
DOCUMENT RESUME

ED;074 23.6 PS 011 159

AUTtiog, Pa pert, Seymour; 'Solomon, Cynthia -4-
TITLE NIM: A Game-Playing Program. Artificial Intelligence

Memo Number 2514.
INSTITUTION MaSSadhuSetts Inst. of Tech., Cambridge. Artificial

Intelligence Lab'.
SpONS AGENCY National Science -Foundation, Washington,. D.C.
REPoRTIO LOGQ-5
id*-DATE: Jan 70.
NOTE- 19p..; :See Also EM 011 163, EM 011 165,.EM 011 168,

and EM- 011- 17.0

_--EURS= PRICE MF-$0.65 BC-$3.29
DESCRIPTORS *Computer- Fragrant; -Computers; *Computer- Science

Education; *Edlitational-GameS;'GaMeS; *Junior High
_

Schaal Students; Program tesdripticinS;_ Programing;
_20,PrOgratii -Planning-.

IDENTIFIERS

ABSTRACT
-Students learned to plan_ and write complex computer

-,prcigraimS:by Writing --a program for .playings_RIM,_ ar-rgaMe in-Which--tWo
players alternatively remove one, two, or three sticks fram:_an

of 21,. with the player taking, the last one being the_

winner. The primary teaching_ purpose was to develop the idea that a
final winningcould be reached by splitting the final
task into sub-tasks. ;Children, who -Wrote a series of _successively
-better -prograts developed a sense of the -heuristic power of such
planning._ This led -participants to view_ theniSeives as Models- and to
4acquire ideas about programing based Upon- =their experience; also, the
:process of debugging programs assisted them in learning to regard
their errort- as emotionally neutral mistakes rather than as
'emotionally charged' crises. (pm

FILMED FROM ,BEST AVAILABLE COPY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

A.I. LABORATORY

Artificial Intelligence
Memo No. 254

U.S. DEPARTMENT OF HEALTH.
EDUCATION AWELFARE
NATIONAL INSTITUTE OF

EDUCATION.
THIS -DOCUMENT--NAS BEEN REPRO
OUCEO EXACTLY 'AS - RECEIVED FROM

THE PERSON OR ORGANIZATION ORIGIN-
ATING IT. POINTS OF VIEW OR OPINIONS
STATED 00 NOT NECESSARILY REPRE
SENT OFFICIAL NATIONAL INSTITUTE OF

-EOUCATION POSITION OR POLICY.

NIM: A Game - Playing, Program

Seymour Papert

and

Cynthia Solomon

January 1970

LOGO
Memo No. 5 .

This work was supported by the National Science Foundation under grant
number GJ-1049 and conducted at the Artificial Intelligence Laboratory,
a Massachusetts Institute of Technology research program supported in
part by the Advanced Research_. Projects Agency of the Department of Defense
and monitored by the Office of Naval Research under Contract Number

(7%'
N00014-70-A-0362-0002.

D

Ut

NIM: A Game-Playing Program

by

Seymour Papert,and Cynthia Solomon

-1.0 Introduction

This note illustrates some ideas about how to initiate beginning

students into the art of planning and writing a program complex enough to

be considered a project rather than i an-exercise on using the language or

simple programming ideas. The pioject is to -write a program to play a

simplegame_("one-piie NIM" or "21") as invincibly as possible. We de-

-veloped the project- for -a class -of seventh grade children we taught in

1968-69-at the Muizey Junior High SChOol. in Lexington,_MASs.* This WAS

-the longest programming-project these children had encountered, -and our

intention was to,give them a model of hot; to go about working under these

conditions. To achieve this purpose we ourselves worked very hard to

develop a clear organization of sub -goals which we explained to the class

at the beginning- of the 3 - week period devoted to this particUlar prograM.

One would not expect beginners to find as clear a subgoal Structure as this

one; but once they have seen a good example, they are.more likely to do so

in the future for other problems. Thus our primary teaching purpose was

to develop the idea of splitting a task into Sub-goals. We wanted the

children to have good models of various ways in which this can be done and

to experience the heuristic power of this kind of planning (as opposed to

jumping straight into writing programs).

Readers will notice that the sub-goal structure divides the problem

in several ways. One way is by "chopping", that is to say, by recognizing

that the final program has distinct functions that can be performed by

separate sub-procedures. But this is not the only way. Many heuristic

*This work was supported by NSF Contract No. NSF-C 558 to Bolt, Beranek
and Newman, Inc.

prOgrams can be "simplified" rather than "chopped". We illustrate this

by first "writing a procedure to play the "whole game", but in a "dumb

way". Once we have done so, we can study its performance, decide why

it plays badly and strengthen its play. Thus the successive partial

solutions to the problem appear as making a procedure progressively

"smarter ".

Describing the evolution of the program in this Way has the addition-

al benefit of allowing one to make an analogy with the way a child might

learn the game. We find this analogy valuable in two senses: by using

hibself as a model the.child acquires a fertile source of ideas about pro-

gratming; on the other hand, the experience of debugging programs can

have a therapeutic.effect in leading him to see his own as emotionally

neutral bugs rather than as emotionally charged errors.

1.1 The Sub-Goal Plan

The key idea for subdivision of the problem is to write a series of

programs, each of which is "smarter" than the previous one. The first

program will know nothing about the strategy of play. It will not generate

moves, but ask each of two human players in turn what move to make. For

example, it might act as a score-keeper, just keeping track of the number

of.sticks without bothering about whether the move is legal. From score-

keeper the machine could advance to referee. This means that it chetks

the moves for legality and eventually declares the game over and announces

the winner. After we have a working mechanical referee we will start mak-

ing a mechanical player. The first version of a player will choose legal,

but not necessarily good moves. Indeed, it will generate a move randomly,

use its ability as a referee to decide if it is legal, and then either

accept it or generate another random move.

VIM -2

When this works, the child may make his program smarter and smarter by

adding features or by writing a completely new version until finally --

if all goes well -- an infallible strategic player is evolved.

A natural form for programs of intermediate "smartness" is the

-following: the program has a list of simple situations in which it

knows how to play; in other situations it plays randomly. In other

words, it plays by the form of strategy used by most children in most

strategic games.

In working with a class, a good moment should be seized to prod
the children into noting and discuSaing-the analogy between this
very simple heuristic program and themselves particularly,
how the program gets:to be "Smarter" through more or through
better knowledge. Seeing the program as a cognitive model is
a valuable and exciting experience for the children. They can

'easily be drawn into discussion about how meaningful such-models
are. To keep the discussion alive the teacher should be equipped
with arguments and examples to counteract extremist, and so
sterile, positions. For example; if the children feel that the
program is too simple to be a model of human thinking, one might
discuss .whether a toy airplane is a useful model of a jet- liner.
Does it work by the same principles? Can one learn about air-
liners by studying toy models? On the other hand, if a class
swings over to the position that there really is no difference,
one could ask questions about whether the program could learn
by itself without a programmer. But if this is too enthusiasti-
cally accepted it is well to ask: how 'much do you learn without
being told? Etc., etc. Ideally, the teacher should merely
guide the discussion without having to say any of this. But
awareness of such arguments will permit more sensitive guiding.
An interesting exercise and babe for discussion is to have the
children study various programs of intermediate smartness,
classify their bad moves by degrees of stupidity, give the
programs grades or I.Q.'s (or say.why they think doing so is
silly!).

The stratification of the project has the good feature of allowing

children to find their own level. A slower child who gets only as far

as the random player, nevertheless, has the taste of success -.it his

program does what it does well. Tendencies to feel inferior should be

counteracted by the teacher's attitude and by encouraging individual

0

variations so that no child's final program is a mere subset of a more

advanced one. The teacher's computer culture can be very relevant in

this delicate kind of situation. Although the richness of programming

permits children to generate many fertile ideas, sensitive filtering by

the teacher can enormously improve the achievement-to-frustration ratio.

Examples of individual frills to a referee program: timing
moves, declaring thewinner a move or two aheae!),- allowing
a player to take a move back; printing a score sheet, giving

advice-(!), allowing the players to be at two teletypes (if
the system permits), establishing and imposing handicaps (!),
changing the rules, etc., etc.

2.0 The Rules

1

A move consists of taking one, two or three match-sticks from

a given pile. Two players move alternately. The player who takes the

last stick wins.

3.0. First Steps with the Children

The first step is to see that everyone knows the rules and under-

stands what the first program will do; for example, by imitating its

function or by writing imaginary scripts. In the course of discussing

this we would introduce some names (so as to be able to talk about what

we are doing!).

NIM-4

Example of a Script

THE NUMBER OF STICKS IS 8
JON TO PLAY. WHAT'S YOUR MOVE?
<2

THE NUMBER OF STICKS IS 6
BILL TO PLAY. WHAT'S YOUR MOVE?
<3

THE NUMBER OF STICKS IS 3
JON TO PLAY. WHAT'S YOUR MOVE?
<3

JON IS THE WINNER.

Later in the project we insist that children consider what
happens when a player replies to "WHAT'S YOUR MOVE?" by "5"
or "COW". In the beginning we would discourage all but the
most competent children from worrying about "funny" answers
before getting the program to work with normal answers.

Examining the script we see that there must be names for:

the current number of sticks -- let's say "STICKS"

the move -- let's say "MOVE"

the next player -- let's say "PLAYER"

and, a little more subtle

the other player -- let's say "OPPONENT"

To be sure that everyone understands webhave an assignment to fill in

these LOGOTHINGS for successive rounds following the prcvious script.

ROUND # :STICKS :PLAYER :OPPONENT :MOVE

1 8 "JON" "BILL" 2
2 "JON" 3
3

NIM- 5

4.0. A Simple Score-keeper

If this is the first game-playing program, we might give

the class an almost ready-made procedure, We build up

to it by asking some standard questions:

What shall we call the procedure? (Let's say "NIMPLAY")

What must NIMPLAY do?

.What must NIMpLA.YAtnow?

PosSible answers are:

1. Announce the remaining number of sticks

2. Announce the player to move

3. Get his move and make all the modifications

4. Recur.

To do this .NIMPLAY must remember ;STICKS , :PLAYER , and :OPPONENT

from the previous round andget :MOVE by asking for it. The first.

three THINGS must be told by one NIMPLAY -GUY* to another, so they should

be inputs. On the other hand, :MOVE comes from the human player, so

it can be gotten by REQUEST and need not be an input. If one looks ahead

one might notice that later on, :MOVE will sometimes come from a procedure

*The anthropomorphic metaphor is related to the little-men pictures in an
earlier section. The use of the anthropomorphic language might be a little
precious, but the concept of a separate agent for each program-call is
enormously vaiueble. The children did not seem to resent terms like "MAN"
or "GUY".

1 NIM- 6

-- -that is, when the machine gets to be smart enough to make its own

moves. So to keep the door open for changes, we separate the problems

of getting :MOVE and using it. The standard way to do this is to plan

on a sub.--proc!dure -- say, called "GETMOVE".

Now we can write NIMPLAY:

TO NIMPLAY :STICKS :PLAYER :OPPONENT <: \When in doubt have
4ots of inuts

1 PRINT SEETENCE "THE NUMBER OF STICKS IS" :STICKS <=.--r

2 PRINT SENTENCE :PLAYER
3 MAKE

NAME "NEWSTICKS"
THING :STICKS - GETMOVE

"TO PLAY. WHAT'S YOUR MOVE?"

4 NIMPLAY :NEWSTICKS :OPPONENT :PLAYER

END

TO GETMOVE

1 MAKE

NAME "MOVE"
THING REQUEST

2 OUTPUT :MOVE

END

Note the use of :STICKS -GETMOVE.

_ounce ie number
f stic

We pretend we have
already written
GETMOVE.

Recursion line.
Notice how :PLAYER
and :OPPONENT are
reversed.

Noi input is necessar

GETMOVE's job is to
make a new LOGOTHING.
So its main action is
this NAKE command.
It uses OUTPUT to
pass on what it makes.

We use infix notation as an option

in LOGO (with parentheses when needed to avoid ambiguity).

NIM -7

,A little-man picture of a round:

8 ".TON" "BILL"

NIMPLAY
GUY'

6 "BILL" "JON"

f

NEXT
NIMPLAY

GUY

Comments: Notice the two-way line. The NIMPLAY-GUY called the
GETMOVE-GUY expectipg to get a LOGOTHING. So GETMOVE
must be an operation; in other words it has an OUTPUT.
On the other hand, when one NIMPLAY-GUY calls the next
one he does not expect an answer: NIMPLAY is a command,
not an operation. So it has a one-way line.

NIM-8

5.0 From Score-keeper to Referee

As referee the program has some new tasks:

1. Decide whether the game is over

2. Declare the winner if it is over

3. 'Make sure that :PLAYER takes 1, 2, or 3 sticks each time:

The first tasks are achieved by adding a STOP-TEST line to NIMPLAY.

For example,

TEST IS :NEWTICKS
IFTRUE PRINT SENTENCE :PLAYER AND "IS THE WINNER"
IFTRUE STOP

The third task can be accomplished by giving GETMOVE a TRY-AGAIN form.

TO GETMOVE
1 PRINT " YOU MAY TAKE 1, 2, OR 3 STICKS"
2 MAKE

NAME "MOVE"
THING REQUEST

3 TEST MEMBER :MOVE "1 2 3"
4 IFFALSE OUTPUT GETMOVE If the TEST is "FALSE", try ag..4in.

5 OUTPUT :MOVE
END

With these changes NIMPLAY is certainly a referee -- but still has

some rough edges. For example, when :STICKS is 2, GETMOVE gives permis-

sion to take 1, 2, or 3 sticks! And if :PLAYER takes 3, :STICKS becomes

negative and the game will go on forever on account of a SLIP-BY bug.

However, we shall leave it as an exercise to remedy these minor failings.

In presenting this section to chilel:fen we might work through one
of the two major modifications with the class and let the children
struggle with the ether. The SLIP-BY bug we would leave to the class
to discover and cure. Those who miss it at this stage will find
its presence more obtrusive later -- and a profitable discussion
might develop on the question of why the bug was not found -- per-
haps, because the human player always makes reasonable moves so that
:STICKS never becomes negative even though the machine would allow

it. Later we shall see that when the machine makes its own.moves
it will not be so cooperative unless we tell it to be.

NIM - 9

6..0. The Simplest Mechanical Player

Hocan the machine choose a move? The simplest way is by using

RANDOM. For example, .1 could allow GETMOVE6the choice: if a person

is to play use REQUEST, if the machine is to play use RANDOM. But it

has to be told whether the player is human or the computer. So it must

haVe_an,input.

TO GETMOVE :PLAYER,
TEST IS :PLAYER "COMPUTER"
IFTRUE MAKE

NAME "MOVE"
, THING RANDOM

WALSE PRINT "YOU MAY TAKE 1, 2, OR 3 STICKS"
IFFALSE MAKE

NAM: "MOVE"
THING: REQUEST

(as before)

At this stage the SLIP-BY bug might become serious.. One way to

to kill it is to. tell GETMOVE about :STICKS and have it try-again if

:MOVE, comes up greater than :STICKS . To do this we change the title

'line to:

TO GETMOVE :PLAYER :STICKS

and add a pair of lines (in the TRY-AGAIN form) after the two MAKEs.

TEST GREATERP aarE :STICKS
IFTRUE OUTPUT GETMOVE :PLAYER :STICKS

41

Notice this anthropomorphism. We find it useful to talk of procedures
as agents, of their "state of knowledge,"

of "telling them" of having
,them "talk to" one another. But we present this to children as a
deliberate metaphor which they might find useful.

NIPS! -10

7.0. Strategic Play

Our plan for writing the NIM playing program in many strata now

calls for it to recognize a fe... special numbers and know what to do in

those cases, but continue to play stupidly in other cases. However,

by this time it is likely that the class has already discovered the

full strategy. It may still be worthwhile to encourage at least some

members to follow the original plan as an instructive joke. In this

section We shall illustrate a general question-answer technique for

classroom discussion and to encourage habits of heuristic neatness in

the children's own thinking.

7.1. A Semi-Smart NIM Player

A good exercise is to observe NIMPLAY in its present condition, and

collect and classify its mistakes. An example of a classification made

by a child is:

RETARD MISTAKES: There were 2 or 3 sticks and the machine did

not take all!

DUMB--MISTAKES: There were 5 sticks and the machine took 2. (If

the machine had any sense it would leave the opponent

with 4.)

If there are 6 or 7 it's dumb not to shoot for 4.

We shall write a procedure to avoid first "retard mistakes" and then

"dumb mistakes".

Question: What program form?

Answer: TEST-TEST

NIM- 11

Question: What do we test for?

English Answer: Whether there are 1,2, or 3 sticks.

LOGO Answer: TEST MEMBER :STICKS "1 2 3"

We recall the procedure MEMBER shown by the examples:

MEMBER 6 "1 2 3" = "FALSE"

MEMBER 2 "1 2 3" = "TRUE"

Question: What is the action if the

English Answer: Take all the sticks .

LOGO Answer: OUTPUT :STICKS

Question: What if it is not passed?

English Ansier: Move just like before.

test is passed?

LOGO Answer: MAKE
NAME "MOVE"
THING RANDOM

Putting this together to make a procedure to make the move:

Question: What must the procedure know?

Answer: .:STICKS -- so it needs an input.

Question: Operation or command?

Answer: Operation, because it will give us :MOVE as its output.

TO MAKEMOVE :STICKS

TEST MEMBER :STICKS "1 2 3"
IFTRUE OUTPUT :STICKS
IFFALSE OUTPUT RANDOM
END

Now extra lines can be added. For example:

TEST IS :STICKS "5"

IFTRUE OUTPUT "1"

MAKEMOVE is an easy name to

remember.

The procedure is used in
place of RANDOM in GETMOVE.
Sc don't forget to change
GETMOVE1

NIM-12

7.2, The Smart Player

By this time everyone should be very close to understanding the

strategy, for example, in the following form:

Question: How does the game end?

Answer: When a player leaves zero sticks.

So let's try making the main actor be the number of sticks we leave.

If we can leave zero that's great. But if we have more than 3 we can't.

So we must think ahead.

Question: What can we leave so as to help us leave zero next time?

Answer: 1. Because the opponent will leave 1, 2, or 3.

Question: What can we leave so as to be able to leave 4 text time?

Answer: 8.

So 0, 1, 8 are good numbers to shoot at for leaving.

Question: What others?

Answer: 12, 16, ...

Question: Describe these.

Answer: REMAINDER :NUMBER: 4 = 0

REMAINDER :NUMBER :DIVIDER is an operation whose

output is the remainder when :NUMBER

is divided by : DIVIDER .

$64 Question: If I give you a number called : NUMBER , how can

you use it to find the next number down divisible by

4?

Answer: Subtract REMAINDER :NUMBER 4.

NIM-13

So there we are! The smart invincible NIMplayer is made by replacing

MAKEMOVE by SMARTMOVE.

TO SMARTMOVE ;STICKS
MAKE

NAME: "REM"
THING REMAINDER

TEST IS :REM 0
FTRUE OUTPUT 1

IFFALSE OUTPUT :,REM
`END

-This LOGOTHING is the main)
(actor, so name it.

---":STICKS 4

It really doesn't matter
\
in this Case.

NIM-14

8.0 Frills

Write superprocedures or make additions to the present procedures so

that transcripts like the following will be produced:

NIM

DO YOU KNOW HOW TO PLAY NIM?
<NO

HERE ARE THE RULES: YOU WILL BE SHOWN A CLOOLECTION OF X'S. YOU MAY
REMOVE 1, 2 OR 3. THE PLAYER WHO TAKES THE LAST WINS. THIS IS
PROBABLY TOO VAGUE FOR YOU TO UNDERSTAND, BUT TRY PLAYING AND I'LL
CORRECT YOUR MISTAKES.

ARE YOU READY?
<I AM
PLEASE SAY "YES" OR "NO"
<YES
OK. NOW TELL ME THE NAME OF THE FIRST PLAYER.
<JGN
NOW _THE NAME OF THE OTHER PLAYER

<COMPUTER
HOW STICKS DO YOU WANT TO START WITH?
<THIRTY
I'M A DUMB COMPUTER. TYPE A PROPER NUMERAL.
<31

JON TO PLAY.
THERE ARE 31 STICKS.
X.XXXLCOCXECOCXXXX)0000000aXXXXX

JON, TAKE 1, 2 OR 3
<3

COMPUTER TO PLAY.
THERE ARE 28 STICKS.

XXXXXXMCXXXXXXXXXXXXXXXXXXXX
I TAKE 3

JON TO PLAY.

THERE ARE 25 STICKS.
XXX)CXXXXXXMOCXXXXXX)OCXXXX

TAKE 1, 2 OR 3
<3

NIM -15

8.1 Modifications

There are unlimited possibilities= of "playing with" the 'ideas in

the procedure after it has been made to work. The following three are

merely examples to illustrate the idea that the projecthas not neces-

sarily run out when the procedure is debugged.

An interesting simple modification to the rule of the game is to

change the 1-2-3 rule to a 1-2 rule or a 1-2-3-4-5 rule. Write a pro-

cedure which will ask what rule is to be used.

Our stop rule was: the player who takes the last stick wins. Change

this to: he who takes the last stick loses. (The latter is the traditional

form; meeting a temporary change could be considered as part of planning for

the project; students should be able to see and formulate the idea that our

rule leads to a simpler algorithm without dnanging its principle.)

The game can be embedded in a more complex one, such as moving coun-

ters along marked paths on a board. If there is just one linear path, the

problem is identical, but if branches are allowed, interesting complexities

arise.

NIM 16

APPENDIX

A Listing of the NIMPLAY Procedures

TO NIMPLAY :STICKS :PLAYER :OPPONENT

10 PRINT SENTENCE "THE NUMBER OF STICKS IS" AND :STICKS
20 PRINT SENTENCE :PLAYER AND
30 MAKE

NAME "NEWSTICKS"
THING :STICKS GETMOVE :PLAYER :STICKS

40 TEST IS :NEWSTICKS 0
50 IFTRUE PRINT SENTENCE :PLAYER AND "IS THE WINNER"
60 IFTRUE STOP
70 NIMPLAY :NEWSTICKS :OPPONENT :PLAYER
END

TO GETMOVE :PLAYER
10 TEST IS :PLAYER
20 IFTRUE MAKE

NAME
THING

30 IFFALSE PRINT
40 IFFALSE MAKE

NAME "MOVE"
THING REQUEST

50 TEST MEMBER :MOVE "1 2 3"
60 IFFALSE OUTPUT GETMOVE :PLAYER :STICKS
70 TEST GREATERP :MOVE :STICKS
80 iFTRUE OUTPUT GETMOVE :PLAYER :STICKS
90 OUTPUT :MOVE
END

:STICKS
"COMPUTER"

"MOVE"

SMARTMOVE
"YOU MAY TAKE 1, 2,-OR 3

TO SMARTMOVE
10 MAKE

NAME "REM"

THING: REMAINDER :STICKS 4
TEST IS :REM 0
20 IFTRUE OUTPUT 1
30 IFFALSE OUTPUT :REM
END

STICKS"

NIM -17

We include a listing of MEMBER, but assume that it was written before

the NIM unit.

TO MEMBER :IT :LIST
10 TEST IS :LIST :EMPTY
20 IFTRUE OUTPUT "FALSE"
30 TEST IS :IT FIRST :LIST
40 IFTRUE OUTPUT "TRUE"
50 OUTPUT MEMBER :IT BUTFIRST :LIST
END.

1

