" COCUMENT RESUME
ED 077 236 : EM 011 159

AUTHCR Papert, Seymour; Solomon, Cynthia -%
TITLE NIM: A Game-Playing Program. Artificial Intelligence
o Memo Numbexr 254, -

: INSTITUTION Massachusetts Inst. of Tech., Camhrldge. Art1f1c1al

Intell1gence Lab.
SPONS RGENCY National Science Foundaticn, Washington, D.C.

LR

" - REPORT ‘NO LOGO-5

, stuoents learned to: plan and write complex computer

AAAA

- programs by wr1t1ng a program for. playlng NIM, a- game in—-:which two
;players alternatively remove one, two, or three sticks from:an

) orlg1na1 ‘gile of 21, with the player taklng the last one being the
: - winner. The primary teaching purposé was. to develop the idea that a
L - : f1nal -goal--i.e., winning=--could be reached by splitting the final
: tasE‘into ‘sub-tasks; .Children. who wrote a seéries of successivély
bettér prograrns developed a sense of the héuristic power of such
plannlng. This led participants to view themselves as models and to
ﬂacqulre ideas about ‘programing based upon ‘their experience; also, the
- process of dehugglng programs assisted’ them in learning t6 regard
their errors as emotlonally neutral mistakes rather than as
emot1onally charged crises. (PB) .

: PUB-DATE - Jan 70)

1 NOTE. 19p.; ‘See Also EM 011 163, EM 011 165 .EM 011 168,

- _— and EM 011 170

= EDRS- PRICE MF-$0.65 HC-$3.29 o

- DESCRIPTORS *Computer- Frograms; Computers; *Computer Science]

i ; ' Education; *Educatlonal -Gamés; Games: *Junlor ngh)

& —t) School Students; Program tescr1pt1ons' Programlng, :

- o ,*Program Plannlng — :

. IDENTIFiERS . ~ *NIM: . * - .
ABSTRACT - ?

. . FILMED FROM BEST AVAILABLE COPY

v

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
A.I. LABORATORY

ED'07723b au

January 1970

Artificial Intelligence

LOGO
Memo No. 254

Memo No. 5 ,

S DEPARTMENT OF HEALTH.)
Y ‘EDDUCA'I’ION SWELFARE))
NATIONAL INSTITUTE OF -)
0c ,Eoucnlon"“" nEP;a
- . DOCUMENT--MAS _ -
;’:ilcss&(ncn.v “AS_RECEIVEO F:;?:‘
THE PERSON OR ORGANIZATION OR G- j
ATING IT. POINTS OF VIEW OR o»m'mE . . ;
STATEO DO NOT NECESSARILY ngr € . 7
SENT OFFICIAUNATIONAL INSTITUTE
-EQUCATION POSITION OR POLICY.

NIM: A Game~Playing Program

{: . Seymour Papért
and

Cynthia Solomon

o

This work was supported by the National Science Foundation under grant
number GJ-1049 and conducted at the Artificial Intelligence Laboratory,
a Massachusetts Institute of Technology research program supported in

part by the Advanced Research_ Projects Agency of the Department of Defense
and monitored by the Office of Naval R

(O~ N00014-70-A-0362-0002. :
|
g

esearch under Contract Number

i
)

a-—

1.0 Introduction

NIM: A Game-Playing Program .
by
Seymour Papert.and Cynthia Solomon

13

This note illustrates some ideas about how to initiate beginning

-

students into the art of planning and writing a program complex enough to

‘be considered a project rather than lan -exercise on using the language or

simple programming ideas. The project is to write a program to play a

simple game (“one-pile NIM" or “21") as invincibly as possible. We de-

‘veloped the project for a class of seventh grade children we taught in

-

1968-69 at the Muzzéy Junior High School in Léxington, Mass.* This was

‘the longest programming project these &hildren had encountered, and our

intention was to give them a model of how to go about working under these

- conditions. To achieve this purpose we ourselves worked very hard to

develop a clear organization of sub-goals which we explained to the class
at the beginning of the 3 - week period devoted to this particular program.
One would ndt expect beginners to find as clear a subgoal structure as this

one; but once they have seen a good example, they are more likely to do so

in the future for other problems. Thus our primary teaching purpose was

-to deveiop the idea of splitting a task into sub-goals. We wanted the

children to have gcod models of various ways in which this can be done and
to expefience the heuristic power of this kind of planning (as opposed to
jumping straight into writing programs).

Readers will notice that the sub-goal structure divides the problém
in several ways. One way is by "chopping", that is to say, by recognizing
that the final program has distinct functions that can be performed by

separate sub-procedures. But this is not the only way. Many heuristic

*This work was supported by NSF Contract No. NSF-C 558 to Bolt, Baranek
and Newman, Inc.) .

Pmste Wy bk

programs can be "simplified" rather than "chopped'". We illustrate this
by first writing a procedure to play the "whole game", but in a "dumb
way". Once we have done so, we can study its peéfprmance, decide why
it plays badly and strengthen its play. Thus the successive partial
solutions to the problem appeaf as making a procedure progressively
"sarter”. 7

Describing the evolution of the program in this way has the addition-
al benefit of allowing one to make an aqalogy with the way a child might
learn thergame. We g;nd thigwgnaiogy valuable in two senses: by using
hiﬁself as a model the‘child'aqqpifeé a fertile source of ideas. about pro-
gramming; on the other hané, the experience of:debugging programs can
have a therapeutic .éffect in leading him to see his own as emotionally

neutral bugs rather than as emotionally charged errors.

&,

1.1 The Sub-Goal Plan

The key idea fof subdivision of the problenm is to write a series of
programs, each of which is “smarter" than the previous one. The first
Program will krow nothing about the strategy of play. It will not generate
moves, but ask each of two human players in turn_whaé move to make. For
example, it might act as a score-keeper, just keeping track of the number‘
of -sticks without bothering about whether the move is legal. From score-
keeper the machihe could advance to referee. This means that it checks
the moves for legality and eventually declares the game over and announces
the winner. .Afte; we have a working mechanical referee we will start mak-
ing a mechanical player. The first version of a player will choose legal,
but not necessarily good moves. Indeed, it will generate a move randomly,

use its ability as a referee to decide if it is legal, and then either

accept it or generate another random move.

NIM-2
- . ’
When this works, the child may make his program smarter and smarter by

adding features or by writing a completely new version until finally -

if all goes well ~- an infallible 'strategic player is evolved.
A natural form for programs of intermediate "smartness" is the

- -following: the program has a list of simple situations in which it

knows how to play; in other situations it plays randomly. In other

words, it plays by the form of strategy used by most children in most
strategic games.

In working with a class, a good .moment should be seized to prod

* the children into noting and. discussing~the analogy between this
very simple heuristic program and themselves —- particularly,

) how the program gets to be "smarter" through more or through

s better knowledge. Seeing the program as a cognitive model is
a valuable and exciting experience for theé children. They can

" easily be drawn into discussion about how meaningful such models
are. To keep the discussion alive the teacher should be equipped
with arguments and examples to counteract extremist, and so
sterile, positions. For exampled if the children feel that the
program is too simple to be a model of human thinking, one might
discuss .whether a toy airplane is a useful model of a jet-liner,
Does it work by the same principles? Can one learn about air-
liners by studying toy models? On the other hand, if a cliass
swings over to the position that there really is no difference,
one could ask questions about whether the program could learn
by itself without a programmer. But if this is too enthusiasti-
cally accepted it is well to ask: how much do you learn without
being told? Etc., ete. Ideally, the teacher should merely
guide the discussion without having to say any of this. But
awareness of such arguments will permit more sensitive guiding.
An interesting exercise and base for discussion is to have the
children study various programs of intermediate smartness,
classify their bad moves by degrees of stupidity, give the
progra?s grades or I.Q.'s (or say why they think doing so is
silly!).

The stratification of the project has the good feature of allowing
children tc find their own level. A slower child who gets only as far
as the random player, nevertheless, has the taste of success ~if his

progrem does what it does well. Tendencies to feel inferior should be

counteracted by the teacher's attitude and by encouraging individual

g

LA
L7

variations so that no child's final program is a mere subset of a more

advanced one. The teacher's computer culture can be very relevant in
this delicate kind of situation. Although the richness of programming
permits children to generate many fertile ideas, sensitive filtering by
the teacher can enormously improve the achievement-to-frusiration ratio.

Exemples of individual frills to a réferee program: timing

moves, declaring the winner a move or two ahead(!), allowing

a player to take a move back, prlntlng a score sheet, giving

advice. (1), allowing the players to be at two teletypes - (if

the system. permlts), establishing and imposing handicaps (1),
" changing the riles, ete., etc.

2.0 The Rules
: .)

A move consists of taking one, two or three match-sticks from
a given pile. Two players move alternately. The player who takes the

last stick wins.

3.0. First Steps with the Children

The first step is to see that everyone knows the rules and under-
stands what the first program will do; for example, by imitating its
function of-by writing iﬁaginary scripts. 1In the course of discussing

{ this we would introduce some names (so as to be able to talk about what

“~

we are doing!).

Example of a Script

THE NUMBER OF STICKS IS 8

JON TO PLAY. WHAT'S YOUR MOVE?
<2

THE NUMBER OF STICKS IS 6

BILL TO PLAY. WHAT'S YOUR MOVE?
<3 -

THE NUMBER OF STICKS IS 3
JON TO PLAY. WHAT'S YOUR MOVE?
<3)

JON IS THE WINNER.

Later in the project we insist that children consider what

happens when a player replies to "WHAT'S YOUR MOVE?" by "s5"
or "COW". 1In the beginning we would discourage ail but the
most competent children from worrying about "funny" answers

before getting the program to work with normal answers:
E%mnining the script we see that there mﬁst be names for:
the current number of sticks -- let's say "STICKS"
the move -- let's say "MOVE"
the next player -~ let's say "PLAYER"
and, a little more subtlé

the other player -~ let's say "OPPONENT" .

To be sure that everyone understands werhave an assignment to fill in

these LOGOTHINGS for successive rounds following the previous script.

ROUND # ¢STICKS sPLAYER s OPPONENT - *MOVE
1 8 "Jon" "BILL" .2

- 2 _ . _ "JON“ 3
3 3

o

&
L

%.0. A Simple Score-keeper - N

oy

If thﬁs is the first game-pléying program, we might give
the class an almost ready-made procedure. We build up
to it by askiﬂg some standard questions}

What shall we call the procedure? (Let's say "NIMPLAY")

What must NIMPLAY do?

VWhat must NIMPLAY.know?

Pos§ible answers are:

1. Announce the remaining number of sticks
2. Anaounce the player to move
3. Get his move and make all the modifications

4, Recur.

~To do this NIMPLAY must remember iSTICKS , :PLAYER , and :OPPONENT
from the previous round and-get :MOVE by asking for it. Thg first
three THINGS must be told by one NIMPLAY-GUY¥* to another, so they should
be inputs, On the other hand, !MOVE comes from the human player, so
it can be gotten by REQUEST and need not be an input. If one looks ahead

one might notice that later on, !MOVE will sometimes come from a procedure

*The anthropomorphic metaphor is related to the little-men pictures irn an
earlier section. The use of the anthropomorvhic langusge might be a little
precious, but the concept of a separate agent for each program-call is
enormously veiuehle. The children did not seem 10 resent terms like "MAL"
or "GUY".

~~- that is, when -the machine gets to be smart enough to meke its own

moves, So to keep the door open for changes, we separate the problems
of getting tMOVE and using it. The standard way to do this is to plan

on a sub=proc:dure -- say, called "GETMOVE" .

Now we can write NIMPLAY:

TO NIMPLAY :STICKS tPLAYER :OPPONENT f?""'———_——gﬁhen in doubt have
JLots of inputs.

i

1 PRINT SENTENCE "THE NUMBER OF STICKS IS" :STICKS <—

2 PRINT SENTENCE :PLAYFR "TO PLAY. WHAT'S YOUR MOVE?"
3 MAKE <

NAME "NEWSTICKS"

THING :STICKS - GETMOVE

We pretend we have
alreedy written
GETMOVE.

4 NIMPLAY :NEWSTICKS :OPPGNENT :PLAYER << Recursion line.
Notice how :(PLAYER
and :Q0PPONENT are

reversed,

END
TO GETMOVE <~—-—-——"“'”""(I\ginput is necessar
~— it
1 MAKE s [GEIMOVE's job is to
NAME "MOVE" < make a new LOGOTHING.
THING REQUEST : So its main action is
this MAKE command.
2 OUTPUT :MOVE It uses OUTPUT to
.. pass on what it makes.
END)

¢

< - ¢

Note the use of :STICKS ~GETMOVE. We use infix notation & an option

in LOGO (with parentheses when needed to avoid ambiguity).

s

NIM-7
JA little-man picture of a round:
o
8 "'TON" "B L 1" L 1" 1 1
ILL p N 6 "BILL" 'JON"‘ .
T g" NIMPLAY \g - 3 NEXT
. ST . NIMPLAY '
. ‘ GUY
et move 4
/}
%
™ NN . \\
"~ . ‘,\ '\\‘
. GETNOVE N\
) G ' ~
\ / -
s - \,
S \

Comments: Notice the two~-way line, The NIMPLAY-GUY called the
. GETMOVE-GUY expecting to get a LOGOTHING. So GEIMOVE
must be an operation; in other words it haes an QUTPUT.
On the other hand, when one NIMPLAY-GUY calls the next
one he does not expect an answer: NIMPLAY is a command,
not an operation. So it has a one-way line. ')

N

5.0 From Score-keéper to Referee

As referee the program has some new tasks:
1. Decide whether the game is over:
2. Declare the vinner if it is over
3. 'Make sure that :PLAYER takes 1, 2, or 3 sticks each time.
The first tasks are achieved by adding a STOP-TEST line to NIMPLAY.
-For example,

TEST IS :NEWSTICKS @
IFTRUE PRINT SENTENCE :PLAYER AND "IS THE WINNER"
IFTRUE STOP

The third task can be accomplished by giving GETMOVE a TRY-AGAIN form.

TO GETMOVE .
1 PRINT " YOU MAY TAKE 1, 2, OR 3 STICKS"
2 MAKE

NAME "MOVE"

THING REQUEST

3 TEST MEMBER :MOVE "1 2 3" — —— s
4 IFFALSE OUTPUT GETMOVE (.______-———'&the TEST is "FALSE", try aguin.)
5 OUTPUT :MOVE)

EWD

With these charnges NIMP#AY is certainly a referee =~ but still has
some rough edges. For example, when :STICKS is 2, GETMOVE gives permis-
sion to take 1, 2, or 3 sticks! And if :PLAYER takes 3, :STICKS becomes
negative and the game will go on forever on account of a SLIP-BY bug.
However, we shall leave it as an exercise to remedy these minor failings.

In presenting this section to chiliren we might work through one

of the two major modifications with the class and let the children
struggle with the cther. The SLIP-BY bug we would leave to the class
to discover and cure. Those who miss it at this stage will find

its presence more obtrusive later -~ and & profitable discussion
might develop on the question of why the bug was not found - per-
haps, because the human player always makes reasonable moves so that
:STICKS never becomes negative even though the machine would allow
it. Later we shall see that when the machine makes its own.moves

it will not be so cooperative unless we tell it to be.

NIM- 9

6.0, The Simplest Me‘chanig:al Player

iiowcan the machine choose a move? The simplest way is by .using
RANDOM. For example, .2 could allow GBTMOVE'the choicé: if a person
is to play use REQUEST, if the machine is to pley use RANDOM. But it
has to be told whether the player is human or the computer. So it must
have ;a.n: inpu:t.‘.

TO GETMOVE :PLAYER,
TEST IS :PLAYER "COMPUTER"

- IFTRUE MAKE
. . MNAME “MOVE"
~ THING RANDOM .
IFFALSE PRINT "YOU MAY TAKE 1, 2, OR 3 STICKS"
IFFALSE MAKE
NAME: "MOVE"

THING: REQUEST

. (a; before)

At this stage the SLIP-BY bug might become serious. One way to
to kill it is to. tell GETMOVE zbout :STICKS and have it try-again if
.MOVE Comes up greater than 2STICKS . To do this we change the title
‘line to:

TO GETMOVE tPLAYER :STICKS
and add a pair of lines (in the TRY-AGAIN form) after the two MAKEs.

TEST GREATERP :MOVE :STICKS
JFTRUE OUTPUT GETMOVE :PLAYER $STICKS

Notice this anthropomorphism. We find it useful to talk of procedures
as agents, of their "state of knowledge," of "telling them" of having
ythem "talk to" one another. But we present this to children as a
deliberate metaphor which they might find useful.

i

NIM-10

T.0. Strategic Play

Our plan for writing the NIM playiné program in many strata now
calls for it to recognize a fei. special numbers and know what to do in
those cases, but contirue to play stupidly in other cases. However,
by this time it is likely that the class has already discovered the

full strategy. It may still be worthwhile to éncourage at least some

‘members to follow the originel plan as an instructive joke. In this

section we shall illustrate a general question-answer technique for

i

classroom discussion and to encourage habits of heuristic neatness in
the children's own thinking.

7.1. A Semi-Smart NIM Player

A good exercise is to observe NIMPLAY in its present condition, and

collect and classify its mistakes. An example of a classification made
g

P
S

by a child is: _
RETARD MISTAKES: There were 2 or 3 sticks and the machine did
not take alll
DUMB. MISTAKES: There were 5 sticks and the machine took 2. (If
the machine had any sense it would leave the opponent
with 4.)
If there are 6 or T it's dumb not to shoot for 4.
We shall write a procedure to avoid first "retard mistakes" and then
"dumb mistakes".

Question: What program form?

Fog N
Answer: TEST-TEST B
<t

o
E)
2.

NIM-11

Ques.tion: What do we test for?
English Answer: Whether there are 1, 2, or 3 sticks.
LOGO Answer: TEST MEMBER :STICKS "1 2 3"
We recall the procedure MEMBER snown by the examplesﬂ:
MEMBER 6 "1 2 3" = "FAISE"
MEMBER 2 "1 2 3" = "TRUE" 7
‘Question: What is the action if the test is passed?
English Answer: Tske all the sticks .
LOGO Answer: OUTPUT :STICKS
Question: What if it is not passed?
English Answer: Move just like before.
(LOGO Answer: MAKE

NAME "MOVE" . R
THING RANDOM :

i

Putting this together to make a procedure to meke the move:
Question: What must the procedure know?
Answer: - :STICKS -- so it needs an input.
Question: Operation or commana?

Answer: Operation, because it will give us :MOVE as its output.

TO MAKEMOVE :STICKS MAKEMOVE is an easy name to
remember.
TEST MEMBER :STICKS "1 2 3"
. IFTRUE OUTPUT :STICKS The procedure is used in
IFFALSE OUTPUT RANDOM . place of RANDOM in GETMOVE.
END .) Sc don't forget to change

GETMOVE!
Now extra lines can be added. For example:
{, TEST IS :STICKS "S5"

IFTRUE OUTPUT "1"

NIM-12 B

T.2.. The Smart Player

By this time everyone should be very close to understanding the
strategy, for example, in the following form:

Question: How does the game end?

Answer: When & player leaves zero sticks.
So let's try making the main actor be the number of sticks we 1eave;

If we can leave zero that's great. But if we have more than 3 we can't.

So we must think ghead. i

Question: What cen we leave so as t0 help us leave zero next time?
Answer: L. Because the opponent will leave 1, 2, or 3.
Question: What can we leave so as to be able to leave I Bext time?
Answer: 8. |
So 0, 4, 8 are good numbers to shoot at for leaving.
Question: What others?
Answer: 12, 16, ...
Question: Deécribe these.
Answer: REMAINDER' :NUMBER: 4 = 0 .
' REMAINDER :NUMBER :DIVIDER is an operation whose
output is ‘the remainder when :NUMBER
is divided by : DIVIDER .
$64 Question: If I give you a number called : NUMBER , how.can
you use it to find the next number down divisible by
L2 '

Answer: Subtract REMAINDER :NUMBER 4,

NIM-13

So there we are! The smart invincible NIMplayer is made by repl'acing

MAKEMOVE by SMARTMOVE.

TO SMARTMOVE ; STTCKS
MAKE =
NAME: "REM"
THING REMAINDER :STICKS 4
TEST IS ;REM ¢
IFTRUE OUTPUT 1

IFFALSE OUTPUT :REM
“END

- — T
' This LOGOTHING is the main

/ .
{ actor, so name it.

N—— e it

\in this case,

———

r"/ -
<_’__,.~--_-.'—""‘”\, It really doesn't matter

)

NIM-1h

8.0 Frills
Write superprocedures or make additions to the present procedures so

that transcripts like the following will be produced:

NIM -

DO YOU KNOW HOW TO PLAY NIM?

<NO

HERE ARE THE RULES: YOU WILL BE SHOWN A CLOOLECTION OF X'S. YOU MAY
‘REMOVE 1, 2 OR 3. THE PLAYER WHO TAKES THE LAST WINS. THIS IS
PROBABLY TOO VAGUE FOR YOU TO UNDERSTAND BUT TRY PLAYING AND I'LL

. CORRECT YOUR MISTAKES.

ARE YOU READY?

<I AM

PLEASE SAY "YES" OR "NO"

<YES

OKé NOW TELL ME THE NAME OF THE FIRST PLAYER.

<JON

NOW THE NAME OF THE OTHER PLAYER

<COMBUTER

HOW -MANY STICKS DO YOU WANT TO START WITH?) N\
<THIRTY)

I'M A DUMB COMPUTER. TYPE A PROPER NUMERAL.
<31

JON TO PLAY.

THERE ARE 31 STICKS.

D 0.0:6.0.0.0.0.0.0.0.0.6.0.0.0.00.0.0.0.6.00.60.0.0.0.0.0.¢
JON, TAKE 1, 2 OR 3

<3

COMPUTER TO PLAY.

THERE ARE 28 STICKS.

XXX OO XXX XK KK KX KKKKKKAX
I TAKE 3

JON TO PLAY,

THERE ARE 25 STICKS.
)8:0.0.0.0.0.6.0.0.0.0000.9.0.00.0.060604
TAKE 1, 2 OR 3

<3

r

¥ e~

NIM-15

8.1 Modifications

‘There are unlimited possibilities. of "playing with" the ideas in
the procedure after it has been made to work. The followiné three are
merely examples to illustrate the idea that the project%has not neces-
sarily run out when the procedure is debugged. ; o

An interesting simple modification to the rule of the game is to
change the 1-2-3 rule to a 1-2 rule or!a 1-2-3-4-5 rule, Write a pro-
cedure which will ask what rule is to be used.

Our stop rule was: the player who takes the last stick wins. Change

this to: he who takes the last stick loses. (The latter is the traditional

form; meeting a temporary change could be consideéred as part of planning for

'the project; students should be able to see and formulate the idea that our

rule leads to a simpler algorighm without changing its principle,)
.The game can be embedded in a more complex one, such as moving coun-
ters along marked paths on a board. If there is just one linear path, the

problem is identical, but if branches are allowed, interesting complexities

arise,

NIM-16

APPENDIX

A Listing of the NIMPLAY Procedures

TO NIMPLAY :STICKS :PLAYER :OPPONENT
10 PRINT SENTENCE "THE NUMBER OF STICKS IS" AND :STICKS
20 PRINT SENTENCE :PLAYER AND
30 MAKE
NAME "NEWSTICKS"
THING :STICKS -~ GETMOVE :PLAYER :STICKS
40 TEST IS :NEWSTICKS @
50 IFTRUE PRINT SENTENCE :PLAYER AND "IS THE WINNER"
60 IFTRUE STOP ' g
70 NIMPLAY :NEWSTICKS :0PPONENT :PLAYER
END

TO GETMOVE :PLAYER :STICKS
10 TEST IS :PLAYER "COMPUTER"
20 IFTRUE MAKE

NAME "MOVE"

THING SMARTMOVE
30 IFFALSE PRINT "YOU MAY TAKE 1, 2, OR 3 STICKS"
40 IFFALSE MAKE

NAME "MOVE"

. THING REQUEST
50 TEST MEMBER :MOVE "1 2 3"
60 IFFALSE OUTPUT GETMOVE :PLAYER :STICKS
70 TEST GREATERP :MOVE :STICKS
80 IFTRUE OUTPUT GETMOVE :PLAYER :STICKS
90 OUTPUT :MOVE
END

TO SMARTMOVE
10 MAKE
NAME "REM"
THING: REMAINDER :STICKS 4
TEST IS :REM @
20 IFTRUE OUTPUT 1
30 IFFALSE OUTPUT :REM -
END :

NIM-17

-

We include a listing of MEMBER, but assume that it was written before

the NIM unit.

TO MEMBER :IT :LIST

10 TEST IS :LIST :EMPTY

20 IFTRUE OUTPUT "FALSE"

30 TEST IS :IT FIRST :LIST

40 IFTRUE OUTPUT "TRUE"

50 OUTPUT MEMBER :IT BUTFIRST :LIST
END-

