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MISSING AT RANDOM - WHAT DOES IT MEAN?

Donald B. Rubin
Educational Testing Service

Abstract

Most articles on missing values assume the missing data are "missing at

random" and ignore the proceSs that "caused" the missing values. The condition

under which this procedure is justified is explored here: the concept of

missing at random is precisely defined, several examples are discussed, and

two simple conditions are given which are sufficient to assure that the missing

data are missing at random.
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Donald R. Pubih
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1. "Missing at ;random" as Used in the Literature

In many articles on missing values there is an assumption either implicit

or explicit that the missing data are "missing at random" in the sense that

the process that caused the missing values can be ignored. In some articles

such as those concerned with the multivariate normal (Afifi & Flashoff,

Anderson, 1957; Hartley & flocking, 1971; Hocking & Smith, 196: Wilks, 192),

"missing at random" seems to mean that each item in the data matrix is equally

likely to be missing. In other articles such as those dealing with the analy-

sis of variance (Hartley, 1956; Healy & Westmacott, 1956; Rubin, 1972;

Wilkinson, 1958), "missing at random" seems to mean that observations of the

dependent variable are missing without regard to the actual values that would

have been observed. Similarly, "missing at random" apparently can mean missing

according to a preplanned experimental design (Hocking & Smith, 1972.; Trawinski

& Bargmann, 1904).

The objective here is to explore the specific assumptions that need to be

made in order to ignore the process that caused the missing values when inves-

tigating the density of the data. More specifically, the approach will be to

examine the likelihood function of the observed data and the observed pattern

of missing values and then to specify the condition under which solutions

(e.g., maximum likelihood estimates and sampling distributions, Bayes posterior

distributions) based on this likelihood agree with those based on the marginal

likelihood of the observed data.
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Notation and a Definition

V
Lei. P be a probability density function for a real-valued vector

0

random variable V of order k , where 6 is a vector parameter which lies

in an open parameter space CZ . A sample realization of V is the data.

enerally k = pn where p = number of "variables" and n -= number of "units."

We assume that the data analyst's primary objective is the investigation of

this density (e.g., estimating 6 , testing hypotheses about 0 , estimating

a posterior density for' -6 ). Let W be a 0-1 indicator random variable of

length k , and let pviw be the joint probability density function for V

and W where E:12 is the vector parameter for this density. A sample

realization of W will indicate the missing values in the data. We have,

V

w

V W

ti

of course, that where / is the integral over the W
e

/pyrandom variable. We also define
4:1/ pV,W

to be the conditional

density of the missing value indicator given the data where 4)E/ .

Let v,w be a sample realization of V,W . If wi . 1 , vi is an

observed scalar random variable and thus is a real number. If w. = 0 , vi

is an unobserved scalar random variable. Thus v is composed of k-m real

numbers and m unobserved scalar random variables, where m is the number

o ,

of missing values. Let v Indicate the m -vector of unobserved random

variables in v , i.e., the missing data.

The likelihood function of all observables, that is, the indicator

variable and the observed data, is

(1)
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where :PV'W (v,w) is the density of V,W evaluated at the observed values

of w and v regarded as a function of V and the parameters , and

0
v

represents the integral over V , the unobserved scalar random variables.

This likelihood can 'also be written as

PV / 31117'W (V,W) PV(9 (V)PO 0 0
V V

where

v

is the marginal likelihood of the observed data and

(3)
,/ ;7. W

P ' (v,w) /I PV (v)

v v

is the conditional likelihood of the missing value indicator given the

observed data.

Definition: The missing data V are said to be missing at random if tlim

conditional likelihood of the missing value indicator given the observe(11 data,

equation (3), is independent of e .

The motivation for this definition is that when the data are missing at

random, maximum likelihood estimates of 0 and their sampling distributions

(as well as Bayes posterior densities for 0 ) obtained from the marginal

likelihood of the observed data, equation (2), agree with those obtained from

the full likelihood of all observables, equation (1). In this sense, if the

data are missing at random, the observed data may be said to be "sufficient"

for pV
0



f). Two .A.mrle Conditions Sufficient for the missing Data to Nissinkr,
liandom

, .Vir-v rewritin4 r. (v,w) as p
V

(v) P. (v,w) we have that ecua,.ion (}),
t7,

the conditional likelihood of the missing value indicator given the observed

data, can be written as

(4)
I PV (v) 4.v (v,w) / pv (v) .

o `v v

W.VClearly, if Po (v,w) is independent of 0 and v , equation (4) is inde-

pendent of L; ; hence, the following result.

Lemma: If (1) P
IAT*7

(v,w) is independent of v , the missing data, and

(2) p and ' lie in disjoint parameter spaces,

then the missing data, , are missing at random.

The first condition in this lemma is satisfied by all of the examples

given by the references cited in Section 1. "Equally likely" missing values

in the data matrix yield

k w. 1-w.W-V
(w,v) = n 0 1(1 - 1))

1=1
wi - 0 or 1 ,

where 0 is the probability of being observed. "Preplanned" missing observa-

tions yield

W.V
(w,v) = A b(W. - 4,) wi = 0 or 1 ,

i=1

where 0 is the 0-1 vector indicating the preplanned pattern of missing obser-

vations and (a) ==. 1 if a =,0 and zero otherwise. "Without regard to values

Wthat would have been observed" simply implies that P
.V

(w,v) is independent
0

of the missing values v . As a more complex example, assume that odd vi .



are always observed and even vi are missing if the urecedinc:. vale v
i-1

is greater than ,% . Letting T1 = (odd ...,k) and T2 - Leven

i = 2,...,k) we have

W.V
- W. ) 7 7(W. V. -

1, 1 -1
icT

1
icT2

a =0 and b > 0 , or

a - 1 and <
1 if

0
y(a,b) =

0 otherwise .

If in these examples a and $ lie in disjoint parameter spaces, both

conditions in the lemma are satisfied and the missing data will be missing at

random. If condition (1) in the lemma is satisfied but condition (2) is not,

it is clear from equation (4) that the data are not missing at random; never-

theless, maximum likelihood and Bayes procedures applied to the marginal like-

lihood V /lihood of the observed data P (v) are "reasonable" (e.g., consistent)
e

0
v

and suffer only from reduced "efficiency". Thus, in a sense, condition (1)

in the lemma might have been chosen as the definition of missing at random.

However, then discUssion of maximum likelihood and Bayes procedures following

an assumption of missing at random would always be somewhat imprecise and

inaccurate.

An argument could be made for choosing conditions (1) and (2) of the

lemma as the definition of missing at random because mciels not satisfying

condition (1) intuitively do not seem to have missing data missing at random.

For example, assume the data for odd i are uniform on (0,6) , and the

data for even i are uniform on (0,1) and missing if less than

( 6 and 0 lie in disjoint parameter spaces); then by equation (3) the

data are missing at random even though condition (1) is not satisfied.



Nevertheless, if the phrase "missing at random" is meant to imply that the

Process that caused the missing values, whatever it may be, can be ignor:,d,

the definition of missing at random given here in Section is appropriate.

4. Examples

As a practical missing values problem consider the problem of nonresponse

in sample surveys, where the parameters 0 are the parameters of the joint

distribution of response variables and background variables. Assume the

nonrespondents are known to be typically different from the respondents,

say, to have lower socioeconomic status (SES). Are the data missing at random?

Assume the researcher has recorded a measure of SES as well as other poten-

tially relevant background variables for all subjects. If conditionally given

these observed background variables, a subject will offer or not offer his

response independently of what that response would be, that is, if subjects

with identical background variables (but possibly different responses) are

equally likely to respond, then condition (1) in the lemma is satisfied; if,

in addition, the parameters of the nonresponse process are independent of 0 ,

the missing data are missing at random. Hence by collecting "additional"

variables the researcher can often make the assumption of missing at random

plausible.

However, even if the missing data are missing at random, the researcher's

problem in choosing an appropriate model may he more serious than it would be

if there were no missing data. For example, if the regression of response

variables on background variables is curvilinear, and there are many missing

responses when the values of the background variables are extreme (e.g., low

SES), fitting a linear model may yield especially poor prediction of the

typical responses for those subjects likely to have missing responses.



As another example of missing data consider nonresnons.e on multiple

cLoice questionnaires. Lord (l'il5) makes the dis:inction hetweer. "not

reached" items, which the examinee did not have time to attemEt, and "omitted"

items, which the examinee reached, presumably read, but did not answer.

includes the parameters of subject ability and item difficulty. If the items

on the test are not ordered with respect to difficulty, it seems reasonable

to assume, as does Lord, that condition (1) in the lemma holds for the not-

W-V
reached items but does not hold for the omitted items; that is, (w,v)

is independent of the V corresponding to the not-reached items but does

depend upon the V corresponding to the omitted items. However, it also

seems fairly clear that the parameters 0 and may not -lie in disjoint

parameter spaces since more intelligent examinees probably reach more items

and omit a lower proportion of items reached. Assuming that the number

of items reached does not depend upon 0 , then the not-reached items are

missing at random.

The investigation of complex models for nonrandom missing, values such as

might be appropriate for Lord's data set is a relatively unexplored area of

statistics. Only a few "censored-data" models are commonly available for

dealing with nonrandomly missing data (e.g., see Swan, 1969).
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