
DOCUMENT RESUME

ED 076 213 LI 004 318

AUTHCR Hemming, Cliff; Smith R. J., II
TITLE An Introduction to Register Transfer Level Simulation

of Digital Systems.
INSTITUTION Southern Methodist Univ., Dallas, Tex. Computer

Science/Operations Research Center.
REPORT NO TR-CP-73013
PUB DATE May 73
NCTE 38p.; (32 References)

EDRS PRICE MF-$0.65 HC-$3.29
DESCRIPTORS *Computer Programs; Computers; *Computer Science;

*Digital Computers' Program Descriptions; Program
Design; Simulation

ABSTRACT
Register transfer level (RTL) descriptions of digital

systems have certain advAntages over other descriptive techniques,
especially during early phases of the design effort. There are at
least three identifiable m?jor uses for RTL-type descriptions. First,
RTL can serve as documentation (A digital processor behavior,
recording in a concise fashior the operational characteristics of the
system. RTL may also be used as the input notation accepted by an
automatic translator which develops hardware structural details
corresponding to the behavior describes; output from such systems
consist of appropriate logic modules, gates and other elements
selected from a predetined library, along with suitable
inter-connections. A third important application of RTL descriptions
is in the simulation of digital systems, primarily during the system
design process. In this case, RTL descriptions are processed by a

portion of the simulation system, producing a model of the subject
processor; as will be seen later, this model often includes
structural as well as behavioral (control) elements. Initial
conditions and external stimuli can then be applied to the model
which, in conjunction with simulator facilities, produces appropriate
outputs representing behavior of the simulated system. (Author)

I'



1

\'I
(NJ

O
UJ

FILMED FROM BEST AVAILABLE COPY

(Technical Report No. CP 73013)

An Introduction to Register Transfer
Level Simulation of Digital Systems

Cliff Hemming*
R. J. Smith, II

U S DEPARTMENT OF HEALTH
EDUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRO
DUCED EXACTLY AS RECEIVED FROM
THE PERSC N OR ORGANIZATION ORIG
INATING Il POINTS OF VIEW OR OPIN
IONS STATED DO NOT NECESSARILY
REPRESENT OFFIZIAL OFFICE OF EDU
CATION POSITION OR POLICY

Department of Computer Science and Operations Research
Southern Methodist University

Dallas, Texas 75275

*Presently with Bell Telephone Laboratories, Columbus, Ohio.

00
rogl

ce3 Note: an expandel version of this paper will later appear as Chapter 3

of Volume II, Design Automation of Digital Systems, M.A. Breuer, ed.

0
F-4 May, 1973



Contents Page

1. Introduction 2

2. Overview of RTL Simulators 4

User Interfaces
Implementation issues
Asynchronous Events
Simulation of Simultaneous Operations
Generation of stimulii

3. RTL Simulator Structure
Algol as a "Programming" Language
The Computer Design Language Simulator
Internal Features of the Simulator

13

4. Simulation Mechanisms and Implementation Considerations 23

5. Alternate Systems Approaches 26

Compiled Simulation
Other Existing RTL Simulators
Interactive Systems

6. Summary 33

7. References 35

1

I



3

Abstract

Register transfer level descriptions of digital systems have certain

advantages over other descriptive techniques, especially during early

phases of the design effort. There are at least three identifiable

major uses for RTL-type descriptions. First, RTL can serve as docu-

mentation of digital processor behavior, recording in a concise fash-

ion the operational characteristics of the system. RTL may also be used

as the input notation accepted by an automatic translator which develops

hardware structural details corresponding to the behavior described;

output from such systems consist of appropriate logic modules, gates and

other elements selected from a predefined library, along with .7.table

inter-connections.

A third important application of RTL descriptions is in the simu-

lation of digital systems, primarily during the system design process.

In this case, RTL descriptions are processed by a portion of the simu-

lation system, producing a model of the subject processor; as will be

seen later, this model often includes structural as well as behavioral

(control) elements. Initial conditions and external stimulii can then

be applied to the model which, in conjunction with simulator facilities,

produces appropriate outputs representing behavior of the simulated

system.

1



1. Introduction

Simulation using RTL descriptive techniques is attractive because

it does not require detailed, comprehensive development of a proposed

machine. In fact, an important use of RTL-based simulation is in eval-

uating alternatives during preliminary design of new systems. The

machine architect thus has available facilities for observing behavior

of proposed systems early in the design cycle. Issues which might oe

investigated using RTL simulation include:

a) execution speed of various instructions, instruction sets, or

other grass timing studies,

b) the impact of unusual instructions or unconventional instruc-

tion implementations, such as memory search, move multiple

character, translate, or out of line instruction execution,

c) hardware resource utilization, such as congestion and backup

problems in pipelined organizations,

d) task switching and asynchronous interrupt handling capabilities,

e) for reconfigurable or fault- tzlerait designs, evaluation of

performance in varic,..i modes of operation.

One of the most interesting potential applications of RTL simula-

tion is utilization of the simulator model as a vehicle for software

development during the period before hardware is available. For the

most part, this approach has been limited to comparison of capabilities

of proposed and existing machines. Since RTL simulation models typically

require several hundred to several thousi'd host maJline instructions

per (simulated) subject machine instruction, widespread use in software

development hinges on availability of a \ery efficimt RTL simulation

system.

2

1

1

I

I



Register transfer level simulation is generally useful in evaluating

and optimizing the architectural design of a digital system, rather than

in uncovering races, hazards, illegal states and other critical timing

considerLtions. The latter are normally considered in the domain of

gate level simulation (see chapter 3 of volume 1). Gate level logic

simulation requires detailed and quite comprehensive designs, while RTL

simulation utilizes a more macroscopic, behavioral specification which

is much more concise. Functional simulation, discussed in the next

chapter, includes some properties of detailed simulation at the gate

level while retaining much of the behavioral emphasis of RTL simulation.

Register transfer level descriptions have many attributes which

make them highly desirable as simulation inputs. They are relatively

concise, easily understood and are easily produced by system users;

most importantly, they can take advantage of well known.(programming)

language translation techniques. Many of the translation approaches

commonly employed in compilers, as well as those described in the last

Chapter, can thus be applied to simulator development.

While a number of Register Transfer Languages have been proposed,

a surprisingly small number of these have been seen full implementation

simulator input languages. Limited implementations demonstrating

the fe Aibility of a new language for simulation are more frequently

dew] )--d. Consequently, existing RTL simulators are relatively crude

in 'aims of their internal sophistication; techniques derived from

pro,ramming language compilation predominate. However, these simula-

to.:s have demonstrated the value of RTL as a effective design aid.

3



In section 2 we will develop an overview of typical RTL sim-

ulators, presenting a system overview, user interface considerations,

implementation issues, and an exploration of important design

and evaluation criteria for RTL simulation systems. Section 3 des-

cribes a representative simulation system and typical subject system rep-

resentations. Simulation mechanisms and implementation considerations

are treated in section 4; alternate simulation system approaches are

treated in section 5, with a brief evaluation of RTL concluding

this chapter.

2. Overview of an RTL Simulator

Structural designs of RTL simulators typically follow the general

scheme outlined in figure 3.1

"UBJECT
MACHINE I >
DESCRIPTION

SYSTEM
SUPERVISOR

, INITIAL
CONDITIONS
STIMULII
ONTROL

SYNTAX
CHECKING &

TRANSLATION

USER
REPORTS

DATA

CHECKER

(DESCRIPTION ,

LIBRARY

MACHINE
1

SUBJECT

DESCRIPTION

7

SIMULATOR

r---
USER
REPORT

SIMULATION
SUBSYSTEM
CONTROLLER

Figure 3.1 RTL Simulator Overview.

OUTPUT

PROCESSOR

SIMULATION

REPORTS

4



The subject machine RTL description is entered using an inter-

active or batch input device. The description is checked for valid

syntax, and is translated into an internal format which is used to drive

the simulation subsystem. In many practical systems, it has been

found extremely useful to store the subject machine description

on a "Description Library", as shown.

Simulation run control information, initial conditions and subject

machine stimulii are processed by a separate data checker, which

typically uses information stored in description library files. To

facilitate use of the simulator system, input routines optionally

produce a variety of printed reports summarizing processing accomplished

on their inputs.

The simulation controller supervises actual simulation of the

subject system; internal structure and function of the simulation sub-

system is closely related to a number of issues detailed later in this chap-

ter. The system supervisor is charged with invocation of appropriate

subsystems, recovery from abnormal conditions, and other housekeeping

tasks.

2.1 User Interfaces

One of the most important considerations in designing successful

RTL simulation systems is the interaction of the system with end users.

It should be possible for non-programmers to run simple simulations

after minimal training. The system should be easy to use, with short but

clear messages and diagnostics. Input conventions should be free form,

with few hard -to- remember exceptions and tricks. (Experiences with

5



programming language compiler design can be easily applied to this

aspect of RTL simulation.)

It has also been found useful for the syntax checker to perform

a preliminary evaluation of the subject machine description, in an

attempt to detect unintentional (but syntatically correct) specifi-

cations. These services might include: 1) Verification of data paths

(which should always connect at least two elements), 2) Utilization

of named quantities and conditions, 3) Evaluation of conditions

imposed on operations (e.g., (5? + X) : Y 4- Z), 4) Warning if unlikely

specifications are input (e.g., 2000 bit wide bus), etc.

It should also be possible to update subject machine descriptions

stored in the library, and to use alternate descriptions of functional

subsystems, without reprocessing an entire system description.

Care should also be exercised in defining layouts for reports

generated by the system. It is often necessary to add new features,

optional outputs, or entirely new subsystems.

2.2 Implementation Issues

Internal representation of simulated network structure descrtoed

in a register transfer language may take three forms: compiled code,

tabular data or statements in a (source or internal) interpretative

notation. Combinations of these representations might also be used.

Compiled code simulators require recompilation to incorporate

6

1

1



specification changes, and may require relatively large amounts of

primary storage on the host machine. Performance is quite dependant

on the sophistication of the translator. While most compiled code

gate level simulators produce machine or assembly instruction output,

RTL simulators of this variety are typically designed to generate a

higher level source language output, e.g. PL/I, ALGOL or IORTRAN. Tne

approaches differ because most gate level compiled code simulators have

been delay free, and do not consider detailed timing relationships. RTL

translators often use compiler techriques and consider complex timing

situations, which are easier to inp_ament using high level language fa-

cilities. The necessity for two translation operations prior to execution

often leads to relatively inefficient performance; recently, the pop-

ularity of compiled code simulators has declined as table driven systems

have demonstrated their superiority.

Tabular representation of subject machine structure appears to be

more applicable to RTL simulation than compiled code techniques. Two

simple tables are often used: the DEVICE TABLE might include entries speci-

fying device type, specific attributes, input and output connections.

Timing requirements could be kept in a second table. Note that timing

characteristics are associated with operations involving several de-

vices at the RTL simulation level, whereas timing specifications are typ-

ically associated with gate-level simulated devices.

Interpretation of source or intermediate code is another technique

which has been used in RTL simulation. "Statements" describing subject

7



network structure are executed (interpreted) as they are mcountered

in the source language stream, generating results at each statement.

With this technique, however, certain statements describing event or

time-dependent processor actions may never be executed. Interpreta-

tion simulation systems must therefore include mechanisms (usually

non-interpretative) for handling asynchronous conditional actions.

Due in part to the relatively slow interpretative process, these

techniques have enjoyed limited success in production environments.

As with many large systems, it is possible to trade memory

requirements for system capabilities and performance in the design

of an RTL simulator. It is therefore important to determine both

the desired level of (simulated) detail ard maximum capacity of the

system before fixing the simulator design.

Simulator implementation strategy is a significant factor in

determining servicability of the system. For example, concise rep-

resentation of a modular subject system may be important to some users,

while detailed analysis of flow of control in the subject network

may be much more significant to another.

Implementation methodology may also place artifical constraints

on the user; a weakness of some RTL simulators is the inability to

accurately model asynchronous behavior.

Four of the most important system characteristics which should

influence implementation are:

8



1) Treatment of asynchronous events, including external

interrupts of the simulated system.

2) Facilities for describing simultaneous operations in the

register transfer language.

3) The simulator's internal driving structure.

4) Techniques for generation and application of simulated stimulii.

2.3 Asynchronous Events

Asynchronous events constitute, in this context, the class of

events whose time of occurrence is not known a priori. A number of

processor functions are asynchronous; notable examples are "memory

ready" on a read or write, and external interrupts. A memory ready

may be treated as a known time event by setting a delay longer than

the longest expected delay: this approach is not valid for processors

that use mixed speed memory or interleaving; furthermore, this technique

will not properly simulate the arrival of asynchronous interrupts. These

events must be handled in simulation by a method which provides for

detecting event occurance, and defining a technique for simulating the

detected asynchronous event. Such facilities might resemble the PL/I

user-defined ON-condition feature, which allows definition of a wide

range of reponses to the occurance of asynchronous events.

Another method for achieving the required capability is to accum-

ulate in tabular form all events which must be invoked asynchronously;

this, in turn, requires that specification of asynchronous conditional

events be explicitly identified. The construct "IF EVER conditional

expression THEN action-specification could be used for this purpose.

9



Then, prior to each simulation cycle, those conditional expressions

having changed components must be evaluated to determine whether the

asynchronous event has occured. This requirement can significantly

increase the cost of a simulation, and should not be incorporated unless

the additional overhead can be justified.

2.4 Simulation of Simultaneous Operations

The distinction should be made between asynchronous events, as dis-

cussed above, and asynchronous processes. An asynchronous process is one

that proceeds independently in parallel with another (related) process.

A common example is execution of a channel program concurrently with a

central processor program. Successful simulation of such concurreney

leads to the problem of simu3:aneous operations.

Simple simultaneous operations might be characterized by a register

exchange. In the hardware, exchanging the contents of a pair of regis-

ters often requires no intermediate registers, and both registers are

active simultaneously. TUis type of simultaniety is not difficult to

simulate, although it usually must be simulated in most host computers

by using an intermediate storage location (using a compiled simulation

philosophy).

The more complex situation occurs when concurrent processes are

active and accurate determination of the process which finishes last is

critical, as with the channel and central processor. If these capabil-

ities are required, they impose critical design requirements on the time

flow mechanism of the simulator, since it must be capable of handling

10



multiple (possibly event driven) concurrent processes.

Timing inj Ls are usually based on fixed clock cycles or on

extremely fire tir..e accounting. Fundamental clock cycle (also called

"fixed time increment") simulators are suitable for modeling completely

synchronous systems, or when resolution of detailed timing situations is

not important. This method of managing simulated time is relatively easy

to implement and computationally efficient.

A more refined technique for handling timing of simulated events

does not establish a fundmental period, but rather maintains a detailed

resolution of event timing in the host computer. Using either technique,

it has berm found useful to use an event-driven driving mechanism.

In order to avoid simulation of time periods when nothing changes, the

simulator is invoked only at "times" when activity causes changes in the

subject network. A time queue can be used to identify (simulated) times

in the future when events are to occur.

2.5 Generation of Stimulii

Two objectives of gate level simulation are to detect timing defects

and to develop systeL signatures of the network under various fault

conditions. These are not usually objectives during register transfer level

simulation. Emphasis is rather placed on such things as finding saturated

and sparsely used data or control paths, developing statistics on

element utilization, or improving machine throughput by balancing activ-

ities in the system. In gate level simulation, generating the complete

11



set of input vectors may be valid; in RTL simulation, the objective

is to simulate classes of algorithms which stress various resources

of the simulated machine. Automatic generation of such stimuli has

received little publicity to date; it would appear that automated or

semi-automatic generation of typical system inputs should be available

to users of an RTL simulator. Implementation might involve definition

of special input stimulus generator modules, or could be developed

from libraries containing typical inputs having various characteris-

tics. A straight forward, though perhaps non-trivial, method would

utilize actual programs running on a current computer to generate the

appropriate machine language stream for tilt. , simulated machine using

a program specifically written for this purpose. This program could

be modified to generate correct driving code for the simulated system

as the configuration progressed. While such techniques have not found

wide application, this sitvition may be attributed to a lack of wide

spread use of RTL simulation techniques rather than some theoretical

difficulty.

12



3. RTL Simulator Structure

A number of successful simuLation lanaguages have been

written using the Algol structure; to introduce RTL simulator

mechanisms, this section investigates a specific RTL simu-

lator form input, tracing proces ing through the internal mech-

anism, to actual simulation. Other simulators are briefly

contrasted. A brief summary of Algol is presented to orient

readers not familiar with that language.

3.1 Algol as a Programming Language

Algol is a high level language quite different from Fortran.

It is a block structured language with dynamic storage alloca-

tion, having both local and global variables; expressions may

be arithmetic, Boolean, and pointer in type, and result in

values assigned to variables.

Iterative mechanisms much more powerful than the simple

Fortran DO are available, and conditional or unconditional

branches to alphabetic labels are allowed. Procedures are

similar to subprograms but may have block structure.

Of particular interest at this point are 1) the block struc-

ture which may correspond to grouping of simulated physical

components of the system; 2) declarations, which designate

type (such as Boolean); and 3) conditional qualification of

statements or expressions, which allows many types of logical

tests to be specified.

3.2 The Computer Design Lanauage Simulator

Computer Design Language is a RTL developed by Yaohan

Chu (8,9) which has several Algol-like features. This section

13



presents concepts in RTL Simulator structure using CDL as an

input language with other RTL features mentioned where appropri-

ate.

Consider the network shown in figure 3.2, which consists

of a serial shift register, and associated logic to form a

complementor. The objective is to

r
_Shift Register

A(4) I A(3) I A(2) I A(1) I NOT

Clock

I

P

Register

T(2) I T(3) IT(1)

Switch

Controls

Signals-D -

FIGURE 3.2 Complementor

Counter

[C(3) 1 C(2) F(1)

Light
FINI

Oh
I

Off

model the behavior of the network at the RTL level. First consider

the actual series of statements defining this network, and its

action; later we will analyze these statements in detail.

14



/

1 $ TRANSLATE

2 *MAIN

3 Register, A (1-4),

4 1 T (1-3),

5 1 C (3-1),

6 1 FINI

7 Switch, Start (On)

8 Clock, P

9 /Start (On)/ T=1,

10 FINI =O,

11 C=0

12 /T(1)*P/ A(1-4)=A(4)1- A (1-3)

13 C=C. Count. ,

14 T (1,2)=1

15 /T (2)*P/ IF (C. EQ.4) Then (T(2, 3) =1) Else (T (1,2)=2)

16 /T (3)*P/ FINI = 1

17 END

18 $ SIMULATE

19 * OUTPUT CLOCK (1) = A, T, C, FINI

20 * SWITCH 1, Start = On

21 * LOAD

22 A=16

23 . ** SIM 30,3

24 * RESET CYCLE

25 * LOAD

26 A=05

27 * SIM 30,3

28 1

FIGURE 3.3 CDL Description of Complementor
15



First, observe that the RTL simulator input is divided into two

sections, TRANSLATE & S3)RIATE (each preceded by the $). CDL requires

only these two input sections; the first translates the source language

into a form (polish string) which the simulator can interpret. The

second section controls simulation of the subject system description

based on the string.

Thg TRANSLATE section provides a description of the system

to be simulated and its desired behavior to the system. The first few

statements are DECLARATIONS, specifying component attributes: the

registers, clock, and the switch. Note that the light FINI is declared

as a register. The device types available in CDL are REGISTERS, SUB-

REGISTERS, MEMORIES, DECODERS, SWITCHES, TEFMINALS (output of elements

without storage which manipulate data such as an adder), BLOCKS (para-

llel interaction between the devices), and CLOCKS.

The remaining statements of the TRANSLATE section form the LAB-

ELED STATEMENT section. Each is composed.of a LABEL followed by one

or more MICRO-STATEMENTS. Labels consist of logical expressions,

with or without a clock, which are evaluated and are true or false.

If true, the associated micro-statements are performed. Any number

of labels may be true at once, implying parallel operation.

Micro-statements determine the functioning of the digital system.

They allow logical expressions to be formed and the result (of 1 or

more bits) to be assigned to a storage element. Micro-statements may

be simple (unconditional) or conditional, corresponding to the Algol

IF statement syntax.

The SIMULATE section invokes the simulator routine 6f.the CDL sys-

tem to initiate the simulation process. In this example, the simulator

16



1

runs a maximum of 30 cycles (in this case, fixed time increment clock

cycles) with the restriction that the same group of labels may not

be true more than 3 consecutive intervals (*SIM 30, 3).

Keeping the above example in mind, let us explore details of

the simulation process. First, consider the action of the network

as defined by the components and microsequences, and the manner in

which a simulator might model the subject network.

The complementor is set to its initial value of 168=11102

(Reference line 22) in the SIMULATE section. When the switch is turned

on, the T register is set to 1002, and C goes to 000; thus T (1)=1

and at clock period 1 the statement A (1-4) = A(4)
1
-A (1-3) are "exe-

cuted", effectively generating a right circular shift with complement.

Note that the right side is completely evaluated and saved until the

end of the clock sycle; more on this later. The reader may verify

that following outputs produced by the simulator are as shown in

Figure 3.4, where the system initially starts with A=5 as shown in

line 26.

17



CLOCK A T C FIN'

TIME LABEL 1 2 3 4 1 2 3 3 2 1

0 /SWITCH (ON)/ 0 1 0 1 1 0 0 0 0 0 0

1 /T(1)* P/ 0 0 1 0 0 1 0 0 0 1 0

2 /T(2)' P/ 0 0 1 0 1 0 0 0 0 1 0

3 /T(1)* P/ 1 0 0 1 0 1 0 0 1 0 0

4 /T(2)* P/ 1 0 0 1 1 0 0 0 1 0 0

5 /T(1)* 131 0 1 0 0 0 1 0 0 1 1 0

6 /T(2)* P1 01 00 1 00 0 1 1 0

7 /T (1)*P/ 1 0 1 0 0 1 0 1 0 0 0

8 /T (2)* P/ 1 0 1 0 0 0 1 1 0 0 0

9 /T (3)* P1 1 0 1 0 0 0 1 1 0 0 1

10 /T (3)* P/ 1 0 1 0 0 0 1 1 0 0 1

11 IT (3)* P1 1 0 1 0 0 0 1 1 0 0 1

END

FIGURE 3.4 Typical values produced by CDL simulation

of the complementor

1

I



Now let us summarize the concepts important from a user point

of view in the RTL simulation.

(1) The circuit must be described, conveniently, at the

register level.

(2) The action of the circuit must be described, and in particular,

provision for simultaneous activity should be included.

(3) The system must be initialized.

(4) Simulation should occur until either a pre-specified time

has elapsed, a specific event occurs, or a certain condition applies

(5) The user should be able to specify desired forms of output

data.

(6) Several simulation passes should be available in one run.

These, and other features are provided by CDL. Of course, sim-

ilar features may be provided in other ways. Such considerations are

discussed in section 4, and other approaches are presented in section

5. Now, let us look at the internal features of our example CDL simulator.

3.3 Internal Features of a CDL Simulator.

The underlying structure which supports simulator activity

determines the speed, accuracy, capacity, and flexibility of the system.

This section is based on features of the internal structure

of CDL (Version 2) (22). The two portions, TRANSLATE and

SIMULATE, are closely intertwined, sinc.... TRANSLATE builds tables

used by SIMULATE.

TRANSLATE accepts input describing the system and generates

tables reflecting the system's structure. The tables for the example
19



system are:

(a) Subprogram,

(b) Label,

(c) Switch Label,

(d) Clock

(e) Symbol (declaration names)

(f) Storage Array

The Subprogram Table contains entries which associate entries

in other tables with each specific subprogram. Each subprogram (including

Main) has a set of 7 entries. These entries consist of 1) the subprogram

name, 2) and 3) first and last entries, for this subprogram, in the Label

Table, 4) and 5) first and last entries in the Switch Label Table,

6) pointer to the polish strings (see below) and 7) index in the Symbol

Table.

The Label Table has two entries: 1) pointer to the polish string

for this label; and 2) the label name.

The Switch Label Table has 3 entries: 1) The switch name;

2) the switch position; 3) polish string pointer.

The Clock Table has 4 entries: 1) The clock name, 2) Number

of clock, 3) pointer to the next occurring clock time and 4) count of the

number of elapsed clock cycles.

The Symbol Table contains information about the devices formed

by the Declarations. There are entries for each device type declared,

including the device type, number of simulated bits; bit ordering and

index, names and related information. 20



Finally, the Storage Array Table is a dynamic area used by the

SIMULATE routine to store the intermediate results (temporary results

generated during a cycle) as well as the permanent results at the cycle

end. Each device requiring storage has a permanent entry assigned for

the duration of the simulation.

The TRANSLATE section also produces a polish string for each

expression requiring evaluation at simulation time, including micro-

statements, labels, terminals and decoders. The strings are divided

into segments. A segment consists of either 1) a I. tel expression,

2) a terminal expression, 3) a block of micro-statements, or 4) all

micro-statements associated with a specific label. The polish strings

of course, have an area of memory reserved for their storage.

After processing of the TRANSLATE sections is completed,

the SIMULATE section is invoked. Five important component programs

here are:

(a) Loader

(b) Output processor

(c) Switch

(d) Simulate

(e) Reset

The loader initializes the simulated digital system to a desired

initial state by reading values from input data and (effectively) storing

these values for declared devices in the Storage Array Table.

21



The OUTPUT program prints the values associated with various

devices, such as registers, switches, or memory, at various user

selected intervals.

The SWITCH program allows the user to set switches (equivalent

to manual setting of a physical switch) at a specific time.

The SIMULATE routines interpret micro-statements, generating

results for each SIMULATED cycle. The routine orders processing so

that I) statements associated with true switch labels are executed (only

the first time the switch becomes true), 2) Labels are evaluated,

3) all micro-statements associated with true labels are evaluated,

4) Evaluated results are stored (after all statements are evaluated),

5) The next cycle is performed or simulation is terminated.

The RESET program resets, at the user's discretion, the clocks,

output, switches, or cycle counter, either separately or in combination.

Of these routines, the workhorse is the SIMULATE program;

thus it is the most critical to performance of the simulator (but not

necessarily to user acceptance of the system as a useful tool).

22

T

i

I

I

I



4. Simulator Mechanisms and Implementation Considerations

There are several major aspects of register level simulation

that need to be emphasized. These are:

1. Ease of description of tie simulated digital process.

2. Accuracy in controlling the continuing simuation

3. Fast and economical implementation of the simulator

(good structure)

4. Control of output

These will be discussed in turn.

The ability to easily and accurately describe a system, and

control its flow might best be described by the pathological cases, for

example, many computers have an Exchange instruction i. e. , A e----). B.

How is this accurately modeled? Certainly not by the exchange instruction

of the host computer (if any), since the word length of the simulated

machine may be longer than that of the host. Consequently, the technique

of evaluating all expressions, generating results in a separate special

place (not declared in the simulated machine) and then, after all evaluations

are complete, storing away the result, solves the problem; this, however,

impacts the complete philosophy of simulation. The net result of using

this convention is that a change produced during the clock interval cannot

be used until the next clock interval, occasionally requiring the user to

consider quite carefully the way the system is described to the simulator.

Thus C =A + B

F =C + D

would not use the new value of C; these would require separate time

23



4 *404444410.

periods (LABELS in CDL). This simple example illustrate. , a relatively

complex problem: implementation of RTL simulator timing mechanisms

is an extremely critical part of simulator design.

To pursue timing further, one may attempt to parallel gate

level simulator timing mechanization (See Vol. 1, Sect. 3.3.2) in de-

signing timing mechanisms. At the gate level, however, the concept

of a gate delay is quite concrete and very realistic entity. On the

other hand, in a register level model the same machine may require

critical timing of either processes (a series of transfers), or indi-

vidual transfers, or both. The consequence of these considerations is

that the underlying simulator mechanism must support the fine detail

timing, and defaults should be assumed to alleviate the necessity for

describing each timing dependency by the user. The fine detail requires

that zero delay (the exchange instruction mentioned previously) be

considered simultaneously with timed processes. The implementation of

these combined capabilities has been found to require rela-

tively large simulation overhead.

A second critical feature in the implementation is the type of

functions available to the user and how these are defined. It is rea-

sonable to have an "add" operation for instance. However, is it l's

complement, 2's complement or what exactly? This is another critical

issue, and it is an important design decision. The simulator should

provide a well-defined standard and a method to alter the default.

As another example, consider a branch on zero instruction --- what

is zero (+0,-0, or both), how is it represented), and where is the check

to be made? As the accuracy and flexibility of the models provided

increases, the RTL simulator design begins to resemble a gate level

24



simulator in underlying complexity and simulation over head,

thereby increasing the detail required of the user. This trade off is

a very complex issue.

Let us consider now an implementation strategy based on a

structure which 1) uses tables to store all data, including device type,

memory, interconnect, and timing information, and 2) an interpretative

technique for controlling executing of the simulation. This method pro-

vides a highly flexibile simulator with simple descriptive input at a cost

of storage space and speed of simulation, a trade off we believe most

advantageous in view of current trends in host machine configurations.

The table structure permits handling many diverse devices, unlimited

combinations of register and data path widths, and complex timing

constraints in a straight forward manner. The interpretation of control

flow allows quite succinct control descriptions by the user, allowing

recursive constructions to be implemented by well known tecfinqiues.

As previously noted, simulator output is the user's view of the

simulated syotem behavior. Output should easily and rapidly convey the

system behavior in terms the user can readily grasp. Often ignored

or considered lightly, the presentation or format of the output, and user

ability to control the output, can lead to failure of an otherwise efficient

and carefully designed system. In particular, the output should be event

oriented; i. e. , only changes in system state, and indeed only those

specified, should generate output unless the user specifies otherwise

(which he should be able to do). The import of carefully designed reporting

routines is difficult to overemphasize, and becomes quite critical if the

system is to be used in an interactive simulation environment. 25



5. Alternate System Approaches

There are many ways to realize a model capable of supporting

a system simulation. In addition to DDL discussed in chapter 2 and

CDL discussed here, simulators have been described for most RTL's

discussed in chapter 2. In this section, we briefly describe several of

these systems to d welop some contrast to the CDL approach presented

." earlier.

5.1 Compiled Simulation

A compiled simulator generates machine instructions that

represent the action of the machine; these are then executed for various

initial values of the simulated machine. An example of a compiled

description may be obtained by writing a Fortran description of the

system. A Fortran program which models the system shown in

Figure 3.2 is shown in Figure 3.5.

26

i

I

I

1

I

I



7

1

I

I

I

I

SIT ir-nir.-,

LOGICAL PA(h),PT(3),FINI.SV,CLOCK
LOGICAL PAA(h),RTT(3),FINII,SSW,CCL
INTEGER RC,RCC.CYCLES,CHGS
LAPELC=0
NCHG=0
CLOCK=.TPUE.
SS%/=.FALSE.
CCL=CLOCK
ACCEPT 1,Sykl
ACCEPT 3,RA
ACCEPT 2,CYCLES,CHGS
IF(St.J.NE.SSW)G0 TO 100

5 IF(RTT(1).AND.CCL)G0 TO 200
15 IF(RTT(2).AND.CCL)G0 TO 300
25 IF(RTT(3).AND.CCL)FINI=.TRUE

CYCLES=CYCLES-1
IF(CYCLESE0.0)G0 TO 999
DO 30 1=1,4
IF(RAA(I).NE.RA(I))NCHG=0

30 RAA(I)=RA(I)
DO 40 1=1,3
IF(CRTT(I).NE.RT(I)).0R.(RCC.NE.RC))NCHG=0

40 RTT(I)=RT(I)
RCC=RC
IF((FINII NE.FINI).0R.(SSW.NE.S7))NCHG=0
FINII=FINI
CLOCK=CCL
NCHG=NCHG+1
SSW=SW
LADELC=LABELC+1
TYPE 6,LAPELC
TYPE 4,RA,RT,RC,FINI,CLOCK,CYCLES
IF(NCHG .EC. CHGS)G0 TO 999
GO TO 5

100 RT(1)=TRUE.
FINI=.FALSE.
RC=0
GO TO 5

200 RA(1)=.NOT.RAA(4)
RA(2)=RAA(1)
RA(3)=RAA(2)
RA(4)=RAA(3)
RC=RCC+1
RT(1)=FALSE.
RT(2)=.TRUE.

300

301

302
999
1

3

2
4

GO TO 15
IF(RC.E0.4) GO TO 301
RT(1)=.TRUE.
RT(2)=.FALSE.
GO TO 302
PT(2)=FALSE.
RT(3)=.TRUE.
GO TO 25
CALL EXIT
FORIAT(L1)
FOPIAT(4L1)
FOR1AT(I2)
FOR1AT(' A 1,41.1,' T ',31.1,' C 'AA,' FINI ',1.1,' CLOCK ',

X L1,1 CYCLES I 5)

6 FORIATC LAPEL CYCLE' Ili)

END -
rigure .3. S Compiled Simulation for the Example Complementor

27

1

!



tie

0

.FX TFST.F4
LOADING

LOADFQ PK CORF
EXECUTION

FTFT
30
3

LAPEL CYCLE I

A FTFT T 1FF C (Inn° FINI F CLOCK 1 CYCLES 29
LAPEL CYCLE 2
A FFTF T FTF C 0001 FINI F CLOCK T CYCLES 28
LAPEL CYCLE 3
A FFTF 1 TFF C 0001 FINI F CLOCK T CYCLES 27
LAPEL CYCLE
A TFFT T FTF C 0002 FINI F CLOCK T CYCLES 26

LAPEL CYCLE 5
A TFFT T TFF C 0002 FINI F CLOCK T CYCLES 25

LAPEL CYCLE 6
A F1FF T FTF C 0003 FINI F CLOCK 1 CYCLES P4

LAPEL CYCLE 7

A FTFF T TFF C 0003 FINI F CLOCK 1 CYCLES 23
LABEL CYCLE g
A TFTF 1 FTF C 0004 FINI F CLOCK T CYCLES 22

LAPEL CYCLE 9

A TFTF T FF1 C 0004 FINI F CLOCK T CYCLES 21
LAPEL CYCLE 10
A TFTF T FFT C 0004 FINI 1 CLOCK T CYCLES 20
LAPFL CYCLE 11

A TFTF T FFT C 0004 FINI T CLOCK T CYCLES 19
LABEL CYCLE 12
A TFTF T FFT C 0004 FINI T CLOCK 1 CYCLES 1g

CPU TIME 0.40 FLAPSED TIME: 1:33.67
NO EXECUTION ERRORS DETECTED

EXIT

EX TEST.F4
0 LOADING0

0

LOADER PK COPE
EXECUTION

TTTT
30
3

LAPFL CYCLE I

A TTTT T TFF
LAPFL CYCLE 2

A FTTT T FTF
LAPEL CYCLE 3

A FTTT T TFF
LAPEL CYCLE 4

A FFTT T FTF
LABEL CYCLE 5

A FFTT T TFF
LAPEL CYCLE 6

A FFFT T FTF
LABEL CYCLE 7

A FFFT I 'TEE

LAPFL CYCLE g

A FFFF T FTF
LAPEL CYCLE 9

A FFFF T FFT
LAPEL CYCLE In

A FFFF T FFT
LAPEL CYCLE II

A FFFF T FFT
LABEL CYCLE 12

A FFFF T FFT

C

C

C

C

C

C

C

C

C

C

C

C

0000

0001

0001

0002

0002

0003

0003

0004

0004

0004

0004

0004

FINI

FINI

FINI

FINI

FINI

FINI

FINI

FINI

FINI

FINI

FINI

FINI

F

F

F

F

F

F

F

F

F

T

T

I

CLOCK T CYCLES

CLOCK T CYCLES

CLOCK T CYCLES

CLOCK T CYCLES

CLOCK T CYCLES

CLOCK T CYCLES

CLOCK T CYCLES

CLOCK T CYCLES

CLOCK T CYCLES

CLOCK T CYCLES

CLOCK T CYCLES

CLOCK 1 CYCLES

29

28

27

26

25

24

23

Loa..

21

20

19

1R

CPU THE: 0.43 ELAPSED TIME: 1:33.57
NO EXECUTION ERRORS DETECTED

EXIT



As you may observe, this program is considerably longer, and

the registers (RC and RCC) are simulated as integers instead of

registers. Nevertheless, it would accurately model the complementor,

although very inefficiently.

5.2 Other Existing RTL Simulators

Several of the RTL simulators described earlier have been im-

plemented. In this section several of these are briefly reviewed.

DDLSIM, A Digital Design Language Simulator [1] is a simulator

for DDL. Darringer [12] describes a simulator which accepts APDL,

Algorithmic Processor Description Language. SODAS has been partially

simulated in ALGOL and BOOLE [26]. Both APDL and SODAS use Algol-like

expressions as the network description source language; simulation is

performed in a dialect of Algol. DDLSIM uses DDL (see previous chapter)

as its descriptive input, and the simulation is performed by a group

of 8 FORTRAN programs. APL is a general purpose programming language

which has been used to describe processors; interpretation of APL sim-

ulation input has been described using assembly language routines de-

veloped by IBM.

5.2.1 Simulators Using ALGOL-Like RTL

Register transfer languages resembling the ALGOL programming

language are popular, since from a simulation viewpoint, network des-

cription expressed in this fashion are particularly attractive:

1. Descriptions of sub-elements may be made modular,

corresponding to ALGOL compound statements.

2. System inputs and outputs are conveniently identified.

3. Subsystem definitions may be independently prepared,

29



and these in turn may be combined to produce a system

definition.

4. Structural (component and interconnection) descriptions

may be combined with behavior specifications.

5. Subsystems may be described and hence simulated at a

level of detail appropriate to each subsystem.

Asynchronous events must be defined using the APDL "if ever"

statement, which is actually a declaration of a sequential process

initiated whenever the specified conditions are satisfied. Each such pro-

cess (defined by the "body" of an "if ever" statement) must not be re-

activated until it terminates and requires at least one basic cycle time

unit.

5.2.2 LOTIS

Lotis (Logic Timing Sequencing) is a comprehensive hardware

notational language suitable for simulation [27]. It embodies certain

aspects of both Algol and APL, but is quite distinct from either. To

perform a simulation, the language is extended to provide initiation

methodology and describe primary statistic gathering and the analysis

requested.

The body of a description in Lotis consists of 2 parts: a declara-

tive part and a procedural part. The division which generates the struc-

ture, timing, and logical properties to be simulated is the declaration;

the machine actions to be simulated are described in the procedure. In

the Algol sense, the procedural portion corresponds to the body of a block

I

I

I

I

I

1

1

It

30 i



I

I

with its declarations.

Lotis has many features which allow complex timing to be

accurately described. Specific delays may be associated with the

various operators; sections within the procedure may be "interlocked"

to establish dependencies on other sections; and concurrency may be

present in different control sections. Further, irrespective of delays

associated with an operator, a particular transfer may be assigned a

specific delay. This delay may in turn be combined with operator delays.

The procedural portion is composed of a number of entities

which represent the various autonomous control mechanisms of the simu-

lated machine. These are called groups. For example, the memory may

constitute a group, with separate divisions for the read access and the

write initiate. A group is composed of functions or sequences or both,

and the timing interlocks may be associated with the group.

Both functions and sequences describe the logical action of a

functional unit of the process, and are composed of a series of steps.

The primary difference is that a function yields answers without

exhibiting structured detail in the code, while a sequence describes the

intimate details of a process, such as all the bit transfers inherent in

stepping a counter.

Within a sequence the steps are normally executed in order,

although the sequence may be entered at any point. Three distinct time

relations may exist between the steps: they may be asynchronous, fixed

delay, or synchronous.

31



In the asynchronous case, the step interval is determined by the

delay of operators in the statement. Fixed Delay timed steps have an expli-

cit delay associated with the step. Synchronous, in the Lotis case, means

the step is interlocked or conditioned on a variable (which supposedly is a

clock). These timing features may be combined.

These features along with branch control, conditional assignment,

global assignments (similar to Fortran statement functions) and other

features make Lotis a powerful description language well suited to accurate

RTL simulation.

5.2.3 DDLSIM [1]

DDLSIM is a simulator for the Digital Design Language discussed

in the preceding chapter. DDLSIM is a Fortran system, consisting of 9

programs used in two phases. The first phase accepts the source description

and compiles the executable instruction string. The second phase schedules

the strings for execution by an interpretive processor.

The simulator is essentially a unit time increment simulator,

completely evaluating a state prior to adVancing to the next clock interval.

The Scheduler program is the heart of the system, continually examing the

timing tables to determine the next state for the simulated machine. In

the DDLSIM context, a machine is analogous to functional module such as

memory, arithmetic unit, channel, etc. Variable timing may be associated

with each module, but must be expressed in the context of unit time steps.

On conclusion of a DDLSIM run, statistics are available to the

designer, including registers undergoing change, with a trace and all

altered registers.

32

I

I

I

i

I

I

I

I

I



1

1

I

5.3 Interactive Systems

Until recently, RTL simulation was available only in batch

processing environments. As a consequence, simulation was at best an

awkward design aid in early phases of cystem design specificatior. However,

it has recently become clear that the most effective use of RTL simulation

is early in the development cycle, when information requirements most

closely match the capabilities of RTL simulation.

Interactive simulation allows the designer to study and experiment

with design alternatives during initial, creative phases of the system

development. Modification of systen descriptions, and evaluation of proposed

design behavior can be accomplished rapidly using RTL interactive simulation

support.

6. Summary

It is apparent that no register transfer language has attracted

the following that some of the general purpose simulation languages such as

GPSS or SIMSCRIPT have enjoyed. Indeed, a number of recent simulators of

digital systems have been written in general purpose programming language

such as Fortran (the PDP-11, for example), sidestepping not only RTL's

but general purpose simulators as well. The trend is not new, and its

existence is well documented. [23]

A number of reasons exist for this failure to utilize special

simulators. At present none of the major computer manufacturers support

one of the systems as a part of its distributed (free or otherwise) soft-

ware. Easily identifiable problems are that these existing systems are

not readily available, not well documented, cannot accurately model the

various special components available, or are so general that the cost of

using such a system can be prohibitive. This is not to indicate that some

33



industrial firms do not regularly use an internal simulator, but that

such simulators are usually well tuned to the particular equipment that

such manufacturers produce.

However, it may well be that the time is hear when register

transfer simulator will meet with success. The PMS (processor-memory-

switch) and ISP (instruction set processor) notations developed by Bell

and Newell [5] and used in that text to describe a number of systems,

indicate the broad applicability of these notations. Work on simulators

for these is progressing [20]. With the advent of popular MST from

which processors are currently being constructed, an increased standard-

ization may be expected in components used in design. Simulation and

simulators may soon become more straightforward and allow concentration

on the development of register level models representing efficient,

effective solutions meeting design objectives.

This approach may be enhanced by the development of functional

level digital simulation. Work in this area is relatively new [8, 10,

16, 31], but has demonstrated the potential for combining into one sys-

tem the advantages of RTL and gate level simulation. In the past, the

objective for RTL and gate level simulation have been somewhat different,

as discussed earlier in this chapter. However, functional level sim-

ulation seems to have a number of characteristics common to both. Due

to the infancy of functional simulation, it would be premature to con-

sider its effect on RTL simulation, but it is clear that functional

simulation is adding a new dimension to the area of digital logic simu-

lation.



References

1. Arndt, R. L. and Dietmeyer, D. L., "DDLSIM"--A Digital Design Language
Simulator," Proceedings of N.E.C., Vol. 26, Dec. 1970, pp. 116-118.

2. Baray, M. B. and Su, S. Y. H., "A Digital System Modeling Philosophy and

Design Language," Proc. Eighth Design Automation Workshop, June 1971,

pp. 1-22.

3. Baray, M. B., et.al., "The Structure and Operation of a System Modeling

Language Compatible Simulator," Proc. Eighth Design Automation Workshop,

June 1971, pp. 23-24

4. Baray, M. B., et. al., "A System Modeling Language Translator," Proc.

Eighth Design Automation Workshop, June 1971, pp. 35-39.

5. Bell, G. C., and Newell, A., Computer Structures Readings, And Examples,

New York: McGraw-Hill, 1971.

6. Breuer, M. A., "Functional Partitioning and Simulation of Digital Circuits,"

IEEE TC, Vol. C-19, No. 11, November 1970, pp. 1038-104'.

7. Change, H. Y. and Manning, E. G., "Functional Techniques for Efficient

Digital Fault Simulation," Digest of the First IEEE Computer Group

Conference (1967) pp.

8. Chu, Y., "An ALGOL-Like Computer Design Language," CACM, Bo). 8, No. 10,

October 1965, pp. 607-615.

9. , "Design Automation by the Computer Design Language," Technical
Report 69-86, Computer Science Center, University of Maryland, March 1969.

10. Cohen. D. J., "Computer Based Fault Analysis of Digital Systems." Research

Report CSRR2020, University of Waterloo, Dept. of Applied Analysis and

Computer Science, Waterloo, Canada, 1970.

11. Crall, R. F., "ICCAP--Interactive Computer Assistance for Creative Design,"

Ph.D. dissertation, University of Missouri, Rolla, 1970.

12. Derringer, J. A., "The Description, Simulation, and Automatic Implementation

of Digital Computer Processors," Ph.D. dissertation, Carnegie-Mellon Univer-

sity, May 1969. (Also available as NTIS #AD 700144).

13. Duley, J. R. and Dietmeyer, D. L., "A Digital System Design Language (DDL),"

IEEE TC, Vol. C-17, No. 9, September 1968, pp. 850-861.

14. Duley, J. R. and Dietmeyer, D. L., "Translation of a DDL Digital System
Specification to Boolean Equations," IEEE TC, Vol. TC-18, No. 4, April 1969,

pp. 305-313.

15. Friedman, T. D. and Yang, Sih-Chin, "Methods Used in an Automatic Logic

Design Generator "ALERT)," IEEE TC, Vol. 18, No. 7, July 1969, pp. 593-614.



16. Hemming, C. and Szygenda, S. A., "Modular Requirements for Digital Logic
Simulation at a Predefined Function Level," Proceedings of the ACM Annual
Conference, August 1972, pp.

17. Iverson, K. E., A Programming Language, New York: Wiley, 1962.

18. Knuth, D. E. and McNeley, J. L., "SOL-A Symbolic Langur.ge for General
Purpose Simulation," IEEE TEC, Vol. No. 13, August 1964, pp. 401-408.

19. , "A Formal Definition of SOL," IEEE TEC, Vol. No. 13,
August 1964, 409-414.

20. Knudson, private communication.

21. McClure, R. M., "A Design Language for Simulating Digital Systems,"
JACM, Bol. 12, No.1, January 1965, pp. 14-22.

22. Mesztenyi, C. K., "Computer Design Language Simulation and Boolean
Translation," Technical Report 68-72, Computer Science Center, University
of Maryland, June 1968.

23. Nielsen, N.P., "Computer Simulation of Computer System Performance,"
Proc. ACM National Conference, 1967, pp.

24. Parnas, D. L., "A Language for Describing the Functions of Synchronous
Systems," CACM, Vol. 9, No. 2, February 1966, pp. 72-76.

25. Parnas, D. L., "Sequential Equivalents of Parallel Processors," Computer
Science Department, Carnegie-Mellon University, February 1967.

26. Parnas, D. L. and Darringer, J. A., "SODAS and a Methodology for System
Design," Proc. FJCC, 1967, pp. 449-474.

27. Schlaeppi, H. P., "A Formal Language for Describing Machine Logic, Timing,
and Sequences ILOTIS)," IEEE TEC, Vol EC-13, No. 8, August 1964.

28. Schorr, H., "Computer-aided Digital System Design and Analysis Using a
Register Transfer Language," IEEE TEC, Vol. 13, No. 13, December 1964,

pp. 730-737.

29. Szygenda, S. A., TEGAS2 Anatomy of a General Purpose Test Generation
and Simulation System for Digital Logic," Proceedings of the 1972 Design
Automation Workshop, June 1972, pp.

30. Stabler, E. P., "System Description Language," IEEE TC, Vol. C-19, No. 12,

December 1970, pp. 1160-1173.

31. Szygenda, S. A., et. al., "Functional Simulation, A Basis for a Systems
Approach to Digital Simulation and Fault Diagnosis," Proc. Annual Summer
Simulation Conference, June 1972, pp.

32. Zuker, M. S., "LOCS -- An EDP Machine Logicand Control Simulator," IEEE
TEC, Vol, EC-14, No. 6, June 1965, pp. 403-416.

1

=Or

i


