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I. Introdudion
Words and symbols mean different things to different people. Wiwi.

does the word horse mean to the reader? What do we think of when the
word horse is used in casual conversation' What would we think of if
we reflected not so casually about the meaning of the v. ord horse?
Surely the concept horse is not a fixed concept the same for all people.
Try to imagine what the word means to a three-year-old child. to a
farmer," to the owner of a racing stable, to a zoologist, or to a linguist.

Enough about horse. We propose to look at 2. -We have looked at 2
many times: Maybe it has been a long time since we thought about the
meaning of 2. Maybe our concept of 2 is a puny little thing like=a three-_,
year-old child's idea of 2. Perhaps a comprehensive view of 2 will provide
sonic nourishment to enhanee the growth of our concept of-2.

We propose to look at a modern portrait of 2. Our purpose is not to
trace the historical (level °pm ent of number concepts. Rather it is our
purpose to present a glimpse of 2 as it appears in the minds of men
today. We shall see 2 in an environment of other numbers. In order to
understand 2 it is necessary to know something of these number systems.
So we shall develop the number systems to such a point as will enable
us to see 2 in its proper setting. In addition to looking at 2 as a number
we shall look at 2 as a symbol or as part of a composite symbol. We shall

see 2 by itself and we shall see 2 in 21, 2-in and 2 in S2.



U. The Natural Number 2
The simplest of the number-systems is the system of natural numbers.

or counting numbers if you prefer: 1, 2, 3, - - - . We use tlds symbol to
suggest an mending sec1wnee of numbers. the natural numbers in their
natural order. Each number in this sequence bas an immediate successor
and an immediate predecessor except that 1 does not, have a predeecsiior.
The mathematician thinks of a natural number in two distinct ways. as
an 6rdinal number and a.s a cardinal number. In munting tliiobjects
(71 a collection such as .1, 11. C, :t small child says 1. 2. 3. pointing in
tmeres:.inli to .1, to B, and then to C. Object B is the second object,
object munber 2. in this collection of three objects. The youngster has
es:ablished mt one: -t(pone correspondence bet wes-n .1, B. C :1:1(1 the words

1. 2. 3: A is mated to 1. B is u:atcd to 2. and C is mutated to 3. The direct
countiag of any !kite collection of objects amonnts to Establishing a
one -to -floe correspondence between the objects in the collection and a
set of natural mimbers. Thus we think of 2 as it grunt which is part of
the ritual of counting, If thei-e is more than a single item in the collec-
tion (-minted, then 2 is the grnnt_whielm comes immediately after the
grunt 1. Thus our portrait of 2 includes a glimpse of 2 as a counting

grunt. as ordinai number.

ORDINAL: Mary is number 2 in this lineup.
CARDINAL: There are 5 persons in this lineup.

Let us now look at 2 as a cardinal number. The cardinal number of a
set of objects is a word which conveys the idea of how many objects
are in the set. The cardinal number of a set, has nothing to do with the
arrangement or order of the elements in the set. In fact, we may re-
arrange the elements of a set in any way and the eardinrul number of the
set remains unchanged. Two sets have the same cardinal number if
there exists a one-to-one correspondence between the elements of one
of the sets and the elements of the other set. Thus the set SI consisting
of the letters A and 8 has the same cardinal number as the set, $2 con-

2



II. THE NATCHAL N1:3101:11

sisting of the letter:3 C and D. For if we mate A to C and B to b
have a one-to-one correspondence between the elements of Si and the
elements of Sr-each element in Si has -: -unique mate in S., and each
element in S2 has a unique mate in Si . set which has the same
cardinal number as the set Si consisting of the two letters and B is
said to have the cardinal number 2; or we might say that the ear/Heal
number of the set is 2. Thus the set S which has the city of New York
as one element and my typewriter as another element and which has
no other elements is a set which has the cardinal number 2. -

We have been talking about the cardinal number 2 as something
which a set has.- The critical reader may say that a set has elements
and that is all it has. The elements comprise the set. The set consisting
of New York City and my typewriter has two elements; New York
City is one and my typewriter is the other. Who may declare that it
has something else, a mystic thing called a cardinal number? Of course.
no one would say that the cardinal amber 2 is_a_thing. thitiro we really
clarify the situation by saying that 2 is a propertyby saying that the

-set consisting of New York City and my typewriter has the property of
t wooNi.s? Do we make it clearer by saying that 2 is the property which
all pairs have in common? What is a common property? All pairs have
several properties in common. For example; all pairs have the following
wo properties in common. Property 1: Each pair of things is a set of

things with more than one element. Property 2: Each pair of things is a
set of things with a cardinal number -which is less than the cardinal
number of the set of lingers on my left hand.

Fortunately the portrait of the cardinal number 2 is not so mystic or
abstract as the foregoing comments might indiegte:=-Before stating the
modern point of view let rs think of the concept of a set for a minute.
We shall not attempt to define "set." We think of a set as composed of
elements. We consider the words set, collection, and class as synonyms.
The elements of a set may he other sets. Thus to avo:d confusion we may
speak of a class of sets or of a collection of sets, or of a collection of
classes. As an example, consider the class of all married couples in the
United States. Each element in this class is a set, a set- which has as
elements a man and a woman. Another example is the set of classes
which graduated from Harvard at the June commencements in 19 10
to 1950 inclusive. There are 11 elements in this set. Each element is one
of the June graduating classes. Of course, each of these, classes is a set
of elements, each clement being a person. And of course each person
might be considered as a set of cells, each cell is a set of molecules, and
each molecule is a set of particles studied in nuclear physics. But the
modern concept of the cardinal number 2 is not quite that complicated.
It is simply this; the cardinal number 2 is the class of all pairs; or in

=



A PORTRAIT OF 2

other words it is the class of all sets each of which satisfies the condi-
tion that its elements can be put into a one-to-one correspondence with
the elements of the set, for example, which has New York City as an
element, my typewriter as an element, and no other elements. Having
defined 2 as this class we must now clarify what we mean when we say
thati he cardinal number of a set S is 2, when we saY'-that set S has the
cardinal number 2. We mean that S is an element of the class which we
;us: defined above as the cardinal number 2. "I have 2 dollars" means
that the set which consists of my dollars is an element of the class which
we defined as the cardinal number 2. Thus our portrait of 2 includes a
glimpse of 2 as a cardinal number, a glimpse which reveals 2 as the class
of all pairs.

$1

$1

NEW YORK CITY

-411----11P- MY TYPEWRITER

Let us now consider 2 as an element of the system of natural numbers
(the counting numbers 1, 2, 3, -). We have mentioned before that a
number system is a set of numbers and certain operations. We concern
ourselves for the present with the operations of addition. subtraction.
multiplication, and division. In studying the properties of these funda-
mental operations the mathematician regards them as binary opera-
tions. A binary operation is an operation which operates of two numbers.
Thus-- Hs-a symbol which denotes the operation of addition and 2 + 3
is a composite symbol which indicates that the operation of addition
is to be performed or has been performed on the numbers 2 and 3.
When an optIntion takes place there is a result. What is the result of the
operation of addition when performed on the numbers 2 and 3? The
auswer is that the result is another natural number, namely 5. Now a
school child looks rt 2 + 3 and sees nothing but a job to be done; he
does it by writing 2 + 3 = 5. To him the result is denoted by 5 and
that is all. But to a mathematician 2 + 3 does not produce an uncon-
querable urge to write 5. One way of looking at 2 3 is that it is a
composite symbol (formed from three basic symbols) which denotes the
same natural number as is denoted by the symbol 5. Instead of looking
at 2 + 3 as an indicated addition, a job to be done, the modern mathe-
matician sometimes looks at 2 + 3 as though the addition were already
done and the answer is 2 + 3. From this point of view Grade III arith-
metic becomes very easy. Problem: Add 435 and 29. Answer: 435 + 29.
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Of course, the teacher would like a statement from the child that (in
the Arabic system of eminwration) 64 denotes the same natural limber
as is denoted by the composite symbol 35 + 29. Now, getting back to
the properties of the fundamental operations in the natural number
system, we note that every pair of numbers can be added, that every
pair can be multiplied, and that the sum and product are again natural
numbers. We say that the system of natural numbers is closed with
respect to addition aod multiplication. We are using the word croscd
in accord:nice with the following definition: .4 system of numbers is
dosed with respect to a binary operation if the result of the operation, when
performed on any pair of numbers in the system, is a number-in-Mc system.
The system of natural numbers is induct dosed with respect to addition
and multiplication but it is not closed with respect to subtraction or
division. Thus the composite symbols 5 7, 2 2, 4 ÷ 6 are meaning-
less in the system of natural numbers. Of course 7 5, 3 1, S -
are meaningful symbols, meaningfnl in that they arc composite symbols
denoting three natural numbers.

We have gone into some detail talking about the natural number
system. Is all this necessary for an intelligent glimpse of 2? I believe it is.
In relation to composite symbols we see that the natural number 2 may
be denoted in many different ways. Thus:

2 = 1 + 1 = 3 1 = 4 2 = 5 3 = 6 4 = ,

2 = 2 X 1 =2 4- 1 = 2 = 6 4- 3 = 8 4- 4 = - .

This suggests, too, that 2 may be obtained in an infinite -number of
different ways as the result of a binary operation performed in the system
of natural numbers. Thinking some more about 2 in relation to opera-
tions and other numbers, we note that the possibility or impossibility-,
of dividing a natural number by 2 separates all the natural numbers
into two mutually exclusive classes. (Mutually exclusive means that
these two classes have no common element.) One class consists of all the
numbers which can be divided by 2; the other class consists of all the
-umbers which cannot be divided by 2. Tbus the concepts of even
number and odd number appear as we study the portrait of 2. Similarly
we might think of the class of all natural numbers which can be sub-
tracted from 2 and the class of all natural numbers which cannot. be
subtracted from 2. The first of the classes consists of one element,
namely 1. It is the only natural number less than 2. The numbers which
cannot be subtracted from 2 include 2 itself and all numbers which
arc greater than 2. Of course, the class of II natural numbers greater
than 2 is identical with the class of all numbers from which 2 can be
subtracted in the natural number system. Enough about 2 as a natural
number in an environment of natural numbers.



III. The Numeral 2

Having rested our eyes for a second we are ready for another peek
at the portrait of 2. This time we see 2 as a numeral, as a symbol for a
number or as part of a composite symbol. We have seen that the numeral
2 considered as one symbol denotes the second of the natural numbers.
But what does the numeral 2 mean in the composite symbol 27? What
does it mean in the composite symbol 1.324? In the Arabic system of
numerals there are ten elements, namely 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.
Every natural number is denoted by one of these symbols or some
combination of them. The combinations of which we speak here,_ as
37:3 or 47522, are not composite symbols which include symbols for
openitions as 8 + 2, 8 2, 8 X 2, 8 -7:- 2, but are composite symbols
formed on the basis of a place-value principle. Thus the immediate
successor of 9 in the system of natural -numbers is ten, denoted by 10,
a combination of two numerals written in a definite order. And we know
how these combinations are formed for any integer greater than 10.
It is important, however, to have a deeper insight into these symbols
than that reflected by the_ability to form the symbols. Thus, we teach
tne elementary-school child that 37 means 3 tens and 7 ones. In more
sophisticated language 37 is the cardinal number of the set which is
formed when the elements of three sets SI , 83 , each of cardinal
number 10, and the elements of one sct 8 of cardinal number 7 are
collected or combined into one set. It is to be understood here that no
object is an element of more than one of the sets SI, Sz , 83- ; that is,
we assume that the elements of these four sets are all distinct. Similarly,
202202 is the cardinal number of the set which is the union of two sets of
cardinal J00000, two sets of idinal 1000, two sets of cardinal 100,
and one set of cardinal 2, the elements of these sets all being distinct
The system of numeration has been expanded so that using the Arabic
numerals 0, 1, and so on to 9, and a decimal point, we may form a
symbol for any decimal fraction. Thus 2.022 denotes the rational number

(more about these later) which results if one adds the numbers 2,
10-20

2
In concluding this glimpse we note that the innocent-looking little

symbol 2, the numeral 2, may have different meanings dependent upon
its position in a composite symbol.

6



IV. The Integer 2
We move next into the system of all integers. This system includes

all the positive whole numbers, all the negative whole numbers and
zero: - , 3, 2, 1, 0, +1, +2, +3, . Note that one of the
elements in this system is +2, read positive two, and another 2, read
negative two. What is the relationship of these signed integers to the
natural number 2? What does the portrait of 2 reveal? Several pre-
liminaries are in order before we are in a position to ansWer these ques-
tions. First, let us review some uses of these munbers in elementary
mathematics and in everyday affairs. We note that 0 (read zero) is a
number in this system. Yes, we talked about 0 before; we listed it as one
of the ten Arabic numerals; we saw it in such symbols as 10 and 202202.
But 0 is not one of the counting numbers. The preschool cliiktlearns to
count, 1, 2, 3; 5; but he has no concept of zero as a number. In school
he is confronted with subtraction problems as 2 2 or 3 3; he knows
from his experiences with subtiaction that 2 2 "should be nothing";
he is taught to write 0. Ile should learn eventually that subtraction is
the inverse of addition, that 3 2 is that number which when added
to 2 yields 3, that 2 2 = 0 is mathematically equivalent to 2 + 0 =
2. We mald take all the counting numbers together with zero as a new
number system. That is what happens about Grade II or III in the
elementary schools. Of course 0 is a very useful number. It appears
frequently in inventory lists, balance-on-hand entries, in teachers' grade
books, and so on. The other numbers in the system of all integers are
useful, too. Think of the stock-market report where the net change in
selling price (hiring a 2 hour period is reported as a positive number or
a negative number, or the weather reports during a cold snap when
many of the cities have had subzero temperatures, or a college grade
point system in which F I_ =-- +3, and so on. But we, must
move along to a consideration of the integers as a system.

The system of all integers is a set. of numbers , 3, 2, 1,
0, +1, +2, +3, . together With the fundamental operations of addi-

lion, subtraction, multiplication, and division. The Grade IX algebra
student learns to perform these operations on signed numbers. Ile
knows that (+2) + (+3) = +5, (+2) + (-3) = 1, (+2) (+3) =1, (+2) (-3) = +5, etc. The system is closed with respect to
addition, multiplication, and subtraction, but it is not closed with
respect to division. Subtraction is notidways possible in the system of
nattiral numbers, but, in the system of all integers, subtraction is always
possible.

7



8 A PORTRAIT OF 2

The portrait of 2 reveals +2 and 2 as elements of the system of all
integers. In this environment we see that +2 and 2 have many
representations as composite symbols, for example:

+2 = (-15) (-17) = (-1) (-3) = 0 (-2),
+2 -716+2 = + 1 (-1) = (+2) 0 = (+3) (+1) = + = ,

1 3
+2 = (-15) + (+17) =- (-1) + (+3) = (-1) X (-2),
2 = (-17) (-15) = (-3) (-1) = (-2) 0 = (+6) (+8),

2 = ( -1) -X (+2) =--- +14

Do not be confused by the dual uses of the symbols + and when
working in this system. symbol may be a part of a composite
symbol denoting a signed, integer, as in +2 or 2, or it may denote
an operation as the mid& + sign in the following: (+2) + (+2).
ASsuming that we have a prettygood picture of the system of all integers
let us consider now the relationship of this system to the system of
natural numbers. The ease with which a ninth-grader learns to add and
multiply in the system of all integers indicates that this relationship is
a close one. IIe does not need to learn a lot of new addition facts or a
new multiplication table; all he needs is a rule of signs an_ d a-knowledge
of addition and multiplication in the system of natural numbers. Thus
our ninth-grader might say that (+2) + (+3) = +5 because 2 + 3 = 5.
In his mind he is identifying consciously or unconsciously 2 and +2 as
the same number. But the portrait of 2 does not reveal the natural
number 2 as being identical with the integer +2. What does it reveal?
It reveals the integer as a creation of the human mind, as something
created from the natural numbers, as something_ involving the concepts
of ordered pair and class of ordered pairs. Intuitively the signed integer
2 is created to give meaning to the composite symbols 1 3, 2 4,
3 5, . You might guess then that 2 is defined as the class of all
such symbols, all symbols a b in which wand b are natural numbers
and b a = 2. But the portrait of 2 shows something which has proved
to be much better than this, but which has this idea as its basis.

Ordered pairs of numbers appear in elementary work on graphing
equations in two letters, say x and y. A point is given in terms of its
coordinates as an ordered pair of numbers, such as (3,5). The order of
the numbers is significant; (3,5) is different from (5,3). Ordered pairs
of numbers are indeed important as coordinates in algebra and in analytic
geometry. They arc also iripmtant in the modern treatments of the
nature and structure of number. For our purpose we define an ordered
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pair of numbers as a composite symbol (a,b) in which a and b are symbols
denoting numbers. Thus (7,5), (5,7), (5,10), and (-17,0) are ordered
pairs of numbers. We consider (7,5) and (5,7) as different ordered pairs.

Consider then the following ordered pairs of natural numbers: (5,3),
(8,6), (17,15), (3,1), (151,149). What common property seems apparent
here? NOte that 5 3 = 8 . 6 = 17 15 = 3 1 = 151 149 =
2. The portrait of 2 reveals the integer +2 as the class of all ordered
pairs of natural numbers (a,b) in which a b = 2 and 2 as the class
of all ordered pairs of natural numbers (a, b) in which b a = 2. In
studying the system of integers, we prefer (5,3) or (7,5) or (100,98)
rather than +2 as a symbol for the integer, positive two. We define
+2 to be a certain class of ordered pairs and then we use any element
of the class as a symbol for the-class. We define equality, consequently,
so that (5,3) = (7,5) = (100,98) etc. The formal definition: If a, b,
c, d are symbols denoting natural numbers and if (a,b), (c,d) are symbols
denoting integers, then (a,b) = (c,d) it a b = c d or b a =
d c. Thus (5,3) = (7,5) in the system of integers, since 5 3 = 7 5
in the system of natural numbers; (3,10) = (8,15) in the system of
integers, she 10 :3 = 15 8 in the system of natural numbers.
The other integers are defined in a manner similar to that for +2
and 2 above. _Thus if n is any symbol denoting a natural number,
then ,-1-41 had =n are symbols denoting integers (+n a positive integer
and n a negative integer): +n is the class of all ordered pairs of
natural numbers (a,b) where a b = n and n is the class of all ordered
pairs of natural numbers (a,b) where b a = n. Thus +7 = (8,1) =
(9,2) = (10,3) = (11,4) = ; 7 = (1,8) = (2,9)- = (3,10) = .

For completeness we define the integer 0 as the class of all symbols
(a,a) in which a is a natural number. Thus 0 = (1,1) = (2,2) = (3,3) =

Boss: What was the net change in Cities Service?
SECRETARY: +2.

Boss, +2?
SECRETARY: Yes, you know, the class of all ordered pairs of natural numbers
(a,b) in which a and b have the property that a b = 2.

We now define addition and subtraction in the system of integers.
..

Definition. (a,b) + (c,d) = (a + c, b + d),
(a,b) (c,d) = (a + d, b + c).

Let us see if these definitions "work." To add +5 and 3 we first
change to ordered pair of natural numbers representations. Thus +5 =
(6,1), 3 = (2,5). Then (+5) + (-3) = (6,1) + (2,5). We look at
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the definition and we think: a = 6, b = 1, c = 2, d = 5, a + c = 8,
b + d = 0, (a 1- c, b + d) = (8,6). We write: (-1 -5) 1- (-3) ---- (6,1) 1-
(2,5) =-- (8,6) = +2.

Similarly, (+5) (-3) = (6,1) (1,4) = (10,2) = +8, (-3
(+ 5) (1,4) (6,1) = (2,10) = 78.

Is the system of all integers closed with respect to subtraction?
Yes, just look at the definition again, (a,b) (c,d) = (a + d, b + c).
Since a, b, c, d denote natural numbers and since the system of natural
numbers is closed with respect to addition, it follows that- a + d and
b + c are natural numbers, at hence that (a + d, b + c) is an integer.
We could go into great detail studying all the operations in this system.
But we do not want too many details; we just want enough to get some
insight into the nature of 2 as revealed in the portrait. We conclude the
discussion of this system, then, by proving one theorem in the theory
of integers.

Theorem: Addition of integers is commutative. (This means that the
result of adding two integers is independent of the order in which they
are added.)

Proof: If we use our definition of :addition,

(a,b) + (c,d) = (a + c, b + d), and

(c,d) (a,b) = (c + a, d + b).

Since addition is commutative in the system of natural numbers,
we have a + c = c + a, b + d = d + b. From our definition of equality
in the system of integers it follows that (a + c, b + d) = (c + a, b + d),
which completes the proof.

JOHN- Do you understand that proof, Alexander?
ALEXANDER: Why sure. 191 show you how it works in a special case. Suppose
you wish to add +7 and- 11. Convert to the ordered pair representations:
+7 = (8,1), 11 = (1,12). Add in one order and then in the other order:

(+7) + ( 1 1) = (8,1) + (1, 1 2) = (9,13) = 4,

( 1 1) + (+7) = (1,12) + (8,1) = (9,13) = 4.

Since 8 + 1 = 1 + 8 = 9 and 1 + 12 = 12 + 1 = 13 in the natural num-
ber system, we see that (8,1) + (1,12) = (1,12) + (8,1), that is, (+7) + ( 11) =

(-11) + (+7) = 4.
So we have seen that the integers can be created from the natural

numbers using the concept of classes of ordered pairs, and we have
indicated that the fundamental operations and their properties for
integers can he based rigorously upon the properties of the fundamental
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operations in the system of natural numbers: In particular, the portrait
of 2 re7eals +2 as the class of all ordered pairs (a + 2, a), and 2
as the class of all ordered pairs (a, a + 2), in which a denotes a natural
number.

We return now to the notion that the natural number 2 and the
integer +2 are essentially the same. We accused the typical ninth-
grader of having such an idea. Perhaps some of us had such an idea
before we started gazing at the portrait of Of course, 2 and +2
are elements of two different number systems. Every integer is a class
of ordered pairs of natural numbers. So no integer is the same as a
natural number. But some of us may insist that 2 and +2 are alike;
at least our intuition says they are alike. How is this likeness reflected
in the portrait of 2? To answer this question we must introduce a very
sophisticated concept, namely the concept of isomorphism. The structure
of the word isomorphism indicates that it ought to mean the property
of having the same form. What ought to have the same form as what?
We speak of an isomorphism as existing between the elements of one
number system and the elements of another number system, or between
some of the numbers in one system and all the numbers in another
system. We say the systems are isomorphic,-or that a part of one system
is isomorphic to the other system. But what does it mean?

Definition. A number system Si with elements a, b, c, is isomorphic
to a number system S2 with elements A, B, C, if there exists a one-
to-one correspondence between the elements of Si and the elements of 82
(as suggested by the symbol a 4 A, b B, c C, etc.) which has the
property that if a and b are any elements in Si and A and B arc their
mates in S2 tlj AL_:1.? A + B, and a-b 4- A-B.

Thus, if SI and 82 are isomorphic, one might "translate" from one
system to the other to perform the fundamental operations. Thus to
add a and b in SI , find the mate of a and the mate of b in S2 , call them
A and B respectively. Add A and B in 82 to get A + B. Find the
mate of A + B in 8, . This number is a b.

As an example consider two systems A and 13 of "numbers." Suppose
that A consists of the elements a and b, that-B-tonsists of the elements
a and iSt, and that addition and multiplication are defined as follows:

a + a = a, a + b = b, b + a = b, b + b = a,

a + a ="a -I- = /3, + a = /3 + = a,
a-a = a, ab = a,b a = a,bb = b,

aa = a, 0/3 = a, 13.a = a, 13.13 = S.
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7
e propose to show that the systems A and B are isomorphic. We

mate a to a, b tog: a - a, V4- 13. This establishes a one-to-one corre-
spondence between the elements of A and the elements of B. We shall
show that this correspondence satisfies the requirement as stated in
the definition of isomorphic. Consider the pair a,a and their mates
a,a. Note that a -f a = a, a + = a and that a ++ a. Also note that
aa= a, a a = a, and that a ++ a. Consider next the pair a,b and their
mates (0. Note that a + b = 5, a + # = #, ab = a, a13 = a. Adding
a:fed b Yields 5; adding the mates of a and b yields the mate of b. Multi-
plying a and b yields a; multiplying the mates of a and b yields the
mate of a. Similarly we check the pair b,a and their mates fl,a, and the
pair b,b and their mates 1343. If we add (multiply) any two elements
of A (not neces.7aril distinct elements) and if we add (multiply) the
mates of these two elements in B, we find that the two sums (products)
are mates. This completes the proof that 'he systems A and B are iso-
morphic.

Let Si denote the system of all natural numbers and 82 the system
of all integers. Let S3 be the number system whose elements are all the
positive integers in 83 and in which the fundamental operations are
defined as they are in 82 , provided the result is a number in 83 . Then
83 is the system consisting of the numbers +1, +2, +3, , and these
numbers are added, subtracted, multiplied, and divided just as they are
in 82 Now we assert that the system SI is isomorphic to the system 83 .

For let us mate elements as follows: 1 + -I-1, 2 4 +2, 3 4 +3, ,

n ++ +n, . Then every element in Si has a unique mate in 83 and
vice versa; that is, this mating constitutes a one-to-one correspondence
between the elements of Si and the elements of 83 . Also, we note that if
n and in are any two natural munbcrs, then n ++ +n, m ++ +m,
(n + in) + (n + in), (nm) ++ +(n- n). But addition and multi-
plication are defined in S3 s0 that +(n + in) = (+n) + (+m),
+m) = (+n) ( +m). Therefore, (it + m) ( +n) + (+m),
(nm) (+7) (+M), and the one-to-one correspondence is an iso-
morphism. Structurally the systems S3 and 8, are the "same." In-SI,
the sum of 3 and 5 is 8; the,product of 3 and 5 is 15. In S3 the sum of
+3 and +5 is +8; the product of +3 and +5 is +15. In conclusion
then, 2 and +2 are united, united as mates, in the isomorphism which
exists between the system of natural numbers and the system of-positive
integers. We accused the ninth-grader of thinking that 2 and +2 are
the same thing. Really we should not have accused him atAll. Most
textbooks and most teachers say the same thing. A textbook has this
exercise: 3 + (-4) = ? Here is an indicated addition of a natural
number 3 and an integer 4. Does this have meaning? No, not on the
basis of our theories of the systems of natural numbers and the system
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of integers. But let us not fight the- problem. Let us not be difficult.,
Let us admit that most people study and use mathematics because it is
a useful tool. And if the people who use mathematics say that 3 + (-4) =
1; we shall agree with them. But we shall explain it to our Mathematics
friends by saying that they mean (+3) + (-4) = 1. So the portrait
of 2 is clouded by the practical man who uses 2 as a symbol for the
natural number 2 and also as a symbol for the integer +2. This does
not bother the mathematics student; the picture for him is made clear
by a concept called iSomorphism.

TEACHER: Add XVIII and XXIV.

XVIII 4-) 18, XXIV 24
18 + 24 = 42; 42 ,-* XLII. Therefore,
XVIII + XXIV = XLII.

TEACHER: Add +2 and +3.
MARY; +2 2, +-3-4--* 3, 2 + = 5, 5 <-4 +5, (+2) + (+3) = +5.

JP.



V. The Rational Number 2
So far we have seen 2 as a numeral, as an element of the system of

natural numbers, and as an element of the system of integers. We next
see 2 as an element of the system of all rational numbers. Later we shall
construct the rationals from the integers in terms of classes of ord red
pairsa procedure similar to the one we used to create the integers from
the natural numbers. But right now, let us think about rational numbers
as they arc thought, of by most people who use mathematics as a tool,
that is, as "simple fractions." But -what is simple? What is a fraction?

2
Does a rational number need to be a fraction? Is ; a simple fraction?

5Is a simple fraction? Of course 2 is not a fraction. But the portrait

of 2 reveals 2 as a rational number. So where are we? in the first place
a fraction is something -with a_ numerator and a denominator; it is a
composite symbol denoting a number, the component parts of this
composite symbol being two symbols for numbers and one symbol
indicating the operation of division; it is an indicated division orit is
a symbol for the number which results when the numerator is divided
by the denominator. So a fraction is a symbol which has a certain form..
Actually any number whatsoever may be written in the form of a
fraction. For if x denotes any number in any system discussed in this

booklet, then 1 also denotes this same number. Well, a rational number

may or may not be denoted by a fraction. An elementary definition is:
A rational number is a number which can be 'written as the quotient of two

2
4

3 10 2 0integers. Thus we think of
:3

, , and as symbols denoting
1 1

rational numbers; each of them is a symbol indicating the quotient of

two integers. But 0.5, 3, 3.t416, and 2-1 are also rational nun -

1
hers. ners.For 0.5 =-

1 -3 = --3 V;2 = 1 3.1416 = d =31416 1 5

1 3V`j 10000'
2 4In this elementary sense, then, 2 is a rational number. For 2 =

from our knowledge of the system of integers.
Why do we have rational numbers? Are they important? Of course

we can think of situations in which it is desirable and convenient to use
1rational numbers:5 an apple, the farm owner and his tenant, sharing

14
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2 3 1on a 5 and plan, a weight of 3-
4 lb., a toleralice of 0.0001 inch.:

What can we dO in the system of rational numbers that we cannot do
in the system of integers? Both systems are closed with respect to
addition, subtraction, and multiplication. The system of integers is not
closed with respect to division; the system of rational numbers is closed
with respect to division with the exception that division by 0 is im-
possible. Thus (+2) ÷ (-3) is meaningless in the system of integers,

ba (+2) (-3) = a rational number. Working in the system

of rationals we can solve equations that have no solutions in the system
of integers. For example, 2x = =5 cannot be solved in the system of

5integers; in the system of rationals it has the root 75. Thus we need the

rational numbers to give us freedom in performing the fundamental
operations. And we see 2 in an environment of rational numbers._We

1see 2 +
3

as an indicated sum of two rational numbers; we see 2 1
3

as a composite symbol for 4 rational number. We sec 2 as the rational
7 . . 24number which results when is divided by 7 or as 3÷ 3 or as ---.8 16' 2' 12 7

-We have a feeling that this rational 2 is closely related to the integer +2
and the natural number 2. We suspect that there is another isomorphism
lurking in the shadows, and we are right. But we must reveal the rational
number in-much sharper outlines before we are ready to explore the
isomorphisni. This brings us to the high point in the theory of the
rational numberthe creation of the rational number as a class of
ordered pairs of integers.

_ The student of elementary algebra knows that (*) = 6 8= =
16 -14 2 3 4 8 7
8

= and that (**) = = = = On the basis of the

Ldevelopment in this booklet and an interpretation of ri as an alternate

way of writing a -. b, we note that the symbols in the set (*) of the
preceding sentence are meaningful in the system of integers. Each of the
five composite symbols in that set is a symbol for the integer, positive
two. On the other hand, the symbols in the set (**) are meaningless in
the system of integers. For 2 cannot be divide} by , 3 cannot be
divided by 6, etc., in the system of integers. In creating- the rational
numbers we give meaning to the symbols in the set (**), and simul-
taneously we give new meaning to the symbols in the set (*).
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We could define the class of all symbols in which a and tare integers

and b = 2a to be the rational number -4. (This same rates mal number

2
might also be denoted by or

-3 or any other symbol in the class.)

Similarly, then, the class of all symbols in which a and b are integers

and a = 2b should be the rational number 2. Some confusion might
result if we defined rational numbers-in-this manner. Should we say

that T3. is a symbol for the rational number 2 or a symbol for the integer

+2 or a symbol for the natural number 2? The portrait of 2 avoids this
confusion by defining a rational number as a class of ordered pairs of
integers. And, although it does not appear generally in the classical
literature on number systems, we shall use brackets in writing these
ordered pair symbols. We do this to eliminate any confusion which
might arise due to our definition of an integer in terms of ordered pairs
of natural numbers.

Definition. The rational number 2 is the class of all ordered pairs of
integers [a,b] in which a and b arc integers, b 0 and a = 2b. (The symbol

is read is not equal to.)

Any one of these pairs, as [2,1], [0,3j, or [-8,-41, is a symbol denoting
the rational number 2. In our formal development of the rational
number system we prefer this ordered pair symbol. Later we shall
use again the ordinary symbols of the scientist and the engineer.

We have defined the rational number 2. Let us now define rational
numbers generally. If a and b are any two integers and if b 0, then
[a,bj is a symbol for a rational number. This rational-number is the class
of all ordered pairs of integers [c,dJ in which d 0 and ad = be. And
any one of these symbols [c,d] denotes the same rational number as is
denoted by the symbol NA. Implicit in this definition of rational number
is the following explicit definition of equality for rational numbers:
fa,bJ = [c,dJ if and only if ad = be. Thus [3,4) and 16,81 are symbols

(the fifth-grader writes it as
3

denoting the same rational number
-

since

3.8 = 4.0. Similarly, 1+3.-21 and [-75,-I-50J are ordered pair symbols

for the rational number which the ninth- grader writes as 7,.
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We proceed to the definitions of the fundamental operations in the
rational number system:

[a,bJ [c,dJ = [ad + bc, bd.!,

[a,bJ [c,dj = [ad bc, brl J,

[a,b1[c,dj = [ac, bdj,

[a,b) [c,dj = [ad, bd.

In_ the symbols [a,bJ, fed), the letters a, b, c, d are symbols denoting
integers and it is understood that. b 0, d 0. (This understanding
follows from our definition of rational number.) Take a look at the
symbols on the right-hand sides of the four- equations in the definition
of the fundamental operations. Are they meaningful?_Weach of them a
symbol for a rational number? Note that each of them is an ordered
pair of integers, for, since the system of integers is closed with respect
to addition, multiplication, and subtraction, it follows that ad bc,
ad be, a c_ ad, bc, and bd are six composite symbols denoting integers.
One other point needs to be checked. In an ordered pair symbol for a
rational number, the second integer in the ordered pair must not be 0.
In the definition of addition, subtraction, and multiplication, the second
integer in the ordered pair symbol is bd. As stated above, b 0 0, d 0 0.
From our knowledge of the system of integers we know then that bd 0 0.
It follows that addition, subtraction, and multiplication are always
possible in the system of rational numbers. More precisely, the system
of rational numbers is closed with respect to these three operations.
How about' division? Is the system of rational numbers closed with
respect to division? Let us look at the definition again. [a ,b] [c,dj =
[ad, bel. It is understood that b 0 0, d 0 0. Does this insure that be 0 0?
No, it does not. For if c = 0, then be = 0. And, if bc = 0, then [ad, be]
is not a rational number. Now, if c = 0, then [c,dJ is a symbol for the
rational number 0. On the other hand, if c 0 0, then [c,dJ is not the
rational number 0 and the division [a,b) [c,dJ is defined. For, if c 0 0,
then_ be 0 0 and [ad, kJ is -a symbol for a rational number. We conclude
That in the system of rational )numbers division is always possible
with one exception division- by 0 is impossible. Thus the system of
rational numbers is closed with respect to all four of the fundamental
operations with the exception that division by 0 is impossible.

Let us try our definition of the fundamental operations on several
examples.



1

4

1

2

2-
2

2

2

=

=

=

[1,4]

[1,41

[1,41-

[1,41

[5,61

[2,31

- [2,3]

[2,31 =

4- [2,3J

4- [2,1]

=

[1

=

=

[1.3 4 -2, 4 -31 =+

[1-3 4-2,4-31 =

-2, 4 .31 = p,i21

[1.3, 4 -'2) = [3,81

[5-1, 6-21 = [5,121
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11
[11,12J =

12

5[-5,121
12'

[1,61
6'

=
3

= 5 .
12

Does rational 2 plus rational 2 yield rational 4? Using [2,1] as a symbol
for the rational number 2 and using our definition of addition we have
[2,1] -1- [2,1] = [2. + 1.2, 1.11 = [4,1]; and (.1,11 is a symbol denoting
the rational number 4. now about a rational 1? Yes, we have one;
[1,171 is an ordered pair symbol for the rational 1. Note that, according
to our definition of multiplication, [a,14- = fa-1, b-11 -= [a,b]. This
proves that the product of any rational number r and the rational
number 1 is the rational number r. Similarly the zero element in the
rational number system is [0,11. Thus [a,bJ [OM = [a. 1 + b-0, .11 =
[a + 0, b] = kJ)) and [a,N 40,11 = [a-0, b.1] = [0,b] = [0,1]; we add
[a,b] and our zero [0,11 and we get [a,b1; we multiply kb) by our zero
[0,1] and we get [0,1]. Let us prove a theorem.

Theorem. Addition of rational numbers is commutative. (This means
that the result of adding two rational numbers is independent of the
order in which they are added.)

Proof: Let a, b, c, d denote integers and the ordered -pair symbols
denote rational numbers. Then from our definition of addition of rational
numbers we have:

fa,b1 + fc,d1 = [ad bc,bdj

[c,dj [a,b1 = [cb da,db].

But ad -F be = cb c/a and bd = db from our knowledge of the system
of integers. Therefore [ad -I- = [cb da,dbj and [a,b1 [c,dj
[c,dj + la,b1.

We have had a glimpse of the rational number -system; we Ii ve
seen 2 as a rational number, as a class of ordered pairs of integers;
and we have indicated that the fundamental operations as applied
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to rational numbers may be defined and studied in terms of the ordered
pair notation. All this appears in our portrait of the rational number 2.
And, finally, as we promised at the. beginning of our discussion of ra-
tional numbers, we note that the portrait-of 2 identifies the rational
number 2 with the integer 2 using the concept of isomorphism. Thus the
mathematician and the engineer clasp hands again.

Here is the isomorphism. Let Si denote the system of all integers and
82 the system of all rational numbers. Let Sz be the system of all ra-
tional numbers each of which, in the ordered pair of integers notation,
can be denoted by a symbol [a,1J. In S3 the fundamental operations are
as they are in Sa , Thus 83 haS the elements - , [-3,1], [-2,1], 1-1,1],
[0,1], [1,1], [2,1], [3,1], - . We mate these elements to the elements of
the system Si of all integers-as- follows: , f-73,11 4- 3, I-2,1] +4
2, [-1,1] 44 1, [0,1)+4 0, 11,11N 1, [2,1]4-0 2, [3,1]4-4 3, - (We
are using the unsigned symbols 1, 2; 3 to denote integers here, not
natural numbers.) in general; if is is any integer, then we mate n with
[n,1]. This establishes a one-to-one correspondence between the elements
of 81-and the elements of 83 . We assert that it is an isomorphism. Let

and b be any two integers. Then a... N,1], b [b,1], a + b44 [a + b,11,
a- b 4-0 fa-b,1]. In order for our correspondence to be an isomorphism we
should have a + b 4-0 [a,1J + [b,1] and a-b 4 [a,lj [b,I]. This we shall
have if [a,1] + [b,1] = [a + b,1J and [a,1][b,1] = [ab,1]. This we
do have in view of our definitions of addition and multiplication. Let
us take an example. Suppose we wish to add the integers 5 and +3.
Let us translate to the system of rationale, then add, and then translate
back. We should get 2. Let us see. 5 44 1-5,11, +3-+ [a, 1 I, [-5,11
[3,1] = [-5.1 + 1.3, 1.1] = [ -5 + 3,1J = [-2,1], [-2,1] -0 2.
As another example suppose we wish to multiply: [- 5,1J[3,1]. The
result should be [ -15,1] according to our rule for 1 tultiplication. Let us
see if we can translate to integers, then multiply, and then translate
back. [-5,1] «. 5, [.3,11 4 -+ 3, 5.3 = 15, 15 +4 [-15,-11.

The portrait of 2 reveals the rational number 2 as something different
from the integer positive 2. The mind of man has created the rational
number 2 as a class of ordered pairs of integers. But the same mind has
produced the isomorphism which reveals in its simplest form the rela-
tionship of the fundamental operations in the two systems. What does
, + mean? Are we adding an integer and a rational number? The

1easiest explanation is that 2 + means rational 2 plus rational :3,

that the symbol 2 in this context must denote rational 2. (If we were to
give a rule for adding an integer and a rational number, it would probably
be: a + [1)4 = [a,1] + [b,c) = [ac b,cJ. Note how a is replaced by

=
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[a,1] and recall that a ++ [0,1] in the isomorphism.) Filially, what does
2 + 2 = 4 mean? Does it indicate au addition of natural numbers? of
positive integers? or of rational numbers? It could indicate any one of
these. It means what we want it to mean. And, if we want it to mean a
particular one of thew three, then we- shall- Juive to rely on the context
or we shall have to write soinething more definite, perhaps an added
remark or perhaps different notation.

Our concept of 2 as a number is growing. It started as a natural
number; now it is a atural-number °ran integer or a rational number.
The natural numbers are isomorphic to the positive integers. The

-integers are isomorphic to the rational numbers ja,l1, in which a- is an
integer. One way to view the growth of the number concept is to see:
natural number, positive -integer, all integers, rational numbers ki,11
with a an integer, then all rational numbers. We have seen 2_ in -each
stage of this development; we have seen it in our ever-increasing en-
vironment of other numbers. And we have seen the isomorphisms which
relate the 2's in the different systems. In symbols we have 2 4-- 2 44,-2_ or__
2 E. +2 4-- [2,1], meaning t.,atural 2)=++ (integer 2) (rational-2).
Two more links on this chain of matings will- conclude our portrait.
We shall see 2 as an element of the system of real numbers, and filially
we shall see 2 as an element of the system of complex numbers. Before
-proceeding with our discuion of the real number 2, however, we wish to
insert at this point some remarks on te_ approximate or measurement
number 2.
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When we count a finite set the result is a natural number; when we
measure something by counting the number of times a standard unit is
contained in the quantity being measured, we frequently find that the
result-is not a natural number. Laying off a yard stick along the edge
of a room we may lied that its length is more thane" yards and less
than 6-yards. We need a number between 5 and 6. For measuring pur-
poses we need many numbers between 5 -and 6; we need the rational
numbers. Now measurement numbers are not exact numbers. When we
say that the diameter of a piston is 3.561 centimeters, we mean that the
diameter is between 3.5635 cm. and 3.5645 em.---we mean that 3.5641cm.
is the diameter to the nearest .001 of a centimeter. In contrast to exact
numbers (the natural numbers or integers which result from the opera-
tion of counting) measurement numbers are sometimes called ap-
proximate numbers. As we gaze at-the portrait of 2, then, we see 2 as
a measurement numberas al: approximate number. We see ___such
measurements as 2 inches, 2 gallons, 2 kilowatts, 2 grams,= 2 seconds.
But we also see such measurements as 2.0 miles, 2.00 kilograms, and
2.000 cubic feet, in which the zeros are significant; they indicate the
accuracy of 2 as a measurement numbernearest tenth, nearest hun-
dredth, or nearest thousandth.

21



VII. The Real Number 2
The real number 2, as revealed by its modern portrait, is a creation

of the human mind. You might guess that modern man has created the
real numbers from the rational numbers, that a subset of the real num-
bers is isomorphic to the set of all rational numbers, and that in this-
isomorphisin, (real 2) 4--) (rational-2). But before we look at the modern
creation, et us consider the need for real numbers; let us see how real
numbers are used.

The -system of rational cumbers is closed with respect to addition,
subtraction,_ multiplication, and division (except that it is impossible
to divide by 0). As we have explained before, this means that these
operations can be performed -in- this system; it means that the sum of
every pair of-rational number§ is-a-rational number; likeWise the differ-
ence, the product, and the quotient of two ration_ al numbers are rational
numbers (except that 0 cannot be the divisor in a quotient). The system
seems to be complete from a -mathematical p()Int- of view. What else
would we like to do with numbers -besides add them, subtract them,
multiply them,_ and divide -them? Perhaps-some of us are thinking:
What about the restriction of not dividing_ by 0? Well, the modern
mathematician does remove this restriction in some situations, in some
theories. But that is another story. Division by 0 is impossible in any
of the elementary number systems, the ones which_ we are discussing
here. -in the elementary number systems 0a = 0 for every a in the
system, and a ÷ b = c means a = bc. Multiplication comes first; then
division is defined as the inverse operation. Note that 10.3 = 30 and
30 ÷ 3 =' 10; thus (10.3)-4- 3 = 10. Also (10 ÷ 3)3 = 10. The one
"undoes" the other. Now suppose division by 0 were possible. In other

-words suppose a ÷ 0 = b where a and b are numbers in some system.
We should then have a = b = 0, and thus a = 0; that is, a ÷ 0 = b

0
is impossible if a 0. But suppose

0
= 1. This is all right from the

standpoint that division is the inverse of multiplication provided b is
such a number-that 0 = 0 -b, But this is true regardless of the value of b.
Hence 0 ÷ 0 could be any number. But the result of adding two rational
numbers is unique; there is just one answer. Similarly there is just one
answer if two numbers are subtracted, or multiplied, or divided (with
divisor different from 0). For this and other reasons mathematicians
have long agreed that 0 ÷ 0 is indeterminate-or meaningless. The point
here is-that the possibility impossibility of dividing by 0 has nothing
to do with the need for creating real numbers. This brings us back to the

22
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question of what defects, if any, are present in the rational number
system.

1

Consider the following problem in elementary geometry: find the
length of thediagonal of a square of side length 1 unit. To be definite, let
us suppose that the length of each side is exactly 1 unit and that each
angle is exactly 90°. If we call the length of-the diagonal d and if we recall
a theorem due to Pythagoras, we conclude that d2 = 2. (The theorem
states that the-square of the hypotenuse of a right triangle is the sum of
the squares of the legs.) So what is the value of d? We say that d is the
square root of 2; we write d = VI But suppose the only- numbers are
rational numbers. We say d is approximately 1.41; 1.412 is a little less
than 2 and 1.422 is a little greater than 2. But what is d exactly? Is there
a rational number Whose square is 2 The answer is no. To show this,
suppose there were a rational number [a,b], (a and b are integers), such
that [a,b]fa,b1 = [2,1]. We may assume that the symbol for -the ra-
tional number ra,b1 is such that a and b have no common positive
integral (whole number) divisors except 1. We are assuming that the
fraction

a
is in lowest terms.) Then, from our definition of multiplica-

tion in the system of rational numbers, we have [a2,b21 = [2,1] and from
our definition of equality (really from our definition that a rational
number is a class of symbols related in a certain way) we have a2 =
Now we may transplant ourselves into the system of integers. We note
that 2b2 is an even number. Hence a2 is even. Hence a is even (for- the
square of an odd integer is odd). Hence there is an integer c such that
a = 2c. Hence (2c)2 = 2b2. Hence 4c2 = 2b2. Thence 2c2 = b2. Hence b2 is
even. Hence b is even. Hence a and b have the common divisor 2. But
we started with a and b having no such common divisor. Hence the as-
sumption that d is rational leads by logical reasoning to a pair of in-
tegers which do not have 2 as a common divisor and which also do have
2 as a common divisor. The only way to avoid this dilemma is to con-
clude that the assumption is falseto conclude that d is not a rational
number. But we need a--number d whose square is 2. The ancient ge-
ometers needed it; they lost a lot of sleep worrying about the fact that
there was no such number; they thought this was a flaw in- their other-
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wise beautiful theory. The modern mathematician does not- worry
about a need for a square root of 2. He knows there-is no rational number
whose square is 2. He needs this square root, however, so he creates it.
The thing created is not a-rational number; it is a real number. Later we
shall look at this creation structurally; we shall see how 2 is made from
rational numbers in several modern theories. Right now we recognize
the existence of this number and the symbol commonly used for it,
VI. The important thing about this number right now is that (-0)2 =
2. Now we can solve the equation x2 = 2 and get an exact answer;
( ./)2 = 2 exactly!

-3 -2 -1 0 1 2 3 4

A useful mathematical device is the number scale=fiumbers corre-
sponding to points along a line in a very familiar way. The numder scale
we wish- to think about is one which exists only in the mind. We start
with a straight line (perfect, you know) which we think of as running
from left to-right. An arbitrary point on it is labelled 0; a point to the
right of " ;- labelled 1. Assuming now that we can lay off equal dis-
tances, Am le segment from 0 to 1 to mark the successive integers
in both directions. Going to the right from 0 we have 1, 2, 3, ; to
the left we have 1, -2, -3, . In the mind every integer appears as
the label of some point on the line. Next we label all the points which
correspond to rational numbers. Where does the label [47,7] go? Well,
[47,7] as a symbol for a certain rational number has served its purpose.

So we shall use the more familiar symbols
47

or 6;.-. We may recall from
7

elementary geometry a ruler and compass construction for dividing a

0

segment into 7 equal parts. having divided the

7 equal parts, we lay off ..:gments of length 1

5 6
' 7

only but 1000- -- 23
'

and so on. So now

rational numbers have found their places as

segment from 0 to 1 into

and label eventually not

we itnagiae that all the

labels for points on our
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number scale. The big question is: Have all the points on the line been
labelled? It seems logical that the answer might depend upon our notion
of line, of point, of the relationship between points and lines. We did not
say anything that would help us here when we said that a straight line
exists in the mind. We have a feeling that whatever a line is, it ought to
have unlabelled points, even after all the rational numbers have found
their places. For we feel that N7`2 ought to be the length of a segment
with the point labelled 0 as its left end point. The right end point ought
to be labelled -O. Can this point be constructed with ruler and com-

1 2

passes? Yes, easily. Construct a square with the segment from 0 to 1 as
one side. Swing an arc with center at 0 and length equal to the diagonal
of the square. This arc will cut the number line in a point to the right
of 1, the point which we label Na

The foregoing paragraphs may have led you to believe that the need
for V5 is the only reason for creating the real numbers. Afore likely they
have not lead you to believe any such thing. For as you know, there are
infinitely many needs similar to this need. We need N3(4,

11 -1.2, i/1 Na a number usually denoted by 7r, and
many, many others. We do not need these numbers in the factory when
we are recording diameters of pistons; we do not need them in finance
accounts, and we do not need them in measuring timbers for a bridge.
But in the realm of ideas and theory, in the area of creation_ and design,
we need them. It is true that in the final computations an engineer may
use rational approximations for numbers which he has determined. But
his initial toe-hold on some important number may well have been
made by solving equations whose solutions depended on some of the
pure mathematical properties of irrational numbers. Mathematically,
these numbers are indispensable. We need them to make mathematics
simpler; we need them to make mathematics beautiful; we need them as
labels on our number scale; we need them so that the full force and power
of our knowledge of numbers can he effectively used in our study of
geometry (analytic geometry).

Let us look at the number scale again. There are two basically dif-
ferent ways of looking at the numbers in this scale. In the one we see the
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evolution of the number concept front natural number to real number.
In the other we see the numbers on the number scale as comprising the
systein of real numbers. In the one we see steps: Step 1. We see the
points labelled 1, 2, 3, , and we think of -them as natural numbers.
Step 2. We see all the points labelled , -3, -2, -1, 0, 1, 2, 3, ,

and we think of them as integers. Step 3. We see all the points labelled
1 9 5

with rations, numbers; we see - -2- 3.145; but we also see -13,
' 3, 7,

-2, 0, 4, 73, and so on, this time as symbols for rational numbers. Step
4. We see all the points which are-labelled as real numbers; and when we
see all these points, we are looking at all the points on the line. Of course
this step reveals a point labtillect and many others we have not seen
before. But it also reveals every point we saw in steps 1, 2, 3. We see

2
1- again; we see -2 again; and we see Tagain. This time we see them all as

elements of the real number system. We may look at the number scale
and, if we are not in a hurry, we may see all the steps, we may see all
the number systems which we have discussed and the isomorphisms
which tic them together. On the other hand we may look at the number
scale and see only the real numbers; we may see a one-to-one correspond-
ence (established through the labelling) between the points on the= line
and the numbers in the real number system.

This leads us to a system of notation for real numbers, the symbols in
terms of which most users _okmathematics -think of real numbers,
decimals. Suppose x is a real number. is also a rational number (you
know, through ;somorphism; or call it a rational real, if you wish), then
the decimal symbol for x can be obtained as follows. Write x = [a,b]
using the ordered integer pair symbol; express a and b in the decimal
system using Arabic numerals; divide a by Wising the division rule
learned in the elementary school. It is easy to prove that the division will
either come out even (the quotient being a finite decimal), or the division
will not come out even, in which case the digits in the quotient will

eventually appear in repeating blocks. For example, } = 1.25,- =

-0.428571428571, and 5
62 = 887

= 5.3757575 = 5.375. (In the
165 165

last two examples the superstore indicates the block of digits which
repeats.) If the decimal terminates or if it repeats, it is a symbol for a
rational number; an infinite nonrepeating decimal is a symbol for a real
number which is not a rational real number. Consider the example,
x = 1.010010001 . We cannot write all the digits in an infinite
decimal but we can describe it so that it can be written in the mind. In
this example there is (from left to right) a first 1, a second 1, and so on;
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and so on means an nth 1 for n = 1, 2, 3, (through all the natural
numbers). For n = 1, 2, 3, , the nth 1 is followed by a block of
n 0's (the first 1 is followed by one 0, the second 1 is followed by two
O's, and so on). We have deliberately described a decimal which never
repeats; of course the 0's and l's are repeated over and over, but there is
no block of digits which successively repeats itself. So the number a: is not
a rational real number; it is an irrational real number. Where is it on the
number scale? It lies between 1 and 2; it :ies between 1.01 and 1.02; it
lies betweeti 1.01001 and 1.01002; and so on. The number scale as an
object of thought contains exactly one point which satisfies all the re-
quirements of the last sentence; that point is the one which receives the
label 1.010010001.

One theory of real numbers is a theory based on real numbers as in-
finite decimals. It is possible to define the fundamental operations of
addition, subtraction, multiplication, and division, and to develop their_
properties, using the infinite decimal -concept of real fitnnber. if an
engineer thiiiks about a real number at all, he probably visualizes it as a
decimal. The portrait of 2 reveals a real number 2; we see it as a point on
the number scale and we see it as an infinite decimal symbol, 2.000 .
Later we shall_see that each rational real number has two infinite decimal
representations. In this connection the portrait of 2 reveals it not only as
a real number with the representation 2.000 but also with the repre-
sentation 1.999 . This theory of the real number is pretty much down
to earth. The real number is defined as a symbol and the operations are
defined in terms of these symbols. The whole theory rests upon a system
of notation using Arabic numerals; it rests upon an extension of a class
of symbols for rational numbers, an extension from certain types of
decimals to all infinite decimals. It is not an extension of the rational
number system based upon the intrinsic properties of the rational mim-
hers themselves. We propose then to look in upon two modern theories
which create the reals from the rationals using procedures which are
independent of the rational cumber symbolism.

First, let us consider the theory of Dedekind. In this theory each real
number is created as a pair of infinite classes of rational numbers. To
describe these ,classes we return to the number scale and look at it from
Step 3; we see all the rational numbers as labels of points on the number
scale. The relative position of these numbers on the scale establishes an
order, a linear order, in the system of rational numbers. If we look at any
pair of rational numbers, two different rational numbers, we see that one
of them lies to the left of the other one, that one of them is less than the
other. This order relationship, which is revealed so clearly on the number
scale, can be described rigorously without the aid of our geometrical
crutchthe line which is the basis of the number scale. It is convenient
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for this purpose to use the ordered integer pair notation for rational num-
bers. We .say that [a,b] is a positive rational if a and b=are both positive
integers or both negative integers; we say that [a,b) is a negative rational

if a and b are integers of opposite sign. Thus 3 = [3,4] = [-3,-4] is

positive while = [-3,4] = [3,-4] is negative. We say that the

positive rational nunmers are greater than 0, that the negative rational
numbers are less than 0. We say that [a,b] is greater than [e,c1J and write
[a,b) > [ed] if [a,b) [ed] = [ad beibd] is a-pesitive number; we say
that [c,d) is less than [a,b) and write 1c < lab) if [a,b] > Of_course,-
if [a,b] [c,d] = [0,0], then [a,b) = [c,d].

Let us now create the real number 2 as it appears in the Dedekind
theory. Let A denote the class of all rational numbers which are less than
or equal to the number 2; let B denote the class of all rational
numbers which are greater than 2. Then we define the real number 2 to
be the ordered pair of classes {A,/3) ; we write 2 = {A,13}, or, for clarity,
(real 2) = {A,B}. On the number scale we see A as the set of all rational
numbers lying to the left of (rational 2) including (rational 2) itself;
B- is the set of all rational numbers lying to the right of (rational 2).
Intuitively, we see (real 2) as a partition of the rational numbers into a
lower segment and an upper segment, the number (rational 2) being the
largest in the lower segMent. In general, ilr is any rational number, let
A,. denote the set of all rational numbers &less than or equal to r; let Br
denote the set of all rational numbers t greater -than r; and define (real
r) {A B,). These real numbers we might call the rational reals; the
real numbers which we have not created yet are the irrational reals. Later
we shall show that the rational reals are isomorphic to the rationals.

Now for the construction of the irrational reals using the device of the
Dedekind partition. To construct the number -0 we take classes A and
13 as follows: A contains all negative rational numbers, 0, and all positive

__rational numbers r having_ the property that r2 < 2; B contains all
rational numbers which are not in A; { A ,B I is the real number ordinarily
denoted by VI In general, if A and B are '- classes of rational numbers
having the properties (i) every rational num,: *v either in A or in B, (ii)
every element of A is less than every element of B, (iii) there is no smallest
clement in B, then {A,/31 is a real number. Note that if (i) and (ii) are
satisfied for a given pair of classes A,B, then it is impossible for A to have
a largest element and 13 to have a smallest element. For if r is the largest
rational number in A, and s is the smallest rational number in B, then

r sr < s by condition (ii) and ---- is a rational number which is greater

r sthan r and lei than s. By condition (i) we see that--T-- is either in A
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or it is in B. It cannot be in A since r is the largest element in A and it
cannot be in B since s is the smallest element in B. Therefore if A and
B satisfy conditions (i) and (ii), and if B has a smallest element, then A
has no largest element. But if we moved this smallest element of 13 into
class A, then A and 13 would satisfy all three conditions. So if A and /3
satisfy (i), (ii), and (iii), that is, if {A ,B) is a real number, then either A

_ has a largest element or it does not.. If A has a largest element r, then
,111 is the number (real r); if A has no-largest element, then {A ,13l is

an irrational real number. Consider again the number As you will
recall, there is no rational number r such that r2 = 2. In viewuf the linear
order of the rat ionals we have r2 > 2 or 7.2 < 2 for every rational number
Suppose ri is any positive rational number in the lower segment A which
we described when we defined -VII Then r12 < 2. Regardless of what 1.1
we start with in A, we can find a larger rational number -in A., Given an

r1 in A, let r2 denote the rational number 712 ±4ri 2. Since 2 > r12, we have

4 rt4 > 2 + r12, 4r1-> r1(2 r12) and r2 =
2 + r12

> rt. On the other hand,

we have 2 r12 > 0, -7.12)2 > 0, 4 4r12 r14 > 0, 4 -+ 47.12-
d-r14 > 8712, 2(2 + r12)2 > (4r1)2

(4r, 2 > 7.22. We have shown that(2+ r,2)2
the rational number r2 is larger than ri-and, since 2 > r22, that r2 is in A.
So it is impossible for A to live a largest element. What is the largest
rational number Ivhose square is less than 2? Answer: There is none.
For if r1 were the largest one with this property; then the- above proof
shows that r2 is a larger one with this property. But this contradicts the
assumption that r1 is the largest; so there cannot-be a largest. Of course
the eighth-grader learns how to find larger and large r's with the prop-
erty that r2 < 2. Ire finds 1.4, 1.41,1.414, 1.4142, . Actually he does
not carry the process very far; none of his problems requires more than
five-or six places. But suppose he carried it out to 50 places; or suppose he
hired an electronic computer to calculate 1000 places; would he then
have the largest rational nunJter with square less than 2? The answer is
no; there is no such largest rational number. Now- suppose that this
eighth-grade square root process has been carried out to give an in-
finite number of places. Someone may say that is impossible. Actually,
yes. But let us imagine that it has been done. In the mind, then, we have
an infinite decimal and we can describe the process of determining each
digit in this decimal. Someone may guess that this is the largest rational
number with square less than 2. No, no! The answer is no on two counts.
First, this infinite decimal is not a rational number, it is one symbol for-a
real number. Secondly, its square is not less than 2, its-square is exactly
2. Of course, the infinite decimal is another symbol for -VI
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We have discussed at some length the creation of the real number as
a Dedekind partition of the rational numbers. We see (real 2) as an
ordered pair [A,/31, where B is the set of all positive rational numbers,
each of which exceeds 2 and where A is the set of all other rational
numbers. We see -V2 as an ordered pair where 13 is the set of all
positive rational numbers each of whose squares exceed 2, and A is the
set of all other rationals. In general a real number is a pair {A,B} Nvilere
-A and B are sets of rational numbers satisfying three conditions, which
we listed; The real number system is the set of all these numbers and the
fundamental operations for combining real numbers.

It is not our intent to develop this real number theory, but we shall
taste a little of it. How shall we define addition? We are assuming that we
have complete knowledge of the fundamental operations in the rational
number system. Let x- and y be- two real numbers. Then x = {A,B),

-and y = {C,D}; x and y are Dedekind partitions of the rational num-
bers; for x and y the lower segments in these partitions are A and C,
respectively; the upper segments are B and- D, respectively. We define
the sum of x and y to be a real number z = {E,P) where the sets E,P
are formed as follows. For every pair of rational numbers r and s, r in
A and s in C, put the rational number r s F is the set of all
rational numbers not in E. It can be shown that fE,F1 is a-real number.
Similarly we can define subtraction, multiplication, and division of real
numbers. And ve can develop the properties of these operations in the
real number systems using these definitions. For example, it is easy to
prove that addition is commutative in the real number system. When we
defined the sum of x and yabove, we formed E as the class of all rational
numbers r s where r is in A and 3 is in C. If we follow this definition
and add y and x, adding in the other order, we should form E as the class
of all rational numbers s r where s is in C and r is in A. Since addition
is commutative in the rational number system, it follows that s r =
r s, that the class E is the same class for y x as for x y, and
hence that x = y x, Can we establish a linear order for the real
numbers? Let x and y, x = {A,B }, y = 1C,D), be two real numbers.
We say that x = y if A and C are identical sets; that is, if A and C are
symbols denoting the same set of rational numbers. Otherwise we say
that x is different from y; we write x y. In th.; latter case, one of them
ought to be greater than the other one. How shall we define this order
relation? Suppose that x y. Then A and C are different classes of
rationale. This means that some rational number r is in one of these two
sets but not in both of them. To be definite, suppose there is a rational
number rin A and that r is not C. Then we define x to be greater than
y; we write x > y. The order relation thus established in the real number
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system is the same as .he one which one would naturally define in terms
of infinite deeithals. flow about the number scale? Yes, we can think of
each point on the number scale being labelled with some symbol for a
real number x. This symbol may be one in ordinary use, as 2, or it may be
the ordered pair symbol {A,B} where .-1,B are classes of rationale forming
a Dedekind partition. And we can pull the nationals and the rational
reals together through an isomorphism as we have suggested previously.
We mate each rational number r to the real number {A,B}, which e_
called (real r) above, where 11 is the set of all rational numbers not ex-
ceeding r and B is the set of all other rational numbers. Let us see if we
can add by "translation," as required in the definition of isomorphism.
Suppose we wish to add (rational r) and (rational s). Then (rational r)
+4 (real r), (rational 3)+4 (real s); (real r) (real s) = {E )1, in which
the largest element in E is the rational number which is the sum of the
numbers r and s; and {E,F} + (rational r s). This completes our
glimpse of the Dedekind real numbers.

Rational Real

r r = (A,B)
s= {C,D}

{A,BJ + (0,D) = {E,F}
r s r s = 1E,F)

The portrait of 2 reveals a real number 2 as envisaged by Dedekind.
It reveals 2 as a Dedekind partition of the rational numbers. It reveals
2 in a system of numbers where each- element is such a partition and
where the operations are defined and developed in terms of these par-
titions. But it also reveals Another real number 2; it reveals 2 as an
element of another number system which we shall now discuss.

In the theory of real numbers due to Georg Cantor, a real number is a
class of sequences of rational numbers, the class having certain proper-
ties which we shall state later. In the meantime we must talk about
sequences, in particular about sequences of rational numbers. An in-
finite sequence of numbers is a correspondence which mates a number
with each of the natural numbers. A symbol for an infinite sequence
which suggests the nature of the sequence idea is: at, a2, a3, , ,

In this composite symbol al denotes the number in the sequence
which is mated to 1, a2 denotes the number in the sequence which is
mated to 2, and so on; a. denotes the number in the sequence which is
mated to n. Briefly we say that am is the first eletn6nt-in the sequence,
az is the second element, and so on, Now, of course, it is impossible to
write an infinite sequence of numbers. We can picture it in the mind; we
can communicate our knowledge of an infinite sequence using a finite
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number of voids or symbols. Consider the sequence in which a 1

for every natural number a. The same sequence is suggested if we say:

3

1

,
4

11
consider the sequence 1, , , . Other examples of

2

infinite sequences are: I 1 12'4'6' , 1, 1"1, 1
'

(-1)"+1,"
; and 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, . Note that in the definition of an

infinite sequence, the correspondence is not required to be a one-to-one
correspondence. Each natural number a appears exactly once as a sub-
script in the symbol. , 02 , 03 , ; but the an themselves need not be
distinct. In fact 1, 1, 1, is a sequence-in which every a is the same
number: al = 1, a2 = 1, a3 = 1, and so on.

For our purposes, we are particularly interested in convergent se-
quences of rational numbers. We shall give two definitions for a con-
vergent sequence and then discuss the relationship between the two.
The intuitive idea in the first definition is that an approaches closer and
closer (it may be there or it may get there in some examples) to sonic

I 1 I
fixed number as n gets larger and larger. _Thus the sequence 1

2
1

i, 1 . , is convergent, since is as close to 0 as we please for all a

sufficiently large. In this example we say that 0 is the limit of the se,
quence, and we say that the sequence is convergent by the external
criterion. It is an external criterion since the convergence depends upon
the relationship of the numbers in the sequence to a number called the
limit; the limit number need not be an element of the sequence. Other
examples are as follows:

(1)
1 1 1

I, 0,75, 0,:f, - , 0, .

This sequence is convergent with limit 0.

3 5 7 9 2n 1

This sequence is convergent with limit 2.

(3) 1, 0, I, 0, 1, , 0, I,

This sequence is not convergent; we call it divergent. So much for the
intuitive idea behind the definition; here is the definition itself.

(2)

Definition. .4 sequence a, , a2 , (13 , is convergent (by the external
criterion) with limit a if corresponding to every positive rational amber r
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there is a natural number N with the property that a r < an < a ± r
for erery natural number n which exceeds or equals N.

In the intuitive idea, we %rant an close to a for all large n. In the formal
definition the how disc comes first; we want an and the limit a to differ
by less than r. In the formal definition the "for all large n" is made pre-
cise next; there must be a natural number N so that something will be
true for all n N, so that an will lie between a r and a + r for every

2a
72.

13 7"n N, Consider again the example, 1
' ' 3

5

' 4 . Let

us see how the definition works on this example. Suppose that r = 1

10
1then we want, to be between 1.9 and 2.1 for all large n. Sincea

2a 1
< 2 for all n, we need not be-concerned with the 2.1. What we7/

need is 2n 1
> 1.9, 2n I > 1.9n, An > I, it > 10. So corresponding

to r = TT; we take N = 11. Then if n 1
11, we have 2 1

<2 < 2A and n > 10, .1n > 1, 2n 19n> 1, 2n 1 > 1.9n, 2i------1
211 1> 1.9. Hence lies between 1.9 and 2.1 for all n 11. We have

not proved that the sequence is convergent with limit 2; we have illus-
trated the meaning of the definition with a particular r. To prove con-
vergence we must show that-every positive r works. So let a positive
rational number r be given. We want to describe a procedure for de-
termining the N which will work regardless of the value of r. For all

2n 1= 2n 1 < 2 < 2 + rN we want 2 r < < 2 + r. Since

for all n, the requirement 2n 1 < 2 + r places no restriction on the

1value of N. So all we need is 2 r < Phis will be true if 271

1 > 2n nr, if nr > 1, if it > 1. Lot, N be the smallest. natural number

with N > Then if n N, we have n > , and 2 r < 2,1 1 <rr 7/
5 2 12 + 3r. This proves that 1, :5, n

72
, is convergent to the

limit 2.
The intuitive idea in the second definition is that a, , a2 , , an
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is convergent (by the internal criterion) if, given a specified closeness
(a positive number), there is some element in the sequence beyond
which the two elements of every pair differ by less than the specific&
closeness. In the external criterion the elements of the sequence are re-
quired to be close to some number, which might be "external to," that
is, which might not be an element of the sequence. In the internal
criterion the closeness requirement is specified internallyclose to each
other. The formal definition is as follows:

Definition. The sequence a, , a2, a3 , is convergent by the internal
criterion if, corresponding to every- positive rational number r, there is a
natural number N with the property that r < an am < r for every pair
of natural numbers 71-, m, each of which exceeds or equals N.

There is a theorem which says that a sequence which is convergent by
the external criterion is also convergent by the internal criterion. In-
deed, if a and a,,, are both close to a, then they are close to each other.
If ai , a2, a3 , is convergent to a and if we want an and a, to differ

by less than r, then we take N in the first definition so that a 1r <
1a < a ± 5r for all n N. Then if 71 N and m N, we have

(I
2
-r < an < a +

2-r
and a < a, < d +-Ir. So an and a, both lie

on the number scale in the interval with end points a -1r and

a + .1r. Since this interval is r units long, it follows that an and a., differ

by less than r.
A good question at this point is: Is there a theorem which says that a

sequence which is convergent by the internal criterion is also convergent
by the external criterion? If we are talking about sequences of rational
numbers and if the limit a in the external criterion definition is re-
quired to be a rational number, then the answer to the question is no.
If we are working in the system of rational numbers, then there are con-
vergent sequences which do not have limits. A simple example is the
sequence 1, 1.4, 1.41, 1.414, - in which the terms are determined by
the elementary-school process for firding a decimal approximation to
VI Inasmuch as this sequence is convergent in the system of real
numbers to the real number V2 and since a sequence can have only
one limit, it follows that the sequence cannot have a "rational real"
limit. Let us look at it another way. If the sequence had a rational limit
L, then the infinite decimal 1.414 would be another symbol denoting
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the same number as L. But this is impossible since the infinite decimal
1.414 - is nonrepeating while the decimal representation for a rational
number is finite or repeating.

Now what has all this business-of sequence to do with creating the
reals from the nationals? One way to look at it is this. There are many
sequences of rational numbers which are convergent by the internal
criterion. Some of them have limits and some of them do not. The
intuitive idea is that we shall create a limit for each of them that does
not have a limit. And, of course, this limit will be a real number. Before
we do this let us recall how we created the rational numbers from the
integers. We looked at the system of integers and we saw that the system
was not closed wish respect to division. In the system of integers the
symbol

5
is meaningless. So we created the rational numbers and 5

is a3 3
symbol which denotes one of these new numbers. We have a similar
situation in connection with the internally convergent sequences of
rational numbers. Consider again the sequence of decimal approxima-
tions for the VI

1, 1.4, 1.41, 1.414, .

Let us think of this whole sequence as one symbol, a symbol for a real
number. Just as [8,5] is one representation for a certain rational number,
so also 1, 1.4, 1.41, - is one representation for a certain real number.

8 16 32Just as [8,5LPM,H32,M are different representa-(or 5' 10' 20) ar
lions for the same rational number so a real number has many repre-
sentations as a convergent sequence of rationals. In Cantor's theory two
convergent sequences of rational numbers,

, a2 , a3 ,an;
bi b2 , b3, , bn , ,

are representations for the same real number if the sequence

, a2 b2, - , an bn , ,

is cony ,gent to the limit 0. In this case we say that the sequences al ,
a2 , a3, and bi , b2 , b3 , are equivalent sequences. Just as a rational
number is defined as the class of all its representations as an ordered pair
of integers, so a real number is defined as the class of an its representa-
tions as a convergent sequence of rational numbers. Thus (real 0) is the
class of all sequences of rational numbers which converge to (rational 0);
(real 1) is the class of all sequences of rational numbers which converge
to (rational 1); V2 is the class whose elements are the sequence 1,
1.4, 1.41, 1.414, and all other sequences equivalent to this sequence.
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In general, if al , a2 , a3 , is any convergent sequence of rational
numbers, then the class of all sequences of rational numbers which are
equivalent to this sequence is defined to be a real number. Each one of
these sequences is called a Cantor representation of the real number.

How do we operate with Cantor's real numbers? We give here a defi-
nition for the addition of real numbers in Cantor's theory. Let x and y he
two real numbers with Cantor representations as follows:

x a2 (13 , , an

Y = b2 b3 , , b. }

Define the sum x + y to be the real number represented by the sequence

a1 + b1 , 02 + b2 an + b. , .

Similarly we can define the other fundamental operations and from them
develop a theory of real numbers. As an example of a theorem in this
theory we have: Addition of real numbers is commutative. For with x
y as above we have:

x y = + , a2 + b2 , , an + b , ),

y x = + , b2 + 02, bn + ,

If we subtract these representations for x + y and for y + x term by
term, we get the sequence 0, 0, 0, . And since 0, 0, 0, converges
to 0, the representations for x + y and for y + x are representations for
the same real number. Hence x y and y x are symbols for the same
real number. This completes the proof of the theorem.

How can we establish a linear order among the real numbers? Given
x and y with representations as above, define x > y if

(i) the sequence al bl , a2 b2 , , a b. , does not con-
verge to 0,

(ii) the sequence al b1 , a2 b2 , an b. , is convergent,
and

(iii) there is a natural number N such that an bn > 0 f all n > N.
how are the real numbers of Dedekind related to the it-al numbers of

Cantor? On the basis of their definitions they are entirely different.
But intuitively they are quite similar. Actually, it can be proved that the
two systems of numbers are isomorphic.

Having created the real numbers as Dedekind partitions of rationals
and as classes of equivalent convergent sequences of rationals, one might
be tempted to create a new system of numbers by forming Dedekind
partitions of real numbers by taking classes of (internally) convergent
sequences of real numbers. This can actually be done. But the results are
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not interesting. Each of I he new systems of numbers which results is
uninteresting since it is is norphic to the system of real numbers.

When we defined the real number as a Dedekind partition of the
rationals, we created, corresponding to each rational number r, a real
number which naturally mated itself with that r. This real number
1A,B; is the or.e in which r is the largest element in A. But we created
many real numbers which did not correspond in that way with the
rationals; there are infinitely many real numbers {A,B1 in wh:.11 A has
no largest element. In this sense the real number system is much larger
than the rational number system.

When we defined the real number as a class of equivalent sequences of
rational numbers, we created, corresponding to each rational number r,
a real number which naturally mated itself with that r. This real number
is the class of all sequences of rational numbers which converge to r.
But we also created many real numbers which do not correspond in that
way to a rational number; there are infinitely litany real numbers with
representations which are internally convergent, sequences of rational
numbers but not externally convergent. In this sense Cantor's system of
real numbers is much larger than the system of rational numbers.

If we attempt to enlarge the system of real numbers by forming
Dedekind partitions of reals or classes of convergent sequences of reals
and calling them, say, superreals, we fail since as stated before, the re-
sulting systems are isomorphic with the real number system. The reason
for this is embodied in two theorems, a climax theorem in the Dedekind
theory and a climax theorem in the Cantor theory, which we state with-
out proof.

Theorem. If A ,B) is any Dalekind partition of real numbers (three
conditions analogous to our three conditions for a Dedekind partition of
rational numbers), then there is a largest real number in A.

Theorem. If x1 . x2 , , x is any sequence of real numbers con-
vergent by the internal criterion; then there is a real number x such that

, x2 , x3 is convergent to x by the external criterion.

Before we leave the real number system we must attend to some un-
finished business. The reader may recall our discussion of real numbersas
decimals. It was stated that the real number 2 has two representations
as an infinite decimal, namely:

(real 2) = 2.000 and

(real 2) = 1.999 .
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One explanation of this can be given now. In the real number system the
theory of limits of sequences reveals the number V2 as the limit of the
rational real numbers 1, 1.4, 1.41, 1.414, . Similarly (real 2) is the
limit of the sequence 2, 2.0, 2.00,. . (Each symbol in this sequence
denotes the real number 2 and so this assertion is trivial.) But (real 2) is
also the limit of the sequence of real numbers 1, 1.9, 1.99, 1.999 .

Hence we write 2 = 1.999 .

Perhaps the following argument might be more appealing to the

reader. Since 1 has the infinite decimal representation 0.33 , we can
3

multiply "through" by 3 to get 1 = 0.999 , and add equals to equals
to get 2 F--- 1.999 . Similarly every finite decimal is equal to an in-
finite decimal as illustrated by the examples: 0.25 = 0.24999 ,

0.0523 = 0.0522999 , and 17.3 = 17.2999 .

This concludes our discussion of real numbers. The portrait of 2 re-
veals the real number 2 of Dedekind as a partition of the rational num-
bers, the real number 2 of Cantor as a class of equivalent convergent
sequences of .rational numbers, the real number 2 of the applied mathe-
matician as 2.000 or 1.999 , and the real 2 of the engineer as
something which for his purpeze is the same as the natural number 2, the
integer 2, and the rational number 2.
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The system of real numbers seems quite complete as regards mathe-

matical operations. It is closed with respect to the fundamental oper-
ations; the lower segments in its Dedekind partitions have a largest
element; its internally convergent sequences have limits. But there is one
very important defect in the real number system. Sonic very simple
equations cannot be solved in the real number system. In other words,
there are simple equations whose roots are not real numbers. One such
equation is .r2 + 1 = 0. If x is a real number, then :1;2 is positive or zero
and x2 + 1 is positive; hence it is impossible that x2 + 1 = 0. Yes, we can
go through the potions of solving the equation. We can write x2 + 1
= 0, x2 x = y Nri. When we write these things we are writing
something Ohich has form but no substance, something which is mean-
ingless in the real number system. To solve x2 + 1 = 0 we need a number
whose square is 1. To solve x2 + 2 = 0 we need a number whose
square is 2. To solve x2 2x + 2 = 0 we need a number which can be
decreasell :)y 1 to leave a remainder whose square is 1. There are no
such real tannbers. So we create them; we call them complex numbers.
And when we create them we have the mathematical equipment for
solving not only such simple equations as those listed above but every
polynomial equation whose coefficients are elements of the complex
number system. This is truly a notable instance of the fact that the
creation of new numbers simplifies mathematics and makes it a thing of
beauty. Indeed, the modern theory of complex numbers is a high point
in the intellectual achievements of man. .

Now that we arc convinced of the need for complex numbers and have
paid them such high compliments, we proceed to create them from the
real numbers. We created the integer as a class of ordered pairs of natural
numbers, the rational number as a class of ordered pairs of integers, the
real number as a Dedekind partition of the rationals and as a class of
sequences of rational numbers. We might expect something more compli-
cated for our last creation. Actually, it is simpler. The modern concept of
a complex number is based on the following definition.

Definition: A complex number is an ordered pair of real numbers.

If a and b are any real numbers, then ((a,b)) is a symbol denoting a
complex number. This is not the symbol used by the practical man. It is
a convenient symbol to use in the development of the theory complex
numbers. The traditional symbol will be given later. We n,,ted in our

39
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discussion of the rational numbers that different ordered pairs of in-
tegers might denote the same rational number, as [3,4] = [6,8]. In the
rational number system we defined equality: [a,b] = [c,d] if and only if
ad = bc. The situation in the complex number system is much simpler:
((a,b)) = ((c,d)) if and only if a = c and b = d. Of course it may happen
that ((a,b)) and ((c,d)) are different symbols even though ((a,b)) =
((c.d)). But in this case, the difference is due to the fact that a and c are
different symbols for the same real number or that b and d are different
symbols for the same real number. Thus ((1 + 2,5)) = ((3,5)), and
((.r,y)) = ((2,3)) implies that x = 2, y = 3.

The fundamental operations are easily defined and studied using the
ordered pair notation. Definition: ((a,b)) ((c,d)) = ((a + c,b d)),
((a.b)) ((c,d)) = ((a c,b d)), ((a,b))- ((c,d)) = ((ac bd,ad

bc)), and if c2 + d2 0, ((a,b)) ((c,(1))
++1d4 Lc d2

Using these definitions it can be shown that the complex number system
is indeed an extension of the real number system. For the system of all
complex numbers ((a,0)), where a is a real number (and 0 is the real 0),
is isomorphic to the real number system. As you would guess, we mate
((a.0)) with a to establish this isomorphism. For example, 0 + ((0,0)),
1 +- ((1,0)), and 2 4" ((2,0)).

Ves, we can solve x2 ± 1 = 0 in the complex number system. Recall
the isomorphism and consider the 1 and the 0 in the equation as meaning
((1,0)) and ((0,0)) respectively. Substituting x/ = ((0,1)) and x2 =
((0, 1)) for x we find x12 = ((0,1)). ((0,1)) = ((0 1,0 + 0)) =
((- 1,0)), x12 + ((1,0)) = (( 1,0)) + ((1,0)) = ((0,0)); x22, =
((0,-1))- ((0, 1)) = ((0 -1,0 + 0)) = (( 1,0)), x22 + ((1,0)) =
(( 1,0)) + ((1,0)) = ((0,0)).

In traditional symbols, the complex number ((0,1)) is written as i,
((0.-- 1)) is written as i, and, in general, ((a,b)) is written as a + bi.
In the special case of ((a,b)) with b = 0 it is customary to write ((a,0)) =
a 4- Oi = a; it is customary in many situations to consider the complex
numbers ((a,0)) as special complex numbers called real numbers. Con-
fusing? Not really. Perhaps the vocabulary could be improved. But the
ideals clear in view of the isomorphism mentioned above.

As a final remark in this brief encounter with the complex numbers we
mention the beautiful situation as regards roots in this system. Every
complex number, except 0, has two square roots, three cube roots, four
fourth roots, and so on. For example, the three cube roots of 1 are 1,

1 .V5i 1 1/374- r, , and 5 . Check them if you can, using the definitions

of the fundamental operations as we listed them.
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In this last section we have seen 2 as a complex number. We have .seen

it as the ordered pair of 'real numbers ((2,0)), as a symbol 2 + Oi. and
as the symbol 2 again. We have seen 2 iw an environment of complex
numbers, as an element of a system which is one of the mo.4 beautiful
achievements of the mind of man.

Perhaps the reader has wearied in this study of the portrait of 2.
Perhaps he feels that 2 is not really as complicated as the author thinks.
Perhaps he feels t hat the author has strayed from his subject nd forced a
lot of modern number theory upon him. But the author is not concerned
about that now. The fact that the reader is reading these words indicates
that the author has achieved his purpose. It has not been his purpose to
present a treatise on any subject. Rather, it has been his purpose to en-
large the reader's concept of number, to give him some insight into the
nature of number as a creation of the human intellect. To achieve this
end the author has described the modern portrait of 2 as he sees it.
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