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Abstract

The area investigated in the present study is the comparison of the
permutation t-test with Student's t-test and the Mann-Whitney U-test. The
comparison WAS made for small samples for three distributions including a
normal distribution, a uniform distribution and a skewed distribution.
The properties of each test compared were the probability of a Type I
error and the power against a location-shift alternative hypothesis.

The present research indicates that the permutation t-test is an
acceptable statistical procedure for the two-5ample problem for the normal
and uniform populations and suggests that it might be more desirable than
the traditional Student's t-test when sample sizes are proportional to the
means and the parent population is nonnormal and asymmetric. Further re-
search is needed before a more definite statement can be made about the
permutation t-test when sampling from nonnormal populations.
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I

INTRODUCTION

A frequently encountered design in educational and psychological re-

search is that which compares some characteristic of two populations.

The comparison is usually made by drawing a sample from each of two popu-

lations, obtaining a measure of some characteristic of each and testing

some function of the measures. If the experimenter desires to test the

hypothesis that the population meav& are equal, then a test statistic

commonly used is Student's t-test for two independent samples (Student,

1908). Student's t-test is the statistical procedure chosen most often

for the two - sample problem because of a general property of statistical

tests: power. The power of a statistical test is the probability of re-

jecting the null hypothesis given that some alternative hypothesis of in-

terest is true. Another general property affecting the choice of a sta-

tistical procedure is the probability of rejecting the null hypothesis

falsely, usually known as the probability of a Type I error. The level of

the probability of a Type I error is chosen by the experimenter before

the experiment takes place. If both populations are normally distributed with

equal variances and the alternative hypothesis of interest is that the

populations differ only in location, then Student's t-test has the highest

power of the available statistical procedures for this situation. Under

these conditions, the probability of a Type I error will be exactly the

level set by the experimenter.
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Thus, if an experimenter is sampling from normal populations with

equal variances, and testing a hypothesis of equal population mears against

a location-shift alternative, Student's t-test is the best statistical

test on the basis of power, However, if the populations from which the

samples are drawn are not normal, or do not have equal variances, the

experimenter might be led to choose a statistical procedure other than

Student's t-test. The experimenter would specify the probability of a

Type I error and would want to choose the statistical procedure having

the highest power for his ex'per'imental situation.

A general class of statistical procedures which do not assume normality

and which might have high power and an exact probability of a Type I error

for non-normal populations are those called distribution-free tests. These

tests are not entirely distribution-free because they assume a continuous

distribution, although it need not be normal. Two distribution-free tests

for the two-sample case are the Mann-Whitney U-test (Mann &Mhitney, 1947)

and the permutation t-test. The permutation t-test is based upon a distri-

bution obtained by calculating the t-statistic for each permutation of the

data. The Mann-Whitney U-test is based upon the ranks of the observations,

rather than on the observations themselves. It is of interest to the

educational or psychological researcher to know the power of the permutation

t-test and the power of the Mann-Whitney U-test against a location-shift

alternative for the population with which he is working. Knowing the power

and probability of a Type I error of the permutation t-test, the Mann-

Whitney U-test and Student's t-test for various populations will allow the

experimenter to choose one of the three statistical procedures.
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For a normal populwion it, is of interest to know how much power would

be lost if the permutation t-test or the Mann-Whitney U-test were used

instead of Student's t-test. For a non-normal population, it is of in-

terest to know if the power of the permutation t-test or the Mann-Whitney

U-test is larger than the power of Student's t-test. Thus, the populations

from which the experimenter could sample might be distributed as the normal,

uniform (non-normal but symmetric) and skewed (non-normal and asymmetric)

distributions. Knowing the power and probability of a Type I error for

the Mann-Whitney U-test, the permutation t-test and Student's t-test for

these populations would allow the experimenter to choose one of these three

statistical procedures. The present research compares Student's t-test,

the Mann-Whitney U-test and the permutation t-test on the probability of a

Type I error and the power against a location-shift alternative for the

normal, uniform and skewed populations.

The following review of the literature includes a discussion of hypo-

thesis testing in the two-sample case and a detailed discussion of Student's

t-test, the Mann-Whitney U-test and the permutation t-test.

Review of the Literature

The two-sample problem is frequently encountered in applied research.

Several hypotheses may be made for this design, depending upon the charac-

teristic of the population which the experimenter desires to test. If one

desires to test differences between means, the null hypothesis to be tested

is that the population means are equal. However, if one desires to test

merely that the populations are different, then the null hypothesis to be
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tested is that the two independent samples were drawn from the same popu-

lations with the same distribution. In the present research, the popula-

tions from which the samples were drawn have been specified so the null

hypotheses of equal means and equal populations may be considered to be

equivalent. The extent to which this equivalence holds is dependent upon

the alternative under consideration. The alternative used in the present

research was that the populations differed only in location. Thus, the mean

of one population was of value p and the other population, shifted in

location by an amount 0, with 0 > 0, had a mean of p+6 . Thus, only one-

tailed tests are considered.

Many statistical procedures have been proposed to test hypotheses

of equivalent distributions or hypotheses of equal means. Festinger (1946),

Fisher (1925), Kolmogorov (1941), Mann and Whitney (1947), Mood (1950),

Pearson (1911), Pitman (1937a), Smirnov (1948), Wald and Wolfowitz (1940),

and Wilcoxon (1945) have all given statistical procedures to test the

hypothesis of equivalent distributions. Student (1908) presented a statistic

whose sampling distributioncan be used to test the hypothesis that the

means.of two normal populations with equal variances are equal.

The statistical procedures included in the present research may be

classified on several dimensions. The most obvious classification scheme

is by the hypothesis to be tested, which may be classified by terms often

used erroneously--parametric and non-parametric. The error which is most

often made is that of confusion of the two terms non-parametric (describing

the problem) and distribution -free (describing the statistical method used
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to solve the problem while making no assumptions about the form of the distri-

bution from which the sample was drawn). Both parametric and non-parametric

problems may be solved by statistical methods which may or may not he distri-

bution-free, The Mann-Whitney U-test is used to test the hypthesis of equi-

valent populations (non-parametric problem) and is a distribution-free

statistical procedure. The permutation t-test (or Pitman test) is used

to test the hypothesis of equality of means (a parametric problem) and

is a distribution-free technique. Student's t-test is used to test the

hypothesis of equality of means (a parametric problem) and is not distri-

bution-free. Most distribution-free methods were developed for non-parametric

problems and in common usage "non-parametric" is often substituted for

"distribution-free,"

Another relevant dimension of classification is the assumptions neces-

sary to use the test. One rule accompanying this dimension is that a

parametric test in general is more pwerful (i.e., sensitive to change in

the factor being tested) than an equivalent non-parametric test if the

assumptions for both tests are met. The assumptions may be concerned with

the distribution from which the sample was drawn, the independence of the

observations or the scale of measurement. It was mentioned above that

Student's t-test is parametric. The assumptions for the t-test are:

independence of observations, normally distributed errors, equality of

variances, and measurement on at least an interval scale. The meaning-

fulness of the results of the t-test depends upon meeting these assump-

tions. If a researcher knows that certain of these assumptions cannot be

met in his experimental situation, the t-test may not be the appropriate
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statistic to be used because another statistic may have higher power than

Student's t-test. Most distribution-free tests assume independence of

observations and an underlying continuous distribution, but do not make

assumptions about the distribution from which the sample was drawn. Para-

metric tests are generally more powerful than their distribution-free

counterparts if their assumptions are met. However, it is logical to

questiou what happens tothe statistical test if in fact the assumptions

are not met.

The invariance of the probability of a Type I error (a) when the

assumptions underlying the test have not been met is known as the robustness

of the test (Box and Andersen, 1955). Since parametric tests are most powerful

under normal theory assumptions, there is a strong temptation to use these

tests when the normality of the distribution is in question. Thus, there

has been considerable study of the robustness of parametric tests (Box, 1954a,

1954b, Box and Andersen, L955) and, correspondingly, there has been consider-

able study on the power of non-parametric tests. First, the robustness of

Student's t-test will be considered and literature pertaining to research

done on Student's t-test will be presented. Literature pertaining to the

power of the permutation t-test and the Mann-Whitney U-test will follow.

Student's t-test

Student's t-test is used to test the hypothesis of equal population

means for the two-sample problem if the populations are normal and have

equal variances. Student's t-test is most powerful against a location-shift

alternative hypothesis. The test is performed by calculating the two-
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independent-sample t-statistic
- _
X - Y

t -

V(
E(xi - )7 )2 + E(yi - -72 )2

1
+

1)

(171 nm + n - 2

where X. is the mean of a sample of size m of Xi's and Y. is the mean of

a sample of size n of Yi's, and determining the probability of obtaining

a t-statistic larger than or equal to the original t-statistic by using

the tabled t-distribution with m + n - 2 degrees of freedom. If the proba-

bility is less than or equal to the probability of a Type I error (usually

denoted by a) set by the experimenter, the null hypothesis is rejected.

Alternatively, the experimenter may check to see if the calculated t-

statistic is greater than or equal to the tabled t-value for the probability

of a Type I error and m + n 2 degrees of freedom. Tables of t are in

most elementary statistics texts (see Hays, 1965).

Most research relevant to the robustness of Student's t-test has

been done on the one-way analysis of variance, which is the k-sample exten-

sion of the two independent sample t-test as introduced by Student (1908).

Thus, the analysis of variance.research applies to Student's t-test.

Box (1954a) has shown that the one-way analysis of variance, and there-

fore the two-sample t-test, is robust to violation of the assumption of

variance homogeneity if sample sizes are equal. If the sample sizes are

unequal, and the variances are also unequal, then the test will have a

probability of a Type I error which is smaller than a if the larger sample

is from the population which has the larger variance. If the smaller sample

came from the population with the larger variance, the test has the proba-

bility of a Type I error which is larger than a.



Considering the assumption of a normal population from which the samples

were drawn, Kendall and Stuart (1967, p.466) point out that the independence

of the numerator and denominator of the t holds only for normal parent popu-

lations. If the samples are drawn from a non-normal parent population,

the numerator and denominator of the t are not necessarily independent

and the dependence affects the probability of a Type I error. However,

for large sample size, if the parent population is symmetric or if the

samples are of equal size, the t-test is robust to non-normality. Thus the

probability of a Type I error is relatively unaffected. Gayen (1941, 1950)

found these same results. Srivastava (1958) found that the effect of non-

normality on the probability of a Type I error and power of the t-test was

not marked if the skewness and kurtosis were small. Little is said of the

effect of non-normality of the parent population if the sample size is small

for either equal or unequal bomples, other than that the t-test should be

relatively robust. When sampling from a normal distribution with small

samples, the power of the t-test may be calculated exactly (see Milton,

1966). In summary, Student's t-test is relatively robust to violation

of assumptions if certain conditions are met. However, in practice it is

often difficult to decide if the use of the t-test is likely to be valid

or misleading. To aid in deriding on the use of the t-test, preliminary

tests have been suggested. The idea of using preliminary tests to determine

if the assumptions have been met has been soundly denounced as poor practice

(Box and Andersen, 1955) due to the fact that the preliminary test itself

then comes under question as to its power with respect to certain factors.



Thus, we would be led to start a long chain of tests each designed to test

assumptions for the preceding one. Box and Andersen instead call for tests

which are robust and nblr L 'Jae without pruiiwinary ±ecks on

their assumptions.

An alternative to tests which are robust to violations of their distri-

bution assumptions is the derivation of distribution-free statistical pro-

cedures which can provide answers to the questions of interest. Such statis-

tical procedures do not r.ssume the observations to be distributed normally,

but merely assume that the distribution is continuous. The permutation

t -test is such a statistical procedure.

Permutation t-test

The permutation t-test is used to test the hypothesis of equal popu-

lation means for the two-sample problem if the populations are continuous.

The populations do not need to be normally distributed. The permutation

t-test is performed by completing the following sequence of events: obtain

all possible arrangements (permutations) of the observed data, compute the

two independent sample t-statistic for each permutation, arrange the t-

statistic in a distribution and determine the probability of obtaining

a t-statistic larger than or equal to the original observed t-statistic

in this distribution. If the probability is less than or equal to the pro-

bability of a Type I error (usually denoted by a) set by the experimenter,

the null hypothesis is rejected. Alternatively, the experimenter may check

to see if the original t-statistic from the observed data is greater than or

9



v.qual Lae t-statistic which cuts off a-percent of the distribution in

the upper tail.

Many of the permutations obtained in the abome e. procedure yield the

same statistic. Since it is easier to obtain all_lefble combinations of

mi-n divided into m and n, and both. procedures yieR the same probabilities

for the statistic (see Appendix A), the permutation t-test may be based

on the distribution of the t-statistic calculated for every possible

combination of the observed data. Eowever, the siiteae procedure depends

on the experimenter choosing a probabillty of a 1v7mppe I error (a) which

divides (7:7) = (m+- n)1 /(min!) evenly.

Permutation tests are based on the fact that7asy permutation of the

observations has an equal chance of occurrence 1.13a the distribution of the

test statistic. The theoretical basis of the petamutation t-test is pre-

sented in Scheffe, 1943, pp. 307-308. Simply stamed the basis is as

follows: the desired property for a statistical:qprocedure which does not

assume normality of the population is that the statistical procedure must

always yield a region of rejection which has the same probability under

the null hypothesis for every possible distribtidas af measures of interest.

Permutation tests guarantee this property because the distribution obtained

is based on the. data, not on the population, and the probability of the

rejection region is always a.

Before the literature on permutation tests cask Ile evaluated, the power,

of permutation tests must be considered. The power of permutation tests

may be generally thought of in two mays: first, as what will be called

10



an "unconditional power," and second, as a power conditional upon the ob-

servations. The conditional power of permutation tests was not used in the

present research and is included in the present discussion merely for

comparative purposes. There are two types of conditional power'of permu-

tation tests: the fixed cut-off point power and a more general power given

by Kempthorne (1952). The power used in research by Baker and Collier

(1966), Collier and Baker (1966), Kempthorne et al. (1961), and Toothaker

(1967) was the conditional power known as the fixed eut-off point power.

In the fixed cut-off point procedure the observations are permuted, a

specified treatment effect (constant) is added to each observation after

the permutation, and the statistic is computed for each permutation. The

proportion of permutations with the statistic falling above the fixed

cut-off point, usually defined from normal theory for purposes of comparison

with normal theory tests, is the conditional power. The fixed cut-off

point power is dependent upon the observations. No sampling is done and

generalizations may not be made beyond the given set of observations.

Also, the fixed cut-off point power is a theoretical power for use primarily in

research on the power of permutation tests and is usually not obtained in

practice. Another conditional power of permutation tests slmilar to the

fixed cut-off point power is that operationally defined by Kempthorne

(1952, p. 219). In the Kempthorne procedure the observations are permuted,

a specified treatment effect is added to each observation after the per-

mutation, and the statistic is computed for each permutation. Then for

each permutation the statistic is tested via the permutation test: a



permutation eistribution of the statistic for observations plus treatment is

obtained, the original statistic is compared to this distribution and either

an acceptance or a rejection is made. The proportion of the original

permutations for which a rejection is made is the power. The conditional

power given by Kempthorne is also a theoretical power for use in research

on the power of the permutation tests and is not obtained in practice

due to the extensive calculations required.

The power of the permutation test which will be called "unconditional

power" in the present research is based upon random sampling. The rejection

region of the permutation test is conditional upon the observations for each

sample, but the power is the proportion of rejections over repeated sampling

from some population when the null hypothesis is false. The seemingly

illegitimate marriage of a test which was designed to be used on a set of

given observations with traditional sampling may be justified as follows:

the experimenter usually wants to generalize beyond the set of observations

in hand to some population of interest. If the experimenter is going to

use the permutation test, and wants to generalize in the usual way to the

population from which he has sampled, it is of interest to know the power

of the permutation test for repeated sampling from that population. Box

and Andersen (1955) point out the difference between unconditional power and

conditional power of the permutation test:

Two alternative views of the nature of the inference

in the permutation test can be taken. These differ

in the conception of the population of samples from

which the observed sample is supposed to have been
drawn. On the first view our attention is confined only

to that finite population of samples produced by

12



rearrangement of observations of the experiment. We
prefer to adopt the second view which is that the samples
are regarded as being drawn from some hypothetical
infinite population in the usual way.

Thus, while the conditional power results from a population dependent upon

the observations, the unconditional power is based on random sampling from

some population. The obvious advantage of unconditional power is the

capability to go beyond the observed data to a population of the statistic

based on samples of the given size. The type of power of permutation tests

used in the present research is the unconditional power. Thus, the power

against the location-shift alternative of the permutation t-test as found

in the present research applies to any sample of a given size from a given

distribution.

Permutation tests are difficult to perform due to the formidable labor

involved in calculating the statistic for all possible permutations, so

this procedure was not considered practical until the advent of electronic

computers. Because of the lengthy calculations, normal theory tests are

used as an approximation for permutation tests even though the rationale

for the two types of tests is quite different. The reason the approximation

was first suggested was that moment calculations and empirical studies

demonstrated the two types of tests to be similar under certain conditions.

Most of the literature on permutation tests is on the analysis of variance

F-test, and very little is on the permutation t-test. However, results

for the one-way analysis of variance are generally applicable to the per-

mutation t-test. Fisher (1935) first introduced the permutation or randomi-

zation test as the exact tes. for testing for differences between means of

13



two populations when assumptions were not met. Fisher pointed out that

the probability of a Type I error for the permutation t-test closely approxi-

mated the normal theory probability of a Type I error for the particular

problem with which he dealt. Pitman (1937a) was next to consider permutation

tests. For the two sample problems, Pitman introduc,d a test statistic,

w, which is a monotonic increasing function of t2,

1

w where 11na+n, the combined

1 +
N-2 sample size. (2)

t2

Pitman (1937b) and Welch (1937) both derived basic results on the

permutation test for the analysis of variance for the randomized block and

Latin square designs. Both derivations for the analysis of variance held

for large sample size and were based on a comparison of moments of the test

statistic under normal theory and under permutation. For the randomized

block design, Pitman (1937b) and Welch (1937) showed that the F-test may

underestimate the significance level if block variances were not equal.

However, if the number of blocks is large the underestimation is not serious.

Wald and Wolfowitz (1944) derived a general theorem on the limiting distribu-

tion of linear forms in the universe of permutations of the observations.

They showed that the distribution of the test statistic for the randomized

block design is asymptotically the F-distribution underlying normal theory

analysis of variance. For Pitman's test, and thus for the permutation t-test,

Wald and Wolfowitz showed that the distribution of the test statistic, w, is

asymptotically normal. Hoeffding (1952) found that permutation tests for

the randomized block design and for the two sample problems are asympto-

tically as powerful as their related parametric tests. Thus the permutation

14



test for the randomized block design is asymptotically as powerful as the

normal theory F-test, and the permutation t-test is asymptotically as powerful

as Student's t-test. Scheffg (1959, Chapter 9) summarized these and other

results on permutation tests.

Considerable research has been done on the F-test under permutation in

the analysis of variance for various designs, most of it empirical (see

Baker and Collier, 1966a; Box and Andersen, 1955; Collier and Baker, 1963;

Collier and Baker, 1966; Kempthorne, 1952; Kempthorne et al. 1961; and

Toothaker, 1967). The existing research shows that if the assumptions

are met and if sample sizc is not small, the probability of a Type I error

and power of the permutation F-test is approximately the same as the power

of the normal theory F-test; if the assumptions are not met and if sample

sire is not small, the probability of a Type I error and power of the F-test

under permutation is still fairly close to that of the normal theory F-test,

if the violation is not severe.

The study by Box and Andersen (1955) yielded an important result in

the study of permutation tests. Box and Andersen introduced a correction

for the normal theory F-test. When the degrees of freedom are multiplied

by the correction factor, the F-test with the corrected degrees of freedom

is an approximate permutation rest. The correction factor corrects for the

non-normality and heterogeneity of variance of the design. Extensions of

this correction procedure have been devised for multivariate situations by

Geisser and Greenhouse (1958). The correction factor of Box and Andersen

was used in an empirical study by Toothaker (1967) to investigate the
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joint effect of variance heterogeneity and block treatment interaction on

the F-test under permutation in the randomized block design.

As has been pointed out several times above, most of the research

on permutation tests is for large sample size: The present research deals

with the comparison of the permutation t-test with Student's t-test and the

Mann-Whitney U-test for the normal, uniform and skewed populations for small

sample sizes.

The existing literature on the comparison between the permutation t-test

and Student's t-test involves the comparison of the power of the two tests.

Since Student's t-test is the most powerful test under normal theory, the

power of the distribution-free method, the permutation t-test, can be

compared to the power of the t-test-to measure the loss in power when sampling

from a normal distribution. Several measures to compare the power of two

tests are available.

One measure to compare the power of two tests is the relative effi-

ciency. The relative efficiency of two tests is defined to be'the ratio

of the sample sizes necessary to attain the same power against the same

alternative, where the sample'size in the numerator is that of the most

powerful test. Siegel (1956) multiplies the relatiiie efficiency by one

hundred and calls it the power efficiency, a more descriptive term. The

most commonly used measure is the asymptotic relative efficiency (ARE),

defined as the limiting relative efficiency of two tests against a sequence

of local alternative hypotheses as the sample size increases. The permutation

16



t-test has an ARE of 1 when compared to Student's t-test for an alter-

native of location shift.

A disadvantage of the permutation t-test is that its exact distribution

is tedious to enumerate by hand except for very small sample sizes. Also,

the distribution of the permutation t-test will be different for every

set of actual observations, which are random variables, making it impossible

to tabulate the exact permutation distribution of the permutation t-test.

With the advent of electronic computers, this disadvantage has become less

serious. However, it is still desirable to be able to tabulate the distri-

bution of the statistic for various sample sizes. Rank tests satisfy the

desire to be able to tabulate the distribution of the statistic for various

sample sizes. The Mann-Whitney U-test is a rank test for the two-sample

problem.

Mann-Whitney U-test

One way to remove the variability of the distribution of the test

statistic from one set of observations to another is to replace each ob-

servation, Xi, with some value, Zi, for which the permutation distribution

of the statistic is the same for every sample of the same size. If these

values are chosen to maintain the order relations between two of the values,

X
1

and X
2'

the ranks of the observations are not the obvious choices. A

further desirable aspect of the. ranks is that they are invariant under any

monotonic transformation of the variable. Therefore, we consider some

function of the ranks of the observations. We define the rank of the i
th
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observation to be its position in the set of the ordered observations, with

the smallest receiving the lowest rank. The ordering of the observations,

Xi, is one of the N! possible permutations, and the ordering of the ranks,

Zi, is a permutation of the integers one to N. The function of the ranks

which has theoretically desirable properties (see Kendall and Stuart, 1967)

isthesumoftheranksofoneofthesamplesR=EZ.,where the ranking is
i=1

done over the total sample. The Mann-Whitney U-statistic is based on

such a function. The Wilcoxon and Festinger tests are functions of the

U-statistic and thus may be considered equivalent tests.

Rank tests such as the U-statistic are permutation tests. Although

few authors point out the fact, many of the rank tests when calculated in

their small sample or exact form are permutation tests on the ranks of

the observations (see Kruskal and Wallis, 1952,and Wilks, 1962). The rank

permutation test exists for not only the two independent sample case but

for the two related sample, k independent sample, and k related sample cases.

Rank permutation tests also exist for hypotheses of independence (see

Hotelling and Pabst, 1936; Kendall and SI.uart, 1967; Pitman, 1937a; and

Wald and Wolfowitz, 1943). Although only the two independent sample case

is considered in this research, future research is planned for the re-

maining cases.

Specifically, a rank-permutation test exists for the Mann-Whitney

U-test. The U-test could be completed for any set of observations by per-

forming a permutation test on the ranks of the observations. The probabi-

lities for possible values of U for a given sample size can be calculated

by performing OA possible permutations of the ranks for one sample of size
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n(X
1

X
n
where X

i
is the i

th
observation) and the other sample of size

m(Y
1

Y
m
where Y

i
is the i

th
observation) and tabulating the proportion

of times a given U value appears.

The Mann-Whitney U-statistic can be defined for a given n and m as the

number of times Y rankings exceed X rankings or

if Y X
U= E E h

ij
where h

ij
= (3)

i=1 j=1 0 otherwise

The calculating formula as,given by Mann and Whitney shows the relation

between the U statistic and the sum of the ranks:

or

m(m+1)
U = nm + Rm2

n(n+1)
U = nm +

2
R
n

(4)

(5)

where R
n is the sum of the ranks of the n observations in the first sample

and R
m is the sum of the ranks of the m observations in the second sample.

The smaller of (4) and (5) is the tabled value, and the null hypothesis is

rejected in favor of the location-shift alternative if values as large

or larger than the tabled value are found. Tables now exist for the U-test

for probabilities .0005, .005, .0025, .001, .01, .025, .05, and .10 for

m < 40 and n < 20 (milton, 1964), and the need for exact calculations via

permutation does not exist for small samples. For larger sample sizes,

the normal approximation is ordinarily used where:
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and

E(U) nm
2

nm(n+m+1)
VAR(U) -

12

The use of the U-statistic is covered in many elementary statistical tests

(see Hays, 1965, and Siegel, 1956) and appears to have heavy usage in all

areas of research (see Savage, 1962).

The literature on the Mann-Whitney U-test also includes power comparisons

involving the ARE, as was discussed above when comparing the permutation t-

test to Student's t-test. As mentioned above, Student's t-test is the

most powerful test in the f:woL-sample case if normal theory conditions atez

met. Therefore, the power of the U-test is necessarily less than that of

the t-test for normal theory assumptions. Hodges and Lehmann (1956) have

shown that the ARE of the U-test as compared to Student's t-test for a

normal distribution is .95 and may never be less than .864 when the locatioa-

shift alternative is considered. Hodges and Lehmann also report that the

ARE is equal to unity for the uniform distribution. Wetherill (1960) re-

ports that for a gamma distribution with one degree of freedom the ARE

is three and for an Edgeworth population with skewness measure yl m .67

the ARE is unity. So, for non-normal distributions the asymptotic com-

parison of the power of the U- and t-test shows that the power of the

U can be considerably better than that of the t, especially if the dis-

tribution is not symmetric.
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Small sample power functions for the Mann-Whitney U-test have been

derived for several distributions and computations done for at least a

few sample sizes. Most of the literature deals with the small sample power

of the U-test for the normal distribution and the location-shift alterna-

tive. Milton (1966) computed extensive tables of the power of various

non-parametric tests against the shift alternative for the normal distri-

bution and offered a direct comparison with the power of Student's t-test.

The table of the power of the U-test covers all possible sample size combi-

nations of m,n from 2,1 up to 7,7 for various values of 0 . Dixon (1954)

and van der Vaart (1950) also have dealt with the power of the U-test and

the normal shift alternative. Milton, Dixon and van der Vaart all show

that the small sample power of Student's t-test is close to that of the Mann-

Whitney U-test for the normal shift alternative. Gibbons (1964), Haynam

and Govindarajulu (1966), and Lehmann (1953) have all dealt with the power

of the U-test for distributions other than the normal and/or alternative

other than location shift. Glazer (1964), Pratt (1964), and van der Vaart

(1961) investigated the effect of differences in population variances on

the probability of a Type I error of the Mann-Whitney U-test and Student's

t-test. The probability of a Type I error of the U-test was less affected

by variance differences than the t-test if sample sizes were unequal, but

the t-test fared better than the U-test if m=n. Glazer (1964) reported

that the small sample power of the t-test was larger than the power of the

U-test if m=r1 or if there were no variance differences. Thus, the U-test

is relatively robust to variance differences if mOn, when compared to the

t-test.
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Considerable research has been cited above on the power and probability

of a Type I error of Student's t-test, the Mann-Whitney U-test, and the

permutation t-test. Most of this research has been asymptotic, with excep-

tions being small sample probability of a Type I error and power of the U-

test for selected distributions and alternatives, and the small sample

probability of a Type I error and power of the t-test for normal distri-

butions with the shift alternative. There has been essentially no system-

atic research done on the small sample probability of a Type I error and

the power of the permutation t '-test for any distribution. The present

research investigates empirically the small sample probability of a Type

I error and the power of the permutation t-test for normal, uniform and

skewed distributions with a location-shift alternative. The probability

of a Type I error and power of the Mann-Whitney U-test and Student's t-test

are also calculated empirically for comparison purposes and as a check on

calculations.

After a general restatement of the problem, Chapter II covers the

definition of the power as used in the present study, the procedures for

obtaining the power in the computer program used and definitions of the

populations.
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II

NATURE AND STRUCTURE OF THE PROBLEM

The area investigated in the present study is the comparison of the

permutation t-test with Student's t-test and the Mann-Whitney U-test. The

comparison was made for small samples for three distributions including a

normal distribution, a uniform distribution and a skewed distribution.

The properties of each test compared were the probability of a Type I

error and the power against a location-shift alternative hypothesis.

Power is generally defined as the probability of a rejection if the

alternative is true. More specifically, if X is an observed sample point, w

is the critical region of the test, Ho represents the null hypothesis of

equal population means, and Hi represents the location-shift alternative,

then

P(XewIH0) = a

and p(Xcw1H1) = = power

where a is the probability of a Type I error and f3 is the probability of

a Type II error. The choice of w, the critical region, and X, the sample

point, depends on the test under consideration. For, specific definitions

of the power of Student's t-test, the Mann-Whitney U-test and the permu-

tation t-test, the sample point and the critical region must be given in the

definition for each. The power of the three statistical procedures in the

present study is the unconditional power which is based on random sampling

from some population. However, it should be pointed out that the rejection
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regions for :he Mann-Whitney U-test and Student's t-test are not conditional

on the data for any population as is the rejection region for the permuta-

tion t-test.

For Student's t-test, a normal theory test, w is lhosen as the top

100a-percent of the theoretical t distribution. The observed sample point,

X, is the two-independent sample t-statistic given in (1), above. The

test is given by rejecting Ho if t is contained in the rejection region,

w , otherwise failing to reject Ho. The power is then the proportion

of rejections over an infinite number of samples and tests of Ho, when the

location-shift alternative is true.

For the Mann-Whitney U-test, a permutation test on the ranks of the

observations, w is chosen as the top 100a-percent of the distribution of

U obtained by calculating U for each permutation of the ranks of the ob-

servations. The observed sample point, X, is the U-- statistic for the

observed data, and the test is given by rejecting Ho if the U from the

observed data is contained in the rejection region, w, otherwise failing

to reject Ho. The power is the proportion of rejections over an infinite

number of samples and tests of H. when the location-shift alternative

is true.

For the permutation t-test, a permutation test on the observations,

w is chosen as the top 100a-percent of the distribution of t obtained

by calculating t for each permutation of the observations. The observed

sample point, X, is the t-statistic given by formula (1), and the test is



given by rejecting H
o if the t from the observed data is contained in the

rejection region, co, otherwise failing to reject. Then, the power is the

proportion of rejections over an infinite number of samples and tests of

H
o , when the location-shit- alternative is true.

From the above definitions of the unconditional power of Student's

t-test, the Mann-Whitney U-test and the permutation t-test, procedures

were developed for obtaining estimates of the power and were implemented

in the computer program used in the present research. For all three

statistical procedures the sampling part of the power procedure was identical

and the statistics were all computed on the same observations. A random

sample of size n was drawn from a population with mean p and a second

random sample of size m was drawn from a population with mean p+0 . Both

populations were identical except for the location parameter. For Student's

t-test, the t-statistic was computed and the null hypothesis of equal means

was rejected if the value of the t-statistic was larger than the tabled

100a-percent value from the t-distribution with mi-n-2 degrees of freedom.

The sampling and computation was done 1000 times and the proportion of

rejections yielded an estimate of the power.

For the Mann - Whitney U-test, the same observations as were used for

the t-test were ranked and the U-statistic computed on the ranks of one of

the samples. The ranks were then permuted and the U-statistic computed

for every possible permutation. The original U-statistic was then compared

to the distribution of U-values obtained from the permutations and if the

original U-statistic was in the 100Q-percent rejection region the null

25



hypothesis of equal means was rejected. The sampling and computation

was done 1000 Limes and the proportion of rejections yielded an estimate

of the power.

For the permutation t-test, the t-statistic was computed for the

original observations. The observations were then permuted and the t-

statistic computed for every possible permutation. The original t-statistic

was then compared to the distribution of t-values obtained from the permu-

tations and if the original t-statistic was in the 100a-percent rejection

region the null hypothesis of equal means was rejected. The sampling

and computation was done 1000 times and the proportion of rejections

yielded an estimate of the power.

When 6 was equal to zero, the proportion of rejections obtained in the

three procedures outlined above was an estimate of the probability of a

Type I error for the statistical procedure.

The empirical power and probability of a Type I error for the permu-

tation t-test, Student's t-test and the Mann-Whitney U-test were obtained for

normal, uniform and skewed populations. The three distributions of interest

were obtained by use of random number generators and a digital computer.

To obtain results for the normal population, random samples of size m and

n were drawn from the unit normal distribution N(0,1), by use of a random

number generator, RANSS (see UWCC User's Manual), and the Control Data 3600

computer. RANSS generates random standard normal deviates by a method

which uses pseudo-random odd integers distributed uniformly in the interval

(0,2
43

). The uniformly distributed numbers are generated by a power-residue
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method (Bull and Dobell, 1962). The procedure uses a starting integer

value
'
X0, specified by the user, an integer, a=513, and another integer,

m=2
43

, called the modulus. A sequence, Xi, of non-negative integers is

then defined by the congruence relationship:

XiE 5
13
Xi_1(mod 2

43
), or in general

Xi
E- aXi_i(mod to)

(6)

The method described above is called a power residue method of generating

random numbers. The power residue method meets all statistical require-

ments, i.e., independence of successive values, and numbers distributed as

desired as determined by a chi-square test, and it also meets the require-

ments of a long series of numbers without repetition (see Bull and Dobell,

1962, and IBM, 1959). The power residue method is considered to be satis-

factory if it is used correctly (IBM, 1959). A series of numbers produced

by a pseudo-random number generator will eventually repeat. Proper use of

the power residue method involves choosing the starting value, X0, the multi-

plicative constant, a, and the modulus, m, so that they have qualities which

yield a long series, Xi. The following limitations, when placed upon the

parameters of the congruence relation (6), will yield the longest series

of numbers, which will also have good properties statistically:

a) choose m=2
b

b) X
0 must be odd and relatively prime to 2

b

c) a must be of the form a=8c+3, or a+3=8c or c=(a+3)/8

must be an integer.
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If the above limitations are placed on the parameters of the congruence

relation (6), the generator will produce 2b-2 terms before repeating. The

RANSS generator has mm243, and am513 which meet the above requirements be-

cause cm(511+3)/8 is an integer. The choice of X6 odd and relatively

prime to 243 will yield a series which has 241 pseudo-random numbers before

repeating. Thus, on the order of eight billion numbers may be produced

before repeating, which is deemed adequate for the present study.

The random normal generator, RANSS, then uses the X
i
values to form

a normally distributed random variable. If X
i

is the i
th

variable and
n

-Snm E X
i'

then Y= Sn nu
- is distributed normally with mean=0 and variance

iml a Yr
m 1, N(0,1), as n approaches infinity due to the Central Limit Theorem (see

Mood and Grayb111, 1963).

With n>16, the approximation of Y to N(0,1) is adequate. Thus, n

is taken equal to sixteen, the multiplication and reduction (mod 2
43

) is

repeated sixteen times and the variable Y is returned as the pseudo-random

variable distributed N(0,1).

The analysis for the rectangular population was begun by drawing random

samples of size m and n from the unit uniform distribution by use of the

random number generator RANF (CDC, 1966). RANF generates random numbers in

the interval (0,1) by utilizing a power residue method similar to that

described above. The parameters of the congruence relation (6) are as

follows: mm2
47

and a=515. The parameters of RANF meet the requirements

above if the starting value is an odd integer and relatively prime to 247 .

A sequence of non-negative integers is defined by:
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X s 515X
1-1

(mod 2
47

)
i (7)

which are uniformly distributed in the interval (0,2
47

). To obtain floating

point numbers distributed in the interval (0,1), the value of Yi=(Xi+1)/247

is calculated and returned to the user.

The pseudo-random uniformly distributed numbers returned by RANF were

then scaled so that the variance of the population would be unity, the same

as the variance of the normal population. The variance of a uniform distri-

bution is given as

a
2 (a -b)

2

12

where a and b are the limits of the distribution.

(8)

To obtain a
2
m=1, (a-b)

2
must equal twelve and a-b must equal the square

root of twelve. RANF returns values distributed uniformly in the interval

(0,1). If each value returned is multiplied by VI3M3.46, then the value

returned will be distributed uniformly in the interval (0,3.46) and the

variance will be approximately one.

The skewed population was derived from a chi-square distribution with

three degrees of freedom. The first three moments of the chi-square distri-

bution are v, 2v, and 8v, where v is the degrees of freedom (Kendall and

Stuart, 1967, p. 370). The skewness measure

2

3

11 3

2

(9)

is then approximately 1.633 for the chi-square with three degrees of free-

dom. The distribution is unimodal with a positive skew and mean and variance

of three and six, respectively.
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Since a chi-square variate with N degrees of freedom is defined as
N N

X2 =E-(N)
a
L .E z2 (10)i -1 i

where Z
i is distributed N(0,1), the sum of squares of N unit normal variables

is distributed as chi-square with N degrees of freedom. A chi-square

variable with three degrees of freedom was generated by calling the unit

normal random number generator, RANSS, three times, squaring each unit

normal variable, and summing.

The pseudo-random chisquare distributed numbers were then scaled so

that the variance of the skewed population would be unity, the same as the

variance of the normal population. The variance of a chi-square distri-

bution with three degrees of freedom is six, so each chi-square value

was multiplied by C=14, yielding a skewed population with mean equal to

3/N47, and variance equal to one. The skewness measure Yl is still equal to

1.633.

The above generation techniques yielded variates distributed as a

normal distribution, a uniform distribution and a skewed distribution,

respectively.

To obtain results for the probability of a Type I error for the above

distributions the values of the probability of a Type I error were chosen

m+nfor sample sizes such that as.k/ () , where k is chosen such that a is

close to .05 and a < .05 if possible. By choosing theoretical values of

the probability of a Type I error in this manner, the empirical probability

of a Type I error will vary greatly with sample sizes, but will be much
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more accuratefor a given pair of sample sizes than had the probability of a

Type I error been chosen such that a< .05 for all sample sizes. Also,

certain values of the sample sizes, such as samples of sizes two and three,

could not possibly yield values of theoretical probability of a Type I

error less than .05 and would have had to have been left out of the study.

Such,choice of the theoretical probability of a Type I error also made the

specification of the power considerably easier, since the exact probability

of a Type I error and thus the exact critical value could be obtained.

To obtain the results for the power for the three statistical pro-

cedures, 0 > 0 was defined such that the levels of power of Student's t-

test would be .30, .60, and .90 for the normal distribution. The defined 6

was used for all three statistical procedures and for all three distri-

butions.

Specification of 6 for the normal distribution was made through

the definition of the non-centrality parameter, B 2
, for the non-central

t-distribution as given by Scheffe (1959, p. 41),

a
2
.6
2

=
/
B -1 IP

where IP is the column vector of contrasts on the cell means, pi and p2,

and B = -1-2 -* where t is the variance of the desired contrast. Since

the t-test deals with the difference-between means, the contrast desired

is u2,

SO
(111-P2)

2 /1 +1
a
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then

and

B
(i
m n

B-1 +
-1

m n)

)
(1-11-1-12)

262
) (m + 1

or a262
(11-112)

2

± -1n)

Setting a
2
=1, and solving for 111-1.1 in terms of 6 yields

P1-112
=6 1

+ e

m n

(12)

(13)

Several FORTRAN subprograms were used to obtain the values of e,

which were utilized in the main program. First, the exact t-value was

obtained for the exact probability of a Type I error for given sample sizes

through use of a subprogram written to compute exact probabilities for the

F-distribution (see Baker and Collier, 1966b). The obtained t-value and

the desired probability of a Type II error (1-desired power value) were

used in another subprogram written by. Milton (see UWCC User's Manual under

"New Subprograms") to yield the appropriate non-centrality parameter, 6 ,

for those sample sizes. Given 6, m and n, the value of 9 was computed.

The power results could be obtained by drawing one of the samples from a



distribution with mean p + e and the other from a distribution with mean p.

One method for achieving the desired result would be to alter the random

number generators. However, it was not necessary to alter the random

number generators to sample from populations with means p + 6 for the

following reason: if a constant 6 is added to every score in a distribu-

tion with mean p, the mean of the new distribution is simply p + e. Thus,

by sampling from a distribution with mean p and adding the, defined e to

each value obtained, the result is the same as if sampling had been done

from a distribution with mean p + 0. For the normal population, e + pi

because u2s=0. The samples drawn for the power results were as if they

had been drawn from the normal distributions N(0,1) and n(0,1), from the

rectangular distribution f2(x) and f1(x+0) and from the skewed distribution

f2(x) and f1(x+6), where e is defined as in (13) above. The values of

e for all sample sizer, considered in the present study are given in

Appendix B.

The sample sizes considered in the present research are the nine

arrangements of (2,3), (2,4), (2,5), (3,3), (3,4), (3,5), (4,4), (4,5) and

(5,5). These sample sizes were part of a larger set originally chosen

because of existing exact probabilities of the Mann-Whitney U-statistic

in table form. Consideration of computing time and programming difficulty

then narrowed the range of sample sizes to the above set.

The empirical small sample power and size for the permutation t-test,

Student's t-test and the Mann-Whitney U-test were obtained by means of a

computer program written for this purpose by the author. The program

MONTE1 was written in FORTRAN and was run on the Control Data Corporation
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3600 computer. For a given sample size the program is designed to draw

samples from the appropriate population, add the specified 0 (null or non-

null) to the data, complete the permutation procedure for the U-test and the

permutation t-test, complete the normal theory test for Student's t-test

by use of the appropriate value, from thet-distribution. The program is

designed to then repeat the entire procedure 1000 times. The number of

samples to be drawn was determined strictly by consideration of the computing

time involved. The number 1000 was the largest possible number of samples

which could be analyzed without using an inordinate amount of computer

time. After the 1000 samples have been drawn, the program is designed

to then print out the estimated probability of a Type I error and power

of each of the three tests for the given sample size. In addition, it

was thought advisable to check for influence of the size of the sample

to which the 0 was added, so two sets of power values are printed, one

set for 0 being added to the larger of the two samples and one set for

being added to the smaller of the two samples.
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III

RESULTS

Probability of a Type I Error

The empirical values of the probability of a Type I error of Student's

t-test, the Mann-Whitney U. -test, and the permutation t-test for various

small sample sizes from the previously specified normal, uniform, and

skewed populations are'given in Table 1 as evidence verifying the Monte

Carlo procedures. The theoretical probability of a Type I error is given

as a. Only two empirical values of the probability of a Type I error in

Table 1 were larger than that expected from sampling variability. For

sample size (4,4) from the skewed population, the values of .044 and .044

for the Mann-Whitney U-test and the permutation t-test were more than 2a

larger than .0286, the theoretical a. For equal sample sizes from the

skewed population, there was a trend of empirical values of the probability

of a Type I error for the Mann-Whitney U-test and the permutation t-test

which were larger than both the theoretical a and the value for Student's

t-test. Also, for unequal sample sizes from the skewed population, the

values for the Mann-Whitney U-test and the permutation t --test followed the

opposite trend; that is, they were less than the theoretical a in four

of the six cases and leas than the value for Student's t,-test in fiVe of

the six cases.

The remaining values of the empirical probability of a Type I error

were within the bounds of sampling variation, and there were no other
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TABLE 1

The Empirical Probability of a Type I Error for Three Two-Sample Statistics,
for Three Parent Populations, and for Various Sample Sizes (the values in
the table are the proportion of rejections in 1,000 random samples)

Sample Sizes
and

a Values
P. .

(2,3)

a . .0095
P

(3,3)

a . .0069

(2,4)

a /Is .0079

(3,4)

a
p

- .0053

(4,4)

a . .0053

(2,5)

a
P

= .0067

(3,5)

a m ;0059

(4,5)

a = ,0055

(5,5)

a - .0067
p

a
Statistical

Test Normal Uniform Skewed

.10 Student's t .105 .109 .104
Mann - Whitney U .109 .105 .094
Permutation t .109 .105 .094

.Q5 Student's t .055 .056 .046
Mann - Whitney U .056 .051 .053
Permutation t .056 .051 .053

.0667 Student's t .079 .072 .073
Mann4lhitney U .074 .065 .059
Permutationt .074 .065 .059

.0286 Student's t .034 .037 .033
Mann-Whitney U .031 .027 .028
Permutationt .031 .027 .028

.0286 Student's t .029 .025 .039
Mann-Whitney U .029 .021 .044a
Permutation t .029 .021 .044a

.0476 Studeneat .046 .043 .055
Mann-Whitney U .049 .050 .043
Permutation t :049 .050 .043

.0357 Student's t .038 .034 .047
Mann-Whitney U .039 .036 .041
Permutation .t .039 .036 .041

.0317 Student's t .026 .037 .035
Mann-Whitney U .026 .033 .040
-Permutation -t. .024 ,032 .039

.0476 Student's.t .055 .054 .045
Mann - Whitney U .055 .050 .050
Permutation t .055 .052 .050

a
The observed empirical probability is more than 2a from a.
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consistent trends evident in the empirical values. The equality of the

empirical values in Table 1 for the Mann-Whitney U-test and the permu-

tation t-test for all sample sizes other than (4,5) and (5,5) is due to

the fact that when the number of combinations is small, the rejection

region for both tests contains a very small number of points. Thus, only

a few combinations of the data result in a rejection with the permu-.

tation t-test, and the same exact combinations are the ones which yield

rank sums large enough to cause a rejection with the U-test. When the

sample size gets larger, such as (4,5) and (5,5), there are more points

in the rejection region, therefore the chance of a combination of the

data to reject on one test and not on the other.

Power

The values of the empirical power of Student's t-test, the Mann-

Whitney U-test, and the permutation t-test for various small sample

sizes from the previously specified normal, uniform, and skewed popu-

lations are presented in Table 2. As was the case with the probability

of a Type I error, the values of empirical power for the permutation t-test

and the Mann-Whitney U-test are identical within each population for

sample sizes smaller than (4,5).

For the normal and uniform populations, the power of Student's

t-test was generally larger than the power of the permutation t-test

for both the "small" and "large sample addition procedure" and for all

sample sizes. Of the 108 cases available (three levels of 0, nine sample

sizes for the large and small sample addition procedures for each of two

populations) there were 102 cases where the power of Student's t-test

was larger than that of the permutation t-test and 37 which were larger
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than expected by chance with large differences occurring for the uniform

distribution. Of the six cases where the power of the permutation t-test

was larger than that of Student's t-test, two occurred for sample size

(5,5). Also, for sample sizes (4,5) and (5,5) the power values of the

permutation t-test were generally closer to those of Student's t-test

than was true for the smaller sample sizes. For sample sizes (4,5)

and (5,5) the values of empirical power of the permutation t-test were

usually larger than those of the Mann-Whitney U-test.

For the "large sample addition procedure" when sampling from the

skewed population, the empirical power values for the permutation t-test

were greater than those of Student's t-test for fifteen of the twenty-

seven cases available (three levels of 0, nine sample sizes). The

seven differences which were larger than expected from sampling variation

were for unequal sample sizes with either the small or mediva levels of

power. For example, for sample size (2,3), with small 6, the values

.354 for the permutation t-test and .309 for Student's t-test are more

than 2a apart and thus are most likely due to something other than

sampling variation. Other large differences occurred for sample size

(3,5) with small and medium e. For samples of equal size < (3,3),

(4,4), (5,5) < or near equal size < (3,4), (4,5) < the differences between

the power values for Student's t-test and the permutation t-test were

small.

For the "small sample addition procedure" when sampling from the

skewed population, or when the smaller sample came from the skewed popu-

lation with the larger mean (p + 0), the empirical power values for the

41



permutation t-test were greater than or equal to those for Student's

t-test for only six of the twenty-seven comparisons available. In fact

thirteen of the twenty-seven comparisons showed a larger-than-sampling-

variation difference with Student's t-test having the larger power value.

The differences in favor of Student's t-test were the largest for unequal

sample sizes, and only for equal sample sizes (3,3) and (5,5) did the

power values of the permutation t-test approach or exceed those of

Student's t-test.
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IV

SUMMARY AND CONCLUSIONS

The results presented above for the permutation t-test show that the

empirical probability of a Type I error for repeated sampling from a

normal or uniform population was generally close to the theoretical a.

The empirical probability of a Type I error for repeated sampling from

the specified skewed population was generally close to the theoretical a

but showed one sample size which had inexplicably divergent results

for the permutation t-test and the Mann-Whitney U-test. This discrepancy

was part of a tread of other discrepancies which were within the bounds

of sampling variation. The empirical results for the power showed that

the permutation t-test generally had smaller power than Student's t-test

for the uniform and normal populations. For the skewed population the

permutation t-test generally had higher power values than Student's

t-test if the larger sample were drawn from the population with the larger

mean (U + 6). If the samples were of equal size, the permutation t-test

generally had power values which were close to those of Student's t-test

but did not exceed them. However, if the smaller sample were drawn

from the skewed population with the larger mean (4 + 6), then the power

values of Student's t-test were larger than those of the permutation

t-test. For all three populations, the power of the permutation t-test

approached that of Student's t-test as sample size increased, even

for samples as small as (4,5) and (5,5). The increase in power was more

rapid for the permutation t-test than for the Mann-Whitney U-test, and the

power of the permutation t-test was always greater than or equal to that

of the Mann-Whitney U-test.
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Using Student's t as the test statistic for the permutation test

for the two-sample problems gives a statistical procedure which not

only has ARE of one for the normal population but has very-close agreement

with Student's t-test for small samples. The agreement is indicated by

the closeness of values of empirical power and probability of a Type

error for the permutation t-test when compared to those of Student's

t-test for the normal population. Although similar results show that

the permutation t-test is in close agreement with Student's t-test

for the uniform population, the empirical power of the permutation t-

test for the skewed population showed that the permutation t-test could

have higher power than Student's t-test if the sample sizes were propor-

tional to the population means when the parent population has the spe-

cific skewed distribution with yi = 1.633 and y2 = 4. The present study

also gives further support to the knowledge that Student's t-test is

generally robust to the violation of the normality assumption, even for

very small samples.

The present research indicates that the permutation t-test is an

acceptable statistical procedure for the two-sample problem for the

normal and uniform populations and suggests that it might be more desirable

than the traditional Student's t-test when sample sizes are proportional

to the means and the parent population is nonnormal and asymmetric.

Further research is needed before a more definite statement can be made

about the permutation t-test when sampling from nonnormal populations.
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Appendix A

An Example on Permutations and Combinations

For example, consider win=2 and EX as the statistic:

Permutations Combinations

X Y EX X Y EX

12 34 3 i2 34 3
12 43 3 13 24 4
21 34 3 14 23 5
21 43 3 23 14 5
13 24 4 24 13 6
13 42 4 34 12 7
31 24 4

31 42 4

14 23 5

14 32 5 For Both Permutations and
41 23 5 Combinations
41 32 5

23

23
14

41
5 EX ( EX)
5

32 14 5 3 1/6

32 41 5 4 1/6

24 13 6 5 2/6

24 31 6 6 1/6

42 13 6 7 1/6

42 31 6

34 12 7

34 21 7

43 12 7

43 21 7

45



Appendix B

Values of 6 for Various Sample Sizes

Sample Small

e

Medium
e

Large
e

(2,3) .7254 1.6327 2.7726

(3,3) 1.0888 7.8783 2.9390

(2,4) .9631 1.7790 2.8554

(3,4) 1-2758 2.0195 3.0243

(4,4) 1.1418 1.8011 2.6854

(2,5) 1.1026 1.8765 2.9084

(3,5) 1.0745 1.7427 2.6354

(4,5) 1.0145 1.6175 2.4214

(5,5) .7871 1.3336 2.0546
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