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Generalized Least Squares Estimators in the

Analysis of Covariance Structures

Sur2iar

Let S represent the usual unbiased estimator of a covariance matrix,

E
o

, whose elements are functions of a parameter vector yo: :
E
o
= E(y

o
)

A
A geneia-ITZErd^-1-ea.4- estimate, 7 , of 70 may be obtained

by minimizing tr[tS - E(y))V]2 where V is some positive definite matrix.

Asymptotic properties of the G.L.S. estimators are investigated assuming

only that E(y) satisfies certain regularity conditions and that the

limiting distribution of S is multivariate normal with specified param-

eters. The estimator of yo which is obtained by maximizing the Wishart

likelihood function (M.W.L. estimator) is shown to be a member of the class

of G.L.S. estimators with minimum asymptotic variances. When E(y) is

linear in 7 , a G.L.S. estimator which converges stochastically to the

M.W.L. estimator involves far less computation. Methods for calculating

A
estimates of yo , estimates of the dispersion matrix of y , and test

statistics, are given for certain linear models.

Some key words: Covariance structures; Generalized least squares;

Asymptotic distributions.



Generalized Least Squares Estimators in the

Analysis of Covariance Structures

1. Introduction

This paper will be concerned with situations where a pxo covariance

matrix, E
o

, is a function of an unknown q x 1 parameter vector y :

-o

Eo = E(7o)

Suppose that the p component vectirs xk k = 1,2 n 4 1 , are

independently and identically distributed with mean po and covariance

matrix E
o

. Let S represent the usual unbiased estimator of E
o

ob-

tained from the It
k

It has been common practice to assume a multivariate
"z

normal distribution for x
k

or a Wishart distribution for S , and employ

maximum likelihood estimators of yo . Nonlinear structures (e.g.,

J8reskog, 1970a) and linear structures (e.g., Bock & Bargmann, 1966;

Anderson, 1969, 1970) have been investigated. Provided that uo is un-

structured, maximum likelihood estimators of yo based on a multivariate

normal distribution for xl xn.4.1 , or on a Wishart distribution for S ,

are functions of S only and differ only by a scaling factor, n /(n + 1) .

The choice of maximum likelihood estimators is possibly due to their

asymptotic efficiency and associated likelihood ratio test. Considering

a particular nonlinear covariance structure, the unrestricted factor analy-

sis model, J8reskog & Goldberger (1972) have shown that a certain general-

ized least squares estimator also is asymptotically efficient and that a

corresponding weighted residual sum of squares statistic converges stochas-

tically to the likelihood ratio statistic.
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This paper considers estimators of yo which are functions of S

ef ) =sii
croij

The only assumptions about the distribution of elements of S concern

(2)

the asymptotic distribution as n which is to be the multivariate

normal distribution with means given by (2) and novariances

Cov(s..ls
gh

) n 1(a . a
ojh

. a . a . )
ij oig oih ojg

(3)

This requires only that all fourth order cumulants of the distribution

of the x
k

are zero (cf. Cramer, 1946, pp. 365-366; Kendall & Stuart,

1969, p. 321). The results to be given apply to, but are not confined to,

the situation where the x
k

have a multivariate normal distribution and S

has a Wishart distribution.

Section 3 will be concerned with asymptotic properties of generalized

least squares (G.L.S.) estimators of yo No specific form will be

assumed for the covariance structure model. Results will apply to all

models which satisfy certain regularity conditions. Although S may not

necessarily have a Wishart distribution one may still obtain estimates by

maximizing the Wishart likelihood function. These "M.W.L." estimators will

be shown to have the asymptotic properties of the class G.L.S. estimators

with minimum asymptotic variances.

When the covariance structure is linear, G.L.S. estimates may be

expressed in closed form and are more easily calculated than the M.W.L.
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estimates. Section 4 will be concerned with methods for obtaining estimates

of parameters in certain linear covariance structures.

The next section defines notation and gives some algebraic results

which will be used in subsequent sections.

2. Notation and Preliminary Algebraic Resul

The column vector formed from elements of a p x p matriAl S, taken

columnwise will be denoted by Vec(S) or by the corresponding small letter

underlined.

i.e., Vec'(S) = s' = s1_ s s s s s s
13'

s
?3'

s
33

s1' 21' 31' ' 12' 22' 32 PP

Double subscripts, ij , are used to denote elements of this vector, the

first subscript always being nested within the second. Double subscripts

will also be used to represent rows or columns of certain matrices. For

example, a typical element of the direct product A B will be denoted

by LA m B]ii,gh where

m 13]
ij,gh

=
ajh

b
ig

Using this expression it is easily shown that

(AmB)s= Vec(BSA`)

(4)

(5)

if A and B are of order m x p Lnd S is of order p x p.

The column vector formed from the elements above and including the

diagonal of a symmetric matrix, S , taken columnwise, will be denoted by

s.
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i.e. s' = s -s s -s s s s
11' 12' 22' 132 23' 33' pp

Again, double subscripts, ij , are used to denote elements of this vector,

the first being nested within the second and not exceeding the second.

As the p x p matrix S is symmetric, the p(p 4 1)P x 1 vector s

may be expressed in terms

s = K's
p-

2

where Kp is of order p
2
x p(p + 1)/2 with typical element

[K ] = 2-1(6 + 5. )p ij,gh ig gh ih jg

andB..represents Kroneckees delta. Therefore,

[1( J. = 1
p 11,11

].. = ].. = j
P 10)13 P 13,31

'(6)

<p, j =p ; g<h< p

[1( ].. = 0 if ij / gh and ij / hg
ij,gh

A left inverse of K is
p

K" = (10K
)

1KI;
P P P

Which is of order p(p + 1)/2 x p2 with typical element

[K-] = (2 - )[K ]
p gh,ij gh p ij,gh

(7)

i <p, j<p ;g<h< p

= 1 if ij = gh or ij = hg

= 0 otherwise.
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This matrix may be used to express s in terms of s :

s = K
P

Let M represent the p
2
x p

2
symmetric idempotent matrix

= K K
P P

with typical element

-1,
[1.1 ].. = 2 (5. 5. + 5. 5 )
p ij,gh ig jh 3.11 jg )

(8)

(9)

i <p, j<p2 g<p ,h<p.

This matrix has an interesting property. If A is of order p x m , then

M (A m A) = (A m
m

Other properties are:

and

M K = K
p

M s = s
p- -

(10)

(12)

The inverse of the matrix Kt(W a W)K , where W is nonsingular of

order pxp, is

(KIN MLOK = KN-1 W-1)K-1p% P (13)

This result may be verified by multiplication using (9), (10), and (11)

and the inversion rule of direct products (e.g., Searle, 1966, p. 216):



-6-

, -1 -1. .-1
m W) tW m W ) 1( = KIM ( 2 W)(W m W) K

-I

P P P
1W

= I

Let the column vector formed from the diagonal elements of the Matrix

Sbe denoted by either diag(S) or s The p2 x p matrix H , with

typical element

[If ] = 5i
p ij,g g

5
jg '

<p, j<p g<p

= 1 if i= j = g

= 0 otherwise

may be used to select s from s :

diag(S) = s = Hps

Let V*W represent the term by term product of V and W with

typical element LV *W]..
j

= [V]..[W]. . Since
1.3 i

V*W H' (V 2 4;)Hp , (15)

V*W is positive semidefinite if V and W are positive semidefinite.

In subsequent sections it will frequently be convenient to express

a quadratic or bilinear form involving a direct product as a trace using:

x' (V m W)y: = tr[XVY'W1] (16)

where x = Vec(X) and y = Vec(Y)

We shall regard the q x 1 vector y as a mathematical variable which

can assume values yo and , where 9 is an estimate of yo E = E(z)



will be regarded as a matrix function of y . When matrix derivatives are

given, the equality of the functions
i

a..ij (y) and aj.(y) will always be

6E(z)
taken into account. Matrices of partial derivatives such as 77-- and

yi2
E(7)

wi
-
E

a 62i
will therefore be symmetric. , 3:77 and will stand

i j fi i j

-6E(y)
for E(7) _ f. and I respectively. A similar

07i 7-7

convention will be employed when y = 7
- -0

3. Generalized Least Squares Estimators

The model given in (1) may be expressed in the equivalent form

e(§) = 20 = g(z0) (17)

We shall assume throughout that this model satisfies the following

regularity conditions:

(a) All au(z) and all partial derivatives of the first three

orders with respect to elements of y are continuous and bounded in a

neighborhood of z = yo .

9
(b) The p- x q matrix

3a(7)1

-77-17=Yo
(18)

is of full column rank.

(c) yo is identified, i.e., E(71) = E(zo) implies that yl = yo

(d) E(70) is positive definite.
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Let us consider the residual quadratic form,

(s - a(y))'(Cov(s,s9)-1(s - a(7)) . (19)

It follows from the Gauss-Markov theorem that, if a(y) is linear in y ,

minimization of this residual quadratic form yields the minimum variance

unbiased estimator of yo . If a(y) is nonlinear, the estimator will be- -

asymptotically ef--Icient.

In order to obtain (Cov(s,s9)
-1

, the matrix of this quadratic
04.

form, we use (4) to express (3) as

Cov(sii,sgh) = n-1( 22: ((E E + (E E ). )

o o ij,gh o o ji,hg

so that

1
([Eo 2 zo1ji,gh (Eo Eoiij,hg"

Cov(§,E1) = 2n11(1!,(E0 Eo)Kp (20)

Then,(12) shows that the required inverse is

(Cov(s,e))-1 = 2-1n1(p-(E0c2 o) Pt

so that, with use of (8), the quadratic form (19), which we now denote

-.
by nf(71E0

1)
, becomes

-1
nf(y1E,..1) = 2-1n(2 - a(7))'Kp(Eo

1
E

'

(s - a(y))

- 1
= 2 ln(s - a(0)1(E0

-1
Eo )(s - a(y))

(21)

(22)
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The matrix of this quadratic form is a function of the unknown dis-

persion matrix E
o

. We shall therefore replace E
o

1
by another matrix,

V , and consider G.L.S. estimators which result from minimizing

f(zIv) = 2-1(s 2(z))i(v m v)(E 5.(z)) (23)

with respect to y . The weight matrix, V , will be either a stochastic

matrix which converges in probability to a positive definite matrix V

as n -400 or a positive definite constant matrix (V = V) . Consequently

the matrix of the quadratic form in (23) is positive definite or converges

in probability to a positive definite matrix, V 2 V . Using (16) this

quadratic form may also be expressed as:

f(yIV) = 2-1 trUS - E(y))VJ
2

(24)

We shall examine asymptotic properties of the estimators.

Proposition 1. The G.L.S. estimators are consistent.

Proof. Since yo is identified and V is positive definite,

trUE0 - E(y)YVJ2 has its absolute minimum of zero at y = yo . S and V

converge stochastically to E0 and V and E(z) is bounded in a neighbor-

hood of ' Consequently trL(S - E(y))1112 converges in probability

to trUE0 - E(y))J2 uniformly in a neighborhood of y = yo . Since

tr[(S - E(y))VJ2 is continuous in y , the point 9 where it has its

absolute minimum converges stochastically to yo . This proof is an

adaptation of a proof of Anderson & Rubin (1956, pp. 145-146).11



Proposition 2. The limiting distribution of a G.L.S. estimator,

multivariaLe normal with mean vector

and covariance matrix

Cov(9,99 = 2n-1(011(17))-18(ft
o
1)(8(7))-1

where e(V) is a q x q matrix function of V defined 1*

o(V) = W(iT flA

with typical element [c.f. (16), (18)]

Proof. Let

az az
= tr( ;74) V 357cl 17)

h(zIv) =
df(ZIv)

=
agt {NT v} (s g(Z))

Using (16), a typical element of this vector may be expressed as

hi(zIV) = tr(V(S - E(z))v
a

]

By Taylor's theorem

11(i IV) = h(zo IV) - W(i - zo)

, is

(25)

(26)

(27)

(28)



where

6hi
e

ql

[Iglu = wilzoo 'tkyYk Yok)

A
and y* lies between yo and 7 .

Now,

and

Y-

aryl-
h.

6
2
E

= tr[V{S - E(z)}V - tr[V 6E V 62." ]

3-77-
i j

2
3 h

i E 6E 62E
= tr[V[S - E(ztv

3

V 37: V a,
j -11-'0-1k ' -' 0 k

6E 62E 6E 62E
-

)

(29)

(30)

Since the elements of (S - E(y )) and (9 - y ) converge to zero
-o -o

in probability, since the trace functions in (29) and (30) are continuous,

and since the partial derivatives are asymptotically bounded in probability

6E 8E
o o

it follows that [14]ij converges stochastically to tr(V 7-- V 7:- ) , or
-/j

plim W = 6,07 ta = e(17)

as can be seen from (16), (18). This matrix is nonsingular.

A I

Since h(y1V) = 0 , it follows from (28) that_ -

= yo w 1h (y, )
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and 2 is asymptotically equivalent to

y = Rowlyzolii)

= (gVW(2 2.0)

where

E(V) = (V 01 V)[1(8(V))-1 ,

because

117 (9 = 04-1 - W(1 2 1)0q-1)641(V 01)(471 - go))

W-101(6. 2 v) - (V 2 1))(vE (s - go))

converges in probability to the null vector as n -4,00 .

(31)

(32)

Since 7 is a linear function of s , the limiting distribution of

7 and of 5) is multivariate normal with mean vector

(gV)PAyo = yo

and dispersion matrix

(417))11(-1 Cov(s,s9K( E0)) 2n-1(g1))1M (E E (g17)) .

P P p o o p

This dispersion matrix may be expressed in the form of (26) after use of (31),

(27), (10), (12), and the fact that each column of t is formed from a

symmetric matrix, 6E0/67i H



-13-

All GL.S. estimators of yo , then, are consistent and asymptotically

normally distributed. The "best" GL.S. (B.G.L.S) estimators, in the

sense of having minimum asymptotic variances, are obtained by taking V

to be some consistent estimator of ItE
o

-1
where K is any positive

'onstant.

Proposition 3. The asymptotic dispersion matrix of a G.L.S. estimator,

y , is bounded below by 2n-1(8(E-))-1 in.the Loewner sense of inequality
A

o

(e.g., Beckenbach & Bellman, 1965, p. 86). This bound is attained, and

/ is a B.GL.S. estimator, if 1 . KZ0
-1

( K > 0 )

Proof. (8(1))-18(1E01)(8(1))-1 (8(E01)) -1

= P:(V) gf01)P(20 0 zo)(g17) 42:0-1))

>0

since m
0
> 0 .

In order to prove asymptotic efficiency of B.G.L.S. estimators we

would have to show that the difference between 2n
-1

(e(E
o

1.,
))

-1
and the

inverse information matrix (based on the exact distribution of S ) is

of the order o(n
-1

) . If S has a Wishart distribution, this difference

is the null matrix so that all B.GL.S. estimators are efficient. If we

assume only that the limiting distribution of S is multivariate normal

with parameters given by (17) and (20), we can say that B.G.L.S. estimators

are "efficient in terms of the limiting distribution of S " in the

following sense:



Proposition 4. Let S2 denote the information matrix based on the

limiting distribution of S . Then

lim n(2n-1 fe(E01))-1 - 51-1] = 0

n -,°°

(33)

Proof. The log of the likelihood function for the limiting multivariate

normal distribution of s is

., ,log LN = constant - 1
(logili;CE(Y) E(7)]Kpl + tr[S[E(y)3

-1
IJ

2,

with first derivatives,

6iog
-1 67; (p 4. 1) -1 dEtr[E

-1
(S E)E

-1
SE F7 - 2 tr[E ]

ay
/1

and second derivatives

elog 116.

n - - a (tr[E-1SE-1 'E-- E-1SE-1 sl-- + 2E-1 44L- E-1 (S - E)E-1SE-1 ,.L--4.4 oyi dyj dyi dyj
i j

-
E-1(s

-
E)E1sE-1 6

2
E

] + (p + 1)n-1 a -1tr n A
Er 2

i
-y6i-yj

-1 6E -1 6E
- E E ] ) (314)

Using (16), (17), and (20) it can easily be shown that, if and

Q2 are p x p matrices and S= 0 or 1,

E tr[(S - BE0)Q1SQ2] (1 - 5) tr(E0Q1E0Q) + n-1 ftr(EoQ1EoQ2)

+ tr(E0Q1) tr(E0Q0] (35)



-15-

Application of (35) to (34) then shows that

o log Lm

"M.. - e( )

- -o

'OE(n + p + 2)
6E

o
6E0

,-1% 1
6E0

,-1% ,-1,
2

brk r s--- + tr( ) tr(
y. o 0 . o oy. o o o7,3 7,3

so that

(n + p + 2) -1 1
-

e(Eo ) iSro2r?2

and (33) follows.)

In addition to yielding a B.G.L.S. estimator of yo , use of a con-

-
sistent estimator of E

o

1
for V enables one to test the null hypothesis

that (1) holds against the alternative that Eo is any positive definite

matrix by means of the residual quadratic form f(2IV) .

Proposition 5. If V = E.0.1 and Eo = E(yo) , the limiting distribution

of nf(5IV) = 2-in tr((S - E(z))VJ
2

is chi-square with p(p + 1)/2 - q

degrees of freedom.

Proof. It was seen, using equation (32), that vR2 - y) converges in

probability to a null vector. Also iri[6(2) - co - A(9 - zo)) converges

in probability to a null vector since, by Taylor's theorem)
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6a..(7 )
tri [aii(i) (aid(-0) 14;° (2 Z0))]

=2 a Zo,'

where y* lies between y and yo .

Consequently Nrn (s - a(5,)) converges stochastically to

and

1,ri [s a- - z )]
_

-
= (i - AfAt(E01 Eo

1) A) AqE0 1
Eo

1)](s - 00)

nf(ylV) = 2-1n(§ --2(2))1(V V)(s - a(y))

converges stochastically to

nfo = 2
-1
n(s - a )IG

o -
a(s - )

-o o

where

Since Go(yE0 E0)Kp) is idempotent of rank (p(p + 1)/2 - q)

the limiting distribution of nfo and of nf(2IV) is the central chi-

square distribution with (p(p + 1)/2 - q) degrees of freedom (Graybill,

1961, p. 83). 0

Anderson (1969, Section 4), considering linear covariance structures,

has pointed out certain relationships between equations defining a G.L.S.
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estimate with V = E
o

-1
and the Wishart likelihood equations. We shall

now consider how, for covariance structures in general, an estimate of

yo obtained by maximizing the Wishart likelihood function (A.W.L

estimator) may be regarded as a member of the class of B.G.L.S. estimates.

Proposition 6. Suppose that j91 is a MW.L estimate of yo and that

is a G.LS. estimate where V = {:(y1)} -1 Then 5,2 is a B.G.L.S.

estimate and Prob(y1 / 22)--, 0 as co

Proof. Maximizing the Wishart likelihood function is equivalent to minimizing

F(y) = InlE(z)1 - InISI tr[S(E0)-11 P (36)

Consequently the equations,

aF(y)
aE

= -tr{E 1(S - E)E
-1

s---- = 0
o7. i = 1 ... q , (37)uyi

and the condition that the matrix with typical element

2
F(y)

-1 bz -1 6E -1 -1
2
E= tr(E 1(2S 1.1)E E E (S E)E N6 (38)

0 .

73.
cy0 ayay

3. 0

be positive definite will be satisfied at the point y = '1 ( E = E(91) ).

The equations

af(zIV)
- tr(V(S - E)V ) = 0 1 ... q , (39)

and the condition that the matrix with typical element



2
f(71V)

6E 6E 3
2
Etr(V 3--- V 3 v(s E)v ]

dYi3Yi Y. OYj
1

Y..Yj
(40)

be positive definite will be satisfied at the point y = Y2 when

V = (E(21))-1

Using similar reasoning to that used in the proof of Proposition 1

it can be shown (c.f. Anderson & Rubin, 1956, Theorem 12.1) that the M.W.L.

estimator, y
1

is a consistent estimator of y
0

. Consequently (E(Y
1
))

-1

is a consistent estimator of E
o

1
and Y

2
is a B.GL.S. estimator.

Equations (39) and (37) are equivalent when V = [E(5,1)]-1 . Con-

sequently y = Yl is always a stationary point of f(yl[E(Y1)]
-1

) and

will not be at a minimum only if the matrix with typical element given

by (40) is not positive definite. Since the matrix with typical element

(38) is positive definite at y = Yl and since the difference

[
1 j 1 J L 11

7.- oYi 7-z1
]32f(7.1(E(21)) -1) :21z) . -2 tr E-1(S -

E)E-1 6E E-1 6E

converges stochastically to zero, the probability that the matrix with

typical element (40) is not positive definite at the point y = Yl tends

to zero as n ..40, This implies that the probability that the point Yl

at which F(7) has an absolute minimum does not give at least a relative

minimum of f(y1(E(Y
1
))

-1
) tends to zero as n co. Since f(71(E(y

o
))
-1

)
- -

is convex in a neighborhood of yo and since and Y2 both converge

stochastically to yo , the probability that there is a minimum at 21

which does not coincide with the absolute minimum at z2 tends to zero as

n co . II



This result implies that MW.L. estimators will have the asymptotic

properties of B.G.L.S. estimators provided only that the limiting

distribution of S is the multivariate normal distribution specified

earlier (and that the model satisfies the specified regularity conditions).

No assumption of a Wiihart distribution for S has been made.

J8reskog & Goldberger (1972) have shown that the log likelihood

ratio test statistic and a certain residual quadratic -form converge in

probability in the particular case of unrestricted factor analysis. For

covariance structures in general we may state:

Proposition 7. If 5, is a B.G.L.S. (or M.W.L.) estimator, nF(Y) and

nfOl[E(y))1) converge stochastically and have a limiting chi-square

distribution with p(p + 1)/2 - q degrees of freedom.

Proof. Rearrangement of terms in (36) gives

F(2) = tr((S - OE -1) - inII + - 2A-11 .

^. .^-1Using Taylor expansions in eigenvalues of (S - E)E , is easily shown

that

Consequently,

+ (S - )2-11 = E k-1 tr(-(S
ot-1)k

k =1



-20-

co

nF(y) = nf(2Ii-1) + n k1 tr[(i - S)E-1)k

k =3

= nf(M-1) + op(1)

The limiting distribution of nf(91i-1) follows from Proposition 5. N

Consequently either nf(5,1E-1) or n.F(y) may be used in a large

sample test of the null hypothesis that (1) holds when 5' is a M.W.L.

estimate. For many covariance structures ne form of F(y) given in (36)

simplifies at the minimum.

Proposition 8. Suppose that E(y) is such that, given any admissible

2 and any positive scalar a there is an admissible y* for which

E(z*) = otE(y) . Then, if y is a M.W.L. estimate, tr[SE
-1

I = p so

that

F(2)= inli I fnISI

This result was stated by Bock & Bargmann (1966, p. 521) for certain

specific covariance structures. Their proof, however, applies to the

general situation considered here.

4. Linear Covariance Structures

When E(y) is nonlinear, a successive approximation procedure, such

as Newton's method, is required to obtain both G.L.S. and M.W.L, estimates.

General expressions for the necessary derivatives are given in (37), (38),

Mand(40).Whenthespecificformsof6E. and 62E/6y
i
6y

j
byl are



known, these expressions may be simplified using methods given by Bargmann

(1967, Section 7).

When E(y) is linear in y , on the other hand, G.L.S. estimates may

be expressed in closed form. A successive approximation procedure is still

usually required for M.W.L. estimates (except in some special cases such as

the compound symmetry model).

We can always express a linear structure E(y) in the form

Q(z) = 6z (41)

where A (= 6c1/4, ) is a known matrix of order p
2

x q and rank q .

Use of (39), (16), and (5) then shows that the G.L.S. estimates of

y are:
-o

where

[8(v))-lo' vec(vsv) (42)

8(V) = At(V o V)A .

Whenever A is of full column rank and V is positive definite, f(yJV)

is convex and has a unique minimum at y = y . 8(V) then is positive

definite.

If V is a fixed matrix (e.g., V = I ) , or a stochastic matrix

distributed independently of S , 9 is an unbiased estimator of yo .

If V is a consistent estimator of
E.1

(e.g., V = S-1 or V = (E(,))-1 ),

is a B.G.L.S. estimator of yo and 2n-1(8(V))-1 is a consistent
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estimator of the asymptotic covariance matrix of 9 (Proposition 5). 1\lso,

the statistic

nf(9IV) = 2-in tr[(S - i)V(S - i)V]

= 2
-1
n[st(V 2 V)s Ne(V))9]

is approximately distributed as chi-square with (p(p + 0/2) - q degrees

of freedom if n is large and the null hypothesis ao = L1Zo holds

(Proposition 5).

The M.W.L. 9 is defined by (42) with V replaced by (E(9))1 ,

and will simultaneously be a G.L.S. estimate in the sense of minimizing

f(7I(E(7))
-1

) (Proposition 6) whenever E(y) is positive definite. This

M.W.L. estimate may be calculated by means of a successive approximation

procedure:

l./ Use (42) with V = S-1 to obtain 2(1) .

%,2./ Use (42) with V = (E0(1)//
-1

to obtain 2(2) .

3./ Continue in this way until the differences 5(i - 2(i)

become sufficiently small.

It is easily shown that this successive G.L.S. procedure is equivalent to

the Fisher scoring method (Kendall & Stuart, 1967, pp. 4849) for obtaining

M.W.L. estimates. (When E(7) is not linear in 7 , however, minimizing

%,-1%
f(ZI(E0(0/1 / to obtain 9(i4.1) is no longer equivalent to the Fisher

scoring method.)



The successive G.L.S. estimators -i(1),y(2)' (3)
-.re all B.G.L.S.

estimators and have the same asymptotic properties. It is therefore

difficult to justify the calculation of precise M.W.L. estimates, particu-

larly if more than three or four iterations are required.

McDonald (1972) has investigated patterned covariance structures where

subsets of elements of E are equal or have a known value, usually zero.

In such models, where elements of A are either 1 or 0, (42) would be

employed without further algebraic manipulation to provide G.L.S. estimates.

Use of (4) would avoid storage of the large matrix V m V by a computer

program.

In other linear covariance structures, however, A involves direct

produ2ts of certain matrices and (42) may be simplified considerably. We

shall now examine such models in greater detail. They are of the form

E A0A' D (143)

where the p x m "model matrix" A is known and of full column rank,

is symmetric of order M , and is diagonal of order p . Models

of this kind have been discussed by Bock & Bargmann (1966, p. 510),

Mukherjee (1970), and J8reskog (1970a, Sections 2.4 and 2.5). Newton

methods for obtaining M.W.L. estimates of 00 and areare available

(Bock & Bargmann, 1966; Anderson, 1970) and the methods proposed by

J3reskog (1970a) may also be employed.

It will be convenient to consider separately the easel where 0 is

diagonal, 0 = Do , and where 0 is symmetric but not diagonal.



-24 -

Case I. (I) is diagonal.

D
o

, (43) may be expressed in the form of (41) with

A = ((A 0 A)Hm, Hp) ,

Z' = (5)',V) = (diag'(D0), diag1(D)) ,

q = m p .

Then, using (15), it can be shown that

e(V) =

(VA)*(VA) V*V

and, using (5) and (14), that

A' Vec(VSV) =
diag(VSV)

(44)

(115)

Substitution of (44) and (45) in (42) now provides the estimate 9

The matrix to be inverted, 8(V) , is positive semidefinite provided that

V is positive definite. Singularity of the matrix implies that yo is

not identified.

We have minimized f(yIV) without imposing any constraints and some

elements of 9 could be negative. The elements of = , however,

represent variances (cf. BOCK & Bargmann, 1966) so that it would be pref-

erable for the elements of 9 to be nonnegative. Minimization of

f(yIV) subject to the inequality constraints

9i > 0 , i = 1 ... q (46)
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may be acccmplished by applying the "mime orator (1),mpstr, 190), S. c-

tion 4.3.2; Morgan & Tatar, 1972) to the symmetric matrix of order

q 1 which is defined initially a.:-;

where

(11 112
Q, =

112 -122

Q
11

= 8(V) as defined in (44) ,

q
12

= VecOMV) as defined in (45) ,

122 - s' (V V)s = tr(VSVS) . (117)

The superscript * will be used to indicate that the sweep operator

has been applied on a particular row of
Q An element of q12 ' [q12]1

lies in row i* of Q on which the sweep operator has been applied.

Applying the reverse sweep operator on the same row of Q cancels the

sweep operation so that
[q12]i

becomes NIA

The minimization algorithm is:

1/ Sweep Q on row i if NIA > 0 :

(.1121i [q12 ]i ? 0

2/ If gresults in a [112]1
'

in a row j* / i* on which Q has

previously been swept, becoming negative, reverse sweep Q on row j* :

[q12]l [q12]. < 0
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Continue until all [q
12

> 0 and all [q
12

1. < 0 , i or i* < m p .

The sweep operator is never applied on the last row of Q .

Then y is given by

y. =
12

, if Q has been swept on row i = i*

= 0 if Q has not been swept on row i

and nf(9(V) may be obtained from

nf(iIV) = 2 q92

Since

of (y (V)

aYi Z= -n1S1231 '

=0 if Q has been swept on row i=

if Q has not been swept on row i

the Kuhn-Tucker conditions are satisfied,

> 0

f(i(V)
>0

A 6f(i(V)
yi 0

A
and y is a global minimum of f(z(v) subject to the inequality con-

straints (116) (Fiacco & McCormick, 1968, pp. 89-90).

The sweep operator may then be applied on the remaining rows of

011 (where [Q12]i < 0 ) to obtain WV) } -1
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In come cases some elemnts ref may be in known vatic,.

example, suppose that

D, = * D
awo o

where is a knali diajpnal matrix (e.g., Da = I ). Tnen y' W0,-(P0) ,

-o

q = m 1 , and eAlLu-6es raz'c_ ,,,-oained as before with

(A'V),< WVA) ((ATV)*(ATV)y

11
x't(VA)*(VA)) aT(V*V)a

-12
41 aiag(VSV)

and q22 defined by (47) .

Similar procedures may be employed when other elements of y, are

equal or in known ratio.

Case II. 0 is symmetric.

In (41) we now have

= ((A 0 A)K- , H) .

m p

z' = (v).7P)

q = f .4 1) /2) p

After some algebra, making use of the methods of Section 2, (42) can

be simplified to:



where

(1) B' (S i3OB

W diag[VSV - GSG]

B = VA(A'VA)-1

G = VA(A'VA)-1A'V

W = (V*V - G*G)-1

-28-

(0a8)

(49)

The matrix to be inverted to give W is a submatrix of (V + G) a (V - G)

and is therefore positive semidefinite provided that V is positive def-

inite. Singularity of the matrix implies that yo is not identified.

It is of interest to note that, although the number of parameters to

be estimated in Case II is greater than that in Case I, the largest matrix to

be inverted in (48), (49) is of order p while the inversion of a matrix

of order (p + m) is required when (44), (45), (42) are employed.

-Takin
g Q11 ("17 G*G) , c112

diag[VSV - GSG] , and
q22

tr[VSVS - GSGS ] and replacing 9 by , the algorithm described under

Case I may be employed to give a satisfying the inequality constraints

i 1 p (50)

When * has been obtained, $ may be obtained from (1i8). This gives the

absolute minimum of f(yIV) subject to the inequality constraints (50).

It is possible that 0 , an estimated dispersion matrix, will not be

positive semidefinite. To ensure that $ is positive semidefinite one



-29-

could replace (!) by TT' , but the model would then no longer be linear

and the estimates would be more difficult to obtain.

If V is a consistent estimator of
o

-1
, we have

/\
Cov(y,21) = 2n-118(V)l-1

with elements:

Covar.,i.) = 2n -1w.i

where

/\
Cov(?.. )

/\
Cov(41..,$ )

gh

P
= -2n-1 E b .b .w

rj rk '

r=1

= n
-1

(c.
c.

+ c.
c.

+ 2 E b .b

rj
.w
rs

b
sg

b
sh

)

ig h ih g ,

r=1 s=1

%
cig = [(AIVA)

1
I
ig

The case where the elements of * are in known ratio,
=o

D = * Do a

may be treated as in Case I. Taking

w = (lat(V*V - G*G)a)-1

we have:

q = (m(m + 1)/2) + 1 ,

= wa' diag(VSV - GSG)
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(1; = Bt(S - iDa)B ,

4r(i) 2n-lw

Cov(4)
ij

. -2n
-1
w[BID B].

j' l

ar($.,$
gh

) = n-1(c. cjh. + c
ih

c
jg

+ [BID
a
B]..[BID B]

gh
)

ij ig ij

Formulae, both in Case I and Case II, simplify in an obvious manner when

V = S
-1

. When maximum likelihood estimates are being obtained and

V . (AAA' + B*)-1 the following well-known identities may be employed

to reduce computation if IDS, 1 / 0 :

^-1 ,^-1 .-1
V = D - D + AID, A) AID

** w

(AIVA)-1A1V

We note, also, that Proposition 8 applies in both Case I and Case II.

The Fisher scoring algorithm employed here for obtaining M.W.L.

estimates may require more iterations to attain convergence than existing

Newton algorithms, but less computation is required during each iteration.

This reduction in computation per iteration is particularly noticeable in

Case II.

The B.G.L.S. estimates obtained using S
-1

for V require less

computation than the M.W.L. estimates and have the same desirable asymptotic

properties. Small sample properties of the estimators are as yet unknown.

In a Monte Carlo experiment (Durand, 1971) use of S
-1

for V gave
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estimates which appeared more biased ( e(y) < yo ) than the M.W.L. esti-

mates but which, however, appeared to be as precise in terms_of mean

squared error of estimation. Also, in practical applications of both

Case I and Case II procedures, the author has observed that taking V S
-1

tends to give estimates which are slightly smaller than the M.W.L. estimates.

A similar tendency in factor analysis was noted by Jbreskog & Goldberger

(1972) .

This tendency is apparent in the example given in Table la. It

shows G.L.S. estimates (V=I, V= S-1 ) and M.W.L. (V.E
-1

) estimates

of parameters in a quasi-simplex model based on a covariance matrix obtained

by Bilodeau (1957) in a study of a two-hand coordination task. This matrix

has been reported by and analyzed by Bock & Bargmann (1966) and by

areskog (1970b). The model is:

where

E = AD
o
Al *I

paii = 1 , >i>j> 1

= 0 , i < j

It can be seen that the G.L.S. estimates with V = S
-1

and the M.W.L.

estimates ( V = E
-1

) agree rather closely and differ somewhat from the

unweighted least squares estimates ( V = I ).

The successive G.L.S. (Fisher scoring) algorithm for obtaining M.W.L.

estimates converged to four figures on the third iteration. Estimates of

standard errors and values of the test statistics are given in Tables lb

and lc.
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Table 1. Bilodeau's Example.

a)

$1

Estimates of parameters in a quasi simplex model.

$2 $3 $4 $6
711

504.1 63.3 31.1 124.6 36.7 22.7 19.)

452.3 53.4 15.4 74.4 20.6 0.0 44.3

482.6 54.6 15.9 81.4 21.6 1.5 45.3

b) Estimates of standard errors. diag1(768(0)-1

$1 $2 $3 $4
$5 $6 ir

56.9 14.6 10.2 14.5 9.5 10.1 4.8

58.7 14.6 10.2 14.9 9.6 10.2 4.7

c) Test statistics. d.f. = 14 . n = 152 .

V of (y IV) nF )

9.34

9.24 9.46
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