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Investigated empirically through post mortem item-examinee sampling

were the relative merits of two alternative procedures for allocating

items to subtests in multiple matrix sampling and the feasibility of

using the jackknife in approximating standard errors of estimate. The

results indicate clearly that a partially balanced incomplete block

design is preferable to random sampling in allocating items to subtests.

The jackknife was found to better approximate standard errors of estimate

in the latter item allocation procedure than in the former. These and

other results are discussed in detail.
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Multiple matrix sampling or, more popularly, item-examinee sampling,

is a procedure in which a set of K test items is subdivided randomly

into t subtests containing k items each with each subtest administered

to n examinees selected randomly from the population of N examinees.

Although each examinee receives only a proportion of the K test items,

the equations given by Hooke (1956) and Lord (1960) permit the researcher

to estimate parameters of the test score distribution which would have

been obtained by testing all N examinees over all K test items. Because

numerous combinations of t, k, and n an feasible in any investigation,

the researcher must come to grips with several questions about how the

procedure should be implemented. "How should items be allocated to

subtests?" is one important question requiring an answer and is the one

addressed specifically herein; concomitantly, the feasibility of using

the jackknife procedure for approximating standard errors of estimate

in multiple matrix sampling is considered in some detail.

A basic requirement in multiple matrix sampling is that k items

from the K-item population are allocated randomly to each subtest.

However, in constructing the t subtests, four general item allocation

procedures are possible -- each of which is described more appropriately

as restricted random samplinz. The four procedures and concomitant

restrictions are listed in Table 1 and an example of each procedure is

given in Table 2 for k = 3 and K = 7.

Please insert Tables 1 and 2 about here.
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/Procedures 1, 2 and 3 are implemented easily in practice; Procedure 1

4, however, is more difficult and the degree of difficulty increases

I
with increases in K. Within the context of the design of experiments,

/
Procedures 3 and 4 are referred to, respectively, as a "partially

balanced incomplete block" design (PBIB) and a "balanced incomplete

block" design (BIB). That which is "partially balanced" or "balanced" /

by each design is the item pairings. In the BIB design, all possible

item pairings occur among subtests and they occur with equal frequency;/

in the PBIB design, item pairings do not occur with equal frequency and,

indeed, some item pairs may be excluded completely. A BIB design is

often difficult to implement because, for a given K, no design may

exist, or, if there is a design, the number of subtests required is

excessively large. This limitation is most serious when K exceeds 50

even permitting minor adjustments in K to fit an available design. For

example, when K = 91 and k = 10, 91 subtests would be required; for

K = 97 and k = 10, 4656; and, for K = 199 and k = 10, 19701. The first

of these three BIB designs is cited and illustrated by Cochran and Cox

(1957); the other two are given by Ramanujacharyulu (1966) and cited by

Knapp (1968a). Although BIB designs have been used on a few occasions

(e.g., Knapp, 1968a, 19S8b) when K was small (i.e., 43, 29 and 13 with

Knapp), such designs are ill-suited to large item populations. This

point is of no minor import because one of the major reasons for using

multiple matrix sampling is its potential for dealing with large item

populations. Because of this, it is expected that the majority of item

allocation procedures in multiple matrix sampling will involve Procedures

1, 2 or 3.
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It should be noted that, in practice, Procedures 1, 2, and 3 are

implemented typically in conjunction with item stratification, that is,

a stratified-random sampling procedure is used with the stratification

being on item content, item difficulty level or both item content and

item difficulty level. The relative merits of such stratification

procedures have been discussed previously (i.e., Shoemaker and Osburn,

1968; Kleinke, 1971) and are not considered here.

Of principal interest in this investigat5on were the relative

merits of Procedures 1 and 3. Procedure 2 was excluded because it is

used rarely in practice. The metric by which these two item allocation

procedures were contrasted was the standard error of estimate.

METHOD

The research design was one of post mortem item-examinee sampling

with the required data bases generated through a computer simulation

model described previously by Shoemaker (1971). In post mortem item-

examinee sampling, various samples of items and examinees are selected

randomly from a data base (an item by examinee matrix) and used to

estimate parameters of the base from which they have been sampled. The

researcher acts as if only certain examinees have been tested over

certain items knowing all the while the results obtained by testing all

examinees over all items.

Parameters of the data base manipulated systematically were: (a) the

number of test items (ES = 40, 60), (b) variance of the item difficulty

indices (a
2
= .00, .05), (c) reliability of total test scores (a = .80, .90),

and (d) degree of skewness in the normative distribution (distributed

normally, markedly negatively-skewed). When the distribution of test scores
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was negatively-skewed, only c
2

= .00 was used. The selection of parameters

was not unrelated to that encountered frequently in practice. It is

well-known that when items are scored dichotomously the variance of the

item difficulty indices for most standardized achievement tests (whose

test scores are frequently distributed approximately normally) ranges

typically from .04 to .08 and the corresponding value for markedly-skewed

distributions of test scores (e.g., those resulting from pretests, posttests,

and "criterion-referenced' tests) is approximately zero. The reliability

coefficients selected are not unusual and span a familiar range. The

procedure used in this investigation to generate data bases was costly

and, for this reason, data bases having 40 and 60 items were generally used.

However, to determine the degree of generalizability of results obtained

using these data bases, several additional sampling plans were used on

bases ha'iing 100 items (K = 100).

The nine item-examinee saupling plans used on data bases having 40

and 60 items are listed in Table 3. For several of these sampling plans,

the number of examinees per subtest was varied systematically ( = 10, 20,

30 and 40) to determine the degree of generalizability of results obtained

when n = 50 to other values of n. A PBIB design was used only when c
2
> 0

for a given data base. When = 0, all items are statistically parallel

and Procedures 1 and 3 produce equivalent results (and all differences

observed between the two procedures would be due to the sampling of examinees.)

The parameters estimated were pi (the mean test score), P2, P3, P4

(the second through fourth central moments) and c
2

. Estimating moments

of the test score distribution is important in multiple matrix sampling

because they are the required statistics in graduating the normative

distribution -- one of the major objectives of multiple matrix sampling.
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The equations used to estimate the moments of the test score distribution

were those given by Lord (1960); a
2
was estimated through a components

of variance analysis. The results of each sampling plan were replicated

50 times.

The Jackknife Procedure

Of additional concern in this investigation was examining the

feasibility of a statistical procedure known as the "jackknife" in

approximating standard errors of estimate in multiple matrix sampling.

A good description of the jackknife is given by Hosteller and Tukey (1968)

and some preliminary results in applying the procedure to multiple matrix

sampling are given by Shoemaker (1972a). In general, the jackknife operates

on a data base which has been divided into subgroups of data and produces

a mean estimate of the parameter and approximates the standard error of

estimate associated with this statistic. The basic component of the

jackknife is the pseudovalue associated with each subgroup which is the

weighted difference between the statistic computed on all the data and

the statistic computed on the body of data which remains after omitting

that subgroup. Because the pseudovalues behave as though they were

independent of each other, the standard error of the statistic is

computed according to the well-known formula for the standard error of

a sample mean. When the jackknife is applied to multiple matrix sampling

there are t subgroups of data but only one score (the estimated parameter)

for each subgroup with that statistic weighted according to the number of

observations tk acquired by that subtest. The jackknife operates on the

statistics obtained from one set of t subtests and approximates the
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variability of the pooled estimates which would have been observed over

repeated replications of the design.

The computations involved in the jackknife are relatively simple.

Let

t = the number of subgroups (subtests),

gall
14 the statistic computed on all the data, and

Y(i)
= the statistic computed on all the data left after

removing subgroup j.

The pseudcvalues, y*j, are then equal to

y
*j

ty
all

- (t - 1)y
(i)

for j = 1, 2, , t.

The jackknifed estimate of the parameter is equal to

Y* (Y*1 Yk2 Y*t)/t

with an estimate of its variance given by

t
2

2
-

! Y Y * )*1 i

t(t - 1)

The procedure used in this investigation for testing the jackknife

was relatively straight-forward. Because each sampling plan was replicated

r times, r estimates of each parameter were produced as well as r estimates

of the jackknifed standard error for each parameter. At the end of r

replications, two estimates of the standard error of estimate for each

parameter for each sampling plan were computed. The first estimate was

obtained by computing the standard deviation of the r estimates of each

parameter; the second, by computing the mean of the r jackknifed standard

errors for each parameter. The jackknife is justified to the degree that

the two standard errors agree.
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RESULTS

The interrelations among standard errors obtained when a = .80 were

very similar to those obtained when a = ,90 and, for this reason, only

those results obtained when a = .80 are reported in detail in Tables 3

and 4. The only difference observed between the two data sets was that,

result for result, the standard errors of estimate per item-examinee sampling

plan were generally larger for the higher reliability. This increase was

not unexpected and was consistent with previous results reported by Shoemaker

(1972b). Concomitantly and to conserve space, only results obtained for

1
and µ2 are tabulated. There is no loss of information here because

A A A 2
results similar to p

2
were obtained for p

3'
p
4

and a . Although

not reported in detail here, the results obtained using data bases having

100 items (ES = 100) and item- examinee sampling plans involving examinee

subgroups cf size 10, 20, 30 and 40 suggest strongly that the conclusions

drawn here are generalizable to a variety of data bases and to a variety

of item-examinee sampling plans.

Please insert Tables 3 and 4 about here.

The entries in Tables 3 and 4 are interpreted similarly and only

those for one sampling plan in Table 3 need be described in detail to

explain both tables. The first three entries in the first row of Table 3
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give the parameters of the data base. In this case, the item population

consisted of 40 items, the variance of the item difficulty indices

(p = proportion answering the item correctly) was equal to 0 and the

test scores were distributed normally. Using a (t = 4/k = 10/n = 50)

item-examinee sampling plan with random allocation of items to subtests

(Pro::edure 1 in Table 1) and replicating the sampling plan 50 times, the

standard deviation of the 50 pooled estimates of the mean test score on

the 40-item test was equal to .4695. Fifty jackknifed estimates of the

standard error of the mean were produced. Their mean was equal to .4793;

their standard deviation, .2445. If the items for each subtest had been

allocated using a PBIB design (Procedure 3 in Table 1), corresponding

results would have appeared under 'PBIB' in the first row. None are

given there because a
2

0 and the two item allocation procedures are

equivalent.

Looking at all results fov SE(R), it was generally the case that, for

each sampling plan, the standard error of estimate was less when a ?BIB

design was used. The relative magnitude of this discrepancy was greater

for the mean test score and decreased sharply for successively higher

central moments. Because several combinations of t and k (for a given

tk) occurred among sampling plans, it was possible to examine the effect

of certain combinations on the standard error of estimate. For a given

tk, an increase in t resulted in a decrease in SE(R) when estimating the

mean test score; for the second through fourth central moments, an

increase in k resulted in a decrease in SE(R); and, for a 2
, no trend was

discernable.
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Regarding the jackknife, the results indicate that on the average

it did approximate well standard errors of estimate. A major exception,

and one noted previously by Shoemaker (1972a), was found in estimating

the standard error of the mean test score using a PBIB design where the

jackknife consistently and markedly overestimated SE(R).. However, the

jackknife did aplrximate well the standard error here wiren a random

sampling design was used to allocate items to subtests. Looking at the

results across parameters, it was generally found that, when a PBIB

design was used, the jackknife overestimated standard errors of estimate.

This did not occur when a random sampling design (Procedure 1 in Table 1)

was used. The relative discrepancy was most marked for the mean test

score and decreased in magnitude for successively higher central moments.

In a manner similar to SE(R), the standard deviation of the jackknifed

estimates of the standard error SD(J) decreased with increases in t when

estimating the standard error of the mean test scorn and decreased

generally with increases in k when estimating the standard errors of

the higher central moments for c given tk.

DISCUSSION

The results support the conclusion that the procedure for allocating

items to subtests in multiple matrix sampling is an important considera-

tion. Specifically, a partially balanced incomplete block design is

preferable to a random allocation for sampling plans having the same tk.

The superiority of the PBIB is most apparent in estimating the mean test

score and becomes less apparent in estimating higher, central momenta.

This reinforces a conclusion made by Lord and Novick (1968) that in

estimating the mean test score omitting even one item has a drastic effect

on the standard error of estimate. In this investigation, a PBIB design
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guaranteed that each of the K items was included in some subtest. Such

was not the case with a random allocation of items where it was quite

possible for certain items to be omitted completely (as happened to

item 2 in Procedure 1 in Table 2). The results indicate that the Lord

and Novick conclusion is applicable to higher central moments but the

expected discrepancies are not as drastic as those expected with the

mean test score.

0'2 additional interest in this investigation was the use of the

jackknife in approximating standard errors of estimate in multiple

matrix sampling. The results reinforce the conclusion drawn by

Shoemaker (1972a)that the jackknife can be used for this purpose and

also shed light on a problem mentioned therein. Shoemaker noted that

the jackknife overestimated the standard error of the mean test score

when c
2
= .05 and items were allocated to subtests using a PPM design.

The results in Table 3 suggest that the inability of the jackknife to

perform well in this case was a function of the item allocation procedure.

For the jackknife to be appropriate, the pseudovalues must behave as though

they are independent and the results suggest that this requirement is

violated with a PSIS design. Regarding this violation, the jackknife

is not as robust when estimating the standard error of the mean test

score as it is in estimating standard errors of higher central moments.

The conclusion seems warranted that, when a
2
departs significantly from

zero and a PBIB design is used to allocate items to subtests, the

jackknife will approximate conservatively the standard error of estimate

in multiple matrix sampling. It works quite well for all other cases.
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TABLE 1

Procedures for Allocating Items to Subtests in Multiple Matrix Sampling

Item Atli on
'roced Restrictions On tk

1. Random Sampling None

2. Partially tk < K
Balanced
Incomplete
Block Design
(not all items
tested)

3. Partially tk > K
Balanced tk = rK (r integer)
Incomplete
Block Design
(all items

Restrictions On
Sampling Of Items

Without replacement
within each subtest

With replacement
among subtests

Without replacement
within each subtes',..

Without replacement
among subtests

Without replacement
within each subtest

Each of the K items
appears with equal

tested) frequency (r) among
subtests

4. Balanced tk > K Without replacement
Incomplete tk = rK (r integer) within each subtest
Block Design

tk =
K(K - 1)X
k - 1

(X integer)

Each of the K(K - 1)/2
item pairings appears
with equal frequency
CO among subtests



TABLE 2

Examples of Subtests Resulting From the Four Item Allocation
Procedures Described in Table 1 Using k = 3 and K = 7

buoLest
Number Procedure 1 Procedure 2 Procedure 3 Procedure 4
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