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STATEMENT OF FOCUS

The Wisconsin Research and Development Center for Cognitive Learning
focuses on contributing to a better understanding of cognitive learning by
children and youth and to the improvement of related educational practiczs.

The strategy for research and development is comprehensive. It includes basic
research to generate new knowledge about the conditions and processes of learning
and about the processes of instruction, and the subsequent development of
research-based instructional materials, many of which are designed for use

by teachers and others for use by students. These materials are tested and
refined in school settings. Throughout these operations behavioral scientists,
curriculum experts, academic scholars, and school people interact, insuring

that the results of Center activities are based soundly on knowledge of

subject matter and cognitive learning and that they are applied to the im-
provement of educational practice,

This Technical Report is from the Quality Verification Program, whose
principal function is to identify and invent research and development stra-
tegies taking into account current knowledge in the field of statistics,
psychometrics and computer technology. The Quality Verification Program
collaborates in applying such strategies in research and development. The
translation of theory into practice and presentations of exemplars of

methodology are challenges which the Quality Verification Program strives
© to meet,
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Abstract

The area investigated in the present study is the compa:ison of the
permutation t-test with Student's t-test and the Mann-Whitney U-test. The
comparison wis made for small samples for three distributions including a
normal distribution, a uniform distribution and a skewed distribution.

The properties of each test compared were the probability of a Type 1
error and the power against a location-shift alternative hypothesis.

The present research indicates that the permutation t~test is an
acceptable statistical procedure for the two-sample problem for the normal
and uniform populations and suggests that it might be more desirable than
the traditional Student's t-test when sample sizes are proportional to the
means and the parent population is nonnormal and asymmetric. Further re-
search 1s needed before a more definite statement can be made about the
permutation t-test when sampling from nomnormal populations.
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INTRODUCTION

A frequently encountered design in educational and psychological re-
search is that which compares some characteristic of two populations.
The comparison is usually made by drawing a sample from each of two popu-
lations, obtaining a measure of some characteristic of each and testing
some function of the measures. 1f the experimenter desires to test the
hypothesis that the population mearz are equal, then a test statistic
commonly used is Student's t-test for two independent samples (Student,
1908). Student's t-test is the statistical procedure chosen most often
for the two-sample problem because of a general property of statistical
tests: power. The power of a statistical test is the probability éf Tre-
jecting the null hypothesis given that some aiternative hypothesis of in-
terest is true. Another general property affecting the choice of a sta-
tistical procedure is the probability of rejecting the null hypothesis
falsely, usually known as the probability of a Type I error. The level of
the probability of a Type I error is chosen by the experimenter hefore
the experiment takes place. If both populations are normally distributed with
equal variances and the alternative hypothesis of interest is that the
populations differ only in location, then Student's t-test has the highest
power of the available statistical procedures for this situation. Under
these conditions, the probability of a Type I error will be exactly the

level set by the experimenter.
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Thus, if an experimenter is sampling from normal populations with
equal variances, and testing a hypothesis of equal population mears against
a location-shift alternative, Student's t-test is the best statistical
test on the basis of power. However, if the populations from which the
samples -are drawn are not normal, or do not have equal variances, the
experimenter might be led to choose a statistical procedure other than
Student's t-test. The experimenter would specify the probability of a
Type I error and would want to choose the statistical procedure having
the highest power for his erperimental situation.

A general class of statistical procedures which do not assume normality
and which might have high power and an exact probability of a Type I error
for non-normal populations are those called distribution-free tests. These
tests are not entirely distribution-free because they assume a continuous
distribution, although it need not be normal. Two distribution-free tests
for the two-sample case are the Mann;Whitney U-test {Mann & Whitney, 1947)
and the permutation t-test. The permutation t-test is based upon a distri-
bution obtained by calculating the t-statistic for each permutation of the
data., The Mann-Whitney U-test is based upon the ranks of the observationms,
ratner than on the observations themselves. It is of interest to the
educational or psychological researcher to know the power of the permutation
t-test and the power of the Mann-Whitney U-test égainst a location-shift
alternative for the population with which hé is working. Knowing the power
and probability of a Type I error of the permutation t-test, the Mann-
Whitney U-test and Student's t-test for various populations will allow the

experimenter to choose one of the three statisticcl procedures.



For a normal popul:'ion it is of interest to know how much power would
be lost if the permutation t~£est or the Manﬁ-Whitney U-test were used‘
instead of Student's t-test. For a non-normal population, it is of in-
terest to know if the power of the permutation t-test or the Mann-Whitney
U-test is larger than the power of Student's t-tesﬁ. Thus, the populations
from which the experimenter could sample might be distributed as the normal,
uniform (non-normal but symmetric) and skewed (non-normal and asymmetric)
distributions. Knowing the power and probability of a Type I error for
the Mann-Whitney U-test, the permutation t-test and Student's t-test for
these populations would ullow the experimenter to choose one of these three
statistical procedures. The preseﬁt research compares Student's t-test,
the Mann-Whitney U-test and the permutation t-test on the probability of a
Type I error and the power against a location-shift alternative for the
normal, vniform and skewed populations.

The following review of the literature includes a discussion of hypo-
thesis testing in the. two~sample case and a detailed discussion of Student's

t-test, the Mann-Whitney U-test and the permutation t-test.

Review of the Literature
The two-sample problem is frgquently encountered in applied research,
Several hypotheses may be made for this design, depending upon the charac-
teristic of the population which the experimenter desires to test. If one
. desires to test differences between means, the null hypothesis to be tested
is that the population means are equal . However, if one desires to test

‘merely that the populations are different, then the null hypothesis to be
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tested is that the two independent samples were drawn from the same popu-
lations with the same distribution. 1In the present research, the popula-
ticns from which the samples ﬁere drawn ha§e been specified so the null
hypotheses of equal means and equal populations may be considered to be
equivalent. The extent to which this equivalence holds is dependent upon
the alternative under consideration. The alternative used in the present
research was that the populations differed only in location. Thus, the mean
of one population was of value U and the other population, shifted in
location by an amount 6, with © > 0, had a mean of p+6 . Thus, only one-
tailed tests are considered.

Many statistical procedures have been proposed to test hypotheses
of equivalent distributions or hypotheses pf equal means. Festinger (1946),
Fisher (1925), Kolmogorov (1941), Mann and Whitney (1947), Mood (1950),
Pearson (1911), fitman (1937a), Smirnov (1948), Wald and WOlfowité (1940),
and Wilcoxon (1945) have all given statistical procedures to test the
hypothesis of equivalent distributions. Student (1908) presented a statistic
whose sampling distributioncan be used.to test the hypothesis that the
means of two normal populations with equal variances are equal.

The statistical procedures included in the present research may be
classified on several dimensioné.. The most obvious classification scheme
is by the hypothesis to be tested, which may be classified by terms often
‘used erroneously--parametric and non-parametric. The error which is most
often made is that of confusion of the two terms non-parametric (describing

the problem) and distribution-free (describing the statistical method used
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to solve the problem while making no assumptions about the form of the distri-
bution from which the sample was drawn). Both parametric and non-parametric
problems may be solved by statistical methods which may or may not be distri-
bution-free, The Mann-Whitney U-test is used to test the hypthesis of equi-
Valeﬂt populations (non-parametric problem) and is a distribution-free
statistical procedure, The permutation t-testl(or Pitman test) is used
to test the hypothesis of equality of means (a parametric problem) and
is a distribution-free technique. Student's t-test is used to test the
hypothesis of equality of means (a parametric problem) and is not distri-
bution-free. Most distribution-free methods were developed for non-parametric
problems and in common usage ''non-parametric' is often substituted for
"distribution-free,"

Another relevant dimension of classification is the assumptions neces-
sary to use the test, One rule accbmpanying this dimension is that a
parametfic test in general is more pwerful (i.e., sensitive to change in
the factor being tested) than an equivalent non-parametric test if the

assumptions for both tests are met. The assumptions may be concerned with

the distribution from which the sample was drawn, the independence of the
observations or the scale of measurement. It was mentioned above that
Student's t-test is parametric. The assumptions for the t-test are:
independence of observations, normally distributed errors, equality of
variances, and measurement on at least an interval scale, The meaning-
fulness of the results of the t-test depends upon meeting these assump-
tions. If a researcher knows that certain of these assumptions cannot be

met in his experimental situation, the t-test may not be the appropriate
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statistic to be used because another statistic may have higher power than
Student's t-test., Most distribution-free tests assume independence of
observations and an underlying continuous distribution, but do not make
assumptions about the distribution from which the sample was drawn. Para-
metric tests are generally more powerful than their distribution-freel
counterparts if their assumptions are met., .However, it is logical fo
question what happens to ‘the statistical test if in fact the assumptions
are not met.

The invariance of the probability of a Type I error (@) when the
assumptions underlying the test have not been met is known as the robustness
of the test (Box and Andersen, 1955). Since parametric tests are most powerful

under normal theory assumptions, there is a strong temptation to use these

tests when the normality of the distribution is in question. Thus, there

has been considerable study of the robustness of parametric tests (Box, 1954a,
1954b, Box and Andersen, 1955) and, correspondingly, there has been consider-~
able study on.ﬁﬂé power of non-parametric tests, First, the robustness of
Student's t-test will be considered and literature pertaining to research

done on Student's t-test will be presented, Literature pertaining to the

power of the permutation t-test and the Mann-Whitney U-test will follow.

Student's t-test

Student's t-test is used to test the hypothesis of equél population
means for the two-sample problem if the populations are normal and have

equal variances, Student's t-test is most powerful against a location~shift

- alternative hypothesis. The test is performed by calculating the two-



independent-sample t-statistic

X -%Y
t = — — - -
\/Z(Xi—X)2+Z(Yi-Y )2 <l _1)
—_—
m+n - 2 mon

where X. is the mean of a sample of size m of Xi's and Y. is the mean‘of
a sample of size n of Yi‘é, and determining the probability of obtaining
a t-statistic larger than or equal to the original t-statistic by using
the tabled t-distribution with m + n - 2 degrees of freedom. If the proba-
bility is leés than or equal to the probability of a Type I error (usually
denoted by ) set by the experimenter, the null hypothesis is rejected.
Alternatively, the experimenter may check to see if the calculated t-
statistic is greater than or equal to the tabled t-value for the probability
of a Type I error and m + n - 2 degrees of freedom. Tables of t are in
most elementary statistics ﬁexts (see Hays, 1965).

"Most research relevant to the robustness of Student's t-test has
been done on the one-way analysis of variance, which is the k-sample exten-
sion of the .two independent sample t-test as introduced b& Student (1908).
Thus, the analysis of variance. research applies to Student's t-test.

Box (1954a) has shown that the one-~way analysis of variance, and there-
fore the two-sample t-test, is robust to violation of the assumption of
variance homogeneity if sample sizes are equal. If the sample sizes are
unequal, aﬁd the variances are also unequal, then the test will have a
probability of a Type I error which is smaller than o if the larger sample
is from.the population which has the largér variance. If the smaller sample

came from the population with.the larger variance, the test has the proba-

bility of a Type I error which is larger than a.
o ’




Considering the assumption of a nofmai population from which the samples
were drawn, Kendall and Stuart (1967, p.466) point out ;hat the independence
of the numerator and denominator of the t holds only for normal parent popu-
lations. 1If the samples are drawn from a non-normal parent pepulation,
the numerator and denominator of the t are not necessarily independent
and the dependence affects the probability of a Type I error. However,
for large sample size, if the parent population is symmetric or if the
samples are of equal'size, the t-test is robust to non-normal?ty. Thus the
probability of a Type I error is relatively unaffected. Gayen (1941, 1950)
found these same results. Srivastava (1958) found that the effect of non-
ﬁormality on the probability of a Type I error and power of the t-test was
not marked if ‘the skewness and kurtosis were small. Little is said of the
effect of non-normality of the parent population if the sample size is small
fof either equal 6r unequal ¢=mples, other than that the t-test should be
relatively robust. When sampling from-a normal distribution with small
samples, the power of the t-test may be calculated exactly (see Miltbn,
1966). In summary, Student's t-test is relatively robust to violation
of assumptions if certain conditions are met. However, in practice it.is
often difficult to decide if the use of the t-test is likely to be valid
or misleading. To aid in deciding on the use of the t-test, ﬁreliminary
tests have been suggested. The idea of using preliminary tests to determine
if the assumptions have been met has been soundly denounced as poor practice
(Box and Andersen, 1955) due to the fact that the preliminary test itself

then comes under question as to its power with respect to certain factors,
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Thus, we would be led to start a long chain of tests each designed to test
assumptions for the preceding one. Box and Andersen instead call for tests

which are robust and able -~ .t !

‘one without preliwinary «hecks on
their assumptions.

An alternative to tests which are robust to violations of their distri-
bution assumptions is the derivation of distribution-free statistical pro-
cedures which can provide answers té the questions of interest. Such statis-
tical procedures do not #Zssume the observations to be distributed normally,

but merely assume that tne distribution is continuous. The permutation

t-test is such a statistical procedure.

Permutation t-test

The permutation t-test is used to test the hypothesis of equal popu~
lation means for the two-sample problem if the populations are continuous.
The populations do not need to be normally distributed. The permutation
t-test is performed by completing the following sequence of events: obtain
all possible arrangements (permutations) of the observed data, compute the
two independent sample t-statistic for each permutation, arrange the t-
statistic in a distribution and determime the probability of.obtaining
a t-statistic larger than or edual to the original observed t-statistic
in this distribution. If the probability is less than or equal to the pro-~
bability of a Type I error (usually denoted by o) set by the experimenter,
the null hypothesis is rejected. Alternatively, the experimenter may check

to see if the original t-statistic from the observed data is greater than or

O
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vyuul Lne t—statistic which cufs off a-percent of the distribution in
the upper tail.

Many of the permutations obtained in the abawwe procedure yield the
same statistic. Since it is easier to obtain all msssible combinations of
m¢n divided into m and n, an& both procedures yiesdd rhe same probabilities'
for the statistic (see Appendix A), the permutation r-test may be based
on the distribution of the‘i-statistic calculated fier every possible
combination of the observed data. However, the wimile procedure depends
on the experimenter choosing a probability of'a'Tﬂ@E I error {p) which
divides (m;?) = (mn) !/ (min!} evenly.

Permutation tests are based on the fact that amy permutation of the
observations has an equal chance of occurrence im the distributiom of the
test statistic. The theoretical basis of the pexmutation t-test is pre-
sented in Scheffé, 1943, pp. 307-308. Simply stasted the basis is as
follows: the desired property for a statistical mmocedure which does not
assume normality of the population is that the stmtistical procedure must
always yield.a region of rejection which has the same probability under
the null hypothesis for every possible distributimm of measures.of interest.
Permutation testg guarantee this property because the distribution obtained
is based on the data, not on the population, and the probability of Fhe
rejection region is always o.

Before the literature on permmtation tests cam the evaluated, the power
of permutation tests must be considered. The power af permutation tests

may be generally thought of in two ways: ~first, as what will be called

10



an "unconditional power,"

and second, as a power conditional upon the ob-
servations. The conditional power of permutation tests was not used in the

present research and is included in the present discussion merely for

[y

comparative purposes. There are two types of conditional power of permu-
tation tests: the fixed cut-off point power and a more general power given
by Kempthorne (1952). The power used in research by Baker and Collier
(1966), Collier and Baker (1966), Kempthorne et al. (1961), and Toothaker
- (1967) was the conditicnal power known as the fixed eut-off point power.

In the fixed cut—off.point procedure the observations are permuted, a -
specified treatment effect (constant) is added to each observation aftef

the permutation, and the statistic is computed for each permutation. The
proportion of permutations with the statistic falling above the fixed

cut-off point, usually defined from normal theory for purposes of comparison
with normal theory tests, is the conditional power. The fixed cut-off

point power is dependent upon the observations. No sampling is done and
generalizations may not be made beyond the given set of observations.

Also, the fixed cut-off point power is a theoretical power for use primarily in
research on the power of permutation tests and 1s usually not obtained in
practice. Another conditional power of permutation tests similar to the
fixed cut-off point power is that operaticnally defined by Kempthorne

(1952, p. 219). 1In the Kempthorne procedure the observations are permuted,
.a specified treatment effect is added to each observation after the per-
mutation, and the statistic is computed for each permutation. Then for.

each permutation the statistic is tested via the permutation test: a




permutation ¢istribution of the statistic for observations plus treatment is
obtained, thé original statistic is compared to thié distribution and either
an acceptance or a rejection is made. The proportion of the original
permutations for which a rejection is made is the power. The conditional
power given by Kempthorne is also a theoretical power for use in research
on the power of the permutation tests and is not obtained in practice

due to the extensive calculations required.

The power of the permutation test which will be called "unconditional
power' in the present research is based upon random sampling. The rejection
region of the permutation test is conditional upon the observations for each
sample, but the power is the proportion of rejections over repeated sampling
from some population when the null hypothesis is false. The seemingly
illegitimate marriage of a test which was designed to be used on a set of
given observations with traditional sampling may be justified as follows:
the experimenter usﬁally wénts to generalize beyond the set of observations
in hand to some population of interest. If the experimenter is going to
use the permutation test, and wants to generalize in the usual way to the
population from which ke has sampled, it is of interest to know tﬁe power
of the pe;mutation test for repeated sampling from that population. Box
and Andersen (1955) point out the difference between unconditional power apd
conditional power of the permutation test:

Two alternative views of the nature of the inference
in the permutation test can be taken. These differ
in the conception of the population of samples from
which the observed sample is supposed to have been

 drawn. On the first view our attention is confined only
to that finite population of samples produced by

12



rearrangement of observations of the experiment. We :

prefer to adopt the second view which is that the samples

are regarded as being drawn from some hypothetical

infinite population in the usual way.
Thus, while the conditional power results from a population dependent upon
the observations, the unconditional power is based on random sampling from
some population. The obvious advantage of unconditional power is the
capability to go beyond the observed data to a population of the statistic
based on samples of the given size. The type of power of permutation tests
used in the preéent research is the unconditional power. Thus, the power
against the location-shift alternative of the permutation t~test as found
in the present research applies té any sample of a given size from a given
distribution. ‘

Permutation tests are difficult to perform due to the formidable labor
involved in calculating the stacistic for all possible permutations, so
this procedure was not considered practical until the advent of electronic
computers. Because of the lengthy calculations, normal theory tests are
used as an approximation for permutation tests even though the rationale
for the two types of tests is quite differént. The reason the approximation
was first suggested was that moment calculatiéns and empirical studies
demonstrated the two types of tests to be similar under cerﬁain conditions,
Most of the literature on permutation tests is on the analysis of variance
F~test, and very little is on the permutation t-test. However, results
for the one-way analysis of variance are generally applicable to the per-
mutation t-test. Fisher (1935) first introduced the permutation or randomi—

zation test as the exact tes: for testing for differenres between means of

13



two populations when assumptions were not met, Fisher pointed out that

the probability of a Type I error for the permutation t-test closely approxi-
mated the normal theory probability of a Type I error for the particular
problem with which he dealt. Pitman (1937a) was next to consider permutation
tests. TFor the two sample problems, Pitman introduc.d a test statistic,

w, which is a monotonic increasing function of t2,

1
wE — where N=mt+n, the combined
1+ N-2 sample size. (2)

Pitman (1937b) and Welch (1937) both derived basic results on the
permutation test for the analysis of variance for the randomized block and
Latin square designg. Both derivations for the analysis of variance held
for large sample size and were based on a comparison of moments of the test
statistic under normal theofy and under permutation. For the randomized
block design, Pitman (1937b) and Welch (1937) showed that the F-test may
underestimate the significance level if block variances were not equal.
However, if the number of blocks is large the underestimation is not serious.
Wald and Wolfowitz (1944) derived a general theorem on the limiting distribu-
tion of linear forms in the universe of permutations of the observations.
They showed that the distribution of the test statistic for the randomized
block design is asymptotically the F-distribution underlying normal theory
analysis of variance. For Pitman's test, and thus for the permutation t-test,
Wald and Wolfowitz showed that the distribution of the test statistic, w, is
asympfotically normal. Hoeffding (1952) found that permutation tests for
the randomized block design and for the two sample ﬁroblems are asympto-

tically as powerful as their related parametric tests. Thus the permutation
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test for the randomized block design is asymptotically as powerful as the
normal theory F-test, and the permutation t-test is asymptotically as powerful
as Student's t-test. Scheffé (1959, Chapter 9) summarized these and other
results on permutation tests.

Considerable research has been done on the F-test under permutation in
the analysis of variance for various designs, most of it empirical (see
Baker and Collier, 1966a; Box and Andersen, 1955; Collier and Baker, 1963;
Collier and Baker, 1966; Kempthorne, 1952; Kempthorne et al. 1961; and
Toothaker, 1967). The existing research shows that if the assumptions
are ﬁet and if sample sizrc 1s not small, the probability of a Type I error
and power of the permutation F-test is approximately the same as the pcower
of the normal theory F-test; i1f the assumptions are not met and if sample
slze is not small, the probability of a Type I error and power of the F-test
under permutation is still fairly close to that of the nermal theory F-test,
if the violation is not severe.

The study by Box and Andersen (1955) yielded an important result in
the study of permutation tests. Box and Andersen introduced a correction
for the normal theory F-test. When the degreés of freedom are multiplied
by the correction factor, the F-test with the corrected degrees of freedom
is an approximate permutation vest. The correction factor corrects for the
non-normality and heterogeneity of variance of the design. Extensions of
this correction procedure have been devised for multivariate situations by
Geisser and Greenhouse (1958). The correction factor of Box and Andersen

was used in an empirical study by Toothaker (1967) to investigate the
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joint effect of variance heterogeneity and block treafment interaction on
the F-test under permutation in the randomized block design.

As has been pointed out several times above, most of the research
on permutation tests is for large sample size: The present research deals
with the comparison of the permutation t~test with Student's t-test and the
Mann-Whitney U-test for the normal, uniform and skewed populationg for small
sample sizes.

The existing literature on the comparison between the permutation t-test
and Student’s t-test involves the comparison of the power of the two tests.
Since Student's t-test is the most powerful test under normal theory, the
powver of the distribution-free method, the permutation t-test, can be
compared to the poﬁer of the t-test 'to measure the loss in power when sampling
from a normal distribution. Several measures to compare the power of two
tests are available.

One measure to compare the power of two tests is the relative effi-
cieacy. The relative efficiency of two tests is defined to be the ratio
of the sample sizes necessary to attain the same.p0we; against the same
alternative, where the sample size in the numerator is that of the most
powerful test. Siegel (1956) multiplies the relative efficiency by one
hundred and calls it the powér efficiency, a more descriptive term. The
most commonly used measure is the asymptotic relative efficiency (ARE),
defined as the limiting relative efficiency of two tests against a sequence

of local alternative hypotheses as the sample size increases. The permutation
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t-test has an ARE of 1 when compared to Student's £~test for an alter-
native of location shift.

A disadvantage of the permutation t-~test is that its exact distribution
is tedious to enumerate by hand except for very small sample sizes. Also,
the distribution of the‘permutation t-test will be different for every
ser of actuai observations, which are random variables, making it impossible
to tabulate the exact permutation distribution of the permutation t-test.
With the advent of electronic compuﬁers, this disadvantagg has become less
serious. However, it is still desirable to be able to tabulate the distri-~
bution of the statistic for various sample sizes. Rank tests satisfy the
desire to be able to tabulate the distribution of the statistic for various
sample sizes. The Mann-Whitney U-test is a rank test for the two-sample

problem.

Mann-Whitney U-test

One way to remove the variability of the distribution of the test
statistic from one set of observations to another is to replace each ob-
servaticn, Xi’ with some value, Zi, for which the permutation distribution
of the statistic is the same for every sample of the same size. 1If these
values are chosen to maintain the order relations between two of the values,
Xl and XZ’ the ranks of the obsexvations are not the obvious choices. A

further desirable aspect of the ranks is that they ére invariant under any
ﬁonotonic transformation of the variable. Therefore, we consider some

function of the ranks of the observations. We define the rank of the ith
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observation to be its position in the set of the ordered observations, with
the smallest receiving the lowest rank. The ordering of the observations,
Xi’ is one of the N! possible permutations, and the ordering of the ranks,

Z,, is a permutation of the integers mne to N. The function of the ranks

1’
which has theoretically desirable properties (see Kendall and Stuart, 1967)
is the sum of the ranks of one of the samples R= g Zi’ where the ranking is
done over the total sample. The Mann-Whitney U—:;itistic is based on
such a function. The Wilcoxon and Festinger tests are functions of the
U-statistic and thus may be considered equivalent tests.

Rankltests‘such as the U-statistic are permutation tests. Although
few authors point out the fact, many of the rank tests when calculated in
their small sample or exact form are permutation tests on the ranks of
the observations (see Kruskal and Wallis, 1952, and Wilks, 1962). The rank
permutation test exists for not only the two independent sample case but
for tbe two related sample, k indepcndent sample,and k related sample cases.
Rank permutation tests also exist for hypotheses of independence (see
Hotelling and Pabst, 1936; Kendall and Siuart, 1967; Pitman, 1937a; and
Wald and Wolfowitz, 1943). Although only the two independent sample case
is considered in this research, future research is planned for the re-
maining cases.

Specifically, a rank-permutation test exists for the Mann-Whitney
U-test. The U-test could be completed for any set of observations by per-
formihg a permutation test on the ranks of the observations. The probabi-

lities for possible values of U for a given sample size can be calculated

by performing .11 possible permutations of the ranks for one sample of size
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n(Xl.....Xn where Xi is the ith observation) and the other sample of size
m(Y1 ..... Ym where Yi is the 1D observation) and tabulating the proportion
of times a given U value appears.

The Mann-Whitney U-statistic can be defined for a given n and m as the
number of times Y rankings exceed X rankings or

)

0 otherwise

. hij where hij =

[ef
[
[ae]
temg

{-+1 if Y, X

The calculating formula as given by Mann and Whitney shows the relation

between the U statistic and the sum of the ranks:

m(m+l)
U=nm+-—2——~-Rm (4)
or
n(n+l)
U=nm+—-——i—- -Rn (5)

where Rn 1g the sum of the ranks of the n observations in the first sample
and Rm is the sum of the ranks of tlie m observations in the second sample.
The smaller of (4) and (5) is the tabled value, and the null hypothesis is
rejected in favor of the location-shift altermative if values as large

or larger than the tabled value are found. Tables now exist for the U-test
for probabilities .0005, .005, .0025, .001, .01, .025, .05, and .10 for

m < 40 and n < 20 (milton, 1964), and the néed for exact calculations via
permutation does not exist for small samples. For larger sample sizes,

the normal approximation is ordinarily used where:
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nm

E(U) =

and

nm (n+mt1)

VAR(U) = 12

The use of the U-statistic is covered in many elementary statistical tests
(see Hays, 1965, and Siegel, 1956) and appears to have heavy usage in all
areas of research (see Savage, 1962).

The literature on the Mann-Whitney U-test also includes power comparisons
involving the ARE, as was discussed sbove when comparing the permutation t-
test to Student's t-test. As mentioned above, Studeﬁt's t-test 1s the
most powerful test in the “wo-samplie case if normal theory conditions are
met. Therefore, the power of the U-test is necessarily less than that of
the t~test for normal theory assumptions. Hodges and Lehmann (1956) have
shown that the ARE of the U-test as compared to Student's t-test for a
‘normal distribution is .95 and may never be less than .864 when the locatioun-
shift alternative is considered. Hodges and Lehmann also report that the
ARE is equal to unity for the uniform distribution. Wetherill (1960) re-
ports that for a gamma distribution with one degfee of freedom the ARE
is three and for an Edgeworth population with skewness measure Y1 = .67
the ARE is unity. So, for non-normal distributions the asymptotic com-
parison of the power of the U- and t-test shows that the power of the
U can be considerably better than that of the t, egpecially if the dis-

tribution is not symmetric.
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Small sample power functions for the Mann-Whitney U-test have been
derived for several distributions and computations done for at least a
few sample sizes. Most of the literature deals with the small sample power
of the U~test for the normal distribution and the locatien-shift alterna-
tive. Milton (1966) computed extensive tables of the power of various
non—param;tric tests against the shift alternative for the normal distri-
bution and offered a direct comparison with the power of Student's t-test.
The table of the power of the U~test covers all possible sample size combi~-
nations of myn from 2,1 up to 7,7 for various values of 6 . Dixon (1954)
and van der Vaart (1950) also have dealt with the power of the U-test and
the normal shift alternative. Milton, Dixon and van der Vaart all show
that the small sample power of Student's t-test is close to that of the Mann-
Whitney U-tést for the normal shift alternative. Gibbons (1964), Haynam
and Govindarajulu (1966), and Lehmann (1953) have all dealt with the power
of the U-test for distributions other than the normal and/or alternative
other than location shift. Glazer (1964), Pratt (1964), and van der Vaart
(1961) investigated the effact of differences in population variances on
the probability of a Type I error of the Mann-Whitney U-test and Student's
t-test. The probability of é Type I error of the U-test was less affected
by variance differences than the t~test if sample sizes were unequal, but
the t-test fared better than the U~test if m=n. Glazer {1964) reported
that the small sample power of the t-test was larger than the power of the
U-test if m=n or 1f there were no variance differences. Thus, the U-test
is relativel& robust to variance differences if m¥n, when compared to the

t-test.
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Considerable research has been cited above on the power and probability
of a Type I error of Student's t~test, the Mann-Whitney U~test, and the
permutation t-test. Most of this research has been asymptotic, with excep-
tions being swall sample probability of a Typé I error and power of the U~
test for selected distributions and alternatives, and the small sample
probability of a Type I error and power of the t-test for normal distri-
butions with the shift alternative. There has been essentially no system~
atic research done on the small sample probability of a Type I error and
the power of the permutation t-test for any distribution. The present
research investigates empirically the small sample probability of a Type
I error and the power of the permutation t-test for normal, uniform and
skewed distributions with a location-shift alternative. The prokability
of a Type I error and power of the Mann~Whitney U-test and Student's t-test
are also calculated empiricaliy for comparison purposes and as a check on
calculations.

After a general restatement of the problem, Chapter II covers the
definition of the power as used in the present study, the procedures for
obtaining the power in the computer program used and definitions of the

populations.
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1T

NATURE AND STRUCTURE OF THE PROBLEM

The area investigated in the present study is the comparison of the
permutation t~test with Student's t-test and the Mann-Whitney U-test. The
comparison was made for small samples for three distributions including a’
normal distributdon, a uniform distribution and a skewed distribution.

The properties of each test compared were the probability of a Type I
error and the power against a location-shift alternative hypothesis.

Power is generally defined as the probability of a rejection if the
altermative is true. More specifically, if X is an observed sample point, W
is the critical region of the test, H0 représents the null hypothesis of
equal population means, and Hl represents the location-shift alternative,

then

P(Xew|H°) a

aund p(Xgm|Hl) 1-8 = power

where o 1s the probability of a Type I error and B is the probability of

a Type II errox. The choice of w, the critical region, and X, the sample
point, depends on the test under consideration. For specific definitions

of the power of Student's t-test, the Mann-Whitney U-test and the permu-
tation t-test, the sample point and the critical region must be given in the
definition for each. The power of the three statistical procedures in the

present study is the unconditional power which is based on random sampling

from some population. However, it should be pointed out that the rejection

23



regions for che Mann-Whitney U-test and Student's t~test are mot conditional
on the data for any population as is the rejection region for the permuta-
tion t-test.

For Student's t-test, a normal theory test, W is ‘hosen as the top
100a-percent of the theoretical t distribution. The obgerved sample point,
X, is the two-independent sample t-statistic given in (1), above. The
test is given by rejecting Ho if t is contained in the rejection region,
W ., otherwise failing to reject Ho. The power 1s them the proportion
of rejections over an infinite number of samples and tests of Ho, when the
location-shift alternative is true.

For the Mann-Whitney U-test, a permutation test on the ranks of the
observations,  is chosen as the top 100a-perceat of the distributiom of
U obtained by calculating U for each permutation of the ranks of the ob~
servations. The observed sample point, X, is the U-statistic for the
observed data, an& the test is given by rejecting Ho if the U from the
observed data is contained in the rejection region, w, othevrwise failing
to reject Ho. The power is the proportion of Tejections over an infinite
number of samples and tests of Ho’ when the location-shift alternative
is true.

For the permutation t-test, a pefmutation test on the observat;ons,

w 1s chosen as the top 100c-~percent of the distribution of t obtained
by calculating t for each permutation of the observations., The observed

sample point, X, is the t-gtatistic given by formula (1), and the test is




given by rejecting Ho if the t from the observed data is contaiped in the
rejection region, w, otherwise failing to reject. Then, the power is the
proportion of rejections over an infinite number of samples and tests of
H , when the location-shit* alternative is true.

From the sbove definitions of the unconditional power of Student's
t-test, the Mann~Whitney U-test and the permutation t-test, procedures
were developed for obtaining estimates of the power and were implemented .
in the computer program used in the present research. For all three
statistical procedures the sampling part of the power procedure was identical
and the statistics were all computed on the same observations. A random
sample of size n was drawn from a population with mean u‘and a second
random sawple of size m was drawn from a population with mean y+8 . Both
populations were identical except for the location parameter. For Student's
t-test, the t~statistic was computed and the null hypothesis of equal means
was rejected if the value of the t-statistic was larger tban the tabled
100a-percent value from the t-distribution with min-2 degrees of freedom.
The sampling and computation was done 1000 times and the proportion of
rejections yielded an estimate of the power.

For the Mann-Whitney U~test, the same observations as were used for
the t-test were ranked and the U-statistic computed on the ranks of one of
fhe samples. The ranks were then permuted and the U-statistic computed
for every possible permutation. The original U-statistic was then compared
to the distribution of U-values obtained from the permutations and if the

original U~statistic was in the 10Q0~percent rejection region the null
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hypothesis of equal means was rejected. The sampling and computation
was done 1000 times and the proportion of rejections yielded an estimate
of the power,

For the permutation t-test, the t-statistic was corputed for the
original observations. The observaticns were then permuted and the t-~
statistic computed for every possible permutation. The original t-statistic
was then compared to the distribution of t-values obtained from the permu-
tations and if the original t-statistic was 1in the 100u~percent rejection
reglion the npull hypotﬁesis of equal means was rejected. The sampling
and computation was done 1000 times and the proportion of rejections
ylelded an estimate of the power.

When © was equal to zero, the proportion of rejections obtained in the
three procedures outlined above was an estimate of the probaﬁility of a
Type 1 error for the statistical procedure.

The empirical power and probability of a Type I error for the permu-
tation t-test, Student's t~test and the Mann-Whitney U~test were obtained for
normal, uniform and skewed populations. The three distributions of interest
were obtained by use of randem number generators and a digital computer.

To obtain results for the normal population, random samples of size m and

n were drawn from the unit normal distribution N(0,1), by use of a random
number generator, RANSS (see UWCC User's Manual), and the Control Data 3600
computer. RANSS generates random standard normal deviates by a method
which uses pseudo-random odd integers distributed uniformly in the interval

(0,243). The uniformly distributed numbers are generated by. a power-residue
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method (Hull and Dobell, 1962). The procedure uses a starting integer
value, Xo, specified by the user, an integer, a=513, and another integer,
m-243, cailed the modulus. A Sedquence, Xi, of non-negative integers is
then defined by the congraence relationship:

13

X = 577X, ;(wod 243), or in general

i

The method described above is called a power residue method of generating
random numbers. The power residue method meets all statistical require-
ments, i.e., independence of suqcessive values, and numbers distributed as
desired as determined by a chi~square test, and it also meets the require~
menta of a long series of numbers without repetition (see Hull and Dobell,
1962, and IBM, 1959). The power residue method is considered to be satis-
factory if it is used corrvectly (IBM, 1959). A series of numbers produced
by a pseudo~random number generator will eventually repeat. Proper use of
the power residue method involves choosing the starting value, XO’ the multi-
plicative constant, a, and the modulus, m, so that they have qualities which
yield a long series, xia The following limitations, when placed upon the
Parameters of the congruence gelation (6), will yield the lougest series
of nuwbers, which will also have good properties statistically:

a) choose m=2b
b) Xo must be odd and relatively prime to va
c) a must be of the form a=8c+3, or at3=8c or c=(a+3)/8

must be an integer.
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If the above limitations are placed on the parameters of the congruence
relation (6), the generator will produce 21"'2 terms before repeating. The
RANSS generator has w=2%43, and a=513 yhich meet the sbove requireme..ts be-
cause c-(513+3)/8 is an iateger. The choice of Xo odd and relatively
prime to 243 wi11 yield a series which has 241 pseudo~random numbers before
repeating. Thus, on the order of eight billion numbers may be produced

be:ore repeating, which is deemed adequate for the present study.

The random normal generator, RANSS, then uses the X, values to form

i
a normally distributed random variable. If Xi is the ith variable and
n
S= I X,, then Y= Snﬁnu is distributed normally with mean=0 and variance
?ogep 1 oVl

= 1, N(0,1), as n approaches infinity due to the Central Limit Theorem (see
Mood and Graybill, 1563). '

With n>16, the approximation of Y to N(0,1) is adequate. Thus, n
is taken equal to sixteen, the multiplication and reduction (mod 243) is
Trepeated sixteen times and the variable Y is returned as the pseudc-random
variable distributed N(O0,1).

The analysis for the rectangular population was begun by drawing random
samples of size m and n from the unit unifqrm distribution by use of the
random number generator RANF (CDC, 1966). RANF generates random numbers in
the interval (0,1) by utilizing a power residue method similar to that
described above. The parameters of the congruence relation (6) are as
follows: mr247 and a=515. The parameters of RANF meet the requirements

above if the starting value is an odd integer and relatively prime to 247.

A sequence of non-negative integers is defined by:
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= <15 3 47
X =57X ;(mod 2%") (7

which are uniformly distributed in the interval (0,247). To obtain floating
point numbers distributed in the interval (0,1), the value of Yi=(xi+l)/267
is calculated and returned to the yser.

The pseudo-random uniformly distributed numbers returned by RANF were
then scaled so that the variance of the population would be unity, the same

as the variance of the normal population. The variance of a uniform distri-

bution is given as

2. (ab)?
12 (8)

where a and b are the limits of the distribution.

To obtainv02=1, (a—b)2 must equal twelve and a~b must equal the square
root of twelve. RANF returns values distributed uniformly in the interval
(0,1). 1If each value returned is multiplied by VI51=3.46, then the value
returned will be distributed uniformly in the interval (0,3.46) and the
variance will be approximately one.

The skewed population was derived from a chi-square Qistribution with
three degrees of freedom. The first three moments of the chi-square distri-~
bution are v, 2v, and 8v, where v is the degrees of freedomb(Kendall and

Stuart, 1967, p. 370). The skewne@s measure
2

v \[3 )
2
is then approximately 1.633 for the chi-square with three degrees of free~

dom. The distribution is unimodal with a positive skew and mean and variance

of thrée and six, respectively.
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Since a chi-square variate with N degrees of freedom is defined as

N /Y - u\2 N
17 M2 2
) = 151( . ) =i 4 (10)

where Zi is distributed N(0,1), the sum of squares of N unit normal variables
is distributed as chi-square with N degrees of freedom. A chi-square
variable with three degrees of freedom was generated by calling the unit
normal random number generator, RANSS, three times, squaring each unit

normal variable, and summing.

The pseudo-random chi--square distributed numbers were then scaled so
that the variance of the gkewed population would be unity, the same as the
variance of the normal population. The variance of a chi-square distri-
bution with three degrees of freedom is six, so each chi-square value
was multiplied by C=1/V6: yielding a skewed population with mean equal to
3/46, and variance equal to one. The skewness measure Yl is still equal to
1.633.

Tne above generation techniques yielded variates distributed as a
normal distribution, a uniform distribution and a skewed distribution,
respectively, |

To obtain results for the probability of a Type I error for the above
distributions the values of the probability of a Type I error were chosen
for sample sizes such that a=k/ (é:n) » Where k is chosen such that a is
close to .05 and o < .05 if possible. - By choosing theoretical values of
the probability of a Type I error in this manner, the empirical probability

of a Type I error will vary greatly with sample sizes, but will be much
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more accurate for a given pair of samplé eizes than had the probability of a
Type 1 error been chosen such that o< .05 for all sample sizes. A4lso,

~ certain values of the sample sizes, such as samples of sizes two and three,
could not possibly yield values of theoretical probability of a Type I

error less than .05 and would have had to have been left out of the study.
Such‘chéice of the theoretical probability of a Type I error alsé made the
specification of the power considerably easier, since the exact pfobability
of a Type I error and thus the exact critical value could be obtained.

To obﬁain the results for the power for the three statistical pro-~
cedures, 6 > 0 was defined such that the levels of power of Student's t-
test would be .30, .60, and .90 for the normal distribution. The defined 0
was used for all three statistical procedures and for all three distri~
butions.

Specification of 6 for the normal distribution was made through
the definition of the non-centrality parameter,.Gz, for the non-central
t-distribution as given by Scheffé (1959, p. 41),

0262 = '3l y (11)

where ¥ is the column vector of contrasts on the cell means, WU, and uz,

1
and B = -;§'$ where t is the variance of the desired contrast. Since

o}
the t-test deals with the difference-between means, the contrast desired

is lJl -uZ’

80 _ ¥ = w, = (ul-uz)
. )
bee (373)
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then B = (']-' + -i'-)

, -1
37! - (l + -l>
m n
2.2 1+ 1\
and 078" = (u;=py) - o TRECTPY
2.2 _ (uy-p,)?
or 06< = 17 Ho/ (12)

Setting 02=1, and solving for ul—uz'in terms of § yields

17 0L L
m n

) ) (13)
Several FORTRAN subprograms were used to obtain the valpes of 6,

which were utilized in the main program. First, the exact t-value was
obtained for the exact probability of a Type I error for given sample sizes
through use of a subprogram written to compute exact probabilities for the
F-distribution (see Baker and Collier, 1966b). The obtained t~value and
the desired probability of a Type II error (l-desired power value) were
used in another subprogram written by Milton (see UWCC User's Manual under
"New Subprograms") to yield the appropriate non-centrality parameter, § ,

for those sample sizes. Given §, m and n, the value of 8 was computed.

'The power results could be obtained by drawing one of the samples from a
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distribution with mean y + 6 and the other from a distribution with mean H.
One method for achieving the desired result would be to alter the random
number generators. However, it was not necessary to alter the random
number generators to sample from populations with means u + 0 for the
following reason: if a constant 6 is added to every score in a distribu-
tion with mean u,.the mean of the new distribution is simply py + 6. Thus,
by sampling from a distribution with mean p and adding the.defined 6 to
each value obtained, the result is the same as if sampling had been done
 from a distribution with mean u + 6. For the normal population, 6 + ¥y
because Up=0. The samples drawn for the power results were as if they
had béen drawn from the normal distributions N(0,1) and n(6,1), from the
rectangular distribution f2(x) and f1(x+0) and from the skewed distribution
f2(x) and £} (x+0), where 0 is defined as in (13) above. Thé values of
© for all sample sizez considered in the present study are given in
Appendix B,

The sample sizes considered in the present research are the nine
arrangements of (2,3), (2,4), (2,5), (3,3), (3,4), (3,5), (4,4), (4,5) and
(5,5). These sample sizes were part of a larger set originally chosen
because of existing exact probabilities of the Mann-Whitney U-statistic
in table form. Consideration of computing time and programming difficulty
then narrowed the range of sample gizes to the above set.

The empirical small sample power and size for the permutation t-test,
Student's t-test and the Mann-Whitney U-test were obtained by means of a
computer program written for this.purpose by the author. The progrgm

MONTE1 was written in FORTRAN and was run on the Control Data Corporation
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3600 computer. For a given sample size the program is designed to draw
samples from the appropriate population, add the specified 6 (null or non-
null) to the data, complete the permutation procedure for the U-test and the
permutation t-test, complete the normal theory teét for Student's t-test

by use of the appropriate wvalue. from the t-distribution. The program is
designed to then repeat the entire procedure 1000 times. The number of
samples to be drawn was determined strictly by consideration of the computing
time involved. The number lOQO was the largest possible number of samples
which could be anal&zed without using an inordinate amount of computer

time. After the 1000 samples have been drawn, the program is designed

to then print out the estimated probability of a Type I error and power

of each of the three tests for the given sample size. In addition, it

was thought advisable to check for influence of the size of the sample

to which the @ wasladded, 8o two sets of power values are printed, one

set for 6 being added to the larger of the two samples and one set for 6

being added to the smaller of the two samples,
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III

RESULTS

Probability of a Type I Error

The empirical values of the probability of a Type I error of Student's
t-test, the Mann-Whitney U«test; and the permutation t-tegt for various
small sample sizes from the previously specified normal, ﬁniform, and
skewed populations are/given in Table 1 as evidence verifying the Monte
Carlo procedures. The theoretical probability of a Type L error is given
as . Only two empirical values of the probability of a Type I error in
Table 1 were larger than that expected from sampling variability. For
sample size (4,4) froﬁ the skewed pgpulation, the values of .044 and .044
for the Manr-Whitney U~test and the permutation t-test were more than zop
larger than .0286, the theoretical o, For equal sample sizes from the
skewed population, there was a treﬁd of empirical values of the probability
of a Type I error for the Mann-Whitney U-test and the permutatiqn t~test
which were larger than both the theoretical o, and the value for Student's
t-test. Also, for unequél sample sizes from the skewed population, the
values for the Mann-Whitney U-test and the permutation t—teét followed the
opposite trend; that ia, they were less than the theoretical g in four
of the six cases and less than the value for Student's t-—test in five of
the six cases. .

The remaining values of the empirical probability of a Type I error

were within the bounds of sampling variation, and there were no other
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TABLE 1

The Empirical Probability of a Type I Error for Three Two-Sample Statistics,
for Three Parent Populaticus, and for Various Sample Sizes (the values in
the table are the proportion of rejections in 1,000 random samples)

Sample Sizes Statistical

and o Test Normal Uniform Skewed
o_ Values -
P -
(2,3) .10 Student's t .105 .109 .104
Mann-Whitney U .109 .1G5 .094
cp = ,0095 Permutation t .109 .105 .094
(3,3) .05 Student's t .055 : .056 .046
Mann-Whitney U .056 .051 .053
cp = 0069 Permutation t .056 .051 .053
(2,4) .0667 Student's t .079 .072 .073
Mann-Whitney U .074 .065 .059
op m 0079 . Permutation -t 074 .065 .059
(3,4) .0286 Student's t .034 .037 .033
Mann-Whitney U .031 .027 .028
op = ,0053 Permutation .t 031 - .027 .028
(4,4) .0286 Student's t .029 .025 .’039a
Mann-Whitney U .029 .021 .044a
Up = ,0053 Permutation t .029 .021 .044
(2,5) .0476 Student's. t .046 .043 .055
Mann-Whitney U .049 .050 .043
Up = ,0067 Permutation t .049 .050 .043
3,5) .0357 Student's t .038 .034 .047
Mann~Whitney U . .039 .036 .041
Up = ,0059 Permutation -t «.039.. «Q36 .041
4,3 " .0317 Student's t - .026 .037 .035
Mann~-Whitney U . .026 .033 .040
Up = ,0Q55.. -Permutation .t . .024 +032 .039
G3,5) .0476 Student's . t .055 .054 .045
Mann-Whitney U .055 .050 .050
op = 0067 Permutation t «055 052 .050

8The observed empirical probability is more than ZUP from Q.
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congistent trends evident in the empirical values. The equality of the
empirical vélues in Table 1 for the Mann-Whitney U-test and the permu-
tation t-test for all sample sizes other than (4,5) and (5,5) is due to
the fact that when the number of combinations is small, the rejection
region for both tests contains a very small number of points. Thus, only
a few combinations of the data result in a rejection with the permu-—
tation t-test, and the same exact combinétions are the ones which yield
vrank sums large enough to cause a rejection with the U-test. When the
sample size gets larger, such as (4,5) and (5,5), there are more points
in the rejection region, therefore the chance of a combination of the

data to reject on one test and not on the other.

Power

The values of the empirical power of Student's t-test, the Mann-
Whitney U-test, and the permutation t-~test for various small sample
sizes from the previously gpecified normal, uniform, and skewed popu-
lations afe presented in Table 2. As was the case with the pfobability
of a Type I error, the values of empirical power for the permutation t-test
and the Mann-Whitney U-test are identical within each population for
sample sizes smaller than (4,5).

‘For the normal and uniform populations, the power of Student's
t-test was generally larger than the power of the permutation t-test
for both the "small" and "large sampie addition procedure" and for all
sample siges. Of the 108 cases available (three levels of 0, nine sample
sizes for the large and small sample addition procedures for each of two
populations) there were 102 cases.where the power of Student's t-test

was larger than that of the permutation t-vest and 37 which were larger
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than expected by chance with large differences occurring for the uniform
distribution. Of the six cases where the power of the permutation t-test
was larger than that of Student's t~test, two occurred for sample size
(5,5). Also, for sample sizes (4,5) and (5,5) the power values of the
permutation t-test were generally closer to those of Student's t~test
than was true for the sﬁaller sample sizes. For sample sizes (4,5)

and (5,5) the values of empirical power of the permutation t-test were
usually larger than these of the Mann-Whitney U~test.

For the "large sample addition procedure" when sampling from the
skewed population, the empirical power values for the permutation t-test
were greater than those of Student's t-test for fifteen of the twenty-
seven cases avallable (three levels of 0, nine sample sizes). The
seven differences which were larger than expected from sampling variation
were for umnequal sample sizes with either the small or mediui levels of
power. For example, for sample size (2,3), with small 6, thé values
+354 for the permutation t-test and .309 for Student's t-test are more
than 20p apart and thus are most likely due to something.other than
sampling variation. Other large differences occurred for sample size
(3,5) with small and medium §. For samples of equal size < (3,3),
(4,4), (5,5) < or near equal size < (3,4), (4,5) < the differences between
the power values for Student's t~test and the permutation t—test were
small.

For the "small sample addition procedure" wﬁen sampling from the
skewed population, or when the smaller sample came from the skewed popu-

lation with the larger mean (u + 8), the empirical power values for the
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permutation t-test were greater than or equal to those for Student's
t-test for only six of the twenty-seven comparisons available. In fact
thirteen of the twenty-seven comparisons showed a larger~than~sampling-

- varlation difference with Student's t-test having the larger power value.
The differences in favor of Student's t-test were the largest for unequal
sample sizes, and only for equal sample sizes (3,3) and (5,5) did the
power values of the permutation t-test approach of exceed those of

Student’'s t~test.
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SUMMARY AND CONCLUSIONS

The results presented above for the permutation t-test show that the
empirical probability of a Type I error for repeated sampling from a
normal or uniform population was generally close to the theoretical oO.
The empirical probability of a Type I error for repeated sampling from
the specified skewed population was generally close to the theoretical o
but showed one sample size which had inexplicably divergent results
for the permutation t~test and the Mann-Whitney U-test. This discrepancy
was part of a trend of other discrepancies which were within the bounds
of sampling variation. The empirical results for the power showed that
the permutation t-test generally had smaller power than Student's t-test
for the uniform and normal populations. For the skewed population the
permutation t-test generally had higher power values than Student's
t-test if the larger sample were drawn from the population with the larger
mean (M + 8)., If the samples were of equal size, the permutation t-test
generally had power values which were close to those of Student's t-test
but did not exceed them. However, if the smaller sample were drawn
from the skewed population with the larger mean (u + 8), then the power
values of Student's t-test were larger than those of the pexmutation
t-test. For all three populations, the power of the permutation t-test
approached that of Student's t-test as sample size increased, even
for samples as small as (4,5) and (5,5). The increase in power was more
rapid for the permufation t-test than for the Mann-Whitney U-test, and the
power of the.p.rmutation t-test was always greater than or equal to that

of the Mann-Whitney U-test.
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Using Student's t as the test statistic for the permutation test
for the two-sample problems gives a statistical procedure which not
only has ARE of one for the normal population but has very- close agreement
with Student's t-test for small samples. The agreement is indicated by
the closeness of values of empirical poﬁer and probability of a Type I
error for the permutation t-test when compared to those of Student's
t-test for the normal population. Although similar results show that
the permutation t-test is in close agreement with Student's t-test
for the uniform population, the empirical power of the permutation t-
test for the skewed population showed that the permutation t-test could
have higher power than Student's t-test if the sample sizes were propor-
tional to the population means when the parent population has the spe-
cific ske&ed distribufion with Y, = 1.633 and Y2 = 4. The present study
also gives further support to the knowledge that Student's t-test is
generally robust to the violation of the normality assumption, even for
very small samples. '

The present research indicates that the permutation t-test is an
acceptable statistical procedﬁre for the two-sample problem for the
normal and uniform populations and suggests that it might be ﬁéfe desirable
than the traditional Student's t-test when sample sizes are proportional
to the means and tﬁe parent population is nonnormal and asymmetric.
Further research is needed before a more definite statement can be made

about the permutation t~test when sampling from nonnormal populations.
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Appendix A

An'Example on Permutations and Combinations

For example, consider m™n=2 and IX as the statistic:

Permutations Combinations
X Y zX X Y X
12 34 3 121 34 3
12 43 3 13] 24 4
21 34 3 14| 23 5
21 43 3 231 14 5
13 24 4 24| 13 6
13 42 4 341 12 7
31 24 4

311 42 4

14 23 5

14 32 5 For Both Permutations and
41 23 5 Combinations
41 32 5

23 14 5 X [ p( 2X)
2| 1|1 3| /6
32| 41 |5 4 1/6
24| 13 | 6 3 2/6
24| 31 | 6 6 1/6
52| 13 | 6 7 1/6
42 31 6

34| 12 |7

34| 21 )7

43 12 7

43 21 7
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Appendix B

Values of 6 for Various Sample Sizes

Sample

Small Medium - Large

Sizes. e 8 )

(2,3) .7254 1.6327 2,7726
(3,3) 1.0888 1.8783 2.9390
(2,4) .9631 1.7790 2.8554
(3,4) 1.2758 2.0195 3.0243
(4,4) 1.1418 - 1.8011 2.6854
(2,5) 1.1026 1.8765 2.9084
(3,5) 1.0745 1.7427 2,.6354
(4,5) 1.0145 1.6175 2,4214
(5,5) .7871 1.3336 2.0546
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