ED 076799
AUTHCR
TITLE
管

PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS

Whinfield，Richard W．
A Study of the Characteristics of Students who Sought Admission to Connecticut Regional Technical Schools in 1971．
SPONS AGENCY Bureau of Adult，Vocational，and Technical Education （DHEW／OE），Washington，D．C．；Connecticut State Dept． of Education，Hartford．Div．of Vocational Education．
Mar 73 87p．

MF－\＄0．65 HC－\＄3．29
＊Admission Criteria；＊irea Vocational Schools； Comparative Analysis；＊School Surveys；Secondary Grades；State Surveys；＊Student Characteristics； ＊Student Enrollment
IDENTIFIERS to what extent the schools were serving the range of students seeiking enrollment．A random sample from each of 14 schools of the 15 in the state was used．For analytical purposes，students were divided into two categories：those actually enrolled and those not enrolied． Findings include：（1）A significant difference was found between the enrolled and non－enrolled applicants on their trade choice，（2）There were no significant differences between the two groups on age，grade last completed，race，or sex，（3）Significant differences in family background were found hetween the enrolled and non－enrolled applicants，（4）Significant differences were apparent between the two groups in intelligence test scores，achievement test scores，grades repeated，persoral characteristics，grades obtained，days absent， times tardy，and recommendations from the sending schools．Much of the difference evidenced between the enrolled and non－enrolled students can be traced to the inadequacy of information from the sending schooi as well as the failure of students to appear for testing and cannot all be attributed to the selection process． （Author／SN）

A STUDY OF THE CHARACTEASTICS OPSTUDETTS VHO SOUGAT ADIISSION

TO CONSCTICUT QEGONF TECHICAL SCHOOLS IN 1971

RichardiU Whinfield chool of tacation The Unversity of Conecticut Storrs: Connecticut

March 9973

Richard V. Hhinfield
School of Jducation
University of Connecticut
Storis, Connecticut

Ifarch 1973

Doints of vies or opinions stated do not necessarily represent official opinion or policy of state or federal governmental acencies, as the uriters are encouraced to express freely their profecsional judgement in th:e conduct of the project.
 ITVI:;IC: OF VCSATJCi:AL mUCATICH

Acknowledgements

This study was conducted under a contract with the Connecticut State Department of Education, Division of Vocational Education through funds available under part of the Vocational Amendments of 1968.

The researcher is indebted to a large number of persons for their assistance. 'Richard Wilson and Charles Bertagna of the Division of Vocational Education Research and Planning, worked hard to get the proposal approved, and Walter Bialobrzeski, Chief of the Bureat of Vocational Technical Schools who made it possible to get exceptionally fine cooperation from each of the regional vocational-technical schools. Because of space, the names of the regional vocational-technical school directors and counselors are not mentioned here, but deserve a special thanks for their cooperation. Special mention must be made of Alfred Dorosz, Director, Frank Znright and Fdward Shine, counselors, of Windham Regional Technical School, who in the early stages, helped in the designing of the data collection instrument, and in the training of the data collectors. Special thanks also go to Daniel Keefe and Walter Kopsick, counselors at Warren F. Kaynor Regional Vocational School, who spent several days working with the researcher and his staff in helping to identify important variables, acquainting them with the record systems, and interpreting information on the records. They also provided leadership in obtaining the important cooperation of the guidance counselors as a group.

The advisory committee of Robert Dorsey, Director of Wilcox Regional Vocational Technical School, Walter Kopsick, Don Thompson, Assistant Professor, University of Connecticut, Lewis Randall, consultant, Bureau of Vo-cational-Technical Schools, and Richard Wilson was of continuing importance.

Numerous university students, helped throughout the project including Nathan Tufts and Elmer Dickens, graduate assistants, both of whom provided important leadership in data collection, preparation and programing; Mary Ellen Dickens, Timothy Taylor, and Mariá Samper took primary responsibility for the coding, and Evelyn Haddad did the key punching. Robert Lang, a graduate assistant, worked closely with the researcher in the final stages of the project.

Finally, special thanks go to Mary Breen who did the first draft typing and much of the editing of the report, and to David Winzler who typed the final copy.

TABLE OF CONTENTS

Page
LIST OF TABLES vii
CHAPTER
I INTRODUCTION 1
Background 1
Procedures 4
Limitations 6
Statistical Treatment 9
II PERSONAL CHARACTERISTICS 13
Age 13
Race 14
Sex 16
Trade Choice 17
Last Grade Completed Before Application 19
Physical Handicaps 20
Hobbies 21
III FAMILY BACKGROUND 23
Number of Siblings 23
Home Characteristics 24
With Whom Does a Student Live? 25
Fathers' Occupational Status 26
Mothers' Socio-Economic Status 27
IV SENDING SCHOOL INFORMATION 28
Intelligence Test Scores 28
Achievement Test Scores 30
Grades Repeated 32
Personal Characteristics 33
School Grades 34
Days Absent 36
Tardiness 37
Recommendation of Sending School 38
Sending School Comments 40
V ENROLLED STUDENTS 43
Entrance Tests 43
Grades 45
Attendance 46
Consistency of Trade Choice 47
VI SUMMARY AND CONCLUSIONS 48
Summary of Findings 49
Conclusions 58
Reconmendations for Further Study 62

APPENDIX
A App?ication Form
$\begin{array}{ll}\text { B } & \text { Data Collection Form. } 68 \\ \text { C } & \text { Cumulative Record Form }\end{array}$
Cumulative Record Form
. . . 76
Table Page
I-A Student Admissions Report 3
I-B 8
I-C Weighted Sample (Schools Unordered) 11
I-D Sample (On Selected Variables) Compared
To Total Applicants of One School 12
II-A Age (Veighted) 13
II-B-1 Race-Reporting Schools (Heighted) 15
II-B-2 Race-All Schools (Weighted) 15
II-C Sex 16
II-D Trade Choice 18
II-E Grade Last Completed 19
II-F Physical Handicaps 20
II-G Hobbies 22
III-A Number of Sibiings (Veighted) 23
III-B Home Environment (Weighted) 24
III-C With Whom Is Student Living? (Heighted) . . 25
III-D Fathers' Socio-Economic Status (Veighted) . 26
III-E Mother's Socio-Bconomic Status (Heighted) . 27
IV-A-1 IQ Score-Lorge Thorndike Only (Weighted) 29
IV-A-2 IQ Score-Lorge Thorndike Only (Unweighted) 29
IV-B Achievement Test Scores-Iowa Test Of Basic Skills (Unweighted) 31
IV-C Grades Repeated (Weighted) 32
IV-D Personal Characteristics 33
IV- ${ }^{2}$ School Grades 35

- IV-F Days Absent (Weighted) 36

IV-G Number of Times Tardy (Weighted). 37
IV-H-1 Recommendation of Sending School (Heighted). 38
IV-H-2 Recommendation of Sending School: . Kinds of Recommendation 39

IV-I-1 Sending School Comments (Weighted) 41
IV-I-2 Condenser. Sending School Comments (Weighted) 42
V-A-1 DAT Test Scores 43
V-A-2 Reading Test Scores 44
V-B Grades for Subject (Unweighted) : 45
V-C Attendance 46
V-D Comparison of Trade Choice, First and Second 47

VI-A Missing Data 56

Chapter One
IIMTOUUCTIOL
Backeround

The fifteen Connecticut lie ;ional Jocational-Technical Schools meke u_{i}) a state-operated system of secondary trade schools providing primarily Trade and Industrial IJducation to :itudents in all areas of the state. Students in cichth grade may opt to attend either a general or comprehensive high school or a llegional Vocational Technical School.

The basic purpose of this study is to describe some of the characteristics of the students who opted for enrollment in regional technical schools. The purpose for doine this study was to determine: 1) the general characteristics of students being served by Regional Vocational Technical Schools, and 2) to what extent the schools aro serving the range of students seeking enrollment.

Cne must hasten t;o point out that the regional vocational-technical schools do not represent the col . e opportunity for vocational education, or seen the major opportunity for vocational education in Connecticut. There are also regional agricul.tural programs at the secondary level (also stateoperated, but as part of a regular high school). Nany hich schools offer other vocational opportunities in Trade and I:dustry, Business Bducation, りistributive Sducation, Cooperative :Hork Experience procrams, Health programs, llome Zducation, and a variety of exemplary prozrams.

At the post-hich school level, regional vocational-technical schools offer Trade and Industrial Zducation and Health Iducation programs.

Also at the post-high school level four technical colleges offer a variety of engineering technician training programs. A new community college ajstem is rapidly expandiniz jts offerings in occupational education. At the aluat, level, the llerjonol fechnical Schools offer apprentice traininf,

Trade preparatory and Trade supplenentary programs. Three Sl:ill Centers are providtic job training for unemployed disadvantaged adults (one being operated for inmates of correctional institutions). Cther programs include support to a variety of prozrams such as shelterec :orirohops, special programs for the disadvantaged, enc: others.

This study, tius, is concerned with a small but imyortant aspect of Vocational jucation in Connecticut: The students who have completer eifichth froce and seci: to be admittod to recional vocational technical schools.
$\therefore 11$ students: tho are acce:tad by these schools do not enroll (Sec Table I-: "Cancelled" and "aailinu to :iejort"). Others who are qualificd cannot ve accepted. This is not becausc the re;ional schools do not want to serve them; rather, it is because the facilities, staff and innances are limited.

A less important restraint, but nevertheless a factor in limited enrollment, is the manpover needs of the state. The regional vocational-technical schools to not wish to troin undully large surpluses of people in various trade an:i industrial areas.

Because there are morc applicants then can be accommodated in the rezionai schools, schools have set un admissions procedures. These procsdures vary from school to school for at least tro reasons: 1) some schools are able to accommodate most of the applicants, primarily those schools in more sparsely populated arcas; others, primarily those in heavily populated areas, have hish numbers of applicants, and can accept only a small portion of the applicants; 2) all schools do not offer the same programs. Students are not just admittied to schools, but many schools make an effort to select students interested in the programs offered by the schools.

Decause this need for admission policies exists, it could be important to lnow if these policies are discriminating in certain says. Additionally, simply reportin; the characteristics of those seekinc enrollment would be of

School	$\begin{gathered} \text { number } \\ \text { of } \\ \text { Applicents } \end{gathered}$	Reported	$\begin{gathered} \text { Sample } \\ \text { Meight } \\ \text { (Inrolled) } \end{gathered}$	Cancelled	$\begin{aligned} & \text { Failed } \\ & \text { to } \\ & \text { Report } \end{aligned}$	Oualified	$\begin{gathered} \text { Mot } \\ \text { Qualified } \end{gathered}$	Total Non- Bnrolled	Non- Enrolied Sample Height	$\stackrel{\%}{\%} \text { inrolled }$
1	77?	351	2.5	33	29	120	244	426	5.1	47.8
** 2	255	113	-	9	0	85	48	142	-	53.2
3	:54	170	1.2	16	34	4	30	34	1.0	54.7
4	384	172	$\pm .2$	27	11	41	133	212	2.5	86.6
5	S16	338	2.4	36	49	384	9	478	5.7	44.8
6	723	246	1.8	36	42	316	83	477	5.7	51.8
7	455	187	1.3	20	4	163	84	271	3.2	60.0
8	300	139	1.0	41	0	70	50	161	1.9	46.1
9	738	305	2.2	24	24	357	28	433	1.9	61.3
10	272	146	1.0	31	6	40	49	126	1.5	1.7.8
11	504	285	2.1	35	29	63	92	219	2.6	57.1
12	382	189	1.3	19	10	146	18	193	2.3	69.
13	666	173	1.2	24	3	367	99	483	5.9	54.9
14	357	174	1.2	-19	3	125	36	183	2.2	30.0
15	302	$1: 31$	1.3	21	6	86	8	121	1.4	68.9
	7186	3169		391	250	2367	1011	4019		

[^0]little value in determining who is served by the schools and making some comparison with some other groups. It must be kept in mind, however, that students who are classified as non-enrolled are not just those who are refused admission, but those who change their minds, those who move, or for other reasons choose not to come; or cannot come even though they may have been accepted for admission or are qualified for admission.

This study, then, while designed to describe students who seek admission, does so by making comparisons of those who actually enroll to those who were not enrolled.

In addition, because the study vas conducted after the first semester of 1971-72, it was possible to obtain data on the progress of many of the admitted students in the school. This information is also reported.

To be more precise the two crouns are as follows:
a. enrolled students: ninth grade students who reported and were enrolled in the refional vocational-technical schools September of 1971 b. non-enrolled students: ninth grade students who applied but were not enrolled in the regional vocational-technical schools. This group is made up of four catagories (See Table I- f_{2})
*1. Students who were accepted but cancelled their enrollment before school started.
*2. Students who were accepted but failed to report to the school
3. Students who rere quailified but could not be enrolled because of limited space and staff. 4. Students sho were not qualified.

Procedures

'The group under study were those students who sought admission into the regional vocational-technical schools for the ninth grade in the fall semester of the 1971-72 school year.

The study was started in February of 1972. It is based on data collected from the application form whish is required to be cubmitted by each situlent

[^1](see Appendix A). Because of the large number of students who sought admission, it was decided to take a random sampling of the students. For each school, a random sample of thirty students who were enrolled and thirty students who dici not enroll was developed. The sample for each school was jenerated through a computer program (a îurther discussion of the sample will be fourd later in this chapter).

In order to collect the data, a Data Collection Form was developer (see Apiendix B). It was tested and revised trice in cooperation with administrative personnel of one of the regional schools and with guidance personnel from trio resional schools. Data collection procedures were developed and a training program for five graduate students was held in one of the recional vocationaltechinical schools usine actual data.

These five sraduate students constituted the nucleous of teams which went to each of the recional schools. Hith the complete and generous cooperation of personnel in each of the schools the teams were given the application forms of students. These sere divided into two groups: one group of students who were enrolled, and another group of students who applied but were not enrolled. Each group was numbered sequentially and the random sample selected. Ho names of students were recorded to assure anonymity.

The collected data was returned to the university where each student's data was punched on to cards and transferred to tape for analysis.

Analysis of data was done by computer using the Tele Storage and Retrieval Prozram* which is especially designed for social science research statistical treatment. Both non-parametric and parametric statistics were used as appropriate.

[^2]
Limitations

A. Problems Related to Data Collection

Certain problems are inherent in the data collection and treatment procedure. The complete reliance on the application form and other school records resulted in the fact that:

1. There were considerable missing data. The application form is first completed by the student who gives certain personal and family data. It is then given to the administrators of the school in which the student was enrolled which supplies evaluative data of the student's records in school. The form then comes to the regional vocationaltechnical school which adds data-more specifically-any pre-admission test scores resulting from admissions testing. For a variety of reasons information on some students was either not reported or some responces to questions were ambigious: This occured at each step.
2. Since each sending school selects; maintains, and collects its data in its own way, some of the information; particularly that regarding standardized tests, was reported in different ways. This same problem existed in admission testing programs of the Regional VocationalTechnical Schools.
3. Some of the evaluative data supplied by the sending school is subjective on the part of the person who completes the form. The degree of familiarity this party had with the student varied from "unknown" to "intimately known." A further unsolved problem is the bias of the evaluator-bias regarding the student as well as bias the evaluator had about the regional technical schools.
4. Data maintenance by regional schools varied considerably. Most schools maintained their records very well., but a few had been careless in completing their sections on the form. One school could not supply the records for non-enrolled students. This school was dropped from the study. Where there were great voids of data on a student's record, the record was not used at all.
B. Problems Related to Data Collection and Preparation
5. While there :ere steps taken to assure that the transfer of data from the student-records to the data collection form was accurate (every fifth one was done twice and if numerous errors were found, others were rechecked), there were errors made in the transfer of data. This is estimated at about 1 per cent though certain items had higher errors than others.
6. The coding process also was carefully checked, in a manner similar to the data collection; certain errors crept in and were undetected. This is estimated at about 1 per cent also.
7. The key punching resulted in a third problem. The data was key punched and verified, but an error in the magnitude of .5 per cent can be expected even with verification.

The total error in data collection is in the magnitude of 2.5 per centa tclerable error, since it extends over all students and all data. However, because of missing data the preciseness of the sample varies from variable to variable.
C. Problems Related to Treatment

1. The use of the random sampling procedure does not permit certain desirable applications. It does not permit such things as the determination of how many students come from each sending school. It does - nt permit any internal analysis of the school's student body as to r, 1 m many students eriter each program. Treatment of this sort would equire a data collection of 100 per cent of the students who sought admission.
2. Because there were great varieties of standardization tests administered both by the sending schools and by the regional schools, plus the fact that the results of these tests were recorded in different ways (some by percentile, others iv stanine, still others by grade level), there is considerable restriction on the utility of this data for analytical or descriptive purpose.
3. In order to treat certain data, information was categorized. Such categorization while not completely arbitrary provided some problem in placing responses in a correct category. For example, "comments" reported by sending schools were occasionally so ambiguous that the response could have been placed in two or even three categories.
There are, then, problems with the data, but no more so than any other social science research which relies on secondary sources of information. Within the framework of the data limitations, the data was carefully managed and is reliable. No efforts are made in this study to compare schools. Certain comparisons are not evaluative but descriptive as, for example, what schools used what tests for admissions. None of these comparisons are reported in this study.
D. Problems Related to the Sample

Thirty students who were enrolled and thirty síudents who were not enrolled as of September S, 1971 were selected at random for each school. The sample technique was used principly because of time and money considerations. Peatman states:

All statistics however are in a basic sense descriptive regardless of whether methods for the data $\ddagger 0$ render are the data of sample or the complete data of census. ${ }^{1}$

The technique to drav the sample was to use the information contained in Table I-A. This table is an adaptation of a report from the State Department of Vocational Dducation. It provided inexact data, but this could be e:pected since stuments change categories from time to time, particularly in the Sirst two months or: :cl:col. The data was correct enouch to serve the purpose of drauing a cample.

							le									
	1	2	3	4	5	6	7	8	9	10	11	12	13	12.	15	total
Ihrolled	30	30	30	30	29	30	30	30	29	30	30	30	29	30	30	1014 17
3nrolled	30	0	2	30	29	30	30									408
FGTAL																855
	*not included in the treatment															

With a computer random selection program a special sample was draw for each school for both enrolled and non-enrolled students. Table I-B represents the actual numbers in the final sample. Where there are less than 30^{-} it was because of inadecuate or doubtful data. In two instances there were 31 students due to overzealous data collection. They were kept in the sample to help compensate for some records which could not be used. Two schools had only 23 and 24 student records respectively which were usable.

The decision to use the minimum number of 30 was to give adequate representation for each school. Peatman sugeests:

For a serises of camples of less than 25 or 30 cases each, the form 0 ? the sampling distribution of any statistic derived therefrom ifill skew more and more from the normal curve, the smaller the size of the sample.?

[^3]Since the possibility existed that comparisons between schools might be desirable, it was felt that at least 30 cases should be obtained.

But this creates a problem. Since all the schools are not the same size, and since schools vary in their admissions procedure, it became necessary to have each school represented in proportion to its size as compared to the total. Since 30 cases is considered minimal for reducing skewness, the process of stratification was used whereby samples of each school were weighted in terms of their size as compared to the enrollment of each school with the school with the smallest enrollment. (See Table I-C)

This weighting has obvious disadvantages. If a skewness exists in a large school sample, it will be exaggerated in the total. Yet, since there are fifteen schools, the effect of such skewness is not great. By drawing samples from each school, chance skewness for the entire sample is reduced.

Statistical Treatment

A. Testing for Randomness of Sample

In one school a collection of data on 211 students was made. For this school the two samples drawn for the study were compared to the rest of the students who had applied. No statistically significant differences occurred for any variable tested. (Table I-D)
B. Treatment of Data

Two types of treatment were given. Almost all variables, coninuous or categorical, were treated first with non-parametric data using the Chi Square test of significance. Continuous variables were also treated with a t-test, and a parametric test; both tests measure the significance oi difference.

The reason for using the non-parametric statistical procedure on almost all data was because, first, it permits a visible tabular display of the data, more easily interpreted by persons with minimal training in statistics.

Secondly, it is a test which does not assume normal distribution and, thirdly, it is easily weighted.

Complete reliance on this technique, however, is dangerous in that it can be inadvertantly distorting. A basic rule for the Chi Souare measure is that there must be at least five observations in each cell to give credence to the statistic. This means either collapsing the cells or using a special technique. A technique devised by F. Yates ${ }^{1}$ consists of adding one-half to the smallest frequency of the table and adjusting the others so that the marginal totals will remain the same. Both of these techniques were used. Tables which show cells with frequencies below five were treated with the Yates technique. A few others were collapsed, i.e. several categories were combined.

Continuous variables were treated additionally with a t-test. Since the data does not deal with matched pairs or with two measures of the same individual, if the variance showed a considerable difference, a 'Separate Variance t Model' was used, rather than a pool. Where variances were not considerably different, a 'Pooled Variance t Model' was used.' No weighting was used in the t-testing, yet the results show that variables treated with both the weighted x^{2} and the unweighted t-test usually yeilded the similar results. When they did not agree it obviously places the results in a position of doubt. On the assumption that the randomess in each school is an accurate representation of the students, and that the weighting represents the students in all the schools, the investigator is inclined to accept the Chi Square results.

Since the Tele Storage and Retrieval computer program does not have the Yates technique for Chi Square, and uses the pooled variance t model, the use of the Yates technique and the separate variance nodel were done by hand.

Yates, F. "Contingency Tables Involving Small Numbers and the Chi Square Test" Supplement to the Journal of the Royal Statistical Society, Vol. 1 (1934), pp. 212-235.
${ }^{2}$ Popham, James W. Educational Statistics; Use and Interpretations, Harper and Row; New York (1967), pp. 148-149.

WEIGHTED SAMPLIE (SCHOOLS UNORDERED)																
School	1	2	3	4	5	6	7	δ	9	10^{\prime}	11	12	13	14	15	TOTAL
Snrolled	39	36	54	27	64	0	75	36	70	30	54	39	63	36	35	658
PCT.	. 059	. 055	. 082	. 041	. 097	. 000	. 114	. 055	. 106	. 046	. 082	. 059	. 096	. 055	. 053	. 326
Non-enrolled	. 43	24	171	45	156	0	153	75	165	57	96	71	60	66	177	1359
PCT.	. 032	. 018	. 126	. 033	. 115°	. 000	. 113	. 055	. 122	. 042	. 071	. 052	. 044	. 049	. 130	. 674
TOTAL	82	60	225	72	221	0	238	111	235	87	150	110	123	102	212	2017
PCT.	. 041	. 030	. 112	. 036	. 109	. 000	. 113	. 055	. 116	. 043	. 074	. 055	. 061	. 051	. 105	

*no enrollment data available
Table I-C

Table I-D

SAMPLIE (ON SELECTED VARI/BTIS COMPARED TO TOTAL APPLICANTS OF ONE SCHCOL

Variable	$\begin{gathered} \text { Sample } \\ \mathrm{M} \\ \hline \end{gathered}$	$\begin{gathered} \text { Non- } \\ \text { Sample } \\ \mathrm{N} \end{gathered}$	D.F.	x^{2}	Significance level
Live with	52	125	9	$4 \cdot 75$	N.S.
Grades					
Znglish	35	91	6	5.846	N.S.
Mathematics	38	99	36	4.67	N.S.
Reading	24	50	6	3.72	N.S.
Fathers' S. ${ }^{\text {P }}$ S.	47	95	10	2.31	N.S.
Mothers' S.E.S.	43	101	10	1.50	N.S.

Personality Chars.

1. Bffort	55	116	4	1.53	N.S.
2. Behavior	55	116	4	4.29	N.S.
3. Responibility	55	116	4	5.55	N.S.
4. Punctuality	55	116	4	4.80	N.S.
5. Cooperation	55	116	4	3.40	N.S.
I.Q.	27	69	8	7.42	N.S.

The variables in this clepter relate to information about student's :ersonal characteristics of afe, race, sex, first and second choice of occunation, last zrade completed, phocical handicaps and hob:jo. A. Are. Table II-A shows the distribution of ages as reported by the applicants. The bulk of students were 15 years of age as of Sentember 5, i97:. This was calculated by determining the date of tirth as reported by each student and subtracting the day, month and year from the date of September 5, :911, the first day of school.

There is a simnifjeant difference between the two groups at the . 001 level, the non-enrolled students being on the zvorage older. The mean age of the accepted wac u_{1}. 7 , ravinif from 12.00 i, 19.8 years. For the nonenrolled sample, the mean are was 15.16 years with a range from 12.0 years to 18.55 years. Fortiv-t:so students were not included because of inaccurate data (most put in the vrong year of birth, i.e. 1971). A t-test with a score of $5.3 /$ on this variable showed no simificant difference. llowever, on the Chi Scuare test (veighted) there was a simificant difference at the .001 level.

Table II-A
AG.S (Veighted)
Inrolled vo. Don-enrolled

Cic	12	13	14	15	16	17	10	19	25	TOTAL
inrolled	6	2	11\%	348	126	26	1	2	4	631
Pet.	1.0	0.4	18. 1	55.0	20.0	4.1	0.2	0.3	0.6	32.9
Mon-inrolled	6	10	110	567	436	128	25	5	5	1292
Pet.	0.4	0.8	8.5	43.9	33.7	9.9	1.9	0.4	0.4	67.1
TOMAI,	12	12	226	915	562	15/4	26	7	9	1923
?ct.	130.	0.6	11.7	47.6	29.2	3.0	1.4	0.1	0.5	

B. Hace. Bight schools collected data on race. Table II-B-I represents the race distribution for these schools only. There is no significant difference between the raiic of enrolled to the ratio of non-enrolled. Seven and rimetonths per cent of those who sought admission sere blac!, and 7.8 per cent of the total enrolled were black. For Spanish-speaking, 4.7 per cent sought enrollment and 3.7 per cent vire enrolled.

The percentage of Blacks in Connecticut was 16.73 as derived from the 1970 census. Spanish-speaking represeniced 9.75 per cent (estimated as of 1973 from data in the State Vocational Plan), and Caucasian represented 73.52 per cent of the Connecticut population of 1970. The schools are not attracting, nor enrolling in these proportions. But there is no apparent discrimination. A non-Caucasian has just as good a chance of being enrolled as does a Caucasian.

The distribution by schools differ. Some schools accepted a larger proyortion of non-Caucasian than Caucasian, others acted in reverse. This is related to the geographical location in racial groups. But for the system there is no significant difference in proportion between the various groups applying, and proportion enrolled.

It is likely that these percntages would decrease if all schools reported race, for those not reporting race tend to be rural schools where there are few or no Blacks or Spanish-speaking people and thus there would be for the total sample, a smaller percentage of non-Caucasians.

To illustrate this, a test of significance was applied to the entire sample. If we assume that schools not reporting race hed no Black or Spanishspeaking people enrolled (which is untrue), the figures show a different picture (Table II-B-2).

Since this assumption is not accurate, we can merely report that enrolled Blacks constitute something between 5.6 per cent and 7.8 per cent, non-enrolled Blacks between 6.8 per cent and 7.9 per cent; enrolled Spanish-speaking

Table II-B-1
RACE-PEFORTING SCHOOLS (Heighted)
Black Enrolled vs. Non-Enrolled

Enrolled	38	17	429	485
Pct.	07.8	03.7	88.5	29.6
Non-Enrolled		92	62	1004
Pct.	87.9	05.3	86.8	1158
Poral	130	89	1433	1643
Pct.	07.9	04.7	87.4	

CHI SQUARE $=5.304 \mathrm{DF}, \quad$ SIGNIFICANCE LEVEL $=\mathrm{N} . \mathrm{S}$.

Table II-B-2

RACE-ALL SCHOOLS (Neighted)

	Black	Snanish Speaking	Caucasian	TOTAL
Enrolled	38	18	628	684
Pct.	05.6	02.6	91.8	32.1
Hon-Enrolled	92	62	1206	1360
Pct.	06.8	04.6	88.7	67.9
TOTAL			89	1433
Pct.	07.9	04.7	87.4	1643

CHI SQUARE =5.83 LEVEL OP SICNIFICANCE $=$ N.S.
students between 2.6 per cent and 3.7 per cent, non-enroiled Spanish-speaking between 4.6 per cent and 5.3 per cent.
C. Sex. The schools are by nature male-oriented in the programs they operate. Yet, some females do enroll. They tend to opt for programs with greater opportunities for girls such as chef training. A few opt for such nonmechanical jobs as drafting. There are beauty culture and fashion design programs as well. It is not elear whether or not this group is inciuded in this report. The percentage of women enrolled is 4.6 per cent. There is no significant difference betweer those oarolled and those not enrolled. (Table II-C)

Table II-C
Sixx
inrolled vs. Non-inrolled

Sex	Male	Female	TOTAL
Enrolled	628	29	657
Pct.	95.6	04.4	32.6
Non-Linrolled	1293	64	1357
Pct.	95.3	04.7	67.4
TOTAL	1921	93	2014
Pct.	95.4	07.6	

CHI SQUARE $=0.91291 \mathrm{DF}, L E V E L$ OF SIGNIFICANCE $=$ N.S.
D. Trade Choice. Ghen seeking enrollment students are asked to report their first and second trade choices. Their reaponses to this question vary greatly. Many of the choices are for occupational courses not. offered by the schools. A Chi Square test was performed for the groups and showed a significance level of . 001 for the weighted group and .05 for the nonweighted set. However, because of many cells with less than five, the tests are in doubt.

İ does appear that this is not an important factor in enrollment. Ons might expect that students who experience interests related to the occupations taught. But thic is not the case. For example of those who, for their first choice, chose auto mechanics, a larger percentage was rejected than was accepted. The same is true in architectural drafting, carpentry, mechine, air conditioning, printing and others. This cannot be construed that this item wann't considered in enrollment, for each of these occupational areas have limited space which would restrict acceptance if large numbers expressed this as an interest. It is not at all clear what this table represents.

Table II-D
TRADES

	First Irade Choice			Second Trade Choice		
Auto	$\frac{\mathrm{Imrolled}}{118}$	$\frac{\text { Inrolled }}{38!}$	$\frac{\text { Total }}{502}$	$\frac{\text { inrolled }}{98}$	$\frac{\text { Enrolled }}{22}$	$\frac{\text { Total }}{120}$
Hechanics	. 208	. 315	. 281	. 200	. 026	. 091
Srchitectural	9	25	34	10	8	18
Drafting	. 015	. 020	. 019	. 020	. 009	. 013
Carpentry	$\begin{array}{r} 126 \\ .223 \end{array}$	$\begin{array}{r} 309 \\ .256 \end{array}$	$\begin{array}{r} 435 \\ .243 \end{array}$	$\begin{array}{r} 109 \\ .222 \end{array}$	$\begin{array}{r} 212 \\ .258 \end{array}$	$\begin{array}{r} 321 \\ .245 \end{array}$
Blectrical	$\begin{array}{r} 98 \\ .173 \end{array}$	$\begin{array}{r} 141 \\ .115 \end{array}$	$\begin{array}{r} 238 \\ .134 \end{array}$	$\begin{array}{r} 87 \\ .177 \end{array}$	$\begin{array}{r} 210 \\ .255 \end{array}$	$\begin{array}{r} 297 \\ .226 \end{array}$
Electronics	$\begin{array}{r} 104 \\ .181 \end{array}$	$\begin{array}{r} 127 \\ .104 \end{array}$	$\begin{array}{r} 231 \\ .129 \end{array}$	$\begin{array}{r} 65 \\ .132 \end{array}$	$\begin{array}{r} 101 \\ .123 \end{array}$	$\begin{array}{r} 166 \\ .126 \end{array}$
Hachine	$\begin{array}{r} 23 \\ .040 \end{array}$	$\begin{array}{r} 47 \\ .038 \end{array}$	$\begin{array}{r} 70 \\ .039 \end{array}$	$\begin{array}{r} 36 \\ .073 \end{array}$	$\begin{array}{r} 67 \\ .081 \end{array}$	$\begin{array}{r} 103 \\ .078 \end{array}$
:lechanical Drafting	$\begin{array}{r} 20 \\ .035 \end{array}$	$\begin{array}{r} 23 \\ .018 \end{array}$	$\begin{array}{r} 43 \\ .024 \end{array}$	$\begin{array}{r} 21 \\ .042 \end{array}$	$\begin{array}{r} 36 \\ .043 \end{array}$	$\begin{array}{r} 57 \\ .043 \end{array}$
Air Conditioning	$\begin{array}{r} 7 \\ .012 \end{array}$	$\begin{array}{r} 57 \\ .046 \end{array}$	$\begin{array}{r} 64 \\ .035 \end{array}$	$\begin{array}{r} 29 \\ .059 \end{array}$	$\begin{array}{r} 80 \\ .097 \end{array}$	$\begin{array}{r} 109 \\ .033 \end{array}$
Printing	$\begin{array}{r} 10 \\ .017 \end{array}$	$\begin{array}{r} 43 \\ .035 \end{array}$	$\begin{array}{r} 53 \\ .029 \end{array}$	$\begin{array}{r} 16 \\ .032 \end{array}$	$\begin{array}{r} 45 \\ .054 \end{array}$	$\begin{array}{r} 61 \\ .046 \end{array}$
Food Services	$\begin{array}{r} 20 \\ .035 \end{array}$	$\begin{array}{r} 26 \\ .021 \end{array}$	$\begin{array}{r} 46 \\ .025 \end{array}$	4 .008	$\begin{array}{r} 8 \\ .009 \end{array}$	$\begin{array}{r} 12 \\ .009 \end{array}$
Hair Dressing	$\begin{array}{r} 0 \\ .000 \end{array}$. $\begin{array}{r}3 \\ .002\end{array}$	$\begin{array}{r} 3 \\ .001 \end{array}$	0 .000	. 000	0 .000
Dental Assistants	2 .003	0 .000	2 .001	. 0	$\begin{array}{r} 3 \\ .002 \end{array}$	3 .002
Home Bconomics	4 .007	. ${ }^{3}$. 7	0 .000	0 .000	$\begin{array}{r} 0 \\ .000 \end{array}$
Auto Body	$\begin{array}{r} 2 \\ .003 \end{array}$	$\begin{array}{r} 24 \\ .019 \end{array}$	$\begin{array}{r} 26 \\ .014 \end{array}$	$\begin{array}{r} 2 \\ .004 \end{array}$	$\begin{array}{r} 6 \\ .007 \end{array}$	$\begin{array}{r} 8 \\ .006 \end{array}$
Airplane Mechanics	$\begin{array}{r} 4 \\ .007 \end{array}$	$\begin{array}{r} 1 \\ .000 \end{array}$	$\begin{array}{r} 5 \\ .002 \end{array}$	$\begin{array}{r} 2 \\ .004 \end{array}$	$\begin{array}{r} 0 \\ .000 \end{array}$	$\begin{array}{r} 2 \\ .001 \end{array}$
3alcing	$\begin{array}{r} 8 \\ .014 \end{array}$	$\begin{array}{r} 5 \\ .044 \end{array}$	$\begin{array}{r} 13 \\ .007 \end{array}$	$\begin{array}{r} 3 \\ .006 \end{array}$	$\begin{array}{r} 11 \\ .013 \end{array}$	$\begin{array}{r} 14 \\ .010 \end{array}$
Beauty Culture	$\begin{array}{r}6 \\ .010\end{array}$	r 0	6 .003	. 010	12 .014	17 .012
Incu:utrial Cheuistry	$\begin{array}{r} 4 \\ .07^{7} \end{array}$	0 .000	$\begin{array}{r} 4 \\ .002 \end{array}$	$\begin{array}{r} 2 \\ .004 \end{array}$	$\begin{array}{r} 0 \\ .000 \end{array}$	$\begin{array}{r} 2 \\ .001 \end{array}$
TO'RAL	$\begin{array}{r} 565 \\ .316 \end{array}$	$\begin{aligned} & 1218 \\ & .683 \end{aligned}$	1783	$\begin{array}{r} 489 \\ .3^{\prime} 13 \end{array}$	$\begin{array}{r} 821 \\ .626 \end{array}$	13:0

E. Last Grade Completed Before Application. The usual practice is for a student to enroll in the ninth grade, yet openings do arise at other levels and some students may choose to enroll in the regional schools even though they have completed one or more years of high school (9-12). (A few students reported that the last completed was seventh grade. This probably was because they were in eighth grade, answering the question "grade last completed," which would have heen seventh. These responses were dropped from the test of significance.)

Table II-E shows no significant differences between enrolled and nonenrolled students.

Table II-E

GRADE LAST COMPIETED (Weighted)
Enrolled vs. Non-Enrolled

F. Physical Handicaps. Schools from which students come are asked to report any physical handicaps. A variety of eight handicaps were reported. These included overweight, hearing, dental, asthmatic, allergy, nosebleeds, nervousness, and cerebral palsy. The analysis, however, is reduced to non-handicapped vs. handicapped for there were relatively few applying students who were reported as being handicapped. This is probably inaccurate, for schools frequently are unaware of handicaps unless they are obvious or reported. The report is based on school information, not medical reports, so it probably leaves much to be desired. Yet there is a significant difference between enrolled and non-enrolled. Only 1.2 per cent of those applying had reports c. physical handicaps, but the school accepted less than half of these. This should not necessarily be considered as a negative attitude on the part of the school. Some handicaps are such that they result in some students being refused enrollment for their own protection.

Table II-F
PHYSICAL HANDICAPS
innolled vs. Non-Enrolled

Groups	Non-Handicapped	Handicapped	TOTAL
Inrolled	651		
Pct.	99.5	3	654
Non-innolled	1313	0.5	65.4
Pct.	98.5	20	1333
TOTAL	1964	1.5	67.1
Pct.	98.8	23	
		1.2	1987

CHI SQUARE $=39.24431 \mathrm{DF}$, SIGNIFICANCE LEVEL $<=.001$
G. Hobbies. Even though there is a significant difference between the groups, there is no particular pattern which emerges which could be related to enrollment or non-enrollment. If this were an important factor in the selectivity performed by counselors, one might expect students with hobbies somewhat related to the trades would be selected. This is not the case. Model Building, for example, would suggest an interest in mechanical skills. Yet the percentage difference between the two groups is only 4 per cent. The same observation can be made about mechanical hobbies. (Table II-G)

Nor are the schools selecting athletes. The percentage of enrolled who had competitive sports as a hobby is about 3 per cent less than those not enrolled.

Table II-G
fobbies
arolled vs. lion-mrolled (:.esghted)

	Inrolled	Non-innrolled	TOTAL
:Odel	1.66	285	451
3uilding	. 27%	. 231	. 245
Collecting	$\begin{array}{r} 43 \\ .073 \end{array}$	$\begin{array}{r} 70 \\ .057 \end{array}$	$\begin{array}{r} 113 \\ .061 \end{array}$
Mectricity	$\begin{array}{r} 25 \\ .014: \end{array}$	$\begin{array}{r} 63 \\ .051 \end{array}$	$\begin{array}{r} 88 \\ .048 \end{array}$
\because Oodvorline	$\begin{array}{r} 33 \\ .05 i \end{array}$	$\begin{array}{r} 60 \\ .019 \end{array}$	$\begin{array}{r} 93 \\ .05 ? \end{array}$
:ochanical	$\begin{array}{r} 50 \\ .083 \end{array}$	$\begin{array}{r} 109 \\ .006 \end{array}$	$\begin{array}{r} 159 \\ .086 \end{array}$
Competitive sports	$\begin{array}{r} 161 \\ .266 \end{array}$	$\begin{array}{r} 360 \\ .292 \end{array}$	521 .283
Individual Sports	$\begin{array}{r} 1+5 \\ .074 \end{array}$	$\begin{array}{r} 218 \\ .096 \end{array}$	163 .089
Arts and Crafts	11 .010	30 .024	41 .022
Intellectual	$\begin{array}{r} 53 \\ .037 \end{array}$	$\begin{array}{r} 11.6 \\ .094 \end{array}$	$\begin{array}{r} 169 \\ .092 \end{array}$
Cther	$\begin{array}{r} 19 \\ .031 \end{array}$	$\begin{array}{r} 22 \\ .081 \end{array}$	$\begin{array}{r} 41 \\ .022 \end{array}$
Total	$\begin{array}{r} 606 \\ .330 \end{array}$	$\begin{aligned} & 1233 \\ & .670 \end{aligned}$	1839

[^4]Data about the families is collected on the application form which is signed by the parent or guardian, and schools were asked to report certain information about the home enviroment. Variables considered in this chapter are: number of siblings, home characteristics, with whom does the student live, father's occupational statius, and mother's occupational status. A. Number of Siblings. It would not be expected that the number of siblings would have any relationship to enrollment or non-enrollment. The mode for the total group is two siblings per applicant. It can be seen (Table III-A) that the students enrolled tend to come from smaller families. Seventy-one per cent of those enrolled come from families where the students had three or less brothers and sisters as compared to sixty one per cent of the non-enrolled having three or less brothers and sisters. This is a significant difference.

Table III-A

NUMBER OF SIBLINGS (Weighted)
Enrolled vs. Non-Enrolled

| Groups | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 11 | TOTAL |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Enrolled | 49 | 109 | 166 | 123 | 66 | 51 | 15 | 25 | 14 | 10 | 628 |
| Pct. | .078 | .173 | .265 | .195 | .105 | .082 | .023 | .040 | .022 | .016 | .332 |
| Non- | | | | | | | | | | | |
| Enrolled | 76 | 145 | 295 | 250 | 191 | 132 | 68 | 34 | 21 | 49 | 1261 |
| Pct. | .060 | .115 | .234 | .198 | .151 | .105 | .054 | .027 | .017 | .031 | .668 |
| TOTAL | 125 | 254 | 461 | 373 | 257 | 183 | 83 | 59 | 35 | 59 | 1889 |
| PCt. | .066 | .134 | .244 | .197 | .136 | .097 | .044 | .031 | .019 | .031 | |
| | | | | | | | | | | | |

Mean:Enrolled $=2.85$, Non-Enrolled $=3.38$
B. Home Characteristics. Sending schools were asked to report whether or not the home environment was "not typical." This, for the most part, would be a subjective evaluation which would vary from school to school and student to student.

There is a significant difference between the groups-(See Table III-B). A larger percentage of students with "not typical" homes were not enrolled than were enrolled. This is probably not a function of admissions, and if not, suggests there may be some relationship between the variables used for admissions and home environment. A home environment may be related to grades, behavior and several other problems.

Table III-B
HOME ENVIRONMENT (Weighted)
Enrolled vs. Non-Enrolled

Groups	Typical	Not-Mypical	TOTAL
Enrolled	601		
Pct.	.915	.086	657
Non-Enrolled	1194	166	.326
Pct.	.878	.122	
TOTAL	1795		1360
Pct.	.890	.110	..

CHI SQUARE $=24.2041 \mathrm{DF}$, SIGNIFICANCE LEVEL $<=.001$
C. With Whom Does a Student Live? Students reported whom they lived with. Here, too, there is a significant difference at the . 001 level (See Table III-C). The most norable difference is that of the percentage living with both parents; the enrollees at 79 per cent with non-enrollees at 71 per cent. This, like home environment, probably cannot be interpreted as having any direct relationship to admission, but again, may be related to school grades, behavior and other factors used for acceptance.

Table III-C

WITH WHOM IS STUDENT LIVING? (Weighted)

Groups	Both. Parents	Mother	Enrolled Vs. Non-Enrolled					Adopted	Foster	TOTAL
				Grand-	oth.Step	Fath.St				
			Father	Parents	Father	Mother	Guardian			
Enrolled	475	76	16	2	22	3	3	3	1	601
Pct.	. 790	. 126	. 026	. 004	. 036	. 005	. 005	. 005	. 002	. 336
Non-Enrolled	847	215	25	14	53	4	7	6	13	$1: 84$
Pct.	. 715	. 181	. 021	. 012	. 045	. 003	. 006	. 005	. 011	. 664
TOTAL	1322	291	41	16	75	7	10			1786
Pct.	. 740	. 163	. 023	. 009	. 042	. 004	. 005	. 005	. 008	1786

Compacting this table to four categories (Both parents, Mother, Father, and "Other" to eliminate the cells with less than 5, the Chi Square test with 3 degrees of freedom is 16.15 . The level of significance is . 001 .
D. Fathers' Occupational Status. Fathers' occupations were reported by each student. These occupations were coded using the National Research Opinion Center socio-economic status ratings. There were considerable missing data on this item (662 of 822). The missing data were scattered throughout the schools for both enrolled and non-enrolled. It is therefore believed that this table is representative. Table III-D shows a significant difference between the two groups, while a t-test score of 1.64 shows significance at the .10 level. The mean fathers' socio-economic status for enrollees is 62.77, for nonenrollees 60.78, with a smaller variance for enrollees than for non-enrollees. (See Table III-D).

Table III-D

FATHERS' SOCIO-ECONOMIC STATUS (Weighted)

Enrolled vs. Non-Enrolled

	Below 2.9	39		49		59		69
				79	89	TOTAL		
Enrolled	20	5	28	107	196	157	37	550
Pct.	.038	.009	.051	.194	.355	.284	.068	.3 .8
Non-								
Enrolled	38	5	45	273	406	215	47	1029
Pct.	.037	.004	.043	.265	.395	.210	.046	.652
TOTAL	58	10	73	380	602	372	84	1579
Pct.	.038	.006	.046	.240	.381	.235	.053	

[^5]E. Mothers' Socio-Economic Status. As with fathers' economic status, there was considerable missing data, again scattered throughout the schools for both enrollees and non-enrollees. There is a significant difference on this variable. Substantial numbers of mothers wore reported as eagaging in no economic employment.

The mean of the economic status of enrollees' mothers was 32.34 , for nonenrollees 27.94. The variance of mothers of enrollees, unlike fathers' economic status, shows a larger variance (187.46) than for the non-enrollees: mothers (172.97). The t test showed a significant difference at the .07 level.

Table III-E

MOTHERS.' SOCIO-FCONOMIC STATUS (Heighted)					
Enrolled vs. Non-Enrolled					
29	49	59	69	79	TOTAL
12	5	68	89	107	559
. 021	. 008	. 122	. 159	. 192	.328
31	49	143	201	120	1144
. 028	. 020	. 128	. 180	. 107	. 672
43	54	211	290	227	1703
. 026	. 017	. 126	. 173	. 135	

CHI SQUARE $=56.945 \mathrm{DF}$, SIGNIFICANCE LEVEL $=.001$

Chapter Four

SENDIYG SCHOOL INFORMATION

A. Intelligence Test Scores. Fifteen different IQ tests were reported by sending schools. 60.1 per cent of the students had taken the Lorge Thorndike Test. These were well distributed throughout the schools. The variation in numbers of students in schools was from 38 per cent to 89 per cent. The other teats were arbitrarily distributed among the students with Otis being the second most frequently used. Only two schools had ten or more students taking this test with no students from two schools having taken it, and five schools with less than three students having taken the Otis. Therefore, only scores on the Lorge Thorndike are used here.

The dates upon which the Lorge Thorndise was administered were also studied. Seventy-eight per cent of the students who took this test had taken it in 1968, 1969 and 1970. A test to determine whether or not the two groups had significant differences regarding the year administered indicated no significant difference. Dates were scattered throughout the schools randomly. Therefore, all students who had taken the Lorge Thorndike are included in this study.

Table IV-A-1 shows these scores and the comparison of enrolled and nonenrolled. There is a significant diffe:ence. The mean IQ score for enrollees was 103.7 and for non-enrollces 90.8. For both groups, the average $I Q$ was 96.6.
h. simple one-way analysis of variance was also run. (Table IV-A-2). This also shows a significant difference between the groups.

As reported, this represents only 60.1 per cent of the students and it is possible, though not likely, that sending schools discriminate on the selection of their tests, possibly based on the location, character of student body, kind of school (middle or eighth-graded) or some other characteristic. This was not
studied, but it could result in a bias if, for example, only non-urban schools used this test.

						blo-IV							
Enrolled. vs. Non-Enrolled'													
Io Score	75	80	85	90	95	100	105	110	115	120	125	140	total
innolled	1	3	12	37	36	46	62	41	44	25	22	6	335
Pct.	. 004	. 010	. 034	. 111	. 106	. 136	. 186	. 123	. 130	. 075	. 067	. 018	. 392
Non-													
Inrolied	31	56	68	90	109	56	40	36	8	15	6	3	520
Pct.	. 060	. 112	. 130	. 173	. 210	. 108	. 078	. 069	. 015	. 028	. 011	. 006	. 608
'rOTAL	32	61	¢0	127	145	102	102	77	52	40	28	9	855
Pet.	. 038	. 072	. 093	. 149	. 169	. 119	. 120	. 090	. 060	. 047	. 033	. 010	
1													
CHI SQUARE $=900.134611 \mathrm{DF}$, SIGRIFICANCE LSVEL $=.001$													

Table IVLA-2
IQ SCORES-IORGE THRONDIKE ONLY (NOn-Weighted)

Group	N	Hean	Standard Deviation	Variance
inrolled	206	103.703883	11.481679	131.828960
llon-inrolled	169	90.792899	11.786733	138.927092
total	375	97.885333	13.268118	176.042966
sourceis	DF			
Between	1	114.610400360		
Hithin	373	* $10.705624706=T$		
*Significant at .001				

B. Achievement Test Scores. Thirtaen different achievement tests were reported by the sending schools. These were widely distributed. The most frequently administered test was the Iowa Test of Basic Skills. But this represented oniy 38 per cent of the total students, and 52 per cent of those who had tests reported. All schools are represented, but one school had only one student who had taken this test, another only eight students. The rest varied from 15 to 45. Table IV-B shows mean, standard deviation, T scores and Chi Square test scores on a comparison of enrolled and non-enrolled students.

The test was administered for 42 per cent in the seventh grade and 39 per cent in the eighth grade and 19 per cent earlier, so that one would expect a mean around seventh grade. For all tests, the enrojlees scored either just below or just above the seventh grade; but the non-enrollees had mean scores around the sixth grade level. All mean scores are generally below grade level for the total group.

On all the subtest scores and the total there were significant differences on both the t test score and the Chi Square.

Table IV-B

(Unweighted)
 Inrolled vs. Non-innrolled

Test sub Score		IV	Kean	Standerd Deviation	T	Significance Ievel	$\text { ce } \begin{gathered} \text { Chi } \\ \text { Square } \\ \hline \end{gathered}$	DF	Sis.	ans for Total Group
Reading	\#	$\begin{aligned} & 141 \\ & 116 \end{aligned}$	$\begin{aligned} & 6.8 \\ & 5.8 \end{aligned}$	$\begin{aligned} & 1.648 \\ & 2.383 \end{aligned}$	5.25	. 001	200.472	6	. 001	6.65
Vocaiolary	$\begin{aligned} & \mathrm{Z} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 121 \\ & 1.07 \end{aligned}$	$\begin{aligned} & 7.2 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.583 \\ & 1.527 \end{aligned}$	6.08	. 001	179.637	6	. 001	6.1
Language ('Potal)	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 1+1 \\ & 120 \end{aligned}$	$\begin{aligned} & 6.7 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 1.503 \\ & 2.257 \end{aligned}$	7.60	. 001	92.492	6	. 001	6.6
::or! Situdy	$\begin{gathered} i \vdots \\ 11 \end{gathered}$	$\begin{aligned} & 136 \\ & 116 \end{aligned}$	7.1	$\begin{aligned} & 1.4654 \\ & 1.24 .9 \end{aligned}$	5.79	. 001	66.315	6	. 003	6.5
Hath (Total)	$\begin{aligned} & \vdots \\ & ! \\ & ! \end{aligned}$	$\begin{aligned} & 137 \\ & 118 \end{aligned}$	$\begin{aligned} & 6.9 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.35 .2 \\ & 1.236 \end{aligned}$	6.22	. 001	85.754	6	.031	6.7
Social Studies	$\begin{aligned} & \mathrm{E} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 47 \\ & 55 \end{aligned}$	6.7 5.8	$\begin{aligned} & 1.268 \\ & 1.31 .3 \end{aligned}$	3.49	.001 ((Variance	too	small)	6.2
Scinnce		-	-	- - - Sam	e too	small -	- - -		- -	- -
isat! Problem:	:	43 54	6.9 5.8	1.117 1.164	1.65	. 001	10.018	4	. 05	6.3
Hath Concepts	:	46 27	5.6 5.6	$\begin{aligned} & 1.639 \\ & 1.631 \end{aligned}$	2.50	. 006	23.171	2	. 001	6.3
Snelling	$\begin{aligned} & i \\ & B \end{aligned}$	$\begin{aligned} & 14_{1} 1 \\ & 156 \end{aligned}$	$\begin{aligned} & 6.9 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.65 \\ & 1.39 \end{aligned}$	5.25	. 001	24.066	5	. 001	6.3
Grade jequivalent ('iotal)	:	147 $12 ?$	6.9 5.9	1.369 1.369	6.214	. 001	61.188	5	. 001	6.3

C. Grades Repeated. The reporting on this question by the sending schools was not clear. Some responies reported the number of times a student repeated a grade, others reported which crade had been repeated. If anything was reported, the student was considered to have repeated one or more grades. Table IV-C illustrates the number of students who did or did not repeat grades. There is a significant difference-non-enrollees have a higher percentage of students who repeated grades.

Table IV-C

GRADES REPEATBD (Heighted)
Inrolled vs. Hon-Einrolled

	I.o Repeats	Repeated 1 or liore Grades	TOTKL
Inrolled	53;	$1: 0$	654
Pct.	81.3	18.7	32.6
Non-Enrolled	890	4;70	1360
Pct.	65.5	34.5	67.4
TOTAL	1424	590	
Pct.	70.6	29.4	

CHI SQUARE $=12.54 \quad 1 \mathrm{DF}$, SIGNIFICAÏCE LEVEL $=.001$
D. Personal Characteristics. Schools wiere asked to give a suojentive evaluation of each student seeking enrollment. This was done on a five point scale using five different criteria: 1) effort, 2) behavior, 3) responsibility, 4) punctuality, and 5) cooperation.

On each of the personal characteristics the mean of the enrolled group was higher than the mean of the non-enrolled group (See Table IV-D). Tests of significance of difference, both the t test and the Chi Square show significance of difference between the group on each criteria.

Table IV-D

PERSOHAL CHARACTERISTICS
Bnrolled vs. Kon-Enrolled

\therefore School Grades. The method and time of reporting school grades varied from school to school. The school is asked to indicate a grade by marking period or give a final grade. The grade recorded for purposes of analysis was the last merking period reported by the sending school. Since the different marking periods occurred over the whole group, one may assume that their differences are distributed randomly over the whole group and grades can be examined. Mean grades for each subgroup are reported in Table IV-E.

Schools have different ways of marking. The schools also report the lowest passing grade. Using this information, a scale of one to five was set for each school with five being the highest grade. For schools with letter grades, A was assigned five, B assigned four, etc. F was assigned one as were grades under the passing grade in other marking systems.

Schools offer different courses so that there are varying numbers of students represented for each subject. English, Science, Mathematics (arithmetic), and Social science have the largest numbers of student grades reported.

Only Music showed no significant differences on both the t test and Chi Square. Art and physical education showed no significant difference on the t test, but did sy a significant difference on the Chi Square test. All other grades showed a significant difference on both tests of significance. Where significant differences occured, the enrollees had higher mean values than the non-enrollees.

Table IV-ت

SCHOOL GPADES

Enrolled vs. Non-innolled

	Unveighted				!!eighted				
	11	Mean	S. 2.	Variance	T	Level Signific	e x^{2}	DF	Level of Significance
Heading	191	3.33	0.90	0.80	3.26	. 001	39.75	4	. 001
	174	2.95	. 131	1.73					
minclish	362	3.18	0.88	0.77	5.34	. 001	54.17	4	. 01
	324	2.76	1.17	1.38					
Spelling	110	3.62	1.1.6	1.3/4	3.13	. 001	20.86	4	. 001
	90	3.08	1.27	1.62					
Science	362	3.17	0.90	0.82?	3.70	.001	44.19	4	. 001
	318	2.86	1.26	1.59					
Hath	367	3.19	1.01	1.03	6.82	. 001	56.93	4	. 001
	325	2.62	1.17	1.38					
Social Science	339	3.16	1.02	1.03	11.20	. 001	24.95	4	. 001
	31.0	2.92	1.23	1.50					
Geography	60	3.42	1.13	1.29	3.28	. 001	1/4.14	4	. C1
	37	2.65	1.09	1.17					
Hucie	114	3.32	1.16	1.3/4	1.47	H.S.	11.31	4	. 02
	115	3.59	1. 56	$2.1+2$					
Art	130	3.77	1.10	1.23	. 73	N.S.	8.64	4	N.S.
	126	3.66	1.30	1.68					
Industrial Arts	170	4.05	1.02	$1.0 L_{\text {F }}$	1.91.	. 028	12.69	4	. 05
	157	3.81	1.22.	1.51					
Physical .ducation	172	3.92	1.14	1.30	0.65	H.S.	16.46	4	. 01
	$18 / 4$	3.03	1.40	2.26					

F. Days Absent. Table IV-F illustrates the difference between the two groups regarding absencec. While there is a significant difference between the crouns, a lareer percentage of non-enrolled students had no absences than did the enrolled. Yet the mean number of days absent for non-enrolled is 4.57 , for the enrolled 3.41.

Table IV-F
DAYS ABS:MT (tieighted)
Bnrolled vs. Non-innrolled

G. Jardiness. Tardinesses were reported by the sending schools and are illustrated in Table IV-r.

Table IV-G

TUNBER OF TIMES TARDY (Heighted)
Inrolled v: . Non-Inrolled

Times Tardy	1	2	3	4	5	$6+$	TOTAL
Tnrolled	560	11	9	8	7	1.9	614
Pct.	$91 . ?$	1.7	1.4	1.3	1.1	3.0	3.12
Ion-inrolled	1169	4.5	4.7	15	19	58	1353
Pct.	66.4	3.5	3.4	1.1	1.4	4.2	68.8
TOTnL	1729	56	56	23	26	77	1967
Pct.	67.7	2.0	2.8	1.1	1.3	3.9	

$$
\begin{gathered}
\text { CIII SNA:LE }=15.30 \text { DF 4, IBVEL OF SIGNIFICAITCE }=.01 \\
\text { iHean: Bnrolled }=0.659, \text { ilon-incolled }=0.92
\end{gathered}
$$

While the weichted Chi Square test shows a significant difference at the .01 lovel: an unveighted t test of 1.022 is not significant. If the weighted scores are more representative of the students than the unweighted scores, it probably is a reflection of some interaction with variables used for selection. It is doubtful that this varible would have much veight in the admission process, unless a student showed the frequency to be so high as to indicate habitual tardiness.
H. Recommendation of Sending School. Schools were asked to check whether a student was highly recommended, recommended with qualifications or not recommended. Table IV-H-1 shows the reports for enrollees or non-enrollees.

There is a significant difference between the two groups; the enrolled students were likely to come from the highly recommended, or recommended with qualifications. The non-enrolled had only 39.1 per cent in the highly recommended category.

Reversing the table we see that 50.3 per cent of those who were "highly recommended" were accepted while 80.2 per cent of the "recommended with qualifications" and "not recommended" respectively, were not admitted. (Table IV-H-2).

Table IV-H-1
RECOMMENDATION OF SENDING SCHOOL (Weighted)
innolled vs. Non-Enrolled

	Highly Recommended	Recommended With Qualification	Not Recommended	TOTAL
Enrolled	372	130	2	504
Pct.	73.8	25.8	00.4	34.9
Non-Enrolled	367	522	49	938
Pct.	39.1	55.7	05.2	65.1
TOTAL	739	652	51	
Pct.	51.2	45.2	03.6	1442

CHI SQUARE $=180.882 \mathrm{DF}$, SIGNIFICANCE LĖVEL $=.001$

Table IV-H-2
Recommendation of Sending School: Kinds of Recormendation

	Enrolled	Non-Inrolled	TOTAL
Highly Recommended	372	367	739
Pct.	50.3	49.7	51.2
Recommended Vith Qualification	130	522	652
Pct.	.198	80.2	45.2
Not Recommended	2	49	
Pct.	14.7	95.3	51
TOTAL	504	938	1442
Pct.	.349	.651	

I. Sending School Comments. Schools are askod to write coments about each applicant. The number and kinds of comments made varied widely. These were catagorized as seen in Table IV-I-1. No test of significance was made for this table since there were too many cells with small numbers. The table was further reduced to two catagories, positive comments-those which suggested good attitudes, hard work, high motivation, etc., and negative comments-emotional problems, behavioral problems, poor study habits and similar statements. This is displayed in Table IV-I-2.

Here there was a significant difference. The enrolled students were more likely to have positive comments than the non-enrolled.

$$
\begin{aligned}
& \text { Sending School Corments (Heighted) } \\
& \text { inrolled vs. ::on-Enrolled }
\end{aligned}
$$

Table IV-I-2
Condensed Sending School Comments (Weighted)
Enrolled vs. Non-Inrolled
Negative
81 207
33.9 288
31.5 $\stackrel{\%}{\square}$
Total
300
32.8
612
67.2
912
Non-Enrolled
Pct.
TOTAL

Chapter Five

ENTOLIED STUDENTS

In gathering the information used in this study, data about enrolled students after they were enrolled was also gathered. This information includes: 1) entrance test scores, 2) grades, 3) attendance, and 4) trade choice after exploration. No analysis of this data is attempted; rather, it is presented here as descriptive data. (See Appendix C for source of data form).
A. Zntrance Tests. The most frequentiy used entrance test used by the Vocational Technical Schools is the Differential Aptitude Test (DAT). But different schools use different parts of the test. Only two scores are reported here, both with less than half of the total group. Therefore, the figures should be treated with care. Table V-A-1 shows the mean and standard deviation for the Kechanical and IJumerical test score of the DAT.

The mean for the Nechanical Test scores is about that of the ninth grade population, but the group scored lower than the mean of the ninth grade population on the Numerical Test.

Table V-A-1
DAT TEST SCORES

Mechanical
Numerical 156

42

Standard
Deviation 24.78
24.75

A variety of reading tests were administered by the school. The Gates reading test was most frequentiy administered. The results are shown in Table V-A-2.

These tests, administered at the beginning or even before the first semester, have a mean which is at or slightly above grade level. This includes only about one-third of the total and therefore cannot be considered representitive.

Table V-A-2
READING TEST SCORTS

	N	Mean	S.D.
Speed	123	8.75	2.61
Vocabulary	141	8.43	2.48
Comprehension	141	9.12	2.73

B. Grades. Grades were reported on a five-point scale, five being the highest, one being failure. Table $V-B$ shows the spread on each course as well as the mean and standard deviation.

The reason for the small number of grades in "trade" is because at the time the data was collected most students ware still in the exploratory program. The grades appear to be about where one would e.pect. Grades tend to sirew a normal curve upward (it is usual that there are more $A^{\prime} s$ than $\mathrm{F}^{\prime} \mathrm{s}$ in schoois with such a Erading system).

Table V-B

GRADES FOR SUBJiCT (Unweighted)

| | 1 | 2 | 3 | 4 | 5 | Totai | Mean | S.D. |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Trade | 1 | 9 | 36 | 18 | 12 | 78 | 3.42 | 0.99 |
| Hath | 477 | 78 | 106 | 83 | 70 | 384 | 3.16 | 1.33 |
| Science | 35 | 87 | 129 | 81 | 54 | 386 | 3.13 | 1.30 |
| Inglish | 27 | 61 | 141 | 103 | 49 | 379 | 3.30 | 1.29 |
| Social
 Studies | 26 | 84 | 105 | 110 | 63 | 388 | 3.32 | 1.30 |
| Blue Print
 Read | 40 | 53 | 102 | 108 | 40 | 343 | 3.19 | 1.23 |
| Physical
 Bducation | 19 | 18 | 64 | 99 | 144 | 344 | 4.44 | 1.60 |

C. Attendance. Since the collection of data occurred over a four-week period, the information regarding attendance is inconclusive. It represents roughly one and one-half semesters. The figures in Table V-C disclose the findings. There were 161 students or 40.9 per cent who had no absences reported and 299 or 71.7 per cent who had no tardinesses of a group of 417

Table V-C

ATEMDANCE
N Kean

Days Absent	394	3.63 days
Times Tarijy	417	1.04 times

J. Consistency of Trade Choice. Before entering the school, students are neked to indicate two tracie choices. At the completion of the exploratory procram they are again asked to make a first and second trade choice.
'rable $V-$.) shows there were only 189 of the students who had made a choice aitar the explorntor: experiences, the other studente :eere still in the spolowatory neriod when the data was collected. The trade choice after completion does not necessarily mean that students are enrolled in that choice. It merely means they have made the choics. This table shous a hish consistency betwoen first and second choices. 50.3 per cent remained with their first choice, only $\mathcal{\delta}$ per cent made choices different than the t:10 choices they made on entering school.

Table V-T

Cricinal. Choice
rirst Selection
Second Selection
Pirst Selection
Second Selection

Second Choice
Same as First Selection
Same ns First Selection
Same as Second Selection Same as First Selection 32

Percentage
50.3
15.3
9.5
16.9

Se]ected Neither First IJor Second Choice 1.5

TCTAL:
139

Chapter Six

SUMMARY AND CONCLUSIONS

This study was undertaken to study students who applied to the Connecticut Regional Vocational Schools in September of 1971. According to the report of the State Divisior of Vocational Iducation entitled Student Admission ireport-September 1971 (Vocational Education Letter No. RR-2, Revised), 7188 students applied for admission into the fifteen schools at that time. Cf that number, 3169 were enrolled and 4019 were not enrolled.

Because the study was limited in time and money, it was not possible to collect information on all students. It was therefore decided to take a random sample from each school. Students were divided into categories: 1) those actually enrol.led, and ?.) those not enrolled. Thirty students from each ©roup were randomly selected for each school. Because one school could not provide data on students not enrolled, it was ropped from the sample. The study, therefore, involves fourteen schools.

To make the sample representative of the proportion each school had of the total. enrollment, where possible, the data sas weichted so each school's sample represented its proportion of the total.

The study is basically a comparison of the enrollen and the non-enrolled applicants. This was done to determine if si.gnificant differences exizted between the two groups.

Because the schools have a limit to their orrollment (because of space, (thaff and finances), all sturents cannot be enrolled, even thourh many of the non-enroller :oul! rualify for admicsion. Shile only 3169 were enrollot,

 represent 12.8 per cont oi the 1019 iho were not enrolled. Some 1011, or 25.1
jer cent of the total applicants did not qualify. ${ }^{1}$ There are, then, actually four groups of non-enrolled: i) those accepted but cancelled (9.7% of the nonenrolled), 2) those accepted but failed to report (6.2% of the non-enrolled), 3) those qualified but because of space and other limitations could not be enrolled (59.0% of the non-enrolled), and 4) those who would not qualify (25.2% of the non-enrolled). These four groups were combined for this study as: "nonenrolled" students. Schools enrolled roughly three of every seven who applied and three of five who qualified. The result of the admissions process is the enrollment of those with the greatest chance of success (assuming that success in one school predicts success in subsequent schools). Almost all indications of this study confirm that this is what occured.

The study is broken down into three categories: 1) persenal characteristics, 2) family characteristics, and 3) sending school information. A fourth part of the study is concerned with some of the characteristics of the siudents after they enrolled.

Summary of findings:
a. Personal characteristics

There was a significant difference between the enrolled and non-enrolled applicants on the trade choice which applicants made, and on enrollment of physically handicapped.

The differences of first and second trade choice is not particularly revealing. Differences probably arise from such items as the fact that some persons were choosing occupations which were not offered, and that large numbers were choosing occupations which had limited enrollment opportunities. What influence the trade choice had upon a

1'itudent Admission Report: September, 1971, Vocational Research Letter No. RR-2 Revised.
student's being enrolled or not is not clear.
The significant difference between the groups relative to physically handicapped indicated that only 1.5 per cent of the total enrollment were physically handicapped. Of these only 15 per cent were enrolled. (One cannot fully explain the failure of physically handicapped to apply. It may be that youth with physical handicaps opt themselves out, recognizing their own limitations). The reason that few were selected is possibly related to safety, though this is not clear.

There were no significant differences between the two groups on "Age," "Grade Last Completed," "Race," or "Sex." This non-significance is important to note. It indicates, particularly for race and sex, that there is no discrimination taking place in the admissions process on these rather controversial variables. Another item of note, however, is that between 6.8 per cent to 7.9 per cent of Blacks and 4.6 per cent to 5.3 per cent Spanish-speaking students sought enrollment. This is below the percentages each of these groups is of the total population. Based on information received from the Social Science Data Center of the University of Connecticut Census Information, 16.7 per cent of Connecticut's population is Spanish-speaking. That more Blacks and Spanish-speaking do not seek enrollment may reflect the aspirations of Blacks or Spanish-speaking emrolled in grade school who may not be interested in trades as an occupational life, or it may reflect a perception they have of the schools. There are probably a variety of reasons why they do not apply. This is not clear. It is known that several schools have made extensive efforts to enroll Blacks and Spanishspeaking, students.

Only 4.6 per cent of those who sought enrollment were females. This seems very low but quite traditional, for most of the occupations boing taught in the schools are traditionally male occupations. There are, however, a number of traditionally female courses offered by the schools but these do not start at the ninth grade. Health occupations, for example, are open to students who have graduated from high school.

In regard to age, since almost all applicants come from the eighth grade, there is no significant differences between the two groups.
b. Family background

Family background is very infrequently, if ever considered in a selection process. Yet it appears that the admissions procedures are in some ways related to the family background. It was found that there were significant differences on:

1) Size of family (enrolled averaged 2.9 brothers and sisters, while the non-enrolled averaged 3.38);
2) Home environment (91.5 per cent of the enrolled came from "typical" homes, while 87.8 per cent of the non-enrolled came from "typical" homes);
3) Adults with whom the student lives (79.0 per cent of the enrolled lived with both parents while 71.5 per cent of the non-enrolled lived with both parents);
4) Fathers' socio-economic status (the mean of 62.77 for fathers of the enrolled, and 60.78 for fathers of the non-enrolled);
5) Mothers' socio-economic status (mean of the mothers of the enrolled was 32.34 , and of the mothers of the non-enrolled 27.94).
c. Sending school information

This information is probably the most influential in the admissions practice. It is supplemented by pre-admissions testing done in some of the regional vocational-technical schools. The testing programs of the schools are so diverse, hovever, that no meaningful data, representative of the system, could be used.

There were significant differences on almost all variable studied. These include:

1) Intelligence test scores; Lorge Thorndike (enrolled students' mean score was 103.7; for non-enrolled students, 90.79);
2) Achievement tests-the Iowa Test of Basic Skills showed significant differences on:
a) Reading (enrolled grade equivalent 8.0; non-enrolled 5.8);
b) Vocalulary (enrolled grade equivalent 7.2; nonenrolled, 5.9);
c) Language (enroiled crade equivalent 6.7; non-enrolled, 5.3);
d) Math total (enrolled grade equivalent 6.9; non-enrolled, 5.9).
e) Math problems (en:olled grade equivalent 6.7; non-enrolled, 5.8);
f) Nath concepts (enrolled grade equivalent 6.7; non-enrolled, 5.8);
:) Srelling (onrolled areme ectuivalent 6.6; non-enrolled, 5.6).

There were two areas of the test which had so few students the results cannot be considered as representative. These were Social Studies and Science. The "Total Grade Equivalent" was significantly different on both the t test and Chi Square test (enrolled crade equivalent 6.9; non-enrolled, 5.8).

All sections of the tests had the enrolled students with a higher ¿rade cquivalency than the non-anrolled. The mean for the enrolled group on each of the tests varied from 6.6 to 7.2;for the non-enrolled, from 5.3 to 5.9. Since the tests were generally administered over a range from the sixth grade or beginning of the eighth grade, the means, particularly of the enrolled students, are approximately at the norm for the group.
3) Grades repeated; 84 per cent of the enrolled had not repeated any grade while 65.3 per cent of the non-enrolled had not repeated any crade;
4) Personal Characteristics; a five-point scale on the characteristics of Zff fort, Behavior, Responsibility, Punctuality, and Cooperation was used. On all these items there were highly significant differences on both the t test and the Chi Square test. The enrolled group had consistently higher averages than the non-enrolled group.
5) On grades obtained in the sending school the enrolled consisteatly scored higher than the non-enrolled on all but one subject, Music, where there was no significant difference. Phvsical Education and Art were not significantly different on tre t test but were on the Chi : amre test. On all others Where were sirmificantly different scores on both the t test
and the Chi Square test. The entolled scored higher on every subject.
6) Days absent; enrolled students had a mean of 3.46 days of absence, while the non-enrolled had a mean of 4.56. This was a significant difference between the groups.
7) Times tardy; enrolled students had a mean of .65 times tardy, while the non-eniolled had a mean of .92 times. There was a significant difference between the groups.
8) Each school was asked to make a recommendation regarding enrollment on a three-point scale: a) highly recommended, b) recommended with qualifications, and c) not recommended. 50.3 per cent of those highly recommended were accepted, while 95.3 per cent of those not recommended were not enrolled. To report this another way, 74.7 per cent of those who were enrolled were highly recommended, while only 39.1 per cent of the non-enrolled were highly recommended.

Enrolled students

1) Entrance tests-Two tests were studied, two parts of the DAT and three parts of the Gates reading test. While these tests are not given in all schools, they are the most frequently used. On the mechanical part of the DAT, the students scored a mean percentile of 49.03, while on the mathematics test they scored a mean of 38.29. The latiter is below the mean of the general population.

On the Gates reading test the enrolled group scored a mean equivalent of 8.75 on speed, 8.43 on vocabulary, and 9.12 on comprehension. This is within the expected range based on the time the test was taken, immediately after or shortly before
completing eighth grade.
2) On grader in the regional vocational-technical schools, students averaged slightly abcve what could be interpreted as a "C".
3) Attendance-At the time of data collection, which extended ever four weaks in the middle of the second semester, the students were averaging 3.63 days absent and 1.04 times tardy. 40.9 per cent of the students had had no absences and 71.7 per cent had no tardinesses.
4) Consistency of trade choice-When students enrolled they were asked to make two occupational selections. Upon completion of the exploratory program they were asked to make three job choices. The study, however, concerned itself with only the first two of these three choices. The results show that there is a high consistency of occupational choice. Only 8 per cent of those occupations chosen the second time were different from either of those they chose on enrollment.
e. A word about missing data-

Non-enrollees consistently had more data missing on almost all variables. This was generally randomiy spread among the schools so it would not seriously influence the findings. But the significance may lie in the fact that if critical data is missing (data used for selection) it could adversely influence the selection de.cision, particularly if the information from the sending school was missing.

Other missing data also varies but at a lower level, in the
order of 3-8 per cent with differences of 2-3 per cent-between enrolled and non-enrolied. There was more missing data for the nonenrolled.

Table VI-A compares the two groups on data missing on variables based on data from the sending schools. No tests of significance wore made. It is displayed here merely to indicate that a problem may exist.

Table VI-A
MISSTIG DATA

	Enrollees: $N=414$ \% Missing Data	Hon-Enrollees: $N=408$ \% Missing Data	Diff. in \%
IQ Test Scores	17.8	29.9	12.1
Achievement Test	21.9	30.1	8.2
Recommendation of Sending School	23.1	31.1	8.0
Personal Characteristics	$8 \quad 17.6$	19.8	2.2
Grades	11.3	20.6	9.3

Some of the regional vocational-technical schools have a pre-testing program requiring all applicants to take selected tests before they enroll. These testing programs vary so much from school to school that no meaningiul data could be dram from them. It was found, however, on the DAT Mechanical, that 156 enrolled students had taken the test, but only 40 non-enrollees had taken the test. We do not know to what extent the DAT Mechanical tect was adminietered as a pre-entrance test. Some schools
may adninister it after students are ensolled, which would account for much of the difference. But this does give rise to the possibility that students who do not take the entrance test may reduce thoir chance of enrollment.

Considering these and other problems, differences between enroiled students and non-sarolied students are not the sole result of the selection processes of the schools. First, 12.8 per cent of those admitted do not actually enroll. When substantial amounts of data are missing from the application forms, the schools cannot give an adequate evaluation. Finally, if students fail to appear for pre-enrollment testing, significant data noeded for admission is missing.

Part of the problem of many stidents not being enrolied can be traced to the inadequacy of information from the sending school, as well as the failure of students themselves to appear for testing.

CONCLUSIOHS

The students who are .jeeking enrollment in vocational-technical schools are, in general, students below or equal to the mean of all high school students on various variables (IQ and achievement test scores were slichtly be10w the mean for all high school students; grades were at about the mean for all high school students; fathers' and mothers' socio-economic status at about average for society).

From the group of students tho seek enrollment in Vocational Regional Technicel Schools, the ones which might be termed the "better" students are enrolled. These "better" students more nearly strite the norm for the genco:l population than the rooup of applicants. ${ }^{2}$ This is not too clear since we have little definitive data about the whole ninth grade population in Connecticut. What so can say with considerable assurance is that on a large number of variables, particularly those of school achievement, test scores, Eamilial enviroment, and parconality characteristics, the enrolled students score significantly higher than the non-enrolled students. Yet it appea:c that as compared uith the total population, the enrolled students are not "olite" as a group. Contrarily, they scem to reprocent a fairly normal disirjbution of hish school student bedies. In some ways they represent some differencos. For examile, oriy lits nor cent wo on to met-hifh rehonl aducation, while for the statc, wile f_{i} per cent of hich school sturents $; 0$ on to a

[^6]The onrollment process, though varying from school to school, ssems to :ceult in a rathar consistent pattern of the better academic students bein: minolied. It cannot be said that the results or this study can be senmalized to every school. In all li:celihood they can't. A compnrative study of school.s could shout the derree to which each school valics from the norms estaiblished in this study. llo effort had been made to do this, however.

An important observation aoout the data is that there appear to be positive relationships between variables. This is not unexpscted. One would expect that ::tudents witi: hich grades wo:rld have high achievement test scores. There would also be reason to believe that students with high achievement i:ould be absent or tardy less freouently than lovier achievement students, that thoy would be moro hirhly recommended by the sending schools and be ranled on personality characteristics at hicher levels "han the lowe: achievers. Les: expected, thou;h, is that family characteristics would be so interrelateri with success in school. The enrolled stuients came from homes where far. thers and mothers had higher socio-economic etatus than the non-enrolied. inrolled students :rere also more apt to come from smaller, more cohesive families than non-enrolled sturents (more cohesive in the fact that enrolled students were more likely to live with both parents than the non-enrolled).

This surgects that the admissions process creates a situation in which tlere is an unintentional discrimination against youth who live in environments where potentialc of personal and social probloms are high.

Prior to makine any judyments about the clearly selective proceases (only part of thich is done by the school, nunerous ap:)licants select themselves "out" by not appearing-ipproximately 18 per cent-even though they wire accepted for acmission), one must understand the mission of these schools.

Unlike rezular high schools regional vocational-technical schools have a much more definitive responsibility. That mission is to prepare students to enter into clearly defined occupations. Most of these occupations are fairly sophisticated and technical requiring workers of competence with average or better intellectual and performance capability. To maximize the fulfillment of that mission reouires that entering students have the potential of fulfilling these criteria.

To argue that schools should change the admissions process and criteria to permit less talented students to enroll suggests not necessarily a change in mission, but that the schools modify their mission, providing for occupational training for less sophisticated, less technical jobs, thereby providing opportunities for the less talented students. This, then is a philosophical matter. Should the schools continue to fulfill their present mission which reouires a selective procedure, or should they modify their mission and serve a wider range of student needs? These are only two alternatives. There are undoubtedly others. One might be a change in operation, possibly eliminating the totally self-contained program and combining forces with the regular high school. Another might be limiting enroilment to eleventh and twelfth grades. Still another might be to increase the opportunities for untalented.

A further problem which was not within the framework of this study but is exemplified by other studies is the relatively high non-completion rate. ${ }^{2}$ This problem also raise:, cuestions about the admissions process, and the com-

2Nonmcompletion is not synonomous with dropout. It is presumed that most of these students return to a regular high school: Actual figures on non-completion are not available. He know that in 1971, 3169 ninth graders were admitted. That same year 2290 graduated, some of these being post-graduate students. If the enrollment had been relatively constant over the past four years there is a school-leaving rate of somewhere around 28 per cent.
bination of these two problems (enrollment of the more talented and the dropout rates) raises questions about the school's curriculum, atmosphere, extracurricular activities, as well as the admissions procedures themselves, or the expectations school and bureau personnel have for students. A high level of selectivity coupled with a relatively high rate of school leavers suggests that there are problems which need to be identified and studied.

It is relatively simple to search out negative factors about a school. It is also relatively easy to find benefits derived from the school's services.

The record of job placement as reported each year by the Bureau of Regiona? Vocationai. Technical Schools is indeed impressive. ${ }^{3}$ In addition, this study shows that the schools are serving Blacks, Spanish-speaking students, and females, at least in the same proportion as they seek enrollment. The schools have made strong efforts to attract Blacks and Spanish-speaking students. These efforts, however, have not resulted in a high percentage of these groups seeking enroliment.
3^{3} Pourteen and six-tenths per cent of the 1971 graduates went of to posthigh school, 6.6 per cent went into service, .07 per cent could not be employed due to health or other reasons, 4.8 per cent could not be found and 74.1 per cent were available for employment. Of the 74.1 per cent, 74.8 per cent were employed in the occupation for which they received instruction, or a closely related occupation, 18.2 per cent were employed in other occupations, 1.5 per cent were employed part time, and 6.6 per cent were unemployed. This was three months after graduation. Data is from Graduate Follow-up: Statistical Data on Connecticut Students Completing Vocational Programs in 1971 (in press).

The findings of this study do not cry out for quick change. They do indicate that changes might be considered. But before quick decisions are made, a good deal of more study needs to be done.

Recommendations for further study:

1. Since the schools are providing an important service to the manpower of the state, a study should be made of whether they are serving the most important needs in Trades and Industry and perhaps some other non-industrial occupations as well.
2. More needs to be known about the students, those enrolled and those not enrolled and those who do not seek enrollment. Such guestions as what are their aspirations, how well equipped are they to make occupational choices are two samples of information which could te of siue in determining the future roles of the school.
3. A continuing study of the enrolled ninth graders, following them through school and onto the job, should reveal what activities or enviroment in the school are related to the relatively high leaving rate. What are the strong points of the school which result in successful completion on job placement?
4. In experimental research project which would permit typically non-enrolled students to enroll would help identify whether the present selective processes are really appropriate.
5. Because the school can serve less than half of those who apply, some experimental programs should be attempted which would serve the non-enrolled students. Such a project should have a reser.rch. aspect built into it (some such programs are underway).
6. Since schools serve different occupational needs in different geographical locations, a continuing research program regarding students, curriculum, staff and manpower needs, ans as well as some other variables, should be established for each school.
7. A study of why non-Caucasians, females and students with special needs (in this case handicapped) do not seek enrollment in the schools zeeds to be made. Experimental recruitment programs might be triec.
8. If pre-enrollment testing is to be done by the schools, some devices need to be developed which will make it possible to study the influence of the tests on selection. This does not mean a
f uniform testing program needs to be initiated; rather, that a study be made of how influential this program is in the selective process, and its relationship to successful completion of the students. It should also be conducted so that every applicant has the chance to take the test.
9. Data from this study needs to be further analyzed to determine the interrelationships of variables, with the view of recommending selection procedures which will not uniptentionally favor one group of students over another.
10. Since selection of students is not solely the province of the vocational-technical school's, a comparative analysis of the students who apply but change their minds with students rejected by the school would give more definitive information of the impact of the admissions processes on the nature of the student body.

APPTIDIX A
APPLICATION FORM

CORNECTICUT STATE DEPARTMCENT OF EDUCATION Division of Vocutional Educution
 APPLICATION FOR ADMISSION - DAY COURSE

Howell Cheney Regional Vocational-Technical School		
791 W. Middle Turnpike	ETHNIC GROUP	RACE
Manchester, Connecticut 06040	\qquad	
PART I (To bo Printed in DNK by the APPLLCANT)		

If not in achool:

Higheet grede completed.	Suminet of brothers (oldes) (younger)
School	Slumber of ainters (oldes) (younges)
Town	'IT. .f living with perronte, with whom are you livine
Date loft	Name
Recmos	Address
	Towa Rolationehls

Slgnature of Applicout Date

PART II (To be completed IN INK by parenis of guardian with whom applicant lives)
Within the limits of its trcining facilitiec. the echool accepts applicants who show promite of being able to do the work and to complete the rocational education progrom. The data sequestod on this form, together with the leat which the applicant may be asked to take, will provide the faformation needed to act on this application.
1 approve this application and agree to encourage punctuality and regular attendence.
I agree to permit the required physical oscmination which may include blood and tuberculonis toste and vaccination againat amall-pox.
I underntond that the school aroumes no reaponelbility for aecidonial injury suffesed by a student at any time. Student Accident Insurance is avariable through the school.
I underatand that each student is to have shop and gym clothing as proscribed and to have by a apocitiod time castain tools as listed for his trade. Such itome are the personal property of the atudent and ase taken with him when he leaves school.

Noune of applicont
(inil)
(rimi)
(Mivino
PRAT III (To be filled in by coading achool)
 for thione acceptad.

RSCENT STANDARDIEED TESTS

	Name	Date	Grede	10
Intolligrace				
Toste				

Achiovement Tcet
Date

Sther Teats	Date		
	Grade	Score	

Which grade(s) has applicant sepeated?
Joes applicant have any physical hondicap? Yos
f yes, plocse explain:
\qquad
\qquad
ifthdate as recorded on school recorde.
invirommental or other factors we should know to holp the
pplicant in making the best poss:ble adjustment:

Signature

(teachor, counselor, principal)

FOR TECHINICAL SCHOOL USE ONLY

School

RECOMMENDATION OR SENDING SCHOOL

Appliocul is recommonded highly
Applicunt is secommended with qualifications
Applicart is not secomraended
Commonts:
\qquad
\qquad

APPTMDIX B
JATA SOLLECTION FOM:I

Stud.

LIVW
Living with whom?

$$
\begin{aligned}
& \text { 1. parents } \\
& \text { 2. mothar only 6. foleteppfath. } 59,60 \\
& \text { 3. father only } \\
& \text { 4. guardian } \\
& \text { 4. grandparents 8. adopted. }
\end{aligned}
$$

Intelisoonce Test

IATNA
Name of In tost \qquad 8-12

ITOMO
IODYR
1ACRO
IASCR
Date of test (month) \qquad 13,14

Date of test (year) \qquad 15,96

Grade IO test takan in 97

In score \qquad 18-20

ACNAM
Achievament test name \qquad 21-25

ACCRD
Grade achievament test taken in \qquad 26

ACDMO
ACOYR
Date of tast (month) \qquad 27,28

Date of test (year) \qquad 29,30
actce
Total grade equivalent \qquad 31,32
usorit 䱏 \qquad
Achimexant rint ares G.E.

41

:Nam
Aptitude test
ICRD Crade eptitude test taken in \qquad
-Tmo Date of test (month) .
-TYR Date of teat (year) Aptitude Test Parcentil_ Score__

3A1
$3 A_{2}$

2A3.
sAA
'A5
1A6
:A?

LLLC.
L
L1
L/

Studanta

\qquad

Achiovement Aecords - Sending School

$$
\angle
$$

READ Raading 636364spell. Speliling65-6667.68°697071
PHYED
\qquadP
45L
L
L
LART:Art-LIAIndustrial Asto
72 76

$$
\begin{aligned}
& \text { CRIPT Gxada(s) smpeated } \\
& 53 \\
& L
\end{aligned}
$$

Student

ENTCR Entered at grado 9, 10, 11, 12.10

$$
L
$$

L

Entmo
Ention
ENTYR
Date antased (month)

11,12
Day of entry 13,14 Yeer of entry 45,16

LEFMO
LEFYR
Date left (nonth)
Oay of Ianving 17,18 oay of laoving Yoas of lewing 19,20
asas
Rosson for leaving 23,24

Blank 25

EMTEN
Entrance test name 26
of mo
bate of entrance teat (mo.) \qquad (iys)27,28
detyr
Paragreph imenning
29,30
param
arthm
Arithmetic ©omprohenaion \qquad 8:33,34

ENTET: Entrance test name \qquad

Dete of entrance test ($\mathrm{mo} \mathrm{o}^{\mathrm{o}}$) \qquad (y.).

L11
 11 1 41 L/ $\angle 1$ 11 41

 L

Stutiont : \qquad

Minth Grade Masks - 9/71 to $3 / 72$

ASAS Activities and Amarde

Gulill Ceneral information

APPMDIK C
chalemive acom pora

CURMULATIVE RECORD
(PARP I)

CDEMULATIVE RSCORD
(PABT II)

CURAULATIVE RECORD
(PART III)

(PART IV)

[^0]: *Adopten from Report of Connecticut State Department of Bducation

 ** not included in the study

[^1]: *In general replacements for the "cancelled" and "failed to report" were drawn from the pool of "quolified." The replacement sturlents are inclurled in this report as "enroller?."

[^2]: *Tele Storage \& Betrieval System, Duke University, Durham, I.C., 1968, Revised, December, 1971.

[^3]: ${ }^{\text {Peatman, G.P., Descriptive and Sampling Technioues, (New York: Har- }}$ per and Brothers, 1947), p. 283.
 ${ }_{\text {Peatman, op. cit., p. }}$ p2 .

[^4]: CHI SNUART $=15.29$ DF 9, LEVEL OR SIGNIFICARCH $=.05$

[^5]: CHI SQUARE $=19.946 \mathrm{DF}$, SIGNIFICANCE LEVEL $=.001$
 Mean: Enrolledm62.74, Non-Enrolled=60.78, Total=61.83

[^6]: ${ }^{1}$ In a etudj comparina rinth frade vocationel students from Connecticut :icional Teclnical Cel:ools to ninth arade stuclente of surrounding hich schoole, il vas founc that no ciifference existed betwean tio two yrouns on fathers' :ociomeconomic siaiuli or unon rtudents' self-concenta.
 IiA Fichool Giuclent: and Jocational school Students on Self Concept and Family "ocio-iconomic rititi in Iortheastern Connectici
 2. Oucation, 1971 .

 Report of facl: Yorce 1 to Connecticut Commision for Higher

