. *
- .)
' DOCUMENT RESUME
ED 077 246 ‘ EM 011-174
AUTHOR ~ Kaplow, Roy; And Others
TITLE - TICS: A System For The Authotring and Delivery Of
S Interactive Instructional Programs.
INSTITUTION Massachusetts Inst. .of Tech., Cambridge. Dept. of
-) ~ Metallurgy and Materials Science.
SPONS AGENCY National Science Foundatlcn, washington, D.C. Offlce .
' of Computing Act1v1t1es. '
PUB DATE. Mars 73 :
NOTE Sp.; Proceedings, Seventh Annual Princeton Conference . .
- . ‘'on Information Sciences and Systems, March 42-23, —_—
1973 -0
' EDRS' PRICE MF-$0,65 HC-$3.29 - -
'DESCRIFTOES: Authors;. *Computer Assisted Instructlon°

'*Instructlonal Progranms; *Interactlon, .Man Machine
8ystems- -on- L1ne Systems, Program Descrlptlcns-
“*Program Development° Programlng Languages -

IDENTIFIERS ‘*Teacher Interactive Computér System; TICS

ABSTRACT b

The Teacher~1nteract1ve Computer System (TICS) is an
n-llne and interactive programing sgstem for authoring interactive

_ progrars,. partlcularly instructional programs. Thé system provides a

falrly natural language, in which the author's stateménts for
creating items in a program, for examining the structure and flow,
for sluulatlng its use by students, for mcdifying the éxisting
déscrigption,”’ and for making entrieés. in a thesaurus/encyclopedla can

‘be- intermixed homogeneously. Durlng the authorlng process, the
_‘current -specification of the program is stored dynamically as a

structured data base, which includes autoratically generated
informaticn relating to the interdependencies among items in the
program and other dlagdostlcally useful data..Implemented in a large,
general—purpose t1me-shar1ng systém (Multics), the TICS authoring

;system is- complemented hy a delivery system for student use of the
- program. . It is also 1ntended to provide automatic conversion of
‘completed programs to alternate formats fcr implementation cn other
-computers. . (Author/PB) \

{

I

\

[
]
!
i
i

ED 077246

Systems, March 22-23, 1973 '

” -

TICS: A SYSTEM FOR THE AUTHORING -AND DELIVERY OF
INTERACTIVE INSTRUCTIONAL PROGRAMS

by

Roy Kaplaw*, David S. Schrieidert, Franklln C. Smith, Jr.*
and-William R. Stensrud*

Department of Metallurdy and Materials Science
Massachusetts. Institute of Technology

Proceedings, Seventh Annua] Princeton Conference on Information Sciences and

US DEPARTMENT OF HEALTH.
EOUCATION 8 WELFARE
NATIONAL INSTITUTE OF

EOUCATION
THIS COCUMENT HAS BEEN .REPRO

DUCED EXACTLY AS RECEIVED FROM |

THE PERSON OR ORGANIZATION ORIGIN
ATING 1T. POINTS OF VIEW OR OPINIONS
. STATED DO NOT NECESSARILY-REPRE
SENTOFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR POLICY

Cambridge, Massachusetts 02139 - -

Summa
TICS (Teacher-Interactive Computer System) is
an-on-line-and interactive programming system.for
author1ngi1nteract1ve programs, partlcularly in=
structional programs of various types. The system
prov1des a-fairly natural language, -in-which- the
author's Statements for creating items in a pro<
gram, for examining the structuré and-flow, for
simulating its use by students, for nodlfylng -the
existing-descrigtion, and for making entries- in-a
"thesaurus/encyclopeaia® can be intermixed nomoge-
neously. Curing tne authoring proceéss, the current
specification of a progran is stored dynamically
as ‘a structured date base, which includés automat-
fcally-generated information relating to the-inter-
dependencies arong items in the program and other
diagnostically useful data. Impierented in a large,
general purpose tire-snaring system (Multics), the
TICS authoring systen i ,f’"“'ﬂf;n'“d by a delivery
system for stuonnt use of the programs. It is a1§o
intended -to provide automatic conversion of com-
pleted programs to alternate formats for implemen-
. tation on other computers.

Introduction

In this paper, we desCribe an interactive
programming-system: TICS (for Teacner-Interactive
Computer System) in terms of its application to
‘the authoring and-use of computerized instructional
programs, which we call Tutorials. This system,
more than other prograzming i2ncuages and systems
which have been applied to similar purposes,!=
treats the authoring of a Tutorial as a dynamic
process which -itself requires significant computer-
ized assistance.

We regard Tutorial programs as defining an
interaction which i5 primarily controlled by the
computer (that is, by the author) but with the stu-
dent being able to direct the flow either implicit-
1y by his responses, or explicitly by direct re=~
quests. During that interaction an attempt may be
made to stimulate the student by offering informa-
tion, asking questicns, and soliciting responses;
the computer should also be able %o respcnd to the
student's questions, even if within a limited
framework. A particular student will see a

Professor ana staff members, respectlvelj,
Departuent of Metallurgy ana Haterials Science.

Graduate stuuent, Department of Electrical
Engineering.

-essentially the sare. moment:

sequence -of such actions; with the detail of the
content.varying in a manner winich depends on his
,1mmed1ate1y preceding response, prev1ous responses,
and.other parameters.

In-writing a: Tutorial, the.author'is con-
cerned with a- nultl-dlr&nSlonal cbject, for which

_he needs to consider both the-overall: 'design and

specific¢-details at different. points=-0ften-_at

The notion that he
might write the .program by presenting a one-dimen-
sional sequential list of "instructions" starting
at one énd of thé object and going to the other,
js not accurate, even though that view is so fund-
amental an aspect of most pragrarming languages
that non-professionals often identify it as the
process..of -programning a computer. TICS, ‘on " the
otner hand, assumes that the author will mave
around within the ongoing oescription ef his
Tutorial., It alsc reccgnizes that the acts of
describing items in the Tutorxa], of examining the
Tutorial, of trying it to see how it works, of
changing it or addirg to it on the basis of look-
ing at it (in the general sense), and even of in=
serting data into an information data base for the
student are all intimately related asoects of the
one dynamic process of writing a Tutorial. There-
fore, the TICS commands which relate to all of
those different kinds of activity are-available

to the author at any time, regardless of the then
current state of his prograr:, and the various
types of actions may be mixed in a natural way,
according to his cwn predilection. HMany of the
available instructions are analogous to program-
ming language statements, in that they specify ac-
tions which are to occur and the logical decisions
which should be made when the student uses the
program. However, unlike a prograrmming language,
in which statements are considered to be simply a
sequence of program steps, the TICS system trans-
forms the author's ongoing input into a data base
of fairly general structure, which is called the
"dynamic data base". The predefined structural .
form of the data base is a direct reflection of
the system's conceptual model for a Tutorial,
which is described in some detail in a later sec-
tion.

In addition to providing a reasonably natural
language to the author for the creation of a Tutor=
fal and for reviewing its content, logic and struc-
ture, the system assumes the burden of managerial
tasks, such as numbering items, recording inter-
dependencies among items, and keeping track of
structural incompleteness. The system also in-
cludes mechanisms to convert the oothor's

E

Q

RIC

Aruitoxt provided by Eric:

description of a Tutorial into a concise form for

student use on one or more "target” machines, not
necessarily the same type of computer on which

the TICS author-system itself resides.

The Overall System

TICS is implemented at M.I.T. as'a subsystem
in the Multics® time=sharing system. Figure 1
diagrams -some aspects of its organization and in-
put-output modes. Within the author system, each
Tutorial-in-process is erbodied in cne "dynamic-
data-base,-résident in Multics storage. The au-
thor can work on his description of a tutorial
through an-on-Tine terminal or via off-line -media
(e.g., cards, printer). He can allcw.a "try out"
access to-others-who then.can_use, but_not alter,

‘the program, while it 4s.still being developed and
even .if it contains structural errors!

0 5! Any number
of -authors may:work simultaneously, each on.his or

‘her -own-tutorial. An-author-may work.on as many
different tutorials as_he cndoses and, conversely,

it can be arrangéd that any number of authors can
work on-one tutorial.

When a.Tutorial is thought to be finished,

‘the author initiatés a transformation process

(analogous to compilation), which we call compres-
sion. That process comprises the various steps

of ordering-the data base, searching. for structur-
al errors, extracting only tnose elements which are
needed for the-execution-time descripticn of -the
Tutorial, and formatting thém into a highly codad,
compressed form. This is used in the delivery
systeni, also implemented on Multics, in conjunction
with a driver program. ({Driver programs are_also
being written in IoM/PL1 and for a PDP 11/40
system.)

The:Structure of a TICS Tutorial

* We regard the structure of a Tutorial as be-
ing representable by a collection of nodes, inter-
connected by arbitrary numbers of brancnes. Each
node can contain a small interaction, ideally a
tiny conceptual unit in the author's plan. One
node in a program has the initial attribute and
acts as the starting point. Any number of nodes
may be points at which the Tutorial ends. Gener-
ally, branches are specified explicitly, although
conditionally (e.g.: if "such and such" is true,
then go -to node “such and such"). In addition, for
certain types of nodes, or clusters of nodes, a
branch out need not be explicitly identified but
can be a return to the point where the branch into
the cluster originated.

Assuming that the allowable contents of a node
are adequate, these simple structural concepts al-
low a Tutorial to be very general from a purely
structural point of view. Moreover, there are
three aistinct and important advantages in the node/
branch concepts and the associated multi-level
address space defined within each Tutorial:

1) It provides a convenient structural form for
the dynamic data base, which in turn allows the pro-
vision of author commands which are botii convenient
and efficient in maintaining, manipulating, and in-
vestigating that data base. 2) For the author,

. cally in_Figure 2.

the nodes might Comprise intellectually meaning-
ful-units. Also, since they are readily distin-
guishable and clearly delineated locations in the
overall structure, the nodes constitute a refer-
ence basis by which tne author (or a later modi-
fier of the program) can -move around within the
already existing description. 3) Implementation
of the target (delivery) system for student use
is conceptually Simpler with the nodal cor:cent,
and the inherent/ démarcation lines in the final
program description provide an oppoffunity for
efficient utiliZation of Timited core storage in
a special -purposey multi-usér, time-sharing stu-
dent system.

It is of equal importance to note thet -the
nodal structure is -not selected becausé. of any
presumed -advantage it holds as a-format for 'pre-
sentation to the student. Indeed, :although.an
cbviously "page-by-page" présentation can bé -writ-
ten, such great-variations in thé :contents .of
nodes. are-possible .that students-will -not géensral-
ly-discern theé _nodé -boundaries even if they are
aware of the underlying nodal structuré of the
programs.

For Tutorial programs, we riay envision nodes

- as having a specific internal structural pattern

(which neéd not be filled) as indicated schemati-

iiithin any one ‘node there may
be 1) execution of called subroutines, 2) out-
puts to the student, 3) acceptiance of a respanse
frem-the student (if one was anticipzted), 4§
analysis (mapping) of the response with respect to
@ 1ist of anticipated responses, and 5) testing
of “condition statements" which, if true, cause

. associated sequences of actions to'be carried out.

“The conditions to be testéd can relate to the stu-
dent's response in the current node, to responses
in other-nodes, and to values of variables. The
action sequences can incluge calling subroutines,
printing statements, writing entries in a report
file, doing mathematical operations on arijthmetic
variables, executing "return" type nodés or node
clusters, printing hints (and getting other re-
sponses), and (sooner or later) branching to
another node.

In addition to the description for those con-
tents, which specify what the program should do
when the student is using it, each node may have
a number of additional items associated with it,
while the -author is working on the program. These
include a name, a number, a documentation comment,
a self-reminder author message, a system-maintained
set of warning and error messages relating to
changes made in interdependent items, a system-
maintained list of all items in the node on whjch
other items depend, optional attribute specifica-
tions which relate to the, interpretation of the
student's response, and one or more keyword phras-
es. Using a subset of the node-keyword pairs %“"*
(which is then included in the student's versidn of
the program), the teacher can identify those points
in a Tutorial to which a student may arbitrarily
skip, and at the same time providé the “map" for
the student to appreciate what those points are
about.

Y
Pt

-

2 ainbiy

‘300N v 30

FYNLONYLS TYNUILNI JHL 40 WYNOVIQ. JILVWIHIS

$0oUenbas =o:uo
U) 80)jom 8D @0y, pejiesu) oq Aow 5}102 .c..sossm (%%)

. Usuciidoljo ..e.::__ Aup.
ujoguos uo? :oco_....: Lsuojiso o »..quuo 0 u.og._. (+)

.

N

| 4N0-HONVYHE
i

300N
HIHIONY OL O

HOLINHLSNI HO4
IOVSSIN .3 L1HMm

< NV SNENVSIHL
NI dn %007

1N0 LRNIYd

< 300W 3910H2- 314110 J4no= s3Haivue
, NI 3sNos3y 30/] oN ‘1Invdaa
F ‘ .
.~)
100 -HOhvHE. i
g 1
300N 300N ,NuN13H, 1" FETIT
YINIONY . A
ﬁl.Tl.l 01 094 v'31003x3, <A :noilionos
P‘IEUK ONY . HIISNVNL J(Z.sz:.“
)
10n0- HONVHE
A00- PNy
I 3GON : .

: Y3HIONV . ¢ 3nuy
el 04 0ps] |3IMLnowEns TIvy »A‘ INO1LIGNOD
1_.A..T:.¢Eu¢e.< VIsSNTHL :z..u;eh R)

re——————] 1N}l 2113WHLIEY. Og)- u», : ¢3nyy’

*NOI 110NOD

§39N3no3s
. NOI12V:0Q |,

03I 4SILVS_ 3
JtsvNot1tanos
.. %93HI

N BRI
ISNOdSIY dViW
ONV, 32 ATYNY

J 157nb3y
34 3ar1anug N

5

+ 3SNOJS3Y 139

v 4

——

"Ni-HINVHE

—

7 IN30N1S 01,1nd100]

NI -HONvYE

' ,ﬂ_

LRIy

‘o

| ainbig
]
esog asog wnipaw 13jsu0Jy
bjoQ 0j0Q (e} 49jSUDJ] de—i pub suysow Jabsb}
j9bsn) 19bso] :./ \ 4djpw 0} papolas .
N\
$ i
w0601y R (A10ss53320 }|)
"1 arug | // 2)0|suoJ]
} R !
N\ uolINaaIx9 Joj
— wayshs :3._84 N Aiossednu volowioju) Kjuo
{jpwJio papoa ‘pasapio
EEEE: | (3sva viva 13ouvl S31LINW)
3ASvA VIVO JIVIQIWHILNI
[TLT Tomerme)
Suiyoow jebIog ~
- —» SSIUIWOD
48julid -
o ' e e e e 01pado}jdhau
_-l | P39ds ybiH \ni:omofm
JOVYNONVYT am_om (epow .
9J|0su0d JLvInwis
e Qu)) .uo] 3 - pjoQ > kjuo k1))
HOHLAV $I1L duwoukq SJIL-WIS
I 7 t
| S 9josuod
S$pIDd ONVWWOD i
e e poyound [~ =¥} hmmoo_gh‘ - —d oUN| ~uD

G- w)

W3LSAS SOIL 3HL 30 IUNLONYLS TIVHIAO

Q

IC"

Aruitoxt provided by Eric:

E

N

¥

*

g

There are, additionally, implicit fTems in
the des¢ription of every node because of certain
operational conventions whicn are follcwed when
the Tutorial is being used: 1) If a response
does-not result in a hint or a branch-out, the
system defaults to a multiple-choice mooe, in ef-
fect asking the studsnt to seiect 2mong the
responsés anticipated by the auther. 2) Ifa
hint is given, the associated statement is cnecked
off, so- that the same hint is nct given again in~
auvertently. It m2y bé noted that these conven-.
tions-eliminate the pessibility of 'looping" -of-
of a.dead-end accurring within a node, providing
that-at least one anticipated resgonse (or an al-
ways true conditionai) necessarily. leads to a
branch-out.- This ccnaition is readily checked
and i$:monitored by the system. Another implicit
item in the Tutorial is the coticnal récording of
the:history of the student's patn, including the
full .text of his responsés. These data may be use-
ful -to the-author or to the instructor of the ré-
lated course, if the use of the Tutorial is formal-
ized..)

There are also three types of global items
associated with each Tutorial wnich apoly through-
out, .rather than to a specific node: 1) A data
base for author-specified numerical scalar, numer-
ical.-array, and craracter. variables, and for a
number-of system-naintzined variezbies, which may
be presinitialized or derived from student input,
inclided in text output, manipulated by arithmatic
{and-character) ozerations and subroutines, ano
used -in-making decisions. 2) An organized file
of textual information, called a thesaurus/encyclo-
pedia. "Words and phrases can be linkec to one a-
nother in the Sense of a thesaurus and associated
with-descriptive text in the sense of a dictionary
or encyclopedia. In use, the student can acress
the information from any point in the tutorial
through the use of "interruptive" requests,

3) There are seven types of interruptive requests
with which the student can charge or temporarily
interrupt the flow. Three of tnese require no
action by the author: tne student can back up

to a point whére ne gave a response previously;
send a message to whcmever is in charge of the

use of the tutorial; or stop the session, with the
option of continuing at a later time. Three more
requests are always implicitly available, but are
useful only if the teacner suppiies appropriate

- data. These allow the student to search tnrough

and look up items in the thesaurus/encyclopedias;
search the keyword phrase list; and jump to points
identified in the keyword list. In addition to
these, the teacher may specify subroutines to be
made_available and their names may then be used

as interruptive requests, with or without student-
supplied parameters. .

Authoring a Tutorial

. The author is always considered tc be at a
certain node in the Tutorial, tie working noce.

The working node may be relocatea to any ncae oy tne
use of a simple commano, and the consequent ease of *
moving the site of operation ameng tne nodes helps
to make the description of a non-linear Tutorial a

-natural process. With other commands, the author
can create specific items within the Tutorial,
generally at his working node. The elements of a
node may be created in the order in which they will
be executed or in any other order that the author
Tinds natural. Since any one statement may call;
either explicitly or impliicitly, for the creation
of a nurber of new items in the program, the systen
informs the author of the spécific éntries made in
the dynemic data base and of the unigue identifier
assigned to each ijtém, which may be.used thereaft-
er to refer to the item without répeating its com-
plete specifications. Tne system gives warnings
and may seéek verification of possibly- unexpectee
creations (e.g., the impli€d creation.of a new var-
iable-or of d@n anticipated respcnse in another node).
and input statements are checked for consistency
-with-the-existing data base.as well as for lan=
guage syntax.. ¥hen an error occirs, -a descriptive
message is printed, and.the.author may switch to
“a general purpose editor to fix the statement:

. The same editor is called at the author's
requést to alter any. previously specified textual
entry in the program. Other modifications to exist-
ing entries may involve deletions, rearranging the
oroer of things, changés in the logical structure,
or substitution of one item for ancther and appro-
priate commands are therefore provided.

“Shorthand" features are provided to give the
language added convenience. An- author may define
an input shorthand for commands or for text which
he uses often, and previouslv specified text may
be used, by reference, as irput in creating new
entries. The author cén also control the verbosity
of the ccmputer feedback and, if he chooses, switch
to a block input mode to vary his_pattern of inter-
action with the computer. Mecreover, all facilities
in the system except those which obviously require
the author's live presence (such as simulation),
can be used in an off-line, card-input mode.

To help the author keep track of the inter-
relationships among items in the tutorial, a cross
reference table is maintained for each node. These
tables are available to the author and are also
monitored autoratically to determine what effect
modifications have on jtems elsewhere in the Tutor-
ial; when an item.is altered, an appropriate warn-
ing entry is made in any affected node(s). If an
item is deletéd from the program, such that some
other item is nut in error, a non-celetable error
entry is made in any node(s) containing the erro-
neous item(s), and the deleted entry is actually
saved in "ghost-1ike" form, so that it may Le rein-
stated, if desired. Such error entries can be re-
maved only by correcting the erroneous conditions.

The ease with which the original author and
subsequent contributors can refine a Tutorial de-
pends greatly on their being able to inspect and
review ifs contents.” The TICS system therefore pro-
vides a variety of tools for viewing the structure
and the content of a Tutorial, in coarse or fine
grain, on the author's console or via a remote high-
speed printer, in print or graphical form. Another
set of comnands is provided for focusing on the

£

'3

E

Q

RIC

Aruitoxt provided by Eric

v

.

Yogical structure of the Tutorial; that is, for
Tooking at possible paths through the node/branch
structure. One such commiend is the tree command
which-allows the author to view the branching
structure starting or ending at.a given node. A
trace comnand "plays through" the outputs, student
responses, and conditional choices involved in a
path through a set of nodes. Another command
yields a:block diagram of the intérnal logic of a
single. node. . ~

An important part of the authoring process is
for the: author to “see how it runs"; that is, to
execute: the Tutorial as a studént. For this pur-
pose, the system includes a mode of operation in-
tended. to.simulaté the execution of a progrim as
it will appéar to- the student, but which works on

.the author's dynamic data base,.which -mdy be $truc-

‘turally-incomplete and-érronedus: -(Such condi-
tions. are detected-during simulation and- brought
td\the.éathof's‘atténtion.) There are,. moreover,
tWo\médégzdf simulation: a) Student (or "demo")
mode; for which the targét system interaction is
emulated as precisély as péssible and which can pro-
vide actual user feed-back during the entire pro-
cess of writing the tutorial. b? Teacner (or
“~.on-derio") mode, in which the system not only pre-
sents the described interaction, but also idéentifies
éach node-as it is entered through the branching
sequences, prints the error, warning and reminder
messages which nappen to bé attached, and makes
additional comments about incompléete states. In
addition, -during the course of tne simulation, the
author -then has available a number of conmands for
the purpose of examining and setting values for
variables, and for controlling the simulation. He

" can set detailed “stop-points" within nodes, which

will cause-a halt in the simulation and allow exam-
ination of the state of affairs at the instant.
Throughout, the author may use any of the standard
TICS requests to create, display, examine or alter
any part of the Tutorial description.

Anticipated Responses and Response Analysis

For the interaction format described earlier
which has the flavor of a "conversation" between
the computer and the student, and especially if
the studént responses are the prime determinant of
the program flow, specification of anticipated stu-
dent responses are- a central aspect of the author-
ing process. If, in addition, free format student
responses are desired, ‘rather than {say) multiple-
choice selection, response analysis (or interpreta-
tion) with respect to the anticipated responses is
a critical function of the delivery system.

The generalized fesponse analysis problem is
made more- {ractable by the structure of the Tutor-
1al which allows each individual analysis to be
made in a very local context, and reduces the prob-
lem from “what does it mean?" to “"does it mean the
same as one of the anticipated responses”. It is
worth noting, as a related point, that there is not
much advantage gained by a response analyzer which
"understands" responses for which the rest of the
Tutorial is not prepared. In a real sense, there-
fore; an author's success is more dependent on the

s

degree to which he becomes not only aware of but

also responsive to the meaningful range of student
responses in each node, auring the dynamic process
of design and trial of a Tutorial. — s

While trying not to involve the system or the
author deeply in questions of language' structure .
or analysis, requiring certain simple specifica-
tions to indicate alterpatives for the response
comparison process has been uséful in allowing
reasonably natural student responses., Thus, a node
may give the studént a multiple-choice presentation
directly or look for a free-format response; or, it

‘may seek a-response which is actually a list of

responses. It may seek.no response, or re-inter-
pret a previous one with respéct to.a-different set
of anticipated. responses. Each anticipated response
carries its-own instructions for the response ¢om=
parison routines; these fay indicate, for -eXample,
that the.expected résponse is a numbér between- spec-
ified limits, -or an algebraic expression or eguation,
both of which-require a mapping very different than
for text. Text responses may be finély detziled in
terms of pieces which should or should not be in-
cluded, in terms of listing synonomous or alterna-
tive-forms, in terms of the exactness of match re-
quired, and in other respects. Additional alterna-
tives regarding response analysis are implicit in
the author's option of using subroutines to act
directly on the input text.

_Acknowledgments

We would Tike to thank a number of persons
who have contributed to the design and implementa-
tion of the system. Dr. John Brackett, pr. Alan
Campagna, John P. Linderman, David Pettijohn, Seth
Cohen, Lee Scheffler, Paul Leach, Richard Goldhor,
Geoffréy Bunza, and Gary Stahl. This work was spon-
sored by the National Science Foundation, Office of
Computing Activities.

References

1. Swets, J. and Feurzeig, W., "Computer-Aided In-
struction", Science 150 (1965); also see Feur-
zeig, W., Computer Systems for Teaching Complex
Concepts, Report Ho. 1742, Bolt, Beranek and New-
man, Cambridge, Mass. (1969).

2. Feingold, S. L.: “PLANIT - A Flexible Language
Designed for Computer-Human Interaction", Proc.
AFIPS 1967 Fall Joint Computer Conf. 31,
pPp.545-552, Thompson Book Co.,.Washington.

3. IBM Corp. Coursewriter III for System/360, Ver-
sion 2, Application Description Manual.
* No. GH20-0587-1 (3rd ed., August 1969).

4. Computer-g-<ad Education Research Laboratory.
Tutor User . Manual. University of Illinois,
Urbana, Jduiy 1971.

5. F. J. Corbato, J. H. Saltzer, C. T. Klingen,
Multics--the First Seven Years, AFIPS Proceed-
ings, 40, p. 571, Spring Joint Computer Confer-
ence (1972); E. I. Organick, the Multics Sys tem--
??ggg?mination of its Structure, M.I.T. Press

