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oM o¥ the carliest algebraic problems on-record are “puzzle

problems™ that presumably were solved by algebraic-reasoning

expressed in words, without the use of mathematical symbols.
Many puzzles are still solved in this fashion. Diophantus of Alexandria
(probably late third century an.) is often credited with the introduc-
tion of the algebraic abbreviations that led eventually to the “nintl.-
grade algebra” of the first half of the twenticth century, Much of this
was in reality nothing but.arithmetical juggling with numbers replaced
by letters, combined with the solution of quadratic cquations and of
systems of linear equations. About the middle of the nincteenth cen-
tury the more abstract and vastly more general natme of algebra
hecame apparent to mathematical scholars. and the modern algebraic
concepts evolved—concepts now finding their way into the clementary
and secondary school curricula.

In general, modern mathematics js the study of hasiz structure. This
includes the structures of mmmber svstems, geometries, topologies, and
caleuli. -Mathematicians study the abstract structure of problems in
engineering, physics, chemistry, and logic. The basic structure of an
cconomy, a political system, or a language. is also part of modern
mathematical investigation. Many different disciplines apply theory
and theorems developed by mathematicians. However, the study of
abstract structures is the mathematician’s primary fie'd of research.

Ca
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 NaLGeBRA

THE STUDY OF FINITE STRUCTURES

as algebra, analysis, geometry, and statistics. Suclr divisicns still
persist in the general vocabulary and in some school curricula,
but the boundaries have merged and coalesced. In general, algebra

) O.\'Cl-: it was popular to separate mathematics into divisions, such

deals with finite structures, while amaltsis is the studv of continuous -

structures.  Algebra includes the theory of equations, number theory,
matrix theory, algebric systems (group, ring, field, and so on), and
many other branches. Typical branches of analysis are calculus and
diiferential equations. Since the book you are reading, the table on
which it rests, and indeed the entire Galaxy are each composed of
only a finite number of particles, it may scem that little of practical
importance js Jost by restricting one’s attention to finite structures.
That conclusion, however, wonld be incorrect.  Although analysis
assumes a continuous (infinite) structure, its elegant theory has many
applications to finite, real-life situations. Indeed, it is only the existence
of the modern computer, born in the last half of the twentieth century,
that has made the extensive use of finite (algebraic) methods feasible
substitutes for the continuous methods of classical analysis. In today’s
world, many difficult problems of analysis are being solved by using
algebraic teehnigues.

Algebra from the Ancient World to Today

Originally algebra (that is, the study of finite structures) arose in
problems relating to numbers, Babylonian tablets -(circa 3100 BC.)
contain algebraic problems. The Rhind (Ahmes) Papyrus, a copy
(cirea 1700 B.c.) of an carlier manuscript, contains abstract problems
and puzzles suck as “A number and a quarter of that number together

give fifteen. What is the number?” Practical problems such as the-

cquitable distribution of wages to laborers, the Ccaleulation of the

[3]
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amount of grain needed to produce bread and beer for a given num-
ber of people. the mumber of bricks needed to construct a buildini
ramp of given dimensions. and other area and volume problems are
also included. (The reader interested in further details about ancient
Egyptian, Babylonian, and Greck history will find no more delightful
source than the hook Science Awakening, written by one of the world'’s
ontstanding algebraists. B. L. van der Waerden.?)

About 2500 years-later (circa A.n.-800) a more favorable.notation
permitted the serious study of algebraic equations. In the sixteenth
century, the solution of the cubic equation by Italian mathematicians

“led gradually to semimodern notation and to the developmiit of the
Dasic strnetural theory of polynomial cquations.  The - fundamental
theorem of elementary algebra (that a polvnomial equation of-degree
n las at least one root) was not proved until almost 1800 by K. F.
Giruss. ) -

By 1900 the more general and abstract nature of modern algebra
was apparent to specialists, However. even though almost every ani-
versity had a course devoted essentially to the theory of equations (sce
Chrystal's Algebra * or Bocher's Algebra®). the modern abstract alge-
bra was seldom taught. By 1920, invariant theory, matrix theory. group
theory. and ficld theory were studied in most graduate programs (sce
Dickson’s Alechraic Theories), hut undergraduate programs in ab-
stract algebra did not begin to appear regularly until about 1940, By
1960 almost cvery college and university worthy of the name provided
undergradiate courses in modern abstract algebra. Of even greater
importance is the effort of large groups of competent mathematicians
to make modern algebra available at the secondary school and ele-
mentary school levels. The Twenty-third Yearbook of the National
Council of Teachers of Mathematics, Insights into Modern Mathe-

matics. published in 1957, presents an excellent overview of the mathe-

matical’ preparation expected of a good high school teacher. (It might
be well to take this vearbook off vour librarv-shelf and devote at least
thirty minutes a week to its uninterrupted study. This practice will
pay unexpected dividends.) The work of the School Mathematics
Study Group. the University of Hlinois Committee on School Mathe-
matics. the University of Oklahoma Mathematics Service Committee,

l.ﬂ'n'n’-m sbendiening, teans, Arnoll Dresden (Gromingen, Netherlunds: Erven 1. Noord-
'-m;Th‘l'ﬁ;';;:l; .L'hry;-(:d. Muebra: An Elementary Text-Boal for the Hisher Classex of Sreondary
Sehools aril Colleyes (New Yorh: The Macmillan Co,, 1586).

3 M. Bocher, Introduction to Higler Myuchra iNew York: The Macmillan Co.. 1967,
' 1. E. Dickson, Vodernw Mychraic Throriex (Boston : Benjamin H. Sanborne Co.. 19263,

(4] v ’
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the University of Marvland Mathematics Project. the Ball State
Teachers College Experimental Program, the Minnemath ( Minnesota
Mathematics Project) group. and many others have provided the
foundation for thousands of high school students’ study of Boolean
algebra, matrices. groups. fields, and rings, as well as svstems of linear
equations and the “laws of algebra.” More good structural algebra is
being taught in- many high schools today than was available in the
finest graduate schools a hundred vears ago. :

_Although algebra is one of the oldest branches of mathematics, more
algebraic theory was developed in the fifty vears from 1900 to 1950
than in the 5.000 vears hetween 3100 s.c. and Ap. 1900. F urthermore,
more algebraic (finite) mathematical theory was published in the
fifteen years from-1950 to 1965 than in the previous, highly productive

fifty-vear period. Abstract alzebra is an interesting, growing branch

of-mathematics.

Longago Euclid realized that both algebraic and geometric theorems
required proofs based on postulates (axioms) and previously proved
theorems. If you peruse the books of Euclid, you will find that they
contain algebra, particularly number theory. with proofs set_up in
much the same manner as that currently used in high school geometry.,
Examine, for example. the theorem that

N=2%. (27~ )

is a perfect number if (2* — 1) is prime, given in Proposition 36, Book
9 of the Elements. The rigorous approach to geometry flourished and
grew, but the concept of algebra as a coherent whole to be developed
from a set of basic premises using deductive logic seems to have been
more or less lost until it was revived in the current century.® -

The Use of Proofs in Algebra

“It is now common practice in hetter high schools to derive the rules
of algebra from a few premises just as geometric. theorems are proved.
Interestingly enough, the proofs of algebraic theorems turn out to be
neater and simpler than the geometric proofs usually studied in tenth-

=Some of the most impottant recent contributions to widern abstract aleebrr were pub.
lished under the grendonym “Nicholas Bourbaki.” Daring the 1930°s, mathonmticians heyan

“ to notice that an unknown Freneh mathematician named Nicholis Bourbaki was producing

reailly execllent mathematics :t a prolifie riute and corering a wide variety of topies, By 1050
most mathematicians were uware that “Nicholas Bourlahi” was sctually a mseudonym  (pile
fered {roin an obscure Napoltunie gtener:ul) used by a coalition- of sotme nf the best French
mathunaticians. The actusl members of the conlition chunste, bt the preduction of high.
auality mathematicx continues, Some enreless future historian may well eredit Bourbaki with
beinx the wreatest mathematician of the twenticth rentury.

[5]
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grade geometry. Hence, they -provide an carlier introduction to the
techniques of mathematical proof.

A simple example is in order. Consider the axioms for equality.
(Did you realize that the notion of cquality was based on axioms®).
Originally the concept of equality meant identity. Two things were
equal if and only if they were identical (exactly the same). Gradually
it became clear that there were various types of equality.” The two
“drumsticks” of -a chicken are not identical (at best, they are mirror
images of one sanother); but for the purpese of eating, they may well
21 1 13 1749 i(2 + 3i
? 7 2’ 56 3398° and ——(_6 —-‘l- 4?-)- are not
identical, bui they are said to be equai. In one sense, two triangles
are “equal” if they are similar triangles (i.c., equal shape). In another
sense, two triangles may be ecual if they have the same area, even
though they differ in shape. In still another sense (congruence), two
triangles are thought of as equal only-if they are both similar and equal
-in area. (Note. however, that they still may not be identical. since -
one may be the mirror image of the other.) :

If the concept of identity is to be generalized to the concept of
equality (or equivalence, if you prefer), we must analyze the basic
structure of the concept and see what common properties these various
brands 6f cequality have,

Let us introduce the symbol | to represent equality or equiva-
lence. We shall choose S, a specific set of elements. The set S may bc
quite general, but it must be specified; and changing the set may
change the answer to whether or not a specific comparison is an
equivalence relation. A relation £ will not be considered to be an
e¢quivalence relation for a set of elements S unless the following postu-
lates are satisfied for all clements of S:

be_equal. The fractions

1. (Determinative) For any two clements a, b of the set S, either
al bora fZ b, but not both (where g means “is not equiva-
lent to”).

2. (Reflexive) For cach ain S,a F a.

3. (Symmetric) If a [ b.then b i a.

4. (Transitive) Ifa E band if b £ ¢, thena Eoe .

These axioms are valid not only for equality between numbers and
algebraic expressions but also for (1) equality of shape- (similarity)
of geometric objects and for (2) relations such as “has the same color
of eyes as” or “has the same parents as” for the set of all people, or

[6]
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! has the same number of sides as” for the,set of all polygons (the
latter is really just equality of number).
If we consider the coneept of equality for a set of numbers (or
other objects for which addition is defined), we may desire the fol-
. . lowing additional-axioms: . - -
5. (a) Ifa=Db, thena 4 x= b 4 x for all x in set S.
; (b) Ifa = b, then x 4+ ¢ = x -+ b for-allx in set S.
(Note that since we have not postolated that b 4+ x and
x 4 b are cqual, we need both forms. In many real-life -
- situations, b 4 x and x 4+ b are not equal. More will be said

- about this Jater on. ) e I 3
From this very simple basis we can prove the followm" powerful )
theorem: -
- Tueonen. If equals are added to cquals, the results are cqual; or, in
- ) - symbols: Ifa =bandc=d, thena4-c=b 4+ d. - N
’ Given: Axioms 1,2, 3, 4,5(a), 5(b);a=b,andc = d. - A
Toprove:a 4+ ¢c=b 4 d. — - . B~
PROOF -
La=h. 1. Given. v
. 2 a+c=bt.e |2 Step 1 and Axiam 5(a)
- withx = ¢. - {
3.c=4d o 3. Given,
A bhc=b+d ] 4. Step 3 and Aviom 5(b)
’ with x = |,
5.a+c=h+d |5 Step 2, Step 4, and
Axiom 4.
Y Note that cach step of the proof has been justified by a statement or )
axiom from the “given hypothesis” in exactly the same manner as is - - -

customary in geometry. -
This is the type of “clementary algebra” bheing taught in many U.S,
schools today. (It is being taught earlier than the ninth grade in some
L schools. For example, in 1964 some eighth-graders in a Norman, Okla- - -
homa, school proved that
(-a) - (=b) = *(ua- D)
and that . -
() = () = =(a + b) '

&)
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as homework excrcises in their mathematics course. What is more
important. they creeted the proof themselves rather than mercly

memarizing-a proef given in the test. Thousands of junior high school

students throughout the United States are having similar experiences.)

It is essential that academic high schools, colleges, and universities

build courses on this foundation rather than-on the foundation com- —

mon in the 1940’s and hefore. Some of the “old bricks” are no longer— :
there and should not be expected. It is neither necessary nor desirable - o

for a modern high school or college teacher to “reteach” so as to supply

these missing old-fashioned foundation bricks. You should expect -a

foundation for a steel building to be different from that for an adobe -

hut. Learn what modern algebra is all about; thex use it.

Chaniges in -Basic Concepts: Malrices :

The current axfomatic approach to the “rules of algebra” is not the - -
only important change in the algebra being taught today. The basic ]
concepts themselves have changed. The inclusion of introductory ) 7 -
matrix theory (bomn during the last century) in the high school cur- :
riculum was extremely rare hefore 1950, hut it gives promise of be-
coming standard practice before too many vears. A discussion of #e -
commutative law of multiplication, @ - b = ", seems rather point- o . -
less to many students until they discover that there exist athematical

systemns in which this “Taw” is not valid. Matrices provide such an ’ . .=

example, Matrix theory is one of the most powerful tools of modern
applied mathematics, since_ matrices well represent many complex

interconnections evidenced in nature.

There are many algebras in which a - b and b - a are not the same

thing. Portions of modern physics, chemistry, psychology, and statistics
are hased on such noncommutative systems. The following simple :
experiment provides a physical example in which @ - b and b - ¢ are ’-

not identical.

Plice two closed books Tlat on the table in froht of you with their faces
upward and their spines (hound edges) on the left. (This is the normal
position in which a book might lie before it is opened.) The books will
remain closed throughout the experiment.

Rotate the first book through 90° about its hottom edge. (1t will now
be standing wpright on the tible.) Now rotate the same book through
90° abont its spine. Leave the book i this position. .

Rotate the second book throngh 90”- about its spise.  (1f the book
were released at this point, it would fall open in reading position.) Now
rofate it through 90° about its hottom cdge.

(8]
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Note that the two hooks are not in the same final position. Each book
has been rotated through 90° about its bottom edge and 90° about its
spine; but the order was not the same. and the results are different.
It is possible to use matrix theory to forecast the 1esult of these opera-
tions and also of much more complieated rotations in three-dimen-
sional, four-dimensional, or higher-dimensional space.

A matrix is a rectangular array of Sumbers (elements) for which
multiplication is defined in a speeial way. A matrix should not be con-
fused with a determinant, which is a single munber or value associated
with a square array, The matrix is the array-itself. Two matrices are

said to be equal if, and only if, the elements in corresponding position.

are equal. For example, if the clements < re ordinary integers,

79 54+2 2 72 7 3
= , but Pl .
«|3 5 3 5 3 5 I_:‘.’. 5
The matrices )
- 3 9 -3 3
and
- -2 8 4 2

are unequal if the elements are integers, but thev are cqual if the
clements are the integers mod 6. Thus, to disciss matrices, it is neces-
sary first to consider the set from which the elements. of the matrix are
to be selected. Equality of matrices depends upon the equivalence
relation used in the set from which the elements of the matrix are

selected.-
a b T
M= and N="
c d v =

If
are two matrices, then their product M - N is defined as follows:

a b w o« ae + Dy ax bz
M- -N= . = .
¢ d y = cw 4+ dy ex + dz

The clement in the first (horizontal) row and second (vertical)
column of the product M - N is a sum of elements, each of which is
the product of an element from the first row of A multiplied by a
corresponding element from the second column of N.

Thus,
a b *ox * ax + bz
* * ' * - * * '

2

(9l

In a simjlar fashion. the element in row R and column C of the
product A - N is the sum of the products of the elements of the Rtly
row of M multiplied by the corresponding elements of the Cth column

of N.
~ 1 -1 . 7 4
FA=| and B = A
3 2 5 8
1 -1 7 4
then A - B= .
3 2 5 8

T+ 06y ) + (1)
Loy + @) @+ @s

[ 2 4
REE
"7 4 1 -1
B-A= .
|5 8 3 2

o+ @e o + (4)(2):|

However,

[ (5)(1) + (8)(3) - (5)(~1) + (8)(2)

(19 1
RER

Thus, in the system of 2 X 2 matrices, A - B and B - A are not
necessarily the same.

The reader may check his understanding of matrix multiplication
by showing that

3 -5 7 4'] -9 -38
12 6 10, [19 24:|
Matrices containing thousands of clements are used in many prac-
tical applications. At the Naval Ordnance Testing Station, matrices
are used in computations involving rocket and projectile flight. Ma-
trices are ised in modern economic theory. The branch of psvchology
known ,;gsﬂf.lctor analysis applies matrix nethods. Systems of thirty-
five (or more) equations in thlrty-ﬁve (or more) unknowns, which
arise in industrial research, may be neatly solved by using matrix
methods. Modem vibration amlysxs uses matrices of more than 1,000°
rows and 1,000 columns. In heat-transfer problems in nuclear reactors,
even larger matrices are common. Competent biologists and geneti-

{101
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cists find hatrix methods lhelpful in the study of the complex inter-
relations of heredity and genetics. Large laboratories and oil refineries
often ask universities to recommend graduates who are facile in the
use of matrices.

The widespread utility of matrices stems from their unusual method
of multiplication, in which each element of the product matrix is
obtained through the interaction of several elements- of the original
matrices, ) -

The Pauli matrices, used in the study of electron spin in quantum
mechanics, have'an interesting arithmetic. If i = -1, tlie Pauli matrices
ar 15 follows: o

1 0] i 0] 0 1
1= , A= B= ,
1] 0 i -1 0
[0 -i] -1 0 i 0
C= , D= , E=
' -1 0_ 0. -1 0 -
Co0 -1] . [o i
F= , G= .
1 0| - i 0

The Pauli matrices form = closed set under matrix multiplication;
that is, the product of tws. or more Pauli matrices is again a Pauli
matrix.

0 - -1 0 0 i
C-D= = =G
. -i ()j 0 -1 R 0
[0 -1 [~ o]. [o -]
FeA= = =C
L1 0] i ~i |
[0 1] [o 17 [~ o]
B'B= 1 - = =D
-1 0 -1 0 0 -1

Try it yourself and sce—there are (;nly sixty-four cases, and four-
teen of them are “obvious.”

Changes in Basic Concepts: Groups

We now turn our attention to one of the simplest mathematical
systems of modern algebra, the group. To have a group we need first
of all a set of clements, G, and an cquals (equivalerice) relation.
We also need an operation_such as multiplication_with which we can
combine elements of the set G. ]

An operation, -, is said to be well defined with respect to an equiva-
lence relation, =, if, when a and b are replaced by equivalent cle-

[11]
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ments, an cquivalent result is obtained. This means that x == v and
y =y implyx - y = & - y. Since cach clement is equivalent to
itself by the reflexive property (Equality Postulate 2), no replacement
need be apparent, as in - .

+
BN LI N T
"
+
TS

e -

EN A ’

9 .
where -'-‘;~ is equivalent to -g— and i‘- is equivalent to 711 . The distributive

property is actually used here to obtain
1 1 1
(2.74.] .4_)=(2+ )'_Z4=

The reader should note the difference hetween an operation’s heing
well-defined and the theorem “If equals are added to cquals, the
results are equal.” An operation’s being well defined with respect to
an equivalence relation implies the substitution property with respect
to the operation, whereas the theorem discusses only the results of the
operation for addition.

A group consists- of a set of clements, G, having an equals (equiva-
lenee) relation, =, and a well-defined operation, -, such that the
following postulates are satisfied:

L Closure: a, b £ G, then a - b G.
(The symbol £ means “is an element of.”)

sles

1o

Associative Law: If a, b, ¢ ¢ G, then
{a-b)y-c=ua-(h-¢)
3. Existence of an Identity ( Unity): There exists an clement o .. G
such that for each b ¢ G,
w-b=b-u=0h
4. Existence of an Incerse: For each b ¢ G, there cexists an clement
b* & G such that ’
h-b*=12.}=y,

for the u of Postulate 3.

It may seem that with so simple a set of postulates, no important
theory could develop. However, muich of the power of modern mathe-

[12]
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matics stems from group theory. E. P. Wigner, the physical chemist
who was director of research at the Qak Ridge National Laboratory
and the Metallurgical (Atomic) Laboratory at the University of Chi-
cago. is said 1o have presented the essentials of the thermodynamics

“of heat transfer to his staffl of physicists on one sheet of paper by using

group theory,
Consider some actual examples.

Example 1 -
The integers (positive. negative, and zero) form a group under the
operation of addition. '” T
1. Closure: The sum of two integers is an integer.
Associative Law: The integers are associative under addition.
Existence of an Identity (Unity): u = 0, since
h+0=04bh=1

© 1o

for all integers b.
4. Lxistence of an Incerse: The inverse of b is b* = b,

(Be sure vou understand this example before continuing. \Vhat
is the inverse of -11?) — - ) ’

Example 2

The integers do not form a group under multiplication. The first
three postulates are satisfied (0 = 1, in_this case); but Postulate 4 is
not. since the number 5 does not have an inverse in the system of
integers.  (Actually, no integers other than =1 have multiplicative
inverses in the system of integers, hut a single counterexample is
sufficient.)

Py

Example 3 ] ) .

The rational numbers, with zero excluded, form a group under the
operation of multiplication. -
L. Closure: The product ot two rational numbers is a rational number,
Associative Law: The rational numbers are associative.
Lxistence of en Identity (Unity): u = 1, since

: - hel=1-h=1)
for all rational nwnbers b,

@ 1o

4. Existence of an Incerse: The inverse of b (= 0) is 7’;—, which is

rational if b is rational,

. (18]
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In the above examples, the elements of the group are numbers, and
the equals relationship is ordinary equality of numbers. However, a -
group may be more general than this.

Example 4
Let the clements of a group he substitutions of one set of letters
for another. For example, i
r for A substitute B (A—B
Leta =-§ for B substitute C = 1! B—C

{ for C substitute-A [ C—A

so that the substitution a carries (A, B, C) into (B, C, A), and if
substitution « is applied to 34* — 4BC 4 24, it becomes 3B* —
4CA + 2B. ’
If .
i A=C
wh={B—>8B
C'—):A
is another substitution, then b carries {A: 8, C) into (C, B, A).
Also note that b carries (B, C, A) into (B, A, C).
If thg: substitution ¢ is followed by the substitution b, we obtain
the following:

Using A Using
a b

~ - (4, B, C) becomes (B, C, A) becomes (B, A, C).
However, there is a substitution that will carry (A, B, C) into
(B, A, C) directly, namely,
7 A—B"
=3 B—>A
CcC—C.
We write ¢ - b = ¢ to express this. -
There are six possible substitutions of the three letters A, B, C,
including the identity substitution :
A—A T
i=< B—B

Cc—C.

(14]




Let these six substitutions be elements of a mathematical system, G,
in which the operation-- is the following of one substitution by
another substitution, and the equals relation is identity of result; i.e.,
a - b means “first do ‘@, then do ‘b.”” Thus, @ - b = ¢ for the sub-
stitutions given above. ’

When a group is being defined, it is essential that the equals rela-
tion be specified and that it-satisfy the postulates for an equals relation
" given carlier. (See p. 6.) .

It is usual to represent such substitutions (often called permuta-
tions) by a notation

AB
a= , -
. BCA o

where the notation .mplies that cach letter in the top row is replaced
by the letter just below it.
The six possible susstitutions are as follows:

-

[1‘_)8 A—C
l ABC ABC
a=< B—>C= : b=< B>B= ;
l BCA : CBA
C—A C—A
fA—>B A>C
ABC ABC
c= B—)A=( ; d=< B—>A= -
BAC CAB
C , C—
f/\—)A A=A )
ABC ABC
¢e=4 B—C= ); i=<B—>>B= .
ACB ABC
(.t—>B cC—-C
Thus,
ABC ABC\ ABC -
d-e= . ¥ = =,
CAB AcB / BAC
while

ABC ABC ABC
e-d= ) . = v )=
ACB CAB CBA

Note that d - ¢ # ¢ - d. Hence this systein of substitutions is not
commutative. It need not be, to satisfy the group postulates.

[15]
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The group postulates are to be satisfied by the system of substitu-
tion just discussed. >
1. Closure: The “product” of two substitutions in this list is also a
substitution in the list. You are asked below to complete the “mul-
tiplication™ table for this group, and hence prove closure.

9. Associatice Law: Examine a typical letter, under the transforma-
tion [(a - b) - ¢] and under [a - (b - ¢)].

eeeXeasee
a= i
coeolfeense
c=( | . )
. eeees W,
Then (a « b) takes x into =, while (b - ¢) takes y inth w.

{(a-b)= ,while (b - ¢) = .

- Thus,

[{a-b)-c)= . = ,
A S R 7' B AT
while
RO el e Xens
[a:th- c)]:..( ) . ( ) ( )
- TN e Y e S T 7T

Thus not only these substitutions but every set of substitutions is
associative.

¥
3. Existence of an Identity (Unity): u = i, as already noted.

4. Existence of an Inverse: By forming the products x - x* = x* - x =
i, show that each x ¢ G has the inverse * indicated below.

a*=d d*=ua
b*=Db e*=ce
c* =c¢ i* =

(161

=




I
I

»
- - PAR"AL MUI."PUCA'"ON_ TABLE FOR EXAMPLE 4
2 - e b ¢ d e
‘ ] iY < b ¢ d e
o} o i
: b b i
B g
c ¢ o, i
d d‘ i a c
e e ) b i

Fill in the entries not already supplied above. Filling in blanks is an
important part of “reading” mathematics.

Example 5 .

Let the elements of a group be rotations of a plane figure through
integral multiples of 60°. Let the operation be “following one such
rotation by another,” and let the equals relation be “identity of posi-
tion.” Rotation through -120° results in the same position as rotation
through 240°. Rotation through (k - 60° =+ n - 360°) results in the
same position as rotation through k - 60°-for cach integer n. Hence,
the elements of this group may be represented as Reo, Ryzo, Ryso, Ruy,
Run, Ryao. Note that each of these group clements, R, represents an
entire equivalence class {R - n - 360°),

b

Ri20 R50

Rigo

] v

where R, denotes a rotation through x degrees in the counterclock-

} wise direction. Thus, Ry - Rise = Rag, and Ruyy + Rise = R
Check the group postulates for this system.

? [17]
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1. Closure: If one of the above rotations is followed by another rota-
tion, the resulting position could have been obtained as a single

rotation.

19
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1t is instructive to form the multiplication tables for the group in
Example 5. Here, as well as in Example 4, you should fill in the entries

not supplied.

PARTIAL MULTIPLICATION TABLE FOR EXAMPLE S

Associative Law: True.
Existence of an Identity (Unity): 1 = Rug.
Existence of an Inverse: The inverse of R, is R.* = Ruu...

Riso Rso Rizo0 Riso R240 R300

R3s0
Rs0

Ri120
Rigo
R240

R300

Example 6

Cut out a two-inch square of cardboard or paper. Label the vertices

R3so Reo Ri20 Riso Ra40 R3oo

Rso Rizo Rigo R240 R300 R360
b4

Ri20 Rigo R240 R3o0
R1g0
Ra40 Ri20

R300 Rs0 R240

A, B, C, D as shown below.,

A

Front

Back

c

Place a letter A on the back face of the square in the same vertex as
the letter A on the front. Vertex A is now uniquely identified. Repeat

b

for vertices B. C, and D. -

(18]
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The elements of this group are certain movements of the square.
The operation. -. consists of following one movement by another.
Equality is identity of vertex positions.

The permitted movements (elements) are as follows:

Risa: A rotation (in the plane) of the square throngh 180° about its
center.

becomes _

c D \ 4 g

Ricu: A rotation (in the plm;e) of the square through 360°.

8 A A 8 A
becomes

¢ ol ¢ D

This is the identity element, since the positions of the vertices are
unchanged.

H: A flip (in three-space) about a horizontal line through the center
of the square.

becomes

c D ] v

V: Aflip (in three-space) about a vertical line through the center of
the square, -

becomes

Then (11 - V) is that element that results when H (horizontal flip)
is followed by V (vertical flip). Actually, experiment will show that

(I - V) = Ry,

[19]
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that

(Rywo - V) = 11,
and that

(- 11 = Raca.

You sliould construct a model and carry out the operations just sug- -
gested as well as supply the remainder of the entries in the multiplica-
tion table of this group.

PARTIAL MULTIPLICATION TABLE FOR EXAMPLE 6
t

R3so Rigo H v

R3s0] R3so Rigo H v

Rigo

H R360 Riso

v

After the table is completed. it will be possible to see that these four
clements do form a group, as shown below:

1. Closure: Only the clements Ry, Ruco, 1, and V are neceded to
complete the table.

)

Associatice Law: The four given elements are substitutions for the
corner letters. Substitutions are associative, by the discussion of
Example 4.

ABCD ABCD
Ry = , Rago = '
CDAB ABCD
ABCD \. ABCD
= ) V= .
DCBA BADC
3. Existence of an Identity (Unity): u = Ryeo.
4. Existence of an Incerse: Since u = Ryg, appears once, and only

once, in each row and column of the “multiplication” table, it fol-
lows that

Xca=Ren and Db-x= Riuo
are solvable for all ¢, b in G = (Rae, Rise, V, H). Examination
shows that if x - v = Raq, then y * ¥ = Ruqo.

(201
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As was emphasized before, the serions mathematics teacher must
realize that one learns mathematics by working problems, not mercly
by reading. T have suggested that you complete the partial multipli-
cation tables given in Examples 4, 5, and 6. It would also be instruc-
tive to prove that the set of Pauli matrices discussed on page 11 forms
a gronp under the operation of matrix inmltiplication. and that the
multiplication table given below is nof the multiplication table of a
group.

o, a, a3 ay as

0, 01 02 03 ay, 05

a, a, a a, as ag

{Not a groupt)
. a3 103 ag a; a, a,

ay ay a, as oy ay

g5 jas a, a; 03 aq _
Actually. even the simple set of group postulates given here is
redundant (i.e., parts of some postulates can be proved from the
remaining postulates). You may. for example, wish to prove that in
Postulate 3 (there exists an clement ¢ £ G such that for ecach b ¢ G,
w-bh="n-u=Dn),the equation
wu-bh=b-u=1h

may be replaced by the equation

Dou=h
and that one can then derive the remaining assertion,

u-bh=h,

as a theorem,

Linear Equations and Compnters

Not only are new areas of mathematics being explored, but very
ancient areas are flowering in fashions that would have been unbe-
licvable even twenty years ago. Ancient Babylonian tablets discuss
problems that, in madern notation, require the solution of systems of
linear equations such as

3 4y =19,
Ay ~y=1.

[21]
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Modern schoolboys still solve similar systems of two lincar equations
. : in two unknowns and even systems of three or four equations in three
or four unknowns. but until recently only the hardy ventured bevond |
this. Todays computers make it possible to solve, as routine problems,
svstems of 700 equations in 700 unknowns, which arise in modern
cconomic theory. Systems of 1,728 equations in 1,728 unknowns arise
daily in vibration theory and flutter analysis in modern rocket and jet
’ design. Much larger linear systems arise in the heat-transfer problems
of atomic physics. Algebraic problems that were beyond considera- -
tion ten vears ago are now solved routinely by the use of modern '
computers. Entire new vistas open up. -
\Vith the new vistas, new problems appear. Although a.great deal
is known about continuous variables (analysis) and much has been
learned about certain finite algebraic systems such as groups, fields,
rings, and integral domains, no one has yet completely studied the
basic structure of the arithmetic used in any major computer now in
operation! Modern computers are amazing arithmetical engines, but . : -
they violate many basic postulates of high school algebra. For example,
high school algebra assumes that for all a, b, ¢,
(a4 b))+ ¢ =a+ (b+ ¢) Associative Addition
(a-b) "c=a-(b ¢ Associative Multiplication

s {a+b)=s-a+s-b Itributive Property

It also assumes (or proves) that -
i farzs0anda-x=a-y, thenx=y . -
- and
R fat+x=at+ythenx=y
and that .
» ifa-b=0,then cither a = 0, 0r b = 0, or both.
. However. none of these rules is valid in computer arithmetic. In spite #

of this, computers provide the majority of the arithmetic answers
needed in today’s engincering and science. Mathematicians must study

- the basic structure of computer algebras if science is to make reason-
able usc of this vital new tool. ,

[22]
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CONCLUSION

interest to mathematicians than (e ever-changing structure
of computer arithmetic. Today’s economics, psychology, busi-
ness administration, physics. chemistry, and engineering each lean
heavily on mathematics. Each brings new problems for the mathema-
tician’s study. Modern algebra provides the language and the tools of
mathematics, much as mathematics provides the language and tools

q BSTRACT ALGEBRA has many other vital problems of even more

_of today’s science and engineering. It is not surprising that most col-

leges and universities have demands for ten times as many students
of abstract algebra as are prezently graduated.

Algebra has a long and interesting history from ancient times to
the present, but only the current century has seen the rapid growth of
abstract algebra. To any high school teacher wishing to know more
about recent developments, 1 would say: First study the Twenty-third
Yearbook of the NCTM, Insights into Modern Mathematics; then con-
sult the 512.8 (Dewey decimal) or QA 266 (Library of Congress) area
in your library. Continuous study is needed. Tomorrow’s history is
being molded in the minds of active secondary school students today
by teachers who are still learning about abstract algebra,

[23]
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