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Man's slow and tortuous climb out of the primeval ooze probably
began with the invention of the club, but his progress was
unquestionably accelerated when he learned to throw stones with
some degree of accuracy. Today he is still throwing things.
The only difference between modern man and his very early
ancestors in this respect is that the things being thrown today
are considerably more lethal than stones and that he no longer

uses his arm muscles to throw them!

As early as the 16th century, much attention was already being
given to accuracy of hthrowing". For example, as shown in
Figure 1, artillerymen were beginning to apply some mathematics
to the aiming of their cannon. In this illustration, the
cannoneer is being taught how to use a quadrant to help him
achieve the desired trajectory by selecting the proper angle of

elevation for the cannon.

Of course, we can do a lot better.today. We understand projectile
motion; we know how to apply mathematics to the motion so that we
can predict how the projectile will move, how high it will rise

in the air, and how far down-range it will go.
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An understanding of projectile motion must start with fundamentals

(Figure 2). A gun is placed so that its muzzle makes an angle 8
with the ground considered here to be perfectly horizontal. The
projectile is fired so that it leaves the muzzle with an initial
velocity v. Its subsequent motion will depend to a great extent
on the length of time it will remain in the air before returning
to the ground, hence this is the first comsideration to be worked

out.

To calculate the.total time of flight, it is first necessary to
determine the time needed for the projectile to reach the
highest point in its flight. This approach requires that the
initial velocity v at an angie © to the ground be resolved into

its horizontal and vertical components, vx and Vy respectively.

(Figure 3).

The horizontal component v is trigonometrically related to the

initial velocity v by the cosine of angle ©. Hence, vV, ™V cos e.

Similarly, vy = v sin 6. Refer now to Figure 4.

#1 - 2
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The real motion of the projectile consists of a vertical and
horizontal component, but it will be shown that these two
motions are completely independent of one aaother. The fact

that the projectile is moving horizontally at the same time

.that it is rising or falling does not affect the rise or

fall time. This means that the rise time may be calculated

by considering the vertical motion only as in Figure 5. The
final velocity v attained by a body moving in a gravitational
field is given by the expression v = Vy - gt where vy is the
vertical component of the initial velocity, g is the accelera-
tion due to gravity, and t is the time required for the body
to reach the velocity.z, When a rising projectile reaches the
highest point of its flight, it must stop moving upward just
before it begins its descent, hence the final velocity at the
top of the flight is zero. Substituting zero for v in the
equation yields finally the expression given for the time t

to the highest point.

Since the projectile is acted upon by the same accelerating
force on its way down as it was subjected to on its way up,
the time for return may be shown to be exactly the same as
the time of rise. Refer to Figure 6. From this it can be
seen that the total time of flight is simply twice the rise

time.
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Figure 7 also provides an expression for finding the range R of a projectile.
The range is defined as the horizontal distance from the cannon to the point
where the projectile returns to earth. The range equation i« obtained in
this way: once the projectile leaves the muzz'z2, the only force acting on
it is the gravitational force provided that we ignore frictional retardation
due to air resistance. The gravitational force is wholly vertical; it has
no horizontal component. As you will discover later when'you study the laws

of motion, an object on which no unbalanced force acts neither accelerates

nor decelerates. In this case, the absence of an unbalanced horizontal

force seems to imply that the horizontal component of the projectile's
velocity will be constant. This remains to be seen but it is a justifiable
preliminary assumption. Making this assumption, then, it can immediately

be said that the distance (range) covered by the projectile is simply:
R=v_ t
X

in which R = range, v, = constant horizontal velocity, and t = total time

of flight. It is already known, however, that:

v v cos ©

X
2 v sin 9

and t =
3

Substituting these identities for the terms in the first equation yields

the range equation in Figure 7.

When the range equation is simplified it appears as in Figure 8. This
figure presents the two key equations developed thus far in final form. At
this point, the student should do a unit check on both expressions to be

sure that he sees that, in MKS units, t will come out in seconds and R in

meters.
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It was mentioned above that the absence of an unbalanced
horizontal force implies that the horizontal velocity will

be constant. This is sometimes demonstrated with the aid

of a spring gun (Figure 9) which fires a spherical projectile
thrpugh the air. A coordinate grid may be used as a back-

ground for observing the trajectory (Figure 10).

There are several ways to observe the trajectory so that
measurements can be made to confirm the constancy of v,

among other things.

’ #L -5



FIGURE

FIGURE @

ERIC

Aruitoxt provided by Eic:



A high~-speed motion picture camera may be used to film the actual
flight of the ball and then may be played back in slow motion, or
a Polaroid type of camerr 1y be used to produce a composite print
if the source of phot.giu, - 'ight is a high-intensity strbboscope
set for rapid, repeti!ive +ing. Either of these methods presents

a final picture such as that given in Figure 11.

Note first that the vertical displacement for equal time intervals
constantly changes indicating that the vertical veloéity is not
uniform. Then observe that the horizontal displacements in each
unit of time are the same showing that v is constant. The right~-
left symmetry of the trajectory curve also serves to show that

the horizontal motion is uniform; if the projectile were slowing
down ~~ an effect one might expect if a horizontal retardihg

force were acting on it —- the right-hand pdrtion of the trajectory

curve would reveal this in the form of a steepening élope for each

Tt

unit of time.

It is a matter of interest that the ideal trajectory curve is a
parabola that follows the equation: .
2

y = ax ~ bx
in which y is the vertical height at any time as a function of the
horizontal position X, and 2 and b are constants. whose values
depend on the angle-of elevation of the gun, the initial velocity
of the projectile, and the value of the gravitational acceleration

constant g at that particular location.

pa—y
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There is another interesting experiment that may be performed in
the classroom. This one is used to demonstrate another important
aspect of projectile motion. Refer to Figure 12. Shown here is
a "trick" projectile consisting of two halves 6f exactly equal
mass; when assembled, the two parts dre held together by a
short string which neutralizes the tendency of the internal
spring to make the projectile "explode". A carefully timed fuse
is.set to b.ow the projectile apart at or near midflight.
Suppése, as indicated in Figure 13, the explcsion is timed to
occur exactly at midflight when the projectile's axis is
horizontal. 4 short time afterward, the two equal~mass fragments
would have mowed mpert to the positions shown in Figure 14. The
| fragment on the right has gained some additional speed as a
result of the . 'plosion while the one on the left lost some speed.
The former h.s flattened its trajectory and the latter shows a
steeper trajectory, both the result of the simultaneous changes
in speed. But a point'of special interest emerges from a study

of the positious of the fragments: the midpoimt of the line

connecting the cemters of the two fragments lies on the original

trajectorz cuyrve.
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Now refer to Figure 15 which depicts the fragment positions a
little later in time. The trazjectories continue to move apart
but the center of the connecting line still rests on the

original curve.

This action continues right up until the instant of impact of

both fragments with the ground, as shown in Figure 16.

Exactly what is the significance of this consistent behavior
of the fragments? It points out a very significant phenomenon:

the center of mass of the two-fragment system follows the

trajectdry that the whole projectile would have taken had there

been no explosion.

The demonstration described above has two ''special-case"
aspects: first, the explosiom occurred exactly in the middle

of thé trajectory; second, the axis of the projectile was
perfectly horizontal, insuring that no vertical forces would act
on it during the explosion. To prove that the motion of the
center of mass of the equal fragments would follow exactly the
same path for all other conceivable variations requires an
understanding of the concepts of momentum and conservation
ptihciples. The fact ‘that this does indeed occur is easily
shown by experiment but the mathematical proof must be left for

a later date.

#1 - 8
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PROJECTILE
MOTION

TERMINAL OBJECTIVES

2/3 B Analyze the trajectory curve of a particle projected

horizontally (no vertical component) from the top of

a structure.

2/3 E Solve position, time velocity, and range problems

involving projectiles with any angle of departmre.

Please turn to page 224 of your STUDY GUIDE

to continue with your wark.
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Aristotelian philosophy held that a material object was in its "natural"
state only if it was at rest. If there is no force acting on a body in
motion to maintain the state of motion, then the body must come to rest

to return to its "natural" state. When one considers that most simple
observations made during the normal course of a day seem to bear out this
conclusion, one must concede that the assumption appears reasonable. If

a massive object such as a well-stocked bookcase were suddenly to rise in
the air of its own volition, even a modern observer would consider the
action "unnatural" or, more probably, supernatural! If a body at rest does
not begin to move unless it is somehow influenced by an external agency, it
would appear logical to assume that a moving object would come to rest of
its own accord if the agency that caused it to move initially were to be
removed. And, indeed, t:is is precisely what happened in the basic experi-
ments performed by the ancient philosophers. If a book is hznd-propelled
along a table top and if the hand is then removed, the book comes to rest
almost immediately.

The basic fallacy in this reasoning is that one tends to ignore certain
external agencies which do not cvertly make themselves evident to the
senses. When these hidlen factors are searched out, exposed, and accounted
for -~ the "natural" state of things becomes a myth. As a steam locomotive
drawing a train of cars stoutly puffs and snorts, it certainly appears as
though the force exerted by the engine on the wheels is needed to keep the
train moving at a constant speed. But there are "hidden" forces acting on
the train. One of these is illustrated in Figure 1. It is the retarding
fiorce offered to the motion of the locomotive by the air itself. At any
reasonable speed, the locomotive must push its way through the enveloping
atmosphere and as it does so, must thrust the air out of its path. The air
returns the thrust in the form of an opposing force which, at high speeds,
becomes quite large. : : .

A second opposing force takes the form shown in Figure 2. There is friction
between the axle bearings and the wheels; there is friction between the
wheels and the track despite the rolling action. Thus friction is the
second retarding force that must be overcome if the train is to move.

#2 -1
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Careful measurement of the pull of the locomotive engine
and the magnitudes of the two retarding forces just
described discloses that the sum of the opposing forces
is equal to the force exerted by the engine on the wheels.
This is graphically illustrated in Figure 3. Note that
the engine thrust is directed oppositely to the sum of

the retarding forces. Hence, the net or unbalanced

force acting on the train is zero. This leads to the

conclusion that the train will continue to move with
unchanging speed as 1ong as there is no unbalanced force
exerted on it. Thﬁs, it is apparent that the ancient
belief regarding the naturalness of the rest state is
incorrect. A state of uniform motion -- unchanging

velocity along a straight path -- is just as natural.

#2 - 2
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Although the Italian scientist Galileo recognized the error of the ancient
logic and proposed a number of 'thought'" experiments to show that the con-
clusions derived therefrom were untenable, it was Isaac Newton who formalized
the generalization which correctly links these concepts. In his Principia,

a written work that still is regarded by many as one of the most outstanding
scientific documents of all time, he states (in Latin) that "every body

" continues in its state of rest, or of uniform motion in a straight line
unless it is compelled to change that state for forces impressed on it."

This statement, in somewhat more modern garb, is presented in Figure 4.

You have probably seen some of the films taken inside space vehicles by U.S.
astronauts on their way to or from the moon. In these views, you have been
treated to experiences that the ancients could not possibly lLave enjoyed.

A wrench remains floating in the cabin when the astronaut removes his hand.
From the point of view of the astronaut -—- as seen by his camera -- the
wrench 1s at rest. The outside observer, however, 1s aware that this is
not true from his viewpoint; he sees the wrench moving with uniform speed,
keeping pace with the vehicle as it progresses along a straight line between
the earth and the moon. Particularly when the vehicle reaches the gravity-
null point between the two bodies, where gravitational effects may be com-
pletely ignored, the wrench is a body on which the net or unbalanced force
is really zero yet it continues to move with unchanging velocity.

A number of important implications of the first law are given in the figures
that follow. The statement in Figure 5 also implies that zero resultant
force is the equivalent of no force at all.

Figure 6 defines by implication the so-called inertial frame of reference.
The floating wrench appears stationary to the astronaut but appears to be
moving with uniform wvelocity as ‘seen by the outside observer. ' This means
that the concepts of "absnlute'" motion and "absolute" rest are quite
meaningless. All motion is relative; motion can be defined only by
referring to a preselected set of coordinates.

Newton's First Law embodies the true concept of a "force". Refer to
Figure 7. Forces do not give rise to or maintain uniform motion; they
bring about changes in motion. When a body at rest relative to a given
observer begins to move, he must conclude that a force is acting on the
body in the direction of the observed motion. When a moving body is
observed to slow down, he must conclude that a force opposite to its
direction of motion acts on it. And, finally when a body is observed to
follow a curved path, he must conclude that a force having a component
perpendicular to the line of flight m ..+ Heo ting on the body to cause
this deviation from a straight path

#f2 - 3



NEWTON'S FIRST LAW
OF MOTION

A BODY REMAINS AT REST OR IN
MOTION WITH UNIFORM VELOCITY
UNLESS ACTED UPON BY AN
EXTERNAL, UNBALANCED FORCE

FIGURE @

ONCE A BODY HAS BEEN SET IN MOTION ‘1
IT IS NO LONGER NECESSARY TO EXERT
A FORCE ON IT TO KEEP IT MOVING.

FIGURE (::)

THE MOTION OF AN OBJECT CANNOT

BE SPECIFIED UNLESS THIS MOTION

CAN BE REFERRED TO SOME OTHER
BODY.

FIGURE. @

FORCE IS THAT WHICH CHANGES THE
STATE OF MOTION OF A BODY.

FIGURE @




TERMINAL OBYRCTIVE:

3/2 A

Anziy:.  amd interpret a variety of natural phenomena

relemant to Newton's First Law of Motion in terms of the

First Law.

SRR

~urn now to page 15A of your STUDY GUIDE
t@ éuutinue with your work.
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Newton's Firm lsaw 8 specifirailly concerned -xith bodies th== aree
either at r==r ==lz‘ive to the dabserver, or im motion with ro=Form
speed in a s—rzgh: line, The first law empmasizes that a bxdiw
will remain ==wes: if it is motionless to bemtn with, or tbk= ix%
will maimtaii- nmerdeesmm motion if it is ind tiadfly -moving, vnless some
outside agem~r czamesiiie of exer—ing an unbalamred force acts:—mom 1it.

LKl

-+

As might be :zmr——rated, Newkmn’s Second Law d=scribes the r=lation-
ships among —r= fawetars that dmfluence a bodv—while it is ch=mging
speed or d&Fw=— op of motion. x body at resz or in motion wx=h
constant Spees v, straight Iime Is mot accelerating; the mmment
acceleraripnserwer the plctmre, -he first law mo longer ammifes.

(Figure 1) CSomsiserr an ordimary =xmple pemduinm swinging ek and
forth on & f——tmmless bearimg. Throughomt a single swimg. say
from B to C T——re drawing, time wiorcity of the bob changesr from
zero at B amc- T <he maximmm-spess it can have at point : . Simce
the bob musstromm: to rest befwre rewersing .direction, poipis B and
C must be plseses mnere the vedocity As zero; =hromgh the: @tistance
from B to A, i*t—mmst pick up speed, weachimg-meximemm at A amd slow-
ing down tThissigeer until it rises um poimz: C.

The first law sssates that the .unbalsmced fomre on the bodyr :8 zero
if the veloctity af the body is constamt. Fn this sense, mwhe first
law defimes Zighuse @5 a physical quantity m=eded to change tiue
velocity of am @ifiect. Since thesvelocity of the pendulum ob waries
continuousily romghout its motion, some.kdnd of unbalanced:fore=s
must be actiing am Ix at all times. (Strictly speaking, thess is one
point in the swiimg ©f a pendulum where the unbalanced force in the
direction of wet$em is zero and the velocity constant. This poimt
lies at the _sme=st point in the swimng.) Newton's interest lay im
the relationsirip he was certain existed between the force wpplied to
a given body aand he acceleraftion it would acquire as a resmlt of
this force.
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(Figur= 2) With the fintwirtion == =meer genius, Newtamr w&= able to
pirrase the relationship in =fie wersy simple terms shown _=n mhis figure.
The first statement is a vertor eqmetiom which imdicates tkmat the
acceleration of a body is direcrly proportional to the unbalamced
force in the direction of the force. Clearly, mass in rhis relation-
skip is a comstant of proportiomality. If the directior: of the un~

balanced force is constrained aitong, say, the x-axis of a ser of
coordinates (Fx), then the acceleration will occmr aubkg the x-axis,
tmo, so theat the equation may beswritten in scalar feow as shown in
tlee lower expression. Altermatively, the scalar equ==iom mmy be
used when the unbalamced force is applied in the same=diertiom as
the body is already moving (or in the opposite directiiom) sinmre the

vector signs are unnecessary in this special case.

The relatiom Fx=max‘ dmplies, then, that if the force is doubled,
‘the accelermation wiIl double (mot the velocity); if the force is
Teduced to 1/3 of it= initial welue, the acceleratfienrwill go down
‘to 1/3 of its former walue. Im all cases, the mass is assmmed to

main constant.

Thete are many ways to dememstramee the validity of Sewton"s Serond
lamw with resl moving objects. Ome rather ingemious methme: involves
a mendwliom carried by am arcelermmtiwes body.
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(Figure 3) TEris can e dume with a toy car drivem by
a small fuel—bm:ning- et emgine. The pendmlum piwmot is
mounted on a small mast secured to the car. Wher the
et engine iz turmed am, the car accelerates carctyimg
the pivot with Y¢. Bowever, since the hordzomta® force
is not immediarely mpplisiZ tn the bolv of thes pentdhiilm,
it teends to stmy beinimf gweil it is acrelewmted Fvom
Test by the puil of thee slkanted string. Besiind tiee
strimg iz a wcsle marked off in such a way thstr thes
extemt to whirh the string slants backward cam be r=ad
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(Figure 4) To analyze the motion of a pendulum, it is best
to start with the bob hanging straight down as it does when
the pendulum is at the bottom of its swing or when it is
motionless as shown. If does reside in the earth's gravita-
tional field so that it is subject to gravitationgl accelera-
tion g. This is the downward acceleration the bob would have
if the string were cut so that it could not provide the force

that balances gravitation.

(Figure 5) Now imagine that the pivot of the pendulum is
given an acceleration.g to the right along the horizontal or
x-axis. As mentioned previously, the bob will trail behind
until the string slants enough to produce'game angle 6 with
the vertical line dropped from the pivot. As will be shown
later, as long as the acceleration imparted to the pivot

remains constant, the angle of slant © will also remain constant.

#3 - 4
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(Figure 6) In this figure, the bob is shown to have an
acceleration a in a direction opposite that of the pivot.
To see why this is done, consider the motion when the

pivot first begins to move. The bob, with zero horizontal
force acting on it at this time, remains where it }s on the
x~axis. This means that it is acceierating backward
relative to a fixed y—-axis at the same rate that the pivot VVVV
is accelerating forward relative to the same axis. At the
instant shown, the bob is subject to two accelerations:

g, the downward acceleration due to gravity, and a, the
relative acceleration of the bob which, as has been shown,

is equal in magnitude to the actual acceleration of the

pivot.

#3 -5
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(Figure 7) 1In this drawing, the slant angle © has been brought
down into the vector parallelogram. It is immediately obvious
that the tangent of the angle is a/g, or a = g tan ©. The scale
behind the string in the toy apparatus previously described may
thus be calibrated directly in terms of acceleration. This is
the procedure when the experiment is actually performed.

In doing this experiment, certain reasonable assumptions must be
made. First, it is assumed that the jet engine provides uniform
force throughout the short displacement of the car over the
interval of observation. According to Newton's Second Law

(F = ma_), the acceleration should also be constant throughout

the trip under conditions of constant force because mass is
assumed to remain constant. This is the second assumption; it

is quite valid for velocities that do not approach that of light.
Also, the small amount of fuel used during the short trip is taken
as negligible. With constant acceleration, the slant angle also
remains constant throughout the motion. If the car is brought to
an abrupt halt by some obstacle at the finish line, the bob will
swing over an equal angle in the forward direction making it
rather easy to read O, or the actual magnitude of the acceleration
from the calibrated scale.

The entire experiment just described is performed for the purpose

of determining the acceleration of the car in an easily observable
manner. The remaining two quantities, the force F and the mass m,
are readily measured. The force is obtained by coﬁnecting a spring
balance between the car and a rigid support along a horizontal line;
the jet engine is then fired up as before and the force read directly
from the balance. An equal arm balance provides the means for
measuring the mass directly.

#3 ~ 6






(Figure 8) The values given in the figure were actually obtained

when this experiment was performed. An unbalanced force of 0.15

-newtons was measured on the balance. When this force was applied

to the car, the slant angle indicated an acceleration of 1.5 m/secz.
The mass of.the car and engine turned out to be very nearly 100 grams
or 0.10 kg. Thus, even in a crude type of measurement such as this
it is evident that the product of the mass in kilograms and the
acceleration in meters per second per second i8 indeed equal to the

unbalanced force in newtons.
Despite its apparent simplicity, Newton's Second Law still stands

as one of the greatest triumphs of a great physical scientist --

perhaps the greatest of all time -- Sir Isaac Newton.

#3 - 7
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TERMINAL. GEEFECTIVES

3/2 B suvalivze and interpret a variety of natural
phenomena relevant to Newton's Second Law
in terms: of the Second Law.

Please turn to page 23A of your STUDY GUIDE

to continue with your work.
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This brief discussion of Newton's law of motiom is to be
based upon a simulated experiment that can be Teadily

duplicated with extremely simple equipment.

The third law has been stated and restated in a multftude
of forms. For the purpose of this discussion, tim form

given in Figure 1 will be utilized.

When one analyzes thhis statememt, it is apparent that it
implies the followimgs
1. A force cammet exisr almmme; forces always come in pairs;
2. Two bodies are involved #n the application of any force;
3. A force applied by one body, say body A, may be called
an action. The body on which the "action" acts is
another body —~ body B. Body B then applies an equal
force oppositely directed on body A; this force is

designated the ''reaction'.

The alternative statement; 'For every action there is an egual
and opposite reaction® is acceptable only if one mentally atifis the
fact that "action" applies to one body while "reaction'" appifies to

a;second’body.

4 - 1
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Newton's third law may be expressed symbolically as shown in
Figure 2. In this statement F represents the force considered
to be the "action" and R represents the ‘‘reaction'. The
presence of the negative sign before the '"R' specifies the

oppositeness of the reaction force.

ELYA






The simulated experiment begins with two people, A and B,
and a spring scale which reads up to about 30 units of
force. The actual unit used is of no consequence. A holds
the ring of the balance and B proposes to exert a force

on the hook thereby causing the balance to indicate the

magnitude of the force, as shown in Figure 3.

#4 ~ 3
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A says to B, ”Lét's see you exert a force of 15 units on the
hook so that the scale dial will read that figure." As B
starts to pull on the hook, A begins to move toward B —- in
the same direction as the force B is trying to exert -- thus
giving way to B's pull by matching his attempt to pull on
the hook as in Figure 4.

With the hook moving toward him as fast as he pulls it, B finds
that he cannot make the balance giving any reading other than
zero. Since A permitted the balance to move toward B, there

was no reaction force against which B could apply his force.

#h - 4
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On the other hand, if A holds the ring of the balance firmly
and does not give ground, there will be a reaction against
which B can exert his force as illustrated in Figure 5.

In this case, as long as A does not permit the balance to
move with B's pull, B can make it read anything he likes
within the capabilities of his physical strength. Note that
A really does exert a force to the left to hold the scaie
motionless while the force exerted by B can stretch the

spring and cause the needle to rotate on the dial.

#4 - 5
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The experiment thus far has demonstrated the need for force pairs
in nature. The next part of it proves that these oppositely directed
forces are indeed equal in magnitude. Referring to Figure 6, two
identical balances are illustrated, one held by A and the other by
B. At the instant shown in the diagram, neither person is exerting
a force, hence both balances read zero. Next, each of the partici-
pants is told to exert a specific force on the hook he holds in his
hand: A is told to make his balance read 5 units while B is in-
structed to cause his to read 15 units. The result? No matter
how earnestly each of the people tries, he cannot follow his
instructions. Regardless of the disparity in weight or size of the

participants, they cannot bring about the scale readings desired.

The actual result is shown in Figure 7. Both balances give
identical readings at all times; they quiver, oscillate,
waver, and jump around as the participants tug and give way,
but their neelles remain in exact synchronization throughout.
If B pulls harder, his balance reading rises but so does A's;

if either one relaxes his pull, both readings go down equally.

Forces exerted this way form an action-reaction pair; at any
given instant, the two forces must be equal in magnitude but

opposite in direction.

A simple experiment like this is most convincing. In particular,
it shows that forces do indeed come in pairs and that two bodies
are always involved. The force that A exerts on B must be equal
in magnitude and opposite in direction to the force exerted by

B on A, That is, F = -R.
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Newton’s
3rd Law

TERMINAL OBJECTIVES

3/2 ¢ Analyze aud interpret a variety of natural
phenomena relevant to Newton's Third Law

of Motion in terms of the Third Law.

.
Please turn to page 35A of your STUDY GUIDE

to continue with your work.
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The accelération of a freely-falling body on the surface of the earth is
roughly 32 ft/sec/sec or 9.8 m/sec/sec. When an object is allowed to fall
freely over even the longest distances normally available in the physics
laboratory, the time of fall is too short to permit measurement with any
degree of precision using a standard stopwatch. This makes the direct
measurement' of g difficult unless special measuring devices are available.

The Atwood's machine overcomes this difficulty. Essentially, the machine is
designed to dilute gravity by a known or readily calculable factor; the
acceleration of a falling mass is then measured with standard tools and g
calculated with the help of a simple equation which will be derived in this
discussion. The usefulness of the Atwood's machine may also be extended to
a study of the forces that govern the behavior of the string-mass-pulley
system typical of this machine.

The original Atwood's machine is shown in Figure 1. It consists of a
single pulley, a string, and a pair of masses, either one of which may be
individually changed. The double-pulley arrangement illustrated in

Figure 2 is a labctatory modification of the original: it is merely some-
what more convenient to use but it changes nothing of the Atwood concept.

Two fundamental assumptions are rcquired to idealize the laboratory equipment:
(1) the pulleys are frictionless; fine ball-bearing pulleys are available so
that this assumption is very closely approximated; (2) the string is massless
and inextensible. The use of a special nylon string makes the actual situation
approach the ideal satisfactorily. :

Suppose that the two masses in Figure 2 are equal. For this condition, the
system will remain in equilibrium no matter where the masses are placed.

Since the value of g for each mass may be taken to be the same, Newton's Laws
may be readily applied to explain this result. Consider the free-hody diagram

-of either mass shown in Figure 3. The weight of this mass acts downward from

Q

the center of gravity as indicated by the vector arrow pointing downward. A
second vector arrow pointing upward represents the tension (force) exerted by
the string on the mass. Its length is equal to that of the weight vector to
point out that the two forces are equal in magnitude but oppositely directed.
The resultant vertical force is then zero and the system remains in equilibrium.

Consider now that a small additional mass is added on one side as in Figure 4.
When the string is released, m, accelerates downward while m, accelerates
upward. Because the same strifig is attached to both masses, it is justifiable
to assume that the same tension exists throughout the string. (If the string
had mass, this assumption would not be strictly correct but in this idealized
situation it is quite accurate.)

ERIC
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The free-body diagrams for both masses during the acceleration
process are given in Figure 5. Additional mass has been placed

on the left making my larger than m Thus, the weight of m,

9
that is, mg is greater than the tension. The difference

between mg and the tension T represents an unbalanced force
acting downward on this mass so that it accelerates in this
direction. The magnitude of the acceleration is, of course,
given by the second law -~ F = ma -- and is shown as "a'" in
Figure 4. The unbalanced force is meg -T and may be substituted
for F in the second law equation ylelding: mg - T = m,a. The
mass on the right accelerates upward at the same rate -- again
because the string is massless and inextensible. In this case,

T is larger than m,g- The second law equation for m, is, there-
fore, T - m,g = m,a. These equations should be studied carefully

before proceeding since they are key statements.

s - 2
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Clearly, T can be eliminated from the equations by adding them
algebraically. This procedure is demonstrated in Figure 6. The

vimal equation:

provides the "dilution factor" that makes the Atwood's machine so
wseful. This factor is the fractional term on the right side. It
should be noted that it will be a small proper fraction if my is
not made much larger than m, - In other words, to achieve a large
amount of dilution so that a is substantially smaller than g and
twerefore easilv measurable, the weight added to the left side

should be a small fractiom of the initial weieht.

As mentioned previously, the Atwood's machine may also be used to
demonstrate the relationship between string tension and acceleration.
To do this, it is first nacessary tc reexamine one of the equations
just developed. Figure 7 repeats- this relationship. The "dilution"
equation above has been substituted for ainT - m,g = m,a. The
resulting equation then relates tension to mass and g: the

acceleration a has dropped out, of course.

Before turning to Figure 8, the student should attempt to simplify

the expression given as the final step in Figure 7. When this has
been done, reference may then be made to Figure 8 as a check. This
equation provides the information that the tension in the string
during the acceleration process may be determined from twice the

product of the masses and g, divided by the sum of the masses.

#5 - 3
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A relatively simple experiment may be set up to verify this

statement as in Figure 9.

inserted in the string as shown.

grams each. Since each balance

A pair of spring balances has been

The masses are, say, 1000

maintains equilibrium with its

particular hanging mass, first law considerations immediately

dictate that each balance read 1000 x g.

inserted merely to keep the units correct;

The g multiplier is
weight should be

measured in force rather than mass units and, in this case,

the weight unit should be the gram~centimeter per second per

second or dyne. Alternatively,

tke tension may be computed

from the expression given in Figure 8 by substituting 1000

grams for each mass and solving
Figure 10. This calculation is

hence it shows that the tension

In the next step, a mass of 400
side and the string is released

the balances is observed during

for T. This has been done in
equally valid for either mass,

is the same for both masses.

grams is added to the left
while either one or both of

the acceleration process. It

is noted that the reading in either case is 1,170 indicating

that the tension is 1,170 x g dynes.

#5 - 4
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As a final step, the new mass value is substituted in the
expression for tension shown in Figure 10. When this is
done, the result agrees with the simulated experimental
result just described. - The student is requested to make
the necessary substitutions and see for himself. Should
he have difficulty in proving this out, he may refer to

Figure 11 where the problem has been solved.

This discussion has attempted to present several thoughts:

(1) The Atwood's machine is capable of providing
relatively precise but indirect measurements of g.

(2) The Atwood's machine can be used to verify the
predicted tension in . stringlon which a mass is accelerating.
In this sense, it also serves to corroborate the first and
second laws of motion within the limits of error of the

experimental apparatus.
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TERMINAL OBJECTIVES

3/3D Apply the "free body" approach to

problem solutions.

Please turn to page 13A of your STUDY GUIDE

to continue with your work,







ILLUSTRATED TEXT (1) (No Figure)

Imagine that you are a passenger in an automobile negotiating a sharp right
turn. You might find yourself tending to slide along the seat toward the

left. From your point of view, some force of unknown gyigin appears to act

on your body to the left, so you invent a suitable name, calling it centrifugal
force; that is, "'centerfleeing' because it acts outward from the center of the
circle you are negotiating. All things considered, you can't be blamed for
doing this: you did feel this force and your body did respond to it and so it
is very real to you. In actuality you were dé;eived by consideriug the motion
in terms of the frame of reference of the car which is an accelerating reference
frame, where Newton's laws may be so simply applied. If you look again at the
situation through the eyes of an outside stationary.observer, he sees that you
tended to move in a straight line while the car moved along a curved path.
Therefore, while the car moved to the right, it appeared to its occupant,
moving with the car, that he was being thrown to the left by a force. For this
reason, the centripetal force you felt as an occupant of the car is often

called a fici tious force.



ILLUSTRATED TEXT ' (2) Fig. 1
Please turn to Figure 1 wﬁere we consider a highly analogous situation to -

demonstrate the fictitious nature of the centrifugal force.

Here, imagine you are sitting on a chair which someone quickly jerks to your
right. Here, too, you would feel as though you were falling to the left,
although no force acts on you in that direction. Here again you might accuse

a fictitious force of pushing you to the right.

To help us understand the forces involved in circular motion, let's consider

other ways by which we could cause the car to take a curved path.

rt
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ILLUSTRATED TEXT (3) - Fig. 2

In Figure 2 we enlist the aid of a motorized toy car, with wheels fixed in
the straight-on position, which we place on a tabletop. In order to curve
its path we could place a fixed pole at the cenéer of the curve and tie a

string between it and the car. The string then would guide the car around

the curve, by always pulling it in toward the central pole. The string then

would be supplying the tnward, centripetal force, needed to curve the path of

’

the car, and without which the car itself 'would drive along a straight line
at constant speed, v. When we desire to stop curving its path, we merely
release the string so that the car may now proceed along its present heading -

a tangent to the curve from the point where the. string was released.

The same forces are acting in the case of the real car and its occupants.
Inertia at any instant, wants the car énd passengers to travel in a straight
line at'constant speed, but an inward force, the reaction to the force of the
tires against the road, curves the path of the car. The passengers, however,
must depend oé friction against the seatfto pull them into the same curved

path.

Y
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ILLUSTRATED TEXT (4) Fig. 3
. Fig. 4

While the appérent centrifugal force discussed earlier is fictitious and is

due to the accelerating reference.frame, there really are centrifugal forces

occurring in this problem. They are the reactions to the centripetal forces

we find. For instance, in the case of the string guiding the car, it pulls

the car Znmward (centripetally) and at the same time pulis the post outward

(centrifugally). While the post is fixed,.and therefore docs not undergo an
‘

an acceleration, the car is frec to respond to this force and its path is,

therefore, curved.

Countless other examples of circular motion may be observed. 1In Figure 4

- you can sce on= which is becoming more and more common.
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ILLUSTRATED TEXT ' (5) Fig. 5

As long as a centripetal force acts, the path of the car and thus its velocity
changes: that is, the car accelerates centripetally in the direction of the

force, given by the equation

v
. = 7 as shown in Figure 5

Substitution of centripetal acceleration into Newton's Equation of Motion,
P q

F = ma, we find o -

RN

ey




Centripetal Acceleration

Vz
@C »

Substituted into the Equation of Motion

F = mag

Yields an Equation for Circular Motion

2
= Y
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Work When Force
- Varies In Both
Magnitude & Direction




Fundamentally, work is a product of a force and a
displacement. If the force is constant throughout the
displacement, the problem of determining the work done
by the gorce is a simple one. However, since force is
a vector quantity it may vary in magnitude, direction,
or both and, should this variation occur during the
time of the displacement, the task of finding the work
done naturally becomes more complex. An understanding
of the procedure to be used in calculating work is best
attained by moving through a series of examples starting
with the simplest type and gradually introducing the

possible variations.



(Figure 1)  An inclined plane making an angle of 30° with
the horizontgl carries a block on which a force F acts.

The plane is to be considered frictionless, hence, the

force F produces an acceleration of the block up the incline.
As a result of‘the action of F, the block is displaced from

poqition;sl to position Sy- The problem is to find the

work done by the force F cver the distance from sy to S,.
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Szjgure 2) One way to solve the problem is to plot the
force against the displacement as shown in Figure 2. The
force appears on the y-axis which is 1abe1ed'Fs to indicaté
that the force acts along the path over which the displace-
ment occurs -- thét is, parallel to the incline of the
plane. Assuming the force to be constant throughout the
displacement, it is plotted as a straight horizontal line
parallel to the x-axis from §; to s, Since the total
displacement is (_s2 —sl), from the basic definition of

work it .s seen that the work.done is F (sz.hsl) -~ a
scalar product, the force F has therefore aceompiished a
definite amount of work in moving through the distance

S, =S,

2 1



W= F (s.~s))




(Figure 3) Note the new condition introduced in this drawing.
The force F is no longer pa;allel to the plane: instead, it
is horizontal, making an angle of 30° to the line of the
incline. The force exerted in this direction would again causé
the block to accelerate but, as might be anticipated, the
accelerétion would not be as great as it was in the previous
example for a force of the same magnitude. In this case, only
the component of F parallel to the plane contributes to the
acceleration and, of course, this component is smaller than F
itself so that one would not expect the acceleration to be as
great. To determine the work done by F under these changed
conditions, it is necaossary to calculate the magnitude of the

component of F parallel to the plane, that is Fs,:since only

this component is involved in the work process.
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(Figure 4) This is a plot of Fs versus S once again but here
Fs is the component of F parallel to the plane, that is, Fs =

F cos 3. The component perpendicular to the plane does not
cor:tribute to the work, hence it is omitted from consideration
altogether. The angle © between the applied force and its
useful component is the same as the angle of incline as is
easily proved by elementary geomgtryl With the magnitude of

F constant and with the angle remaining unchanged ;hroughout
the displacement, then F cos © is also a constant., Once

again the scalar value of the work is merely thg product of the
useful component of the forca and the displacement or

W=TF cos 6 (sz—s1 (The area under the curve)







(Figure 5) The analytical approach is giver in Figure 5.
On the first line is the general #xpression for the work
W as the integral from s, to s, of.;:d;. When this dot
product is expanded, the expression given in the second
line is obtained in which F cos gF,s is the component of
the original force F in the s—-direction. The term ds,

of course, is the incremental displacement along which

F is acting.

Applying this to the simplest casé as discussed above, F

is constan® and when it is parallel to the plane, the

angle © is zero, hence the cosine of the angle 1is unity.
The constant F may be roved to the left of the integral
sign, cos © dropped, to yield the expression given in

line 3. The integral of ds 1s simply s, so that the
evaluation proceeds as in lines 4 and 5. ©Note that this is
exactly the same éxpression as was formerly obtained by

using the area under the F-s curve.
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(Figure 6) This development is based on the second example
in vhich F is horizontal rather than parallel to the plane.
The first two lines are self-explanatory. In'the third line,
F cos © has been moved to the left of the integral sign
since both are constant, and the subscript "I" has been
added to the €@ to iﬁdicate that this is the angle of the
‘inclinad plane. Evaihating the ingegral as in lines 4 and
5, it is seen that the'final expression for the work done is

identical with that which emerged from the geometric

analysis above.
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(Figure 7) This is the same diagram as in Figure 1, but a
new element is to be supplied by the reader's imagination.
Let the force F increase in magnitudé at a steady rate as

the block is moved from s to,sz. With the force increasing

1
in this way, its magnitude is clearly some function of the
displacement; as a matter of fact, the function must be a
linear one if the increase occurs at a uniformlrate as

stipulated. This means that the relationship between F at

any instant of the displacement must be related to the

displacement by a proportionality constant k. That is, F = ks.

#7 -~ 8
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(Figure 8)  When such a varying force is plotted against
displacement, the graph shown in Figure 8 results. The angle
made by the applied force is still constant but it may have
any value at all since Fs = F cos 8, but the term Fs has been

replaced by ks as previously explained since the force is now

~a function of displacement. The graph must be a straight line

starting at the origin because F must be zero when s is zero,
and its positive slope indicates that the force increases with

displacement.

.
‘

The student is now earnestly requested to set up the required
integral for. determining work using the procedural pattern
shown in Figures 5 and 6. He is to solve the integral for a
general expression giving work in terms k, 8, and s without
looking ahead in the text. Only after this has been attempted

should he proceed.
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(Figure 9) The solution to the problem appears in Figure 9.

It should be checked against the student's approach to verify

the accuracy of the work or to locate the correct errors.

Another valuable step at this point in the work is to work out
the equation by the geometric method involving the determination
of the area under the curve bounded by s1 and Sy in Figure 8.

To find the area of the trapezoid, find the area of the base
rectangle and add to this the area of the remaining triangle.
When properly handled, this method will yield the same expression

for work done, or

"

2

2
W = .
k cos © (52 Sl )

2

The final item in this discussion deals with the calculation

of work when the force varies in both magnitude and direction.
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W= ks cos O ds
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(Figure 10) The student must now imagine that F is not only
growing in magnitude but is also changing in direction iq some
steady manner as the block moves up the plane. To calcufgte
the work for a complex action like this, it is ﬂecessary fo
know how the components of F vary with position, or to have an
expression that gives the relationship between the component of
F parallel to the plane and the displacement itself. One such
possible relationship would have it that Fs, the parallel
component, is directly proportional to the square of the dis-

placement or

.F = p52 where p = constant

#7 - 11






(Figure 11) In this figure,,Fs (-psz) has been plotted '

against displacement. The resulting curve is a parabola
as might have been expected from the equation.‘ Using a
procedure identical with that of the previous examples,
the.work may be calculated by settiﬁg'up and solving the

proper integral equation.

The student is again asked to set up this equation and
evaluate it in general terms before proceeding to the
conclusion of this text. He may then go on to the next

figure.
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(Figure 12) This is the general equation required for
finding the work when the force varies in both magnitude
and direction according to the relationship Fs = Ps

The final evaluation expression that should be obtained

is
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Work When Force
Varies In Both
Magnitude & Direction

TERMINAL OBJECTIVES

5/1 B Calculate work associated with variable

forces.

Please turn to page 26A of your STUDY GUIDE

to continue with your work.







The damage inflicted on one or the other of two objects
that collide at high relative spced depends to a very
great extent on the magnitude of the relative velocity.

Since the physical quantity known as kinetic energy is,

in turn, a function of velocity, an interrelationship
between imp#ct damage and kinetic energy exists. It is
the purpose of this discussion to derive a quantitative
statement which provides information relative to this

relationship.

Approaching the problem from first principles, Newton's
second law of motion may be expressed quantitatively in
the form shown in Figure 1. In the vector equation
given first, the acceleration term Efmay be replaced by
the rate of change of velocity dv/dt so that the form

of the equation obtained becomes ; =m d;?dt. This form

of the second law will be used in this.discussion.

The work done on a body is given by‘fgzdg (Figure 2), in
-

which F is the resultant force acting on a body and ds is

an element of distance over which the body moves as a

result of the unbalanced force acting on it.

4
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Figure 3 illustrates how the second law and work.statement may be
combined in a single expression. The force tecrm has been replaced
with m dv/dt and the limits of integration (from s, to 82) have been
inser 0 The "dt" term din the .pression shown may be considered

» a oo ple divisor in the fractlon and may, therefore, be shifted

to a different position as shown in TFigure 4.

The advantage gained by shifting this term 1s apparent: since

dSth represents the velocity of the body, it is now possible to
rewrite the equation in the form illustrated in Figure 5. lere,

the work done on the body is expressed in terms of mass and velocity,
the displacement having been eliminated. To accommodate the new
form, the limits of integration may now be éhanged from displacement

to velocity as indicated in Figure 6.

This integral is quitc easy to evaluc . The reader should perform
this integratiodfor himself before tuv ~ing to the solution given im
Figure 7. The integral of mv.dV is 1. /2. With the substitution
of the limits, the expression finally becomes

Work done = W = l-mv 2 _ l-mv 2

2 2 2 1

The quantity -%-mv2 is an entity of substantial importance'in physics;
it is called kinetic energy. Thus, the statement above may be

verbalized by saying that the difference between initial and final
kinetic energies of a body is equal to .the work done on the body to
bring about thi=m change of kinetic erergy. This is summarized in

Figure 8. It is an important result and well worth noting.
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Under the proper condifions, this process is fully
reversible. That is, if an object already possesscs
kinetic energy it then has the capability of doing
work; for example, when the kinetic encrgy of a
fast;mOVing automobile is expended in a collision
with a sturdy tree, work is done on both the trece and
the automobile. This Qork generally takes the form of

a gashed tree-trunk and a demolished car!

The expression'in Figure 8 contains another implication
that is extremely important both in physics and in ourl
daily lives. The kinetic energy of any moving body is

a function of the .square of the velocity. .An automobile
moving at a speed Bf 20 mi/hr has an easily calculated
kinetic energy and, consequently, the capability of
doing a given amount, of damage if it is brought to

rest in a collision. - When the speed is increased to

40 mi/hr, however, the kinetic energy -- hence the
‘capability for inflicting damage ~-- quadruples. At

60 mi/hr this capability is 9 times as great as at

26 mi/hr, and at 80 mi/br it is 16 times as great!
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5/2 D Answer qualitative questions about Kinetic
Energy.

Pleas= turn to page 38A of your STUDY GUIDE

to ~xontinue with your work.







Modern buildings of glass and stainless steel embrace
every modern écientific technique to provide pure air,
good lighting, many other material comforts. But

despite the emphasis on the new and the modern, relatively

primitive methods are still being used to tear down the

‘original structures. Perhaps these methods persist

because they work; perhaps they are economical and fast.
In any case, it is not uncommon to see an ancient wrecking-

ball crane in action along the streets of New York City.
(Figure 1)

The wrecking-ball is not unlike the battering ram used by
the Romans. It hangs on a steel cable attached to a
horizontal crane arm. The crane operator gets the ball
swinging by]cscillating the arm and, when the swing is

wide emough, he brings the arm quickly toward thé building
causing the ball to crash into the wall. Since the ball

is very massive, it develops an enormous amount of kinetic
energy .at the instant of impact. If the ball loses most of
its speed on impact, its kinetic energy is largely con-

verted into physical work.
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A pile driver is another of the primitive devices
mentioned above; it is used to drive wood pilings
into the ground to provide added support for a

building foundation. (Figure 2)

It consists of a massive head or hammer that is
raised to the top of a supporting structure. When
the head is released and allowed to fall, it strikes
the top of the pile and comes to rest, exerting
tremendous force and doing a substantial amoun; of

work.
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The difference between these two sequences should be
emphasized, In the case of the wrecking ball, the
operator imparts kinetic energy to the ball through the
medium of his engine; the operator of the pile driver,
however, merely causes the ball to be lifted from a low
position to a higher one. Note that his engine does not
directly impart‘kinetic energy to the hammer. On the
other hand, since the hammer was capable of doing work
as a result of the efforts of the pile driver engine,
it is reasonable to conclude that these efforts did
result in some kind of energy storage in the hammer.
While in the stationary raised position, the hammer has
no velocity, hence no kinetic energy. Yet energy has
been stored in it by virtue of its raised position
otherwise it could not have done work at a later time.

Since the hammer has the capacity to do work, it has

energy. (Figure 3)

Potential energy is the emergy of position or state.

For the pile driver, position is the important aspect of
the change that occurred. The work done by the pile
driver engine is converted to the potential energy of
position when the hammer is raised to the top of the

tower structure.
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POTENTIAL ENERGY

= Energy of
Position
or state
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Potential energy may be stored in other ways. When a spring is compressed
or stretched the work done in the process is converted mainly into the
potential energy of changed state. An arrow drawn back on the bowstring
changes the state of the bow so that, in bending, it possesses potential
energy it did not have initially. Explosives have potential energy of
state, too; in this case, the change of state is chemical in nature.

Some time in the past an energetic agency like the sun brought about
changes which have stored explosive power in the resulting compounds.

The quantitative aspects of potential energy may be approached through an
example using a spring. (Figure 4)

The spring shown in the upper drawing is unloaded, neither compressed nor
stretched. If the spring is compressed so that its end moves over a
distance x, the force required for the compression may be given as kx in
which kX is the spring constant (Hooke's Law). In the diagram, F is
directed toward the right. As the compression proceeds, an increasing
force is required to overcome the resistance offered by the elasticity

of the spring. The magnitude of the force needed to produce a specific
displacement dx is therefore a function of x itself, hence F is

variable. Refer to Figure 5.

If the displacement of the end of the spring is to be from x, to x,,

then the work required to cause this displacement is given by the integral
of F dx between the limits x, and x,. The vector notation may be dropped
at this point because the force and“the ensuing displacement are in the
same direction. This is shown in Figure 6.

It has already been shown that the applied force may be given as kx,
hence kx may be substituted for F in the scalar equation as indicated
in Figure 7. :

The inEegration may now be performed. The integral of kx dx is
1/2 kx Substitution of the limits ylelds the final expression shown

in Figure 8.

Thus, the work done in compressing a spring Erom one x position to

another is the difference between the 1/2 kx“ values for the two positions.
The reader should bear in mind that this equation specifically applies’

to the distortiom of a spring, a case where the force required is variable.






Refer to Fimma= 9. Here is a diffz===t kind of situation in which
potential energy is also involvec WiEEn a mass is raised to a nigher
position from an initial low posi .: = over a relatiwely short distance,
say, one hundred feet or so, the - == of gravity that resists this
action changes so little that the cumspe may be ignored withowt in-
troducimg sigmificant error. For r.is limfted case the force needed
to raise the mass against gravity zay == considered to remain constant
throughout the action. In this dimgr=m the mass is shown to hawe a

weight mg close to the surface of the =arth.

In Figure 10 the weight is shown raised over a distance b to some
higher position. The force required to raise the mass is equal in
magnitude to mg, the weight of the body. The work done in this case
is merely the product of the force and the displacement since the

force is constart.

(Figure 11) The work done in raising the mass to the new position must
result in a change of potential energy equal to mgh. This is a special
case of a change in gravitational potential energy in contrast with the

previous example where compression resnlted in a change in elastic
potential energy. These ideas may be summarized as follows: the

change in potential energy of a body is equal to the work done in moving
the body (initially at rest) from one position or state to a second
position or state where it is also at rest. You have seen that the force
of gravity can be considered to be constant when a mass is raised a short
distance above the earth. But :if the distance through which the body is
raised is large, the gravitatimmal force gradually decreases. For thig
-condition, the:gravitational force must be considered;a§ variable rather

than constant.
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For example, suppose a mass m is loc=ted a a ‘height hl above the

earth's surface. It's weight from rire Law ... Universal Gravitation
would then be a function of G, the ronst&r o gravitarion, m, and
M —- the mass of the earth -- as weil as Ume =zadius of the earth R

and the height hl. (Figure 12)

Next, imagine that it is raised to a ==w he=ght h2 which is con-
siderably further from the surface ths= &I_ In this case, the

weight would be smaller than before :amc wawild be given by the relation
shown in Figure 13. The work needed =z acccomplish this must now be
found by integrating F ds between the. limEts of hl and hZ' (Figure 14)
The correct transition is shown in tkis =mmre. The force F is

replaced by its equivalent GmM/(R + hﬁz =md ds is replaced by dh.

It is left as an exercise for the stus@=mer to carry the integration out
to its conclusion and arrive at a genersl equation for the work required
to raise a mass from one level to another with respect to the earth

when the distance involved is sufficlem:ly great.

Briefly, then, the change in potential =mergy af a body is equal to the
work done in moving it from some initimi rest mositrion to some other
final rest position. The change in porential emergy can be determinéd
from the product of the force and the @isplacement in the direction of
the force if the force is constant., HFimally, the change in potential

energy when the force varies must be found by integrating all the
elemental changes in F over the distamre thromgh which it must move in

producing the displacement.
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Use. time concept of motential emergy for
objects near the surface of the Earth and

for swrings.

Please twrn o page 3MA of your STUDY GUIDE
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Physics has many aspects and mamy patihs to follow if one is to realize

a well-rounded training in the subject. Yet despite its ramificatioms,
there are certain unifying prinriples that ome consistently, encounters
along almost all of the paths. One of these certainly is the Principle
of Conservation cf Emergy. This principle is so fundamental and so far-
reachimg that the student must make ewery effort to understand all of
its implications and applications, as well as the statement of the prin-
ciple itself. The abilitw to say, "'Emergy can meither be created nor
destroyed but only changed in form" daoes mot signify comprehension nor
the ability to solve practical problems in which conservation is involved.
Only by caweful amalysis faellowed by conscientious practice can this
ability be developed.

It would be well to begin the amalyticaml treatment with a review of some
comcepts thai: hawe been prewiously #ntwndmced. Suppose that an external,
unbalamced fiorce ds applied to a free twaw. The work done on the free
body will be equal in magmitude to the chamge of momentum of the body
multip¥ied by the displacrement due to tie action of the force. Figure 1
shows why thiis statemeat is justified. T total work done on the body
Is the integral of F dx. But from the mer-snd law of motion, it is known
that any farme may be replaced by the chamge of momentum it produces.
Thus, it is perfectly walid to say that tlwe imtmegral of F dx may be re-
Placed by the integral of the chan;ge of momemtum multiplied by the
displacement dx. Thms,

Work done =fE" dx =fm dv
2

¥Bowever, when the right-lamd expression is integrated it becomes A L mv,
or the chamge in ikiinetic emesrgy of :the Body to which the force has “been
applied. The relatiomship iz givem vexbally in Figure 2.
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Next consider a situation in which a force is applied to an object
which then moves under conditions such that a restoring force
appears as a result of the motion. When a force is applied to a
mass in a gravitational field to 1lift it against the pull of
gravity, the object will move to a new position and stay there only
as long as the original lifting force is present. When the lifting
force is removed, the restoring force brings the object back to its

initial position.

A similar situation exists when the spring of a balance, as in
Figure 3, is stretched by an external force. As soon as the hook

of the balance begins to move to the right, the spring begins to
exert a restoring force that tends to bring the hook back to its
starting position when the external force disappears. A completely
analogous action occurs when a spring is compressed by an applied
force. The work done in compressing a spring is again given by the
integral of F.dx. Here, F may be replaced by kZXj where k is the
spring constant. Integrating this expression yields 1/2 kx, the
potential energy of the spring after it has been compressed over a
distance x from an initially uncompressed state. This is summarized
in Figures 4 and 5. So it is seen that under certain conditions, the
work done on a body may become the change in its kinetic energy and
that under other conditions, the work dome may be converted into

potential energy.
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Is it possible’fo set up and analyze a composite situation,
that is, one in which the work done is partially converted
into a change in kinetic energy and also partially into a
change in potential energy? The answer is =- yes, it can

be done quite simply for the conditions shown in Figure 6.
A mass, securely fastened to the end of .a horizontal

spring, is acted on by a force F; to the right. Two things
happen simulténeOusly: the mass goes into motion, gaining
kinetic energy, and the spring begins to exhibit compression.
Suppose that the mass is displaced a distance x in the
process as indicated in Figure 7. This compression gives
rise to a restoring force equal to the spring constant k
multiplied by the compression x. The resultant unbalanced
force on the mass must therefore be the diffgrence between '
the applied force and the restoring force or Fa - kx. This
is summarized in Figure 8. The student should pause at
this point and contemplate thé implications of the

development thus far.
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A free-body diagram is next in view in Figure 9. The mass
on the end of the spring is acted upon by §;, the applied
force, to the right and by the restoring force kX to the
left. The difference between these two forces 1is the
resultant force on the mass; The external work done by the
agency that supplies the forCelgg is the integral of F dx
as before; in compressing the spring, this agency con-
tributes to the potential energy of the spring, this
potential ehefgy being the integral of kx dx, of course.

This is suwmmarized in Figure 10.

What, then, is the action of the resultant force Fa - kx?

The kinetic energy of the system must change as a result of

this action, Mathematically expressed, the situation may be

described as shown iﬁ Fiéﬁré 11, Descriptively, this means
that the external work done by the agency that applies the
- .

force Fa is converted into both potential energy of com-

pression and also into a change of kinetic energy of the mass.
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The "bar graphs' in Figure 12 express this result graphically. The sum
of the energy changes in the system must be equal to the total energy
change in the system. In the most general terms, when external work is
done on a body in any system there may be a change in the potential
energy of the system or in the kinetic energy of the system SE.EE.EQEE'
In any event, regardless of the alternatives that are followed, the

external work done must equal the total energy change of the system.

Figure 13 indicates a state of affairs which may at first appear
trivial but which most assuredly is not. If no external work is done
on a system, the change in total energy in the system is also zero.

But this does not mean that neither the potential energy nor the

kinetic energy has changed. It merely means that, whatever changes do

occur when the work done on the system is zero, these changes must com—
pensate for one another. Refer to Figure 14. If there is a positive
change (increase) in kinetic energ&, then there will be an equal
negative change (decrease) in potential energy if the work done is

Zero.

This is the essence of the Law of Conservation of Energy. In part, it
states that the total work done on a system must be equai to the
algebraic sum of thé enery changes that occur in the system as a reSuit
of this work. This is often called the 'work-energy theorem'". A second
implication is that, even when no-work is done cn a system by an outside
agency, there may still be changes in potential and kinetic energy but
that these changes are compensatory. What is gained in one form is
lost in another. Energy cannot be created nor destroyed but only

changed in form.
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TERMINAL OBJECTIVES

5/2 C Answer questions pertaining to the statement.
of conservatjom of energy.

5/3 B Apply conservation of energy to a simple pendulum.

5/3 C Demonstrate a knowikedge of specifies required for -

the application of ihe Comservation of Energy

theorem.

Please turn to page 34A of your STUDY GUIDE )

to continue with your work.
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ILLUSTRATED TEXT (1) ' Fig. .

The center @f mass of an object may k= described as that single point at
whickh all mf its mass appears to act. For an object of uniform demsity
Imving some regular shape, such as a so0lid wooden ball, its center of
mass is @asily”locﬁfed to be at the gmometric center, as you can see in
Figure . Finding the location of the center of mass for a hollow
rubber'hfll‘is»no more difficult--it too is at the geometric center,
even though none of the actual mass of the ball is located at that very

point.

Many objects, having either regular or irregular shapes, have c;nters of
mass located in space-—probably the chair you are sitting on at this
moment Or the cué.or glaés you used this morning are good examples to
consider. For these objects, the center of ﬁass acts in evéry‘wmy jusic
as it does for one Izxaving a centef of mmss within the medium itseif-—as

with the solid ball.



NTER OF MASS |

(a) for a solid ba




ILLUSTRATED TEXT (2) Fig. 2

The concept of center of mass can be a powerful tool in the study of
motion, since all rigid bodies, regardless of shape, volume, or density,
can be considered to be point masses acted upon by external forces,

thereby simplifying the application of Wewton's laws of motion.

A task that at first seems difficult is the analysis of the motion of

a body when internal fo;ces are also acting. Let's see what effect,

if any, they might have. To do this, let's examine the effect of an
explosion om the center of mass of a systEm ceonsisting of two equal
masses. In Figure 2, yom see.two identical cars about to be exploded
apart by a compressed sprimg. Before the explosion, the center of mass
of the system is midway betweeéen the cars. When the explosion occurs,
_eﬁskwgar receives an equal, but opposite foree to the other, for the
same period of time, giwving each similar accelferations. But at any time,
the: center ©f mass of the system can be fomnd to be.at the same point,

unaffected by the explosion.

—
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ILLUSTRATED TEXT (3) Fig. 3

You may well ask, what would have happened if two unequal masses were
chosen? Let's repeat the explosion, this time with unequal cars; say
they have a mass ratio between them of 1:2. Once again the‘explosion
will apply equal and opposite forces on the cars, but this time one car,
the lighter one, will accelerate at twice that of the heavy car, thereby
moving twice as far in equal time. Consequently; the center of mass of
the system remains in ;he same position, unaffected by internal forces
as you can see by examining Figure 3. As a matter of fact, even if the
two cars have some initial velocity while linked together, their center

of mass would continue to move at that velocity even after the explosion

occurs.
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ILLUSTRATED TEXT (&) Fig. 4

Before closing, let's apply these principleé to some typical motion
problem, A good one-to consider would be the motion of an explodable
ball as it moves in a parabolic trajectory. Here, in Figure 4, the ball
is subjected to some initial accele;ating force, and a constant gravita-

tion force, both acting externally, as well as an internal explosive force.

Before the explosion the ball travels intact along a parabolic path
governed by the effects of its initial velocity>and gravitation. The

ball is then exploded into fragments, each moving away from the center

of gravity'at a rate dependent upon the explosive force and its size,

and each still is affected by the initial velocity and gravitation.

Since the explosive internal force has been shown to have no effect on

the center of gravity, its motion continuesfalong the parabolic trajectory

. |
as though the ball had remained intact.
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As a fundamental physical principle, conservation of momentum ranks
among the most important; in many situations its usefulness exceeds
that of even the principle of conservation of energy. This is
especially true of collisions between moving objects because there

is little about such collisions that cannot be predicted or explained

with the aid of the principle of conservation of momentum.

Figure 1 diagrammatically depicts two bodies, A and B, the first
having a mass of m, and the other a mass of my . Body A is moving

toward the right with a velocity';A while body B, also moving from

left to right, has a velocity'5h. Velocity Va

than velocity vy @8 indicated by the relative lengths of the vector

is larger in magnitude

arrows for each quantity. Given sufficient time, body A will close
the separation between the two and will eventually collide with body

B. This event is illustrated in Figure 2.

Assuming that the bodies do not adhere to one another, they will
separate after the collision and move off with velocities that
will in most cases differ from the initial values. The velocities
subsequent to collision are symbolized in the diagram shown in

Figure 3 as ;A, and Vﬁ, respectively.
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Regardless of the nature of the collision, that is whether it
occurs between elastic or inelastic bodies or between hard or
soft bodies, the objects will be in contact with one another
for a definite time interval. 1In Figure &4, the force that
body A exerts on body B -- F_ -- is plotted against time. At
the.instant that body A overégkes body B and first contact is
established, the force will start to rise from zero. About
half-way through the contact interval, the force will have
risen to a peak and then, as separation or rebound begins, the
force will diminish until it vanishes entirely as separation
becomes complete. A collision, therefore, involves a varying
force acting over a definite time.

For a constant force, the impulse is given as FA.t. When the
force varies from instant to instant as it does in this
example, the impulse can be determined most easily by integrat-
ing all the FA t products under the curve. Thus, as indicated
in Figure 4, the impulse is the integral of ¥.dt between the
limits exterding from zero time (first contact) to the time
when separation is completed. This integral is the equivalent
of the afea under the curve in Figure 4.

Since this interaction is typical of the kind of phenomenon to
which Newton's Third Law rigorously applies, it is possible to
state immediately that the force exerted on body A by body B

is identical in instantaneous magnitude with F B throughout the
interval but, of course, is oppositely directeé. Furthermore,
since the time of interaction is the same for F,_ and the re-
action force, then the impulse of B on A must equal the impulse
of A on B, This is shown graphically in Figure 5, and a verbal
statement is given in Figurc 6. The negative sign is inserted
on the right side of the statement because this is a con-
venient way to indicate the "oppositeness' of direction.

S
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The impulse acting on a body is equal to its change
of momentum. .Hence, the statement of Figure 6 is
equally valid when written as shown in Figure 7. fﬁe
impulse applied to B becomes the change in momentum
of B; thé iﬁpulse on A becomes.the (negative) change
in momentum of A. Alternatively, whatever momentum
is acquired by B is lost by A, or vice versa. In any
of these statements, the negative sign may be shifted
from one side to the other without altering the
significance of the statement. Finally, as in

Figure 8, the implication may be sucéinctly stated:

there is no change in momentum or momentum is conserved.
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In the preceding development, no attempt was made to specify the
nature of the colliding bodies, their masses, their initial velocities,
or the nature of the collision -- whether elastic or inelastic. The
application of the third law to any type of collision between any two
bodies confirms that momentum is always conserved. (It should be
noted here that this discussion has been limited to head-on collisions
and that the third law, as applied, was also limited in this respect.
It will be shown, however, that this limitation is not required; the
collision may be of any variety —-- momentum is still conserved.) The
principle of conservation of momentum is one of the ultimate truths

of Nature.

The general approach to the solution of conservation of momentum
problems is quite straightforward. Starting with the conditions
shown in Figure 9, the sequence of two colliding bodies before impact,
during impact, and soon after impact, one may write a relationship
that expresses the conservation principle in a step-by-step procedure
like tinis:

1. Write the total momentum of the system before collision
as the sum of the individual momenta of the bodies as

— + -
"a¥A T "B"B
To be strictly correct, the velocities should be indicated as vectors.

2. Write the total momentum of the system after collision as
the sum of the individual momenta of the bodies after the interaction
has occurred as:

—

AU Y

3. And finally since the sums must be equal before and after
collision, equate the two sums as shown in Figure 10. When using this
single equation in problem work, only one unknown, of course, is
permissible. v
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CONSERVATION
OF
MOMENTUM

TERMINAL OBJECTIVES

6/2 B Solve momentum problems inﬁolving bodies with

variable mass.

6/2 C Analyze situations and phenomena in which momentum

is a significant factor.

‘Please turn to Page 21A of your STUDY GUIDE

to continue with your work.
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The purpose of this exposition is to define the terms

impulse and momentum as they are used in physics, and

establish the relationship between them.

As a brief review, it is perhaps wise to reexamine the
connection between force, displacement, and work for

the event illustrated in Figure 1. A force is

applied to a body resting on a horizontal, frictionless
table. As a result of the application of the unbalanced
force Et the body is displaced through a distance E;

The work done on the body, ;°;’is thereby converted to
the energy of motion or kinetic energy and, in accordance
with the Work-Energy Theorem, the work done on the body
is equal to the change of kinet;c-energy that the body

undergoes.

A somewhat different aspect of this event invqlves the

measurement of time to establish the interval over which
the motion takes place. See Figure 2. In this approach,
the displacement is ignored; the time interval from one

position to the next denotes the interval over which the

force acts on the body.
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From the analytical point of view, a rather direct attack
can be made on the problem by using Newton's Second Law.
As in Figure 3, the second law may be written by vector
form as a relationship between force, mass, and
acceleration. Then acceleration is redefined as dgydt for
convenience and substituted for it in the expression as

shown.

Assuming next that the force is to be applied for a short
time interval dt, as illustrated in Figure 4, the product
;'dt is formed on the left side making it necessary to
multiply the right side by dt to maintain the equality.
The dt's then drop out léaving the expression given in

Figure 5.

Clearly the equation is in vector form because the quantity
— .
dv is a vector. 1In dealing with work and energy, the con-

cepts obviously lead to a scalar equation; in the develop-
ment of impulse and momentum it is just as obvious that

vector equations will appear.
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To find the resultant effect of applying an unbalanced force over a
given time, it is necessary to integrate F-.dt over this interval.
The left member of the expression in Figure 6 shows how this is
written. In the same equation, the right. member has been written

to show that the change in momentum must be integrated between the
limits v. and v,. These velocities represent the range of variation
of the velocity“of the body over the time interval tl to t2,

of course.

In order to integrate the left member, the precise d=pendence of
force on time must be known and, since it is not known, this member
is left as an unperformed integral. The right member, however, may
be readily integrated in its present form.

This operation is given in Figure 7. The integral of m.dV between
the limits v, and v. is simply mv,-mv.- as shown. The student is
urged to verify this before proceeding.

The right member now expresses a change of momentum; the differ-
ence between the_initial momentum mv and the final momentum mv,.
The integral of F dt from t, to t, is called the impulse of the
force. The equation as it fiow stdnds is a concise mathematical
statement of what has come to be called the impulse-momentum

theorem. Figure 8, then, presents the complete sequence which

terminates in the impulse-momentum theorem: ' IMPULSE = CHANGE IN
MOMENTUM. Expanding on this somewhat, it can be restated that
the impulse of an unbalanced force applied to a body is always
equal to the change in momentum that this impulse produces.
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It would be fruitful to work on a specific problem
dealing with impulse and momentum at this'juncture.
In Figu;e 9 is depicted an ordinary carpenter's:
hammer striking a nail which 1s to be driven into a
 block of wood. Although most people intuitively.
upderstand why this process can be successfully per-
formed, an analytical approach to this problem is not
difficult and can be quite illuminating. Figure 10
presents some reasonable figures for the mass or
weight of the hammer and its impact velocity in the

hands of an ordinary man.
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Assuming that the hammer comes to rest after striking ﬁhe ﬁail,
what force does it exert during impact? This problem lends
itself to solution by the impulse-momentum theorem. The in-
formation in Figure 1l should now be reviewed. First there is
a statement of the impulse-momentum theorem; second, the
weight of the hammer -- 5 1lb. -- is converted into mass by
dividing the weight by g. This is derived from the second law
equation w = mg, so m = w/g; third, the initial velocity of
the hammer is given as vy and fourth, the final velbcity of
the hammer is given as zero since the hammer is assumed to

stop moving upon impact.

Figure 12 contains the statement that .the change in momentum, oOr
ﬁvz— mv,, is 5/32 slug multiplied by 44 ft/sec, using the given
data. The next requirement is to find out something about the
impulse of the hammer on the head of the nail; Figure 13 gives
these details: impulse is the product of force and time but in
this case it must be recognized that the hammer applies some
~rerage force to the nail through the interval of contact.

Assuming that the hammer remains in contact with the nail for

1/100 second, then the impulse is the average force F x 1/100.

#12 - 5
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The last sequence of steps in the solution of tae problem
appears in Figure 14. In the first step, impulse (F x 1/100)
is set equal to the change in momentum (5/32 x 44). Solving
for the average force F, the result is approximately 687 1b.
or 1/3 ton.

The student should consider how a 5-1b. hammer éan exert

so large an average force on the nail. A little thought
should show that this large force is obtained by giving

the hammer a large momentum through the medium of a very
large impact velocity. Then, since the contact time is so
short, the resﬁlting large impulse must yield a correspond-

ingiy large force.

L‘h
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AND
MOMENTUM

TERMINAL OBJECTIVES

6/2 A Solve momentum problems involving bodies with

constant mass.,

6/3 A Analyze situations which involve net impulsive ",

forces acting on bodies of constant mass.

Please turn to page 31A of'your STUDY GUIDE

to continue with your work.
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Collisions

In an isolated system involving two or more bodies which interact with
one another, the momentum at any instant is the same as it is at every
other instant regardless of the number of kinds of interactions that
occur. An isolated system is one in which no external forces act to
change the momentum of any of the bodies within the system. Essentially,
this is a statement of the principle of conservation of momentum. From
a purely theoretical ,oint of view, it is readily seen why momentum

must be conserved. Selecting a simple case, that of a collision between
two bodies in an isolated system, the forces- that act on each body during
the collision must be equal and oppcsite (Third Law) and, since the time
of impact is also the same, then equal impulses act on both bodies.
Impulse is equal to change of momentum, hence the change of momentum of
each body involved in the collision must also be the same. It should

be noted that the kind of collision that occurs --- elastic, inelastic,
or a combination --- does not affect the validity of the momentum con-
servation principle.

Kinetic energy on the other hand is not necessarily conserved in all
collisions. Normally a collision is accompanied by the development of

. sound and heat; these are lost to the system so rhat the total energy
content after the collision must be less than it was initially. A
collision in which kinetic energy is conserved may be closely approx-
imated, however, with the proper kind of apparatus. Such a collision
is termed perfectly elastic. At the other extreme in which the kinetic
energy content of the system is zero after the collision is the perfect-

" ly inelastic collision. Most real collisions are partly elastic and
partly inelastic. To study a close approach to a perfectly elastic
collision, 'an air track is usually utilized.

(Figure 1) This piece of eguipment consists of a hollow, triangular
cross-section rail that may be several meters long.. Air from a compres-
sor is forced into the hollow section and emerges from a large number of
very fine holes in the sloping sides. A close-fitting giider when
placed on the rajl is lifted very slightly so that it rides on a thin
layer of air. The friction is thereby reduced to a negligible value.
When two such gliders, equipped with :lexible, soft springs, are allowed
to collide, it is found that kinetic energy is essentially conserved,
hence the collision is very nearly perfectly elastic. In the sample
shown in the figure, there are two gliders of exactly equal mass m

on the rail. For simplicity, it is assumed that glider 2 is at rest
while glider 1 is set in motion toward it from left to right with a

velocity u, -

13-1
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Collisions =2~

(Figure 2) These are the symbols to be used in this discussion.

Since glider 2 is at rest, its velocity before collision u, is taken
as zero. The velocities of glider 1 and glider 2 after thé collision

are respectively vy and v,-

(Figure 3) To write the equation that expresses conservation of mom-
entum for the type of collision described, it is first necessary to
write the total momentum of the system before the collision. As

shown in Figure 3, the total system momentum before the collision.

is mu,, that is the product of the mass of glider 1 and its velocity.
Since glider 2 was initially at rest, it has no momentum and hence
need not appear in the terms in front of the equals sign to be written
in the equation. The system momentum after the collision is mv, + mv.,
the sum of the momenta of the individual gliders. Note that the as-—
Sumption is made that-glider 2 is set in motion as a result of the
impact with a velocity v, and that the velocity of glider 1 changes
from Uy to Vl’ also as a result of the collision.

. (Figure 4) The first equation in Figure 4 is merely a statement of
the fact that momentum is conserved since the total momentum before
the collision has been equated with the total momentum after the col-
lision. Since the gliders have the same mass, the factor m is the
same for all terms and may be eliminated by dividing through as shown -
in the second equation. Verbally, the second equation states that
the algebraic sum of the velocities after the collision is equal to
the velocity of glider 1 before the collision. The next thing to be
considered are the kinetic energies of the gliders before and after
the collisien.




m = m = mass of each glider

velocity of glider 1 BEFORE collision

[=4
[

1
u, = velocity of glider 2 BEFORE collision = 0
A velocity of glider 1 AFTER collision
v, = velocity of glider 2 AFTER collision

FIGURE (::)
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After the collision, the system momentum = mv. + mv
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(Figure 5) In general, the kjinetic energy of a moving mass m

having a velocity v is 1/2 mv"~. Thus, the kinetic energy of glider 1
before the collision is 1/2 mu% and the total kinetic energy after
the collision is 1/2 mv2 + 1/2°mv2. If the collision is perfectly
elastic, then kinetic eflergy is cOnserved so that it may be expressed
as shown in the top equation. Here again, m is the same throughout

"and may be eliminated to yield the second equation.

(Figure 6) These are the two final expressions previously obtained,

the first from the principle of conservation of momentum and the second
from the principle of conservation of kinetic energy, both based upon
the same collision. This point cannot be overemphasized. Since both
equations are perfectly valid, it must be concluded that the change of
velocity of each body in an elastic collision must be such as to satisfyv
two separate conditions simultaneously: (1) the sum of the final
velocities must equal the initial velocity and (2) the square of the
initial velocity must equal the sum of the squares of the final veloc
ities.

(Figure 7) The implication of this double-barreled requirement is
most easily seen by combining the two equations as shown here. The
linear equation is .first squared and then one equation is subtracted
from the other. The result is obtained that twice the product of the
final velocities must be equal to zero. This further implies that any
one of the following possibilities may have occurred:

(1) Possibly:v1= 0. This would be the case only if glider 1
stopped in its tracks “immediately upon impact. When the experiment
is perfored it is found that this is indeed the case: glider 1 stops
dead while glider 2 goes off with the same velocity that glider 1 had
before collision.

(2) Possibly v, = 0. This could happen if glider 1 missed
glider 2 altogether so that no collision occurred.

(3) Possibly both .v, and v. are both zero. This is not a
real possibility because it 1s known that u; was a re«! velocity at
the start of the collision and clearly

uy #0+0

Hence, (3) is not to be considered.



1,21 + L2
2 M 2 W T,
2 2 2
ul = vl + v2

ul = v, + v2
r3 2 2 2
‘ . u] = vl + v2

ui = vy + 2vlv2 + vg (linear equation squared)
2 2 2
+
17TV
Subtracting
0 = 2vl v,
so vy = 0 or v, = 0 or both vy and v, = 0
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(Figure 8) Observe how this simple statement shows that if the
velocity of glider 1 after the collision (v, = 0) is zero, then
the velocity of glider 2 after the collision must be the same as
the velocity of glider = + ~1-e impact just as was stated above.

(Figure 9) Here again, the substitutions indicate what happens

if the velocity of glider 2 after the collision is zero (v, = 0).
It turns out that u, = v, which merely means that glider 1“does

not change its velocity at all, having missed impact with glider 2.

As a final step in this discussion, the student is asked to use
similar reasoning to determine for himself what would happen if
the two gliders became firmly linked together when the collision
occurs. Assume that the springs on the gliders are replaced by
magnets; glider 2 is at rest and a collision occurs when glider

1 is moving with velocity u.; the gliders stick to one another
and move off after the collision with some velocity v. It must
be remembered that this is an inelastic collision so that kinetic
energy is not conserved.

Unless the answer given below results, an error has been made in
either concept or mathematics or both.

v =1/2 uy



v

'—l

vy

<
]

[=4
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7/1 A Analyze a two-body collision problem in terms

of the impulse mentum theorem.

7/1 C Apply the principle of conservation of momentum
to the solution of problems involving inelastic

collision.
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The subjeét of gravitation and the Cavendish apparatus used to

determine the value of G is thoroughly discussed in most college

' texts. The objective of this paper is a matter ofbhighlighting
- aspects of the Law of Universal Gravitation which often cause
confusion, and enriching the text material by adopting a some-

what different joint of view.

(Figure 1) Students often are guilty of paying too little
attention to the rigorous implications of the verbal statement of
the Law of Universal Gravitation and its mathematical counterpart.

The word "object" implies a real body having definite dimensions
and mass. How does one measure the distance between such bodies?

If the object is perfectly symmetrical,. the distance £;is measured
between geometric centers but when any degree of asymmetry exists,

' the measurement must be taken between the centers of mass of the
respective objects. It should be observed the statement refers to
ﬁass, not weight, and the proper units must be employed if numerical
results are to be meaningful. To use the law with MKS units, the
masses must be expressed in kilograms and the distance of separation

in meters; the force of gravitation F will then come out %n newtons.

The symbol "G" represents the constant of proportionality and is
generally referred to as the "constant of universal gravitation'.

It muct not be confused with '"g", the symbol for gravitational
acceleration. While "g" is not a constant at all since it ‘saries

rom place to place even on our own pianet, G is a universal constant --
it has the same value regardless of the observer's location in the

universe.

o #b -1
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"Every object in the universe
attracts every other otject with
a force that is directly propor-
~tional to the product of their |

masses and inversely proportional
to the sguare of the distance
between their centers”



(Figure 2) Students are sometimes puzzled by the fact that G has very
specific units of its own, and is certainly not unity while proportion-
ality constants in other equations are dimensionless and are assigned a
value of one. For example, in the development of Newton's Sezond Law,

it is first stated that F is dJdirectly proportional to the product of m
and a using the proportionality symbol as shown. The proportionality
symbol is then replaced by an equals sign after inserting the constant

of proportiogality k. Finally, units are assigned to m and éh(in MKS,

kg and m/sec” respectively, k is allowed to equal unity and be dimension-
less, and the resulting force F made to assume the unit obtained from the
product of m and g). In MKS units this product unit is. kilogram-meters
per second per second or kgem/sec” which is xe-named the newton. Thus
the newton is uniquely defined as a kg:m/sec” and cannot henceforth be

defined in any other way.

If a value of 1 kg is “ubstituted for each of the two masses my and m2
and a distance of 1 meter for r in the gravitational equation
)

2
T

the force F does nol turn out to be 1 newton, neither numerically nor
dimensionally. "is indicates that the numerical value of G cannot be
unity, nor can se dimensionless. The question then arises as to how
one may determine the wvalue of G.

(Figure 3) Can G be mathematically evaluated? When the gravitational
equation is solved for G it takes the form shown in the figure. This

is of little help mathematically because the force F is still an un-
known despite the fact that the masses and the separation may be readily
established. Evidently, it is necessary to determine G by experimental
methods since the force F must be measured before G can be numerically
evaluated. For masses normally encountered in the laboratory, F is

- extremely minute in magnitude. The apparatus required to measure it,

therefore, must be correspondingly sensitive. For example, the
gravitational force between two 10-g masses separated by as little as
0.1 meter is less than one-billionth of a newton!

#14 - 2



(a) F oL ma

(b) F = kma

(c) F = ma since k=1l ifmis
in kilograms, a is
in m/sec and F is
in newtons.

FIGURE @




(Figure 4) This is a schematic diagram of the apparatus used by Henry
Cavendish in 1798 to measure the value of G. It is a torsional balance
of great sensitivity. Twc spherical masses m, and m, at the ends of
the cross-bar of a rigid T-frame are free to move when a force is applied
tc either or both if this force has a component at right angles to the
cross-bar. Mounted on the vertical leg of the frame is a light mirror,
the assembiy being supported in space by a fine quartz thread or a
metallic ribbon. Two massive spheres, usually of lead, are placed near
the masses at the end. of the cross-bar (m, and m,). The entire system
is then given time to stabilize and come to complete rest. At this
point, the light source is adjusted so that its beam is reflected from
the wmirror to the scale; the scale reading is recorded. It should be
clear that this assembly constitutes an optical lever which magnifies
even a tiny deflection of the mirror so that it is readily measurable
on the scale. The two large masses (m2) are now in position one.

Very, very carefully the m, masses are ther moved into their respective
second positions. This reverses the torque applied to the cross~bar
since the gravitational force due to the attraction of each m, and its
corresponding m., has been reversed in direction. The cross-bar begins
to twist on the“suspension and, as might be expected, overshoots its
ultimate final position so that it go~s into damped oscillation like a
torsional pendulum. The time required for the system to stabilize once
more may be as long as two hours in a typical laboratory set-up. Once
it has again come to complete rest, the angle of twist is easily .
measured by observing the new position of the light spot and utilizing
the geometry of the system.

#14 - 3
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(Figure 5) The relationship betweén G and the other relevant
quantities is shown in this equation. Its derivation is not
pafticularly difficult but it is based on information that the
student has not yet had so thét it will be passed over at this
point. The symbol "k" represents the torsional constant of the
threéd or ribbon and is experimentally found by methods that do
not involve gravity or gravitational forces. The symbol "L"
stands for the length of the cross-bar measured between centers

of gravity of m, masses. With all of the quantities now known

1
or measurable, the numerical value of G may now be obtained.

(Figure 6) Clearly G is not dimensionless as this development
indicates. The étudent should check the substitutions shown
carefully. The unit for k is the_kg-mz/secz; for & it is the
radian (dimensionless); for r2 it is the meterz; for my and

m, it is the kg; and for L it is the meter. The student is also
asked to show why these substitutions result in a final unit for
G equal to the nt-mz/kgz. '

As a final suggestion, the student is asked to substitute this

unit for G into the equation

to show that the force of gravitation F does turn out to be measur-

able in newtons.
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8/1 A Analyze gravitational force actions
between twc particles in terms of
the .gravitational field.
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At this point in his studies, the reader should be cognizant
of the importance of being able to determine thevelectfic field due
to any distribution of charge. It is not unusual for this to be a
fairly difficult problem. To the contrary, however, if the charge
distribution has a high degree of symmetry, the problem may be

substantially simplified.

In the following material, an idealized case with a very high
degree of symmetry will be presented; that is, an infinite wire with.
its charge uniformly distributed over its length. This is the same

as saying that the charge per unit length is constant over the wire.

" The reader should keep in mind that there are two salient
points to his study of this problem. Firstly, the result ‘to be
obtained has its own intrinsic importance. Secondly, but ¢f equal
importance is the fact that this problem will give the reader an
excellent example of the applications of the integral calculus to

the solution of practical problems of physics.

In general terms, the procedure in solving this problem will
be to determine the electric field contribution from an infinitesmal
element of charge. Upon doing that, a summation will be taken over
all the elements of charge. This summatioﬁ will require the use of

the integral calculus.

First, a general over view of the organization of the problem
will be given. Following that, the solution will be shown in con-

siderable detail.



In Figure 1, an infinite wire is represented by the vertical
° line. The solution of the problem will involve calculating thé
electric field E-at point P due to the charge on the wire. It is
assumed that the charge on the wire is positive. The line a represents
the perpendicular distaﬁce from the point P to the wire. Vertical
distances along the wire will be measured by the variable y. The
origin of measurements along y will be the foot of point P, that is

the point at which the line a forms a right angle with the wire.

Now, if along the distance.xg there is an element of length dy,
this element will carry a charge. Since the charge is linear over the
wire, a linear charge density A is defined. A will then be equal to
the charge per unit length of wire. Hence, the total charge on a
section of wire will be given by the product of the linear charge
density A and the length of wire being considered. Thus, the charge

along the element of length dy is A dy.

Going back to Figure 1, note that r represents the distance from
- the element of length dy to the point P. Also shown in Figure 1 is the
angle 0, (which is the angle between a and r), and d © which is the
angle substended by the element of length at the point P. These are

the important variables and constants in the problem.

At this point, the reader should study the presentation above

very carefully!




FIGURE



The following discussion revolves around Figure 2.

For a point charge, d E at a point is given by

- 1 Ay 2
dE = 4Heo 2 T
x

where g_is a unit vector from dy in the direction of P.

The next step is to consider the symmetry of the problem.

The following discussion will center about Figure 3.

Consider elements of length dy that are both.above and
below the foot of perpendicular a. Each of these elements of
length will contribute to the electric field at point P. If
one takes components of Q_E.both parallel to and perpendicular
to the wire, one sees that the éomponents of E-parallel to the
wire are of eqﬁal magnitude but are oppositely directed; thus,
these parallel components will cancel, dnd one will be left
with the perpendicular components only. The perpendicular com-
ponents will add. The obvious conclusion is that, since the
entire Qire may be considered to be made up of su;h pairs of
elements, the electric field at point P must be in the x-
direction. The x- direction in this analysis is defined as
being parallel to line a, or perpendicular to the length of
the wire. Henceforth, consideration need be given only to the

x~ component of dgi namely dEx.

prry
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These // components are

equal and opposite
.w They will cancel

These _L.components
are in the same
direction, ,*, They
will add.




A study of Figure 4 clearly shliows that

(1) dEx = dE cos 0

The equation for dE at a point is repeated in equation (2)

i
!

(2)

=h
|
._.
>
Ja
N>

Upon substituting equation (2) into equation (1), one obtains

-1 Ady  cos ©
X 4lle 2
o r

(3) dE

Note that since this is a scalar equation, the vector notation

has been omitted.

Note that-the angle O in Figure 4 will be taken as
negative. Angles clockwise from line a will be taken in the
positive sense. Note also that Figure 4 makes it clear that

a

cos O = —
r

This relation will be important later, since equation (3)
involves three variables: y, r, and ©. In such a form,
equation (3) is not readily integrable. 1In order for the
integration to proceed, two of the tiuree variables will have to

be expressed in terms of the third. The above cosine relation

will allow this to be done.

Har ’










The method of making these substitutions is shown in Figure 5 using the
elemental triangle made by dy subtending an angle d6 at the point P. The element

dl is shown as a perpendicular dropped from one radius vector to the other.
that dl, dy, and the undesignated segment of r form a small right triangle.
the above cosine.relation, r may be written as

a
cos ©

[}

r

From a study of the elemental triangle, it can be seen that

dl= rde

and Ql,= cos ©
dy

_ rde

Thgs dy = cos ©

which is an expression fo. dl and dy in terms of r and 8. Thus in the final
expression, r may be eliminated to yleld an expression for dy in terms of ©
and a (a constant).

Continuing with the substitution, the identity above may replace dy
into equation (3) yields

dE = 1 Acos ® rde
X 4le 2 cos O
) T
- 1 Ad®e
4lle 2
) . T
But, recall that
T = a_
cos O
which gives for dEx
1 A cos O
dEx - 4Heo a de

. Expressing this differential equation in integral form, one obtains

e
1

x 4ﬂeo

cos O d e

A
a

®

Note
From

Note that since A and a are constants, they appear outside the integral sign.

The integral is easily evaluated since the integral of cos © is sin ©. Upon
performing this operation on the above equation for Ex’ one obtains

1 A
(4) E e, " (sin 0, - sin 91)

Since 0,18 900, sin © is ~ 900, 8in 6, = -~ 1, then

equatiofi (4) becomes

= 1:; and since ©

2 1 1

#15 = 5
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Recall that A is the charge per unit length, and as such is proportional
to the total charge on the wire. Thus Ex is proportional to the total
charge on the wire. Recall also that 7 is the perpendicular distance

from the point at which the field due :o the wire is being determined.

From this information some important conclusions may be stated
~with regard to the field generated by this type of charge,distribution.
The fieldbis inversely proportional to the first power of the distance.
This is different from the expressions that the reader has met before
thch have all involved inverse square laws. It is important to note

that this is not an inverse square law but a simple inverse law.

The mathematical features of the derivation
of the field due to an infinite uniformly charged

wire are summarized in Figure 6.

EMC | #15 - 6
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10/2.B Aiiswer questions -and solve problems relating to atomic

models based on sperically symmetric charge distributions.

11/1 A Solve problems and ans%er questions on the relationship
betweem potential and field intensity.
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Some of the most important technological advances of recent

years have stemmed directly from our knowledge and understanding
of the way in which electrons in motion are affected by passing
through an electric field. This paper will be concerned with

a thorough analysis of the forces acting on a parallel beam of
electrons moving through a uniform electric field. The discussion
is based on the observations that can be-maae of the motion of

the fluorescent spot seen on the screen of a cathode ray tube.

(Figure 1) The cathode ray tube illustrated in this drawigg
is a deménstation type in whiéh electrons are emitted
thermionically from the heated cathode. Those electrons
thch pass into the foéusing cylinder are formed into a
parallel beam which is collimated into a thin pencil as it
moves tgrough the aperture in the anode. The beam is then
injected into the space between the electrodes labeled
”defiection plates'" and proceeds onward to the fluorescent
screen where it produces a visible épot of light. The
dimensions given for the'iepgth.l_of each of the plates,

the distance L from the edge of either plate.tq the screen,
and tﬁe spacing between the deflection plétes'are representa-

tive values that correspond to the actual dimensions of the

elements of the tube shown in the diagram.
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(Figure 2 This is a close-up of the electron 'gun" of the
tube showing the normal potential difference used between
cathode and anode. The anode is 250 volts positive with
respect to phe cathode, hence electrons emitted from the
cathode are greatly accelerated in the direction of the anode.
Once the electron beam has passed fhe anode, its motion
horizontally along the axis of the tube becomes uniform

since it is nw longer in the space where the potential gradient

exists in this: direction.

(Fiéure 3) Consider the electrons just as they are emitted
from the cathode. - At this point they have a épecific amount
of potential emergy due to the voltage gradient. When they
arrive at the amwde, all of this potential energy has been
converted to kimetic energy. Thus, as the beam passes through
the aperture, the amount of kinetic energy gained is equal to

the amount of pottential energy lost in transit.

(Figure 4) Since the potential difference V between cathode
and anode is actually potential energy per unit charge, the
magnitude of the potential energy of the electron is thus
given as eV in which e is the chérge on the electron. As
shown above, this must equal the kinetic energy at the anode

as indicated by the upper equation. Note that v, symbolizes

h
the""horizontal" :component of the beam velocity at the anode, or
tire component paxallel to the axis of the tube. When solved for
Vi the reswlt fmdffcated in the second equation is obtained. 1In
this equation, m is the m@ss of the. indiwvidual electron. All the
quantities on‘ﬂiE'rightxazﬁ readi¥r=measurable so that v, may be
easily evaluated.
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(Figure 5) This diagram suggests the next step in the analysis.
The electron beam approaches the deflection plates traveling
along the axis of the cathode ray tube. If no potential differ-
ence ié established between the plates, the beam will proceed
thrﬁugh the space between them with zero deviation and produce

a light spot at the exact center of the screen. Should a
potential difference be applied to the plates, the resulting
electric field between them would then have to be taken into

account in determining the effect on the beam path.,

(Figure 6) In this plén view of the deflection plates, assume
that the upper plate has been negapively charged with respect
to the lower plate,.establishing an electric field having the
direction shown, that is, from the positive tpward the

negative platé. Recalling that electrbns are negatively
charged particles, the beam would experience a force opposite
that of the direction of the field. In this view, the force

on the beam would be downward, toward the positive plate.
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(Figure 7) As a result of this force, the beam would be
deflected downward and follow a curved trajectory while in
the space where the potential gradient exists. It is
important to observe that theﬁbeam path is a straight line
in the range from the cathode to the right edge of the
deflection plate, a parabola in the deflection area, and

a straight line once again after the beam has passed the
left edge of the plate. Note also that vy represents the

axial component of the beam velocity at all times after

the latter has passed the anode.

(Figure 8) Electric intensity E 1s defined as force
per unit charge. To determine the force on the electron
beam due-to the electric field, it is merely necessary

P
to multiply.force per unit charge by the charge on the

- electron, or Ee. .This makes it possible to expréss the

acceleration of the beam at right angleé to the tube axis
in terms of electric intensity E, electronic charge e,

and the mass of the electron m.

(Figure 9) ‘ As indicated here, the transaxial acceleration

\

is given by Eé/m. With this relationship in hand, the

transaxial electron beam displacement may now be evaluated

by substituting in the general equation

displacement = 1/2 a t2
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(Figure 10) The added equation presents this information.
The term Ee/m replaces a in the general statement, and

( z/vh)2 represents the replacement for t2. The time in
this equation is the distance traveled along the axisl( )
divided by the axial velocity of the beam (Vh). Before
proceeding further, it will be necessary to determine the
transaxiallvelocity of the electron just as it reaches the

left edge of the deflection plate.

(Figure 11) The transaxial velocity at the point indicated
1s obtained from the general relationship v = at whiqh‘applies
to any body having a uniform acceleration a for a time t.

The deflection acceleration is Ee/ﬁ as indicated once again
in this figure. The time of flight in the deflection

region is 2/vh .
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(Figure 12) Therefore, the transaxial velocity at the
left edge of the plate is given by this additional
relatidnship. Essentially, this implies that the electron
is moving with an axial velocity Vi (uniform) when it
reaches the left plate edge, and with a transaxial
velocity \Z at the same instant. To compute the dis-
pPlacement of the fluorescent spot from its central
position as a result of the deviation, it is now
necessary to determine the additional transaxial dis-
placement of the be;m as it travels from the left edge
of the plate to the screen. It should be recalled that
there is no transaxial force on the beam in this"region;

its trajectory is a straight line.

(Figure 13) This additional deflection is the product of
the drift time (time form motion from plate to screen) and

the transaxial velocity ) (now uniform). The drift time

is simply L/vh so that the additional deflection is

merely L/vh XV Thus, information is now available

4
for finding the deflection of the beam while in the plate
region and also the deflection between the plate region

and the screen. The total deflection is, of course, the

sum of these.
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(Figure 14) This figure shows i..: algebraic solutionm.
The total #ismmlacement of the _ign- Spot om the screen
from its cenmtral, Qndeviated posixwmr may be Zouné by
substituting in the final equatimﬁ~£hﬁwn- Fer the
dimensions @md electrical values :imen, the displacement
of the spor turns out to be 4.2 x i@fz merer or 4.2 cm.
The measursd value obtained in —he actual experiment

was 4.3 cm, indicating excellent agr=ement with the

calculations.
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TERMINAL OBJECTIVES

10/3 B Answer questions and solve profillems relating

to potential and field stremgth.







In general wsogme, flux means a "flowing" or a "flow".
It is normal’ .- zpplied to a flmid :to describe its rate
of motion or o&jsmection of movememt. In physics, ''flux"
is frequemtly -.gmlied to certain wwmmects of vector
fields but retews the implicarfwm of the flow of some-
tiring. The imtimate relationsriv—of -the concept of
Fiow with that F flux makes *r- lJogicral to begin a

diiscussion of tores subject witth. a fimid analogy.

(Figure 1) Im tiiris representation of a river, it is
zssumed that tthe water is flowime-im the general direction
of the §bsermrand has attained.a: steady state witth res-
pect to velaciry. This means thar the vater flowﬁmg past
amy given poimt in thé stream has tthe mame velocity second
after secomd. The riwer may them bee visunalized as :é

welocity Flseifi because ewery poimt—in #t may be represemted

by a welacity vectmnr.
(Figuee 2) TIf certain velocities.are selected arbitrarily

ar varteus lewels, their, ;mmparMe ‘magnitudes may be
mepresented by suitable wector armows. For simplicity, it
has been assumwd tiat the volocitw-of the-water mear the
surface is less tham it is at grewtel Ygpths, hemee the

" weetors af the top ase shawter am sme identified with
lower case "_'-\;“Fs".‘ whiile tirose at tee=bottom are Ionger and

are symbelized with upper case "}*r::_"
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(F’glge 3) A small area A has been sketched into midstream
and has been placed in the low welocity stratum of the river.
This area is to be considered extremely small althowgh it

is illustrated as emlarged for clarity. In accordance

with established comwventiwm, the wecter tthat describes

this axes is drawn perpemdicular to .

(Figure 4) The flux thromgh this area is, by definition,
the dot product of the velccity v and the area A. Since

this is (by defimitien!) = dot product, flux is a scalar

quantity. The eguation for flux msy also be written in

terms of the componemts of the wector, or

# = vAcoso
where -8 is the angle Betweem the actwmal w&lacity vector and
the area. It Is rewesilimg to analyze the: expression for
flux dimensionally. Welocity is length per un¥t time and
area is expressed im length units squared. The product of

v and A is then

3
@ 2. @
GOR N

Thus, flux has the dimensioms of vmlume mex unit time and
reprmesemts; the wolume :of 1fquid flowimg tibmouwgh the area

A per umitr time.
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(Figure 5) This diagram should help to clarify the
significance of the angie 8. The area through which
the flow occurs is again displayed with it descriptive
vector A at right angles to the surface; the velocity
vector ; is shown as a horizontal arrow. If the velocity
vector were perpendicular to the area vector, there

would be zero flux since none of the liquid would be
passing through the area; that is, the flux is maximum
when the velocity vector and the area vector are parallel
to one another. For this condition, the angle 8 is zero

so that the cosine of the angle would be unity; as the

angle becomes larger, the magnitude of the flux diminishes.

(Figure 6) At this point, the area is increased by adding

a second surface Xé so that the total surface is now the sum
of the original area and the newly added portion. It will
be assumed that the velocity tﬁrough the newly added section
is vector %. The total flow through the enlarged area is

now equal to the sum of the flows through the separate surfaces.

(Figure 7) This sum relationship has been added to the
-
illustration. The original area is designated as Al and

the added surface as KZ' Although the foregoing development
many appear trivial, it does lead up to an important idea:
calculation of the flux through a surface involves the

process of summation; in the limit, this process becomes

one of integration.
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(Figure 8) Consider a general case involving an arbitrary
surface in a velocity field. An element of area dK is arbitra-
rily selected on the irregular surface and the velocity at this
element of area is taken as v. By definition, therflux through
this element of area is

¢ = v-dA

(Figure 9) To find the flux through the entire surface, it
is.merely necessary to sum up the individual fluxee through the

elemental areas over the entire surface.

(Figure 10) The correct expression for the required
integration is shown in this figure. The integral is a
surface integral and the integration process includes the

entire area.

(Figure 11) The discussion thus far has been based on a
velocity field in which the flux has been evaluated in terms

of volume of fluid per unit time through a given surface.

Since the same general approach may be utilized when an
electric field is substituted for the velocity field, in this
figure the electric field vector E has been used to replace

the velocity vector 3. A gimilar pattern of thinking results
in the definition of electfic flux through an element of

area as the surface integral of the dot product of the electric

vector and the element of area.
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(Figure 12) A typical example is represented in this

figure. It is desired to calculate the total flux
through the designated area shown. The length L of
the rectangle lies alown the positive x-axis, and the
width of the rectangle lies in a plane that forms an
angle of 30° with the xz plane. In addition, it is
assumed that the électric field vector passes through
the surface in the positive y-direction. ' |
(Figure 13)- The electric field is not uniform. As
indicated, the electric intensity is given by the
relation ET='§2, showing that the magnitude of the
field is a function of the z-coordinate. Thus, E—

will vary from zero at z = 0 to infinity when

z = infinity. All of this is'preliminary information.
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(Fiéure 14) At some distance from the lower edge of the
rectangle, a thin strip of width dw and length L is selected.
The area of the strip is, of course, L dw. The next step
involves the representation of this small area by é vector
as illustrated in the figure, directed at an angle of 30°
downward toward the xy-plane. To calculate the flux through
this element of area, it is necessary to find the value df

E at this distance from the‘xy—plane.

(Figure 15) To determine E, the z-coordinate at the distance
w from x~axis must now be determined. A perpendicular is
dropped from dw to the xz-plane so that the z-coordinate of

dw is seen to be w cos 300'. Since the electric intensity E

is the product az, the intensity at the distance w is E =

a w cos 9.

(Figure 16) This figure shows the step-by-step development
of the expression for evéluating dé for the conditions
specified. The student is urged to study the sequence care-

fully until he is certain of complete comprehension.
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(Figure 17) The expression for the flux is here shown

in integral form.

(Figure 18) Iq this solutiom. *tie: integrand can be
simplified substantially as shomrso that the final

expression for the flux is

-

$ =L a cosZ’BE“ W

em—
-y

L

- The procedure described in this paper #s sufficiently

general so that it may be applied to various problems

encountered in the calculation =of flux.
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Gauss' Law is aﬁ extremely powerful tool for calculating the
electric field due to continwmms charge distrfibutions. Two specific
configurations are discussed #m this paper. Both of thesg invelve
charge distributions possessimg a high degree of symmetry. The first
case to be examined comcerns itself with the electric field due to
an infinitely long wire with a continuous charge distribution. If
the linear charge density on the wire is A, the length of the wire L
will contain a charge given by the expression

q = AL
where q is the total charge on the lemgth I of the wire. It is
important to note that L is mot the entire-lgngmh of the wire, but
merely a segmeni of an infimitefly long wire, amd that for an infinitely
long wire, the field E is everywhere perpendicular to the length of
the wire. (Figure 1)

The second case to be considered is the field due to an
infinite: sheet ©f charge. In thiils case, one is imterested in the
electric field E at some distanee from this infinite sheet of charge.
The Figure shows a finite sheet of area A. As is the case with the
long 'wire, this sheet is-merely a portion of an infinite sheet of
charge. The reader is asked to mecall fhat the surface density of
charge is the «dharge per unit areas, usually symbolized by o (sigma).
The total charge contained on the section of area A will then be given
by the expression.

q = oA

#18 - 1

B——



Fx 4

R

I
>
e

[+ + + + + + ++ + + +()

P N



A very important point must be repeated here. In the following
analysis, the wire of lengfh L and the plate of area A represent
finite sections of an infinite wire and an infinite plate respectively.
In the case of the sheet of charge, the reader should recall that the
field due to a positive sheet will always bé directed perpendicularly

away from the plane of the sheet.
( Figure 2 ).

At this point the stratgey to be used in the application of
Gauss' Law will be discusséd. This strategy is the same for each
case, The first step is to draw é closed syﬁmetrical surface around
the charge. This closed surface is usually called a Gaussian surface.
The second step is to apply Gauss' Law wﬁich states that the flux
through any closed surface containing a charge q is given by

¢ =9

€

( Figure 3 )
The thifd step in the proceddre makes use of the definition of
electric fiux. This definition states that the flux is given by
¢ = JE-dk
taken over any area A. 1In ﬁhe problems to 5e considered here,
however, the use of Gauss' Law provides a symmetrical Gaﬁssian surface

that surrounds the charge.
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( Figure 4 )
Because of the high degree of symmetry of the Gaussian surfaces,
the above integral in the definition of flux generally reduces to

EA,

( Figure 5 )

Returning to the infinite wire, the reader is reminded that the
segment of wire has a length L and a linear charge density A.

The problem is to.calculate the electric field E at the point P, which
is a distance r from the segment of wire.

The first step is the construction of a symmetrical surface
surrounding th: charge. A reasonable Gaussian surface for this charge
distribution is shown in figure 6.

This Gaussian surface is a cylinder Qhose aiis coincides with
the axis of the wire, Let the cylinder have a radius r and a length
L. It would be in the best interests of the reader to note this
construction very carefully,

The second step is the application of Gauss' Law which may be
stated as follows: the flux through the Gaussian surface is %b'
It has been shown that the total charge 4 on the length L of the

wire is AL, thus the flux through the Gaussian surface must be %%-.
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. ( Figure 7 )

The third step o. che strategy makes use of the fact that the
electric flux through the cylinder is the product of the magnitude of
the electric field E, and the surface area of the wall of the cylinder.

The reader may wonder why the top and bottom of the cylinder are
not considered. The reason for this is that since the electric field
lines are always perpendicular to the wire, they will always be
parallel to the end caps of the cylinder. If the lines of E are
parallel to the end caps of the cylinder, they do not pass through them

and therefore need not be included in the analysis.
( Figure 8 )

Since the flux equals EA, where A is the area of the cylinder wall,

the flux may be stated in terms of the radius of the cylinder or

(1) ¢ = 2mrLE
Now all one nezd do is equate equation (1) with the definition of flux,

namely ¢ = %b i

However, recall that the charge q on the length L of the wire is
q = AL

so that the equation for flux becomes

(2) ¢ = AL
(o] .
Equating equations (1) and (2). one obtains
(3) 2nrLE = AL
)
Solving equation (3) for E yields
E = TELT

as the result,
The reader is reminded that this conclusion has alfeady been

readied by another method. That method involved an integration. It

should be clear that the method using Gauss' Law provides a much simpler

approach to the problem than does the method of integration.
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( Figure 9 )
The second case will now be considered. 1In this configuration there
is a flat plate of cross sectional area A and charge density o. Note
that this is a surface charge density, i.e. charge per unit area. The

charge on the plate is assumed to be positive. At a point P at any

distance from the plate, the electric field E is directed perpendicularly

away from the plate. The analysis to be used here is similar to the

one used above for the case of the wire.

( Figure 10 )
In the first step, a Gaussian surface must be constructed around
the plate. For a plate, the best Gaussian surface is a parallelepiped

whose end faces ére parallel to the surface of the plate,

( Figure 11 )

For this step it is important to note that _the total charge on the

[y

surface is the product of charge density and area or
4) o q = gA

Recall that the flux is given by

5) . ¢ =1

€o

If equation (4) is substituted into equation (5) one obtains

$ = %
(6) e
which is an expression for the flux in terms of surface charge dénsity

and area, Note that this is the flux passing out of the Gaussian surface

drawn around the plate.
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( Figure 12 )
Because of the high degree of symmetry of the configuration, Gauss'
Law may be used to specify the outgoing fiux. At this time, the exact
meaning of A must be clarified. Since A is a flat 'plate, flux emanates
from both sides. Thus, the area of consideration is not merely the
area of one side of the plate, but the area of both sides. ‘Hence, if

the area of one side of the plate is A, the total area for the emanation

" of flux will be 2A. The expression for flux then becomes

€)) ¢ = 2 EA
Equating the two expressions for flux in equations (6) and (7), one

obtains

_ CA
2 EA.—-E—

o
and the result for the electric field strength is

E=3
e,
The two examples described above involve highly symmetric charge

distribution in which Gauss' Law is clearly simpler than methods
involving iﬁtegration. This is particularly true in the case of the
determination of the field due to an infinitely long wire in which there
is a uniform distribution of.charge.

The reader should consider both these cases carerlly,,particulérl&
with respect to the strategy that has been used involving the.three-step
solutions shown. Once these are firmly established in his mind, he

should then apply'the saﬁe strategy to other symmetrical configurations.'
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- GAUSS’ LAW

TERMINAL OBJECTIVES

10/2 A Answer questions and solve problems using Gauss's

Law for cases of spherically symmetric charge

distributions.

10/2 E Apply Gauss' Law to charged bodies.
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Capacitors are found by the score in virtually every kind of electronic
device, performing many different and important duties. Yet, regardless
of the nature of the task haﬁdled bw a spectif$¥r =smmacitor, its usefulness
may be traced to its ability ro store an electric charge and deliver this
charge in the form of a potential difference or an glectric current when
called upon to do so. Capacitors have much in common with ordinary
mechanical storage devices such as jugs, bottles, and tanks. The capacity
of a bottle to hold fluid, for example, is in many respects analogous to
the capacitance of a capacitor. Perhaps the best way to introduce the '

significance of electrical capacitance is ¢& start with one such analogy.

Filgure 1 shews two ballewds idemkified as A amd ¥, =each one has been
partially imflated. At first glance, thére is a strong temptation to say
that B has the greater capacity for air because it has a larger inflated
volume than A. But if both balloons are now deflated, suppose that they
then appear as in Figure %, Assumlig that both are fabricated of the same
#ubber material, it would then appear that A shogld have the greater
capacity to hold air beﬁause it 4 larger than B initially. This is quite
true, but the fact remains that it is quite easy to inflate the smaller
balloon to a larger inflated volume merely by using more air pressure on it
than on the other balloon. This, of course, was done in obtaining the result
in Figure 1. Balloon B, despite its smaller initial size, was inflated to
larger size than A simply by blowing harder on it. This is very much like
comparing a gallon jug with a quart bottle; although the gallon jug has a
greater capacity than the quart bottle, you can if you wish put a pint of

water into it so that it contains less water than the filled nuart bottle

-with its smaller capacity. 1In short, the capacity of a balleoh #% a bottle

is not at all the same thing as the actual quantity of air or liquid that
it may happen to be holding'ét any given instant.

)
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The analogy can be. carried further. The same two balloons, A'having a larger
capacity than B, are connected to a common source of air pressure through a
T-tube as shown in Figure 3. This arrangement insures that the szme air
pressure wili be applied to both balloons. Furthermore, let it be assumed
that when the balloons have expanded somewhat they then develop sufficient
back préssure to equalize the pressure of the source. At this point, inflation
will cease and the air system will be in equilibrium. The result is shown in
Figure 3. Here it is seen, as might have been anticipated, that the balloon
of larger capacity -- balloon A -- has grown to a larger size rhan balloon B.
The quantities of air in the two balloons have been designated as Q, and QB’
respectively. It is also not unreasonable to guess that Q in either case
would be directly proportional to the capacity of the respective balloons.

If one has twice the initial size or capacity of the other than it ought to
.be able to hold twice the quantity of air when the pressure is the same for
both. If the capacities are called CA and CB’ then the expressions shown in
Figure 4 would apply. Pressure, being constant, may be taken as the constant
of proportionality so that the equal—rétio form may be written as Q = PC. Or,
in the final form, capacity may be considered to be defined as the ratio of
quantity of air to the magnitude of the air pressure used to inflate the
balloon. Perhaps a better "feel" for the significance of this defining

expression can be realized by putting it this way:

(1) 1If balloon A can hold a ‘greater quantity of air at a given
pressure than balloon B, it must have a correspondingly greater capacity.

That is, C varies directly with '‘Q when P is constant.

(2) 1If a greater pressure is required to bring balloon B up to the
same volume of air as balloon A, then the capacity of balloon B must be

smaller. That is, C varies inversely with P when Q is constant.

Thus, capacity may_be defined as quantity per unit pressure.
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The word "capacitance' rather than '"capacity" is now in common use

in electricity; However, the capacity of a balloon 1is very closely
analogous to the capacitance of a capacitor. Two capacitors, Cl and
C2’ are 1llustrated in Figure 5. Let it be assumed that the materials
and the method of fabrication used in the construction of both of
these were identical. Since Cl is physically larger than C2, it 1is
reasonable to conjecture that the former would be capable of holding

a larger electrical charge than the latter. Q is again used to denote
"quantity", this time quantity of electrical charge. Refer now to
~Figure 6.

For simplicity, let Cl be twice the capacitance C2 If both are
charged from the same source of potential -- and here potential
difference is analogous to the alr pressure used to fill the balloons =--
then’ Cl should accept twice the charge Q that will pass into C2 So

in this case, potential difference is taken as the constant of propor-
tionality just as pressure was previously and the expression relating
quantity of charge Q, capacitance C, and pdtentialhdifference \Y

appears as shown in Figure 6. Thus, since C = Q/V, capacitance may be
defined as charge per unit potential difference. Referring to the form
Q = CV, it is at once seen that the quantity of stored charge in a
capacitor can be increased by increasing the capacitance at constant

voltage, or by increasing the voltage at constant capacitance, or by

increasing both voltage and capacitance simultaneously.
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The simplest form of capacitor comprises a pair of parallel
conducting plates separated by a vacuum as illustrated in
Figure 7. The capacitance of this deviqe is given by the
ratio of the charge on either plate to the potential
difference between the.two plates. The remainder of this
discussion will be devoted té the derivafion of an squation
in which éapacitance for this simple capacitor is expressed
in terms of its dimensions A and d, plate area and plate.

separation respectively.

After charginé, each of the capacitor plates as shown in
Figure 8 has accepted a charge of Q. Tﬁe left plate

(burely arbitrarily, of course) has a charge of -Q and the
right plate a charge of Q. Since the area of each plate

is A, the charge densify on the surface of each plate is then
Q/A. The 1ower-c§se Greek éigma is generally used to denote
surface charge deﬁsity so, as in Figure 9, the density con-

dition is -d on the left plate and +0 on the right plate.
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Considering only the positive plate for a moment, there will be
an electric field outside both surfaces'haviqg the general form
illustrated in Figure 10. This field is directed away from both
surfaces at right angles and has the magnitude shown. The
negative plate has a field of exactly the same magnitude .but
opposite in sign indicating that its field is directed toward
the conducting surface instead of away from it. Refer to

Figure 11.

In combination, the situation changes as follows: since the
field qu;side either plate is a net field due to two equal
fields oppositely directed, these outside fields cancel out com-
pletely. Between the plates; hﬁwever, the fields due to each
plate are similarly directed, hence the resultént field is the

sum of the two individual fields. This means that between the

plates the electric intensity is expressed as shown in Figure 12,

and is directed from the positive to the negative plate.
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Using this expression for the electric field intensity between
plates, the potential difference between the plateé can now be
evaluated. Refer to Figure 13. Potential difference is the
integral of E.dl from zero to d separation. When this iﬁtegration
is performed, the result is V = Ed. Then, when'o/eé is sub-

stituted for E, the final expfession in this figure is obtained.

Figure 14 shows the two equalities that can be used to progress
to the objective of this discussion. The first is a statement
of the potential difference V in terms of one dimension of the
capacitor, the distance separating the plates. The second
describes the value of the charge Q in terms of the area A of
either plate. This second equation is merely an algebraic con-
version of the definitioh of surface charge density so that it
'is seen that total charge may be expressed as the product of

charge per unit area (sigma) and the total area.

Before going ou to Figure 15, the student should make the
necessary substitutions in C = Q/V to obtain the final simplified
expression for C in terms of A and d. Figure 15 shows how this

is done, the final equation being

C = eo-%
Since €, is a constant -~ it is called the permittivity of a
vacuum -- then the capacitance of any. capacitor of the type
discussed here is dependent only on the area A of one of its
plates and the distance between the plates. In other words,
capacitance is not influenced by potential différénces nor
circuit connections. A capacitor may be labeled by the manufacturer

purely on the basis of its dimensions, nothing else.
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CAPACITORS

TERMINAL OBJECTIVES

11/3 A Answer questions and solve numerical problems involving

11/3 D

12/1 A

12/1 D

the physical significance and units (basic and

submultiples) of capacitance, C.

Solve problems involving various conductor-pair

geometries' and the corresponding capacitances.

Solve discriptive and numerical problems involving

capacitors in series and parallel combinations.

(Note: All interconnecting wires are resistanceless).

Predict the effect of adding a dielectric of known
dimensions and material to a vacuum capacitor in both

descriptive and -quantitative situations. '
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THE CAPACITOR IN ACTION

The subject of the discussion of this paper deals with the
factors that govern the capacitance of a capacitor. The simplest form
of capacitor consists of a pair of parallel conducting plates separated .
by an insulator or dielectric. The quantities involved in capacitor '
action are the magnitude of the charge transferred to it, the electric
potential difference across its terminals, and its ability to store
electric charges or capacitance. In the demonstrations to be described,
a charge of constant magnitude will be considered to be present in the
capacitor while variations of capacitance are studied in terms of
changing potentials.

(Figure 1) The relacively crude instrument shown in the illustration
resembles the basic instrument used in this discussion for the measurement
of electric potential. A metallically coated styrofoam ball 1s sus- '
pended by means of a silk thread on a vertical metal stand held upright

on a thick plastic insulating stand. - If there are no electrical charges

_present, the ball hangs limply against the stand as in diagram A. When

a negatively-charged i1s brought into contact with the top of the stand,
some of the charges are transferred to the metal and become distributed
throughout the conductor. The conductive coating of the styrofoam ball
assumes a similar charge and 1s repzlled by the stand. The extent to
which the ball swings outward might be measured by the angle between

the thread and the stand; in its equilibrium condition, where the grav-
itational force and.electrical force are balanced, the angle might,

if desired, be calibrated in terms of the electric potential responsible
for the deflecting force. Transferring charge into the apparatus re-
quires that work be done against the charges already present and, since
potential is work per unit charge, the magnitude of the angle @ indicates

.Qualitatively whether the potential is larger or smaller than it was

for some other value of 6.
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(Figure 2) The Braun type of electroscope shown in this illustration

is modeled after the simple arrangement just described. The active por-
tion of this instrument is the aluminum vane pivoted mar the center

of the heavy metal support bar. Connection is made to the vane and
support bar via a metallic path up to the aluminum terminal disc at the
top. Note the large plastic insulator which keeps the vane assembly
isolated from its surroundings. A metal ring called the shield surrounds
the vane assembly but is not in electrical contact with it. The heavy
metal base, electrically connected to the shield, completes the Braun
electroscope. The lower portion of the vane is made very slightly heav- “\
ier than the upper portion so that the vane normally rests in a vertical
position when the electroscope is uncharged.
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{Figure 3) Diagram A shows the electroscope .In its neutral or uncharged
condition with the vane vertical. In Diagram B, a negatively charged
rod is brought into contact with the disc at the top of the electroscope,
a part of the charge of the rod is transferred to the vane assembly so
that both the support bar and the vane become similarly charged, and
they repel once another. The couple acting on the vane then causes it
to rotate to a new equilibrium position. The angle between the vane

and the support bar may then be used as a measure of the potential dif-
ference between the vane and the shield. The shield is normally con-
#ldered to be at the zero reference potential, or ground potential since
it is in electrical contact with its environment. Thus, when reference
is made to the potential on the vane assembly, it is to be understood
that this potential is being observed or measured with respect to the
shield. 1In the state shown in Diagram B, the electroscope is said to

be negatively charged. A positive charge may similarly be transferred
to the instrument by bringing it into contact with a positively charged
body. When an electroscope 1s to be charged either positively or neg-
atively, it 1s customary to start with the instrument in its uncharged
state.
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(Figure 4) An insight into the mechanism of charge transfer may be
gained by observing what happens when a charged body is brought into
proximity with an electroscope already carrying a similar charge. In
this illustration, the electroscope is initially charged negatively
while a negative rod is brought close to the terminal disc. The initial
negative charge potential is seen to be related to 6 in Diagram A, with

'_negative charges distributed more or less uniformly over the dix and

vane assembly. Upon the approach of the negative rod, negative charges
from the upper disc are forced downward into the vane assembly. This
increases the charge deusity and hence the potential of the vane so
that 8' now represents a measure of the new potential. Charges are

not transferred in this case unless actual contact occurs; they are
merely redistributed as a result of the increased electrical forces
brought into play by the nearness of the heavily charged rod.
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(Figure 5) Here a positive rod has been brought close to the disc of
a negative electroscope. In this case, negative charges are drawn away

from the vane assembly by the coulomb attraction force causing a decrease:

in charge density in the vane and consequently a reduced potential. This
is illustrated by the  smaller value of ©8'. A charged electroscope used
as described in this Figure and in the previous one not only indicates
the presence of charge on the approaching body, but also its polarity

and comparative magnitude. As mentioned previously, voltage may be .
measured in terms of degrees of angle of deflection.

19A-5



-
i

POSITIVE ROD CLOSE BUT
++F¥++ ++F F +)NOT

—— i - ———

"""" TOUCHING




(Figure 6) A charged electroscope may be discharged or rendered neutral

by touching the terminal disc with the.finger. The conductivity of the -~
human skin surface is sufficiently good to permit charges to be trans-

ferred to the body. Most of the charges on the Braun instrument will

transfer to the human body, depleting the electroscope almost completely.

Hence, the vane angle drops to zero when this is done. This method is

universally used to discharge an electroscope in order to ready it for

forthcoming tests.
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(Figure 7) The capacitor shown in this illustration is the simplest type,
consisting of two parallel metal plates Separated by air as a dielectric.
The plates are isolated from the environment by an insulating stand which
supports them in position. The left plate is connected by a wire to the
terminal disc of the electroscope; the right plate is connected by a
second wire to the shield and base assembly. The capacitor is then
charged by stroking the left plate with a negative rod, positive charge
of equal magnitude being induced in the right plate and in the-shield
assembly to which this plate is connected. The potential difference
‘between the vane and the shield produces the deflection ©. N

Equation 1 expressaes the capacitance of a capacitor as the
product of the dielectric constant K, the permittivity of empty space EO,
and the ratio of plate area A to plate separation d. The Braun eiectro-
scope is now to be used to test this equation qualitatively. Equation 2
is a "tool" relationship which helps to confirm the results obtained by
varying the quantities in Equation 1: the potential difference V petween
the capacitor plates is equal to the charge magnitude Q divided by the
capacitance C. Note ‘- hat the diagram indicates the separation distance
d to be relatively large. In the next step, this distance is to be re-

. duced while tke vane deflection is observed.

Q '
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(Figure 8) When the separation distance d is decreased as shown, it is

at once observed that the deflection angle is correspondingly decreased
with #' being much smaller than 8, The equations predict this as indicated:
when the initially-large d is reduced, the capacitance C must increase
since C is inversely proportional to d. As a result, as shown in the

second -equation, the potential difference V between the plates must dimin-
ish because V is i versely proportional to C. Thus, the deflection angle
goes from a large value (8) to a smaller walue (8').,

In the next step, the sevaration distance d is to be held con-
stant while the plate area is raised from a small to a relatively large
value,

[
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(Figure 9) As Diagram A shows, the initial area is relatively small;
this has been indicated in Bquation 1 by means of a small "A"; the
value for © obviously depends on *he specific area, plate separation,

and charge. 1In Diagram B, the :2+ nas been increased substantially,
again causing the deflection ar' - to decrease. One may again reason
predictively from the equations As A-becomes larger, C must also become
larger because C is directly prportional to A. Again, as C grows, V
must shrink correspondingly -—--- an inverse proportion exists here as has

been stated previously. Thus, if V diminishes, the vane deflection must
also decrease so that 89' is again smaller than 9.

Finally, the dielectric constant may be changed and the consequent
change of capacitance noted.
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(Figure 10) The plate area A and the separation distance d are both to

be held constant in this step. Diagram A illustrates that the deflection
anglé 0 is relatively large so that a reasonably high potential is seen

to exist across the capacitor plates. The air between the plates is
serving as the dielectric. A sheet of polyethylene plastic is now in-
serted between the capacitor plates as in Diagram B; the deflection angle
again decreases, indicating as before that the capacitance has increased.
Equation 1 then shows that the insertion of the plastic material must

have increased the dielectric constant K in order to increase the capac-
itance of the capacitor since these two quantities are directly proportion-
al. :

Equation 1 is thus verified qualitatively.

: Consider a simple functional problem: a 12 microfarad cap-
acitor of given dimensions and materials is restructured in such a
way that its dielectric constant, plate area, and separation distance ‘
are all tripled in magnitude. Y

Don't turn to the next page before answering this question:
what capacitance will the capacitor have after these changes have bee
made. '

. The solution follows:
12 ufd = KE_ % (initially)
7 ufd = (3k) € HA :
? uf (3K) € Za (after restructuring)

36 ufd = new capacitance.

.
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THE CAPACITOR
IN ACTION

TERMINAL OBJECTIVES:

11-1.080-00

Solve descriptive and numerical problems involving
capacitors in series and parallel combinations.
(Note: All interconnecting wires are resistanceless)

11-1.083-00

Predict the effect of adding a dielectric of known
dimensions and material to a vacuum capacitor in
both descriptive and quantitative situations.
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We are now going to consider two rulés that were first
formulated by a physicist named Kirchhoff. These rules
enablevone to solve circuit problems, particularly in thé
case of complicated circuits. Such a circuit can be

found in Figure 1.

FIGURE 1

The reader should note that the figure c#ntains two
seats of emf and several resistors. A typicaF problem
might ask that the current through each resistor and the
potential drop across each resistor be calculated,
assuming you were given the emf's and the Qa%ues of the
resistors. Many problems of this nature can be éolved
by the method df equivalent resistors, Sut this method
leads to very cumbersome algebraic exercises. Kifcghbff's
Law can be of enormous helﬁ in this area, as it can

eliminate much of the time consuming algebra.

The reader should direct his attention to Figure 2.
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FIGURE 2

Before stating a formal definition of Kiréhhoff's Laws,
two definitions are in order.’ The first term to be defined
is a junction. In Figure 2, the point that is labeied
branch poiﬁt of riode is called a junction. That is, the
three terms; branch point, node and junction all refer to
the same idea. This author willbrefer to this point as a
junction. A junction is defined as any point in a circuit-
at which the current can divide. For example, in Figure 2,
the current il &ivides at the junction into the currents
i2’ i3, and 14. There is a very convenient convention for
designating current entering the junction and current
leaving the junction. Current entering a junction is taken

to be positive and current leaving the junction is taken to

~ be negative. Thus for the case shown in Figure 2, 1, would

1
be taken as positive and iz, 13, and 14 would be taken as

negative. Now let us give our attention to another concept,

which is illustrated in Figure 3.
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FIGURE 3

This new concept is the loop. A loop is any closed
conducting path in a circuit. In Figure 3, each of the
dotted lines outlines a loop of fhe circuit. With these
definitions, Kirchhoff's Laws may be formulated. The

first of these rules is shown in Figure 4.

FIGURE 4

Kirchhoff's First Law may be stated as: At any junction,
the algebraic sum of the currents must be zero. The question
arises, "What does this mean from a practical viewpoint?" It
means that the total current entering the junction must be
equal to the fotal current leaving the junction. This rule
may also be stated as: There‘can be no piling up of charge
at the junction. The second of Kirchhoff's Laws is shown.in

Figure 5.
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FIGURE 5

The second of Kirchhoff's Laws states that: The sum
of the changes of poteﬁtial encountered in making a complete
loop is zero. More explicitly, one starts at any point in
the loop, traverses thé loop in an afbitrary direction, and
algebraically sums the potential differences met in
tfavefsing the loop. Kirchhoff's Second Law requires that
this sum be zero.

Now that the two Kirchhoff rules have been stated,

they may be applied to the simple circuit shown in Figure 6.
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KIRCHHOFES RULES

2. THE SUM OF THE
CHANGES IN POTENTIAL

ENCOUNTERED IN MAKING
A COMPLETE LOOP IS ZERO.
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FIGURE .6

In the circuit shown in the figure there are two seats
of emf, E1 = 24 volts and E2 = 12 volts. 1In addition, thére
are three resistors of 8 2, 4 2, and 6 Q as shgwn. The
author advises the reader to sketch the circuit of Figure 6
so that he may later follow the solution to this problem on
his own. |

The following problem is presented as an illustrative

example: Determine the current in each of the resistors of

Figure 6.

FIGURE 7
The first step in a problem of this type is to note
the number of loops in the circuit. Inspection shows that
this circuit has two loops. Thére is a loop on the left
hand side which is assumed to have a clockwise current 11.
There is also a loop on the right hand side which is
assumed to have a clockwise'current 12. The next ;tep

in the solution is shown in Figure 8.

120 = 5






FIGURE 8
If Kirchhoff's Second Rule is: applied to the first

)
loop, oﬁe obtains as a voltage equation

E1 = i1 B a+6Q) - 12 (6 )

Introducing the known value of E, (24 volts) this equation

becomes

2% =4 (140) -1, (60)

See Figure 9.

FIGURE 9
Attention is now given to the second loop. Here

Kirchhoff's Second Rule yields

- E2 = 12 6o+49)- il (6 Q)

Replacing - E, by the known value of 12 volts, this
equation becomes
=12 = 12 o Q) - i1 (6 R)

At this time the reader should be asking himself why the
voltage E2 is written as minus 12 volts. The equation,

however, is correct as written. Please turn to Figure 10,

#20 -|6



24v=i, 140 -1, 60

FIGURE

- == i, (60.+40)—i, 60

» _]2v=i2 100 -i, 60 '



FIGURE 10

The problem has been reduced to a simple pair of

1 2

uhe reader wishes to solve these equations by himself

simultar us equations in the unkniwns i. and 1,. If

he may do so and then proceed to Figure 11. If not,

proceed to Figure 11 at once.

FIGURE 11
As can be seen from the figure, the résults of
solving the simultaneous equation are
| 11 = 1.62 AMPS
12 = -.25 AMPS
The negative value of 12 merely inc:.cates that the
wrong directioﬂ was asgumed for 12. Accordingly, the

current diagram must be modified as is shown in

Figure 12.

. FIGURE 12
Referringkto‘mhe diagram of the circuit, 11 gives
the current in the 8 ohm resistor and 12 gives the
current in the 4 ohm resistor. Thus the current in
these two resistors is détermined. Please go on to

Figure 13.
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FIGURE 13
It remains for the current in the 6 ohm resistor to

be determined. This can be accomplished by an application

of Kirchhoff's First Rule, the rule which defines junctions.

Recall that Kirchhoff's First Rule states that: the
algebraic sum of the currents entering a junction and the

currents leaving a junction is zero.

FIGURE 14

Figure 14 shows the corrected directions of the
currents-i1 and 12. Let the current through the 6 ohm
resistor be designated by i. According to Kirchhoff's

First Rule,

il +.12 +1=0

If the currents'entering the junction are taken as positive
and those leaving the junction are taken as negative, this

current equation becomes

1.62 AMPS + .25 AMPS -1 =0
or ‘ i =1.87 AMPS

Thus the problém has been éompleted by finding the current:
in the 6 ohm resistor to be 1.87 AMPS.

It is important to note that the two leops with which

‘the problem was begun were rather arbitrarily chosen. The

author now wishes the reader to solve the same problem

‘using a slightly different approach. Naturally, the same

result is expected. The diagram for this exercise can be

found in Figure 15.
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24v=i 140 -1, 6.0.
-12v=i, 100 -i, 601

‘Hence i, + i,
: ':FIGlURE |




'FIGURE 15
The two loops that should be used are outlined in the
figure. The current through the 8 ohm and 6 ohm‘resistors
is 11; The current through the 8 ohm and 4 ohm resiétors

is 1 It is jmportant to note that 12 passes through both

2.
seats of emf. This problem may be solved using the same
technique as'was used in the illustrative example given

above. For smme additional hints see Figure 16.

FIGURE 16

Usihg Kirehhoff's First Rule, an equation may be

1 loop.

written for the 1

-E =1, (62+80) -1, (89)

Proceeding in the same way for the 12 loop yields

El—'E2 = (89 +40Q) - il (8 Q)

Upon substituting the given vaiues éf E1 and,E2 into these
‘equations, there results two simultaneous equatioﬂs in 1,
:and“iz. Whentthis pair of equations is solved, Kirchhoff's
First Rule may be applied to yield ‘the current in each of

the resistomrws.
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 KIRCHHOFF’S

TERMINAL OBJECTIVES

'13/1 B

13/1 D

Ansvwer questions relative to the methods of
application of Kirchhoff's Current Law to

electrical networks..

Apply Kirchhoff's Laws ta the solution of
numerical problems ramging from simple to

more complex multiloep networks.
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The concept of a vector field is normally first encountered in mechanics

when gravitation is studied: any of the phenomena involving gravitation

that are described in terms of a force acting at a distance can also be
analyzed by means of the field approach, often more successfully. The

same is true of the forces involved in electrostatics: although one may
speak of the attraction and repulsion of electric charges as forces acting
over a distance, the description can almost always be enhanced by introducing
the concept of the vector field, in this case the electrostatic or electric

field.

The third type of vector field is the subject of this exposition, namely
the B-field or magnetic field. Since there is a strong similarity among
the methods used to detect and measure all three of these vector fields, it
would be profitable to review these methods as applied to gravitational and

ejectrostatic fields before starting the analysis of the B-field.

Man is equipped by Nature to detect the presence of a gravitational field.

He feels thé force exerted on his body and objects he handles by the inter-

action of these masses with the gravitational field. As illustrated in

Figure‘l! he defines and measures the field with the help of a simple -
device such as a scale or balance and a standard mass. According to con-
ventions of scientific mensuration, the magnitude and direction of the
force of gravity acting on a one-kilogram mass provides all the information
required to describe the intensity and sense of the gravitational field,

the intensity is defined as nothing more than the force per unit mass.

.
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The electrostatic field presents a different problem because

special instruments are required to assist with detection and
measurement. Anmong the simplest of these is a very light,

suspended object such as a pith ball and some form of electro-
static generator. (Figure.Z). A pith ball is suspended from

an insulating thread and given a positive charge by touching it

to a glass rod that has been stroked with silk cloth. The pith

ball is then brought near the electrostatic generator and the

force acting on the pith ball observed by noting whether it swings
foward or away from the source of the electrostatic field. A
measure of the electric_field around the generator is brovided by
the direction and magnitude of the force on the ball. The intensity
of the electric field is then defined as the force per unit charge..
Thus, in both of these cases, we describe the field in terms of the
force acting on a unit "something'" -- a unit mass in one case &nd

a unit charge in the other. .
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As might be anticipated, detection and measurement of the B-field
presents problems of its own. If, as described in Figure 3, a
positively'cﬂarged pith ball is suspended in the magnetic field
produced by a very powerful magnet, no force appears to act on
either the magnet or the pith ball. If the pith ball is swept
rapidly through the magnetic field, however, a force does make
itself evideht: the pith ball is observed to be deflected side-
wise with respect to the direction of its motion through the
field. The most noticeable affect is obtained when the ball
passes between thé poles of the magnet moving at right angles to
the axis joining the pole faces. This is illustrated in

Figure 4. The pole axis is a straight line (shown dotted) joining
the centers of the two flat pole faces: the pith ball is suspended
immediately below the pole axis with the thread intersecting the
axislas shown. When the magnet is moved quickly downward causing
the pith ball to pass perpendicularly through the field between
poles, the pith ball is seen to deflect horizontally toward the

observer.
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field of the magmet in Figure 4 is swmgly comremtrated betweem
< poles and is arbitrarily assigned :ine: dimectiom from the N-—pole
sward the S-pole within the gap betweer: mm. Please refer to
~igure 5. The field direction is shown a.+ Zhe vectar arrow B fzom
ight to left, that is, from N to S. Th+ -zellatiwe welocity of the
pith ball in the field is indicated by the wector arwow v, and the
force resuitimg frmm the motion of the wharped bmdy through the

magnetic field is shown by the vector a=—ow E.

From a purely descriptive point of view, it Fs important to observe
:that the force F is perpendicular to the plame containing vectors v
and E In this case, F is directed toward the observer but if either
7 or B had been oppositely directed, the sense of F would be away from

the observer but it would still be perpendicular to the v-B plane,

Analytically, it shou.d be apparent that the force -I:.: is related to
~ and B by the cross-product of these terms. If the upward velocity
¥ 48 rotated into _1;, and if the resulting motion of a right-handed
screw is visualized, it is at once seen that the screw would progress

at right angles to both v and B out of the paper toward the observer.

Thus far, then, it is seen that a force does act on a charge in a
magnetic field BUT ONLY IF THE CHARGE IS MOVING WITH RESPECT TO THE
FIELD. It can be demonstrated furthermore that this force will exist
only if the relative action of the pith ball with respect to the
field has a component perpendicular to the field. When the charge
moves parallel to the field, say alomg the pole axis, no force can
“#e detected. In any:case -~ if the:ffiorce cam be detected — it is
_=Amays found to be:perpendicular to ttfe plane containing the: v
wmrtor and the B vertmr.
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Another revealing experimental set up.Z= give® in Figmre 6. An
evacuated glass bulb containing two el=rrrovdes, called a Crooke's Tube,
is connected to a source of high voltage. When gower is applied, a
stream of electrons made visible by a Fimoresscwwr screem in the tube
(not shown in the diagram) passes in a=fra’gh: Iine frum the negative
to the positive electrode. The electrmr styeam is indicated by the
broken line inside the Crooke's Tube. T= a maggmet is placed behind the
tube from the observer's point of view, -“horizeams=ily oriemnted so that
-the N-pole of the magnet points toward tthe obmerrwer, the electron
stream is seen to be deflected sharply mmwaxd. Tee deflected path is
represented by the dotted arrow in the ZEipwre.

The electrons are moving from electrode & ‘uwi =u=ctrode C, from left to
right in this case: the direction of ths 3-fiield is perpendicular to

the plane of the diagram and its sense iz »utweard toward the observer
away from the N-pole behind the tube. Thus,. dtee B~field is perpendicular
to the velocity vector of the electron sruegdii. The deflection of the
stream provides evidence that a force is-emefrted on each electron im an
upward direction, perpendicular to the pigees wontaining the v- and B-
vectors. This result is in descriptive @grwement with the observations
of the previous experiment.

There is a significant difference, however, t=tween the two demonstra-
tions: in the first, a positive pith baﬂ[md with respect to the
B-field but in the second the moving chargme Were negative. When one
tries to rotate v into B in this case, - one :mmds that the sense of the
predicted force should be downward rather ‘titan: upward. Evidently, since
the various vector rotation rules and the mmiles governing the directions
of forces on charged particles in fields.ae based on the motion of
POSITIVE CHARGES, it is necessar}" to revi=e ‘the approach to the problem
when negative charges are involved. This & rather .easily done as
follows:

Theory and experiment demonstrate that an sdectrom moving from ZTeft to
right as in our example has eéexactly the same fi=ld effect as a positive
charge of the .same magnitude and mass movimg in tiize opposite direction,
from right tn left, Thus, to correct the wector picture when dealing
with negative charges it is helpful to resiraw the @iagram as shown in
Figure 7. Nothing has been changed except: the diwection of the
charges, these having been changed to posiitroms imstead of electrons.
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S the rule for crusis: »roduwcts may be applied without error. When v

13 raotated imto B, the directiom of prugress of the right-handed screw
fx upward as it showld ‘be. This is diagrammed in Figure 8. The velocity
wecrmr v is directed :.umard the left, whe field vector B is direcred out—
waent toward the obse==rry, and the resultimz force F is upward.

L:'agx.tre, ras a magnltm 2 _r-:lven by the produ;t q_3 ¥ x B in which the velocity
wertoor v is perpendicmiar to the field vector B.
The wnits for B are weeadiily obtaimed f —om the expression

T =4q v B

tor solwing this equatiess: for B, that is

amd ‘thenm substituting mik= units in the tz rm at the right:

newtons
meter

second

coulombs -

A rroulomb per sSecond is cmlled an ampere, hence

nesvtons
amper= meter

The quamtity B #s wemedimme]ly called the of a magnetic field,
magrretic Inductiom;,. wmf flux demsity. If thris material has not already
beemr introducest, it will later b shown thstranother unit conmected with
the roncept af flimx: @ensdity is frequentlymssed. That is,

wWelReTS
square meter

And: fimally ifler the weber per sgmare meter is now called the tesla.
Thesse Towr amits zme gwmpletely equivalent.:and one may be substituted
T e entfrer &= wilk.. For recoxrd purposes., these units are summarized

i PMgrore 9.
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14/1 B Answer qumalitatiwve questimns relatimg to the

magnetic indmctionx vector B.
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If two wires are freely suspended very close to one another, and if
a current is then passed through each of the wires, a force of at-
traction or repulsion can be detected between them. The direction

of the force is a function of the relative current directions; if

the current directions are the same in each wire, the conductors

will attract one another but if the direction of the current in one
of the wires is reversed, the force changes to repulsion. Please

refer to Figure 1.

Analysis of the electromagnetic fields that surround each conductor
indicates that both the magnitude and the direction of the force
can be theoretically predicted. Let us assume that the wires

shown in Figure 2 are connected directly to a source of emf, in
series with one another, so that the currents are opposite in

direction but equal in magnitude.

The current in wire a is directed downward while that in wire b is
upward. In order to make the analysis easier to perform in two
dimensions, imagine that both wires have been rotated about a
horizontal axis so that they present the picture shown in Figure 3.
The wires now appear in cross-section as small discs; wire a
carries a dot to indicate that the current is directed toward the
observer and wire b contains a cross to show that the current in
this wire is directed into the plane of the paper, away from the
observer. Considering wire a alone for the moment, as in Figure 4,
the B-lines surrounding it may be drawn as concentric circles to

conform with experimental facts obtained from Oersted's Experiment.

#24 - 1







Applying the right-hand rule for wires (Oersted's Rule),
the thumb of the rigﬁt hand is pointed in the direction
of the conventional current so that the fingers then
encircle the wire in the direction of the magnetic field.
For tﬁis case, the B-lines are counterclockwise in
direction as indicated in Figure 5. At a point P near
the current-carrying wire, the line of magnetic in-
duction is tahgent to the circle of the B-line surround-

ing the wire.

The magnitude.of the field at point P is given by
Ampere's Law and may be written as indicated in Figure 6,
in which Bp is the magnitude of the field, u is the
permeability constant, ia is the current in wire a, and

r is the distance between the center of wire a and point P,
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- To review another concept briefly, please refer to Figure 7.

In this diagram, a wire is immersed in a magnetic field; the
wire carries a current into the plane of‘the diagram. The
source of the magnetic field is not indicated, nor is this
information needed to analyze the problem. The B-lines
from this unknown source are directed upward in the plane of
the paper as indicated.-' Applying the Palm Rule to detérmine
the direction of the force aéting on the current-carrying
conductor immersed in the given field, the fingers of the

right hand are placed so that they point in the direction of

* the B~lines while the extended thumb points in the direction

of the current. The direction of the force on the wire is
then given by the direg¢tion in which ‘the palm would exert a
thrust if the hand were used in the normal manner. In the

example given in Figure 5, the direction of the force would

be that shown”in Figure 8, namely to the right as viewed by

the observer.

'~ The Palm Rule may always be used in this way and will be

found to be a great help in analyzing this kind of situation

and others similar to it.
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The magnitude of the force on the current-carrying wire is given
by the relation shown in Figure 9. Thus, both the magnitude of the
force and its direction are determinable for the example given.
Please refer to Figure 10; this is reiteration for review. Also

refer to Figure 11.

These ideas may now be combined to determine the nature of the force

in a specific case; that is, to determine whether to expect attraction
or repulsion when the current directions are known. Working with
conductofs caréying oppositely directed currents as in Figure 12, it
can be readily shbwn that the force is one of repulsion in the follow-

ing manner.

The line of magnetic induction at wire b due to the current in wire
a is labeled Ba' Applying the Palm Rule to wire E} it is seen that
the force on this wire is directed to the right away from wi;e a as
illustrated in Figure 13. The magnitude of the force isbgiven in
the same Figure. . In this relationshié; Fb is the force acting on

wire b, ib is the current in wire b, 1, is the length of wire b, and

b
Ba 1s the magnetic induction due to the current in wire a.
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Exactly the same process méy be fol'fmetl zwz¥Fnd the force acting
on wire a due to the current in wire.z anffimime magnetic induction
produced by the current in wire b. e rigs—¥=md rule is first
applied-to wire b; this'demonstratesnﬁ&ztﬂi&eﬂkﬂjne.am:wire a is
directed upward. Then the Palm Rule is--appdiedl to wire a, showing
that the force on this wire acts to the Xeft =say from wire b.
.The direction and magnitude of this forre is diagrammed in Figure
14, The student should confirm this for himself.

N

Thus, the wires repel each other. From Third Law considerations
alone, one may conclude that the forme on wire a must equal the
force on wire b since they form an aetrion-reaction pair. The fact
that the forces are equal may alsoc be shown directly as in Figure
15. In the first step, the magnitude of;%E.is given in equation '
form. 1In the second step, Ba has been replared i -its equivalent,
i.e.,,ubia/ZTTi. Both sides are then divided by #ie: wire length
to yield the force per unit length in the tirird step. The

remainder is self-explanatory.

N,
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and assuming equal
lengths and currents

Mg 1°

for either wire
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In summgmry, :as presented in Figure 16, thé force between
current—carrying wires is one of REPULSION if the currents
are OPIPOSTITELY DIRECTER; the force is ATTRACTION if the
ccurrents hawe the SAME DIRECTION. The force per unit
length on either wire for equal ~curren;ts and‘ equal lengths

is given By

¥/1 = p i°/2Tr

Q. | o ‘#24—-16
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TERMINAL ‘OBJECTEZVES

14/3 A  Describe the magnetic field around a stradght-current-

carrying conductor.

14/3 D Prove that the force between wires a and b in
the diagram is an attractive force, the magnitude

of the force on either wire being given by (equation).







Like many other great gencralizations in physics, Amperce's Law begins

to acquirc meaning only when it is rclated to phenomena that occur in

the physical world. Using the accepted symbolism of physics, Amperce's
Law may be stated in the form {llustrated in Figure 1.

Put into words, one may read this as: "The linc integral of the magnetic
induction B around any closed path in a magnetic ficld is cqual to the
net current across the area, multiplied by a constant of proportionality,

"
Ho
Unfortunately, the verbal expression of Ampere's Law may be just as
obscure to many readers s the mathematical statement. It can be clari-
fied to a great extent, however, by cons1der1ng a specific example in
which the quantities contained in Ampere's Law can bce reasonably and
intelligently included.

Referring to Figure 2, imagine five conductors passing through the

plane of the diagram perpendicularly in more or less random positions,

The wires appear as small discs carrying either a cross or a dot to

indicate current either into the plane of the paper or out of it, —
respectively. A ‘ }

Figure 3 shows the five conductors enclosed in a continuous "path' which
is to serve as the path for the line integral.

In the next step (Figure 4) a randomly chosen point, P, has been in-
serted in the closed path. The two vector arrows originating at P are,
respectively, the magnetic induction vector B pointing in any random
direction and an element of path length dl that is tangent to the

curve of the path at point P. Since the conductors passing through the
area circumscribed by the closed path must produce a magnetic field in
the plane of the diagram, then the B vector must have a specific magni-
tude and a specific direction, the latter designated by the angle
between it and the dl vector, that is, angle 6. The net current
threading through the enclosed area is merely the algebralc sum of the
five individual currents.

O
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In accordance with Ampere's Law as stated in Figure 1, the sum or
integral of all the B.dI contributions over the closed path must
be equal to the product of the net current as described above. and

the proportionality constant, Hoe It must be emphasized at this

point that Ampere's Law merely describes a general property of

magnetic fields as related to the currents that produce them. It

is not an "engineering formula'" in which one plugs numbers in
order to extract an answer; in a sense, it describes Nature but

does not tell how to handle her, except in special, simple cases.

Now refer to Figure 5. Here is Ampere's Law once again, stated in
its most general form. Note that Mo is assigned a value of 4 7
(10—7) webers per ampere meter. This value matches this constant

to the mks system of units; the name given to My is "permeability
constant'". Figure 5 also contains another item of importance:
since.E.dI-is a dot product, the magnitude of the g.di vector at

any polnt in the closed path is the product of the path element dl
and the component of the ﬁ—vectdr parallel to the element. That 1is,

the magnitude of the dot product is B dl cos 6.
Evaluation of the line integral of B.d1 is extremely difficult

mathematically except in cases of high symmetryf you may remember

that this is also true of Gauss' Law.
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“where u,=4T (10-7)
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we. A typical case of high symmetry to which Ampere's Law may be directly
applied is that of an infinitely long, straight, current-carrying conductor.
A yire that is long compared to its diameter and for which the value of B is.
desired not too far from the wire and not too close to its ends approximates
the ideal conductor sufficiently closely. Such a wire is shown in Figure 6 % 7.

The magnetic field around a conductor with these characteristics is sym-—
metrical and may be described as comprising concentric circles in a plane

at right angles to the wire. Symmetry also tells us that the magnitude of

B is constant at all points on a given B-circle and that the B vector is
tangent to the circle wherever we. choose it. Furthermore, the angle between
the line element dl and the B vector is always zero since dl is also tangent
to the circle at the selected point being superimposed on the B vector as
shown. -

Using the circle shown in the diagram as the path of integration, Ampere'’s
Law may then be written in vector form as given in Figure 8. When trans-
lated into scalar form it takes the form shown in Figure 9 (a).

As mentioned previously, in this simple case dl and B lie along the same
straight line, that is ©.= 0, so that cos © = 1 and the statement may then
be written as in Figure 9(b). Also, since B is constant over the whole
closed path of integration, then the law may be further simplified as in
Figure 9(c). Finally, the line integral for a circle is simply the circum-
ference of the circle or 2nr so that the line integral of B-dl turns out to

be nothing more than B(2nr) = p i as in Figure 9(d). Clearly, then, the }
magnitude of the magnetic vecto? any any point on the circular line of '
induction with radius r and a net current i across the area enclosed by the

line is'poi/Zﬂr.

The mks unit breakdown for this example is illustrated in Figure 10. The

student should look this over carefully to be certain that he can understand

the unit relationships.

Thus, for the simple case of a long, straight, current-carrying conductor
Ampere's Law gives a formula for determining the magnitude of the magnetic
induction at any point near the wire and not too close to its ends in

terms of the current in amperes and the distance of the point from the wire
in meters.
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AMPERE'S LAW APPLIED
TO A LONG
STRAIGHT CONDUCTOR

TERMINAL OBJECTIVES

14/3 A Describe the magnetic field around a straight-

current- carrying conductor.

14/3 F Answer questions and solve problems involving

Ampere's law and its applications.






In a previous discussion a great deal of emphasis was
placed on the fact that Ampere's Law as shown in
Figure 1 is an important generalizatidn that relates
magnetic induction to the electric current that
produces it. More than this, it was emphasized that
Ampere's Law may be readily applied to configurations
of high symmetry but that, in most cases, evaluation

of the line integral is very difficult.

In such instances -- where the conditions of symmetry

are not met to the extent required for applying Ampere's
Law -- it is often possible to find the value of the
magnetic induction vector at a point neér the conductor
by ﬁsing a relationship called the Biot-Savart Law.
Although the Biot~Savart Law may be déduced from Ampere's
Law and vice versa, the proof of this is not of immediate

concern at this time.
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This discussion will concern itself with a general statement
and exposition of the Biot-Savart Law, and a description of

the procedure involved in using the law to solve a specific
problem.

Please refer now to Figure 2, An asymmetrically shaped wiré
carrying a current is shown divided into tiny elements

labeled "d1". These will be referred to as "current elements'.
In this way, the conductor's tofal current is considered to

be composed of a large number of discrete elements, the
direction of the current imn a particular element being that

of the wire at that point.

If a specific current element is selected for study, one
may then consider the nature of the element of magnetic
-

induction dB that is produced by that current element.
With dl and P in the plane of the diagram, the direction
of the induction vector is known at point P; as given by
the right-hand rule for conductors, the induction vector dB
is directed into the plane of the diagram, perpendicular

to it.
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The Biot-Savart Law is used to determinme the mgggerimde of dB.

Figure 3 presents the Biot-Savart Law in mathematical form. The
magnitude of the magnetic induction vector is dB at point P3

the permeability constant, i is the current in the wire, dl is the
length of the current element, r is the distance from the current
element to point P, and © is the angle between dl and r. -

The next consideration follows logically: to find the-magnitude of
the induction vector at point P due to the nef effect of all the dL
contributions, it will be necessary to perform an integration of these
elements over the whole length of the conductar,

With a comstant current i% 8 wire of mpecafic lemgth, the integration
can be sucessgfdlly performed if the vavistion of @ with respect to
each of the curment elememts cam be expressed mathematically over the
length of the wire.

The use of the law may be readily demonstrated for a specific example.
Please refer to Figure 5 which shows & lomg, straighr, current-carrying
wire for which the mapgnetie induction B at point P near the wire is to
be determined. This example has been chosen so that the student may
have the opportunity to compare tke Biot-Savart soluvtion with that
obtained by using Ampere's Law in a previous case. Most textbooks
discuss this particular Biot-Savart application and the student is asked
to study the solution given in the books carefully. The approach used
here is somewhat different, however, and provides an opportunity to see
how the problem may be approached from a different starting point.

Consider the wire in Figure 5 to be infinitely long. As shown in the
diagram, © is the angle between dl and r while angle a is its comple-
ment; R is the perpendicular distance between the wire and the point P.
Also, do is the angle subtended by the length of one of the current
elements. Since the wire is infinitely long, consideration of one dl

after another starting at minus infinity and going up to plus infinity

will involve letting o vary from -90 degrees to +90 degrees. Thus,
the limits of integration extend from ~ 7/2 to +u/2.
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Figure 6 illustrates how the Biot-Savart Law may be set up in
terms of a rather than ©. Since a is the complement of O, sin

0 is merely replaced by cos a.

To perform this integration, it is of course necessary to
express all of the quantities on the right side of the equation
in terms of only one variable. In this ﬁarticular approach to
the problem, all these quantities are to be expressed in terms
of a. Referring back to Figure 5 for a moment, note that the
length of the wire 1 is related to the distance R by the

tangent of the angle a. That is, one may write 1L = R tan a

since tan o = 1/R.

Please refer now to Figure 7. Clearly, dl is needed in the
equation; hence, 1 may be differentiated with respect to a
to obtain it. This differentiation is shown in Figure 7 and

should be studied carefully before proceeding.

The next task is to set up r in terms of a. Please refer to
Figure 8. Since cos a equals R divided by r, then r = R/cos a.
To simplify the work -it is better to express r in terms of the

secant of the angle as given in Figure 8.
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Figure 9 shows the step-by-step procedure used in substituting the
trigonometric relationships into the general form of the Biot-Savart
equation.

Step (a): R sec2 o da has been substituted for dl.

Step (b): R2 sec2 o has been substituted for r.

Step (c): Simplification.

Step (d): Set up to integrate between chosen limits

to find B at point P.

The integral of the cosine of an angle is the sine of the same angle. _
This is one of the reasons for selecting this approach: evaluation.of
the integral is extremely. simple. Now, going to Figure 10, the solution
is apparent. Please study this carefully. Note that the final expression
for B is identical with the solution obtained by directly applying Ampere's

Law to the same configuration.

The student will find that many problems can be easily solved by using

.the Biot-Savart Law while these same problems would be considerably more

difficult if he attempts to apply Ampere's Law to them.

As a student, you have a significant éﬂvantage over a practising scientist.
When a scientist encounters a practical.problem, he cannot at the outset
be sure that a solution for it exists, nor can he be certain that his
mathematical tools and techniques are adequate for the job. On the other
hand, the students may'be quite certain that his Study Guide will not
present insoluble problems, and that patience and care, plus the basic

skills acquired by practice and study, will be enough to assure success.

“‘1‘
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THE LAW OF
BIOT-SAVART

TERMINAL OBJECTIVES

15/1 A Derive the expression for the magnetic induction
within an ideal solenoid as (equation) is the
actural current in the solenoid wire and n 1is

the number of turns. (diagram)

15/1 D Use Fig. 4 as an aid in mathematically deriving
the equation for the magnetic induction at point

P; (equation).
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Faraday's Law, discovered by Michael Faraday in the.19th Century,
represents still another great generalizatioh of physics. Its
sociological sighificance, too, ranks among the highest because
many aspects of our modern technological civilization would have

" been greatly altered had this principle remained in obscurity.

A discussion of Faraday's Law properly requires that a few items -

of background material be briefly reviewed.

 The magnetic flux $ across a surface is defined as the surface

- integral of the normal componenﬁ of the magnetic induction B
over the surface. Figure 1 presentsvthe mathematical definition
of magnetic flux which is clearly the parallel of electric flux
with suitably altered symbolism. As the Figure indicates, the
total flux across a given area is ¢ =Jn E-dK. Since this is a
dot product, the magnitude of the flux is related to the cosine
of the angle between the normal to the plane of the surface and
the actual direction of the B-lines. Referring to Figure 2, it
is seen that the flux through the area can be found by integrating
B cos © dA over ;he area under consideration. This idea should be

studied for a while before proceeding.
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The physical outcomes of Faraday'é Law are best approached through
the medium of a simple experiment using the equipment and connections
shown in Figure 3. A ¢oil of insulated wire is connected to a
sensitive galvanometer as shown. A magnet is held above the coil .
preparatory to inserting it into the coil. Although a galvanometer
is a current-detector since a current must pass through its movement
if a deflection of its needle is to be obtained, it may also be used
to show the presence of an emf across its terminals. Initially,
when there is no emf, the galvanometer needle is at a center zero
position. When an emf is applied, the direction of needle deflection
serves to indicate the direction of the current and, thus, the:

direction of the applied emf.

The magnetic field around a bar'magnet may be visualized as lines » ] -
of magnetic induction as in Figure 4. 1In general, these lines can

be pictured as forming complete loops running roﬁghly through the

north-seeking and.south-seeking‘ends of the magnet. At any point -

in the field near one of the magnetic poles, the field strength may

be judged by the density of tﬁe lines at that point. The flux

through a given area very close to the end of the magnet, for -
instance, would‘be substantially greater than the flux further away

from the same end, through an equivalentraréa. .This is evident

from the way in which the lines spread out at greater distances

from the end of the magnet. ' .
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To perform the experiment, one end of the bar magnet is slowly inserted in the coil
while the galvanometer is observed. A deflection occurs, indicating the presence

of an emf across the meter terminals., This is displayed in Figure 5. In the illus-
trated example, a nbréh-seeking or N-pole is moved Jdownward into the coil causing
the needle to deflect to the left. After insertion, the magnet is brought to rest
inside the coil; at this time, the galvanometer reacing drops back to zero. When
the magnet is slowly removed from the coil, a deflection is again observed, this
time in the .opposite direction, toward the right as shown in Figure 6.

The same experiment may be performéd in a slightly different manner by moving the
coil relative to a stationaéy magnet starting with both at rest. When this is done --
say when the coil is moved upward with respect to the stationary N-pole inside it --
the galvanomenter again deflects. The direction of the deflection in this case is
the same as it was when the N-pole was movéd upward in the previous case. In short,
it is the direction of the relative motion of the coil and magnet which appears to

be the important factor in determining the sense of the current.

In the second phase of the experiment, a comparison is made between the amount of
deflection obtained as a function of the speed of the motion, that is, a comparison
of the induced emf for fast relative motion and slow relative motion. It is
observed that the magnitude of the deflection increases with increasing speed

of relative motion. . ’ .
The question naturally arises at this point; what interaction is taking
place? What causes the emf to be induced? Appérently relative motion of
coil and magnet results in a change in the amount of flux that ‘cuts through
the condﬁctors of the coil. Regardless of the way one performs this
experiment, it is always found that the magnitude of the emf, and hence the
magnitude of the current in the galvanometer, depends upon the time rate of

change of the flux.
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This key opposition may be dramatically demonstrated by means of another
simple experiment as illustrated in Figure 13. A coil of many turns is
wound on a long irom core and connected to a suitable seat of emf through
a spring pushbutton. A seamless aluminum ring rests on the coil with the
core passing through it. " Aluminum is used for two reasons: first, it is
not a magnetic material and displays no ferromagnetic properties, Hence,
any magnetic phenomena we might observe in connection with the ring cannot
be blamed on its material. Second, aluminum has a very low electrical
resis;ance so that even a small emf induced in the ring can cause a large
current around its circumference. When the switch is closed (pushbutton
depressed), an increasing flux builds up in and around the core causing
the flux cutting through the aluminum ring to undergo a very rapid time
rate of change. Although the flux build-up is not instantaneous; it does
occur so swiftly that 4,/dt assumes an enormous value. The induced emf
is correspondingiy great and.because the resistance of aluminum is so
small, the induced current is immense. Thué, the newly indﬁced magnetic

field around the ring is very, ver& large.

This tremendous induced field must opposz the causative field; the
‘repulsive force thereby developed must therefore be relatively great.

The result is that the ring is thrust upward and away from the coil so that
it flies away from the system straight up into the air. When done properly,
this experiment is quite spectacular. The ring can be made to fly upward
with enough initial velocity to strike the ceiling of the room with a

resounding thwack.
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Thus, an emf induced in a conductor as .. result of relative motion of the
conductor in a magnetic field has a m¢ nitude that depends on dé/dt as

shown in Figure 7. This relationship is given as a proportion, that is, the
induced emf symbolized by the script "E'" is proporZional to the time rate of

change of the magnetic flux, dé/dt.

It is now possible to develop a logical scheme for determining the direction
of the induced emf when other necessary things are known. Here again, a -
sensible approach is to study a specific case and then apply what is learned

about this specific case to a valid generalization.

Figure 8 shows a metgllic loop of fixed area: a galvanometer or some other
indicator of induced emf is imagined to be connected to the ends of the loop.
The loop is next moved toward an N-pole of a baf magnet as in Figure 9. As
the relative motion proceeds, the flux through the lcop increases since it
moves through a region of greater flux density ag it approaches more closely
to the magnetic pole. As was.previously shown, :\Ehange of flux results in
an induced emf which in turn causes a current in the closed circuit of the
loop and galvanometer. It is necessary now to determine whether or not the
direqtioﬁ of this induced emf can be predicted from an analysis of all the
other relevant factors. There are only two possibilities, both of which

are illustrated in Figure 10: the direction of the induced current will be
either clockwise as in Figure 10A or counterclockwise.as in B. The fact
that there is a current in the loop, regardless of its direction, means

that a new magnetic field has come into existence -- the field produced

by this curremt. Its direction is easily established by using the right-hand
rule: grasp the loop with the fingers of the right ﬁandvencircling the loop
in the direction of the current; the extended thumb will then point in the

direction of the magnetic field.

O
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Consider case A first. The right hand rule shows that the field due to
the induced current will thread through the loop from right to left as
in Figure 11. In case B, the same rule gives the direction of the field

from left to right.

Figure 12 has superimposed the two previous diagrams on one another so .

L it the combined effects become visible. In each diagram, one field
originates at the external bar magnet's pole while the other arises from
the current induced. in the loop. In case A, both the applied and induced
fields have the same direction -- from right to left. Note the funda-
mental impossibility this imﬁlies. Increasing flux leads to increasing
induced current which leads to increasing induced field which leads to
increasing flux which leads to increasing induced current ~—-——- and so on.
This endless chain suggests the possibility of infinite induced currents
and infinite fields, absurdities, of course. It is a flat contradiction

of the principle of conservation of energy. For this reason alone,

Case A must be discarded as a natural impossibility.

On the other hand, case B is quite possible because the applied and
induced fields are oppositely directed. Since they oppose one another,
there is no implicit nor explicit violation of the conservation principle.

Case B must, therefore, show the situation as it must exist in nature,

With opposing fields taken as being the true nature of things, it is then
clear that the induced emf is not only proportional to dg/dt but also that
it is equal to the negative of dg/dt. This may be stated as follows: the
direction of the induced emf must_bevsuéh as to produce a current whose

magnetic field opposes the change of flux which initially induced the emf,
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The descriptive aspect of Faraday's Law involving the
direction of the induced emf (and current) is generally
known as Lenz's Law. This is indicated in the summary
presented‘in Figure 15. In studying the summary,
please note that the two laws are very intimately

related -- one is quite valueless without the other.
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FARADAY'S LAW

. do
! 6" dt

LENZ'S LAW

The direction of an induced
current is such as to oppose
the change of flux causing it.

FIGURE @




FARADAY'S LAW |
OF INDUCTION

TERMINAL OBJECTIVES

15/3 A Trace the development of Faraday's Law oi
electromagnetic induction through an analysis

of his basic experiments.

15/3 D Apply Lenz's Law to determine the direction of induced

emf's in various induction situations.
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MOTION OF AN
ELECTRON IN
COMBINED E
AND B FIELDS




The beginning of the twentieth century witnessed a number
of important experiments which marked the inception of
modern physics. Not the least among thes~ were the hril-
liant investigations into the nature and characteristics
of the électron performed by the English scientist, Sir
Joseph John Thomson. By studying the effect of combined
electric and magnetic fields on moving electrons, Thomson
determined for the first time the charge-to-mass ratio
(e/m) of the electron. The apparatus described in this
text resembles Thomson's equipment very closely; the
cathode-ray tube used in a prior discussion ("Deflection
of Electrons in an Electric Field") is to be applied again,
this time to an analysis of the motion of an electron beam

in a combined electric and magnetic field.

-
3
EY

#22 - 1




(Figure 1) The cathode-ray tube shown in this drawing
has been previously presented but a brief review would
not be out of place here. Electrons sprayed from the

hot cathode are focused by the cylinder surrounding the
heater-cathode assembly and accelerated by the anode
adjacent to it. The electrons pass in the form of a .
beam through the small opening in the anode and prew«teed
in a collimated pencil to the fluorescent screen at the
end_of the tuke. The fluorescent spot marks the terminus
of the beam at the screen. If there is no difference of
potential between the parallel plates in the path of the
beam, the electrons pass through without deviation. When
a potential difference is present, however, the beaﬁ is
deviated to an extent determined by the magnitude of the
voltage and the geometry of the tube: the direction of
the deviation, that is to the 1ef; or to the right, is
governed by the direction of the electric field set up

by the potential difference between the plates.
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(Figure 2) This is a top plan view of the edges of the
deflecting plates. With the polarity of potential
difference as shown -- the right-hand plate positive
(viewed from the observer's position facing the screen)
and the left-hand plate negétive -- the electron beam is
doflected toward the right. It must be remembered that
the beam consist; of negatively charged particles, hence
the force acting will be in a direction opposite that of
the field. The field is directed t;ward the left, the

electrons are deflected toward the right.

N
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(Figure 3) Electrons are aiso_deflected when they pass
through a magnetic field prvvided that some component of
the electron velocity is perpendicular to the field. 1In
this drawing a positive particle q is shown moving upward
with velocity Vv at right angles to a field directed from
right to left, B. The right-hand Palm Rule indicates

that the force exper ced by q is directed toward the
observer as shown, aud is perpendicular to the plane
containing B and V. The equation in the figure also gives
the vector equation for the force: it shows that the
force is a cross~product in which V is rotated into ﬁ.
Tnis is the relationship of particle velocity, B-field
direction, and force for a positive particle. The change

'required in the relationship when the particle is negative

is shown in Figure 4.
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(Figure 4) For a negative particle like an electron,
the force-f is still a cross-product in which v is
rotated . “~to E; but this time it is multiplied by
negative . ., the charge on the electron. Thus, the
>force is 180° from tiie direction it had when thé
particle was positive. The same resu;t is obtained
when the left-hand Palm Rule is used. Note, however,
that the force»remains perpendicular to the plane

-

containing Vv and B.
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(Figure 5) In fhe equipment under discussion, the B-field
is developed by a current-carrying coil placed above the
tube in line with the deflec;ion plates. In this case, the
current direction is chosen so that the B-field is directed
downward. The student should now apply the left-hand Palm
Rule to verify the direction of the force on the electron
beam as it is given in the drawing: fingets of the left
hand pointing downward, extended thumb in the direction of
the velocity E; force toward the left as viewed by an
observer standing in front of the screen. Note that things
have been arranged so that the B-field gives rise to a
deflection in a direction opposite that of the B-field
discussed before: left for the B-field, right for the F-field.
The extent to which the beam is deflected is readily con-
trolled by ﬁhe operator by suitably changing the electrical
values. The B-field magnitude may be altered by changing
the current in the coil and the E-field may also be varied
by changing the potential difference across the deflection

plates.
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(Figure 6) This is aldiagram of the front screen and the
fluorescent spots in positions obtained for special.elec~-
trical conditions. .On the left is the spot position for

a specific B-field in which the force acting on the beam
is FB = evB. On the right is the spot position for
specific electric field which exerts a force FE = eE. In
the center is the spot position when FB is equal to FE’
both forces acting for the same length of time on the beam.
Stated otherwise, the beam is undeflected when FB = FE
over the same time interval of action. Thus, a properly
selected B~field can nullify the deflection caused by a
given E-field, or vice versa. In actual practice, the
E-field potential is selected to produce a deflection of

a few centimeters and then the current in the coil is
adjusted until the spot returns to its undeviated position.
For this balanced céndition, the forces may be equated.

The student is asked to set thg‘equivalents of FB and FE
equal to one another and then solve for ;; the velocity

of the electron beam. This should be done before turning

to the next page.
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(Figure 7) The solutioﬁ is shown here. It is seen that
the beam velocity may be calculated very simply from the
ratio of E to B. This provides an easy .method for
measuring the velocity of the beam since both E and B
are readily measurable individually. With the velocity
known, calculation of e/m then becomes a-matter of
applying straightforward,'elementary mechanics to the
geometry of the tube. Various approaches may be used,
all of them depending on the assumpﬁion that the beam
velocity can be measured. Many of these procedureé

are fully described in elementary college textbooks.
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MOTION OF AN
ELECTRON IN
COMBINED E
AND B FIELDS

TERMINAL OBJECTIVES

10/3 B Answer questions and solve problems relating to

potential field strength.

14/1 B Answer qualitative questions relating to the magnetic

. -
induction vector B .
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L-R TRANSIENTS

A transient mlectric current is a current of temporary nature
which appears in conductors as a result of the‘transfer of stored energy
somewhere in the circuit. In the study of transients in circuits con-
taining resistance and capacitance, it was shoén that such energy tfans—
fers cannot occur instantaneously. A specific time is required for a
transient current to grow or decéy. It was further demonstrated that
the delay time in either case is a function of the magnitudes of .the cir-
cult constants and that growth and decay times can be calculated by
applying thz relevant mathematical relationships.

Circuits containing inductance L, resistance R, and a seat

of emf § also display delay phenomena. Just as an RC circuit has a

time constant, a circuit containing L and R may be shown to have a sim-

‘ilar characteristic which governs the time required for a current in
1t to grow to-'some desired value, or to decay from some initial value
to some other lower one.

This paper deals with the development of the relationships

relevant to the growth and decay of transient currents in L-R circuits.
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Figure 1: This is a gchematic diagram of a common laboratory set up
designed to show that L-R transients do indeed exist. The coil must
be a large one containing many turns of relatively heavy wire. The
switch S., the light bulb on the left, the switch S,, and the entire
coil are all connected in series. The light bulb at the left is con-
nected across part of the coil.

When both switches are closed simultaneously, both lamps
light but the growth of the current is substantiaily slower than it
would be if the lamps had been connected directly to the 100-volt
DC generator. The delay effect 1is readily observable, particularly
if the coil is properly wound. As in RC circuits, the delay pheno-
menon is explained in terms of energy transfer: the current from the
generator gives rise to the growth of a magnetic field in and around
the coil. The electrical energy 1s converted into energy stored in
the magnetic field and, since energy cannot be transferred instant-
aneously, a finite time is required for the current to grow from its
initial to its final magnitude. Essentially, the inductance of the
coil impedes the growth of the current in the circuit.

Assuming that both switches have been closed for an inter-
val long enough to allow the current to reach some maximum value, the
effect of opening switch S2 is then observed. Two things are then seen to
occur: as the switch opens, a violent electrical arc appears across
it, vanishing cnly after the switch has been opened all the way;
secondly, the right-hand lamp flashes on so brightly that it may very
well be destroyed. From the circuit point of view, opening switch §
disconnects the voltage source from the circuit, allowing whatever
energy that has been stored in the inductor to dissipate itself in the
form of a current in the right-hand lamp. Just before 82 is opened,

a. strong magnetic field is present in the coil; when the voltage source
which maintains this field is disconnected, the field collapses and in-
duces an emf in the coil itself. The current resulting from this in-
duces emf has only one path to take ~-- through the associated light
bulb. Since the stored energy cannot be transferred instantaneously,
the effect is that the coil tends to keep the current flowing for a
considerable time after the switch has been opened. The current main-
‘tained by the collapsing field when the switch is opened is an L-R
transient which may give rise to potential differences that are very
much greater than the source voltage. It is often more dangerous to
turn off the current in a coil than it is to turn it on!
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Figure 2: The method used to analyze L-R transients is similar to the
one employed in the study of RC circuits., ’To begin ;he analysis, con-
sider that the switch S in the circuit shown here 1s open and that a
current ‘1 has been established in the resistance and the coil. The
switch is then closed, short-circuiting the source of emf. (This is
never done in practice because it wouid damgge both the source and the
switch. The circuit is drawn this way to avoid unnecessary complexitiés).
As the magnetic field in the coil collapses, it induces a trangient cur-
rent around the closed loop containing the switch, the resistance, and
the‘coil. The duration of the transient current depends on the circuit
constants as has alreaaybbeen mentioned, but its instantaneous value i

may be used in setting up a Kirchhoff loop equation.

f128=-2
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Figure 3: The first exp?ession is the required loop equation. _The
first term, Ri, is the voltage drop in the resistance due to the presence
of the instantaneous current 1. The second term in this equation is

the volfage induced'across the coil as the magnetic field collapses, that
is, the inductance multiplied by the rate of change of the current di/dt.
Since this traversal completes the loop, the sum of these voltage drops

1s set equal to zero as indicated.

The second equation chows a‘rearrangementwuﬁ'terms;in:WhichAgi

has been shifted to the right side and has had its sign changed.

The third expression is a second rearrangement of terms to

gromevise variables together in preparation for the required integration.
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Ligure 4: The final expfession obtained in the previous figure is
repeated at the top of this group. Taking indefinite integrais yields
the second equation of this group. It. should be remembered that the
constant of integration may be expressed in any form desired; in this
case, the subsequent steps are facilitated By using the logarithm to
the base e of a constant number, "ln constant". |

Antilogs are then taken to establish.the third equation of
‘ the group in which the instantmmeous curremt ‘}_ appears to be equal to
éome ‘Csizamrmultiplied by.e rzi#msed to the -Rt/L power. To find the
valuwe of rime-~constant., the tiwe is set equal to zero so that the
entire expoment: becomes zero. - ., e° = 1 so that the comsitmnt must
be equal to :the instantaneous current at. zero time, that im, at the in-
stant' of closing the switch. This permits us to write the fiinal ex-
pression of the- group showing that ithe imstantaneous current i at any
time t is @ -function of the initial current, the fes:lssfance-«;."R, and the
inductance 1.,

& this point, in preyarat-idn for the next step, it would be

helpful :toreview one small aspect of the RC time constant briefly.
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Figure 5: The first expression shown here 1s the exponent of e in the
RC transient equation. Note that t is in the numerator and is isolated

from the other circuit quantities which appear in the demominator. In

this form, the product RC serves a very useful purpose :a==the time-constant,
a quantity of significance in circuilt design. |
As it turns out, it is adVantageous to modify t#=: exponent of
e in the L-R expression soxthat it, too, contains only thesfactor t in
the numerator with the L_ammisiR factors in the deﬁominator;, Th#s: mod-
ification is shown in thesssseond equation of tﬁe group.
When set ﬁp in t#sas: form, L/R has an analogous significance
as the time-constant of L-Rumi#wcuits, It may be readily shown that L/R
h#s the dimension of timem-mmm-ay be expreséed in seconds. This is
left as‘an exercise for the=ssmsdent. (Hint: set up a ratio of the ﬁenfy

to the ohm, convert these msmr:s to their fundamental forms, then solve).
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Figure 6: To recapitulate, the expression obtained for the decs

current in an L-R circuit is:

The =mmalysis: of current growth in an L-R circuit is handled in much the

same. manner. With the source of ‘emf connected to the series arrangement

of L aml R, the current starts at zero and begins to increase as ir bullds

up thesmagnetic field in the coil. The Kirchhoff loop equation for the

instantaneous current i at any time t is given by the first expression

in ‘this group wherev§ is the source emf. Since this development is quite

similar in concept to the one discugsed in R-C TRANSIENTS, it will be

left as an important. and valuable exercise for the imdividual student.

Fill in the intermediate steps between.the first and second‘expressions

shown here :and note that L/R is once again the time-constant of the circuit.
The final equation shows that the instantaneous current i

after an interval of current growth t is equal to i, multiplied by

( 1~e-Rt/L), ' The term i, 1s the curreat that would apbear in the

circuidt after an infinitely long interval of current growth.
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Figure 7: Here is a summary of the wseesijoms discussion. A great deal
can be learned about the significance of-ttheme equations by substituting
various values for t, R, and L and noting:hems:the instantaneous current
changes. For example, determine the fractimm of the initial current
in the decay equation'that would be presmemt im the ¢ircuit after an in-
terval of one time-constant period, that:is, where t = R/L. Test the
equations for t = 0 and t = infinity.

Bear in mind that io in the decay equation is the iqitial
current before decay starts and that it—ds::given by e/R.

Note, too, th%t igo 1s the -cmrremt-that would be present in
the circuit after an inginite'growth:zimeq This value of the current

is also given by E/R.
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TERMINAL OBJECTIVES

15 .03 124 00 analyze the general RL current growth equation
N qualitatively and quantitatively.

15 03 126 00 analyze the general RL current decay equation
qualitatively and quantitatively.






R-C TRANSIENTS

The word "transient" as it is used in physics implies something temporary
Just as it does in ordinary English. A transient in a hotel, for exampie,
is a temporary resident, one who rents a room for a day or two. In phys- |
ics, the term implies a lack of permanency or a condition which is the
opposite of a 'steady stateb. A transient current in an electrical cir-
cuit is a current that arises because of a potential difference between
fwo points of a conductor but lasts for a relatively short time. A
transient electric current is readily demonstrated with the simple equip-

ment shown in Figure 1.




Figure 1: This is a schematic diagram of a circuit containing a seat
of emf (a battery), an ordinary incandescent lamp, a single-pole double
throw switch, and a capacitor. With the capacitof initially uncharged
and the switch in the lower position, the ﬁapacitor'circuit is open and
there is no current. When the switch is moved to the upper position,
the circuit is complete so that the battery begins.to charge the capac-
itor and current appears in the conductors. As the capacitor charges
and the potential difference across its terminals increases, the cur-
rent in the circuit grgdually decreases because the polarity of the
capacitor voltage is in opposition to thaﬁ of the battery. After a
time, no further current can be détected -~ it has died out. Thus,
this is a transient current which persists only as long as the capac-
itor has not charged to its maximum voltage. The action is made vis-
ible by the incandescent lamp. When the switch is first moved up, the
lamp flashes on brightly bdt then begins to dim as the transient current
starts to die out. The time required for the decay of the transient
current is equivalent to the cha;ging time of the capacitor. Energy
cannot Se instantaneously transferred from Source to receiver in any
natural phenomenon; in this case, a capacitor cannot change its sﬁate
of chagigw *- ‘rher direction instantaneously. When the switch is moved
ddwn, the lam; igain flashes on, remains on for approximately the same
time as before, and then goes out. Once moY®, a definite time is needed

for the capacitor to transfer its stored energy to the light bulb.
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{+¢1re 2: Looking into this analytically, it is assumed at the szmr
.2 the capacitor has been fully charged and that the switch has Frmm

-#1 moved to its lower position, starting the discharge process. Ar

1% instant, the Kirchhoff 1loop equation can be written as shown s

arting at the top plate of the capacitor and going aroﬁnd the loop
a counterclockwise direction, the first component encountered is

« lamp of resistance R carrying an instantaneous current i so thmt
“nw# voltage drop across it is Ri. The capacitor is next in line im
‘Hez traversal of the ioop; here is found a potential difference dme
--> the charge on the capacitor. The voltage is, of course, given by
*4he ratio of charge to capacitance or q/C. Back at the starting pasnt
s* she loop, the voltage is equal to the initial value at the begirmmime
o€ the traverse so that the sum of the two voltage drops must equal zesmx:

a8 indicated in the first equation.

In the second equation, dq/dt has been substituted for the
instantaneous current 1i.

Transposing terms yields the third equation. This may be
gead verbally as: the rate of change of charge of the capacitor at any
ihstan; is numerically equal to the initial chargg q on the capacitor

divided by the product of the resistance in the circuit and the capac—

itance of the capacitor. This product RC is known as the time::constams—

. thecircuit. Its significance will be demonstrated Shortlw.






Figure 3: 'This differemial equation = mot difficwlt fm emilwe. The )

terms of tiwe first equawsinn are remrranged as shown to aimsadn shhe second.

The indefinite integral of eamn side is then taiesr te obtain
the third essation. That 4s, the intese=l of dq/dt is simpily Im. qs
and the ddedfitnite inmegral of -dt/RC s -t/RC plus a: ronsgant. Since
the commsant mssy be chiosen in any fomy sesired, it is: =asisér in this

case to write itt as the lmgarithm of . constant, or lm (comst).

Figure &: The mext step involves takimg the antilog of the:expmession
developed -pmﬂzonsly,;,‘:hene*:shm as thee: upmer equation. When this is
done, tixe second equatiom is obtained. To determine: the valkue of the
c0nstan£, t imsset equwal ito zero so thar the entire exponemtial term
becomes zero. This means:that, for :tisés assumption, ¢ becomes unity.
Hence, wien t:= 0, thesconstant is eqmsil to the initial chamge q, and

the expressi#om takes:mizesform shown in the lowermost -equatdon.
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Figmwee 5: Fomn tite dimensiomsl perimrof view, if tbwer—ight sfsiée of the
firsr :expremmion shown here. is-rw:-imesme the same unitzz-as thy M side,

the texm e t/BC mmst be dimensioniess. It follows, ti#erefor=. chat

the product RC:must have the same:dimemsion as t, that us it mest be
expressed.:in time units. It is met EAfficult to show -vhar this is
indeed trme: RC is measured in :mecowmds and provides ar: indication of
the rare -at which the transiens:-marremr decay of the dimcharging
capacitormmcrmrs. Essentislly, thés ds ‘the reason for -meferrimg to

RC as the time constant of thewr—#meniw, If this product is-mme larger

by increasimg either the resistamme, the capacitamce, mr-both; the
decay-time increases correspundiincly dn.sccordance witth ‘tthe rmsation—
-8hip shown hexe. It should alsc be moted that, imonmder-—foraa:capaci-
tor to dimcharge fully — actwailly to zero -- The time constmss must
theoreticwilly, at least, be #afFinizs. #Fn practiice, bewever . azcapacitor
1s considiewed to be fully distharged after an efmmsed-time of ‘Fhwe:

time-constsmt periods. For emmmple, in & circwit comssining a:capmrei-

tance of L.D!microfarad and =-resistamre of 1.0 megoimcs the tdme comstant

dis 1 second. When suck a caparfismr s allowed movdismmnrge from:some
indtidiad] vadise for a period of 5.0 sesiwmilis., the waidnpe=acposs its

texm¥naifis: & then taken to be:zewo; dt ds them:m

dimrharged: i1y .

R






Fligome 6: The relaricmship for sthe charging transient is obtained in
& #imiiar mammer although rhe dewelopment is somewhat more complicated.
To saxid unnecessary mathematies]l complexities, an indication of the
mesthod of obtaiwing the egumtiom ffor charge will be presented rather
timan ‘a2 rigoroms derivacfom.

The switch is moved to the wpper position to start the charg-
img process, assuming that the empacitor has been previously fully dis-
chharged. The first eguation simwws the KXirchhoff loop relationship for
this situation. The addition of the semt of emf mandates the inclusion

of the "E™ ‘term on the right sfide.

Figuree 7: This equatiosn can e so¥wed by findimg the complementary
Tumction mnd adding to iz the Hstrerwal in whiick we are interested. It

‘has: alvamady been shown theat the:ssolution takes the form:

q= (comss) e~t/WC
The commtant is then added to oleain the third equation shown here.
If this~equation is subatitutediibeck into the first, it is readily
ahpyn (eathii tediously., howewst) that the last equatdon of this
grows o Ghe wASult. The sewdleit fs urged to analyze this development

themsougiiity for himself.






Figure 8: Here is a summary of the two equations for transients that
have been developed:

DISCHARGE: A capacitor has been charged to its maximum value,
q,- This is its initial charge. The equation then states that the
instantaneous charge q remaining on the capacitor at any time t after
discharge has begun is given by the right-hand term.

CHARGE: A capacitor has been fully discharged. A seat of
emf is then connected to it through a resistance. Theﬁ, the instant-
aneous charge q after a charging time t is related to the charge the

capacitor would have assumed if allowed to charge for an infinite time

is given by the right-hand term.

Thus, in the discharging phenomenon, 9, is the initial full
charge or maximum charge that can be taken on given enough time. In
the charging phenomenon, q__ is the charge the capacitor would have
assumed had it been given infinite time to do so. In either case,

q, or q., can be replaced by EC as shown in the last statement.

-



DISCHARGE:
q =g, e ke

CHARGING:




Figure 9: A widely-used application of the R-C transient effect is
shown schematically in this diagram. A source of direct current such
as a battery is connected across a capacitor and a gas-filled tube
such as a neon or argon lamp through a series resistor. The observed
effect when this circuit is in operation is a periodic flashing of
the lamp. .

The explanation is best started by considering the instant at which
the capacitor is fully discharged, the voltage across the neon lamp

is zero, and the lamp is unlit. As the battery begins to charge the
capacitor due to the transient current, the voltage across the lamp
and capacitor starts to rise at a rate determined by the time constant
RC. The exponential increase of voltage is illustrated in the graph.

A gas-filled glow tube is characterized by the fact that no light is
visible when the potential difference between its terminals is below
the required "breakdown" or ionization voltage. For a standard night-
light type of lamp, this is approximately 60 volts. Thus, no effect
is observed during the charging process until the voltage across the
parallel combination grows to 60 volts. When this does occur, the
gas ionizes and glows brightly. Simultaneously, the internal resis-
tance of the lamp drops to a very low value. Since the lamp is con-
nected directly across the capacitor, the latter is discharged very
quickly by the conductive gas causing the voltage across the capaci-
tor to drop correspondingly. At about 55 volts, the gas in the lamp
deionizes and the lamp extinguishes. Its resistance again rises
to its initial high value. Thus, the capacitor once more starts to
charge until it again reaches the ionization potential of the lamp
and the process repeats.: The repetition rate of the flashing light
is clearly governed by the time required for the voltage across the
capacitor to build up from the deionization potential to the ioniz-
ation potential. For a given lamp, the difference between these two
potentials is nearly constant, hence the frequency of the flashes

is governed by the RC time constant of the circuit. Altering R or

C or both will therefore result in a changed frequency; increasing
the RC product increases the period and decreases the repetition
rate of the flashes, -and " Vite versa.
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TERMINAL OBJECTIVES

15 02 121 00 analyze the general RC circuit charging equation
qualitatively and quantitatively.

15 02 123 00 analyze the general RC circuit discharge equation
qualitatively and quantitatively.




