
DOCUMENT RESUME

ED 074 769 EM 010 967

AUTHOR Knight, Jcseph M., Jr.
TITLE Evaluation of a Text Compression Algorithm Against

Computer-Aided Instruction (CAI) Material.
INSTITUTION Air Force Electronic Systems :Iv. L.G. Hanscom Field,

Mass.
PUB DATE Jul 72
NOTE 37p.

EDRS PRICE MF-$0.65 HC-$3.29
DESCRIPTORS *Algorithms; *Computer Assisted Instruction;

*Computer Science; Mathematical Logic; *Models;
Simulation

IDENTIFIERS Text Compression

ABSTRACT
This report describes the initial evaluation of a

text compression algorithm against computer assisted instruction
(CAI) material. A review of some concepts related to statistical text
compression,is followed by a detailed description of a practical text
compression algorithm.' A simulation of the algorithm was programed
and used to obtain compression ratios for a small sample of both
traditional frame-structured CAI material and a new type of
information-structured CAI material. The resulting compression ratios
are to 1.5: 1 for both types of material. The simulation program was .

modified to apply the algorithm to the lesson files of a particular
frame-structured CAI subsyStem used in the Air Force Phase II Base
Level System. The compression in thib case was found to be 1.3: 1

because some uncompressible, Irame-formating bytes were present in
the lesson file. The modified simulation program was also used to
take letter occurrence statistics on the text being compressed. From
these, a theoretical compression was calculated using a probalistic
model of the compression algorithm. Theoretical compression was
within two percent of measured compression, thus verifyir the
model's applicability. (Author)

ESD-TR-72-2131
NaNONNitisiissaiwinswommor

EVALUATION OF A TEXT COMPRESSION ALGORITHM
AGAINST COMPUTER-AIDED INSTRUCTION (CAI) MATERIAL

Joseph M. Knight, Jr, Captain, USAF

July 1972

UTY FOR COMMAND AND MANAGEMENT SYSTEMS
HQ ELECTRONIC SYSTEMS DIVISION (AFSC)
L. G. Hanscom Field, Bedtord, Massachusetts 01730

1

Apr;roved for public release;
distribution unlimited. U.S. DEPARTMENT OF HEALTH,

EDUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRO-

DUCED EXACTLY AS RECEIVED FROM

THE PERSON OR ORGANIZATION ORIG-
INATING IT. POINTS OF VIEW OR OPIN-

IONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU-

CATION POSITION OR POLICY.

LEGAL NOTICE

When U. S. Government drawings, specifications or other data are used for any
purpose other than definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, fui.nished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may 'in any way be related thereto.

OTHER NOTICES

Do not return this copy.' Retain or destroy.

ESD-TR-72-281

EVALUATION OF A TEXT COMPRESSION ALGORITHM'
AGAINST COMPUTER -AIDED INSTRUCTION (CAI) MATERIAL

Joseph M. Knight, Jr. Captain, USAF

JulY,1972

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
HQ ELECTRONIC SYSTEMS DIVISION (AFSC)
L. G. Hanscom Field, Bedford, Massachusetts 01730

Approved for public release;
distribution unlimited.

FOREWORD

One of the,goals of Air Forte Electronit,Systems Division
is the development of a technology for computer-bassed, personnel-
support systems integrated into Air Force Information Systems.
These support systems are required to improve the efficiency
of man-computer interactions in the host Information Systems.
They are designed to provide automated on-the-job training,
performance- and decision-aiding for Information Systems per-
sonnel.

Task 280104, Computer-Aided Instruction Techniques, under
Project 2801, Design Methodology for Military Information Sys-
tems, was established to develop tools and techniques for
computer-aided training, performance-and decision-aiding in
these systems. It is also concerned with new software engi- -

neering techniques which will permit cost-effective implementation
of these aids. This study relates to the latter objective.

This report, one in a series supporting Project 2801,
addresses the problem of reducing the size of text files which
constitute the bulk of the lesson files in the typical,computer-
aided instruction (CAI) systems. The approach is to simulate
a practicall text compression algorithm and test it against
CAI lesson material. While the orientation:of this study is
toward CAI, the technique is generally applicable to reducing
the size of text fileS in other systems such as data management,
command gnd control, and intelligence data base's.

This study was performed by. Captain J. M. Knight, Jr.
as part.of his reserve training day duties.betwen May 1970
and September 1971, including two 2-week active duty tours.
Dr. Sylvia R. Mayer, ESD/MCIT suggested .the study and served
as Air-Force Task Scientist.

This Technical Report has been reviewed and is approved.

`---;2/7

SYLVIA R. MAYER, Ph.D. MELVIN B..EMMONS,JCOlonel, USAF
Project Scientist' Director, Information Systems Technology

Deputy for Command & Management' Systems

ABSTRACT

This report describes the initial evaluation of a text compression
algorithm against Computer-Aided Instruction (CAI) material. A

review of some concepts related to statistical text compression is
Followed by.a detailed description of a practical text compression

algorithm. A simulation of the algorithm was programmed and used
to obtain compression ratios for a small sample of both traditional
frame-structured CAI material and a new type of information-structured

CAI material. he resulting cOMpression ratios are near 1.5 to one

for both types of materials. The simulation program was modified to
apply the algorithm to the lesson files of a particular frame-structured
CAI subsystem used in the Air Force Phase II gaSe Level System. The

compression in this case was found to be 1.3 to one becauthe of.the
prose o0 in the lesson file of uncompressible, frame formatting bytes.
The modified simulation program was also used to take letter occurrence
statistics on the text being compressed. From these, a theoretical
compression was calculated using a probabilistic Model of the com-

pression algorithm. Theoretical compression was within two per cent
of measured compression, thus verifying'the.model's, applicability.
The report closes with the raising of some questions and.a discussion

of future work.

iii

TABLE OF CONTENTS

page

I. INTRODUCTION 1

II. CONCEPTS IN STATISTICAL TEXT. DATA COMPRESSION . . 2

III. SOME TEXT COMPRESSION RESULTS

IV. THE SNYDERMAN-HUNT COMPRESSION ALGORITHM

V. EXPERIMENTS 11

VI. CONCLUSIONS, QUESTIONS AND RECOMMENDATIONS. . . . 17

APPENDIX A: ANALYSIS OF THE SNYDERMAN-HUNT TEXT
COMPRESSION ALGORITHM 19

APPENDIX 8: TXTCMP PROGRAM LISTING 22

APPENDIX C: EXPERIMENTAL MATERIAL 25

REFERENCES j 29

V

SECTION I

INTRODUCTION

Presently, lesson material for Computer Aided Instruction
(CAI) occupies considerable disk space when the CAI system is
brought on-line. For example, in the Computer-Directed Train
(CODIT) subsyste6T,of the Air Foq.c Phase Base Level system,"-)
each 300 frame lesson is stated 4) to occupy 121,600 bytes. Even
the short, "Computer Operator's Course" contains the equivalent
of 14 lessons; other courses, such as the personnel Course con-
tain many more. Accordingly, the technological area of test
compression is being reviewed for practical methods whereby CAI
data bases may be reduced in size with only moderate computational
expense.

Section II presents im elementary discussion of statistical
text compression and some indication of its performance on English
text. However, there also exists a simpler compression algorithm
based on the practical,fact that, although data characters are
stored in 8.-bit bytes, only about one third of the potential
256 characters are actually used in current ADP systems; the
remaining two-thirds characters can be used encode frequently
occurring character pairs into single, unused characters thus
obtaining data compression.

This report describes in more .detail a simple, practical
compression algorithm, its application to a small set of CAI
data base material, and the results. Performance of the algorithm
is modeled and the model is experimentally verified. In addition,
a short fitscussion in Section VI provides guidance for future work.

SECTION II

CONCEPTS IN STATISTICAL TEXT DATA COMPRESSION

A. Bits

Data is stored in bits or in groups of bits, called bytes.
One 'bit" of_informetion represents the outcome of single yes or
no decision. One-bit can also represent a binary state of a given
situation. An ordinary room light switch can store one bit of
information, e.g., "on" might mean ic:''at home" and "off" might mean
"not at home."

Groups of bits can represent more information. Two switches
can represent two sequential binary decisions, i.e., four outcomes,
or situation states, such as "on, on"; "on,off"; "off, on"; and
"off, off". Three switche can represent eight states and, in general,

N switches can represent 2 states, A byte consisting of eight bits
can represent 256 characters such as A, C, 1, 2, 3, ?, $,

etc. Data is generally stored one character to a byte. Nine channel
magnetic data-processing tape can store 800 bytes per lineal inch of
tape because the eight bits of the byte are laterally distributed across
the tape, along with a ninth bit, called a parity check bit.

B. Entropy.

Entropy -Is a property of the units, such as characters or symbols,
which make up data. Entropy is a measure of the "surprisal", or 'information
value, of a symbol. It has the units of bits/symbol and a common'vde'Signa-
tion of H. A few simple examples will clarify perhaps the intuitive notion
of entropy.

For instance, if it is equally likely that John is,going to the
seashore or the mountains this summer, and we hear that he is going to
the mountains we are moderately-informed, or shall we say, surprised.
In this situation, the symbols "mountain" and "seashore" have for us
equal information value. They are said to have equal entropy. If, on
the other hand, John historically goes to the mountains nineteen summers
out of twenty and we hear he is going to the mountains, we are not terribly
surprised or informed. The symbol Inountain", in this case, possesses
a low entropy inforMation value, or surprisal content. If we hear that
John is going to the seashore we are quite surprised and highly informed
of the happening of a low probability event. The symbol "seasore" has
a high entropy, information value, or surprisal content. :The entropy

of a symbol is related to the priori occurrence of that symbol.

The mathematical measure of entropy Hi of the ith
symbol in a data-set is given by

Hi= - log9 p. (bits/symbol) (1)

where.is the a priori probability of occurrence of the ith
symbol,in a data set. A symbol occurring the time (pi = 0.5)
has an entropy of one bit/symbol. One occurring 4 of tfie time
(p = 0.25) has an entropy of two bits/symbol. ,One 1/8 of the
time has three bits/symbol and, in general 1/2' of the time has
k bits/symbol entrop:,. Also, k may be fractional as well as
integer, depending on pi.

C. String Data

Much data is transmitted and stored in the form of
strings, i.e., connected sets of alphanumeric characters, or
other symbols, issuing from an information "source" and bound
ultimately for an information "sink", Consider a source capable
of generating four characters: A, B, C, and D, each occurring
1/4 of the time, i.e., pa = pb = p, = = 0.25. The entropy
of all characters is the same and fhererore the average entropy
of the source is also two bits/symbol. Each character A, B,
C, and D may be represented in transmission by two on-off
(binary).. pulses and in storage by two binarily magnetized
patches on a computer tape or disk unit. But now consider a
source which exhibits_. an unequal distribution of. 21,.B, C, and
D symbols, 'e.g., pA = 0.4, p

B.
= 0.3, pd = 0.2 and pp = 0.1.

Using equation (1) the entropies are calculated as HA = 1.32,
H
B
= 1.74 = 2.32 and H

D
= 3.32, all in bits/symbol. The.

average (or expected value of) the source entropy H-§ is given
by

H
s
= 0.4H

A
+ 0.3 H

B
+ 0.2 H

C
0.1 H

D
(2)

The value of Hs is 1.846 bits/symbol. Note that this value is
less than the 2 bits/symbol average source entropy of the
"equally likely" source. A still more uneven occurrence distri-
bution than that given above would result in a smaller source
entropy.

Although it is not obvious, the above source entropy
value does lead us to suspect that-we can find a code, i.e.,
a mapping, between A, B, C, D and four groups of one or more
bits each such that.., the average number of bits per code group
is not only close to the source entropy but also is less than
a straight two bits per character. This is indeed the case and
the code is as follows:

A = 1 (one bit/symbol)

B = 01 ,(two bits/symbol)

C = 001 (three bits/symbol)

D = 000 (three bits/symbol). The coded source sequence:

1 1 0 1 1 0 0 1 0 1 1 0 0 0

in uniquely decodeable as the original source sequence:

AABACBAD: ,

Considering the probability of occurrence of A, B, C,
and D we obtain an average code length of 1.9 bits/symbol.

This represents a slight compression of 1.052 relative
to the original two bits/Symbol. A more unequal character
occurrence distribution would result in :a higher compression
ratio. Thus, we see that data compression can involve measur-
ing the statistics of source symbol occurrence, designing an
efficient code, and designing both an encoder and a decoder,
implementable in either hardware or software.

D. Block Source Encoding

Another form of encoding is to group symbols of a
source string into blocks. Consider an example where the
string consists of spedification of right or left-handedness
and that, for our sample, right-handers outnumber left-handers
by 19 to one. The probability of a right- hander, l'iro is 0.95
and the probability of a left-hander, PL, is 0.05. Simple symbol
encoding of "0" for R and "1" for L yields an average code word
length of one bit/symbol. But the entropy of a binary source
with .95 and .05 probabilities is only 0.286 bits/symbol. This
suggests that we can do better than merely encode R and L into
"0" and "1". However, it also suggests that the very best we
can do is to obtain a compression of about 3.5.

Now consider coding blocks of, let us say, three symbols.
We now get new data source by grouping the old data source
into blocks of three. The new data source emits eight different
symbols 1, 2,. . 8 each representing a possible combination
of.three of the symbols from the old data source. The probabilities
of symbol occurrence for the new data source are derivable from
the probabilities of symbol occurrence from the old data source.
Assuming the occurrence of any symbol is independent of the
occurrence of the previous symbol we obtain, for example, the
probability of symbol 3 ("RLR" - "010") from the product of
probabilities

4

PR . PL = (0.95) (0.05):(0.95) = 0.04513.,

Theresults.are- summarized in Table 1.

'Table I

TABLE OF BLOCK. ENCODING ENTROPIES

Symbols from Symbols from
Old data source New data source

Probability of H of new
New source symbol source symbol

000 1 .85738 .22199

001 2 .04513 4.46977
010 8 .04513 4.46977

011 4 .00237 8.72090

100 5 ..04513 4.46977
101 6 .00237 8.72090

110 7 .00237 8.72090

111 8 .00012 13.02468

H = 0.85906 for the new source.

The entropy of the new source is 0.85906 bits/new source .

symbol. Notice that, on the basis of three old source symbols
to one new source symbol, the entropy is also .2863 bits/old
source, symbol. However, now we have, with eight symbols instead
of only two, more freedom to design an efficient code; There

exists a technique which allows the construction-of a code whose
coded entropy is within one bit/symbol of the entropy of the
original source. For a block length of one the code is simply
one bit in length for each source symbol "0" and "1", hence,
the coded source en"ropy is one bit/symbol which is within one
bit/symbol of the source entropy, which must lie between zero
and 1.00. Table 2 gives the efficient code.

5

TABLE 2

Table of Effipiprt Code for Block Length = 3

Source
Symbol Code

bability of
Occurrence

"Expected value"
of Symbol LIlgth .4-

l 1 1 .85738 .85738

00 2 .04513 .09026

3 010 3 .04513 .13539

4., 0111 4 .04513 .18052

5 01100 5 .00,237 .01185

6 011010 6 .00237 .01422

0110111 7 .00237 .01659

0110110 7 .00012 .00096

1.10717

Average symbol length = 1.10717 bits/new source symbol.

From the above table we see that the average code word
length is now 1.10717'bits/new symLol and this quantity represents
three old symbols, such as RLR. This code yields a compression
of 2.71 to one compared with a maximum possible compression of
3.5 to one. The use of longer blocks, and more complex codes,
will result in a closer approach to the maximum possible com-
pression figure. In this example we have assumed independence
of symbol occurrence. Should there be any symbol occurrence
dependence, resulting in lower entropy, block encoding will pick
up this advantage also. Thus, we see that data compression not
only inVoln 'measuring original source occurrence probabilities
and devising efficient codes but also blocking the original
source sequence into-reasonable lengths, treating these as a
new source, and then devising an efficient code based on the
probabilities,of the new source.

SECTION III

SOME TEXT COMPRESSION RESULTS

Shannon (3) gi es us an estimate of the entropy of
English text as a function of many previous letters are
allowed to be known. An upper bound on compression can be cal-
culated by dividing this entropy into the entropy of a source .

which puts out all letters randomly with equal probability.
Table 3 gives entropies and compressions.

Table 3

Entropies and Compressions of an English Text Source Under
Various Constraints

Constraint Entropy (bits/letter) Compression

None, 26 letters and one
space equiprobable

Letter and space frequencies

One letter known

Two letters known.

Word frequencies'used

4.76 1

4.03 1.18

3.32 1.43

3.1 1.53

2.14 2.22

Shannon continued his investigation of english entropy
beyond the point where "N-grams" df english were known. An N-

gram is a histogram giving the relative frequencies of combina-
tions of N letters. By having people predict the next letter
when shown the previous L letters, Shannon was able to estimate
entropies of english for constraint lengths close to 100 letters.

For 10 L 5 15 the entropy was about 1.5 bits/letter (compression
= 3.17) and for L = 100 it was .95 bits/letter (compression = 5).

Unfortunately, compressors using constraint lengths of
100 (,-.N20 words, or so) appear completely beyond the state-of-

the-art. However, single word dictionary type compressors do
appear feasible. A simulated woO\dictionary compression
algorithm is discussed by. hite v*"showing results of compressions
between 1.4 and 1.7 to one with a "small" dictionary and two
to one with a 1000-word dictional-y. For a restricted vocabulary
situation, as elementary training and driliCAI may produce, we
probably can take two to one as a working value for statistical;
word text compression. This figure compares favorably with
Shannon's figure of 2.22 for word frequency compression.

7

4

Consider now the algofhm which is thi? object of this
report, Snyderman and Hunt 0') report on a practical text
compression algorithm, used at the SeienceInfortation Ex-
change, Smithsonian Institution, to compress the text portion
of a 200,000 record on-line file from an average of 851 to
553 characters per record. This represents an implemented
compression of 1.54 relative to eight hits/character, a very
respectable f4'ure.

avt ct.,,c)f 8/1.54 = 5.2 bits/character represents

a net comrpf,, 1 of 1.245 to one relative to 6.46 bits/
character tor 88 equal frequency characters. This net com-
pression lies between Shannon's theoretical compression (1.18)
for an english text source when letter-space frequencies are
known and the compression (1.43) when one previous letter is
known. In summary, the literature indicates character text
compression at around 1.5 to one and word text compression at

around 2 to one.

8

xt.

A

SECTION Tv fr,

THE SNYDERMAN-HUNT COMPRESSION ALGORITHM

This section discusses more formally the Snyderman-
Hunt-algorithm. The algorithm was chosen to evaluate compress-
ibility of CAI material because of its practicality, its demon-
strated performance on english text and its speed. The speed
of this 10,orithm on a 360/40 is'on the order of 65-75 milli-

,I! thousand characters, compressing or decompressing.
, on` the following principles.

Characters ae normally, stored one pei. 8-bit byte. With
eight bits, one of 2 = 256 characters; can be specified by each
byte. At the Scientific Information Exchange only 88 characters
are used: 52 upper and lower case alphabetics, 10 numerics and
26 special characters such as comma, period, dollar sign, etc.
This leaves 256-88 = 168 "unused" characters. TheSe othewise.
unused 8-bit combinations can be utilized to represent the more
commonly occurring pairs of characters in the 88 used character
set, thus effecting's compression.

More specifically, it is convenient to define four sets:

T

C

CC

A

a

A

fall 256 possible characters)

{actual characters used)

{combining characters1

MC - {master characters)

These sets are related as follow:

MC a CC 4: C G T

(3)

(4)

A further set CP, for ''combined pairs7, can be formed
of all ordered pairs of MC and CC, i.e.

CP = 1141 X CC1 (5)

The members of CP can be placed in one-to-one correspondence
with the difference set D defined as

D Ci (6)

The set of noncombining characters NC is given as

NC = (C (7)

For example Snyderman and Hunt choose:

MC = {space, A, E, I, 0, N, T, U3 (8)

CC = {space, A through I, L through P, R through W)(9)

The set MC has 8 members; CC has 21. The set of all combined
pairs CP has 8"x 21 = 148,membeiswhich are one-to-one related
to the 168 members of difference set D.

The algorithm works by examining a character in,a
string. the character is a member of MC the next character

is examined. If the next character is a member of CC then the
two-character combined pair is coded into a singlet unused
character and stored. If the first character is not a member

of MC, it is stored as is. If the first character is a member
of MC but the second one is not a member of CC then the two
characters are stored individually, as is. Thus we see that
compression is dependent uponl both the probability of finding
a master character and the conditional probability of finding
a combining character given the finding of a master character.
An analysis of the algorithm is presented in Appendix A.

10

SECTION V

EXPERIMENTS

A. Experiment One

1, Description

A computer program was written to simulate the Snyder-
man -Hunt algorithm. The simulation did not actually code the
characters, but rather "kept score", on the number of characters
that the algorithm would output for-each linecof input text.
CompresSion ratio is the number of characters input divided by
the number of characters output. The program, called TXTCMP,
is interactive, being implemented in CPS (a subset of PL/1)
for operation from a TTY or IBM 2741 terminal. TXTCMP is fed
a line of text at a time and returns both-line compression and
total compression since the start of the program. The program
listing and flow chart is reproduced in Appendix B.

The experimental material was chosen from two different
types of CAI data bases: frame-structured and information-
structured. The former was taken from the Computer Operator's
course of reference 1, the latter from reference 6. Both are
reproduced in Appendix C. The lines were entered exactly as,
shown in Appendix C, spaces included, from the left most
character position as a reference, and the compressions were
obtained. In this experiment the sets chosen by Snyderman and
Hunt for master characters and for combining characters were
used. The set of noncombining characters in this experiment
was everything else on the IBM 2741 keyboard recognized by
CPS.

In the Snyderman-Hunt application, 88 characters were
valid, leaving 168 for encoding character pairs. The Snyder-
man-Hunt algorithm can be applied to compressing text in' CPS(7)
because CPS also, uses or admits in characters strings, 88
characters, leaving 168 for encoding character pairs. These
results also apply to compressing text in the CODIT (Computer
Directed Training) system because it is written into the_Air
Force Phase II Base Level System via the Burroughs B3500 COBOL
language. COBOL uses 53488 characters, leaving 203;)168 char-
acters for encoding character pairs, Indeed compression

. might be slightly better when implemented in the B3500 environ-
ment, because the 203 unused characters will accommodate 25
combining characters as opposed to only 21 in reference 5.
Alternatively 9, rather than 8, m aster characters could be
accommodated, because the product of 9 master and 21 combining
characters is less than the 203 characters available.

11

2. Results

For the frame structured material the average compression
was 1.473, with individual lines (except those with a single
space) ranging between 1.148 and 1.700. For the information-
structured system material the average compression was 1.538
with a low of 1.261 and a high of 1.875 for individual lines.
There is no particular accounting for the slight (4.4%)
difference in average compression, because the spread in
individual line compression is quite large in both eases
with considerable overlap. From Figure 1 it is seen ar-
average compression settles statistically within a few ,lines.

12

0
..."..."

-

wcCJ
o

K
E

Y
:

F
R

A
M

E
 S

T
R

U
C

T
U

R
E

D
 M

A
T

E
R

IA
L

ca-43-c)--c IN
F

O
R

M
A

T
IO

N
 S

T
R

U
C

T
U

R
E

D
M

A
T

E
R

IA
L

0
la

20
25

30
35

40
45

50
55

60

F
IG

U
R

E
 1

C
U

M
U

LA
T

IV
E

 C
O

M
P

R
E

S
S

IO
N

 F
O

R
C

O
M

P
U

T
E

R
-A

ID
E

D
 IN

S
T

R
U

C
T

IO
N

A
L M

A
T

E
R

IA
L

B. Experiment Two

1. Description

The objective experiment two is to obtain an estimate
of compression for the Snyderman-Hunt algorithm when app160 to
the actual lesson file structure of CODIT. It is found k that

the lesson file of CODIT contains both file structure specifi-
cation bytes, which are not compressible, and lesson text bytes,
which are. The file structure bytes occur according to Table 4.

File Structure aytes

Application Number of Bytes

Frame Number 4 (per frame)

FrameType 2(per frame)

-Frame Length

Group Number

Croup Length

Line Number

Line Length

2 (per frame)

1 (per group)

2 (per group)

4 (per line)

3 (per line)

Table 4

The program TXTCMP was modified (TXCP2) to add 'overhead"

bytes to the compression calculation in the abionnt of 14 + 3 x

number of groups + 7 x number of lines each time a new frame
of CAI material was encountered. As an example, the CODIT print
out shown in Figure 1 of-Appendix C contains three frames with
frame two containing three groups and six (numbered) lines.

When the CODIT CAI material was entered, only the
numbered lines were entered for the compression calculation.
It will be recalled that in experiment one all lines as shown
in the figure were entered. The line numbers and the two spaces
beyond were not entered; only the text (course author generated)
to the right of this point is used. This is because all other
(formatting) characters canbe accounted for by the CODIT
master program reading the "overhead" bytes and producing
therefrom the non-text characters in the printout.,

2. Results

The total CODIT subsystem compression for the material

14

! u, s i and 2 of Appendix C is 1.318. While this com-
pression is less than that obtained using all the characters
in Figures l and 2, dt is a more realistic value because the
CODIT file structure "overhead" bits are taken into account.
Also, it is a conservative (low) value because the 'frames in
the experimental set have very little expository text material.
The frames are largely for questioning the trainee rather than
for instructing him. Onedan reasonably expect an experithental
set containing a mix of questioning frames and instructing
frames to yield a higher CompresSion, Even so, the 1.318 figure

has useful implications. In the CODIT subsystem it means
reducing each 121,600 byte lesson file by about 28,000 bytes
or, alternatively, putting 30% more lesSons on disk for the
same CAI!file allocation in the Air Force Phase II Base
Level System.. Putting more lessons on-line gives increased
daily flexibility to the OJT/CAI program. Using less disk for

CAI increases the chances for its acceptance since it leaves
adequate disk space for the other functional areas, such as
personnel, finance and civil engineering.

C Experiment Three

1. Description

The objective of experiment three is to verify the anal- !

ytical model of the Snyderman-Hunt algorithm developed in Appendix A.
The essence of the model is equation (7), Appendix A, which pre-
dicts compression on the basis of pl, the probability of a master
character occurring, and p1p2 the joint probability of both a
master and a combining character occurring together. Should
the model be verified to an engineering degree of accuracy, it
Would then be possible to select more easily optimum, master
and combining characters sets because pl is simply related to
single letter and space relative occurrences in english and
p,p2 is also simply related to double letter and space relative
o6curences. When TXCMP was developed into TXTCP2, provision
was made to measure pl and I2 and p1p2 on the text portion-of
the experimental material. A theoretical,, or predicted, text

compression was calculated. The experimental material used
was the text portion (1003 characters) of Figures 1 and 2 of

Appendix C.

2. Results

.
Using the text material only, i.e., no CODIT subsystem

"Overhead" bytes considered, it is found that the material of
Figures 1 and 2, Appendix C, yield P = .566, pip2 = .531 and
a theoretical compression of 1.513. This value compares quite
well (within 2%) of the experimentally measured text compression,

15

1.530. Furthermore, examination of cumulative measured text
compression and cumulative theoretical text compression as
it builds up on a line-by-line basis shows that the compression
predicted by equation (7) of Appendix A is stable and always
within 2.5 per cent, thus indicating a valid model for the

Snyderman-Hunt algorithm.

16

SECTION VI

CONCLUSIONS, QUESTIONS AND RECOMMENDATIONS

Based on these results, three major conclusions follow:

1. A working figure of 1.5 may be taken for the practical
compression of CAI text material.

2. When frame formatting overhead bytes are taken into
account in a typical CAI system, the compression figure becomes,
conservatively, 1..3 to one.

3. It is possible to adequately model the Snyderman-Hunt
algorithm and predict compression performance within a few per
cent, based on text statistics.

Given these conclusions several timely questions may be
raised:

How can the Snyderman-Hunt algorithm be optimally applied
to CODIT which is now being implemented Air Force-wide? Where
would the compression and decompression algorithm be inserted
into the CODIT system flow diagram (pg. 50 of reference 1)?
Can you patcha B3500 assembly language compression decompression
algorithm into a compiled COBOL CODIT program? Given that COBOL
uses only 53 characters, what is now_the optimum master and com-
bining character sets? What is the dollar saving in reduced
disk files and magnetic tapes? By how much is this dollar saving
offset by the 75-odd microsecond per character CPU time cost?
The dollar saving questions can be approached in two ways:

1. By taking gross costs from the current B3500 Base Level
System installation with estimates of CAI file space, CAI
character throughput, and B3500 speed for compressing and de-
compressing, it is possible, in-house to arrive at a rough
estimate of dollar saving.

2. By putting this problem to industry as a contracted study
wherein the contractor designs an optimal compression system
based on extensive CAI data base material, does a preliminary
system design around current or projected hardware, and cal-
culates relative costs of going compressed and uncompressed
within, the system.

It is recommended that (1) above, be accomplished and,
based on the outcome, (2) be considered, perhaps as part of
contract definition for Air Force systems beyond B3500. It

is also recommended that text compression be considered if.
CODIT is rewritten in JOVIAL for DAFCCS application. Finally

17

it is recommended that the Snyderman-Hunt algorithm be ex-
perimentally applied to other Air Force textual data bases,

such as intelligence.

18
Ot

APPENDIX A

Analysis of the Snyderman-Hunt
Text Compression Algorithm

Consider a string of N characters. As a character is
examined to see if it is a master character, there is the
possibility that either one or two characters will be read in.
Let pl be the probability that the character examined is a
master character and 1-p1 the probability it is not. If the
character is.a master character, then a second character will
be read in; if it is not, then only the single character is
read in and the cycle repeated, The expected number of
characters input, per cycle, is given by

ECI = 2 (p1)-+ 1 (1=p1)
(1)

= 1 +

For a string of-N characters the number of read cycles R is
given by

R =
(2).

When a master character is found, with probability PI)

two possibilities exist: th6 next, character will be a comBining
character, or it will not. Let p2 be the probability that the
next character will be a combining character and 1 - P2 that
it will not. If, the second character is a combining character,
it will be combined with the master character and only one
Character will be read out If the second character is not a
combining character, then two characters will be read out. If

.the first character is not'a master character only one character
will be read out. These rules lead to the expected number of
characters output per cycle, being given by

ECO = 1 (p1 p2),+,2 (p1 (1-p2)) 1 (1-pi)

= 1 + pl- pi p2

The expected number of characters read out NO, per line
of N characters in, is given by

(3)

NO = R (ECO)

NO =
(1 pl P1 P2) 4

19

(4)

(5)

Compression C is defined as the number of characters
N in the line divided by the number of characters NO read out
from the line processing, i.e.

C =
N

NO
(6)

Substituting previous work in the above, we relate expected com-
pression to the probabilities p1 and p2.

C = R (1 + pi) / R (1 + pi - pi p2)

1 + pi
(7)

1 P1 P1 P2

Note that if all first read characters are master
characters, pi = 1, and if all second read characters are com-
bining characters, p9 = 1, then C is a maximum and equal to 2.
On the other hand, it no master characters occur, pi = 0, then
compression is at a minimum and equal to unity. Since pi is
the probability of finding amaster character p(MC) and p2
the probability p(CC/MC) of finding a combining character,'
given a master character, we see that pip2 is the joint proba-
bility p(MC,CC) of finding a master character and a combining
character together. Both p(MC) and p(MC,CC) can be experimentally
determined for a 'given data base, such as english, once a table
of first and second order occurrences is compiled and the sets
of master characters and combining characters are defined. The
sets can be adjusted, within the constraints given in the text,
to maximize the expected c: qpression.

APPENDIX B

TXTCMP Program Listing

Note 1: The program operates by working its way (via POINT)
through the LINE of text, character by character. If a master
character is not found, both the compressed and uncompressed
bit count are augmented by one byte: if a master character is
found, the next character is tested for being a combining
character. If the next character is a combining character, the
compressed bit count is augmented by one byte and the uncom-
pressed bit count by two bytes, otherwise both compressed and
uncompressed bit counts are augmented by two bytes. An isolated
master character at the end of LINE will be so identified (pro-
gram line 350) and cause augmentation of both compressed and
uncompressed bit counts by one byte. Success of the end of line
test initiates printout.

Note 2: Program line 426 is not essential to operation;
it merely prints the value of POINT occasionally to let you
know the program is functioning during the wait between line
input and compression printout.

Note 3: Variable listing

Variable Explanation

M(I)' Master Character array

CC(I) Combining character array

TUC Number of bits, uncompressed, from beginning
of program

TC Number of bitsf, compressed, from beginning
of program

LINECharacter variable containing a line of text .

UC Number of bits, uncompressed, in a given line

Number of bits, compressed, in a given line

POINT . A text pointer variable

TEST1 A character variable containing one char-
acter being tested to see if it is a master,
character

A general indexing variable

TEST 2 A character variable containing one char-
acter beomg tested to see if it is a com-
bining character.

TOTCMP Total Compression since beginning of program

LNECMP Compression of the given line above

Note 4: Label Listing

Label Explanation

TXTCMP The name of the program: "Tent Compression"

LNEGET Get a new line of text

CHRGET. Get a new character from the line

NXTCHR Get the next character (following an identi-
fied master character)

AUGMT2 Augment the bit count by 2 bytes (16 bits)

AUGMT1. Augment the bit count by 1 byte (8 bits)

EOLTST End of line test

EOL End of line

r(IC-35.873j
EXECUTE
Tx7CLIP

IPRINT OUT
CONDITIONS

AND NOYss: TO
OPERW:50Rj

LNEGET

CUE OPERATOR
I FOR NEXT
LINE OF TEXT

ENTER A
LINE OF TEXT

END
EXECUTION

AUGM 2:

YES

CNRGET:

ATTN KEY
HIT'?

NO

GET CHARACTER
FROM BUFFER

VARIABLE "LINE"

CHARACTER NO

A MASTER
.

CHARACTER

NXTCHR, YES

AUGMENT T
AND TO BY

16 BITS

EOLTST

PRINT VALUE
OF POINT AS

--.---*CUE TO OPRTR
THAT. PGM IS_

WORKING

THIS PROGRAM SIMULATES THE
TEXT COMPRESSION PROGRAM OF
SNYDERMAN AND HUNT, DATAMATION
DECEMBER I ,

YES

GET NEXT
CHARACTER

FROM BUFFER
VARIABLE LINE"

NO NEXT
CHARACTER

A COMBINitiG
CHARACTER?

AUGMT 1 :

YES

AUGMENT C
AND TO BY

BITS

NO AT
END OF
LINE?

EOL T YES

COMPUTE TOTAL
COMPRESSION

AND LINE
COMPRESSION

OUTPUT TOTAL
COMPRESSION

AND LINE
COMPRESSION

flIDON CHART FOFVTXTCMP

I I C.Iikt I'LOW 141R T'X'IT,MP

E IXIC0%t_ PROCEDURE ::
10. JitHIS PPORMAM SIMULATES THE TEXT COMPACTION ALGORITHM CIF /;
15.

.
."1SNYDFRMANrA90 HUmT, DATAHATION, DEC 1,,a970../;

1,01 'PINT LIST(' 1);
275.... ImT LIST('EXECUTING TEXT COMPRESSION.');
111r.. PST LIST('FLEASE NOTE: FFITtk ALL CHARACTERS IN UPPERCASE:1);
15. '?PIT LIST('ALSO NOTE: Lim!? LINE-TO 70 CHARACTEPS.1);
ke'.. "197 LIST('41, ATTN ON IBM 2711 TERMINAL OP 'BREAK ON 'TTY TO ENO PROGRAM.');

,47.'. "Put LIST(' ');
"De TEtLAPE M(8) CH4A(2), LINE CHAP110) VAR;
IS. '(!.CLARE CC(21) CH44(1);
60. TECLARE TEM CHARM, TEST) CHAR41);
EY.,

:41::)A':
7 !3. Wr3).'61;
80. PAC4).'I';
ES, mE5)101;
9r . gri)'N';..

9-53. pc2)1";
11n: ,N,E8)'U';
Tr5,.
1a.4::. =12)1A';

1'20. `CC(4)'C';
125. 'CC(5),00';
130. tC(6)IEI;
135. CC(7).'F';
140. CC(8)0G';
145. . CC(9)'H';
150. CC(10) +'I';
155. CC(11)01.1;
160. CC(12) +'M';
165. CC(-13)'N';
170. CC(14)I0';
175.
180.

CC(15) +'P';
CC(16)'R';

185. CC(17)'S';
190. CC(18)"1"2
195. CC(19)1U';
200. CC(20)10;
205. ce(21),W;
280.
285.

fliCo;
TC*0;

290. LNEGET: PUT LIST('LINE');
295. WEAG INTO(LINE) ;

300. Ile();
305. C0;
310. POINT1;
315. CHRGET: TEsTlsuRSTR(LME,POINT,1);
320. TUCTUC+8;
325. UC.UC48;
335. 00 1.1 TO A;
340. IF TEST1V(1) THEN SO TO NXTCHP;
345. END ;
346. Go TO AUGMT1;
350. NXTCHR: IF POINTLERGTH(LINE) THEN GO TO AUGMT1;
355. 170INT.POINT*1;
360. TFST2SUBSTR(LINF,POINT,1);
365.
370.

TUC111C.8;
UCOC48;

380. 00 1.1 TO 21;
385. IF TEST2CC(I) THEN CO TO AUGMT1;
390. END 4
395. AUGMT2: CC16;
400. TCTC16;
405. GO TO EOLTST;
410. AUGMT1: CCS;
415. TCTC8
420. FOLTST: IF POINT.LENGTH(LIMF) TmEN Go TO EOL;

.

425. POINT.POINT*1;
426. IF PoINT/6TAUNG(PoINT/THEN PUT LIST(POINT);
430. 00 TO CHRGET;
435. '601: TOTCMPTUC/TG;
440. LPIEGMP.uC/G;
445. PUT LIST(' ');
450.
455.

PUT LISTCLINE COmmnrsslow);

460.
PUT LIST(LNFCMP);
PUT LIST('TOTAL COMPRESSION');

465. PUT LIST(TOTCMP);
470. PUT LIST(' ');
475. GO TO tNEGET;
480. Em0 TXTCMP;

LIG NH fl-2 CPS LISUNG Or PROGRAM
TXTCMP: "TEST 'COMPRESSION"

24

APPENDIX C

EXPERIMENTAL MATERIA1.

Reproduction of frame-structured and information-structured

CAI material. All parts of all lines containing one or more
characters constitutes the experimental_set for experiment one.
Only the text portions of numbered lines in Figures C-1 and C-2
constitute the experimental set for experiments 2 and 3.

A

LESSON 00017000 DATE WRITTEN 160569 PAGE 1

FRAME 1.0 TYPE Ml LABEL 000700

G.2 TEXT

1.0 VIT PROGRAMMING LANGUAGES??
2.0 DO YOU WANT TO TRY THE LESSON ON PROGRAMMING LANGUAGES
3.0 OR DO YOU THINK YOU CAN SKIP IT?

G.3 ANSWERS

1.0 A+I WILL TRY THE LESSON ON PROGRAMMING LANGUAGES.
2.0 B+I THINK I KNOW ENOUGH TO SKIP IT.

G.4 ACTIONS

1.0 A F:FINE. LETTS BEGIN. 8:31
2.0 B F:WE'LL GIVE YOU A LITTLE TEST JUST TO MAKE SURE.

FRAME 2.0 TYPE Q1 LABEL

C.2 TEXT

1.0 WHAT DOES COBOL STAND FOR?

C.3 ANSWERS

1.0 0 SET KEYWORD ON
2.0 0 SET PHONETIC ON
3.0 0 SET ORDER ON
4.0 A+COMMON BUSINESS ORIENTED LANGUAGE

FRAME 3.0 TYPE Q1 LABEL

G.2 TEXT

1.0 WHAT DOES FORTRAN STAND FOR?

G.3 ANSWERS

1.0 A+FORMULA TRANSLATION

FIGURE C-1 CODIT SUBSYSTEM FRAME
STRUCTURED CAI MATERIAL

LESSON 000700 DATE WRITTEN 160569 PAGE 2

FRAME 4.0 TYPE Q1 LABEL

C.2 TEXT

1.0 WHAT DOES RPG STAND FOR?

C.3 ANSWERS

1.0 A +REPORT PROGRAM GENERATOR

FRAME 5.0 TYPE Ml LABEL

G,2 TEXT

1.0 WHAT IS MADE UP OF l'S AND Q'S?

G.3 ANSWERS

1.0 A+MACHINE LANGUAGE
9.0 B PROCEDURE-ORIENTED LANGUAGE
3.0 C RPG LANGUAGE
4,0 .D OCTAL LANGUAGE
5.0 E NONE OF THE ABOVE

FRAME 6.'0 TYPE Q1 LABEL

G.2 TEXT

1.0 WHAT DO YOU CALL MACHINE-SPECIFIC INSTRUCTIONS USED BY A
2.0 PROGRAMMER,SPECIALIST TO REPRESENT EACH MACHINE OPERATION?
3.0 (THE WORD 'MACHINE' SHOULD NOT BE INCLUDED)

G.3 ANSWERS

1.0 A-FMNEMONIC
2.0 B+SYMBOLIC
3,0 &I-SYMBOLIC CODE

FRAME 7.0 TYPE Dl LABEL

G.2 CONDITIONS

1.0 IF GQ 2 WRONG 2-6 F: YOU'RE OFF TO A BAD START. YOU'D BETTER
2.0 F:TRY THE LESSON. B:MOD7

FIGURE C-2 CODIT SUBSYSTEM FRAME
STRUCTURED CAI MATERIAL

27

(RPAQQ LATITUDE (((ON LATITUDE)
(DET THE DEF 2))

NIL
(SUPERC NIL (DISTANCE NIL ANGULAR (FROM NIL

EQUATOR)))
(SUPERP (I 2)

LOCATION)
(VALUE (I 2)

(RANGE N1L -90 90))
(UNIT (I 2)

DEGREES)))

(RPAQQ ARGENTINA (((XN ARGENTINA)
(DET NIL DEF 2))

NIL
(SUPERC NIL COUNTRY)
(SUPERP (I 6)
SOUTH/AMERICA)

AREA (I 2)
(APPROX NIL/120000000

(LOCATION NIL SOUTH/AMERICA (LATITUDE (I 2)
(RANGE NIL -22 -55))

(LONGITUDE (I 4)
(RANGE NIL -57 -71))

(BORDERING/COUNTRIES (I 1)
(NORTHERN (I 1)

BOLIVIA PARAGUAY)
(EASTERN (I 1)

(($L BRAZIL URUGUAY
NIL
(BOUNDARY NIL URUGUAY/RIVER)))

(CAPITAL (I 1)
BUENOS/AIRES)

(CITIES (I 3)
(PRINCIPAL NIL ($L BUENOS/AIRES CORDOBA ROSARIO

MENDOZA LA/PLATA TUCUMAN)))
(TOPOGRAPHY (I 1)

VARIED
(MOUNTAIN/CHAINS NIL (PRINCIPAL NIL ANDES

(LOCATION NIL (B0UNDARY'NIL (WITH NIL
CHILE)))

(ALTITUDE NIL (HIGHEST NIL ACONCAGUA
(APPROX NIL 22000))))

(SIERRAS NIL (LOCATION NIL ($L CORDOBA
BUENOS/AIRES))))

(PLAINS NIL (FERTILE NIL USUALLY)
(($L EASTERN CENTRAL)

NIL PAMPA)
(NORTHERN NIL CHACO)))

FIGURE C-3 THE UNITS FOR LATITUDE AND ARGENTINA (FRAGMENTS) IN SCHOLAR,

AN INFORMATION STRUCTURED CAI SYSTEM

28

REFERENCES

1. No auhor, "The Development of a Computer-Directed Training
Subsystem and Computer Operator Training Material for the
Air Force Phase II Base Level System", ESD-TR-70-27,
30 November 1969.

2. Butler, A. K., et al, "Training and Design Requirements for
an Air Force Computer-Aided Training Subsystem for the
World-Wide Military Command and Control System ", ESD-TR-
68-415, 30 September 1968.

3. Shannon, C. E., "Prediction and Entropy of Printed English",
Bell System Technical Journal, Vol. 30, pp. 50-64,
January 1951.

4. White, W. W., "Printed English Compression by Dictionary
Encoding", Proc. IEEE, Vol. 55, No, 3, March 1967,
pp. 390-396.

5. Snyderman, M. and Hunt, B., "The Myriad Virtues of Text
Compaction", Datamation, Vol. 16, No. 16, December 1, 1970,
pp. 36-40.

6. Carbonnell, J. R. and Collins, A.M., "Mixed Initiative
Systems for Training and Decision Aid Applications",
ESD-TR-70-373, November 1970, pg. 51, units for
LATITUDE and ARGENTINA.

7. No author, "Conversational Programming System, Terminal User's
Manual", 1 August 1969, The MITRE Corporation,13edford,
Mass. 01730.

8. No author, "Burroughs B2500/B3500 Information Processing
System COBOL Reference Manual", May 1969, Burroughs
Corporation, Detroit, Mich. 48232, page 1-1.

9. Butler, A. K., et al, "Performance/Design Requirements and
Detailed Technical Description for a Computer-Directed
Training Subsystem for Integration into the Air Force
Phase II Base Level System", ESD-TR-68-30, June 1968,
pages 16, 26.

Security Classification

DOCUMENT CONTROL DATA - R & D
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1, ORIGINA TING ACTIVITY (Corporate author) i2a.
Deputy for Command and Management Systems
Hq Electronic Systems Division (AFSC)
L C Hanscom Field, Bedford, Mass. 01730

REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
2b. GROUP

N/A
3 REPORT TITLE
EVALUATION, OF A TEXT COMPRESSION ALGORITHM
AGAINST COMPUTER-AIDED INSTRUCTION (CAI) MATERIAL

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

None
5. AU THORISI (First name, middle initial, last name)

Joseph M. Knight, Jr., Captain, USAF

6. REPORT DATE

July 1972
76. TOTAL NO. OF PAGES

29
7b. NO. OF REFS

9
ea. CONTRACT OR GRANT NO.

1N-HOUSE
b. PROJECT NO. 2801

c. TASK NO. -280104

d.

9a. ORIGINATOR'S REPORT NUMBERISI

ESD-TR-72-28I

9b. OTHER REPORT NO(S) (Any other numbers that may be assigned
this report)

10. DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

11 SUPPLA:MENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Deputy for Command and Management Systems
Hq Electronic Systems Division (AFSC)
L G Hanscom Field, Bedford, Mass. 01730

13. AB5YRACI

This report describes the Initial evaluation of a text compression algorithm against
Computer-Aided [nstruction (CAI) material. A review of some concepts related to
statistical text compression is followed by a detailed description of a practical
text compression algorithm. A simulation of the algorithm was programmed and used
to'obtain compression ratios for a small sample of both traditional frame-structured
CAI material and anew type of information structured CAI material. The resulting
compression ratios are near1.5 to one for both types of. materials. The simulation
program was modified to apply the algorithm to the 16sbon files Of a particular
frame-structured CAI subsystem used in the Air'Force Phase 'II Base Level System. The
compression in this case was found to he 1.3 to one because of the presence in the
lesson file of uncompressible, frame formatting bytes. The modified simulation
program.was also used to take letter occurrence statistics on the text being compress(
From these, a theoretical compression was calculated using a probabilistic model of
the compression. algorithm. Theoretical compression was.within two per cent of
measured compression, thus verifying the model's applicability. The report Closes
with the raising of some questions and a discussion of fut.-tire. work.

DD 1473
Security. Classification

ecurity Classification
14,

- KEYWORDS
LINK A LINK B LINK C

ROLE WT ROLE WT ROLE WT

data compression

text compression

CAI

computer aided instruction

information theory

probability

mathematical model

,

.

.

.

_

.

.

.

.

.

i .

,

.

. .

.

.

.

.

Security Classification

