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INTRODUCTION

SONIE OF the earliest algebraic problems on =record are "puzzle
problems" that presumably were solved by algebraic-reasoning
expressed in words. without the use of mathematical symbols.

Many puzzles are still solved in this fashion. Diophantus of Alexandria
(probably-late third century A.D.) is often credited with the introduc-
tion of the algebraic abbreviations that led eventually to the "nintl.-
grade algebra" of the first half of the twentieth century. Much of this
was in reality nothing but- arithmetical juggling with numbers replaced
by letters, combined with the solution of quadratic equations and of
systems of linear equations. About the middle of the nineteenth cen-
tury the more abstract and vastly more general name of algebra
became apparent to mathematical scholars. and the modern algebraic
concepts evolvedconcepts now finding their way into the elementary
and secondary school curricula.

In general, modern mathematics is the stuck, of bPci:: structure. This
includes the structures of number systems, geometries, topologies. and
calculi. -Mathematicians study the abstract structure of problems -in
engineering, physics, chemistry, and logic, The basic structure of an
economy, a political system, or a language- is also part of modern
mathematical investigation. Many different disciplines apply theory
and theorems developed by mathematicians. However. the study of
abstract structures is the mathematician's primary fie'd of research.

DI
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ALGEBRA
THE STUDY OF FINITE STRUCTURES

pct: it was popular to separate mathematics into divisions, such
as algebra, analysis, geometry, and statistics. Such divisions still
persist in the general vocabulary and in some school curricula,

but the boundaries have merged and coalesced. In general, algebra
deals with finite structures, while analysis is -the study_ of continuous
structures. Algebra includes the theory -of equations, number theory,
matrix theory, algebraic systems (group, ring, field, and so on), and
many other branches. Typical branches of analysis are calculus and
differential equations. Since the book you are reading, the table on
which it rests, and indeed- the entire Galaxy are each composed of
only a finite number of particles, it may _seem that little of practical
importance _is lost by restricting one's attention to finite structures.
That conclusiOn, however, would be incorrect. Although analysis
assumes a continuous (infinite) structure, its elegant theory has many
applications to finite, real-life situations. Indeed, it is only the existence
of the modern computer, boni in the last half of the twentieth century,
that has made the extensive use of finite (algebraic) methods feasible
substitutes for the continuous methods of classical analysis. In today's
world, many difficult problems of analysis are being solved by using
algebraic techniques.

Algebra from the Ancient World to Today

Originally algebra (that is, the study of finite structures) arose in
problems relating to numbers. Babylonian tablets .(circa 3100 WC.)
contain algebraic problems. The Mind (Ahmes) Papyrus, a copy
(circa 1700 n.c.) of an earlier manuscript, contains abstract problems
and puzzles such as "A number and a quarter of that number together
give fifteen. What is the number?" Poetical problems such as the
equitable distribution of wages to laborers, the *Calculation of the

(3]



amount of grain needed to produce bread and beer for a given num-
ber of people. the number of bricks needed to construct a building
ramp of given dimensions_ and other area and volume problems arc
also included. (The reader interested in further details about ancient
Egyptian, Babylonian. and Greek history will find no more delightful
source than the book Science Awakening. written by one of the world's
outstanding algebraists. 13. L. van der lVaerden.')

About 2.500 vears-later (circa a.o.--800) a more favorable_notation
permitted the serious study of algebraic No:16(ms. In the siteerith
century. the solution of the cubic equation by Italian mathematicians

-led gradually to seinimodern notation and to the developMent of the
basic structural theory of polynomial equations. The _fundamental
theorem of elementary algebra (that a polynomial equation of
n has at least one root) was not proved until almost 1S00 1w K. F.
Gauss.

I3y 1900 the more general and abstract nature of modern algebra
was apparent to specialists. however. even though almost every uni-
versity had a course devoted essentially to the theory of equations (see
Chrystal's Algebra 'l or Bother's Algebra"). the modern abstract alge-
bra was seldom taught. By 1920. invariant theory, matrix theory, group
theory. and field theory were studied in most graduate programs (see
Dickson's Algebraic Thories4). but undergraduate programs in ab-
stract algebra did not begin to appear regularly_ until about 1940. By
1960 almOst every -college and university worthy of the name provided
undergradnate courses in modern abstract algebra. Of even grCater
importance is the alert of large groups of competent mathematicians
to make modern algebra available at the secondary school and ele-
mentary school levels. The 'Twenty -third Yearbook of the National
Council of Teachers of Mathematics, Insights into Modern Mathe-
matics. published in 1957. presents an excellent overview of the-mathe-
matical'preparation expected of a good high school teacher, (It might
be well to take this yearbook off your library-shelf and devote at least
thirty minutes a week to its uninterrupted study. This practice will
pay unexpected dividends.) The work of the School Mathematics
Study Group. the University c.1 Illinois Committee on School Mathe-
atics. the University of Oklahoma Mathematics Service Committee,

scir,,, trans, Arno141 Dresden (Cconitorta. tiehcrImls: Breen P. Noon!.
looT.

tle.prge Chry,cal..1/ocbro: rl n F.Innrnt.rr.1 Text-Thud: toe the Higher Clagsex of Sreotttkrly
retook am! Colteites Oster: 'fort,: The Macmillan Co,. if

M. 'loam-. lotroduction to Wither .thtehrit Utica- York: The Macmillan Co.. 1911:/
F;, Mama/. Modern ,htehroie Theories (1hoton: Benjamin II. Sanborne Co.. 1925),
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the University of Maryland Mathematics Project. the Ball State
Teachers College Experimental Program, the Nlinnemath (Minnesota
Mathematics Project ) group, and many others have provided the
foundation for thousands of high school students' study of Boolean
algebra. matrices. groups. fields. and rings, as well as systems of linear
equations and the "laws of algebra." More good structural algebra is
being taught in- many high schools today than was available in the
finest graduate schools a hundred years ago.

Although algebra is one of the oldesibranches of mathematics, more
algebraic theory was developed in -the fifty years from 1900 to 1950
than in the 5.000 years between 3100 u.c. and ..n. 1900. Furthermore,
more algebraic (finite) mathematical theory was published in the
fifteen years irom-1950 -to 1965 than in the previous. highly productive
fifty-year period. Abstract algebra is an interesting, growing branch
of-mathematics.

Long ago Enclid_realized that both algebraic and geometric theorems
required proofs based on postulates (axioms) and previously_ proved
theorems. If you peruse the books of Euclid. you will find that they
contain algebra, particularly number theory, with proofs set_ tip in
much the same manner as that currently used in high school geometry.
Examine, for example. the theorem that

S 2" - (2' 1)

is a perfect number if (2* A) is prime, given in Proposition 36, Book
9 of the Elements. The rigorous approach to geometry flourished and
grew, but the concept of algebra as a coherent whole to be developed
(min a set of basic premises using deductive logic seems to have been
more or less lost until it was revived in the current century!.

The Use of Proofs in Algebra

It is now common practice in better high schools to derive the rules
of algebra from a few premises just as geometric_ theorems arc proved.
Interestingly enough. the proofs of algebraic theorems turn out to be
neater anti simpler than the geometric proofs usually studied in tenth-

-Nome of the nuns how tant recent contribution. to modern abstract algebr were pub-
lished under the s.cusionym "Nicholas Bourbaki." During the 191(es. mathematicians begah
to notice that an unknoun French mathematician tsamst Nicholas tiourbstki v.aa pnolueing
really excellent mathematics at a proliiie rate and cosering a wide variety of topic.. Hy era
most mathematician's were aware that "Nicholas Itourbalsi" was actually a pseudonym (Pil-
fered from an obscure Napoleonic general) used by a coalition- of some or the best French
mathematicians. The actual members or the coalition change. but the production of high.
quality mathematics continues, Some curelvis future historian may well credit=ltourbaki with
being the greatest mathematician of the thenticth century.
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grade geometry. Hence, they -provide an earlier introduction to the
techniques of mathematical proof.

A simple example is in order. Consider the axioms for equality.
(Did you realize that the notion of equality was based on axioms?).
Originally the concept of equality meant identity, Two things were
equal if and only if they were identical (exactly the same). Gradually
it became clear that there were various types of equality: The two
"drunisticksof-a chicken arc not identical (at best, they are mirror
images of one another); but for the purpose of eating, they may well

21 1 13 1749 i(2 + 3i)be equal. The fractions
2' 2 ' 26' 3498' -6 41

---- and -:-- are not
identical, but they are said to be equal. In one sense, two triangles
are "equal" if they are similar triangles (i.e., equal shape). In another
sense, two triangles may be eoual- if they have the same area, even
hough they differ in shape_ In still another sense (congruence), two
triangles are thought of as equal only-if they are both similar and equal

in area. (Note. however, that they still may not be identical. since
one may be the mirror image of the other.)

If the concept of identity is to be generalized to the concept of
equality (or equivalence, if you prefer), we must analyze the basic
structure of the concept and see what common properties these --Vious
brands Of equality have.

Let us introduce the symbol E to represent equality or equiva-
lence. We shall choose 5, a specific set of elements. The set S may be
quite general, but it must be specified; and changing the set may
change the answer to whether or not a specific comparison is an
equivalence relation. A relation E will not be considered to be an
equivalence relation for a set of elements S unless the following postu-
lates are satisfied for all elements of S:

1. (Determinative) For any two elements a, b of the set S, either
0 E b. or a V b, but not both (where V means "is not equiva-
lent to").

2. (Reflexive) For each a in S, a E a:
3. (Symmetric) If a E b. then b E a.
4. (Transitive) If a E b and if b E c, then a E c.

These axioms are valid not only for equality between numbers and
algebraic expressions but- also for (1) equality of shape (similarity)
of geometric objects and-for (2) relations such as "has the same color
of eyes as" or has the same parents as" for the set of all people, or

[ 6 ]
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"has the same number of sides as" for the,set of all polygons (the
latter is really just equality of number). 1

If we consider the concept of equality for a set of numbers (or
other objects for which addition is de6ned), we may desire-the fol-
lowing additional-axioms:

5. (a) If a = b, then a + x= b + x for all x in set S.
(b) If a = b, then x+d=x+b for--all-x in set S.

(Note that since we have not postulated that b + x and
x + b arc equal, we need both forms. Iii many real-life
situations, b + x and x -E.-_ b are not equal. More will be said
about this. later on.)

basisFrom this very simple b we can prove the following powerful
theorem:

THEOREM. If equals arc added to equals,_ the results are equal; or, in
symbols: If a =b and c = d, then a + c = b + d,

Given: Axioms 1, 2, 3.4, 5(a), 5(b); a = b, and c = d.
To procc: a + c = b + d.-

PROOF

1. a = I,. 1. Given.

2. a + c = b +. *. Step 1 and Axiom 5(a)
with x = c.

3. c = d. 3. Given,
4. b + e = b + d. 4. Step 3 and Axiom 5(1) )

with X = b.
5. a + c= b + d. 5. Step 2, Step 4, and

Axiom 4.

Note that each step of the proof has been justified by a statement or
axiom from the "given hypothesis" in exactly the same manner as is
customary in geometry.

This is the type of "elementary algebra" being taught in many U.S.
schools-today. (It is being taught earlier than the ninth grade in some
schools. For example, in 1964 some eighth-graders in a Norman, Okla-
homa, school proved that

CIO (-0 = -qa - b)

and that
(-a) - (b) = -(a b)

[ 7 1
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as homework exercises in their mathematics course. What is more
important. they created the proof themselves rather than merely
Memorizing-a proof given in the text. Thousands of junior high school
students throughout the United States are having similar experiences.)
It is essential that academic high schools, colleges, and _universities
build courses on this foundation rather_ than-on _the foundation com-
mon in the 1940's and before. Some of the "old bricks" arc no longer
there and should not _be expected. It is neither necessary nor desirable
for a modern high school or college teacher to "reteach" so as to supply
these missing old- fashioned foundation bricks. You should expect -a
foundation for a steel building to be different from that for an adobe
hut. Learn what modern algebra is all about; then use it.

Changes in -Basic Conceptiairices-
_____

The current axiomatic approach to the "rules of algebra" is not the
only important change in the algebra being taught today. The basic
concepts themselves have changed. The inclusion of introductory
matrix theory (born during the last century) in the high school cur-
riculum was extremely rare before 1050, but it gives promise of be-
coming standard practice before too many_years. A discussion of fife
commutative law of multiplication, a b seems rather point-
less to mn students until they discover that there exist mathematical
systems in which this "law" is not valid. Matrices provide such an
example. Matrix theory is one of the most powerful tools of modern
applied mathematics, _since_ matrices well represent many complex
interconnections evidenced in nature.

There are many algebras in which a b and b - a are not the same
thing. Portions of modern physics, chemistry, psychology, and statistics
are based on such noncommutative systems. The following simple
experiment provides a physical example in which a b and b a are
not identical.

l'l :.ee two closed books flat on the table in hold of you with their faces
upward and their spines (bound edges) on the left. (This is the normal
position in which a book might lie before it is Opened.) The books will
remain closed throughout the csperiment.

Rohde the first book through 90' Amid its bottont edge. (It will no*
he standing upright oh the hide.) Now rotate the same book through

about its spine. Leave the book in this position.
Rotate the second book through 90', about its spine. (If the book

were released at this point, it would fall Open in reading position.) Now
rotate it through 90' about its bottom edge.

[83



Note that the two books are not in the same final position. Each book
has been rotated through 90° about its bottom edge and 90° about its
spine: but the order was not the same. and the results are different.
It is possible to use matrix theory to forecast the result of these opera-
tions and also of much more complicated rotations in three-dimen-
sional, four-dimensional, or higher-dimensional space.

A matrix is a rectangular array of ambers (elements) for which
multiplication is defined in a special way. A matrix should not be con-
fused with a determinant, which is a single number or value associated
with a square array. The matrix is the array- itself. Two matrices are
said to be equal if, and only if, the elements in corresponding position.
are equal. For example, if the elements , re ordinary integers,

[3 5

7

3 5

5 +1
-,/-

r 7 3

4
, but

3 5
L2 5

The matrices

3
and

-1 8 4 1

are unequal if the elements are integers, b tt they are equal if the
elements are the integers mod 6. Thus, to discuss matrices, it is neces-
sary first to consider the set from which the elements. of the matrix are
to he selected. Equality of matrices depends upon the equivalence
relation used in the set from which the elements of the matrix are
selected.

If a bte
11 =

[
] Nand

d y

are two matrices, then heir product M A is defined as follows:

ate + 'by ax + bz
Al N =

c d tr z dy ex + dz

The element n the first (horizontal) row and second (vertical)
column of the iroduct Al N is a sum of elements, each of which is
the product of ail element from the first row of M multiplied by a
corresponding element from the second column of N.

Thus,

[9]

In a similar fashion, the element in row R and column C of the
product AI N is the sum of the products of the elements of the Rth
row of M multiplied by the corresponding elements of the Cth column
of N.

1

If A = and B =
3 2

7 4

5 8

then A B =[1 -1
3 2 5 8

r(I)(7) + (- )(5) (I)(4) + (-1)(8)1

=L(3)(7) + (2)(5) (3)(4) + (2)(8)
0 -4

[31 38

However,

B A =7 8 3 1

(7)(1 + (4)(3) (7)(-1) + (4)(2)
(5)(1) + (8)(3) (7)e-1) + (8)(2)

1

29 It
Thus, in the system of 2 X 2 matrices, A B and B A are not
necessarily the same.

The reader may check his understanding of matrix multiplication
by showing that

[3
-5 4

1 2] [o 10-J
=- 19 24

Matrices containing tl ousands of elements are used in many prac-
tical applications. At the Naval Ordnance Testing Station, matrices
are used in computations involving rocket and projectile flight. Ma-
trices are tised in modern economic theory. The branch of psychology
known ,ts factor analysis applies matrix methods. Systems of thirty-
fin (or more) equations in thirty-five (Or more) unknowns, which
arise in industrial research, may be rwatly solved by using matrix
methods. Modern vibration analysis uses matrices of more than 1,000
rows and 1,000 columns. In heat-transfer problems in nuclear reactors,
even larger matrices are common. Competent biologists and geneti-

[ 10
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cists find matrix methods helpful in the study of the complex inter-
relations of heredity and genetics. Large laboratories and oil refineries
often ask universities to recommend graduates who are facile in the
use of matrices.

The widespread utility of matrices stems_from their unusual method
of multiplication, in which each element of the product matrix is
obtained through the interaction of several elements- of the original
matrices.

The Pauli matrices, used in the study of electron spin in quantum
mechanics, have'an interesting arithmetic. If i2 = -1, the Pauli matrices
ar is follows:

C =[, 0 0

l.
, E

-i 0 0 -1 -i
.

0 -1 0
F =

1 0
, C =

- i. 13

The Pauli matrices form 1: closed set under matrix multiplication;
that is, the product of two. or more Pauli matrices is again a Pauli
matrix.

C D =[0
-i

-1

0] C_0 -11 [ °i
-1 0

01

i
= C.

F A [
-: 01= D.

0

01

0 . 0 -i

0 11 r 0 1

1

r-1 0 1
13 B

Try it yourself -Ind seethere are only sixty-four cases, and four-
teen of them are 'obvious."

Changes in Basic Concepts: Croups

We now turn our attention to one of the simplest mathematical
systems of modern algebra, the group. To have a group we need first
of all a set of elements, G, and an equals (equivalei6) relation.
We also need an operation_such as multiplication with which we can
combine elements of the set G.

An operation, , is said to be well defined with respect to an equiva-
knee relation, =, if, when a and b are replaced by equivalent ele-

E



.-=

:nents, an equivalent
y -= y' imply x y
itself by the reflexive

result is obtained. This means that x = x' and
= x' y'. Since each element is equivalent to
property (Equality Postulate 2), no replacement

need be apparent, as in

1 1

4 4

3

where is equivalent to and is equivalent to The distributive

property is actually used here to obtain

(21-
4

+1-1)= (2+1)-4 4'
The reader should note the difference between an operation's being

well-defined- and the theorem if equals are added to equals, the
results are equal." An operation's being well defined with respect to
an equivalence relation implies the substitution property with respect
to the operation, whereas the theorem discusses only the results of the
operation for addition.

A group consists-of a set of elements, G, having an equals (equiva-
lence) relation, r.r-, and swell- defined operation, , such that the
following postulates are satisfied:

1.

0

3.

4.

Closure: If a, b r. C, then a li e-G.
(The symbol-6 means "is an element of.")
Associative Law: If a, b, c E G. then

(a b) c = a (b c).

Existence of an Identity (Unity): There exists an element u C
such that for each b e C,

b b

Existence of an Inverse: For each b E G, there exists an element
b* f G such that

b I,* = b* b = u,
for the o of Postulate 3.

It may seem that with so simple a set of postulates, no important
theory could develop. However, mtich of the power of modern mathe-

[ 12



mattes stems from group theory. E. P. Wiper, the physical chemist
who was director of research at the Oak Ridge National Laboratory
and the Metallurgical (Atomic) Laboratory at t'ile University of Chi-
cago, is said to_have presented the essentials of the thermodynamics
of heat transfer to his stall of physicists On one sheet of paper by using
group theory.

Consider some actual examples.

Example 1

The integers (positive. negative, and zero) form -a group under the
.,....,operation of addition.

1. Closure: The sum of two integers is an integer.
2. Associative Law: The integers are associative under addition.
3. Existence of an Identity (Unity): a = 0, since

I, + o = o + I, = I,
for all integers b.

4. Existence of au Inverse: The inverse of b is by = -b.
(Be sure you understand this example before continuing. What
is the inverse of =11?) ___

Example 2

The integers do not form a group under multiplication. The first
three postulates are satisfied (a = 1,_ in-this case); but Postulate 4 is
not, since the number 5 does not have an inverse in the system of
integers, (Actually, no integers other than =1 have multiplicative
inverses in the system Of integers, but a single counterexample is
sufficient.)

Example 3

The rational numbers, with zero excluded, form a group under the
operation of multiplication.

1._ Closure: The product of two rational numbers is a rational number.
2. Associative Law: The rational numbers are associative.
3. Existence of an Identity (Unity): u = 1, since

b . 1 = 1 . b = b
for all rational numbers b.

1

'
4. Existence of an inverse: The inverse of b OA 0) is which isb

rational if b is rational.

[ 131



In the above examples, the elements of _the group are numbers, and
the equals relationship is ordinary equality of numbers. However, a
group may be more general than this.

Example 4

Let the elements of a group be substitutions of one set of letters
for another. For example,

f for A substitute B I A /3

Let it = -1

I

for 13 substitute C = 13 C

for C substitute-A t C A

so that the substitution a carries (A, B, C) into (B, C, A), and if
substitution a is applied to 3A 2A, it becomes 3/12
4CA 2B.

If
A C

B B

C > A

is another substitution, then b carries :(A: i3, C) into (C, B. A).
Also note that b carries (B, C, A) into (B, A, C).

If the substitution a is followed by the substitution ti, we obtain
the following:

Using uNim.;

a

(A, B, C) becomes (B, C, A) becomes (13, A, C).

However, there is a substitution that will carry (A, B, C) into
(B, A, C) directly, namely,

A B

.e = B ---> A

C *C.
We write a b = c to express this.

There are six possible substitutions of the three letters A, B, C,
including the identity substitution

A A

i = 13;13

C C.

DA



Let these six substitutions be elements of a mathematical system, G,
in which the operation is the following of one substitution by
another substitution, and the equals relation is identity of result; i.e.,
a b means "first do 'a,' then do 'b.'" Thus, a b = c for the sub-
stitutiodS"given above.

When a group is being defined, it is essential that the equals rela-
tion be specified and that it satisfy the postulates for-an equals relation
given earlier. (See p. 6.)

It is usual to represent such substitutions (often called permuta-
tions) by a notation

BC
a=

RCA

where the notation .mplies that each letter in the top row is replaced
by the letter just below it.

The six possible suc,stitutions are as follows:

1A-B A-*C
ABCa=.1 BC=
B CA ) 1,-{ B --> B =

C->A

A--411 A-->C
ABC

Thus,

while

e=1B-4A=

C-*C

1A->A

e=13-4C=

ABC
(1 e=

GAB

ABCe d=
ACB

BAC

ABC

ACB

)

)

ABC

);CBA

ABC
(1=-1 B-->A=

CAB
C->B

A-4A
ABCi= {B->B=
ABC

C-->C

ABC \
!

ACB /

ABC

CAB )

ABC
=

BAC
c,

ABC p)= b.
CBA

Note that d c e d. Hence this system of substitutions is not
commutative. It need not be, to satisfy the group postulates.

[ 15 ]



The group postulates are to be satisfied by dlr system of substitu-
tion just discussed.

1. Closure: The "product" of two substitutions in this list is also a
substitution in the list. You are asked below to complete the "mul-
tiplication" table for this group, and hence prove closure.

2. Associative Law: Examine a typical- letter, under the transforma-
tion [(a b) c] and under [a (b c)].

(
b=

Then (a b) takes x into z, while (b c) takes y int) w.

x 1.1
(a b)

..... =

while (b c) =

Thus,

[(a b) 0

while

[a th c)] =--

.....
k...z .....

.1C.

..., .....
k . w

Thus not only these substitutions but every set of substitutions is
associative.

3. Existence of an Identity (Unity): u = i, as already noted.

4. Existence of an Inverse: By forming the products x x* = x* x =
i, show that each x s C has the inverse e indicated below.

[ 16]
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PARTIAL MULTIPLICATION TABLE FOR EXAMPLE 4

a b c

i i c b c d e

a a

a

a c

Fill in the entries not already supplied above. Filling in blanks is an
important part of "reading" mathematics.

Example 5

Let the elements of a group be rotations of a plane figure through
integral multiples of 60'. Let the operation be "following one such

-rotation by another," and let the equals relation be "identity of posi-
tion." Rotation through 120' results in the same position as rotation
through -240°. Rotation through (k 60° ± n 360°) results in the
same position as rotation through k 60° for each integer n. Hence,
the elements of this group may be represented as R60, R,2, R1 0, R.49,

R: ;o. Note that each of these group elements,, R,, represents an
entire equivalence class IR n 360°),

8180

R120 R60

&VA
VAV
R240 R300

R360

lr
where R, denotes a rotation through x degrees in the counterclock-
wise direction. Thus, R1211 Rixo = R34,11, and IL11, Rim, =
Check the group postulates for this system.
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1. Closure: If one of the above rotations is followed by another rota-
tion, the resulting position could have been obtained as a single
rotation.

17 2. Associative Law: True.
3. Existence of an Identity (Unity): u = li,,Gu.

4. Existence of an Inverse: The inverse of R. is B,.-1 = li:,,,...x.

It is instructive to form the multiplication tables for the group in
Example 5. Here, as well as in Example 4, you should fill in the entries
not supplied.

PARTIAL MULTIPLICATION TABLE FOR EXAMPLE 5

R360 R60 8120 R180 R240 R300

R360 R360 R60 8120 R180 R240 R300

Rao Rao 8120 Theo 8240 R3oo R360
t

R120 8120 Rito 8240 R3oo

R180 R180

R240 8240 8120

R300 R300 R60 R240

Example 6

Cut out a two-inch square of cardboard or paper. Label the vertices
A, B, C, D as shown below,

a A

B

C

I
I
I

Front
I
I

I

A

D

1

1

I
Back

o

s
o
I

B

c

C D

Place a letter A on the back face of the square in the same vertex as
the letter A on the front. Vertex A is now uniquely identified. Repeat
for vertices 13. C, and D.



The element~ of this group are certain movements of the square.
The operation. -. consists of following one movement by another.
Equality is identity of vertex positions.

The permitted movements (elements) are as follows:

R,,,,: A rotation (in the plane) of the square through 180° about its
center.

a A

C D

becomes,

a 3

a

R:mn: A rotation (in the plane) of the square through :360°.

B A

C D

i
becomes

B A

C D

This is the identity element, since the positions of the vertices are
unchanged.

H: A flip (in three-space) about a horizontal line through the center
of the square.

a A

C D

becomes

V: A flip (in three-space) about a vertical line through the center of
the square.

6

C

A

D

b ee0111 eS

[DA

a

C

Then (II V) is that element that results when II (horizontal flip)
is followed by V (vertical flip). Actually, experiment will show that

(ll V) = R180,

E 19 3



that
(iii..,) V) = 11,

and that
(11 11) = ll::1:,..

You should construct a model and carry out the operations just sug-
gested as well as supply the remainder of the entries in the multiplica-
tion table of this group.

PARTIAL MULTIPLICATION TABLE FOR EXAMPLE 6

R360 R180 H V

R360 R360 R180 H V

Rt80

H R360 RI80

V

After the table is completed. it will be possible to see that these four
elements do form a group, as shown below:

1. Closure: Only the elements Ri,,,,, Rum, II. and V are needed to
complete the table.

2. Associative Law: The four given elements are substitutions for the
corner letters. Substitutions are associative, by the discussion of
Example 4.

ABC!)
Rim) = lino =

\,
C I) A 13

,
A 13 C D I

A

D

BC A BCD 1.
II = V =

C 13

D

A I
y

B A I) C I

3, Existence of an Identity (Unity): u = R30.
4. Existence of an Inverse: Since n - R3,,, appears once, and only

Once, in each row and column of the "multiplication" table, it fol-
lows that

x a = 1130) and b .v = ii,;(to

are solvable for all a, b in G = (RN,:,,, RIN,,, V, H). Examination
shows that if X y = 113,,,,, then y X = 11:,.

[ 20 ]



As was emphasized before. the serious mathematics teacher must
realize that one learns mathematics by working problems, not merely
by reading. I have suggested that you complete the partial multipli-
cation tables given in Examples 4. 5. and 6. It would also be instruc-
tive to prove that the set of Pauli matrices discussed on page 11 forms
a group under the operation of matrix multiplication. and that the
multiplication table given below is not the multiplication table of at
group.

al a2 a3 a4 a5

a1 al a 2 03 04 as

a 2 02 at 04 as 03(Not a group!)

03 a3 a5 a1 02 04

a4 a3 05 01 02

a5 a5 a4 a2 03 at

Actually. even the simple set of group postulates given here is
redundant (i.e., parts of some postulates can be proved from the
remaining postulates). You may. for example, wish to prove that in
Postulate 3 (there exists an clement u c G such that for each b E G.
u b=-. h is = b), the equation

u b = b is = b
may be replaced by the equation

b u = b
and that one can then derive the remaining assertion,

u b =
as a theorem.

Linear Equation~ and Computers

Not only are new areas of mathematics being explored, but very
ancient areas arc flowering in fashions that would have been unbe-
lievable even twenty years ago. Ancient Babylonian tablets discuss
problems that, in modern notation, require time solution of systems of
linear equations such as

+ y =
y = 1.

[2.17
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Modern schoolboys still solve similar systems of two linear equations
in two unknowns and even systems of three or four equations in three
or four unknowns. but until recently only the hardy ventured beyond
this. Today's computers make it possible to solve, as routine problems,
systems of 700 equations in 700 unknowns, which arise in modern
economic theory. Systems of 1,728 equations in 1,728 unknowns arise
daily in vibration theory and flitter analysis in modern rocket and jet
design. Much larger linear systems arise in the heat-transfer problems
of atomic physics. Algebraic problems that were beyond considera-
tion ten years ago are now solved routinely by the use of modern
computers. Entire new vistas open up.

With the new vistas, new problems appear. Although agreat deal
is known about continuous variables (analysis) and much has been
learned about certain finite algebraic systems such as groups, fields,
rings, and integral domains, no one has yet completely studied the
basic structure of the arithmetic used in any major computer now in
operation! Modern computers are amazing arithmetical engines, but
they violate many basic postulates of high school algebra. For example,
high school algebra assumes that for all a, b, 0,

(a + b) + c = a + (I) + c) As.ociative Addition
(a 1) 'c = a (b e A.sociative Multiplication

s (a + b) =s.a+sh I nstrilnnive Property

It also assumes (or proves) that
if a 40 and a X = a y, then x= y

and
if a + X = a + y, then A- = y

and that
if a b = 0, then either a = 0, or b = 0, or both.

However. none of these rules is valid in computer arithmetic. In spite
of this, computers provide the majority of the arithmetic answers
needed in today's engineering and science. Mathematicians must study
the basic structure of computer algebras if science is to make reason-
able use of this vital new tool.

22 1



CONCLUSION

ABSTRACT ALGEBRA has many other vital problems of even more
interest to mathematicians than Z1'e ever-changing structure
of computer arithmetic. Today's economics, psychology, busi-

ness administration, physics, chemistry, and engineering each lean
heavily on mathematics. Each brings new problems for the mathema-
tician's studs'. Modern algebra provides the language and the tools of
mathematics, much as mathematics provides the language and tools
of today's science and engineering. It is not surprising that most col--
leges and universities have demands for ten times as many students
of abstract algebra as are prcntly graduated.

Algebra has a long and inte:esting history from ancient times to
the present, but only the current century has seen the rapid growth of
abstract algebra. To any high school teacher wishing to know more
about recent developments, I would say: First study the Twenty-third
Yearbook, of the NCTM, Insights into Modern Mothematics;-then con-
sult the 512.8 (Dewey decimal) or QA 266 ( Library of Congress) area
in your library. Continuous study is needed. Tomorrow's history is
being molded in the minds of active secondary school students today
by teachers who arc still learning about abstract algebra.
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