the adjustments of both knowii and unknown quantities by
amoimnts from one to three marbles,. When asked for the sum of two
mknown odd oreven quantitics, they achieved the result by substi-
tuting relevant numbers for cach unknown-quantity. [f asked if their
result was true for all unknown numbers of that type. they often sug-
gested using different numbers.

) SraGe Vo The frequeney of odd wnnbers was seen as signifieant. Pupils

- answered all questions relating to the sum of three or more odd numbers

- - :;-nfl \\:m:.c able to generalize that the sum of any number of even (quan- -
E [C ) tities ix itself even, whereas the =um of a number of odd numbers v jes.,

Fhe resuits are shown in table 6.-whizh contums the n-aubers of pupils

57w

1]

- putative relationship for addition in this situation,

space Ia. The pupil may give the correet number of eubes, but he ean be
dissuaded and considers that andther number will also satisfy the con-
ditions, thns indieating a transitional stage.

“Srack I, This is a further transitional or semi-operational stage when
pupils make an intuitive discovery without operational compositions.
They are unable 10 express verbally the comnutative principle.

Stage 111, There is an immediate and secure discovery of the correet
solution. This lasting equivaleucc-is-based on the cardinal value of sets.
‘The subjeet ean explain the commutative principle as it pertains to the
particular situation.

The results are shown in table 1, which contains the number of pupils.
at each stage in‘cach elass. _ ) _

[
W

“ Stage ~ )
Class - I Ha . K
H 7 1 -
3 7 1
J2 7 1
- 3 3 2 -
, 5 Infants 2 5 - v —

" Associative property—-multiplication. The materials used were a num-
ber of one-ineh cubes placed together to form two similar bloeks A, and
Aa, each 27 X 3”7 X4”. The layers or seetions of the blocks were each of

X ’ 3 - - Y ” ”

~&different color. Blocks B, C, and D were 27 X 4”7 X 17, 3" X 4”7 X 1%,

and.2” X-8” X 1”; that is, cach was alayer or scction of blocks Ay and

s - )

The following method was used: - ) -

. N : H ’°”
Step 1. Block A, was pldced on the table with its base 2 % 3.
Question 1. “How many layers are there?”

»
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’ ;umbel's are larger. Up to eight or Cight-and-a-hali years of age there

- iz limited operational use of number. Thereaiter, children slowly acquire
- greater understanding of mknown numbers, but they may be ten years
of age before situations presented in an arithmetie context will be solved

by gencrally applicable techniques. In other words, it is two to tivee

— T vears after number is conserved before average pupils ean handle =itna-

) _tion=in an arithmetic context which eall for a generally applicuble metiod

R of exdeulation, He also points ont that, as we have often found, although
elducationally special-school pupils sometimes achieve the snte fevels of
understanding as their noral counterparts by mental age, in many other
instanees they lag fur hebin,, _However, in the practical use of money
their performance is much closerto that of normal children,

- = When-the perfonnances of the normai children in the five individually
administered tests were intercorrelated, the intercorrelation cocflicients
varied from 0.77 to 0.91. These are high, but their size still permit=¥dme
children to be preoperative on one task but operational on another, as
Brown sugzgests and as all other experienee shows, However, the pet form-
anee on the four individual tasks tthe odds-and-cvens tosk was tot givenr |

- administered to edueationally subnormal special-schost pupils yielded
coeflicients varving m size from 052 to 0.69. This. too. confirm= our
findings at Leeds that.the less able pupils are, the greater is the irregn-

Lty in their level of perforipunce across tasks. Obversely, the ubler
pupilsare, the greater_theregnlarity_in_their levelof_performanee over

- e ¥ S o Lot o (0t U ¥ R T B ETTS -
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—

After the child responded. the experimenter instrueted the child to
count them if necessary,
Stee 2, -
Question 2. “How many layers like this (pointing to block B1 would

you need to make thave) the same number of cubes as in that
blocl. (pointing to block 4,)?” ) - -

Ster 3. Bleek Az was placed on the table by the experimenter with its

base 3" X 47, together with block D.

Question 3. “How many layers like this (pointing to block D) would
you need to have the same number of cubes as in that bloek (point-
ing to 42)?” .o o -

. = ==

Ster 4. The experimenter placed block A, on thie table with its base

27 X 4", together with block C. .
Question 4- “How many layerslike this would you need to have the
same number of cubes as in-that bloek ﬁ){)itltillg to A2
Question 5. “How did you work out these answers?” - - ===

The following eriteria were used to assess the level of pupils’ responses:
Srace I Tlie law of associativity embodied. so to speak, in this conerete
situation demands a certain eapacity for spatial orientation. At this
Ftage pupils are unable to recognize a layer or section when it is con-
- tained within a larger block, - T
Stace 1L There is limited use of mathematical multiplication.or a restrie-
tion to counting in-single units. This is a transitional stage. 7

Stack 1L There may or may-not be some kind of- physieal manipulation -
— _ -of the blocks, hut in all cases- there is mathematical multiplicutim'l

followed by an explanation that relates a section or layer to a corve-
sponding part of the block. _—

“Theresults are shown in table 2, which containg the numbers of pupil:
at cach stage in each elass.. -

= - S ) T
) TABLE2 =
- Frequeney : Class by Stage
(A=sociative Property)-

- Stag ]

= Class o Tolal

- I n ) ) -
J4 4 1 3 8
J3 6 1 1 8
J2 5 = — 3 8

-- - J1o 1 7 8
Infants 1 7 8§
’ - 164
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Distributive property. The materials for the first test include sheet 1
of paper in which there are scetions A and B. Section A contains two
arrays of erosses, 3 X 4 andd X 3. Section B contains five such arrays,
namely, 8 X 4,4 X 4.3 X 7,3 X 9. and 3 X 8. Sheet 2 is also divided

- into two seetions A and B. Section 1 contains two arrays of crosses. 4 X 4

and 2 X 6. Section B contains five alch arrays, 11.unc]v 4 X 6 X3,
2%9 10X 2, anl 6 X 4.
-The fol]o\\m;, method was used:

. Sver L The e\pcrnm,ntex showed gheet 1 to the pu]n] and said, “Look
:ucfullv at the crosses heresz( —~(pointing to the patterns in By

Question 1. “Which of these five patterns (still pointing to the pat--

terns in B1 has the same number of erosses as these two patterns
_ put to;,ct]u r (pointing to A1?7 T

StEP 2.7 . - g
Question 2. 1a) “How did you work that out?” (b)-“Do you have to
count cach cross separately ?” t¢) “Have any more patterns (in 3)
the zame number of crosses?” - - :

StRr 3. The child was shown sheet 2 with one of the two p.utcl ns in A
covered up. The c\pt,rnm-nt( r pomtv(] to one of the patterns inB.

Question 3. “How many rows (or columus) of erosses would you nved
tin A) to make the same number there (5?7 =~

Qlw~tmn 4. “How did you work tliis out?”

,

““For the second test a peghoard with two-arrays of pcg,s, one 8 X 6 and
one 6 X 37 was used.

The following method was used: - . i
-Srer 1. The pupil was shown-the pegboard with the two ariays of pegs. -
Question 1. “How many more pegs like this (pointing to 6 in 6 X 3)
would you need to make the sume number of pvg as ther(- are in
this pattern (pointing to 8 X 617"
. Question 2. “How did you.work that out?” )

The following criteria were used to assess the level of pupn]~ responses
in both tests; -

+ - -
Stace L Pupils are wiable to make correet responses for various reasons,

but-mainly beeause they are unable to see o common relationship—that

i, 2 common factm——fol]o\\'u] by .ul(]m\c composition. Giol)a] ASSCET~
ment involving incomplete visual pereeption is typical of the intuitive
_]ll(]g.nl('llt~ made; for example,Tows with different numbers of e]emenb

are pereeived as equal.

Stade 11 Although accurate use of number is made, fu]l use of mathe-
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matical multiplication is not. This limited approach usually involves - -

counting singly, 1ather than applying the common factor (rows and
. ) columns with the same number of clementsi or cumbersome tndl-.md- - - ]
error methods.

Srace 1. Reeognition of the common factor is necessary for full use to. . - -
- be-made of mathematical multiplication, and stating this in terms of -
rows or columns is the natural consequence. The ability to apply the
necessary addition or subtraction is indieative of the pupil’s apprecia-
tion of distributivity. -

,Thc results are shown in table 3, which ineludes the numl)ms of pll])ll\ - T
at c'lch st.lge m e‘wh clags, =~ - ) o . -

) : TABLE3 - . ' - S

- © Fiequency; Class by Stage B ; -
o -7 - (DNnbuh\c Pioperty)

- - ) . \lugr 7 T -
- Class — Total o . - . e
- : “ I i . )
- , J4 4 1 3 8§’
- - J3 3 3 - -9 - 8 B 7 -

J2 1. 1 6 8 ) B -
n . -5 8 e

) _ Infants i 8 8 . o = - R

) Brown concludes, '.iftCl‘%Oﬂ*i(lOlil)" all his_evidenee_and not just the - -~ = =+ -
- - . small -amount reported here, that an understanding of the propérties of
- - the natural numbers develops gradually for most pup1l~ up to cleven years )
- of age. The paper-and-pencil tests are, so to speak, a more rigorous device ' —--
- - than the individual work-with conerete materials for testing-understanding . =
- . = with regard to ex: wiples and closely related nonexamples. Using specifi ) : -
) © examples (eg., X 3L X 2=4 K13 X 2)) with conerete materials, . .
Brown considers that understanding is reached at the following ages: < o -
closure at seven, identity at seven to eight, conmutativity at cight-to nine, ’
associativity at eight to nine, and distributivity at ten to cleve en years, ’ —
- ) However. there are points to wateh, In B.own's view; childrén’s per-—- -
- formance ean be advanced or retarded up-to four years compared With-the =
‘norm. deperiding on the child; pupils can be at a preoperational stage in
T some tasks and operational in others; also the child achieves the _opera-
tional stage with regard to all the properties tested at the carliest at abont
uine years of age. Morcover, an understanding of the nono\‘unplm of the
properties may be delayed for one to two years compared with under-
standing examples—at least for most pupils, While the 1cl.tt1\—ﬂﬁﬁcultv e

of the items may be the same for other samples, the actual level of per=— - = P
formance may be better or worse at any age level.
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Equavizarion o DIFFERENCES:
Opps axp Evexs -

o S—

- I-now turn todiscuss a little of the work of G. A. Willington (15617)

Sample T

Five boys and five girls were drawn from cach of the year groups 6, 7. 8,
9. and 10 of a British primary sehool. The LQ.'s of the pupils runged from
95 to 106, so that one can say that as far as measured intelligence is -
concerned they could be deseribed as of average ability. The parents of
the- Pupils were aainly skilled and semiskilled artisans who were, on the
whole, interested in th(-n clnldwn s well-being. llfhou"h teaching at home
was unusual, - -
“The tests - S ) - .

In Willington’s work a large number of tests were given, some of which
were paper-and-peneil tests and do not concern-us. But five tasks were
adiinistered individually on Piagetian lines, Of these 1 would like to
mention one and describe two in detail. Incidentally. the battery of tests -
was also administered to a sample of edueationally subnormal. speciale#
school (school-cducable retarded) pupils of chronological age twelve to
sixteen years and méntal age SIX vears five monihs to eleven years seven
months. -

As in all-exper nncm.nl work of the lxmd in which we are interested, the
responses to each test have to be placed in categories .1tco’l'(ling, to the type
of solution offered. The information so derived is then used to establish
criteria relevant to the pattern of answers. Tnf order to cheek for relia-
bility, seripts marked by one assessor should be remarked by a second.

Distributive propérty. 1 wish to say a very little about the cxpcf‘imen(
to test children’s understanding of the distributive property before dis-
cassing the other two experiments in more detail. Tt will'be inter esting to
compare Willington's work with that of Brown.

In Willington's study ‘twelve boy dolls and twelve g,n‘l dolls were used.
Eaeh doll wore a garment such as a blazer, cardigan, or blouse. Each
type of garment was of a distinctive design and colour and different only
in the number of buttons that could be removed from the garments as
required. T

“Tasks were set for the child which mvolved compﬁ say, five boys
each wearing three buttons with three gul~ eaeh wearing three buttons
and two girls cach wearing two buttons. Sonie tasks involved inequality.

But the general character of the tasks can, no doubt, be inferred from this
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=brief deseription and from the criteria for assessing the evel of response.
o The following eriteria were used to assess the level of pupils’ responses:
STack I No conelusions arve rer

rwehed other than those based on intuitive
Judgmetits reg:

irding the numbers of buttons—global eomparisons.

Srace 1L Number is seen as relevant. The number of dolls or

garments.
) o a> well as the number of buttons.on cach. is seen as relevant, and the

o . . totals. calenlated wre for small numbers, Buf in the case of larger
: . numbers involving, say, four dulls ad ten buttons, the subject reverts
T . - to global eomparisons.-

S1ice TIa. A still greater reliance is placed on number, and larger num-
bers ean be handled. The eLild does not revert to global compariseas,”
P ) : although hie may <y that he did not know.

. - . . . . .
) Srace ITIhT Number is applied in a relevant way in all situ
though counting rather than multiplication may persist,

. S1ack IV, There is accurate nse of nultiplication throughout.

- ot . o ¥ . .. .
- T . SracE V. Differences are now daleuiated as variations in the conditions
: ) " producing cqratite

For example, the girl dolls are seen gz a single eliass<™=
R and equality .- iplicit providig that (1) the total number of wirl
- . dolls i< the same as the rota} number of boy dolls; and (2) all the gar-
me ats have the same number of buttol.. Differences are seen as a result

-or one or the other of these conditionsnot being met; and any differ- -
- enees produced are  ieunlated -direetly without reference to totals of
buttons. ~ )

X

ations, al-

i

. o The results w.e shown in table 4, which contains the numbers of_pupils
- T - at each stage in cach elass,

. . : T © FABLE 4

Fiquency: Class by Stage oo
(Distribulive Property)

b

_ — - [ — ’l' . —
I e = 1lb 17 7 otal

}
L B T 6 . ‘ R
s - - J2 - 2 -
- i ) i J1 - ) = -
; R i Infant 3 - . : =10 - 10
: ) - Infant 2 - 5 5 10

i !

. T . . 3
B The pupils in the study, ezpeciully: the older ones, did rather better than-
- those in Brown’s study if one dares to com
age level,

. — -7

pare sueh smali groups at each
The children were. of course. drawn from different although

- - 1
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comparable arcas (at least on the surface) s the materials weve different:
and different eriteria were used to assess the level of vesponse. Even so.
the general trend of the results is clear in both studies, and the results are
consistent with one andther. These studies are useful in that they involve
giving a large number of tests to a limited number of students, and one
gets some idea of the stability of-the level of response aeross tests: how-
ever. they do indicate a need for this type of study to be undolt.\l\on with
lorge represe ntative groups. O

Equalization of differences (averages). The materials used were
twenty-fonr wrapped sweets (these inereased the interest of the game-for
voumger pupils) and sixty identical wooden bricks (or cubes or vfountm.\i.

The following method was u~cd

Srer 1. This m\ol\ ed two "mupx of wnequal size w lth a small munerical

-~ difference; for example, group A might he composed o six sweets and
group B of fouwr, The (lnlcl was then shown the two (lN-lo(o arrange- -
ments of sweets, -

- Question 1, ~.ure there as many sweets here (\; az here (31?7

Stter the ehild was sure that the numbers of aweets in the groups were
uniequal. he wassasked question 2 2,

Question 2. ~Can you make them the s same size?”
Whether the ~ubject was™ siicéeszlul or not. qm-~tmn I \\a~ repue: n.od

After the groups had been m.u’!(- equal insutinnbers, u~m«_{ any method,
the_experimenter arranged the members of one group i a large cirele
and the members or the other group in a small cirele.

W

Question 3. “I11 take these sweets (large eirveled and \0\1 t \1\0 these
- sweets (cmall cirelet, who will have more sweets, you or 127 )
[f the subject heJieved that one group was numerically greater than the
other. then he was encouraged to take the “larger™ group. )

ster 20 This involved two groups of unequal size but -with a=lavger
muuerical difference: for exanuple, group A might be composed of <X
bricks and group B of cighteen bricks. The general procedure was the
Unc as it was f01 Step 1, and the questioning was similar. But the fwo’
equal gronps were now arranged, one inu w ell-=paced line and one in a
tighuy packed group. The question relating to conservatios in spatially
(hﬂclem It numerically equal arrangements was lefo on’ -

Srere 3. Thiz involved three groups of lmcqu.ll size: the nwuber of mem:

- bers in eaels wight be. Xy, 3, 12, and 6. A= hefore. tlu- child (-oul(l Use
any teehnique for equalizing the ‘tmup~ -

weSrgp 4. Four groups of unequal size were sedy :_the number of metubers
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: ) might be, say. 9, 3, 6, and 20. Any method -could be used for equalizing

LA ey

the groups except that of aligning the members in rows,

- Step 5. Here five groups of bricl{igipf uncqu?xl size were used, the number

of members being, say, 20, 1, 11,7, and 21. The procedure was the same

as for Step 4. When the pupil had solved this problem, the- experi-

. menter removed five of the bricks and rearranged the remaining fifty- .

five bricks into five unequal gréups. ]

Questien 4. “Could you-do-it—(this second problem) in any other

- way?” 2 o :

I Regardless of the method of solution adopted by the subject, the ex- N

’ perimenter rearranged the bricks and made another set of fiv&unequal

groups comprising fifty bricks in all.

[

- A Question 5. “Could you tell me how many bricks you would put into —
cach group if you wanted to make thewn all the same?”

The pupil was not permitted to manipulate the bricks physically, but

he could count them if he wished.

The following eriteria were used to assess the level of pupils’ res onses
B N _

Stace L Trial-and-crror forms of behavior are used to arrive at a solu- °
, -tion to-the problem. Intuitive correspondence is made by trial-and-
crror movement fotiowed by ecounting. Or the child_may make two .
} - . groups cach numerieally equal to the smaller group and then distribute
- . the surplus membenrs, 5Nunwrically equal groups are sometimes mis-
: taketil);fz;djustedrfﬁnd?rom)s that are approximately equal, numeri--
cally, are accepted as equal, The numerical equivalence of equal groups
. 1z not conserved when the groups are rearranged in spatially ontrasting
forms. T

—— 7 Stace IL A more analytic approach is it evidence. One-to-one cor- )
B respondence can be established  with lasting equivalence. Another -
_ technique used is that of accumulating all the members of the groups

and then redistributing them. T

Srace IIIa. There is a progressive ability to cqualize by counting or by -
the use of groups of arbitrary size to begin.with. The general approach
, —is to equalize the two smallest groups by counting, then :o take the
group next in size and cqualize all three, and so on to four groups.
et Another approach is to adjust up to four groups so that they have the
P e ) ©-_saime-number of members and then redistribute the surplus bricks, one
i S “% TF7t6 each grouj in turn. - - T -

—

Stace IlIb. There is progressive equalization of gioups by counting or
by the use of groups of arbitrary size u to five groups. Pupils' at this
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stage are marked by their increased self-assurance and speed of work-

‘ing, coupled with the ability to solve all the problems presented.
Srace IV, A nonempirie.] approach can be suggested by tlie pupils,

through totalling and division._ —

“The results are shown in table 3, which eontains the numbers of pupils
at cach stage in cach elass.

. %
TABLE 5
Frequeney: Class by Stage
(Fqualizution of Differcnces) [
e :ff:—j‘
Cluss e = " Tolal
“ w my  Illa 1 I b
13 10 : - 10
42 6 4 - - 10 -
J1 7 3 10
Infant 3 3 7 10
Infant 2 L i 3 3 10

Adjustment and combination of odd and even mumbers. For the sake
of clarity this task will be divided into two parts. It is an example of an
involved task necessary to get at the facts. 1 hope you will not™ind the
details tedious. ) ) ) A

The materials for the first part consisted ofz -~

1. 120  marbles Az
2. 18 small cardboard bokes without lids - -
3. An odds-and-evens board that had two rows of 10 hollows aligned

in pairs ailpﬁgjts length and a single-hollow-set apait in the center
of the hoard at one erd (sce fig. 1)

I R 1 I | I T

Iig. 1

-

The method used for the first part began with cighteen hoxes laid out
on the table in front of the child. They contaired one to eighteen marbles

respectively. By examining the boxes the child was encouraged to find -

out how manv marbles were in the first, second, and hird boxes and was
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- asked to prediet how many marbles would be in-the fifth. sixth, seventh,

and eighth boxes, and then how many in the cighteenth box. When cor-

.7 rect, e wa s asked how many marbles would be i In boxes seventeen, six- 7

teen, and ﬁftecn, when these questions were answered satisfactorily, ‘he
was asked how imany there-would be in boxes thirteen. eleven. and nine.

The child waz then shown the odds-and-evens board? T he marbles from

box six were divided equally by the pupil by using the board and aligning

the marbles in the two re. of hollows. The experimenter asked.
“Are the two rows of marbles the same?”

‘When this was agreed to by the child, the experimenter said. < -
““The rows are even so we say that six is an even number.”

The marbles from the second and fifth boxes were dealt with similarly.

In the latter instance the odd marble had to be placed by the chikd in the )

single hollow at the end of the board. The experimenter added. “Five (or i )

whatever odd fumber was being discussed) is an odd number because - -

there is an odd marble left over.” When odd and even numbers could he

diseriminated by the pupil, the first steps were introduced:

Step 1. The child was asked about 9.9 — 1,9 -4~ 1; als0 6.6 — 1.6 4+ 1.
The subject wax asked to locate t'ie box holding 9 marbles and to +,
show the number to be odd or even. After doing o the chikd retwrned -
- the box to its-proper position but left it protruding hy an inch or so
in order that he did not lose sight of it. The experimenter then -indi-
cated the adjacent box a place lower7in the row and asked, “Are the
marbles in this box edd or even?”" The board was used by the pupil if
he needed it. or if he wished to confirm his preciction. and the boy was
— retu-ned {o its position in the row. This procedure was followed again ) - )
after the experimenter chose the other number. adjacent to the spe: ified B
number—a place above-in the row. After repeating the procedure
S — for 6, 6 — 1 b - 1, it was continued for 8. 8 — 2,8 + 2 and 13.-
- 13 =213+ -

stER 2. This step was intended to ascertain if a child could judge related
- . numbers odd. or even, onee a specified number was 20 classificd. For

’ example: - o
5, 5—2, 341
i2. 1242 121
. 7. 7 -’-? -2 -

1, 10—t 1042 _
The pupil wax asked to locate a speeified number and decide if it was -
odd or even the was encouraged to use the odds-and-evens hoard), and .
the hox was then returned to the line of boxes and left protruding. After - ~
the board had been removed, the experimenter indieated anothers box '

. ' ’ : 152 - .
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one or two places to the left or right of the former one and asked:

*Is the number ¢f marbles in this box odd or eyen?”
This forced the pupit to make a prediction that he eould not verify.
After the-box had hee» replaced in the row, a second related box was

indicated for the ehild’s consideration.

L] - s 3 ? . -
Tlie materials for the sceond part vonsisted oi:
Ten wooden tubes of varied length. each_holding a single row of

But they were aceurately cut in luwth s0 that each held— —

) . marbles.
mber and hali an

an exacet number of marbles—half held an odd

even number, with a minimum value of 5 and a maxi mm of 16.

- 2. A fumel stand with which to fill the wooden tubes with marbles

A marble chute into which the contents of the wooden tubes could

he transferred without revaling the number of marbles involved
. tsee fig. 2). The marbles formed a single row along a channel of
square cross section, the shoulders of which were accurately marked

— with an internal scale double the diameter ofamarble. A remov-
able sliding top allowed the subject to =ce if thc extremity of a row

) of marbles coineided with a graduation on the seale yet prey vented
- him from counting the number of marbles. A sliort length of wood
that slid into the chute facilitated the reading of}lu, ~cdle -

3.

" 4. Four opaque tumblers with lids, —

0 N A O Y Y
|
72

— |
L

Woodl 1o fucilitae . )
reading of seale - ]
Sliding top

PSS

Fig. 2

- P —
i
P

The method for the second part of the task began with the experimenter

asking the child to-fill a tube with marbles using.the=funnel, to test that

’ the tube was full, and to empty the marbles into a tumbler. The proce-
dure was repeated using a second tumbler but the same tulse,

“Which of_these tumblers has more marbles?”

of marbles was copserved, the subj- -~ shown the

If the nuniber
~derenstated

mmblv chute with the cover removed and the.experis
ts use, The eluld was asked to place iny number of marbles in the ¢ &
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cither from the board or from u box, the block of wood being inserted to
show more clearly whether or not the end of 1 row of maibles coineided
with a graduation on the seale. When a judgment had béen made, other
odd and cven numbers of mdrbles were similarly considered. On each
oecasion the pupil was asked: ~

“Is the end of the row opposite one of these marks?"

Providing the subject eould differentiate odd and even numbers in this
way, he was ready for the next step.

“Step da. This dealt with odd — 1 and odd -+ 1. The cover was slid into
numbers of marbles; using a funnel, and theu in transferring these to
the marble chute; the eover veas ieft so that the last two marbles were
visible, ] )

“Although we do not know the number of these_marbles, is it an odd

or even number?”’ ’

If the child’s answer was correct, the marbles were released into an
opaque tumbler whieh was immediately covered. The subject was
asked:

“Is this ;i mber odd or even?”

_After one marble was taken from the tumbler. this question was®re-

_peated. If the pupil wished to return the marbles to the marble chute
to verify his reply, it was done by the experimenter ~o that the former
could not discover the preeise number of marbles,

- Stee 3b. Using-tubes delivering even numbers. the ehild was tested tor
even — 1 and even -+ 1.

St 4. The procedures of Step 3 were used to test odd <= 2, odd t 2,
even - 2, and even — 2,

Ster 5. Woeoden tubes were filled with marbles, the latter delivered to
the marble chute, and the fornier thus elussified as holding an odd or
even number. Two tumblers were given unknown odd numbers, two
others unknown even numbers, and they were placed to the left and right
of the table respectively. The marbles in the tubes were transferred to
the appropriate tumblers, always ensuring that a tumbler was cmpty
befoirc marbles were again placed in it, The experimenter seleeted o

- tumbler and asiced:
“Ix the number of marbles in this tunibler odd or even””
If the corrcet answer was given another quie=t o was asked:
“1f_yon added one more marble, what kind of mmber would it be-
come—odd or even?”
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FETEI DODWELL

Children’s Perception
o and Their Understanding ~ T
i of Geometrical Ideas

- S

] : s .
1e empirieal base was
about children’s understanding  of
geometry and spatial relations (Dodwell 1963 - Piaget and Inlielder 1956).
. : The results of my enquiry were not tao enc »
sued tuether,

Some years ago 1 attompted to find out how firm tl
for the statements Piaget makes

“ging. aad it was not pur-
Indeed, very little attention s heen paid to children’s

perception and their geometrical notions by psyeloiogists caught up in
B the Piwgetian revokution of the past deeade. This negleet is-the ‘nore

surprising when one considers, hevond Piaget's own interczt in the field
tar that pereeption is one of the major field~ of gener
researeh, in which important ad

al psvebologieal
vanees have ocenrred in recent vears, .
(b that understanding of geometrieal and other spatial coneepts is seem-
ingly intimately bound up with hoth perceptual and intelleetual develop- ’ i
ment. and ey that this “interface” between pevéeption and cognition is
aanajor field of cpistemological enquiry and has recently re-engaged the
) interest of certain experinental psvehiologists (see. for example. Neisser
1967 g - ’
B Rather than reviewing research on geometrieal concepts from the
T : Piagetian point of view. T shall indieate briefly some of my findings which -
tend to east doubt on the traditional Piagetian theory, then consider that -
theory in relation to <ome of the recent advances in the psychology of
perpeption,  In particular T shall be coneerned with discoveries and
theories to do with pereeptual coding, and also with a general trend in the
field which may be termed the New Nativism, What Dearing might these
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new ideas have on the understanding of geometrieal econcepts? Can the
’};i:lgetizlll contributions add anything to the recent major developments
m the field of perception? A case can be .aade for saying that those
developments have been very one-sided, and that the Piagetian point of
view might =upply some much-needed balance. Juxtaposing the two
different coneeptions of perception can perhaps lead to some fruitful ave-
nues of exploration into the development of pereeption in children. and
especially into the-ways in whieh this development inter-relates-with the
growth of geometrical intuition_and understanding. — i

Thus, rather than beat once again the Piagetian drum, I shall try to
build some bridges between the Genevan school’s point of view and other

positions In cognitive psychology. In doinyg this, I shall argue that there ;

i= & valid distinetion to be drawn between the apprehension, or diserimina-
tion. of forms and objects, and the undersianding of their nature-—or the
conceplion of shace and spatial relations. The weaknesses in modern
perceptual theory. come about lurgely through failure to observe this

distinetion. A noteworthy eharacteristic of the Piagetian moyement is its-

heavy emphasis on the operational. or constructive, aspeet of “cognitive
and pereeptual funetioning; hence the possibility of fruitinl confluence
of the two stremns of thought. . - ... - ) :

g

Evivexee ror Praceriax Brmavior
wiris Reseeer 1o GEoMETRICAL OPERATIONS

Piaget’> notion that the development, of geometrieal concepts in chil-

dren follows an anti-historica® order is probubly familiar to most readers.
The notion is that, whoreas historically the earliest geometsieal operations
were developed to deal with practical.groblems of terrestrinl mensuration
and henee had a Baclidean character, the child only arrives at the con-
cepts of similaity, congruence, and proportion after a long process of
developing these refined concepts from more global, or general. ideas
about spatial relations. Historically, the development has heen from the
particular, measwrement-hound, practical “real world” geometry to the
move general, abstract, and non-metrical relationships found in projective
geometry and ultimately in topology. For the child, according to Piaget,
the carliest and easiest spatial relations to grasp (in a very intnitive way)
are those concerned with general features sueh as contiguity. neighhour-
hood. closed contour, amd x0 on—that is, topological features. Subse-
quently ideas of peripective and “point of view -contingent relations
appear. And finally the highly specifie and elaborate set of spatial opera
tions that define Euelidean spuee Start to emerge. As is usual in the
Pizgetian seheme of things, these developments are held to oceur through

’
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prepr

the agenéy of the child's own active exploration of. and interaction with,
its enviromment (Piaget and Inhelder 1956), ’

What evidenee is there that the emergence of spatial (-onvopt\ is as
regular, or follows as rigid = coursg, as this sort of theory requires? My
own investigations led nie to conclijde that Piaget gives.an oversimplified
account of this aspeet of cogitive det clopment. The sorts of behavior
deseribeq in his book (Piaget-and Inhelder 1956) eertainly ean be ob-
served in children of roughly the appropriate age, but there seems to be
little coherent pattern of emergence. Thus, it is_not_uneommon to find
children in the early school years who will give adequate “Euclidean”
ansv.ers to sonie questions about similarity and proportion yet in other
respeets be still at the global; or topologieal, staze. I shall not attempt_to
document the matter Lere, as this has been done quite-thoroughly olsof-
where. The point is not so mucl that Piaget is necessarily wrong in his
theoretical pronouncements as that the child’s cognitive growth is more
complex than he migat lead one'to believe. There is something quite sat-
isfying--in an intuitive way—about Piaget’s theoriés, but there is more
noise I the real world than in the ivory tower. I have suggested else-
where (e.g. DocL\wll 1960. 1963) what some of the sources of perturbation
miight be: special interests. tuition on particular spatial relationships, and

0 forth, seenrto be obvious candidates=Researeh on these aspects of the

nutter is complaotely lacking, -

.e
OPERATIONS AND SraTiaL RELATIONS

- T mr

An example of the sorts of situation used by Piaget to study the child’s
understanding of spatial notions in a munner that goes bevond the mere
discrimination of similatities and differences is this: the child is shown
a line drawn on a sheet of paper and asked to demonstrate what will hap-
pen if the line is bisceted. one of the balves again biseeted, and so “on
without limit. A distinetion is made between those who think the of)crn-
tion can be performed at most a very few times, those who see that it ean
he continued down to the physical limit dictated by the size of their peneil
point .lll(l drawing =kill. and those who can conecive of the operation as
heing Ym prineiple possible without any himit. These are idéntified :
three ,.\,ldg(‘.\ in the understanding of ““continuity™, the last bheing tho
operational, correct, ~tage at least at the conerete Jevel. One might of
course argug whether this constitutes an adequate definition of “con-
tinuity™ from the mathematician’s point of view. Rather obviously it
docs not. but the point 1 not especially relevant: as a demonstration of
progress in understanding the nature of lines ax spatial entities whos»
propertits extend bevond the werely pereeptible, the example is illuni-
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nating. In a clear sense the child who understands the possibility of
subdivision without limit has a better grasp of the nature of this aspeet
-of spatial relations than-the ¢hild who, does not.

Another exampleof a way in which the amaginative, constructive aspect
of understanding geometrieal ideas can be explored is the investigation of
children’s predietions of the shapes that are gencrated l)v cutting a solid
2 - cone in_various ways (conie scetions). There is a gre at varicty in the
sorts of pr predietion childrer will make. and again Piaget distinguishes
several stages of lm(lehtan(lmg “The pdint I want to make is that ex-
teaordinarily little is known about how children develop ability to  ~
make these predictions, the extent to whieh formal instruction—or in-
formal 3\1)enence—- facilit~.es tlie process, what role imagery and
language play, and =so -on.__ Almost—certainly these topics merit closer
investigation, and it Ty b_ﬁui’xilc;i;o}lt’tlmt (10'57 ?ﬁihc{gmo to "the
Piagetian eategories of relcvant responses might not be the best &tx.ltegv'
for such work. For instanee, in a ‘more detailed malysis of children’
ideas about “continuity” some attention to the (probably) l(‘].lt('(l no-
tions of compressibility and elasticity might be relevant : aild similarly
B - the study of prediction of conic seetions would require ancillary investi-

. mon_rof ulms about solidity, invariance of shape under various trans-
*- formations -(tranzlation, rotation, reflection), and so on.

&
the

-

- debate and empirical researeh whieh psychologists have not as vet taken
up.  Mathematicians interested in better methods of teaching, geometry
tend to ignore them too. although many fine suggestions for improving

s the geometry svllabus have appeated in recent vears {e.g., Elliott,
) MacLean, and Jorden 1968). Diencs i< an outstanding exponent of the
isaginative introduction of advanced geometrical concepts in a simple,

practical wiy and at an carly age (Dienes and Golding 1967) ; hut ag.in,

there i little to show thai research has demonstrited the effeetiveness of

these methods in developing spatial comprehension. In a related field we

. have found almo:t no evidence that caréfully constructed programs of
- « instruction in arithmetic raise the level of compreliension or competence

L above that attained by the traditional methods of. instruction (Spears and

_ - Dodweil 1970). So there is plenty o1 scope here fof more rescarch at botli

a theoretical and a more practical level. ’ ’

y

SoME Recext Fivpixes PERCEI"I‘]O.\'

- Potential contributions from the Piagetian point of view to the im-
provement of geometry teaching are so far quite mo'wu- [ turn now to
consider how reeent evidence froin the experimental investigation :of

-~ -
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pereeption may be relevant to our general concern with the «+ derstanding
of spatial concepts, and geometrical ideas in particular. There has been, . ) S
in the last decade or =0, a significant resurgence of interest in the topies ’
of~visual pattern recognition, the pereeption of objects and space, and in - - :
the nature of perceptual learning and development. -Several new sources . .
of knowledge and some newly stated theoretical positions contributed to :
this developnient, not least of which was the perfection of methods for T
recording the activity of individual neural cells in the intact visual sys- . -
tem. From the tl.corctical side, a number of new ideas on sensory coding, : - -
and c~pe(.mllv contonr and pattern coding, added impetus to the new
interest in visual space. These developments have bech ¢ ru'lewcd in detail ) S
elsewhere (Dodwell1970) ; here T shall justmention soie of the & ahcnt T - -

features, — . - - - T T ] 7 _ ! .
The most spcct'lcular findings from individual cell recording in the - - - - ‘
visual system come from invéstigations of the responses of cells i the U
visual arecas of the mammalian brain cortex. Electrical responses can be s
evoked from such cells by stimulating 2 partienlar part of the sensory e .
- surface (the retina of the eye) with patterned light. Each cell responds
only to stimulation of a circumseribed part of the retina, ealled its reecp- - : L —
tive field, and to a particular patter. of stimulation. This in itself is : . .
surprising, since the nenral connections at various lev 0l~ of the system, - ‘ - ’
-and particularly within the brain. are so intricate and complieated that
one-might well suppose that no simple mapping from. retinal stimulation”
. to cortical response conld be found, But in fact single cortical cells do - .
~respond quite selectively to well-defined features, and the features are . - .
‘always straight line segments in a particular orientation. Thus some cells L
respond to horizontal lines, some to vertical, and othe.. to lines-in other ~ Py
“orientations, There 1s a hicrarehy of-cell types.-some responding to lines
-in a-fixed position and orientation, some to lines in a_fixed orientation but
- over a range of positions; some, the so-called-hypercomplex units, respond -
best to lines of a particalar length and moving in a particular dircetion, - -
The main point is that we have here an elaborate and refined system for
coding _contour ciements which is present in its main essentials at birth -
--and must therefore be “built in” as a major feature of the visual system - ¥
(Hubel and Wiesel 1962, 1963). The main evidenee for sueh a coding ]
svstem comes from studies of cats and monkeys, but there is good reason. -
to suppose that very sinnlar systems operate in all mammals, including .
man., i - -
_A rather different line of enquiry stems from the age-eld problem of 7
_ stimulus equivalence: how can it be-thiatza pattern is categorized, ree- -
ognized in a partienlar way despite the fact that on different oceasions =
it appears in different spatial orientations and locations, and excites

“iﬁ
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different sets of ‘f'(icei)tors'.’ Various attempts to solve this problem have
been made, perhaps the most rigorous models being those stemming from -
the ideas of Deutseh 11955). Iuterestingly cnough, these ‘models show -
remarkable convergence ‘with the neurophysiological ﬁn(lmg~ mentioned

above, and are also closely relafed to some of the more suecessful sehemes
for'pattcm recoguition by machine (sce, e.g., Uhr 1966).

~ Although there is wide agreement about the fact that in highly devel-

oped visual systemsg- there is an elaborate, inmate, primary detector

system for contour clements (also undoubtedly for other sensory attri-

butes snch as color, but these are not our present concern). there has been -
comulcml)ll, disagreement about. the nature and scope of perceptual

learning. On the one-hand-there is a mass of evidenee, inspired initially -
by the work of K. S: Lashley and D. O. Hebb, demonstrating that experi- - -
ence plays-a major role in the development of -riormal perceptual abilities

in the higher mammals and man «c.g., Hebb 1949; Ricsen and Aarons
1959; Held and Hein 1963). On theother hand there are theor ists, particu-
larly J. J..Gibson (1966), who argue that the nature ‘of- perceptual
learning is always analytic. never synthetie. and that pereeption can be —~
fully understood in terms of the global and complex analysis of sensory.
inputs. On_this view. pereeptual learning is simply a proces s of leﬁmng -
the diserimination and. labelling of already ('\1<t1ng eategories. E. J. :
(iibson (1969 has recently extended these idea®and interpreted a great
deal of the existing O\ponment.t] literature in terms of them. — — - -

Tre New Narivisy -

It is the Gibsonian view, reinforced-by the ineicasing knowledge about )
sensory analyzers at the ncuroph)elolog,lcal level, which I would term the
New Nativism. The neurophysiological findings do not foree one to a

#Nativistic position, sinee the sorts of coding and analysis so far discovered
have been basically simple, and far removed from what we understand
ax object and space perception= The detection of pattern clements does
not. itsclf constitute a system for the recognition of whole patterns, or
(estalten, and there is still” scope here for the operation of a mechanism
of synthetie. or constructive. |)m(,eptu'11 learning. Yet, according to the
New Nativism. every sort of pereeptual learning is c'oncemul only with
finer discrimination, more cxact detection of the ™ tinctions between
different stimuhus patterns: as J. J. Gibson puts it, the role of perceptual
learning ix to bring perception more and more into correspondence with -
stimulation. not to build new pC‘l((‘l)tll.lli and cognitive calegories,

This is a highly *stimulus bound” view of pereeption, and seenmis not to
asccord wigh what we know about the perceptual foundations of cognition.

#
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For example, learning to read does not consist-in learning to diseriminate
between all the different typefaces that might be used to print a book,
let alone all the varietics of handwrifing that are possible! Yet it is -

 difficult to see what othcr “position the Gibizonian view, strictly interpreted.

_ that it tends to disrupt that intimate conncetion between perception. and

p

could lead. to. So we can say that one_problem for the New Nativisan is

cognitive-intellectual -activities which has been a ‘major cornerstone of

empirieist theoties of factual- knowlcdg,c among_both philosop’iers and#
psychologists. Clearly, on sueh a view it would be difficult to discover a

fruitful Tink between pereeption and formal or- abstract geometry.

One important-aspeet of the New Nativism is the extensive research-on
pattern perception in neonates and. \'ery )oung infants which it has en-
gl-ndcrc(!, much- of it ~ummarl~cd b) Gibson ( 1969) Accordmg -to_the.
l-ommon interpretation of such findings, (.vldcnc(. that a very young child -

«an diseriminate between patterns is evidence for _an innate proeessing
mcclmm«m Apart froin some severe reservations about the quality - of

_ such evidence—difficulty in replication, contradietory findings, _use of in-

fants several months old *(in which case there would have been c\tcnm‘ :
opportunities for pﬂrceptual learning)—one. may point out that it prove< )
-far less than the proponents of Nativism may claim.. Take, for cxample,
experiments on "loommg In suel’ C\pcrmlcnta the observer is faced;
typically, with a screen on which a shadow-is cast. . By one means or .
another the shadow is made to grow rapidly in size and evokes a “startle” -
response from the observer.” Obviously the situation is ‘analogous to one -
in which-a solid. objeet rapidly np|)ro'1chc~ ‘the obzerver, in which case

startle and/or avordance would be ; appropriate-and adaptive. Very young._.

infants have heen shown to make sucly responses-to looming shadows

teg., Bower 1969). and tliis is correctly interpreted as demonstrating

their .llnllt\ to respond to a complex optical array and its changes over

time. However. the temptation is strong to attribute to this situation-

more than is warranted: A more-or-less reflexive responze to an optical

array tells us what the organism is capable of res spouding to, not what it
understands. The point is miide clearly by poirdng out that the young

of ground-nesting birds will make an appropriste -startle and freeze” -
response to a crude ciardboard model of a hawk (short neck, long tail) | -
passed over their heads. If the direetion of movement is reve rsed, so that
the model 15 more like a goose (long neek, short tail), no startle Fesponse

is evoked. The interpretation is that in one direction of motion the model, -

shares certain eritieal “signy stimulus” according to Tinbergen 1951) fea- - .
tures with a moving hawk, and the response to these features is innate. ’“"%*H‘f’
It can well be -argued that 1 :sponses of infants to looming shadows are

ov ulc-m-(- that they.too demonstrate the sorts of “elicited” response studied

=
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l),\’ ethologists in lower forms of life. rather than that they hzwe an innate
- grasp of object pereeption and spatial relations.

N - B - - = -

o s . ) GEOMETRY AND PERCEPTION _ ] .-

- S - Just as learning to sead is more than merely learning to disériminate
- - between different letters, so too learning:-to perceiveis more than learning
i : - to discern particular features in the visual world. Learning to read in- -
: ; - - volves learning low words, sentences, and paragraphs convey information .
E ) 7 at a high level of abstraction.” Just so, perccphon can involve forms of- o . =
3 - o cogmtlon which transcend the almplc :malvﬂm of-“stimulug mformatlon T . - 7
= - - ) Were this not so, geometry as a mathematiceal discipline ivould be entlrel)i — = -
- T - divorced from the geometry. of perecied objects. It is true that, at'a o
~certain level, the treatment of geometrical operations bears little obvious - _
- o relationship to the spatial ideas and intuitions on w hicli those operations =~ .7 - _ .
. - - were originally based. At the same time, howéver, I think that mostt - - - -
B i mathematicians- and cognitive psychologists would agree that the per- e
. - ’ - “ceptual substrate of geometry is real enough. - At least so far-as children’s - ) ) -
) - - S - ~understanding of geometry is concerned; tue first steps certainly are taken R S b
s — within the context of concrete, perceptible objects and drawi ngs. Ttis = - - - -
o B very much to Piaget's credit that he has attempted to c\plom in a variety ) . :
- - of ways_this borderland between perception and cognition, a task thal‘. - - - -
- rather few other psychologists-have essayed.- - B . §

To show clearly-liow closely pereeptiial questions are tied in- w'iﬂi the -
- - development of geometrical ideas and operations, we may ccnsider the- - E
: : question of synmuetry. In one sense syimmetry can be a simple pereeptual -
phencmenon; yet can it be purely perceptual? Perhaps there is no sensi- - o .-
) ble answer to that question, but at least we can-say-that the detection of ’
. symmetry in a visual-pattern caii’be accomplished without any elaborate
L linguistic or coneeptual tools. For example, children might be taught the
_ idea by ostensive definition. sorting patterns into different categories ac-
o ) cording to symmetry. and so-or.. But how are questions to do with the
) detection of symmetry related-to” the concept of symmetry? Obviously
.- - deteetion does not exhaust the topu we might, for instaree, want to
know under whicle types of u.u|~l'01 mation symmetry is preserved; there -
are abstract instances of symmetry (in logical or arithmetieal relations,
for example) whiclr have no pereeptual referent. So. the initial appre- -
) - liension of the notion of svimuetry may be through perceptual instances.
- ] - through learning to detect particular features in visual patterns, but few o
of us would argue that this is-all A€ is. How does the general notion :
deveiop? What linguistic and manipulative skills are neeessary und suffi- -

o
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. - cient conditions for its acquisition? Which ones are even relevant? We - - )
ST L do not know. o S . ) - - - B S
. ) - We might guess that the sinplest forins of perceived symmetry (let oo =

: . - us say, about horizontal or vertical axes) are inbuilt and a function of } o -
- o +  some coding operations; in this cimection it is interesting to note that : - -
. ' ) mirror-itnage confusions are common among children and also can be L —_—
s ~ . observed in diserimination learning -in animals at many phyletic levels. - - ) .
- . R " To grasp the full possibilitics, lowever,. requires more than coding or ) :
- : : - ~ - analytic discrisnination learning. “What .forms of “synthesis are needed? T
s T o —_ What is the-relevant border—between percéeption and operation, or -

LS

I — . ‘i’cogni:tion? - -. 7 - j - - - - : ) -
- ’ © . 7 ——From what was said earlier about the-New Nativism, it should be clear S o
7 - that this t¥pe of pereeptual theory is unlikely to supply answers to the -

: . problem. Simply pointing to that fact might do something to.redress the =~ =7 o=
- " suggested imbalance in reeent pereeptual theory, but helpsus mot at al - - - .

S T . to answer ‘the questions posed at the end. of -the previous paragraph. o - .
. = . = . Piaget's own more strictly perceptual -work (Piaget 1968) is perhaps S o E B
S ' cloger- to the mark, but again fails to show convincingly how the dis- - ) - T
: . crimination of pattern and spatial attributes is connected with “cogni- ’ T ) B i
Lo, Lovs o= tive” spuce or with geometrical coneepts, The treatment of geometrical o - -
e o, ideas (Piaget and “Tihelder 19561 i Jreally “an exploration of this : :
. S s “eogaitive” space, and_gives fascinating glimpses of the sorts of difficulty C- U
: 5 - children have in elaborating it; but again it does ot adequately relate - -
: S the percepitnal basis to tle space which develops from it. Nor docs it ’
: - deal.specifically with the constraints that perceptual coding might place -
) B on this_development. The special roles of language and symbolism, the
. IR antecedent conditions necessary for the development of spatial under- . T
] & - - - standing and imagination, and so forth, are similarly not: dealt with. It is
N : - a remarkable fact that, wheress a geod deal of work has been done on ) - - T
: ’ . .- the nature of conservation and the training conditions that afiect it (sce '
« Beilin’s review above, p. 85 1f.). nothing similar has been done for the
. ) - ) cqually acute and interesting topics of geometry and spatial relations.

.

. i "7 CoNCLUSIONS : . . 1 BB

. ) ] ~There is no extensive literature in the Piagetian tradition on geometry
. . . — amd_spatial concepts to review, no hotly debated issies at cither the )
- ' - - ~ theoretivailor the experimental level on which to make judgements. To : B

: i . a remarkable degree this field has heen negleeted in the flood of c‘xperi-
) mental analyses on: cognitive development of recent years. So my en- - s
deavour has been to show how unjustified such negleet is, to sce where

—_— - 186 ' , o
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_researcly might yield a valuable harvest rapidly, and to point out-how

; relevant such work-would be, boﬂl in throwingurther light on the intel-

- ~ "~ lectual functions that concern us here and-in ‘redressing a ecrtain ini-
o balance currently to be observed in the field of pereeptual theory.

= . ~ These polemics may not be of immediate use to the mathcm.xtlcc

“educator, but one hopes they may provide the Stimulus to further thonght

g and research on the important qucanon “of geometnca! unagm.ttlon and
,lmdcntandmg - - %
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“ Some Studws ln\r‘ol\'lng Spatlal ldeas

F0Ime T (‘t‘l
d th(- stag

rc~u]t< inss

js° (-ol]c--uvucs. th(- dd.ul iz nece

techniques and analyse -

vou ol)tam ga oud I \\mt o m(nhoxm t-1~1\ feferred to i “another-of- my
talks, which was used by Lunzer, in order-to- Dring-out differences-hetween:~

~ = conerete- and formalzoperational thought. in-the- spatial: field and-tothrow
" light on an isstic well-recognised by -clementaiy - school téuchers, that

’-apupxk confuse.perimeter and-area, Third, Lwant-to illustrate. by mkm;, T E -

- c\'nnpl(- from the spatial ﬁcld that m.uhcm.ztlml ideas wre dependcnt Tl S B

—

- : B =% on_the growth of schemes, whieh ‘tll(‘lll\(l\ es evolve becuuse of their own S :
) - inherent functmmn" t]nou"h thc -|)om.mcon~ (\pcn iences and actions of - =
- -7 the ehild- E - - - : 7 7 L T .

il

0

|

[
I

e S ) The task involved the use and manipulation of mc.x-imi{w instruments, . - N
: lcadmg to the comparizon of tllc areas of two ahape‘ tlnt differed mark- ’ . :

;- oo e cdly in appearance:' - - - ) -

. } - - 7 Materials, Thcsc consisted of a hlive ~qu.uc‘0f side 8 inches, and .m - -
;] B - - : . orange rectangle 16 inches by 1 mdwa. The me: Numg m~m1mcnt~ were - ST T o

LT — l1MﬂM\MwmmdewM§ll@mm, ' , - =T
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,;l;iag:qkn Re:garch and Malherﬁa(icabl:’ducatibn . T

clght*em‘zll g,rcen nght-an;,lc(l m-mglc:. cwh being onc hqlf of a ree-
“tangle, 4 inches by 2 inches, cut dm«'onalh (Sce fig. 1. Thcre were
ob\'louel\ m~uﬁiclcnt of these fo covcr cnnrelv one-of the l:;rgcr figures.

lcda {ﬁftccn pupll from:

chi-of: thc m ,haunoupp- 27"
"]f boﬂx ‘were ﬁcl(L. Which_would- have-niore grass?*
“Will these small: g__rcux -tiles- hdp you to: f' nd-out?".

o 1t the-child g gets sg- far wnh thc ulmg, °md n pmnt~ out that there are-

not enoug,h (llea, say:-
“How. -many tiles l).m: vuu put on thuc

; C‘.m -You'tile the rest of e o . -
ff he questioning then takes: r.uh(,r different. i'orms accordmg to thc answ. er
gven. If-the child is unable- o make_ Aany suggestion; say: | -

How many tiles-do yo ou- think vou nccd to-cover the:whole of the
" piece?” ) ) T
- "Why do you say that"” = ) o o
If the. subject says that half is cowred and thatjm will need eight more -
~mall green tiles, say:- - : : S '
“How do you know you have covere half m
. “Isthere any way-in wluch 3,ou can pMve it?”




I, lm\\e\er ‘the child rcphe: to the question ”C‘m you “tile thc rest of

it?” b} saying that he-can do so; then’ $ay: e

“How can you do-that when you- lm\'e 1o more: tiles?"" BRI

It hc ~nnply pushes the whole of {he tiles across. en-masse, \nthout at— N
temptmg? to m: xrk the boundary~of thic e part: that \\'aefon«m.nll\' tiled, say:”

T "How do \on know tlntthc:c are-cov crmg the ~p'1(c th.aL \\'a~ cmpt\

\llbj(,ct to <ho\\" )

.are. not. cuoug:,h ‘tiles, mnd when-aske
wpmt thur ong,m'll mtumve Jud

chu-L m’ hig-and {ab
B C {:) 43 : “It’~ morwquarev”‘
slonger”’;
xt biglike o door" ( 1)omtmg io thc rcctanglc}.

CB IGG)"‘Bcc.uhent’ t.xllcr T

-~ None of thie ~nbjcct~ at- tln t.ngc \'ohmtgucd to use the small ; green.
tiles, When-prompted- to do-so. they oblx;:m;:.l\' tried; bm moet ~prc-'ul

tlww out ln.lplmzardl\"o\'(r tluz lar Be shape,

KI (50): "Thcy l“ o on dxﬂ'cr(nt shapes”. -
AN, (.M “I can’ t put thvm on, thq don t. ﬁt togcthor

EKC
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i S : JF (7.2)7 “These an‘c:limﬂ oui:s to- ;jlc'on, ;1,?:;\-’5|| ';m\-e ,diﬁ?(-rélif -
X S o . edges”. - o

n
[
1

- Those clnldren who- .utempmd to nle dld 50 un(ll the\' had tmd all en:hi
- tlle-f'md then’ ‘md typically:. T e

J.C. (54): “L lm\ent cnou"h nch,I “ean’t- do 1t"4; CeT L T o R
KC (6.11): “No Food, o more”’ - -

- \I\Ich (7.8); There are. oul\ mght t1|e~ 10“ c:mt do dn\thmg
] el\k - :f:,i - - i'r f’ri .- * - _

thc a1
(;B (82]

STAGE IIH \\ Tien tlm tnlc~~ wite all u~(d;
* “that thiey would weed another elglc to ﬁ
tangle—They wereall sure Qf—tln




Lnge,ll%/iSomtSmd:e‘s hwolving apaual Iduu -

_=

:;thé:-j).wc in tlle Lwo sh'tpcwbuuhev were unable to prove (lmt tl)e
p'u't to-be covered was i fact one-half of the whole ~h.1pc. )
--C.C. (6.11) : *They both-have the same”, SE
_ Experimenter: "Dld tho% f,rcen tiles hclp \on"" .o
CC. “'ms.’ cos I

L.lch puptl W s prc~eutcd mth tlm 8-mch bluu qmrc, theforange rcc-
l'mglc- -aneasuring 167inches-by 4- mche ~a foot ruler, and, later,-a-small
- picee of -card measuring- 4 inches-by % inch.  The_teachers concerncd;
- cl.ulm,d that all-these pup,jf“had met tlne prucedurc of fi ndmg the area
“of wsquare:or rectangle using a-ruler and. -multiplying the siumbér-of -units

* of fength by the number-of- ‘thé-same kind: of units of breadth”; . -°
Therewas. at ﬁret a dis~ussion wnth ea(:h 'zubjut to (n~urc tlnt he- kncw’




* _ Piagetian Resewu. wid 'Math;matic?g[ Ellilléﬂlib"

“the meamn«r of the \\01(! area. The e\pulmenter then said.- “If T give vou .
the orange piece, the blue Picee, and this ruler, ean you tell me-what is the-
area of this picce?” Nothing further was- saud to- the subject,. it bemg
expeetéd that those w ho could do 0 \\ould measwre the lengths of the
sides and-express the area of each- figure as 64-square inches. RS

To each child, whether or not he could ‘accomplish” the ta\k u<mg the
rulm “the - -experimenter thien put these que~tmm. g

“Xlust area. alwayshe mc:Nnred in square mche*"} . -
“Would you measure the area of a- “foothall field in. square mehe\"” )
“What \\ou!d be-a: bettex unit for -me: mul ing- thc
- “If-yoar-rule eth
~ VOUtusc te

ll er ~ult<«ug«rej that-
) ;(lrlre’—ﬁgggeg i

"c HIB Jin com]m ng .uefnsr one —;'
\\aa aL a very: «rooﬂ at.\"e HIX .md .1lmo~( .1t 7; B w lnlc the 'thcl
two reached: stage 11X 1n the
 eighit years-and: ‘eleven mo; :
- Whenit-came To-measuring e onlv t\\'o of tho* .
“seven were \uow«fu!,'an { both, were .1t \tag(- IIIB -in-the -comparison-of
areas and in other tasks’ given.- Both pupiJ SEwere- l‘egm'dvd by “thieir -
teachers as able_ehildren, - l‘lnec,pupll -atstage THB in- compmmm ar m\' '
- were uix zl)l(- fo make any. attempt at- caleulating areas: ) :
- In the next-age group, nine of-the fi fteen w ere able fo (\1i1;eisﬁﬂfle iic
~of the. \lmpe~ 1 square ‘inches using the-ruler; Allsof these were-at stage
IB in- comparing-arens and ut a <mnlnr stuge in othcr tasks, Seven of
these subjects, and'no ether ‘child-at-this. age-level were-able ‘to-express the
areas in terms of the-uncony entiomal ‘measturing instrament.” Their- only -
difficulty was in knowingw hat to-call the units. Again-in the fen-year-
olds,—eight of the ﬁi‘twn pupils, all at stage IHB in the comparison of
areas, caleulated the-are as of theshapes in” <qu.uo inches using the ruler,
- Morcover, all eight, and'no one else at this age level, Ull('llldted the arcas -
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in terms of the uneonventional units, The other <eve1r of- the ten-year- -
olds, all at <t'1gé:IHB in ‘comparing -areas, were unablc o calcul.xtc the
areas of the shapes using either rulér or m’lll card

When we examine the number of - puplls -t stage IIIB in the- task in-
\ol\ mg the wmp wrison of . m‘ca~ and the number xble to use a“conven-

1terat10n

the dlﬁ”erenee betwccn con, i
gpatml neld In €8 sence, subject

the5 could form the corners otl

- of slde 25 cm bemg marl\ ’outmtl
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when the second-graders i the §

- sehool. - Lgadrew on- the-theors o
~_-thic importance of_the-c
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pre:(:utcd to- lnm In thc hM two- -mmncrs of the pro_wcg }\'lmu tlw ﬁn t
trial-programs- for mdcrg wien and-first g ulc ‘were-heing lormuhtc 3
mtgn'lewcd niny of (hL clnl(hcn mfonn.tllv using modlﬁcgl l’n«mtnn

—conéer mon or xt nnght ETiy
. The -
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Piagetian Research and Mathematical i‘.‘duéau'én -
_ total s scope of this study is mduated in the table on the opposnte page.

Table 1 shows the number of children who Were in the AAAS and SCIS
programs at the heginning of:the study in 1965 and who remained in them
in subsequent years. Note that tliese children also had the Gr cater Cleve-
land Mathematies Program (GC\IP) and .that_ga compalable group_of
children had only-the GCMP pr ogran, ‘that is, no seience program,

The program marked “No preseribed lessons” was selected to provide
a contrast to the programs where the les sson plans were speeified in con-

- siderable detail. The curriculum ghides tor this progran, wliich had been

[)lepBl‘(ﬂj)\' committees of teachers and supervisors and were intended
to meet local needs, recommended the general topics to be covered in
kindergarten and first: gr ades but- did- not mcludc an} d(,talled prcecn ip- -
-tions for tcaclnnb suelr topics. - T

- In the fall of 1966- anothen gr oup of- Llnldnen ware .xdded W ho ]‘;lls cone
fnom i mndelgantcn pnog,r un ‘where -they had ‘not received inst suerion in _
cither mathematics or-science. Half of these classes participated in the
SCIS ﬁl\t-gladﬁ)mglam.,All of thcm received instruction in_mathe-
maties, “ beginning in first grade. No “one textbook was used, _but -the
program can be T cgarded" as ,companable* te the Groater Cievcland .
Ploglam -

The ajor que\tlon 1a1écd in_ thls study was: Do clnldren whoreeeive

- systematic instruction in-the basic concepts of mathcmatlc and scietice -

when they are in the Kindergarten think more logically-in Piaget’s terms -

when they reach second grade than do children who did not have such -

carly instruction? Obviously; an adefuate answer to this question re-
auires that"the samples of children representing the "arious programs be
compmal)le and that the teaching in cach of the programs be congruent

_with its aims and of quality. companal)le to that in the other programs.

The published report { Almy et al. 1970) goes into these details , describ-
ing the intellectual ability of the. children as measured by the Pcabou;
Picture Vocabulary test, the oceupational-lev el of their parents, and the
_teaching as observed by experts representing the instFuctional- programs
“and reported by the teachers themselves. As might be anticipated, the
evidence for comparability of the groups is better than the evidence about
the teaclnn«f Accordingly, the answer to the major question remains
somewhat, equivoeal. jiiwever, the picture of the thinking of second
graders that cmerges from our interviews with the 633 who remained in
the study to ‘its conmpletion is not equnooal and constitutes a m.um
contribution of the study. - - -

- Each child was interviewed vithcr two or three times, dependmg on’

whether he was in a program initiated‘in kindergarten or in one that did
not start untll first grade. Each of these interviews presented the same
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TABLE 1

hpori-nm Proznu, Number of Schools; Classes and Chudren,
1965-1967 _

EIRS MM s 1 N

co® 4 7 18 1. w3 16 1m

NoPre- -4 16 181* 1 2 w4 136

. Progran Initisted in First Grade
A - =

=

“s8¢1S 3 - - 8 139 - 15 15 R
(Matn) . . . : Z D

i

Math 2 - - 8 13 4% e
aﬂ’:, B S B - o 77: ) -

ﬁ)ou not include children in these classes enrolled in J:ublic
kindergarten, btut uhcduled for first grade in parochial achool - ’

- Do1dsses include chndun who hed not participated in progren

- in kindergarten, o -

°c;ggo¢7 tnolude ohildren who m mot participated in progras
“4n kuu'un cnd/or first grm. ) -

-—
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conservation tasks that were used in the first and sccond studics, deseribed ) h -
- ) carlier. In addition, we included a class-inclnsion task as sehematized in 3 T - -
] B ) T figure 3. Procedures for this task liad been developed for a training study ) ) 3
7 o conducted by Paula Miller (19661, so that normative data for kinders, - - 1 B
B e } gartners and sccond graders were available, ) .
! - The performance of the children in the suceessive administrations of i -
- the conservation  and class-inelnsion tasks constitutes the longitudinal

’ ; data for the study. However; in the final, or posttest, interview five addi- -
- T tional kinds of tasks were added. - ) 7

- - ) - _ Our intent was to provide a battery of tests from whieh some kind of
. - - -~ - -index of logical or operational-thinking might be derived, The eriteria for N - -

o

- - * the selection. of the tasks are deseribed in detail in the published report, ) i
: e - but it is-well-to note liere-that the-procedures were standardized, that they - o -
ol “had all been used in relatively comparable form by researchers other than . )

) - Piaget, and that normative data on the tasks were available. - T -—
- R ~ Bear in mind that in the spring of 1968 when this hattery was developed,
: S very little-testing of the same children with-a-variety of Piaget tasks -had
- ) = heen reported. Nor had-thére been much of the'kind of excliange between -
. s * Genevan and American researchers that is currently going on. If we were -

S designing such a battery of tests today. we might seleet a somewhat differ- - - -

i = . - - entarray and vse somewhat different procedures, o £ .
1 & : T s A set of serial ordering tasks were posed. with two sots of eards picturing - ¢ - . - :
R monkeys. anfl -balloons and -two sets pictwding knives and forks— 2\ i . =

- s schematization of the task < appears in figure 4 tpp. 227-287——" T T — . -

7 Wetested the ehild’s ability to grazp the idea of transitivity by asking .
S ~ o ——=him to deduce the relationship.of two black sticks cach of which had been T
- - measured against the same_blue stick. In_cach instance the black sticks - . :
- are presented in the context of the Muller-Lyer illusion, tending to mislead L i )
) the child whe relies on pereeptual cues. (One child deseribed this as an : -,

. T “obstacle illusion.”1 Figure 3 schematizes the tasks. e )
_ Aset of matrix tasks, taken directly from Piaget, were presented next. . -
L ) Figure 6 shows the cards used for these. However, it s difficult tn tell ’ T
: when a child may be using a graphie solution and when an operational ' .

- o ’ solution, In view of this the Genevans, as we leamed from Dr, Sinclair, - : ‘

e regard the matrix as one of the least good tasks for appraising operational 7 i
- B ’ thinking, Accordingly, we treated the results from these tasks quite sepa- - - :
: : — . rately from the results in the other tasks. - .

The final task in the posttest interview is schematized in figure 7 (. ’ ) ) -
- 232). It deals with the conservation of weight. : )

] ) o The categorization and scoring procedures in this study were similar to B ‘I
) those used in the previous studies. Essentially they consisted in weighing — -~ . i §
the evidenee as to whether or not the ehild was thinking at an operational -
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level ineeach of the itemsin a sct of tasks,-and then considering the evi-

-dence for the entire set. Eventually we-arrived: at.a simple 0 (not opera- - - = - - -

~ tional)-or 1 (opel.xtmn.xl) for each of-the kinds of tasks: conservation of 7 : el

“mimber and of weight; ddaa mcllmon ~en.1tmn monlelmg and 01(lmd-

- hon, and tr ansitivity, .~ 7 - - B
‘When-the data are “redueed in tm~ fa~hmn tllo nclme~a of the-various -

- sh«vec de*cnhul b\ the (:muam ig lo~t On: thc othex h.md ~uchrcdmtmn :




Piaielian ) Re:e;rch aml Malhemdn'cﬁl : Edumtl’éri -

- ) of ordmatlon and to accomplhh Both of- these before they could reorder a ) T - 1
e - series that has-been scrambled, The-transitiv ity problem may be- regardcd
o - as-a problemiof the seriation thL, :ucccs;ful “solution follo\\mg seriation -
T _ and ordination- and possibly r(ordcrmg

Thc transitivity problemn- ‘may .
~ also be rcg'lrdcd a:; -an- (.}.tcnsnon nf the conservation problems mvolvmg

Solutlon of: the mclusnon problcms
rcpresents the most- adwnccd sort- of g laesmcmon - -

. On a-theoretical basis, then; one- nugh
_ conccrvatwn -and- cenat:on kinds

_0Ir 711;3 'Baéxs
ntterns child,

uncu(ccssful : C oL

] Conexderm;, the-narfow- age m:m of;tl
‘of pufonmnceof clnldmn g

“kinds of- opuatmns -ine)

perhap unwarranted,

ta<k¢ w ere Tow, thelargc

e ) lation:
“asdo ihe £wo conccr\ tion tmkc or the 7enatlon 7nd

1, The readm \nlf noto t]mt’the total numhor of clnldren aries

tables, This is because somg protocok lmd xmesmg mformahon m’x: could
in all of the unnl\ees T = ] ’
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s T W)th the oumll perfomnnce of the chlldren in nm\ we can now turn
- = - -to-the results so far as curricular intervention is concemed They are
R . eome\\hat paradoxieal. On the one ‘hand, when' the perfmm.mces in they
- S T o lymttests of the “children-who received preseribed lessons beginning_in
M " ~kindergarten-are compared-with the. performances of those:who did_not
receive ..struction until first. grade, a number of significant differences
arc amment, teking PPVTLQ. into'account.”Hereit- must:be- remembcrcd
W ikno“n -about: the ‘nature-of thc kmdcr;:a.rten experlence of-
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duction of mathematical and scientific coneepts in the currieulun of cariy

childhood ean facilitate the development of logical thinking. Such intro- :

duction is more efficacious when it oeeurs in kindergarten than when it is

postponed to first grade. However, experienced teachers familiar with and -

itterested in the elementary concepts, planning activities around the chil-
dren’s interests, are as effective as teachers who use preseribed lessons.
(I think this is in-line with the analysis of training studies that Beilin
has made here, suggesting that a number of kinds of training may, under
certain cireumstanees, be effective.) We don’t have suflicient data to prove
 that this is_the correct resolution, but-it scems-to mike sense in the con-
text of the development of logieal thinking that we have inferred from the

results. . - = -
Pinget has postulated an integration of the abilities involved in classify-

ing, ordering, and conserving at abont the age of seven, when the child
~_becomes truly operational: - - - |

It is remarkable to see the formation of a whole series of these groupings
by children at aborit age <even. They transform the intnitions into operations -
of all kinds_att ¢\ plain the trmsformation of thinking described- earlier.

Above all, it i stoking to see how these groupings are formed, often very

rapidly, throwigh asorf of total reorganization. No operation exists in an -

isolated state; it is always formed ag a function of the totality. of gi)emﬁf)ils
of the sume kind. For example, a logical concept-of elass (combination of
Tindi Caals) is not construeted in an isolated state but necessarily within .
elositeation of the groupiag of whiehit forms a part. A logical family rela-

- tion (brother, unéle, ete.) is constitited ouly-as a runction of a set of

analogous relations whose totality constitutes a system of relutionships. Num-

=

bers do not appear independently of each other (3, 10, 2, 5, ete.); they are
‘grasped only as elements within an or lered series: 1,23 .. ., ete. Likewise,
~values exist only a3 a funetion of a total svstem or “seale of valies” An
Asynumetric relationship such as B <=C is inselligible only in relation to the
possible seriation of théset 0 < A < B < C < D ... ,ete. What is even
lwore remarkable is that these systems of sets are formed only in the child's

- thinking in coimeetion with the precise reversibility of the operations, so that

they wequire a definite and compleie structure right away. [Pisget 1967, p.
491 - . - -

The low _correlations-among the perforuanees in the various tasks in

our study simply donot support the-idea of integration at age seven. This™

may be an artijact of the standardized procedure, and of thé inclusion of

children who, although they were in second grade, had not yet reached the

age of scven. Nevertheless, the range of tasks presented and the number
~of children_involved are sufficient to warrant some géneralization. The
“child beginning second grade is typically inconsistent and often illogical

=
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. when confronting the kinds of tasks posed in the study. He has not yet

developed, ordoes-not readily bring to bear on the tasks, the coordinated

’ ) - -structures that Piaget deseribes as typical of the child who has reached
the operational level of thinking.*

- " The issue here, of course, is not so much the timing of the transition as

the question of the extent of l'eorgmié.ltion of the child’s thinking, how

.- it is brought about, and most imfortantly how education-contributes to it.

Without clinical or qualitative appraisal of the individual it may be diffi-

cult to grasp the “functional unity” that Piaget and Inheldei (1969) de-
seribe (within cach subperiod) as binding “cognitive, playful, dﬁ'ectwc, ’

‘- T . . social and moral reactions into a whole” (p. 128).
: i Further, without longitudinal appraisal, and appraisal in th(' ch«room

setting, it-is equally difficult to judge the extent to which the child’s edu-

- ] o " cational-encounters do tideed contribute to his-thinking.. = )

' The clinical approach has rarely been taken by~Ameriean investigators,
- . ’ ’ largely because of fear that the child’s responses might reflect the inter-
} o : -~ = 7 viewer's biases more than_his own convictions, Bt partly, no doubt, be-
- ' Co ~ cause the clinical interview takes so much time. In this regard we have
) - : ~~ much to learn from our British colleagues, notably among them K. Lovell.
) ] - Their interview schedules, while sufficiently standardized for- reliable
S replication, also allow for the probing necessary to reveal the suspect

- ’ - o tive, : =

_ - ) ‘ Under certain circumstances. however, the standard procedure h.ls some
: advantages, For example, in the longltudmal study the repetition of the
same.problems and the same questions tends to highlight the changes in the
childzén’s responses. Given a sufficient number of children, the probabil-
ities of change from one level of thinking to another at successive inter-
. .- - views can be caleulated. As our second longitudinal study shows, the rate
. 7 ~ of such transition can be used as a means-of comparison of the eﬁ'ectn c-

7 ness of different curricular 1Ltqgentlonf- ) .
One of the hazards of the successive repetition of standard intervi 10\\a lS
- - " that the original problems and the questions may not be as effective-as one

L - anticipates, In our first longitudinal study, for example, for the child who

. used the question “Are there more here, more here, or are they the same?”

- . - - This standard procedure was ¢asy for the interviewers, but some false
B . positives might. have been avoided if the question had varied to “Are
2. This paragraph was \mtt(-u hefore reading The Development of the Concepl o,l

B - Space in the Child by Lawendenu and Pinard, wherein Piaget comments on the general
' - - - problem of-décalages.
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answers: For some purposes, and particularly for training teachers, many -
- . opportunitics to omloxc children’s thinking in a clinical way are impera- -

did not give a spontancous response to “What about now?” we consistently
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- longitudinal research. In-the first longitudinal study over 20 percent of . : 7 -

- dren were still zi\'ziilzlble:fin:'tlxe school system but had moved-away froin : ; :
- the school that was-using the innovative curriculum. The rate of attrition : L B 5
" may be somewhat less when kindergarten, which

~ mathematics under sponsorship of Professor Rosskopf, Professor Lovell’s -

- normal mental ability—the necessity for large-scale longitudinal studies - - : - B

- and his followers have now filled

Wit
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they the same, or are there more here, or mnore here?” Similarly, “How
-can you tell?” or “Explain that to me” have proved to be more neutral
than the “Why?” or “Why do you think so0?” questions, which gome chil-
dren take to nean that they arein error, )

Attrition- constitutes another and perhaps the most obvious hazard to

the children studied in kindergarten were no longer available at the end of
first grade. In thesecond study the loss front kindergarten to the_begin-

ning of sceond grade was nearly 35 percent. In many instances the chil* S i

IR

“parents sometimes regard- ~~

-~ as-less eritical to the child’s schooling, is not included. . L o - L

Al of this suggests that from a practical viewpoint three vears is about o - E B

~as long as one_can hope to keep-a latge-scale longitudinal study going. ~ ~ e .
Data for -youngsters_followed -from kindergarten or earlier through the o _
period-of concrete operatioiis and into forinal operational thinking would Sl o -
be extremely useful. However, except for oge study reported by the - -
Geneva group, but apparently as-yet unpublished,.such data-do not-seem : -
to be forthcoming. A possible substitute might be three parallel three-year : i
studies encompassing-ages five through seven, seven through nine, and nire— IR - .
through eleven. If an analysis of the data of the overlapping grcups indi- - T . - -
cated -them to be comparable, the data might be combined and the ~ o EE
sequences and rates of change derived, as™ from a six-year longitudinal . B
study.-. . - B I ] o
“Considering the number of rather lage-scale. cross-sectional studies g
dealing with a variety-of kinds of. thinking—as, for example, those in

studies in England, and those he has inspired here, such as Lillian Whyte's i o -

study of classification antong Canadian children with normal and. sub- — -

I
1]

seems not very great. ) ] - . - :
"7 What appears to be more needed at=this point is sinaller-scale longi-- o : ) - = =
tudinal studies. Some might well be gets of case studies that-include re= e )
peated inicrviews and also include observational - material related to . 5 f .

Piaget has sketehied the grand design of developing intelligence. He- ] ]
in many of the details -of the ways : - ’ -

knowing proceeds fronr iﬁfﬁimdﬂﬁéﬁce%lmmmerablc'résQarélxers, - ) -
including many3vho, on various theoretical grounds, contest thic adequacy s S -
of the Piagetian view, liave explored and-manipulated many aspects of B C : B
_children’s thinking. But it is not Piaget's idea that a few séssions with an . - - o .




~ Almy / Longitudinal Studies- Related to the Classroom
S 7 experimenter, or thirty minutes a day with a new mathematics program, = - )
- - is likely to importantly. change a child’s way of thinking. The:success of o - —
" any iutervention into the ehild’s thinking, either experimental or curricu- -
lat; can be measured only by its pervasive and durable effects, L -
Proponents of the modern British primary school liave, it seems, under- -
) - stood Piaget-in this regard considerably better than have the Americans. -
N § - Yet they too are only beginning to come to grips \utluhe implieations.of . ~- —: - - I g
: ) : the theory for the -cducation of the child. In exploring. p‘oeaxﬁ'htxes, Jow- - .
) ) ever, it seems they have been muelr more inclined: than we to go dnrectlv to . T -
il -  classrooms:and-to involve teachers in=the- exploratzon e
: T dctive pmtzczpatwn of teacliers-in- planmng, carrying- out and evaluat-
R -ingr 1eseal ch-in- thmle\elopment of- clnldren -thinking scems. nnpelahv
- % - -1t is true-that not.all teachers will- e willing“to- pai:tlcxpate in- cqch an: .
= .- - - -active-fashion,and:tRis: will: Jimit:the: genemhzatlons to:-be-made;. B
IR  “ourown studies bear-witness;it-isclearly-preferableto-experimentin. cla<s-
E S I - -rooms-wher¢-thé-teacher is-truly involved“than-to draw conelusions-from
— . ) R - _- _situations ji=which-thie:tcacher! a—p'lrtlcu).itlo is. minimal or- gmdgmg -
: . ST e Suppo\e that ztlongﬂudmal study of at-lc “school: year in- length 1§
=7 _-= - -planned: All-the-children-in-a- givenr class- ;mght “be-individually: inters
St viewed; with-the fodus-perhaps o a- <mgle, but piv otaf al)eratlon con-
* servationis clearly-a likely-choice. Ora-sample of-ch : S : T D 3
i exhaustively interviewed. - In: either-event: such. rterviewing ould-be = ¢ - SRR
e s cither shared=by. or reported:to the-teacher, and the unphcatnom of the o E B
- " results for-the planned curriculum diseussed.- cheml of the children- could
T =~ =~ then be: wetemmcally observed and interviewed:as the year. proceeded; in
) all-instances with the teacher ~I‘armg the- 1c-ultmg, “data. Possibly-such
. Lo sy ‘:tem'ltnutudy of arelativ cly small group-of-youngsters could-also: yleld
= | T - data about mdmdual stvles of coping with problems-and about preferred
- . = o = -ways of ledrning. -Year-end interviews: with -all ‘the cluldren, as-well as
- - ~ - 2 - with those intensively studied, would provide-information- on the- pocsxblc
B LT T Ees ~_effects of suelr- ~tud\ as well as onthe general progress of the group..
. - T - A plan of this sort could be used to- “investigate a single .lspcct of the
. o s currlcnlum-—lnathem'ltlc.g, for (,\ample--or, miore - narrowly, ‘a smgle C-
- R . -topic; or it mxgh(: deal more bxoadly with:-the child’s thmkmg in various
i ) o ’ i aspeets of the eurriculum. For- example, one ought to be able to see-the”
7 7 . Lo influence_ of nmthcm.xtncc in the children’s- performancu in the sderee ——
o B progmm - - - g - o
S S B . Some pxoponentﬂ of Pm;,ct’q thcony——-Hans Fmth partlcuhrly-—hold
- Lo that the traditional three Rs curriculum-for the eaxly elementary school -
S o - should be abandoncd in favor of-a currieulum for thinking—the ~pemﬁc
o - ~ content in the years before the fifth=grade being of considerably lgss T im--
B I portance than the opportunmes prowded for thc child’s knowing, Such a
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pmpo:al secms to exemplify the ¢ functlon.xl unity” of the cluld (lc~cnbed
by Piaget, better than do attempte to tie segmented-aspeets of thie cur-
riculum to the sequences of dev elopment- described by Piaget.- But there

. .7 . 1% no necessity to take a particular stance on“the matter while investj-
. : ’ gating the actual manifestations-of children’s thinking in-clas ssrooms with o ) . 3

- L varied kinds of curricula. The only danger is that the investigator-may o -

= = - find himself working in situations- where thele is trul\ very ‘little provo- S B 2
— S SR - cation for thinking. = : -
N S Another hazard in theZol
cour~e,:the‘,di§ﬁéhl{

. oiecogmtnemtua' :
-- as thc plone( wor

- rvals Zsi;géés’f netl
pxoce =% of change underlymg the. clnld s-thinking: Butrthe -
the dymumc processes- undulymg such clwn;,c -If=th
b} Bmgats thwx) .are to ‘be: mtefrratcd ‘intc

“theory 6[ cducatlou an

_developmental study of
m(h\ ldual (,lnldl en in: the natm al iefflng ‘of then'(,h sxoom< -

)

o

REFLRE\'cng SRR o

\lm\ AL E. (.hlttendeu, and 1’ \Illler }oung Cluldreus Thm/.mg \’e\\ Eork 7 - , .
Te.[chct\ ‘College Press, l‘)(i(‘; - ) - -

z - Ay, A, 8. Davitz, and M- A« White. (Jgan(lan Clulrlrcn in School \c\\ York e
) T&l(’ll(,‘l‘mCUn(,‘"(! Press, 1970. - o T s T -
= o i Almy, M, etal Luqzcalfllan&mg in Second Gradc \c\\ Ym'k**’l‘mcher~ Collef'e S o
ot D Press, 1970, . L L -
S - Bellack, A. A The Languaye 0}' tlw (,Iassraom \e\\ York Teachcrs Callege .
E - i o R Pl’eh, 1()66 ; X, B . o : 7 7
. a L R Bnmer,J S. le I’mcess af qucatwn C'unbndge \I:ISS;:;H:’li’\'zlrd Euivcrsity ) H L Tz -7
- . I Pl'e\b 1960. . L ~ s s = T c ST i - -

PAFulText Provided by exic [




;ﬂ}ny / Longitudinal Studies Related to the Classroom ~ _

s ] . 7 B . Gordis, F. A Piagetian Analysis of the Teaching of Seriation Coneepts in Four

) ) ’ _First Grade Classrooms.” Ph.D. dissertation, Columbia University, 1970. :

Hunt, J. M. Intelligence and Experience. New York: Ronald Press, 196]. - - -

R Laurendeau, M., and A. Pinard. The Development of the Concept of Space in the ~ - = -

) . ) .- - Child. New York: Internatior | Universities Press, 1970. - -

- . ce : - Lovell, K. The-Growth of Basic Mathematical and Scientific Concepts in Cluldren' - —_

- - L _ “Loudon: Univ erxity of London Press; 1961, ) -

: . T o o o }Ill!cr, PM“The Effeets of Age and Tr.lmmg on “Children’s Abnht\ to Under-
T ~ ., stand Certain Basic Concepfs.” Ph D dmert ltmn, Teachers (‘o!lege, Columbia -~ > - . ]

. ) - o = -7 = University,-1966, - - - —= S

PR o Pm«ct 1. Six Psychological Studus' Tr'm~htcd -by A ‘lenzer and -D. Elkmd : -

S .= - . - New York: Random House, \mt ige Books, 1967 “Copy nght 1967 by R:mdum :

T -~ House, Ine. Used by permission.

o IS -  Pir et 7 mdB Inheldcr The chhologu o] the Cluld New York Busic Bock 24 =
- e 1969.° - - - -l
- . e R e leth B..0. “Toward |Theon of Te.\chmg 2 In. Theon/ and Rcscarclz T T each- Y oo = =
- I : o ing; edited-by A. A. Bellack, pp. 1<10. New York: Teachers College Press; 1963. ~ - -= -~ -~ -~ -
= T - oA o= Taba, H. Thinking in Flcmcntary School Children, Cuopemtne Re.-c'lrch Pro;- - - X T L s
- - T - --ectuo. 1574, San Francisco:-San Francisco State College, 1964. B
o Tale ) ’Wh\tc, . A. ~The Development of Classification Ability in” Children of Below - ~ R
. D SIo— s o x\xengc Imelhgcncc * Ph.D. dlseerhnon, Columbia- leemt\ 1069 © - - 270 - -




- . .Charlés Tamb. -
-~ Richard Lesh - -
nneth-Lovell--

- Observer

© Mary bellenﬁan, :fepr'éséﬁtirfglthé:Natiginal Science Foundation— -~~~




