
ED 077 713

AUTHOR
TITLE

-INSTITUTION

PUB DATE
NOTE
AVAILABLE

DOCUMENT RESUME

SE 016 250

Strader, William W.
Five Little Stories.
National Council of Teachers cf Mathematics, Inc.;
Washington, D.C.
60
17p.

FROM Nati6hal Education Association, 1201 Sixteenth
Street, Washington, D.C:-20036 ($.90)-

EDRS PRICE MF-$0.65 HC Not Available from EDRS.
DESCRIPTORS, Algebra; *Elementary School Mathematics; *n tory;

*Mathematical .Ehrichment;__Mathematics Education;
*Number Concepts; Secondary School Mathematics

*ABSTRACT
This boOklet includes short descriptions of the

history of the calendar, Napier's Bones, and the beginnings of
algebra. The remaining two stories discuss the number nine raised to
the ninth powdr of nine, and repeating decimals. (DT)

V.



LITTLE

STORIES

US DEPARTMENT OF HEALTH.
EDUCATION S. WELFARE
NATIONAL INSTITUTE OF

EDUCATION
THIS DOCUMENT HAS BEEN REPRO
DUCED EXACTI V AS RECEIVED FROM
THE PERSON OR- ORGANIZATION ORIGIN
STING IT POINTS OF VIEW OR OPINIONS

STATED DO NOT NecesSAPILY-REPRE
SENT OFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR POLICY

William W. Strader

.9
NATIONAL COUNCIL OF TEACHERS OF MATHEMATICS0 1201 Sixteenth Street, N. W., Washington 6, D. C.

(,)
14 .FILMED FROM BEST AVAILABLE COPY



r FIVE LITTLE STORIES

S"

An Unbelievable Month of September

Napier's Bones

Why X Is Used for, the Unknown

A Colossal, Enormous, Stupendous Number

The Strange Reciprocal of Seventeen

William W. Strader
Ocean City, New Jersey

NATIONAL COUNCIL OF TEACHERS OF ,MATHEMATICS

1201 Sixteenth Street, N.W., Washington, D.C. 20036

1



`PERMISSION 10_ REPRODUCE THIS
COPYRIGHTED MATERIAL BY MICRO._
FICHE ONLY HAS BEEN GRANTED BYCW
TO ERIC AND ORGANIZATIONS OPERAT
;NG UNDER AGREEMENTS WITH THENA
TIONAL INSTITUTE OF EDUCATION_
FURTZ4ER REPRODUCTION OUTSIDE
THE tRIC SYSTEM REOUIRES PERMIS
SION OF THE COPYRIGHT OWNER -

AN 'kids reserved

Cproitid ® 1160 by the

Naiad Cord of Teachers If Mathematics

-lewd Odin a3
Third printirm ltiii

Printed in the United States of America



AN UNBELIEVABLE

MONTH OF SEPTEMBER

I 7 14
:, , , 2,

-11(

7 Thirty days- bath Septertber, April, June, and November: all the rest hew e

thirty-one. . . . That's fine for the present, but it was not always thus. At
one time the year had only _ten months. Witness the words September,
October. November and Decemberwhieh named_ the seventh month, the

eighth =month. the ninth month, and_ the tenth month. The Calendar we
follow today is the result of many- changes. Now, we say "MerryChristmas"
on December 25, and seven days later we-say"Happy New Year." In 1750
the people of England and the American-Colonies had_to wait-90 days after
Christmas to say "Happy New-Year."

Trying to geta month based otuaccurrences-of the moon to be compatible
with a year based on occurrences of.thn7,gaveTealendar- makers -a_great-___
deal of trouble. Early peoples were familibr- with one phase of-the-Moan
consisting of about 291/2 days and one phase of the sun requiring- about
3651/4 days. Calendar makers,could not say M x=291/2 days = 3651/4 days

and have M a whole number. Once_theydid try 30 days in a month and 360
days in a year and could say_ M x 30 days = 360 days and have M equal to
the whole number 12. That seemed fine, but it-didn't work. The people
found -that if _the year consisted of 360--days. certain anniversary dates got
more and more out of step with the-seasons as time passed.

When Julius Caesar became Emperor of Rome. he found that -the -cal-
cndar then in use was far frOm satisfactory. With the aid of an Egyptian
astronomer, Sosigenes. Caesar established-in 45 B. C. what has since been
called the.Julian Calendar. This is much like our presedt one because com-
mon years had 365 days and-leap years had 366 days. It was based on a
year of exactly 3651/4 days, that is. 365 days and 6 hours. Later. more
carefid calculations showed that a year consists of 365 days. 5 hours, 48
minutes. and 49.7 seconds, which is about 11 minutes less than whaj-
Sosigenes had calculated.

By 1582 the error between the calendar in use and the true calendar
amounted to 10 days. During March of that- year Pope Gregory XIII
issued a brief in which he abolished the use of the Julian Calendar and sub-
stituted one- which had been constructed by Aloysius Lilius (or Luigi Lilio
Ghirakli). a learned astronomer of Naples. Italy. This is our present cal -
cn1ar and it is called the Gregorian Calendar. Pope -1 Gregory ordered the
elimination of 10 days from the year- 1582 by having the day following
October 4 called October 15-instead of October 5.

It was not until 1752 that England and her Colonies changed from the
Julian Calendar to the Gregorian Calendar. By thlit time an elimination
of 11 days was required to make the change. An Act of Parliament in 1751
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provided that in 1752, January 1 instead of March 25 should be taken as
New Year's Day and that September 2 should be followed by September 14
instead of September 3.

Unless one has heard of these
changes, the month of :September
1752 is unbelievable.--This month
had only two Sundays and two
Mondays. It contained 19 days
instead of the customary 30 days.
No one could write a letter or
transact at* business on Septem-
ber 10, for -there was no such
day. The first two days-of the
month- were of the Julian Calen-
dar (Old Style) and the last 17
days were of the Gregorian Cal-
-endar (New Style). A copy of
the calendar for September 172
is given at the right.

George Washington was born-on February 11, 1732, Old -Style. He
celebrated his twenty-first birthday on February 22, 1753, New Style.
He died December 14, 1799, New Style. -It is somewhat puzzling to deter-
mine the number of years, months, and days that Washington lived. If any-
one wishesio try it, remember to count the days in the leap years, Old Style
and New Style, as well as the loss of 11 days in 1752.

S M F S

1 2 14 15 16

11 18 16 20 21 22 23

24 25 26 21 28 2 30

Most of the years from now on will contain 365 days. Every year, how-
ever, whose number is exactly divisible by four will contain 366 days, ex-
cept for the last year of each century; this is a leap year only when the
number of the century is exaqly = divisible by four, except for the years
4000. 8000, and n(4000), which will be regarded as common years of 365
days. Our present calendar is so nearly perfect that it will not require ad-
justments or changes for at least two hundred centuries.

ADDITIONAL READINGS

BAKST. AARON. Mathematical Puccles and Pastimes. New York: D. Van Nostrand
Co., 1954. Chapter 8, "Harnessing Father Time," p. 84-96.

BOOK OP COMMON Pitmst-(Episcopal). New York: Oxford University Press, 1944.
"Tables for Finding Holy Days," p.1-1vii.

ENCYCLOPEDIA BRITANNICA. Chicago: Encyclopedia Britannica, 1952. ="f...alendar,"
Vol. 4, p. 568-83.

Porn'. IMOLA D. Consider the Calendar. New York: Bureau of Publications,
Teachers College. Columbia University, 1944.

WATgINS, HAROI.D. Time Counts.. The Story of the Calendar. New York: Philosoph-_
ical Library, 1954.

WILSON, PHILIP WHITWELL. Romance of the Calendar. New York: W. W. Norton
and Co., 1937.
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NA- PIER'S BONES

--- If someone should ask you to name-some oLthe outstanding men-of
Scotland, your list-might contain, the names of Sir William Wallace, John
KnOx. John Napier, James Watt, Robert Burns, Sir Walter Scott, Thonias
Campbell, Thomas Carlyle,-Sir_James Barrie,- and Dr. Alexander Fleming.
Very possibly you might name some others, Nit I-hope you would include
John Napier, Laird of Merchist-on. This story will tell briefly-why his name
should-be respected and remeinbered, and it will describe and tell how to
use Napier's-Bones.

-"John Napier was born in Merchiston Castle on the outskirts of Edinburgh,
Scotland. in-1550.ancLdied there in 1617. The family.name was_**_ariously
spelled: gapier,-Nepeir, Naper, Neper, Naperis, and Naperius. Hume, the
Scotth historian and philosopher, wrote that Napier deserved the title
"great man" more than any- other born in Scotland, Napier planned- and
devised many inventions_He -wrote a theological work called A Plain
eovery of the Whole Revelatian of Saint John, which ran through several
English editions. It was translated into French, Dutch; and German and
was widely read for more than 40 years. He also won fame- as an astron-
omer, as an engineer; as a physicist, and as a mathematician.

Napier was bold. courageous. and stubborn. H_ e helped to advance the
skills and knowledge of arithmetic, algebra, and plane and spherical trigo-
nothitry. The idea of logarithms belongs uniquely to Napier, ana heworked
more than 20 years to perfect his theory. A prominent mathematical his-
torian stated that it came as a "bolt from the blue," for it was not connected
in any way with any previous mathematical theory. Our present tables of
common logarithms were= developed by Henry Briggs after he_had -twice
consulted with Napier. They agreed that a -base of 10 for logarithms would
prove more satisfactory in most cases than the base originally used by

- Napier.
The skills of arithmetic computation developed slowly. Early peoples

used fingers and toes as aids. Soon pebbles and twigs or splints of Wood
were used. Marks made in sand spread on a floor or on a table, balls on
strings or on wires to form counting frames, and special schemes of marking
figures on squares such as are found on a chess board were- some of the
successive developments. Before 1500 A.D. a number- of Italian mathe-
maticians had made great strides An simplifying multiplication. One of
the methods developed is illustrated in Figure 1. It is sailed the Gelosia
Method of Multiplication, and it appeared in a book printed in the town
of Treviso, Italy. in 1478. The word gelosia 'titans grating or latlice.
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The illustration shows the 11 5 { 4

process used on the gelosia for 117-177171
multiplying 854 by 312. Observe j'

4

that the product 3 x 4, or 12.
appears in- the upper right hand
box with- 1 (or the tens' digit)
above the diagonal line and 2 (or
the units! digit) below the diago-
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nal line. Note, also, the product
2 x 8, or 16, which appears in
the lower left hancrbox of the Fictnt
gelosia. The final-product is found by adding diagonally downward: (8),
(4 + 0 = 4), (2-+ 5 + 1 + -6 = 14); (1 + 5 + 8 + 1 + [1] =-16y. (1 +

=4 + [1] = 6). and (2). Thus 854 x 312 = 266.4481,
There seems to be no doubt that Napier was familiar with the Gelosia

Method. He invented a systeni of rods arranged to utilize this method of
multiplication. He explained how-the rods were, to be used in an article
called Rabdologia, which = rheum- A Collation of:Rods.

Napier made his rods of bon_ e or'iii:Trytollie-31sape of -prisms,
each about 3-inches long and -alkmt y, n inch-for each side of a cross-
section. Figure 2- shows a representation of a complete set of Napier's
Rods compactly assembled. One face of the red on the right is divided
into ten squares. The numbers which appear in these squares are- used
singly as the digits of the multiplier. All four faces of the other ten rods
are also divided into squares which are Subdivided by diagonals, except
the top squares. The numbers in the top squares are used-as the digits-of
the multiplicand. Figures and 4 picture the upper faces of two of the
rods. Figure- 5 shows how one of the rods= appears in_perspective.

1 1 3 4 5 6 1 I 9 1 1
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FIGURE 4 Rob u 5

Napier's ROds are often called Napier's Bones because of the material
from which they are made and because of the title of a book published in
London in 1667 by W. Leybourn. He used the title The An of Nutnbring
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by Speaking-Rods: Vulgarly Termed Napeir's Bones. In the United States,
the last part of the title would read Commonly Called Napier's Bones.

During the seventeenth century Napier's Bones attracted wide attention-
throughout Europe. They were-also copied and used in china and Japan.
Today they are of little or no practical value, although they remain as a
curiosity _of the past. More important, they are an example of man's
continual attempt to reduce the drudgery of mathematical computations.

In order to appreciate the facility and utility of multiply:ng by using Nap-
ier's Bones, let us try a brief example. Following the scheme tha Napier
used, let us multiply 3742 by 68. Select the four rods
with top numbers of 3, 7, 4, and 2. Now arrange the
rods in the order of 3-7-4-2, reading from the left.
Next place the rod containing 1, 2, 3, , 8, 9, 0
upright aldfig the right side of the rods already
assembled, as shown in Figure 6.

Place a ruler or the straight edge of- a card, on
Figure 6, below the line of figures ending with 8.
This line when added diagonally downward, as shown
in Figure 7, gives the Product of 3742 and 8. Write
this product, which is 29,936, on a piece of paper.
'Return-to Figure 6. Place the ruler or card below th-e--

line of figures ending with 6. This line when added
diagonally downward, as shown in Figure 8, gives
the product of 3742 and 6. This product, which is 22,452, should be
written on the piece of paper already used, under 29,936 but shifted over
one place to the left, as shown in Figure 9. Then these partial products
are added to find the product of 3742 and 68, which is 254,456.

/4 2

FIGURE 6

FIGURE 7 FIGURE

2 9 9 3 6

2 2 4 5

2 5 4 4 5 6

FIGURE 9

Please observe that the product of a four-digii number (3742) and a
two-digit number (68) was found by combining two partial products and
by the careful handling of Napier's Bones.

ADDITIONAL' READINGS

ENCYCLOPEDIA AMERICANA. New York: Americana Corp., 1953. "John Napier,"
Vol. XIX, p. 694.

ENCYCLOPEDIA BRITANNICA. Ehicago:- Encyclopedia Britannica, 1952. "John Napier,"
Vol. 16, p. 75-76.

HOGREN. LANCELOT. Mathematics for the Million. Third edition. New York:
W. W. Norton and Co., 1951. Chapter 10, "The Collectivization of Arithmetic
or How Logarithms Were Discovered," p. 463-510.

SANFORD, VERA. A Short History of Mathematics. New York: Houghton Mifflin
Co., 1930. p. 338-52.
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Sstrrti,-.Deto EUGENE. History of Mathematics. New York:- Ginn and Company.
1923 and 1925. Vol. 1, p. 389-91: Vol. 2, p. 202-206.

SPE.NcELEv, G. W.:-SPENCELEZ-R. W.: AND EPPERSON. E. _R. Smithsonian Logarithmic
Tables. Washington. D.C.: Smithsonian Institution, 1952: Publication 4054.
"Introductio6." p. vii-xi.

_ .
WHITE. WILLIAN1 F. A Scrapbook of Elementary Mathematics( La Salle, Ill.: Open

Court Publishing Co., 1908. "Napier's Rods and Other Mechail Aids to
Calculation," p. 69-72.



-i WHY X= IS USED

FOR THE UNKNOWN

Mathematicians may use a 'Variety of letters-to stand -for the unknown.
The letters b, c, m, x;;;, and others arc -in use. Hdweverr, the letters at or
near the end of the alphabet are preferred. and x is used more often than
y or z. Sometimes. 0 -(thei-a); p (rho). z (zed); 14 (aleph#,Jand others are
used in some fields of mathematics to stand for certain general and unknown
numbers; Descartes, when' he extended -the familiar idea of latitude and
longitude to determine= the position of a point in a plane. called the co-
ordinates_of the point x and-y.: This is -a different use of x from that found
in the statement. "Let x equal the= number of boxes of-candy that Mary
sole' This articledeals with the x which is found in first year algebra
and not with the x which =is fOtind in coordinate geometry.

Many persons like to use -dor N to stand for -the unknown in solving
verbal problems and their eqUations, and in writing simple formulas. Of
these two letters, n is used more often than N, because N may be used
to -stand for such words as Mirth, Noon, and Nitrogen. Some prefer n to
x because-every time a problem is solved a number is sought. and n is the
initial letter of the word number. The use of might help one to keep in
-mind that-he is dealing with numbers. Here are -two examples of what the
use of n will help to correct. Pupils have been heard to say, "Let x equal
the strawberries that Sandra picked" and "x stands for the newspapers that
Rodman_sold." Of course pupils do not get strawberries or newspapers
when they solve problems. To- some pupils, x seems very abstract and
mechanical. There arejpachers who believe that the defining statements of
a problem may be made more particular and related in the minds of pupils,
especially first year algebra pupils, if n instead of x is used to stand for the
unknoWn number.

It is generally agreed that x, or n, or-any other letter or symbol does not
necessarily stand for an unknown number. Sometithes the number sought
is already known.- Take this simple problem: "John has half as much
money as Harry. Together they have 15 cents. How much has each?"
We know immediately that John has 5 cents and that Harry has 10 cents.
No matter what letter is used to represent the number of cents that John
has, that number is not unknown. Such problems are not taught for the
most part to find answers; that is, to find numbers. Such problems are
taught as easy exercises in thinkingthinking to find relationships, thinking
to choose proper words, thinking -to- compose concise and precise statements.
Problems are exercises in thinking.

Although some may not approve of using x and saying "the unknown,"
such usages do find wide acceptance; x is said to stand for the unknown

9



because this expression is a relic of the past. The term relic is used to indi-
cate that the expression is something to be "venerated by the faithful." The
development of the use of x for-the unknown has-a long and noble history
which includes bits of the lives and works of outstanding Mathematicians.

About 1600 B.C. an Egyptian scribe and priest called Ahmes gathered
together all the mathematics he could find-and wrote a book on a scroll of
crushed reeds called papyrus. He used the. title Knowledge of All Dark
Things. Mari), persons, especially high school pupils, might think that this
is an excellent titlelor his book. Ahmes wrote principally about arithmetic,
although some parts of his work dealt with algebra. One problem -he dis-
cussed was: "A heap and its third-equals 8. Find the heap." Today we
would say, "If x + 2/3 = 8, find x." Salle translators say that Ahmes used
"mass" and not "heap" in discussing his problem. Either -word, however,

-implies that a definite, finite, measurable quantity is sought which has not
as yet been defined'or stated. Here began the use of a symbola word is a
symboltc stand for the implicit number of a problem.

About-800 A.D. another book was written which holds an- important
place in the history of mathematics. It was written by al-Khowarizmi and
bore the title- 'dm al-jebr wet? innyabalah. The book dealt -Mth restoring
roots in equations and with simplifying mathematical expression's. Observe
the word al-jebr in the title of the book. It is from -this -word that the
English word algebra is derived. Al-KhOwarizmi used the symbol root to
stand for-the implicit number, that is, the unknown in equations.-

Early Latin writers continued to use the word tadix(root) for the
number sought in equations-and problems. Sometime later, res (thing)
was used by Latin writers. The words mass, heap, and thing have two
common codifies. Each is a symbol. Each- stands for a measurable. quan-
tity whose exact value is not stated. Today in ordinary language we use the
words thing and something in that same 'sense. Early Italian writers used
cosa. Early German writers used coss. The Arabian writers used sal (pro-
nounced shei or shay). The words res, cosa, cdss, and Sal are translated into
English as thing.

From about 1000 A.D. to 1400 A.D. classical learning came into
Europe with the Moors -(Saracens) from Africa by way of Spain. Christian
scholars in the Spanish monastaries reconstructed and translated Greek,
Latin, and Arabic manuscripts. The so-called unknown quantity of algebra,
which was written in the Arabic manuscripts as sal, was translated by-the
Spanish writers as xei (thing). The initial of this word resembled- the
Greek letter, X (Chi). In early Spanish the character x was pronounced

= Therefore:, the Arabic iai and the early Spanish-xei were pronotinced
alike and each word meant thing. Early English writers accepted the word
xei as it came to them in the Spanish manuscripts to stand for the un-
known. Later they used the initial x of the word for that purpose.
Eventually the English writers used x because of the resemblance of tl)is
letter to the Spanish X. So x came to represent the number sought in the
solution of equations and problems. It would seem then that-mathemati-
cians and student of mathematics in using x for the unknowr have
respecting an honored tradition and:following an old SpaniSh custom.
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To conclude this story, two authoritative references are given to substan-
tiate the account of the origin lof the use of x to stane for the unknown.

1. WEBSTER'S NEW INTERNATIONAL DICTIONARY, Second Edition, Un-
abridged, 1953, page 2962:

X, x . An unknown quantity. X was used as an abbreviation for
Ar. [Arabic] shei a thing, something, which, in the Middle Ages, was

. used to designate the unknown, and was then prevailingly transcribed
as -rel.

2. LOKOTSCH, ETYMOLOGISCHES WOERTERBUCH EUROPAEISCHER

WoRTER ORIENTALISCHEN URSPRINGS, ART. 1770:

Arab. Ding, Sache. So bezeichneten die arabischen Wthe-
matiker die unbekannte and verwandten die Abkuerzung `i', die von
den Spaniern durch 'x' wiedergegeben wurde, da dieser Buckstabe im
aelteren Spanischen so ausgesprochen wurde. Daher wird die un-
bekannte Groesse in der Algebia mit 'x' bezeichnet.

ADDITIONAL READINGS

BRESLICH, EaNgsr R. Algebra, an Interesting Language. Chicago: The Orthovis Co.,
1939. "Literal Numbers," p. 1 -9..

ENCYCLOPEDIA BRITANNICA ChiCag6F Encyclopedia Britannica, 1952. "Algebra,"
Vol. 1, p. 663-607.

HOGBEN, LANCELOT. Mathematics for Me Million. Third editit.a. New York: W. W.
Norton and Co., 1951. Chapter 7; "The Dawn of Nothing or How Algebra
Began," p. 287-346.

SANFORD, VERA. A Short History of Mathematics. New York: Houghton Mifflin
Co., 1930. p. 141-59.

SLOANE, T. 0.; THOMPSON, J. E.; AND LICKS, H. E. Speed and Fun with Figures.
New York: D. Van Nostrand Co., 1939. "Recreations in Mathematics," p. 22-23.

SMITH, DAVID EUGENE. History of Mathematics. New York: Ginn and Company,
1923 and 1925. Vol. 1, p. 278, 312; Vol. 2, p. 421.45.



A COLOSSAL; ENORMOUS,

STUPENDOUS NUMBER

Upon reading the title, some- may think that this little story will talk
about infinity ( ). Infinity is not a number as-we ordinarily or extraor-
dinarily understand numbers.- The natural numbers are used to -count
one,, two, three, , one million, , one octillion, ; one never
comes to an end and says infinity, for there is no end to counting. No mat=
ter with what number one may wish to stop, there is always one more which
can be added. So infinity does not terminate the sequence of natural num-
bers used in counting.

Mathematics books discuss other numbers which are extraordinary, to say--
the least; for example, VT= 1.414,* f = 1.732, Vg = 2.236, = 3.142,
= e = 2.718, and M = .434 are not natural numbers. They are num-

bers, but none of them is infinity. Infinity is not a number at all. It's simply a
short way of saying "great beyond all measure." And so this story is not
about infinity.

What is this'colossal, enormous, stupendous number? It is a definite,
finite number. It is exactly so much and no more, but- it is very great. Not
great beyond all measure, but great beyond normal comprehension. The
number to be discussed is 9 raised to the power of the ninth power of 9.
Symbolically this number is written 9(99)

Before trying to describe the size of this number it might be advisable to
review briefly some elementary properties of exponents. A number placed
slightly above and to the right of another number is called its exponent.
The exponent tells .how many times the number is to be taken as a factor.
For example, 29 = 2 x 2 x 2, 89 = 8 x-8, 74 = 7 x 7 x 7 x 7,
59=5 x5 x5 x5 x5 x5 x5 x5 x5.

The expression raised to the power of is often used in connection with
exponents: 2 is raised to the power of 3 in 23, 5 is taised to the power
of 9 in 59. Sometimes, 29 and 59 are more simply stated as the third power
of 2 and the ninth power of 5. The numbers (33)3 and 3(33) look somewhat
alike and the expressions used to read them sound somewhat alike. The
first may be read three to the third power raised to the third power. The
second may be read three raised to the third power of three. But these
numbers are by no meats equal in value.

The first of these numbers, (33)3, means (3 x 3 x-3)3 or (3 x 3 x 3) x
(3 x 3 x 3) x (3 x 3 x 3) or the ninth power of 3. The second of the

* These values are correct to three decimal places.
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numbers, 3(33), means 321 or the twenty-seventh power of 3. If the expanded
values of these numbers are found- by actual multiplication and the value

of the second is divided by the value of the tirSt, this will show that 3(33)

is 387,420,489 times as large as (3?)'. One might think that by like
calculations it would be possible to determine the relative sizes of (99)9 and

9(99). This is not true, for it cannot be done within a lifetime by performing
the actual operations of multiplication and division. However it- can be

determined by other means that (99)9 is relatively a small number when

compared with 9(99). Our story concerns the number 9(99) which is colossal,

enormous, and stupendous. We shall examine its size but never find its
expanded value,for it is far too large.

When one raises a nun ar to a given power, the number of multiplica-
tions needed is one less than the 'value of the exponent. For example.

52 7^7 5 x_5 requires only one multiplication; 61 = 6 x 6 x 6 x 6 requires
only three multiplications. So, 9(99) or 9"87.42"."" requires 387,420,488
multiplications. If a person can average two multiplications a minute

for 24 hours a day without pause, 365 days a year, it would take more
than 3681/2 years to complete the multiplications. ThiS is one way of

showing how large the number 9" is. Its size in expanded form is beyond
normal comprehension.

We are interested not in wh;ch figures, but in how many figures there

are in the expanded result. We have found that we cannot learn how many
figures there are by repeated multiplications because we do not have the
time. There is a method, however, of finding the length of the expanded
result without finding the result itself. This method will use some elementary
properties of logarithms and log 9 = 0.95424 25094. (The value of log 9
correct to 20 decimal places is 0.95424 25094 39324 87459.)

Even though you may not have studied logarithms, you should be able
to comprehend the calculations which= follow. Previously we found
that 9 (901 9387,420,489 By expressing the logarithm of each side, we have
log 9(991 = log 9387.420,489. In the study of logarithms we learn that "the
logarithm of a number raised -to any power is equal to the logarithm of the

number multiplied by the index of the power." Therefore, log 9387.420.09 =

387,420,489 x- log 9. If we substitute the value of log 9 in the fight
hand member of this equation, we may write log 9387020,489

387,420,489 x 0.95424 25094. By actual multiplication, 387,420,489 x

0.95424 25094 = 369,693,099.6 Finally, then, log 9(99) = 369,693,-

099.6 Only the whole number to She left of the decimal point in the right
hand member of this equation is important to the work at hand. This
number plus one tells us how man; digits there are in our final answer. In
other words, there are 369,693,099 + 1 or 369,693,100 digits in the

decimal expansion of 9(99).
The 1942 printing of the Encyclopedia Britannica required 24 volumes.

There are approximately 1000 pages to each volume. Each page contains
two columns of 72 lines each. In each line in either column, there are
about 65 letter spaces or figure spaces. By multiplying 1000 x 72 x 2 x 65,
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it is found that one volume of the Encyclopedia contains space for approxi-
mately 9,360,000 figures. To print the answer of 9(99). which requires
369,693,100-figures, more than 39 such volumes would be required. The
tremendous magnitude of this number may- possibly, be better appreciated
if we say that to pritlt the -answer of 9(99) one complete set of the En-
cyclopedia and more than 15 -additional volumes more are required. This
number is bigger than big.

It has been stated that a Trench scientist calculated that a sphere of
platinum one million light years in radius would- contain atoms to the
number of 225 followed by 88 ciphers; that is a number of 91 digits.
9(99) is a number which requires over four million times as many_digits: It
is believed that 9(99) is so large that it is sufficient- to number all the atoms
of creation. It is simply out of this world.

There are larger numbers, of course. It_ is the largest; however, which
can be represented by three digits. But far more important than that,
9(99) is an outstanding example of the simplicity, the campattness,-and the
power of the symbolism of -mathematics.
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THE STRANGE RECIPROCAL

OF SEVENTEEN

The reciprocal of a number is 1 divided by that number. For example,
2 or 1A; is the reciprocal of ;, and '4 7 is the reciprocal of 17. The

reciprocals of the _first ten positive whole numbers expressed as fractions
and as decimals to six places are: % = 1.000,000; '4 .500,000; %, ,=
.333.3331;6 = .250.000: 14-= .200.000: 1-;; = .166.666%; =
.142,857 M; 1/s = .125.000; = .111.1111A; % v.-- .100,000. These
values are of three kinds. In the expression of the decimal values of %.
14. 1/4, and %o, the zero is repeated several times at the right of the
decimal point. Any number of there zeros could be omitted and still the
decimal value would be- complete. A second kind takes in the values 1/t-,
%, and 1A, which repeat a single figure, not zero, a number of times and
require a fraction_to complete their values. The value of the reciprocal of
seven, the fraction 1,4, is the third kind. It shovis six different figures to the
right of the decimal point and needs a final % to complete its value. ThiS
final % means that the same ,group of six figures and the final % will be
repeated and annexed to the first group of six figures if the number of
decimal places is extended and the value is to be accurate. For example, 1/7 =
.142857% = .142857142857%. The value of Y7 might be written also
as .142857142857142857 142857142857%. The decimal value of
M is called a repeating or a circulating decimal with a repeating period of
six figures Of course, the values for 117, and 14; are repeating decimals also.
In 117, = .200,000 the single figure 0 is repeated and in 1,,'; = .166,666

the single figure 6 is repeated. In 117 = .142857142857 the entire
group of six figures is repeated. The figure or the group of figures which
is repeated over and over again is called a repetend. When there is
a single figure as a repetend, it is simply indicated by placing a dot over
that figure; for example, = and 14; = .16. When there is more than
one figure in the repetend, it is indicated by placing a dot over the initial
figure and another dot over the terminal figure of the repetend; for example,
1/7 .142851 and'/ = .0588235294117641.

If the decinial value of the reciprocal of 7 (.142857%) is multiplied by
2, 3, 4, 5, and 6, some interesting numbers are produced: The products
are equal respectively. to .285714% = .285714, .428571% = .428571,
.571428% = .571428, .714285% = .114283, .857142% = .857142. If
the five repetends .285714, 428571, .371428, .114283, and .857142 are
examined, it will be found that these numbers use the very same digits
which are found in the decimal value of Y7 or .142857. More than that,
the order in which these digits are arranged follows a definite and fixed
scheme.

15



-4

The accompanying circle, with the digits of_
the decimal value of the reciprocal of seven T"
arranged in clockwise order around the circle,
will assist in showing what this scheme is.
In writing the product of 5 X .142857. one
can understand quite easily that the answer
ends in 5. Observing the circle, it is not
difficult -to see that the prbduct begins with 7, A,,
The answer is read in clockwise order from
the circle as 7 * I > 4 2 * 8 * 5; that '82'
is. 5 xis = .714285. In finding the result of
multiplying .142857 by 6. it iTTvident that
the product ends in 2 and begins with -8.
Reading -from the number itself or from, the circle, the answer is found as

-8 > 5 > 7 > 1 * 4 * 2 or .857142. The decimal value of the reciprocal-
of 7 is said to be a repeating decimal of sib' figures arranged in cyclic order._

There are not many of these strange cyclic reciprocals. The next one-in
line is the-reciprocal of seventeen or IA .0588235294117647. This is a
repeating decimal of 16 figures arranged in cyclic order. Having become
familiar with -the decimal _value of the reciprocal of 7 and .its- properties._
we can easily find that 1 x 117 or 2 x .0588235294117647 -equals either_
.7058823529411764 or .1176470588235294, since the result must end in
4-and since there are two 4's in repetend for 1/17. The second of these
possibilities is chosen because_the first three figures of the repetend. .058.
when multiplied by 2 equals .116. The product sought could not begin
with .7. Possibly, the reader would like to -try to write the answer of
9 X 1/1-7 or 9 x .0588235294117647 without performing the actual mul-
tiplication. Here the answer must end with the figure 3. It begins with
.529 . If you try any other multiplications with the reciprotal of 17,
your multiplier should not be greater than-16, although it is possible to use
greater multipliers and still use 11w strange properties of the reciprocal
of -17.
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