DOCUMENT RESUME

ED 074 766 EM 010 964

TITLE EPL/IV: Fourth International APL Users' Conference.
June 15-16, 1972, Atlanta, Georgia, U.S.A.

INSTITUTION Atlanta Public Schools, Ga. Computer Center.; Georgia
Inst. of Tech., Atlanta. School of Information
Science.

SPCNE AGENCY Atlanta Board of Education, Ga.

PUB DATE Jun 72

NOTE 19up.

EDRS PKRICE MF-$0.65 HC-%£6.58

DESCRIPTORS *Bibliogragphies; *Computer Assisted Instruction;

Computer Graphics; *Computer Science; #*Conference
Reports; *Programing Languages; Statistical Analysis;
Time Sharing

IDENTIFIERS APL; *A Programming Language

ABSTRACT ‘

APL is a computer language (A Programing Language).
Papers at this conference of APL users deal with the following
topics: an APL approach to interactive display terminals; graphics in
APL; an interactive APL graphics system; modeling a satellite
experiment on APL; representing negative integers in bit vectors; APL
as a teaching tool--two versatile tutorial approaches; the evolution
of an interactive chemistry laboratory program; a collection of graph
analysis APL functions; management of APL time-sharing activities;
saving money by saving space in APL; security of APL application
packages; enhanced interaction for an APL system; subtasking in APL;
suggestions for a "mapped" extension of APL; APL as a notation for
statistical analysis; an adaptive query system; microprogram
training--an APL extension; and APL electronic circuit analysis
program and use of APL in teaching electrical network theory. Also
included is a bibliography of 340 items dealing with APL. (JK)

'l' [ttt

(¢2r2271r777
1190000 /) /) /) wwwuws=
of /] vwwwaus
of /) wwwww==
*9@@@@@@@@@@@‘

tiL/ /A

-uuuuu“‘”””;rrr(

R

A AA\AA???éfNﬁﬁﬁ«?V
,1ﬁ1f4;((r(1711?<«<<< ----- AAMAAAL Lttt ammanrT !
1?141QAfccfcﬁTWWi'ﬂ("~—---AAAAA???’*ﬁﬁﬁﬁﬁ?7
SR [[eswas{((2NRTM AL

,3' 'm/////llLLLq Q%ffffff “3)73<<(<(4

¢ D/////lltlla ’R'J”[l'r[[LIIIIlA‘¢t§ rrr.*...(< ((~53‘.;_>.;<<,_<‘,.

‘ ! ! AN RN \\\\RRQRA“??““t7r+1wou‘TT
N)OWQEEVVVVVcccccOw@QQAAAAA:*:*:Q? Aaqr[(r(‘l LT
)Hq;CWVVVVVCCCCC@Q.DMAAAAAtt'an& jgr([(f R ottt oL

'umhu@@mﬁm'ﬂFmHQ@QT.?ﬁ “111\11x\1\f$?0f,,
CEIEE S BT .’V”lll\lllil\’???f;;

UquQm@m*Qq@mmmgﬂa POAAAAAvaVV ;i.."“.;v : ﬁ“k“"”“""”V”\\111111x19f§f?;:

Enomme

AAEEAI1I1 I RRAE R0 poo~ . [f:;;;://///uwmwu/////oo
‘ ﬂ@@]]]]]xllllr : ..,..\‘\\\>>>>)eeeeeoooooﬂ.3 (Csss /270 wwwwal /) oo
p ¢ TCesses/ /77 wowwsl/ /i o
sevelbrrrrree Y

+ PHIrrrre

l feer

fimfﬂé++¢4+—

C+EREAR L 4= @%GQﬁAa,daﬂﬂﬂﬂﬂmﬂP”?,

444>)>)>;

IVAMAN X % X x %= SEEEsrVVVVULL L L. et exxxxxccecme 1Ll
e IV X x X x x = =+*f%+VVVVV.....+«+««ixxxXFCCCCLLLLL'Tf[[+++++~3:>; ““““Wmmmm°°D”DuULuu<(sec:u
W ITITINANN A xuxxzzz==t 34+ i VPV L L veevrexxxxxccccc 1t lil [[T 0 ++4++ 000 -TIMNMACMTo0DDD 3y yyecccc bb
:11:::::nnnnnmmmmm+++++nnnan-—---:....\\\\\>>>>>xxxxxaeemena44A+++++nnnvn;;;;s'”"""'AAAAopooo>>>>>fv
:II:::::nnnnnﬂmmmm+i+é+nnqnn—--—-::...\\\\\»>>>>zxxxxs®e@®f4A44*++++DDDDD+8&&6 R LAAAdApo G > >
(IT::::: nnnnnWWWTW+++++nnaan—-—--::...\\\\\>>>>>xxxxxooeem14 A ppp: T AAAAADp oGO > <
Vaaxxxxx WV LLLLLIINIVNVwwwwws x s 2t~ wwwewpprpp TTTITARRRA -+

e saes e

saszzxe2 0 MLLLLLYTIV Juwwww® 22 22 ~~~~~ uuuuu”””V"nnnnﬂ\\\‘\)))))'****:::::uuwwuoppppvvvvvnnﬂnn+w
Sﬁhxxx=x111\1LLLLLYY?VYuwwwwxtxzx~~~~~"""""uuuuuVVVVVnnnnn\\\\\)))))t*t**:::::wuuuuooppo?VVVVﬂmﬂnn»»
St NANNNL Ll L L L eo o0 o DERFAABRAERARBE >+ X} | x FRRAR FAANAN + + FERAEERRE A~~~ T T T [T ToppopplLLLLTY
':\\\\\LLllLLLlLL°°°°°EQQQW@EQQEWHQQE*****\\X\\@”@QEFQ

BEINANN N+ + IR~~~ 77
\\\\\LllllLLLLLooooom@mmqqu@me@m N e lolaf AW ++F ‘&..u rrrrropoootttlxvv

--naaoa.. . .- rr

-4—:qaqa...“ A Ty
“”*TTTTT;;;;;**?**///// ‘@@.Jﬁﬁﬂﬂﬂﬂ¢d¢¢¢/////\\\?33?3?- aaaaa...f @VCCCCC££eccnnnan""'"""""[r
...(((((°PF”P=====]]]]];;;;;QQEHQCCCCCLLLLLﬁSSSSAAAA@mFQ”“<<<<<q ”DQQ@“'rrrrrrxx:xxnnnnnf[[[[(((((jn
:;;(((((PPPPP=====J]]]J;:;"-G' LLL Eiole ARRTIIITTiT==22=zpARan [T (((((LL
353 (CC((PPPPP====2=211713::::: rar"<<<<(1'3"*”3’”“'3’3 Irrr TfI::!I:nnnnn[ffff(((‘(’f
"TnnnnalIITTL lLLUUUUU~~~~~P?Dq@ceccc\\\\\>>>>>‘;----BG@

nnnnn’IITIlLlLLUuuuu~~~~~OUWWQ£eccc\\\\\>>>>>se

nnnoeeooccccchITT?°’7VAAAAAQHEQETTTTT]]]]]<<<<<ooooo\\\\moﬁqQ,Gﬁécc”ﬂqqﬂss'51<<<<<:+e%§¢¢¢¢¢ * %

ece eSS\ LLLLLBERBERTEEREI T wwwen (((((LLLLL: s ARAEEEREE £ 44 4 XXX XXNNNNNAAAAADODDO ;5 ;5 ¢+
€ee S<S"\\\\\L|LLl@m@m@ FRARNERSYwwwwe (((((LLLLL FTAIPAPAYEAT 4 4 4 XX XX NNNANAAAAAOODOD; ;; 55+ 3
cee SSSSVNNMLLLLLBREEERERERAY R wwwe (((((LLLLL + +PRRRTPREIFRF+ 4 44 4 XXX XXNNANANAAAAAOOODO 55 ; 53 ¢ ¢
\\\VVVVVIIIII[[[[EDﬁDDDIlillf[frrwwwwmvvvvv P 4++&+0000011111YTTfZ~~~~~vvvvv\¥\&\Wﬂﬁmmnﬁwww[[[[[nn
\\\VVVVVIltxxf[[[[:DDDDIlIllrffrrwmwwwvvvvv P 00000 VLU T T T T Tmmem vy vV X NS XTI Moaannn[[([[nn
\\\VVV’VIIIII[[[[[DDDDDIl|l|rffrrwwwwuvvvvv'-~; FHEE400000 10 L iV TT T T T~~~ v vV VR S X TP an axa [[[[nn
auaccccc-‘+**\k\\\ooooo®&®&&ééé£é*++4%IlIIIVLJLL " pophoccccaxxzxx 7T Nxh Xy exxxxXk¥hk o 01111pp
aaocecec itk kpppopQRORRLLLLL 444+ || | || S0 LLL " " PoDDDcccecrrza T T AR YR XX YRk sl LLpp
aaaccccc+rr**\k\\\ooopoaaaaaggggg+++++I|||zfLLLL“""""BEEBEccccczxzxx “““ IR AR REEE R A P
U:ﬂﬁ:+++/////XXXXXE[E[[~~~~~zzz:x ¢¢¢¢¢nqaaqxx;eLxxxxx\\\\\¢¢¢¢¢TTTTT:::::oooooVVYQWVVVVVaoooo>g

tt+t// 7)) xxxxx[[[[[~~m~~zxxxa .. 9dddbaacaait s xxx \\\\\$dddITTTT 7255550000017 V7 7VVooo0022

tr4+ /)]) xxxxx QUL L~~~z 222, L d0ddbacaaas #+:xxxxx\\\\\ddddITTTTT>55550 0001y57§VVVIVeocooxs
\\§§DDDDeee@e/////wwwwuoooes MM Tuvvuu=zzz=as

PDPPeeeee/////wwwwmoaeoa APLN\TY ANV DN Tvvuuu=zzxxxx
\ PPPPPEeees/////wnwuwdesss MANAIIIINANVNW T T luvuuuzzexxxs
LLLPPPFR//// /L LLeccccdA44A ‘ FOURTH INTERNATIONAL LLLLLacaaas<$$€€?2222 [([[poppp))
LL'DPPPP/////LLLLLcccccA&AAg APL USERS' CONFERENCE LLLLLacaaa<sss<?2222i{(((ppppo))
LLPI’P/////L[LLLCCCCCQ&AAA LLLLLaanaasss<<s??2220 0 ({(ppppp))
*ﬁ:_!vvvll||!cccccccccc**%%+ JUNE 1S5-16, 1972 2222299999, wwsweaasaaaaaaaal\
RARVVVV V]| |]|cccceccccetti s ATLANTA, GEORGIA U.S.A. 2222279997 vwwswaaaaaaaaaal\
AR vvv| ||| |ccccecccceecs ittt >222*YY?VV.....wuwumaaaaauauau\\
EE ¢¢¢xxxxxoooooooooe,,,,,IIIII+++++=%*:*VV??YFF[[[\\\\\oooooooooo[([[[qnnan~~~~~l111l1111111111>>
-%%*¢¢¢¢¢xxxxxooooooaooe,,,,'11111««+++f%ée:?vqurr[[[\\\\\oooooooooof[[[[Rnnnn~~~~~11111111:111111>>
-e%é§§¢¢¢xxxxxoooooosooe,,,,,IIIII+«+«+—*1*-VYVV“[ffff\\\\\°°°°°00000[[[rrﬁnﬁgﬂ~~~~~l111\1111111111>>
Y% >>>2222300ANND2222 1111t 4t AAAAAT++++>>>>> T 7 xxxx2AAAAATMTMMT225220400A ALBALLALAN»+++2A4
vy >>>2235050NNNN22553 11111444+ AAAAA+++++O> 5> 777 2z ANAANTINMN2 2222 AAAAA . . 0 ABAAALALAA 204
‘ Q +>555550n0nNN25525 111 114444 EAAAAA+++445555> 7777 xzxtAAAAATMIMINM22222A86808 AAADALBAAAS++++4AA
[: l(:<X+++v++++++eeeeeuuuuun SARARTZIIIVVVYYVCcce<(((((ABMAB)I))ILLLLL 444 4/// /7 s inrzmoersasss||]]]we
TR X 4 E 4+ 4+ +8BB00UUVLURRARAL?272VYVV Y << (((((BAAMAIIIIYLLLLEL 44444/ /// et iezazanissst| ||]]ee

L PSS EXXXXx4d bt 44108080 UUUUURABRRPI22IY VYL Ve el ([(AALAANINNNL Ll L g dadt s/ ry /o s LD

&

PROCEEDINGS

ED 074766

OF THE

FOURTH INTERNATIONAL

AP USERS CONFFRENUE

JUNE 15 - 16, 1972

o

US DEPARTMENT OF HEALTH,
EOUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMEN HAS BEEN REPRO
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OF ORGANIZATION ORIG
INATING 1T PO'NTS OF VIiEWw OR OPIN
10NS STAT.D DO NOT NECESSARILY
REPRESENT QFF(CIAL OFFICE OF EDU
CATION POSITION OR PO ICy

ATLANTA GEORGIA U.S.A.

o

ERIC

Aruitoxt provided by Eic:

.».,.,:nanU Autiurag (stuegol

O IpRIs Oyl 01 pue tuorianpord jooad yirm uiede pue uiede pad{oy ogm

10uany sarndway spooyss arpgnd viueply o491 Jo luoawntedap suoniexsdo 91t11ua
Yl 01 taanjui (RIIUYIS B OJOo Suonlsoaddns puae SUONIIOBIJ0D SNOIdWNU ApPBW OyMm

ATUBIN [l Puv AssseilN ANIIN ol 'Naom o anode] oyl [[e prp oym Apoqead aippiy 01
TWOINAS [euiWadl SLY a1l olur suaoaded syt o (v paroius oys odury srqqgogq

pur {orpg A110¢ ‘whnedapiend rriajn ‘uevdwoy eppur] o) (sSuipasdoxd o9sail

Jo vonyonpoad syl paspazadns ogm Spwygppdly pPIeuIag 01 anp Hie syuwyl (eioadg

E

B2

33

B

[}
3

cu

D1

b2

D3

pu

E1

O

ERIC

Aruitoxt provided by Eic:

TABLE OF CONTENTS

J. C. Rault and G. be'lars
An Apl approach to interactive display terminals ..eecenoen.
W, H. ichoff and A. L., Jones

Grapiics 1IN APL v evereeeioesoaasostoossasesassosssainsnnasanns

Alfred *. Bork “

An intcractive APL gra
Stuart G. Greenboerg and €raig T. Johnson

MICHS SYSEOM ittt eeneenoeonessssssosss
Modeling a satellite experirent on APL Lo eeee oo toeeoenens
Charles D, Wende

Representing negative integers in bit vectors -- a short note
Luther J. Woodrum '

APL as a teaching tool: two versatile tutorial approaches

Leslie 1. Davis, Jak Hskinazi and baniel J, 'tacero

The evolution of an interactive cheinistry laboratory program
"

thomas R. Dehner and Bruce E., 'lorcross

M collection orf graph analysis APL functions ...eeeieeeceesns
E. Girard, D. Bastin and J. C. Rault

‘tanagenent of APL time-sharing activities ...eeeeveeoceoonn-o
James liggins and A. Kellerman

nvery little bit hurts: saving money by saving space in APL
Richard Alercia, Robert Swiatek and Gerald 1. Weinberg

Security of APL application packagesceoevesrscanccsierans
Paul Penficeld, J.

Enhanced intecraction for an APL svstem ...ceeeeerrnereccscnns
James L. Rvan

»

X PL/1 batch processor for APL ... iiiiiieenneortonsanconsnnnns
S. Charmonman and §. . Bell

Subta. INg In APL L iieeiveseeesereosssasnasansssssnnsasinnnons
Alain iville-DeChene and Louis P. A, Robichaud

Suggestions for a "mapped” extension of APL ... iiciiieiiennn
Clement Leibovitz

APL as a nc:ation for statistical analysis t...eeeeiecececens
K. W. Smillie

An adaptive QUEIY SYSEET t.vevereeesanrenconaossscsaanasonsas
E. Kellerman

‘licroprogram training -- an APL application ...eececieecaogs.
Ray Polivka and Kent Haralson

ICAPL: an APL clectronic circuit analysis program
RAndall W. Jenscn, Terry A. Higbee and Paul ', llansen

Use of APL in teaching clectrical network theory
Pagl Penfield, Jr.

Is APL epldenic? or a study of its growth through an extended bibl

1o

4‘.”'3 X

59

67

73

1093

142

146

150

161

191

[E

FOREVORD

The tourth International APL Uscers' Conference was held in Atlanta, Georgia, on June 15 and
Vo, 1972, The conference was co-hosted by the Computer Center, Atlanta Public Schools, and the

Schivol of Information and Computer Sclience, Georgia Institute of Technology.,

The progran was arranged by Dr. Garth Foster, Syracuse University, Syracuse, llew York., Dr.
Foster vas responsible for the referceing of the papers and the establishment of the fine

prosgram, -

These proceecdings werce compiled at the Atlanta Public School Systems' Computer Center using
NPG/360, Pditing was acconplished by staff members from the Computer Center and the Computer
Braille Project. The print shop of the Atlanta Area Technical School was most cooperative in

providing printing services for conference broochures.

The local arrangements were the responsibility of Ms. Jacki® Reynolds, Systems Analyst at
the Computer Center. 1s, Reynolds handled all registrations and hotel accommodations for the
conference and Las contributed many hours of her personal time to ensure the success of the

conference.

It is obvious that a conference such as this would not be successful without the
contributions made by the speakers. They have contributed greatly to the sessions and to the

overall cfforts toward the proliferation of APL in the computer community.

As conference attendees, you are ail to be commended for making this conference a success.
APL, as is brought out in one of the papers, is epidemic and you are all <contributors to the

causae, LS

There arec too many to individually cite, who performed hours of thankless chores for this
confercnce. ilany letters had to be typed and mailed and many telephone calls had to be
answered, It quite obviously is a great effort to host a comference such as this, I would like
to take this opportunity to'céllectibely %hank everyone who helped to mnake this conference a

SucCcess.,

Thomas J. McConnell, Jr.

Arrangements Chairman

O

RIC)

Aruitoxt provided by Eic:

IS APL EPIDEMIC ? OR A STUDY OF ITS GROWTH THRCUGH AN
EXTENDED BIBLIOGRRPHY

J. C. Rault and G. Demars
Laboratoire Central de Recherczhes
THOMSON-CSP
Domaine de Corbevilie, B. P. 10
(91;. Orsay, Prance

%ﬁ An attepnpt is made to demonstrate that the use of APL is groving in an epidemic fashion.
The theory of epidenmic processa2s is applied in an approximate manner by means of data . provided
by a nearly-exhaustive bibliography given as an appendix. AFL is proved to be undoubtedly
epidaanic.

A second part details tha given bibliography.

3

The few conference§ held these past years on APL have demonstrated a fast growth of its

‘‘usa. At this time APL, as we hope this cornferemce will shov, is pervading every area of

[E

activity.

To the dissmay of the vilifiers of APL, this pattern of developament reseables the spread of
an infectious disease. Co -

The purpose of this piper 1is twofold: first establishing that APL is an epidemic, a
conmonplace assertion among APL supporters; second providing the APL cosmunity and the APL
addicts to-come with an extended bibliography given 1n appendix. To our knovledge, such a
bibliography has not been made available so far.

f

The spread of scientific ideas has already been studied in terms of an epidemic process[1,
2, 3). A thorough theory has b2en laid down. and applied to the study of an entire discipline
such .as symbolic logic[3] for a one-hundred year time interval.

Along these lines ve att2apt here to'apply the same theory to the growth of APL using as a
data base a bibliography recently compiled.

p
’
130 { Number of new contributor§ osr yvear //
Fivure 1 Ay L
100 ’
s
{
1
1981 2 3 4 H 6 7 3 9 70 1 2
400 - /I
. s
/
Chanpe in active contributors /
Figure 2 {enidemic curve) /
/
s
f .
/
50)
0 N N — 4 4—/&; A i 3]
1961 2 3 4 5] 7 s 70 1 2

O

RIC

s 1 -

O

100 Msiribution of punlicetions in ane-vear intervals, -
/
I/ '
Floure 3 /-_/’//////
10 T
P Sy . . : N . e .
1964 2 3 4 s s 7 8 9 70 1 2
2 Ratin cf nublicaticns ta authars
/ \,
Fioure 4 1 \ P e =T
N\~ /\ e
1 ‘\////“{
S U T 4 » I Y . A —4 i L. (S
1964 2 3 4 5 s 7 8 9 70] 2

It would not be contended that this literature search is exhaustive and we are fully avare

that improvements can be made.
This bibliography amounts to about 330 entries and 220 authors. Thus the APL epidemic
procass, investigated here, considers a population of 220 individuals, or infections, over a

ten-year span. Taking into account that an entry may include several authors the total number of
publications is 422, ’
shows

Figure 1 the number of nev contributors each year; figure 2, showing the chaage in

the number of active contributsrs each year, represents the epidemic curve for APL since its
inception. This curve reveals clearly that since 1968 APL is really an epidemic. This
corresponds to the release of an "infectious material"™ by IBM, APL/360, as a class III product.

&

L ™

E

RIC

Aruitoxt provided by Eic: .

[

The shape of this epidemic curve does not allov one to foresee that the epidemic will stabilize
in the near future, which, according to theory, should occur vhen the curve ceases to increase.
{In fact this curve temds to yrow exponentially).

Figure 3 gives the yearly ‘nuaber of publicatiohs; if ‘the present rate of growth is
paintained this year we may expect 250 papers in 1972 with 40 nev authors.

Figure 4 indicates the yearly average nuamber of publications per author. This ratio has
increased continuously since 1369.

The above figures should not be taken as accurate ones but just as mere benchunatks
manifestiny that APL, in spite of its infectious character to certain people, is hale and hearty
anl thriving at a pace which may endanger soon the bailiwicks of those die-hard fossils that
PORTRAN, BASIC and other patters are.

Perusing the appended bibliography is sufficient to be convinced that APL is present in
many fields. We intend here to make general comments for facilitating the use of this
bibliography.

"&
APL ILpplementations One may note the fact, which is not alvays vell knovn except to specialists

/
that APL may now be found on major coaputers ocutside of IBMz

BURROUGHS: 23, 98, 1u4-u6, 247, 298 [Ed. note: npumbers here refer to

cbce: 58 bibliography, not hardware!)
CII: o ~157-8, 181-2, 195-6, 158) . . A -
DEC: 216
HONEYWELL/GE: 95
IBM: 22, 59, 77-80, 82, 312, 33t
UNIVAC: 339
XDS: 21, 242-43, 285, 340
Microprogrammed APL machines: 16, 45, 102-106, 203, 207, 295-297
. . é?j',/j’

APL Compatible Terminals

A wvile range of APL compatible peripherals are available. Reference 177 gives a nearly
conmplete l:st of them (48, 62, 86, 101, 188, 250, 307).

APL Eile Handling capabilities

Users of APL quite early have demanded iracilities to wvork with large collections of data
unier projgram control. A number of file systems have been experiemnted or are presently
available (37, 63, 84, 179, 189, 202, 262, 334, 338).

APL Handbooks

Many books, handbcoks, us2r's manua.s, vidiaotapes and other materials are available: 6, 10,
23-2u4, 42, 43, 78-80, 95, 112, 140-2, 205, 219, 232, 235-38, 320-323, 329.

APL GRAPHICS: 172, 150, 177, 235

APL HISTORY: 14, 261, 302

APL IMPLEMENTATION: 1, 2, S5, 16, 102-106, 156, 203, 207, 224, 231, 252-3, 287, 292
APL PLOTTING: 20, 62, 177, 239

APL SEMANTICS: 7, 230, 233, 2u45-46

APL THEORY: 32, 40, 47, 120, 159, 215, 230, 233, 245-46, 252-3, 279

" ERIC ‘_ o

!

In tue folloviny we give for the most significative fields of application, the appropriate’
references where the reader may find more detaxl.

gggggggg AIDED INSTRUCTICN: 26, 23, 56, 71, 83, -99-100, 111,, 116, 127-8, 133, 165,
B 168, 176, 222, 254, 273, 304, 327
DATA BASES: 171-73

f e T

ENGINEERING:
o Digital systeas: 15, 29, 31, 33, 55, 61, 69, 74-76, 81, 89, 91, 110, 137-4,
P 160, 163, 199, 200, 206, 240 .
f Electrical Networks: 18, 19, 68, 97, 208-214, 218, 257, 259, 286

General Engin=2ering: 166, 191, 258
Mechanical Design: 66, 139
Sucvey: 174

FINANCE: 254

INSURANCE: 67, 135, 337

MANAGEMENT: 38, 87, 93, 162, 164, 255, 282, 291, 336

Complex Arithmetic: 70
Fast Fourier Iransforaz: 139, 183, 280
Formal Computation: 179, 280
Graph Theory: 68 :
Linear Prograaming: 194 ; .

e R u erical Analysis: 20, 27, 41, u46, 136, 276

%“wwbperatxons Research: 112
Optimization: 9
PERT: 20, 192-93, 217, 265‘ 326, 331-32
Sorting: 293 !
. Statistics ani Probabllxty. 11, 12, 20, 67, 108, 129, 155, 263-6u4, 266-71, 290
Theorem Proviag: 107, 204
Wwalsh Functions: 251
HEDICINE 300

RECREATION AND GAME3: 310, 311

L;\‘
[
hy
ki
on . i
;

Aside from the polemical aspect of this paper aimed to pigue APL detractors, hope that it
will be a contribution to the spreading of APL. We propose that this bibliography be augmented,
inproved and refined, possibly with the help of a KWIC index.

. ACKNOWLEDGEMENTS

The authors wish to thaak Dr. P. Abrams of CEGOS-INFORMATIQWE, Puteaux, France, and M. V.
Chaptal of l'IRBIA, Rocquencourt, France, for their contributions which aided in the preparation
of this bibliography. :

.

BIBLIOGRAPHY
—_ - \\. .
1. W. Goffman. "Mathematical app;dgéh \Fo\Fhe spread of scientific ideas", Nature, 212, pp.
449-452, October 1966. i "\\ :
2. W.- Goffman and V. A.luevillt "Conmunicatiqns and epidemic processes", Proc. Royal Soc.,

O

Aruitoxt provided by Eic:

ERIC

1298, pp. 316-324, May - 1957 N
3. W. Gaffnan. " mathematxcal method for analyzxng the growth of a scxentlfxc discipliuen,
~dJourtal of the ACM, Vol. 18, No. 2, pp- 173-185, april 1971.

APPENDIX

(An APL Bibliography)

O

ERiC

Aruitoxt provided by Eic:

T

1)

2)

3)
4)

5)

6)

7

gy

9)

10)

12)F

13)

14)

15)

161

17)

18)

19

AN APL BIBLIOGRAPHY APRIL 1972

PySeABRAMS=AN INTERPRETER FOR 'IVERSON NOTATION'»TLCHeREPT
CS=4Ty(OMPUTER SCIENCE CEPTWSTANFORD UNIVIRSITY) STANFORD
CALIFORNIAYIT ACUTY 1966,

P+SeABRAYS=AN APL MACHINE yPHWD, (HESTS1STANFORD UNIVLERSITY,
STANFGRDE LIMEAR ACC(L'ﬁATOQ CENTERVRPT NO bLAC llaw FEVRIER
1970 ET ADWTCO-T4l

P‘S-ABRAVSEINTRODUCTION AU LANGAGE APL yREVUE CEGOS-INFORMAT-
[CUEINDL344FP . 5=TyMARS-AVRIL1970,"

S.ABRAMSAET WaMeMC KEEMAN= COMPUTER DISPLAY OF THE DERIVED
POLYTOPESsREVUE CEGCS-INFORMAT IQUEINOe36sPe25-36,3 JUILLET~
ADUT 197C.

PeSeABRANMS=UNE NOUVELLE MACHINE POUR APL sAFCETCONGRES
D! INFORYATIQUE yBROCHURE NO,2sP485=~106 sPARIS SEPTEMBRE 1970,

S+ARRAMS ET GeLACOURLY=LE-LANGAGE 'DE PROGRAMMATION APL,

- UNE _INTRODUCTION» CEGOS"INFORNATEOUE 1971,

PyS«ARRPAMS=A FORMAL APPROACH TO APL SEMANTTCQ COLLOOUE APL-
9=10 SEPTEMBRE 1971yPUBLICATION IRIA P.159-80.

B:A?YoDﬂBASTINoEoGIRARD ET JeC RAULT=L'APL~UN OUTILPOUR' LE
DEVELOPEMENT DES PROGRAMMESIREVUE TECHNIQUE THOMSON-=CSF»
SEPTEMBRE 1972

B.AMY=A PRNOPOS D'UN<@§OGRAMME D'OPTIMISATION~ANALYSE NUMER=-
TQUE ET LOGIQUF DES PROGRAMMES EN APLsREVUE TECHNIQUE
THOMSON=~CSFy SEPTEMBRE 1972,

AsANGER=THE APL LANGUAGEsJeWILEY,1971,

FeJeANSCOMPE=USE OF IVERSON'S LANGUAGE APL FOR STATISTICAL
COMPUTINGDEPT OF STATISTICS;YALE UNIVERSITY»TECHNICAL REPT
NOof&w JUILLLET 1968 ET RAPPORT AD 672-557

JoANSCOMBE=STATISTICAL COMPUTING WITH APLs1970.

CoRsATTANASIONGoWALDBAUM ET F4ZARNFALLER=THE IMPLEMENTATION
OF APL/360 FOR OPERATING SYSTEM/350+18M RESEARCH DIVISION
YORKTOWN HEIGHTSsNoYess JUIN 1968)RC~2109,

JeNeBAIRSTOW=MR IVFRSON'S LANGUAGE AND HOW IT GREWCOMPUTER
DECISICNS»VOLe19NOel 2P 442-45,SEPTEMBRE 1969,

DoBASTINYELGIRARD ET J.CeRAULT=LA SIMULATION DES CIRCUITS
LOCIQUES A L'AIDE D'UN SYSTEME APLREVUE TECHNIQUF THOMSON—
CSF.SEPTFMBRE 1972,

G.BATTAREL.M.DELBREIL ET P«KALFON=UN INTERFRETEUR APL AVEC
GENERATICN ET REUTILISATION DE CODE MACHINE»COLLOQUE APL
9~10 SEPTEMBRL 1971+PUBLICATION [RIA Py383-402.

ReBAYER=TOWARD COMPUTER~AIDED PRODUCTION OF SOFTWARE FOR MA~-
THEMATICAL PROGRAMMING s IN MATHEMATICAL SOFTWARE1JeR.RICE)
ACADEMIC PRESS 1971+P+275-93,

WeReBEANM=AN APL IVPLEMENTATICN OF MICROWAVE CIRCUIT ANALYSIS
TECHNICAL APPLICATIONS PAPERSINEREM 19707P¢99~105, :

ReBEAUFILSP«CAZAUX ET MsLABORIE=APPLICATION D'APL A L'UNI-
VERSITE DE TOULCULECOLLOQUE APL»9~10 SEPTEMBRE 1971 sPUBLI~
CATION IRIA.

O

ERIC

Aruitoxt provided by Eic:

{

’
v

{

(

(

(

(

20)

21}

26)

31)

32)

33)

34)
9

35}

36)

THATICS $NEW=YORY INIM SCIENTIFIC CENTERIREPORT #04320-2968yMAl

JeRECYTR=EDITHAK s F INANCEPAI I MATHPAK s PLOTRPAR s STATPAR
SCIENTIFIC T'Vh-SMA. ING CORPes1569

GJARERGES ET FeWeRUST=APL/MSJ REFERENCE MARUALPDEPT OF Ef
MONTANA STATF UMIVERSITY sBOZEMANsONTANA 26 SEPTUVBRE 196U

Py CoFERRY=APL/ 1120 PRIMERsIBY CORPeclSEBsFURM NOeGC=20-
1697-0. .

FP.C.BERRY=APL/.260 PRIMERVSTUDENT TEXT, I3M CORP 1969,
FORM NO.GC 20~17C2-0.

P.C-BEQRY:AQL/B&O PRIMERs IRM CORP4sFORM NO«GH=-20-0689~1
2NDE EDITICGN JANYIER 1970,

P,CoHERRY sAcD« FALKCFF ET KoEoIVERSON=USING THE COMPUTER TO
COMPUTE A DIRECT BUT NEGLECTLD APPROACH TO TUEACHING MATHE-

1970 +F1 IFIP WORLD CONFEREACE Off COMPUTLH ECUCATIONIA“STLR=
NAMy24=28 ACUT 1970, !

P.CoBERRY yGLBARTOLT sCoDELLYACUILA FT VaeNeSPADAVECCHIA=ATL
AND INGIGHTIA STRATEGY FCR TEACHINGICCLLOQE APL9-10 SEPT-
EMBRE 1G714PURLICATICON JRIA Pe251~72.

TeAs®ICKART=FUNCTION TO ACCELERATE AND/OR 1#DUCE SEQUENCE
CONVERGENCE sAPL QUOTE=QUADSVOL29NOa1sPe8~9 AVRIL 1970

DeBIXLFR=MSU APL MICHIGAN STATE UNITVERSITY»COMPUTER LABOR-
ATORY yROTICE M0435647 FEVRIER 1672,

L«BOLLIET=FXPERI FNCES D'ENSEIGNEMENT AVEC APLCOLLOQUE APL
910 SEPTL™MBRE 1”71|PUPLICATION IRTA Pett5-60.

DeAsRONYUM=MARK=SENSE APLsAPL QUOTE=QUADsVOL+33NOe1+Pel8-1G
11 JUIN 1971

nG-‘OhRICIUS’V C CARTER Ko AeDUKE s J¢PeROTH £T PeRsSCHREIDER=
INTERACTIVE DFSIGN OF SELF-TESTING CIRCUITRY +PROCEEDINCGS OF
THE FURDUE SYMPCSIUY ON INFORMATION PROCESSINGYIAVRIL 1969

Pe73-800
£
P BRAFFORT=ER T ~APL+FUNDAYENTAL INSIGHTS FROM ADVANCES I N
NOTATIONAL SYSTEMATICSsSEAS ANNUAL MEETINGsPISE+SEPTEMBRE
fo71. g , s
U LuRRAME ET CoveRAYAMOORTHY=AN INTERACTIVE SIMULATOR GEN~ .
ERATING SYSTE¥ FOR SMALL CCMPUTERSSJCC 1971+Pe425-4494 ’
LeMeRRFED ET RoMiLATHWELL=THE IMPLEMENTATION OF APL/360 g

DANS '"VINTERACTIVE SYSTEMS FOR EXPERIMENTAL APPLIED MATHEM-
ATICS"’ACACEPIC PRESS 1668sP439C~399)AJKLERER ET JJREIN-
FELDS EDITORSSET ACM SYMPOSIUM ON EXPERIMENTAL SYSTEMS FOR
APPLIED MATHEVYATICS 1967, ..

LeMeBREED ET ReHeLATHWELL=APL/360s18M CONTRIBUTED LIBRARY
350~D=03-007+1968.

L+M.BREED=GENERALIZING APL SCALAR EXTENSIGNsAPL QUOTE-QUAD)
VOLe2 sNOs6IMARS 19719P45=7s

LeMeBRFED=DESICGN CF THE APL PLUS FILE SUB SYSTEM,COLLOQUE
APL 9—10~SEPTEMHRE 1971’PUBLICATION IRIA.

JeAs EROADSTON CHARTING SCHEDULE PERFORMANCEPROCUCTION AND
INVENTORY MAAAGENENT’ 15T GUARTER 1970sP.75~81, P
JeAJBROWN=USING THE ACKERMAN FUNCTICN TO RATE PROGRAHMfNG
LANGUAGES s APL QUOTE=QUAD sVOL»29NOe1 9P e4=5+sAVRIL 1970

O

ERIC

Aruitoxt provided by Eic:

40!

42)

43)

L4

45)

46)

47)

4R)

49)

501

52)

53)

54)

55)

56)

57)

58)

Lo AdBROWN=A GENERALIZATION OF APLoPH.Ds 'HESIS DEPARTMEAT AF
SYSTEMS AKD INFORMATION SCIENCEWSYRACUSE UNIVIRSITYWSEPT-
EMBRE 1971,

EeAdRUCHHEIT ET ReBJRODEN=APL ROUTINES FOR EVALUATING FUNCT=
TONS IN MATHEMATICAL PHYSIC v™ T OF APPLIED ANALYSIS AND

COVPUTFR SCIFNCE RESEARS: + 20231 MOVEMBRE 1970,
PeCALINGAERT=[NTRODU NG LANGUAGE 2 SCIENCE
RESEARCH ASSOCIATES, N .- LOITION:OCTOBRE 1967,
RsSsCARRERRY ET CCLLe=A . - ING LANGUAGE /1130,

IBM CONTRIRUTED LIBRARY 1110-03-3~001,1968.

VeCHAPTAL=COMPTE RENDU DU COLLCQUE APLWBULLETIN DE L'IRIAY
NOel09Pa20~2591JANVIER 1972, .

VeCHAPTAL ET AL.=S5TRUCTURFS FT SYSTEMES DE PROGRAMMATION
BULLETIN DE L'IRIAINO101P.4=9 3 JANVIER 1972,

SsCHARMONMANY S o CARAY ET F.L.LOU!F—UYNE=USE CF APL/360 IN
MUMERICAL ANALYSIS,DEPT OF COMPUTING SCIENCE»PUBLICATION
NO«11yUNIVERSITY OF ALBFRTAEDMONTONY CANADAYDECEMBRE 1967,

5+ CHARMONMAN=A COMPARISON OF THE STRUCTURES OF APL sFORTRANY
ALGOL AND PL/1yAPL QUOTE=OUADIVOLe2eNOs41Pe2=6 s JANVIER 1970,

S o CHARMOMMANSS [XTY=CHARACTER REPRESENTATION OF APL SYMBOLSH
APL QUOTE=QUAD VOLe29NGs21Pa5=1091C JUILLET 1970

S+ CHARMONMAN=A GEMERALIZATION OF APL ARRAY ORIERTED CONCEPT,
APL QUOTE=QUADIVOL 42 9NDs39P423-17+23 SEPTEMBRE 1970,

S« CHARYMONMAN=A GENMDRALIZATION CF APL ARRAY ORTENTED CONCEPT,
SIGPLAN KOTICESIYOL5+K0Cs 1191970,

SeCHARNORMARN=APL/UMC AN EXPERIMENTAL TRANSLAIOR FOR BATCH
PROCESSING OF A SUBSET OF APLYDEPARTMENT C° COMPUTER SCIENCE
UNIVERSITY OF MISSOUR[=-COLUMBIAI1971,

S+ JoCLARK=APL/360 AND 1130 VERSIONS=A COMPARISON,MC DONNELL
DOUGLAS-ASTRONAUTICSsMATHEMATICAL SCIENCES DEPARTMENT » HUN=
INGTON BEACH»CALIFORNIAY20 DECEMBRE 1969,A3-950-L240
TECHNICAL MEMO 69=15,

JoFsCLEMENT] FT P4sPJ.FLETCHER=MODIFICATIONS TO THE APL/1130
SYSTEM TO PROVIDE MORE CONVENIENT OPERATING ON A FORTRAN
USER'S MACHINE»APL QUOTE~QUADIVOL«3)NO«11Pa16=18,11 JUIN
1971 49ET VOLe39N0s2/34Pe40~42y 1 OCTOBRE 1971

[eJoCOLE=SOME APPLICATIONS GF A PROGRAMMING LANGUAGE » GODDARD
SPACE FLIGHT CENTERsGREFNBELT 4MARYLAND yN67~37397A0UT 1967

Mo CORRETAYDsCOSSMANF s PUTZOLU ET ToSeNETHEN=MINIMIZING THE
PROBLEM OF LOGIC TESTING BY THE INTERACTION OF A DESIGN
GROUP WITH USER ORIENTED FACILITIESISEVENTH DESIGN AUTO-
MATION WORKSHOP,»JUIN 19704P4100-107,

J+DsCOUGER=SCHCOLS»COLLEGES ATTEST TO APL GROWTHsCOMPUTER-
WORLDsVOL+6INCs 139P416329 MARS 1972,

CeJsCREVELING=EXPERIMENTAL USE OF A PROGRAMMING LANGUAGE
(APL) AT THE GODDARD SPACE FLIGHT CENTERIGSFC REPORT
NO#X560-68-~420) NOVEMBRE 1968 ,GREENSELT yMARYLAND

N+DAIRIKE=LAWRENCE RADIATION LABORATORY APL IMPLEMENTATION
ON CDC 6000~7600+APL GQUOTE=QUAD»VOL+3sNOslsP,10-11JUIN 1971
ET APL USERS CONFERENCE WORKSHOP 34BERKELEY,20-21 AVRIL 1971

O

ERIC

Aruitoxt provided by Eic:

601

62)

63!

64)

65)

65)

68)

69)

70}

71)

721

73)

74)

75)

76)

77)

ToP«DANIELL=TIME~SHARING APL FOR [8M/1130 SYSTEMS APL QUUTE-
QUAD »VOLe390NDa19Pe10-11411 JUIN 1971 ET APL USEKS' CON-
FERENCE WORKSHCP 34CERKELEY»20-21 AVRIL 1971,

1 JDAVIDEON=SUMMARY OF CONFERENCE ON APRIL 6TH 1971 ON THE
APPLICATION OF APL IN BELL KCRTHERN RESEARCH AND BELL
CANADA,

WeHeE«DAY=COMPILER ASSIGNMENT OF DATA ITEMS 7O REGISTERSH
IRM SYSTEVYS JOURNALNO.4 Ps281-31741970.

M,DAYTON=A FPLOTTER OF APL+APL QUOTE=~iuDyVOLA3sNOW1s1ll JUIN
19719P413 ET APL USERS CONFEREMCE #OKRKSHOP 32 HBERKELEY 20-~21
AVRIL 1371,

G DEMYARS=SYSTEVES DE FICHIERS EN APLRAPPORT INTERNE
THOMSON=CSFyCCTI N0O42567+»17 SEPTEMBRE 1971

G DEVARS+JsCoRAULT ET GW.RUGGIU=COMPTE RENDU DU CCLLOQUE APL
ORGANISE PAR L'IRIA LES 9 ET 10 SCPTEMBRE 1971,RAPPCRT
INTERNE THOMSON=CSFsLCR-DR5 NOs1607+22 SEPTEMBRE 1971,

F.DESTOMBE G=LE SYSTEME APL/360+COLLOGUE SUR LA TELEINFORMA=-
TIQUE 1969yTOME 1P ets14=421,EDITIONS CHIRON,

G.DE VAHML DAVIS ET WeN HOLMES=THF USE OF APL IN ENGINEERING
EDUCATION)CCOLLCQUE APL»3~10 SEPTEMBRE 1971»PURLICATION IRIA

Pe279=307.

WeDE VRIES=WATCH YOURI(COMPUTER)LANGUAGE»THE ACTUARY MARS
1971

G.DHATT ET LeROBICHAUDSFINITE ELEMENTSFLOW =~GRAPHS AND APL,
COLLOQUE APL9-10 SEPTEMBRE 1971sPUBLICATION IRLA P437-6%.

KoAsDUKE s Ha Do SCHNURMANN ET Tol eWILSON=SYSTEM VALIDATION 8Y
THREE-LEVEL MODELING SYNTHESIS»IBM JOURNAL OF RESEARCH AND
DEVELOPMENT VOL e 159NOW29Pe186=-T74yMARS 1971

F WMeEDWARDS ET WeR TINGA=AN APL COMPLEX ARITHMETIC PACKAGE?
TECHMICAL APPLICATIONS PAPERSyNEREM 12704P«106=112.

E MsEDWARDS=APL+A NATURAL LANGUAGE FOR ENGINEERING EDUCATION
PART 11+1EEE TRANSACTIOMS ON EDUCATIONVOLsE=149NOs4sPel79~
80 yNOVEMBRE 1971,

DeW<EMBLEY=APL GRAPHICSM:Ses THESIS#DEPARTEMELNT OF CCMPUTER
SCIENCE UNIVERSITY QF UTAHs 1971,

A DsFALKOFF=ALGORITHMS FOR PARALLEL SEARCH MEMORILS»JOURNAL
OF THE ACMICCTOBRE 1962yPe488-511.

AW'DsFALKOFF:K+Fe IVERSON ET E+44SUSSENGUTH=A FORMAL DESCRIPT=-
ION OF SYSTEM/360,1BM SYSTEMS JOURNAL»VOL3sNOs39P 41932620
1964

AeDeFALKOFFIK EJIVERSON ET EeHeSUSSUNGUTH=ERRATA FOR A
FORMAL DESCRIPTION QOF SYSTEM/360s1BM SYSTEMS JOURNAL+VOL 4y
NO+w1sP 48491965,

AsDeFALKOEF=FORMAL DESCRIPTION CF PROCESSES=THE FIRST STEP
IN DFSIGN AUTOMATIONPROCEECINGS OF THE SHARE DESIGN AUTO=-
MATION WORKSHOP,JUIN 1965

AsDeFALKOFF ET KoEe IVERSON=THE APL/360 TERMINAL SYSTEM
Ps22=3T7T)DANS INTERACTIVE SYSTEMS FOR EXPERIMENTAL APPLIED
MATHEMATICSIACADEMIC PRESS#1568sMaKLERER CT JREINFELDS
EDITORSHET ACM SYMPOSIUM ON EXPERIMENTAL SYSTEMS FOR APPLIED
MATHEMATICS 1967 ,VOIR AUSS] IBM RESEARCH CENTER YORKTOWN»
NeYe sRC~1922916 OCTOBRE 1967,

O

ERIC

Aruitoxt provided by Eic:

e

ea)

84)

87)

esg)

89!

90)

91}

92)

94)

95)

961

97)

fLeDeFALKOFF €T Ko E«IVERSCHN=TRE APL TERMINAL SYSTEYM =InSTRUC
TI3WS FOR OPEPATIONSIBM TodowATSON RESEARCH CENTERWYORKTOWN
HEIGHTS sNeYe 105981 MARS 1967+REVU EN 1968,

AJDoFALXCFF E7 K.ECIVERSON=APL/260 USER'S MANUAL v 1BM CORP 4
TeJeWATSON RELEARCH CENTER Y YORKTOWN HETGHTSyN.Ye110598
FCRM CH«20-0683,

AWDeFALKOFF ET KsE4IVERSON=APL/360 MANUEL D'UTILISATION 1668
TRADUCTION FPANCAISE PAR YeGaRAYNAUD ET GePeSTMIANVUNIVER=
SITE PAUL SABATIER+TOULCUSEL1970,

AdDoFALK S PITERTIA FOR A SYSTEM DESIGN LANGUAGE,REPORT ON
NATO SC* "WMITTEE CONFERENCE ON SOFTWARE ENGINELRING
TECHNT oy

AJCoFA. “eE«IVERSON=APL /36005 AND APL/360 DOS USER'S

MANUAL g fit FORM .GH20~0906—-0+FIRST EDITICONYDECEMBRE 1970,

A FALKOFF ET KaE«IVERSON=THE USE OF COMPUTERS IN TEACHING
MATHEMATICSy IRM PHILADELPHIA SCIENTIFIC CENTER REPORT 320~
29B61AVRIL 1970,

A+sD.FALKOFF=A SURVFY OF EXPERIMENTAL APL FILE AND 1/0 sYS~
TEMS IN IB¥y+COLLOQUE APL+9-10 SEPTE#BRE 197194, :LICATION
[IRTAYP4365~74,

P+FALSTER=APL IS A TOOL FOR THE FORMULATION OF PROBLEMS
DATABEHANDLING sNO«9+P428~3441970.

JoFLETCHER=AN 8-BIT ASCII CODE sAPL sQUOTE=QUADVOL « 34NO. 1
Pel3s1l JUIN 1971,ET APL USERS CONFERENCE %WORK.SHOP 3,
BFRKELEYs20-21 AVRIL 1971,

PsH«FORTINYDsSAMSONIPL,LAVERDIERE ET LePeAROBICHAUD=UTILISA-
TION D'APL DANS LF CADRF DU PROJET DES STATUTS DU GUEBEC, -
COLLOQUE APL+9-10 SEPTEMBRE 1970+PUBLICATION IRIA P.115-137.

GeHoFOSTER=APL A PERSPICUOUS LANGUAGE sCOMPUTERS AND AuTO-
MATIONsVCL+181NO«124P424=26923yNOVENBRE 1969,

GeHeFOSTER=USING APL TO INVESTIGATE SEQUENTIAL MACHINES
TECHNICAL APPLICATIONS PAPERSYNEREM 1970sP,121~7.4

GeHaFOSTER=APL. »A NATURAL LANGUAGE FOR ENGINEERING PT I4I1EEE
TRANSACTICNS ON EDUCATIONIVOLWE=144NO«4sPa174~179yNOVEMBRE
1971.

TeDaFRIFDYMAN ET 5.C.YANGS=METHODS USED IN AN AUTOMATIC LOGIC
DESIGN GENERATOR~(ALERT)IIEEE«TRANSs ON COMPUTERS
VOLeC—189NOe74Pa593=6144JUILLET 1959,

DeCeGAZIS=A COMPUTER “{ODEL FOR .JHE FINANCIAL ANALYSIS OF

URBAN PROJECTSIBM RESEARCH CENTERsYORKTOWN HEIGHTSsNeY e
13 AVRIL 1970+1RC-2850.

LeleGILMAN ET A.JeROSE=NOTES FOR THE VIDEOTAPE COURSEIBM
RESEARCH DIVISIONs YORKTOWN HEIGHTS tNeYa s

LeCuaGILMAN ET AJJ4ROSE=APL/2E04AN INTERACTIVE APPROACH IBM
CORP 1969 ET J«WILEY 1970,

MeGLICK ET ReSCHRADER=APL. ON THE HONEYWELL 635.APL QUOTE-
QUADVOL«39NO«19Pa11911 JUIN 1971 ET APL USERS CONFERENCE
WORKSHOP 3,BERKELEY 20-21 AVRIL 1971yAPL QUOTE«QUADIVOL 3
NO+2/34P+20-3041 OCT 1971,

PeEsGRAY ET ColLoSEARLE=ELECTRONIC PRINCIPLES+PHYSICS+MODELS
AND CIRCUITSyJWWILEY 1969,

O

ERIC

Aruitoxt provided by Eic:

 99)

t100)

(101}

t102)

1103}

{104}

{1051

(106}

(107}

(108)

(109}

{11c!

(111)

(112)

(113}

(114)

{115)

{116}

LeGRFENGERGZAPL/ 6500 AT MICHIGAN STATE UNIVERSITYsAPL QuUaTE-
QUADIVOL e 230 0e 290 20-21411 JUIN 1971,

EaGRTOIE.AJCROPLEY»B.HERR ET R PALMER=APL AND RcMOTE TL RMINAL
USAGE FOR COMPUTER ASSISTED INSTRUCTIOMIMANCHISTER UATA FAIR
1969,

HoReHAFGI=EULER A CAI=SYSTEM BASED ON APLIUNIVERSITY OF
ZURICH1971

PLELHAGGERTY=AN APL SYMBOL SET FOR MODEL 35 TELETYPESvAPL
QUOTE=GUADIVOLW2sNCa39P,6~B123 STPTEMBRE 1970,

AeHASSITTy JaWel AGESHULTE ET LeEsLYON=A MICROPROGRAMMED

[MBLEMTHTATIC AN APL MACHINEZAPL QUOTE=0iiAD»WOLL 31ROl
Pt) ‘70 ET APL USERS CONFERENCL wORKSHOP 34
g . L 1971,

AJHASSITT o Je ¥ e LAGESHULTE ET LaeEe LYON=MPLEMENTATION OF A
HIGH 1| CVEL LANGUAGE MACHINE»PREPRINTS»ACH 4TH ANNUAL WORK=
SHOP OM MICROFRCGRAMMING413-14 SEPTEMBRE 1971

AsHASSITT o JaWaLAGESHULTE ET Lo E.LYON=A MICROPROGRAMMED APL
MACHINF »COLLOOUE" APLYPURSIRIAWP.375~82+9~10 SEPT. 1971,

AHASSTTT=MICROPROGRAMMING AND MIGH LEVEL LANGUAGESsINTER=
NATIONAL IEES COMPUTER CONFERENCEIPe91~92+SEPT.1971.

AGHASSITT ET LoELLYONSEFFICIENT EVALUATION OF ARRAY
SUBSCRIPTS OF ARFAYSIAM JOURMAL OF RESEARCH AND DLVELOPMENT
VOL 16 4NCe Ly JAMVIER 19723Pe45-57,

WeS HATCHER ET P.EWROTHIER=UNE APPL ICATION DU LANGAGE APL AU
PROBLIME DF DTYCHMSTRATION DE THEOREMES PAR GRDINATEURSCOLLO-
QUE APL sPARIS 9-10 SEPTEMBRE 19712PUBL ICATION IRTAWP,443=643

R oMo HE IBERGER=APL FUNCTIONS FOR DATA ANALYSIS ANDL STATISTICS
RESEARCH REPOKT CP=5,DCPT OF STATISTICS HARVARD UNIVERSITY:
31 MARS 1971,

HeHELLFRMAN=EXPERIMEATAL PERSONALIZED ARRAY TRANSLATOR
SYSTOMsCOVMUNICATICNS OF THE ACMsVOL e 7sND71PP.433~438
JUILLET 1664,

HeHELLERMAN=DIGITAL COMPUTING SYSTEM PRINCIPLESMC GRAW
HILL 1967,

JeCeHENSGN ET WeF4MANRY=APL=AN INTROsATLANTA PUBLIC SCHOOLS
ATLANTAZGLORGIA2 NDE EDITIONSAVRIL 1871,
VCIR APL QUOTE=QUADVOL+1sMCe3 P43 1OCTORRE 1969,

JeCoHERZ ET He CoNGUYENT=APRLICATION DU LANGAGE APL A UN
PROBLEME DE RFCHERCHE OPERATIONNELLE»COLLOGUE APLPUBLWIRIA
Paltl=5649~10 SEPT,1971.

JyAvHIGGINS=PROCEEDINGS OF THE APL USERS CONFERENCE AT
SaUshNeYs s BINCHAMPTONY JUILLET 196G,

G +HORNE ET R.PIPER=A DESIGN FOR A 32~BIT COMPUTER USING APL
STUDENTS AT POMONA COLLEGECLAREMONT»CALIFORNIAWMAL 1969.

S sHUNKA=APL=A COMPUTING LANGUAGE DESIGNED FOR THE USERsTHE
BRITISH JOURNAL OF MATHEMATICAL AND STATISTICAL PSYCHOLOGY»
VOL4201PART+2+P.249-60yNOVEMBRE 1967,

5«HUNKA=USF OF APL COMPUTER TERMINALS IN THE EDMONTON PUBLIC
SCHOOLS.DIVISION OF EDUCATIONAL RESEARCH sUNIVERSITY OF
ALBERTAYEDMONTONyCANADA sl AVRIL 1970-30 JUIN 1970 ET MARS
1971,

10

O

ERIC

Aruitoxt provided by Eic:

(126!

t127).

(1281

(129}

(130

(131)

(132)

{133)

{134)

{135)

(136)

1137}

DarUTCHININN =/ NEWw UNIFoay PSEUDCRANCONY UNMBER GILNERATUR,
CTOMNMUNTCATICNG CF iwmE P IVEL e 99800 P et 32-33,J0 " 1666,
AL RLCELHL S

Kol o IVERSDN=THE DESCRIGT AN CF FINITE STiufnTiaL »
H ERKY £D,

TREORMATION THECRY y4TH | 2400 SYMDISTUMC,CH
BUTTERWEATHS 1ag],

Al
-~ N

Mal o IVERSON=A PROCIAVC G LARGUAGE s SUTC 19529P,245=201,
WAL 1562,

KeEoIVERSCN=A PROGHAMMING LANCUAGE s Je W ILEY 1462,

KeEa IVERSOU=A CoMVON LANGUART FCR HARDWAREWSOFTLARE AND
APPLICATIONG ERS N JCINT COMOUTER CONFERENCE v 4121=5 (RC
TLQIDECEM3RE 16082,

Ko ln LEPROGRAMYMING ANOTATICHN IN SYSTEMS DEST, ,y1aM
SYSTT oL JOU?WﬂL|VCL.7tNO-24F~117-128vJUlN 1663,

KeE o IVERSON=FORYALTISY 1 PROGRAMMING LANGUAGE » [i30 CORE .y
TeJewATL0 N RESEARSH CHNTERYRC 26242 JUILLET 1463,

KeEoIVIRSCN=FOPMALISY [N PROGRAMMING LANGUAGES yCOMMUNIC A=
TICHNS OF THE ACHM,VOL 7 NOo; PPVHU“BBIFEVRIER 1G04,

KoL o JVERSONZRE CENT APDLICATION OF A ULIVERSAL LANGUACEY IF P
CONGRESSINEW=YORYE y 24 WAl 1965 ET I8BM RESEARCH RC 511974 Jo
WATSON REGEARCH CENTER y YCRKTOWN HEIGHTS»yNaY. o

Kol o IVERSON=ELEMENTARY FUNCTIONS AN ALGORITHMIC TREATHENT
SCIENCE RESFARCH ASSOCTIATESCHICAGO1%66,

KeEWIVERSON=THE RCLE OF COMPUTER IN TEACHINGIQUEEN'S PAPERS
Ot PURF AMD APPLIED VATHEVATIC5|NO-13t1968tKIGH5TOH;ONTARIO
CANADA,

KeEWIVERSON=THE USE OF ApPL IN TEACHING»IBM CORPORATIGN)
FORM M0e320-0956-0+1959,

KJ«EJIVERSCHM=THE USE OF APL IN STATISTICSSTATISTICAL COMPU-
TATION-PROCELDINGS OF THE CONFERCNCE AT THE UNIVERSITY OoF
WISCONSIMIAVRIL 1965 4ACADEMIC PRESS»19699R«CoMILTON ET
JosAUNELDER EDSssPa285-2%4,

Mo IVERSON ET AWDFALKOFF =AN INTRODUCTION TO APLSNEREM 1970
Ps97-98 (49 TITRES). - -

KesE«IVERSOM=THE STORY CF APL 9 COMPUTING REPORT »VOL « 6 'NCs 2P
14~1841970,

KeEs IVERSON=EL EMENTARY ALGEBRAYIBM PHILADELPHIA SCIENTIFIC
CENTERSTECHNICAL REPORT NO«320-3001+JUIN 1971,

K+Es IVERSON=ALGEBRA AS A LANGUAGE» COLLOQUE APL»PARIS 9-10
SEPTEMBRE 19714 IRIAWP.5~15,

KeEs [VERSON=APL IN EXPOSITIONITECHNICAL REPORT NO. 320-3010»
[84 PHILADELPHIA SCIENTIFIC CENTER»1971,

ReWs JAMIESOM=ACT AN ACTUARIAL PROGRAMMING LANGUAGE +»SUN LIFE
MONTREAL’OUFBEC’CANADA’19700

MeA«JENKINS=THE SOLUTION OF LINEAR SYSTEMS OF EQUATIONS AND
L INEAR LEAST SQUARES DROBLEMS IN APLIBM PHILADELPHIA
SCIENTIFIC CENTERYTECHNICAL REPORT NO.320~-2989,JUIN 1970,

DeCeJESSUP=POWER~DELAY PRODUCT EVALUAT ION FOR COMBINAT]ONAL

LOGIC CIRCUITS,y1BM RESEARCH CENTER)YORKTOWN HEIGHTSyNaY o
20 JUIN 19694RC-2513,

11

O

ERIC

Aruitoxt provided by Eic:

(140}

(141)

(142}

(143)

{laq)

(145)

(146)

(147)

(148)

{145)

(150!

{151)

(152)

(153)

{154)

(155)

{158%)

(157)

LeRe JOHNSON=SYSTEM STRUCTURE IN DATAPROGRAMS AND COMBUTERGS:
PRENTICT rALL 1570,

AL JONES=TKE USE GF APL/360 1IN WMECHANTTAL ANALY
PROCEEDINGS OF TiE 197¢C TEEE INTERNATICHUAL [
CONFERENCE » W EW=YORK 1 JUNE 19704P4195-200.

HoKATZAN=A PROSE GLOSSARY OF APLCOMPUTERS AND AJTOMATION
Pe3%=042yA0UT 1570,

H KATZAN=APL PRCCRAMMING ALD COMPUTER TECHNTGWUE:
VAN MNOSTRAMD 1970,

HeKATZAN=AFL USER'S GUIDEsVAN NOSTRAND 1971
(VOI? CRITIQUES IEEE ON CesOCTWT1yPa1222-30

19N ARD MAKIPULATION OF DATA STRUCIURLS
F A SYMPOSIUM ON DATA STRUCTURES Io -
GES»UNIVERSITY OF FLORTIOA vGATHESVILLEY
JJeToTOU ET PowEGNDR EDSs sPUBLICATION ACM

H.KATZAN=REPRESEHTAT
IN APLPRICEEDINGS O
PROGRAM ' ING ANGUAGE
75-27 FEVRIER 1971

G KILDALL =EXPEPIMENTS [N LARGE SCALE C0“4PUTLk DIRECT ACCHLSS
STORAGE MANIPULATIONTECr. PEPT NCe63=01-19C0WPUTER SCIcNCE
GROUP yUNIVERSITY OF WASHINGTON s SEATTLE WASHINGTON

JANVIER 1969,

G oK ILDALL=APL/B 5500 THE=-LANGUAGE AND ITS TMPLEMENTATION.
TECHREPTs NO,70-09=-04¢COMPUTER SCIENCE GROUP yULIVERSTITY CF
WASHINGTONpSEATTLE,HASHINGTONvSEPTEVBRE 1970,

G KILDALL=PRELIMINARY APL/B 5600 AAMUALIUNIVERSITY OF
WASHINGTQONCOMPUTEP CENTER.SEATTLEvWASHINGTON—lG?O.

GoKILDALL sLeSMITHIS SWEDINE ET MeZDZEL=UNIVERSITY OF
WASHINGTON APL/BS5500 MANUAL « COMPUTER SCIENCE GROUP yUNIVER~
S1TY Of WASHINGTONSEATTLE TECHNICAL REPORT HG+71=1-101
JANVIER 1971

HeGoKOLSKY=PROBLENM FORMULATION USING APL,»1BM SYSTEMS
JOURNALvVOL.BvNO-3vP.204—17v1969(G-231—0018)-

KoL s KONHERTH=USE OF A TERMINAL SYSTEM FOR DATA ACQUISITIOMN,
IBM JOURNAL OF RESsAND DEV.vVOL.13vNO-1;P.l32—138;JANVlER
1969,)

K +LeKONNERTH ET MyLePHILLIPS=APL/1130 WITH GRAPHIC AND OTHER
1/0 CAPARILITIES»IBM YORKTOWN HEIGHTS,20 JUILLET 1570
RC 2564,

K eKORN=APL USERS CONFERENCE AT SUNY I DATAMATIONINOV 1969

RsJsKORSAN=A PROPOSED APL CXTENSIONIAPL QUOTE-~QUADVOL 43
NO«2/3sPv21-2391 CCTs 1971,

SE«KRUEGER ET TePeMC YURCHIE=A PROGRAMMING LANGUAGE»
SCIENCE RESEARCH ASSOCIATESCHICAGOY 1968,

SeE KRUEGER ET TuDeMC MURCHIE=APL/1500 USER'S GUIDESCIENCE
RESEARCH ASSOCIATES CHICACO1968.

G+LACOURLY ET L, LEBART=ANALYSE MULTIDIMENTIONHELLE INTERAC-
TIVE C'uN ENSEMRLE DE DONNEES»COLLOQUE APL»9-10 SEPTEMURE
1971

ReHe LATHWELL=THE IMPLEMENTATION OF APL/360sVIEW GRAPHS)
INTERMATICNAL SUMMER SCHOOL CN NEW TRENDS 1M COMPUITER
PROGRAMMIKNG»20 AOUT 1968,

RaHe LATHWELL=APL/360 CPERATIONS MANUAL »1B8M4 CORPs31968s

O

ERIC

Aruitoxt provided by Eic:

T (160)

(161)

(162)

(163}

t164)

1165)

1166}

(167)

t1¢g)

(169)

(1701

t171)

1172y

(173)

(174)

(175)

{176)

1177}

ReH LATHWELL=APL /350 SYSTEM GENERATION AND LIBRARY MAINTE-
NANCE +I8Y CORP . 1968+5G120-0683,

PaHGLATHWELL €T JeE4MEZEI=A FORMAL DESLRIPTION OF APLPUB,
IRTAWP.1P1=~215, CLLOQUE APL,9~10 SEPT,1971.

BeAslLAWS=A PARALLEL BCH DECCDERYONR TECM.REE\qCONTRACT
NgDOOL46T7=CoC4T774915 JUIN 1970,

Y+LE BORONE=APL /360 AU CENTRE D'ETUDES ET RECHERCHES D'IBM
FRANCE »COLLCQUE APLFUBWs TRIAIPL239-50+9~10 SEPT.1971,

Yol BCRGNE=APL LAKNGAGE DE PROGRAMMATION DES MANACGERS,IBM
INFCIMATIQUE 1971

YoLE BCORINE ET V.RISO=LE LANGAGE APL/360sUN QUTIL POUR
L'INGFNIEURS L' ONDE ELFCTRIQUE IVOL4519FASCel1sP+899=904)
DECEYBRE 1971

JoH LEE=ADVANCED DECISION-MAKING FOR PRIVATE REAL ESTATE AND
CCMSTRUCTION MANAGE'ENT-AN APL PROGRAMYPROCEEDIMNGS OF THE
SOUTHALCSTERN IEEC CONFERENCEPAVRIL 19709P4272-76,

Ha A LEKANSIRDEX TO COMPUTER ASSTSTED INSTRUCTION,3RD ESTTION
HARCOURT BRACE JOVANCVIC197le

weReLE PACE=APL-A NATURAL LANGUAGE FOR ENGINEERING CDUCATION
PTe3+21EEE TRANS. ON EDUCATIONIVOLE=149NOstyP,180~83)

NOV. 1971,
<«

LE PENVEN, Y RAYNAUD »GoSIMIAN=APL/CII 10070+yRAPPORT DU MARCHE
CRI 70.007yJUIN 1971,

G.LE PENVENIY«RAYNAUD G2 SIMIAN ET HeMARTIN=APL/CI] 10070,
RAPPORT DU MARCHE CRI 70+007:DECEMBRE 1971,

RVLIKNAITZKY=APL FUNCTIONS FOR USE IN JUNIOR HIGH SCHOOL
MATHEMATICGyRECPORT CAl 3-699NOVEMBRE 19694DIVISION OF EDUCA=
TIONAL RESTARCH+FACULTY OF EDUCATIONYTHE UNIVERSITY OF
ALBERTAEDMONTONSALBERTACANADA,

Y LIU=REVERSE CFERATCR IN APLsCOMPUTING CENTER NEWSsVOL ¢4
NOo& 1 Pe9~109 SYRACUSE UNIVERSITY»1 MARS 1671,

ReAsLORIE=APL AS A LANGUAGE FOR HANDLING A RELATIONAL
DATA=-RASE Y IBM CORPs »CAMBRIDGE SCIENTIFIC CENTERG320-200675
MARS 1971,

ReAGLORIE BT AWsJ SYMONDS=USE OF A RELATIONAL ACCESS METHOD
UNDER APL s 18M CAVBRIDGE SCIENTIFIC CENTERG320~2071s

MAL 1971+ET SYMPOSTUM ON CATA BASE SYSTEMS»COURAMT INSTITU=
TE OF MATHEMATICAL SCIENCESMAI 1971,

RvAWLORIE ET AeJsSYHONDS=INTERACTIVE PROBLEM SOLVING USING
A RELATICMAL DATA~ZASE IN APL»1971 INTERNATIONAL I[ECE
COMPUTER CONFeyP4191-92,

GoLOTTC=0N=-LINE ANALYSIS OF SURVEY DATAsIBM ASSDsMOHANSIC
DEPARTMENT 583,

ToLUTZ=APL~PROFILE OF A DIALOGUE LANGUAGEsCOMPUTER PRAXIS
VOL 49 RkOsbsPe66=T39AVRIL 19714

ToMAC AULEY=CAL/APL COMPUTER ASSISTED LEARNINGsA PROGRAMMING
LANGUAGE AUTHOR'S MANUAL+INFORMATION SERVICES AND COMPUTER
FACILITY»ORANGE COAST JUNIOR COLLEGE DISTRICT+COSTA MESA,
CALIFORNTAZMAT 1969,

HePsMACON=A SURVEY OF APL COMPATIBLE TERMINALS sAPL QUOTE-
QUAD 9 VOL 43380+ 2/39P412-20+1 OCT41971,

13

O

ERIC

Aruitoxt provided by Eic:

(178)

(179)

(180)

(1al)

t182)

(1e3)

(1846}

{18¢)

ties)d

(1e1)

{192.

(163:

{134

(195)

(196)

(197

198

CoYARTIN=UN LANGAGE DE MANIPULATION FORMELLE »PUS. IRIAY
Pe405-6315COLLCOUF ARL19=10 SEPTEMBRE 1971,

HeMARTIN=SIMULATION EN APL DES COMMANDES U'UN SYSTEME DE
GESTICN DE FICHILRS FOUR LE SYSTEME APLsCENTRE D' INFORMAT ~
QUE DE TCULCUSE:JUIN 1871,

P«MAURICE=DESCRIPTION DU SYSTEME .60 A L'AIDE DE LA NOTATION
D'IVERSONIDIPLOML D'INGENIEUR ENSEIHT»TOULOUSE 1968,

PoMAURICE FT PaCoSCHOLL=UN INTERPRETEUR DUt | A%c s s o POUR
LE CII 90-80BULLETIN DE L'IRIZ -".99~ ., - -

PoMAURTCEIYa RAYNAUD ST GuSIMIAN=REALISATION D'APL A LIUNT =
VERSITE DE TOULOUSE»COLLOQUE APL9=10 SEPTEMURE 1971.

GeKeMC AULIFFE=APL FAST FQURIEXR PROGRAM,IBM RESEARCH CENTER
YOKTOWN HEIGHT SefieYe s "aARS 197C+RC~2E32,

DeMCoCRACKEN=" " THER 2.2 D ATAMATICONIVOL1691NOs114P453=55,
15 SEPTEMBRE 137,

AWMC LWAN ET [wATSON=APL/360 RECURSEDPART «1 4APL QUOTE~QUAD
VOLe29sNOs29Peli~16910 JUILLET 1970,

TeDeC MURCHIF=£:-DPLAUSE FOR APL»COMPUTERS AND AUTOMATION)
VOL 194804341 Pe« s “ARS 1570 h

TeDeC MURCHIE &7 SWEWKRUEGER ET HeToLIPPERT=A PROGRAMMING
LANCUAGE/1500vATaT716~733430 NOVEBRE 1970

TeDe“C MURCH,T=A LIMITED CHARACTER APL SYMBOLISM,SIGPLAN
NOTICESs>VOLeG s Zalsl971a -

Telo®C MURCHIT 7 D4B4THOMAS=APL/1500 FILE ACCESS SUBROUTINE
PACKAGE sAD 717-52%41ER FEVRILR 1971

TeDoe™C MURCHIE E7T T4B4¢ T0OMAS=MANUZL OF APL/1500 FUNCTIONS-
SYSTEM FUNCTIONS @D2-717—737y1 FEVRIER 1971,

HeMELMS=APL FOR GIVERNMENT TECHNOLOGY PROBLEMS,IBM NACHRs»
VOL421+M0s2051P 4 6486=54«FCVRIER 1971,

HeSe MONTALBANO=Ti®I=SHARED CRITICAL PATH CALCULATIONSH
320~32199A0UT 1967,

MeMONTALBANCG=H [GH~SPEET CALCULATION OF THE CRITICAL PATHS
OF LARGE METWORKSsIBM SYSTEMS JOURNALWVOLsEINOe3+P 4163~ l9lo
196' .

Me S MONTALBANO=CONVERSA™IONAL LINEAR PROGRAMMING=A USER!'S
MANUAL FOR LPAPL,COMPUTI?S IN MAICAGEMENT EDUCATION I REPORT
NC«ls1BM PALC ALTO SCIENTIFIC CENTER»320-32729MARS 19704

P OREWY«RAYNAUD ET GeST¥IAM=UN INTERPRETEUR EN MODE CONVER=-
TIXNNEL POUR LA NOTATION D'IVERSON'APPLICATION A LA DESCRIP-
TION FORMELLE DE SYSTEMES5yGRENOBLEIOCTCBRE 1967,

ReMORE»YsGoRAYNAUD ET GuPoSIMIAM=UN LANGAGE. CONVERSATIONNEL
POUR L'AIDE A LA CONCEFTION ET A LA REALISATION DES SYSTEMES
[1iFORMATIQUESY COLLOGUE SUR LA MICROELECTRONIOUE TOULOUSEY
MRS 1969,

Re™ORE 1Yo GeRAYNAUD ET SIMIAN=UN LANGAGE DE PROGRAMMATION
CONVERSATIONNEL »COLLCOUL INTERNATIONAL SUR LA TELE=INFOR-
PATICUE P4 158y TOME [1+EDTTIONS CHIRON»196%,

R «MORE=CONTRIEL" ON A LA REALISATION D'UN INTERPRETEUR APL
CONVERSATIONNEL)" HESE UAIVERSITE DE TOULZUSE»JANVIER 1971,

14

O

ERIC

Aruitoxt provided by Eic:

(199)

(200}

tzol)

1202)

(292)

{2041

(2Cc7)

(z208)

(209)

(210}

(211)

(2121

(213)

(214}

(215)

{216}

(217)

A JMUKHOPADHYAY E£T GoSCHMITZ=MINIMIZATION OF EXCLUSIVE-QR AND
LCGICAL EQUIVALEMCE SWITCHING MHETWORKSWIEEE TRANS. ON
COMPUTERSIVCOLoC=1991N0eZsPes132~40¢FEVRIER 1970,

MeJaMYFRS £T #aYsHSTAD=AN APL ALGORITHM FOR CALCULATING
BOOLFAN DIF ERPINCESAUTOMATIC SUPPORT SYSTEMS SYMPOSIUM FUR
ADVANIED WMATHTAINARILITYr "=LOUIS MOy NOVEMBRE 1968

PeS [0=1 A § D=7y

WoksNI1EHOFE=A HYPOTHETICAL 32-81T PROCESSOR FOR SYSTEMS . | :
TRAINING=1TS APL/360 DOSCRIPTICH AND SIMULATIONY[BM SYSTEMS
DEVELOPMENT DIVISIONSIERDICOTToNSYe 22 MAL 15709TR 0141216,

JeLeCWENSSBULY 1/0 AND COMMUNICATIONS WITH LIVERMOPE TIME
SHARIMG SYSTEM . APL QUOTE=QUADVOL « 39NC el sPeT=8911 JUIN 1§71
ET APL USERS CONFERENCE WORKSHOL 3,BERKELLY 20-21 AVRIL 1971

GoLoNOGUEZ ET D,M.PECCOUD=AN ARRAY PROCESSUR DESIGN FOR
APL~LI¥E DATA STRUCTURECIFIP CONGRESS 1971 »BOOKLET ThA=4.

PeDIPAGE=AN ON~-LIRF PRCOF CHECKER OPERATIHNG UNDER APL/360-
APL QUOTE=QUAD sWCLa39NCelsPe4~5411 JUIN 1971 ET APL USER'S
CONKFIURFNCE WORKSHOP 34,2CRKELEY 20-21 AVRIL 1971+APL QUOTE-
QUAD s VL o3 9N0a /7 39F 6302491 OCT41971.

S PAKINZAPL /360 REFEREMCFE MANUAL oSCIENCE RESEARCH ASSOCIATES
PALD ALTOWCALIFORNIAY2 “DE EDITIONS19T71.

JeP OAQUET=SIMPLIFICATION DES FONCTIONS BOOLEENNES A L'AIDE
DES MATRICES A N DIMENSTONS-THESE UNIVERSITE LAVALWQUEBEC,
CANADA 1968,

DeMePECCOUS ET Gal « NOGUREZ=AN ARRAY PROCESSOR DESIGN FOR APL
LIKE DATA STRUCTURESIFIP CONGRESS 1971 ¢NORTH HOLLAND.,

PePENFIELD=MARTHA USER'S MANUALELECTRODYNAMICS MEMO NOe6
21 SEPTe 1970sMIT RESEARCH LABORATORY OF ELECTRONICS.

P.PENFILCLD=ACDFNDUM TO MARTHA USER'S MANUAL »ELECTRODYNAMICS
MEMO NDal2+¢13 KRCVe19704sMIT RESEARCH LABORATORY OF
ELECTRONICSe

P OENFIEL.D=GENERAL PURPOSE ELECTRIC-C&RCUIT ANALYZER IMBED-
DED IN APL.ELECTRODYNAMICS MEMO NO«15sRESEARCH LAB.OF ELEC~
TRONICS MITy26 FEVRIER 1971, ‘

P+PENFIELD=A SET OF APl PROGRAMS FOR USE IN NETWORK THEORY;
APL QUOTE=-QUAD sVOL «39NDelsPo6ys1l JUIN 1971 ET APL USER'S
CONFERINCE WORXSHOP 3+BERKELEY»20-21 AVRIL 1971,

o

PnPENFIELD;GEN[RAL PURPOSE NETWORK ANALYSIS‘US&NG'WPRINwaww«w'.

OPERATORS JEFE CONFERENCE ON ELECTRICAL NETWORK THEORY» 1971y
Pellb=~117s

PePENFIELD=MARTHA USER'S MANUAL;fHE MIT PRESS 1971,
P.PENFIELD=DESCRIPTICON OF ELECTRICAL NETWORKS USING WIRING
OPERATORS»PROCEEDINGS OF THE IEEEsVOL ¢60sNOslsPe49-53
JANVIER 1972

AWPERLIS=APL AS A CONVENTIONAL LANGUAGE=-WHAT 1S MISSING APL
QUOTE~QUAD,VOL «39NO«14Pe2=64,11 JUIN 1971 ET APL -USERS

CONFERENCE WORKSHCP 3sBERKELEY 20-21 AVRIL 1971,

AeJePERLISIReD«FENNELLsFoJePOLLEACK sWeRePRICE ET MsFeRIZZ0=

CONVERSATIONAL PRUGRAMMING~APLsAN IMPLEMENTATION IN BLISS»
ADWT29-9419JUIN 1971

JePLOTKE=MINIPERTyA TERMINAL CONTROLLED CRITICAL PATH
TECHIITQUEy I3t SMD9DEPARTMENT B47:DIVISIOMN 32 ¢HARRISON.

O

ERIC

Aruitoxt provided by Eic:

{218)

{219)

(220)

(221)

(222)

(225}

{324)

(227)

(228)

(229}

(237)

(238)

(239)

{240)

SO ;S ERTOUZOS T CLEE ET K "™ '"TH= ON IMPURTANT
LUMRE i JES CONCERNING COMPUTExS IN ELECTRICAL ENGINEER-

.EDUCAT IONy» IZEE TRANSACTIONS ON EDUCATIONIVOL +E=149NQe 4>

Pel69~-14) NOVEMURE 1971,
WsPRAGER=AN INTRODUCTICN TO APLALLYN AND BACON INC.11970.

TeHPUCKETT=NCTES ON THE INSTALLATION OF APL/OS»NEW MEXICO
STATE UNIVERSITYLAS CRUCESINEW MEXICOREPORT(505) 64&~3439

S-M-RAUCHER=1NTRODUCT10N TO APL=VIDEOTAPES»1BM CORP«11968,

SeMJRAUCHER=APL AND 1TS USE IN THE CLASSROOMsJOURNAL OF THE
ASSOCIATION FOR EDUCATION DATA SYSTEMS ,DECEMSRE 19684

JeCoRAULT=5YSTEMES APLyRAPPORT INTERNE THOMSON=CSF sLCR=DR5)
NO«154B84yMARS 1971,

Y.RAYNAUD=APL=SON IMPLANTATIONSSON UTILISATION POUR L'AIDE
A LA CONCEPTION DES SYSTFMES DE TRAITEMENT DE L'INFORMATION,
BULLETIN DE L'IRIAISMARS 19711P+6=98,

ReJeDsREEVES=APLsA POTENTIAL LIABILITY DATAMATION,
15 SEPTEMBRE 1971+P471-72.

HeAWRETCH=AN EXPERIMENTAL SYSTEM FOR T IME-~SHARED3sON~LINE
DATA ACQUISITIONYIBM JL OF RESs AND DEVesVOL«139NOelr1Pellt~
118191969

~BeRCBINET=SUR UN LANGAGE CONVFRSAT!ONNEL PROGRES ET SCIENCE.

NOs64319704

- 3

B«ROBINET=LE LANGAGE APLOU L'ART DE PROGRAMMER EN LIBERTE»
01=-INFORMATIQUF+P,45~50¢11 DECEMBRE 1970,

BeROBINETyBJARLETTAZ 1 JoCWGIRARD ET JoMICHEL=LE LANGAGE
D'IVERSONIRAPPORT DGRST NO«69.01=5861PARISIJUIN 19714

BeROBINET=SEMANTIQUE- D *APL »COLLOQUE APLYPUBAIRIASP4217-232)
9=10 SEPTe1971¢

BeROBINET»JsCe GIRARD ET BLARLETTAZ=UN COMPILATEUR INCRE=~
MENTIEL D'APLvCOLlOOUE APLsPUBWIRIAIP«315-337,9~10 SEPT.1971

B«ROBINET=LE LANGAGE APL-EDITIONS TECHNIP 1971,

B«ROBINET=SEMANTIQUE ‘DES TABLEAUX—APPLIEATION AU LANGAGE
APLTHESE DE 3EME CYCLEWUNIVERSITE DE PARXS V128 FEVRIER
1972,

WeMsRODGERS=PART 4 =~A PRELIMINARY SURVEY OF GRAPHICAL
DISPLAY SYSTEMSsAD=716=5939JUIN 1970,

A+JeROSE=VIDEQOTAPED APL COURSEsIBM CORP4.11967,

A J ‘205c TEACHING THE APL/350 TERMINAL SYSTE!s18M fORanRC

2184528 ACUT 195819ToJeWATSON RESEARCH CENTER s YOR KIOWN
HEIGHTS NeYeoo

AsJaROSE=APL FOR USERS OF BASIC,SCIENTIFIC TIMESHARING
CORP.;WA‘H!NGTON;D-C..

ﬁ.?OSENKRANDSWAP' EXERCISES-!EM DENMARK »

i
B QOSENKRANDS ‘GRAPHICS BY APLLPUB.IRIA'P 91-113»COLLOQUE APL
9=10 SEPTEMBRE®1971. iy e
JeP4ROTH=DIAGNCSIS OF AUTOMATA FAILURESyA CALCULUS AND A
METHOD» IBM JOURNAL OF RESEARCH AND DEVELCPMENT +VOL 410>
Pa278=914JUILLET 19664

16

O

ERIC

Aruitoxt provided by Eic:

{241)

(262)

(243)

{244)

{245)

(246)

(247)

{248),

(249)

(2501

(251}

(252)

(253)

(254)

(255)

(256)

(257)

(258)

{4259)

JrPsROTHIWWGeRCURICIUS ET P,ReSCHNEIDCR=PROGRAMMED .
ALGORITHMS TO COMPUTE TESTS TO DETECT AND DISTINGUISH .
BETWEEN FAILURES [N LOGIC CIRCUITSs»IZEE TRANSACTIONS ON EC»
VOLIEC~16+N0Os51Ps567~80:0CT4 1967,

DeRUDSERGs D¢ BRUNSVCOLD ET MeHITCH=APL/MSU=-BTMIUSER'S MANUAL »
A SUPPLEMENT TO THE APL/360+REFERENCE MANUAL #DOR APL/360
PRIMER »AUTOMNE 1970,

D RUDBFRG=APLA NATURAL LANGUAGE FOR ENGINEERING EDUCATION
PT IVyICEE TRANS. ON EDUCATIORIVOLE=14sNOs&4sPe183~85;
NOV. 1971

DsRUETER=ARRAY FOR APL-DATAMATION 15 NOVal971+Pel7.

G +RUGGIU=SEMANTIQUE DES LANGAGES DE. PROGRAMMATION ET INTER=
PRETATION GLOBALE DES EXPRESSIONS»CeRs ACADs 5CasPARISH
TOME 273-SERIE AyP41271-12764+20 DECEMBRE 1971 +ET TOME 274
SERIE A024100-103+3 JAMVIER 1972,

G «RUGGIU=DESCRIPTION SEMANTIQUE DES FONCTIONS PRIMITIVES
C'APLsREVUE TCCHNIQUE THOMSON-CSF#MARS 1972,

JeRYAN=APL/700 AN APL IMPLEMENTATION FOR THE BURROUGHS
6700 AND 7700-APL QUOTE-GUADVOL434NOs19Pel2s11 JUIN 1971
ET APL USERS CONFERENCE wWORKSHOP 3+BERKELEY 20-21 AVRIL 1971

Je«RYAN=GENERALIZED LISTS AND OTHER EXTENSIONSsARL QUOTE~QUAD
VOL+3sNOo1eRP4a8~10 JUIN 1971,

J.SAMMET=&ROGRAMMING LANGUAGES +HISTORY AND FUNDAMENTALS
PRENTICZ HALL11969+P42647-53,

DaSANT=THE M RX 1240 COMMUNICATION TERMINAL AND 1270 TRANS=
MISSION CONTROL UNITsAPL QUOTE~QUADsSVOLe39NOs19P413911 JUIN
1971 ET APL USERS CONFEREMCE WORKSHOP 33BERKELEYS:

2021 AVRIL 1971.°

ReQsSCHMIDT=A COLLECTION OF WALSH ANALYSIS PROGRAMSIEEE
TRANSACTIONS CN ELECTRCMAGNETIC COMPATIBILITY ¢VOLEMC=13y
NOe31P488=941A0UT 1971,

PeSCHOLL=PROBLEMES RELATIFS A L'ANALYSE.SYNTAXIQUE DE LA
NOTATION D'IVERSONDIPLCIME D'*INGENIEUR ENSEINT»TOULOUSE1968

P«+SCHOLL ET Ye«RAYNAUD=FROBLEMES RELATIFS A L*ANALYSE SYNTA~-
XIQUE DE LA NOTATION D'IVERSONsCENTRE D!INFORMATIQUE DE
TOULOUSESANNEE 1967<68.

GeP+SCHREIBER ET RePCLIVKA=EXPERIENCES AND OBSERVATIONS
WITH A SELF=TEACHING CCURSE IN APL+COLLOQUE APLSs
9=~10 SEPTEMBRE 16719PUBeIRIAIP«77=90s4

C+SEABERG=COMPUTER ASSISTED FORECASTING=HOW BUSINESS IS
USING APL~CANADIAN DATASYSTEMS sVOLe3sNOW19Pe 3031,
JANVIER 1971

C.SEABERG=APL IN FINANCIAL FORECASTING IS BASE FOR EVENTUAL
MISsCANADIAN DATASYSTEMS9VOLe39INOe20Po50=53+FEVRIER 1971,

CeLoSEARLE=TEACHING OF TRANSISTOR CIRCUIT DESIGN USING A
DIGITAL COMPUTERsIEEE TRANSACTIiONS ON EDUCATIONsVOLWE12+NO.3
Pe216—22»SEPTEMBRE 1969

CeL«SEARLE=APL sA NATURAL LANGUAGE FOR ENGINEERING EDUCATION
PT 1V IEEE TRANSs ON EDUCATIONIVOLE=14sNOe4sPel859N0OVe1971s

CoeLoSEARLE=TRANSISTOR AMPLIFIER DESIGN-A STUDY IN WHEN NOT
TO USE THE COMPUTERsIEEE TRANSACTIONS ON EDUCATIONs1972.

17

O

ERIC

Aruitoxt provided by Eic:

{260)
{2611
(262)

(263)

(264)

(265)

(266)

(267)

(268)

(269)

(270}
(271}
(272)

(273)

(274)

(275)

{276}

(277}

(278)

(279)

'E.SHARCV=AN APL/360 INCOME TAX PROGRAM»THE DESCRIPTION OF
DATA PROCESSING CROCEDURESHIBM CORP. Al 1968+320-3242.

+« SHARP=A BRIEF HISTORY CF APL-CANADIAN DATASYSTEMSsPt4~
EJ T49FEVRIER 1970

[+PasSHA 'fHIURQ\QgTﬂPL TO BENEFIT FROM A NEW FILE
SYSTEMsCANADIAN DATASYSTEMS 1 Pata=-459854MARS 1970,

L] *) ,&'
KeWe SMILLIE=SCME APL PROGPAMS FOR STATISTICAL CALCULATIONS
DEPTs OF COMPUTING SCIENCESUNLVERSITY OF ALBERTA»EDMUNTONS
CANADASPUBLICATION NCoeH»1967 .

KeWeSMILLIE=STATPACK '19AN APL STATISTICAL PACKAGE +PUBsNQ.9 s
DEPTs OF COMPUTING SCIENCEUNIVERSITY OF ALBERTAEDMONTONS
CANADAY JANVIER 1968,

KeWeSHMILLIE=AMN APL ALGORITHM FOR THE CRITICAL PATHSQUATERLY
BULLETIN OF THE COMPUTER SCCIETY OF CANADAIVOL8INO 2y
Peb6=13yPRINTENPS 1968,

Kella BMILLIS=STATPACK 2ZsAN APL STATISTICAL PACKAGEDEPT OF
COMPUTING SCINHCE QUNIVERSITY CF ALBERTAWPUR S LTHFEVRIER 1909
EDMCNTCNWALCERTAYCANATA, v

KeWeSHMILLIZ=50E APL ALGO JRITHMS FOR ORTHIGOWAL FACTORIAL
FY”EéﬂM%N yDEPT. OF JONPUTIRNG SCIENICLPUSLICATION NOs18y
UNIVERSITY OF A'BERTAZEDIUIRTONIALBERTASCARALAZJUIN 196G,

KeW e SMILLIE=THE APL LANCUAGE AND STATISTICAL COMPUTATIONS,
COMPUTER BULLETINIVOLe1I39MNDa8iP3Y96~8979ADUT 13569,

KeWeSMILLIE=AN INTRODUCTION TO APL/360 %wWITH SOME STATISTICAL
APPLICATIONSsDERT OF COMPUTING STIEHMCE yPUBLITATICON HOW19y
UNMIVERSITY CF ALBCRTASEDMCNTONsALBZRTAZCANADAWJANVIER 1970,

KeWeSMILLIE= ='STATISTICAL PROCRAMS IN APL/360sCOMPUTER BULLE~
TIN;VOL-lh NO.59P 1)1 152, MA1 1970.{

k.h.SNILLIF APL/360 WITH oTATISTICAL EXANPLFS(NON PUELIE)
1971,

KeWeSMILLIE=APL AND STATISTICS»PROGRAMS OR IHSIGHT »CCOLLOQUE
APLIPUBLICATICN IRIASP17=-359PARIS»9~10 SEPT.+1971.

VeNeSPADAVECCHTAsPCoBERRY LT G BARTOLI=AN ABRSTRACT MACHINE
FOR THE INTRCDUCTION TG COMPUTER SCIFNCESCCLLOQUE APLs9~10
SEPTe 1971»PUBLICATION IRIAYP.273-78.

(VOIR FERRY RAPPCPT PUBLIEZFEVRIER 197F),

ToeAeSTANDI SH=AN ESSAY OM APLDEPARTMENT OF COVPUTER SCIENCE
CARNEGIE~MELLON UNIVERSITYSPITTS RURuH yMARS 1969,

GePsSTICKELER=REAL=YCRLD APLDATAMATION,1 DEC. 1971,P4194

ReKe STOCKWELL ET KoEoVAN BEE=USE OF APL TO IMPLEMENT ALGO~

'RITHMS FOR'SPARSE LINEAR SYSTEMS+NEREM 1970»P4113-119.

EsAsSTOHR=SIMULATION OF SOME APL OPERATORSIREPORT LR-161
FEVRIER 1971sCENTER FOR RESEARCH I MANAGEMENT SCIENCE,
UNIVERSITY GCF CALIFORNIAYBERKELEY2CALIFORNIA

OeSTUTZ=APL/36C A TIME=~SHARING SERVICE WITH A MODERN PROBLEM

LANGUAGE «APL/360 A FORV. OF SUBSCRIBER OPERATION WITH A

MOQERN PRORLEM LAMGUAGF»IBY. NACHRICHTEN)
OsNCe1991Pa79-83sFFVRIER 1973

VOL;ZO NO 200 sPe164~-99AVRIL 1970,

Yo SUNDBLAD THE ACKERMAN FUNCTION-A THhORETICAL CCMPUTA~
TIONAL -AND FORMULA MANIPULATIVE. STUDY »BIT»VCL4113R041+1971

18

1

O

ERIC

Aruitoxt provided by Eic:

(280!}
(281}

(282)
(283)
(284}

(285)

(286)

(287
(288!

(289)

(290}
{291)
(292}

(293)
(294}
{295)

(256}

(297)
(298)
(2%9)

(300}

AeJe SURKAN=SYMICL IC PCLYHOMIAL JPERATIONS WITH APL S IEM
JOURNAL OF RESEARCH AND DEVELOPWENT s VOL e 12980429P#209=211
MARS 1969,

AsJdeSURKAN=DISCRFETE FAST FCURIER TRANSFORMATION MADE SIvPLE
BY A SINGLE RELIABLE APL FUNCTICNsI3M RESTARCH CENTERY
YORKTOWN HEJGHTSsN(Ysr22 ACUT 196G 1RC~2531,

Y s TALLINEAU=CUFLGUES REFLEXIONS SUR LE COLLOGUE APL A
L'IRIAINFORMATIGUF ET GESTICNINOVe714Pe80 N

Yo TALLINEAU=L'APL UN LANGAGE ADAPTE A LA GESTICN,

INFORMATIQUE ET GESTIONINC.25sP+79=82+FEVRIER 1971,

A+TAYLOR=APLsA CCMPLEX CR SIMPLE LANGUAGE ¢ COMPUTERWORLD »
1 AVRIL 1970.

W.G.fHISTLE AND D+S.GALBRAITH=CIFFERENCES 2ETWEEN DREV APL
AND IBM APL/3609REPORT NREV “,2118/71yDEFENSE RESCEARCH
ESTABLISHMENT s VALCARTIERIQUEBEC+CANADA,

ReDs THORMTON=COMPUTER-FLAVCRED CIRCUIT THEORY s T1ECE TRANS-
ACTIONS ON EDUCATICNoVOL-E"IZoNO.BvD-219-222oSEPTE%BRE 1969,
A

K ode THURBER ET JeW.MYRNA=SYSTEM DESIGN OF A CELLULAR APL “
COMPUTER [EEE TRANSACTIONS ON COMPUTERSIVCLC=19sN0QetsP 291~
3034AVRIL 1970 :

B+ TUCKERMAN=A STUDY OF THE VIGENERE~VERNAM SINGLE AND
MULTIPLF LDOP ENGINEERING SYSTEMS,IBM RESEARCH REPORT
{RC 2879)MA1 1970,

H o VAN HEDEL=KN APL BATCH PROCESSORsCOLLOQUE APL sPUBJIRIA,
Pe339-64+9-10 SEPT.1971.

UeMeVON MAYDELL=AN INTRCDUCTICN TO PROBABILITY USING APL»
DEPT.OF COYPUTING SCIENCEsPUBLICATICH NO.212UNIVERSITY CF
ALBERTAsEDMONTONALBERTAICANADAJUIN 1970,

PoeNsWAHI=AINMS=APPLIED INFORNAT ION AND MANAGEMENT S IMULATIONS
A GENLCRAL BUSIMESS SIMULATICN IN APLs1BM CCRP « 1+ CAMDXIDGE
SCIENTIFIC CENTECRsG320-20669AVRIL 1971

JoVWILLIAMS=CONDITIONAL BRANCH APL COMPILERsAPL QUOTE=QUAD
VOL e3sNCe19Pa5=6911 JUIN 1971 ET APL USERS CONFERENCE
WORKSHOP 3+BERKELEY»20-21 AVRIL 1971,

\ .]
L.JcWOCDRUM=INTERNAL SORTING WITH MINIMAL COMPARING,IBN
SYSTEMS JOURNALoVOL.SnNOoB,P-189-20391969.

L.J-WOODhUM=A MODEL CF FLOATING BUFFERINQ.IBM SYSTEMS JOUR-
NAL’VOL09!N002’P1118_1b4’19700 b . .

ReZAKS DeSTEINGART ET JoMOORE=A FIRMWARE APL TIMESHARING
SYSTEMsSJCC 19719Ps179=90.

ReZAKS ET DeSTEINGART=A LANGUAGE MACHINE 1APL QUOTE=QUAD »
VOL3sMCelsPe& ET APL USERS CONFERERNCE WORKSHORP 3 9BLRKELLY,
20~21 AVRILsAPL QUOTE-CUAD sVCL+3sN0e2/31Pe34=3211 0CTe71e

ReZAKS=MICRCPROGRANMMED APL INTERNATIONAL IEEC COMPUTER
CONFERENCEsP4192=-4+5EPT. 19714

MeZOZEL=UNIVERSETY OF WASHINGTON IMPLEMENTATION;APL QUOTE-
QUAD sVCL a2 1hCa% 9P s 6=T4NCVEMBRE 19704

JeAJHIGGINS=PROCEEDINGS CF THE APL USERS CONFERENCE AT SUNY
BINGHAMPTONs JUILLET 1969,

APL USERS CCNFERENCE WORKSHOP 3,8ERKELEY»20-21 AVRIL 1971,
VOIR APL QUOTE=-GUADIVCLW33NCs19Ps3-13411 JUIN 1971,

19

O

ERIC

Aruitoxt provided by Eic:

{201)

{302)

(303)

(304)

(305)
(306)

{307)

(308)

(309

{310}

©{311)

(312}

(313)

(314)

(315)

t316)

(317)

(318)-

{319)
(320}

(321)

ANONYMOUS

KIDNEY MATCHED 8Y COMPUTERINEWS BRIEFSIOATAMATION
AVRIL 19704P.215=16,

STORY OF APL=AN INTERVILW WITH DR K«IVERSON)»COMPUTERWORLD»
1 AVRIL 1970.

CREATING PLAIN TALX FOR COMPUTERSsA PASSION FOR PRECISION
LEADS KEN IVERSO\ TO AN EASY=TG-USE LANGUAGE »IBM MAGAZINE,
VOLe2+MNCe319P,11~12516 FEVRIER 1970.

COMPUTING MEWSLETTERS FCR INSTRUCTORS OF DATA PROCESSING s
MARS 197} ET 1972.

COMPUTERWORLD=EDITCORIAL16 AVRIL 1959,
LE CULTE DE L'APL=INFORMATIQUE FT GESTIONsOCT. 1971sPell~-12.

UN TERMINAL SPECIAL APL INFORMATIQUE ET GESTIONVOCTOBRE 1971
Pe249 {TERMINAL OLIVETTI TE.238.APL}e

PERICDICALS

APL NEWSLETTERSsIsP4sSHARP ASSOCIATES s MONTHLY PUBLICATICN IN
CANADIAN DATASYSTEMS,

APL NEWSLETTER=W,JURAN EDITORsPROPRIETARY COMPUTER SYSTEMG
1662 SOUTH SATICOY STREET»VAN NUYSCALIFORNIAY91406.

APL QUOTE=-QUAD

EDITORS=Ae TeMCoEWAN ET DeWsA.WATSON

LAKEHEAD UNIVERSITY »THUNDER BAYsOMTARIO
DITRIBUTOR=CsH+FOSTERsSYRACUSE UNIVERSITYSYRACUSE y
NEV=-YORK»USA,

SEAS APL WORKING COVMITTEE=

SECRETARY=NIELS GELLERTNEUCCsTECHNICAL UNIVERSITY OF
DENMARK 12800 LYNGBY s DENMARKS

CHAIRMAN=P «ScABRAMS yCEGOS~INFORMATICUEYSERVICE APL»
14 RUE ANATOLE FRANCEs92 PUTEAUXsFRANCE,

IBM BROCHURES

APL/360 0S AND APL/360 nos GENERAL INFORMATION MANUAL s
DECEMBRE 1970+GH20=0850.

APL/360 0S AKND APL/360 DOS USER!'S MANUAL’DECEMBRE 1670
SH20=0906

APL/360 0S AND APL/360 DOS SYSTEM MANUALFIRST EDITIONS
JUIN 19714LY20=0678,

APL/360 DOS OPERATIOMS MANUALSEPTEMBRE 19691H20~06854

APL/360 DOS SYSTEM GENERATICN MANUAL»»SEPTEMBRE 1969,
H20-0686.

APL/360 DOS OPERATIONS AND INSTALLATION MANUALDECEMBRE 1970
SH20-~0938, :)

APL/360 OS OPERATIONS AND INSTALLATION MANUAL sDECEMBRE 1970,
SH20-0890,

APL/360.TYbE 1Tl PROGRAM DOCUMENTATIONREPORT 360D.0343.007.
APL/360 PRIMER sSECCNDE EDITIéN’JANVIER 1970+GH20~0689.

APL/360 USER'S MANUAL sMARS 1970+GH20~0683.

20

W

O

ERIC

Aruitoxt provided by Eic:

(322)

(323)

{324)
(325)
{326)

{327)

(328)

(329)

(330)
(331)

(332)

(333)

(334)

(335)

(336}
(337)

{338)

(339)

(340)

APL/360 BENUTZERHANDIUCHGH12-1C30,

APL AUDIO EDUCATION PACKAGE+2 VOLUYES»1971.
SR20-938245R=20-938345R20-9384,

APL REFERENCE DATA CARD,S$210-0007.
APL KEYBCARD TABS1Gx20-17813.
INTRODUCTICN TO MINIPERTWTHIFD EDITICN ™Al 1971+CH20-0852,

APL CAI GUIDE AND PROBLEM BCOK 10 SDD LARBORATORY EDUCATICON
DEPARTMENTsENDICOTT oMY o s SEPTEMARE 1970,

APL/1130 KEYDOARD TABSGX20~17846,

APL/1130 PRIMERSSTUDENT TEXTHPSECOND CDITION MARS 1969,
GGC20-1697. -

APL/1130 CONTRIBUTED PROGRAM LI3RARY »REPORT 1130-03.3.001.
I3M MIMNIPERTDATAYATICONY 1 MARS 19719P 50,

KECe (KOMMUNERMNES EDR-CFNTRALICCPENHAGEN)

MACS5 USER'S PRCGRAN DESCRIPTION.

KEC~PERT

INDUSTRIAL COMPUTER SYSTEMS=MINI=MANUAL A CONDENSED INTRO-
DUCTION TO APL 254 WFEST 31 STREET#NeY. i001.

PROPRIETARY COVPUTER SYSTEVSINC,=PCS/APL PUSLIC LI1BRARY
GUIDEWFEVRIER 1971,

FMS CONCEPTS1970,

STSC=APL/360 PACKAGE GFEARED TO SHARED LARGE ["ILESsCOMPUTER-
WORLD 17 JUIN 1970+P 4244

MISPAK-MANAGEMENT INFORMATION SYSTEMIAPL PLUS.
SUN LIFE MONTREAL,ACTUARIAL PACKAGE,

THE COMPUTER COMPARYsRICHMCNDWVIRGINIA=FMS—~FILE MANAGEMENT
SYSTEMS41970.

UNIVERSITY OF MARYLAND=APL/1100.

XDS=APL/UTSsDATAMATION s NOVEMBRE 1971,

21

E

AN APL APPROACH TO INTERACTIVE DISPLAY TERNINAL GRAPHICS

W. H. Nie"off and A. L. Jones
IBM Corporation
Systeas Development Division
P. 0. Box b
Endicott, Newv York 13760

ABSTRACT

Large, generalized graphics packages, as well as specialized graphic application packages,
have not been especially successful in their penetration into the daily computing habits of
computer users. We believe that this has been because of the relatively poor availability of
display terminal equipment and limited useability of the programming support. An object lesson
is provided by the acceptance of the APL language and its System/360 implementation. Its
penetration into the working habits of users has been dramatic.

APL/360 GRAPHPAK* is an integrated collection of functions, implemented entirely within
APL, that couples the facilities of APL/360 with economical, commercially available hardware to
implement a highly interactive, easy to use graphic display facility. It attempts to employ the
same attributes of APL that pake APL attractive to yield a similarly pervasive systenm.

This paper will discuss the design philosophy behind GRAPHPAK, its basic functions, its
application-oriented tunctions, and applications which have sprung from these basic facilities.
It will attempt to show why this facility has demonstrated that useable, kighly interactive, and
economical computer graphics is very definitely possible in today's technical environment.

13
Introduction

APL/360 GRAPHPAK is an integrated collection of APL functions that was originally
informally assembled to satisfy a need - the presentation of graphic information at the terminal
ot an APL/360 user. Duriny 1969, the authors had searched for a means of presenting graphic data
that was superior to the frequently-used APL typewriter plot packages. That search was success-
fully concluded with the discovery of commerically available plotter-controllers. A plotter-
controller is inserted between the IBM 2741-Data Set jinterface where it monitors all serial data
transmitted from a computer to the terminal. The plotiec-controller's character translation ang
control conventions must be compatible with those of the TSP-12%% (vith erase feature). Ng
wolifications to equipment 1ire necessary, and the terminal may continue to be used Ln the
conventional manner. COn receipt of a4 particular contrs)l character sequence, the plotter
csutroller 1inhibits further transmissions to the terminal, and it buffers and digital-to-analog
converts subsequent characters into analog deflection signals tor a display device. Output
devices wused include storag: tube displays and standard X-Y plotters (such as Tektronix Model
611 Storaye Tube Display or a Hewlett-Packard Model 70058 X-Y plotter. GRAPHPAK provides the
prograaminy support reqguired ty operate this eguipment.

GRAPHPAK meets the objectives of a philosophy that strives to get computer graphics
capability directly into the hands of the user. It meets at least four requirements of such a
philosophy.

1. Economy - At current prices, the additional equipment required can be purchased for

approximately $5000. This includes a plotter~controller, a storage tube display
device, and a camera for hard copy.

24 Availability - Th2 equipment is directly in the hands ot the user - a part of the
terminal he is usinJ more and more in his daily working habits. :

3. Useability - GRAPHPAK takes advantage of APL's conciseness and preciseness of

notation. Graphic commands are a~rdasonable marriage of natural language and function
notation. The result is that GRAPHPAK is easy to learn and easy to use.

4. Interactiveness - GRAPHPAK is highly interactive, oprimarily because of its
availability and uszability. Interestingly, the interactiveness is achieved in spite,
of relatively low [erformance, primacrily because the manner in which pictures are
developed maintains the interest of the user. The system is also highly interactive
in that the wuser can interrupt a picture at any time while it is being drawn if he
does not like what ne is seeing.

Since its initial demonstration in early 1970, the facilities of GRAPHPAK have grown to
emcompass a number of application areas. The author's attribute its growth to two factors:

Q
MC Jﬂ// 23

1. APL, the language through which a wuser works with GBAPHPAK, makes 1t easy to
implemsent nev applications.

2 The ease of use of GRAPHPAK encourages, rather than frightens, APL users to add the
graphics dimension to their work. .

GRAPHPAK Facilities

GRAPHPAK consists of facilities of two types - basic graphics support and applications
support. '

The basic support provides several simple, but non-trivial facilities,

1. Lt provides the ability to drawv defined :bsolute vectors in a 0-to-511 x-y coordinate
systen.

2a - It enables generation of stroked characszwrs of varying size and arientation.

3. It allows the user to azutomatically erase the screen of a storagye tube display.

An example of a display generated using the basic "DRAW" facility is the timing diagram
illustratedi below. .

Character-writing, illustrated below, is generally to be avoided, since it is exceedingly
slov.. (Draving proceeds at a speed~of about” four line segments per second.)

“ABCDEFGHTJKLM
'NOPGRSTUV

Applications support is built on the basic functions, and it includes functions for curve-
plotting, curve-fitting, and dascriptive geometry. Examples of each are illustrated on the
following pages.

Curve-Plotting

Q

ERIC 24

Aruitoxt provided by Eic:

A aulti~function plot:

Barchart:

descriptive Geometry

Icosahedon-based geodesic domes:

R
0SA' DOME " CAP
N - 3/11771)

ERIC

25
P e

el i

o _THREtz}duARTER}fc SA° DOME

i arava oK
'VAVAVAVAYA ! IS

' VAVAWAVA |

. “ﬁve'e'!

Actual Applications

1 GRAPHPAK package, individuals have built on the

Following the demonstrpawzion of tue origina
Exauples are 1llustrated below.

capabilities and have i ppllemented thexr own applications.

A graduate student hzs implemented a hidden surtace removal algorithm in APL:

BRI R R R e R R R P R I R NS AP 31

ERIC

26

An elmzctrical engineer has used GRAPHPAK

to confirm pr per reconstruction of Pourier-—
analyzed signals.

ERIC

27

used the plotting facilities in studies of kinotorams and optical

have

specialists

Optics

rilters

Q

IC

EE

28

Aruitoxt provided by Eic:

An engineering wmechanics specialist has used the sketching facilities to conform a finite
element amodel:

29

EETY ¢

The authors feel that th2 APL syntax is ideal for a conversational gygraphics language. This

1= lue to the manner in which several APL functions may be called with one line of typinj in the

dt4:k calculator mode. For =zrxample, if a user has an object represented as a set ot data, say

57, he can draw a rotated, scaled, and translated perspective version of 1t on the screen
w25 the c.omand:

SKET " T .6 .6 0 TRANSLATE 2 PERSPECTIVE 20 30 4O ROTATE SCALE OBJECT

The symtax of some of the GRAPHPAK functions is given here: -

Aw ani.dte Yactor Drawirg

#ornts in two-~dimensional space(X-Y) are most basically addressed by specitying coordinates’
i1t the zange G to 511. The APL function xxxxxx converts coordinates in this range into?3d}, string
wi APL characters {literal vector) vhich the plotter controller then converts into analog
vi. t:ges used for driving a display or plotter-

SYNTAX: Z<DRAW DATA

WHERE:
DATA is a three~column matrix * <
DATAL ;1] is a binary vector. A 1 means to go tc the (x, y) position

indicated by columns 2 and 3 with the beam off (or the pen up).
A 0 means the same thing but with the beam on (or the pen down).
DATAL ;2] is a vector of X positions.
DATAL ;3] is a vector of corresponding Y positions.

Z is the literal string (grophic orders) which will cause plotting when

AT

‘communicated to the terminal.

If a drawving 1is to be produced with the beam on (or pen down) for all points, the first
column of DATA may be omitted. That is, only the X~ and Y-coordinates mneed be included. When
the function 1is wused in this way, it is assumed that the pen should be up ‘as it poves to the
first: point.

The function URAW will jenerate output for use with a CRT display or with an X-Y plotter.
Wihen used with a CBT display, a line cam be drawn from ome side of the screen to the other With
four characters. The time needed for this is about .27 second, because the characters are sent
at the rate of 14.8 per second. However, vhennusing‘ a plotter, intermediate ©points must be
inserted siuce the respaonse time of the mechanical pen is much slower than the CRT. This is done
by computing the =‘uz of tke increments of motion required; then, if any of the =AY or AY are
larger tham -a prazet value (usually 50 is used), extra points are inserted by linear
interpolation so that aii of the AX and AY are smaller than the preset value. If the pen is up,
this interpolation is not done. However, after a long pen-up :movement, the pen needs time to
"settle down"; so the X, Y position is called twice to allow for tlie settling. After a string of
data has been processed and the lines dravwn, a .variable called LAST 1is set which contains the
Ccoordinates of the last pen position. Then, vhen the next string of data is entered, the progran
knows the pen position and can decide if interpolation is needed. All of these features are
bypassed if the output is on a CRT display. The global variable pJSP . is set to 1 or U,
depending on ‘vhether the output device is a CRT display or a plotter respectively. The

ZInterpolation distance may be altered by changiny the variable pIST from its normal value of
50.

ERIC

P ' 30

It a data value 1is outside the 0 to 511 range, one of two operations will take place
depending on the value of the jlobal variable SCI. 1If

S¢I = 0, the data is chanjed to the nearest value in this range.

ScI = 1, the data is "scissored"*#i to present a non-distorted
object on the display.

Also, if a data value is an non-integer it is rounded to the nearest integer.

Character ¥riting

Characters are written using the function WRITE. The characters which may be written are:

ABCDEFGHIJELMNOPQRSTUVHXYZ2123u5678900x0-%+.,/ <s2>2VvAais=()[J\;:t4 7~
W[_VaeLTlepateonu=

SYNTAX: 2+P WRITE C

WHERE:

c is the character string to be drawn; P is a vector.

P{1 2] =x-yposition (in 0-to-511 raster units) of the lower left corner of

'

the first character.

P[3] character height. If 1, the character is six raster units high and four wide.
1f PL37Jis a value other than 1, the size of the character is multiplied
by this number.
P{4] isomitted if the characters are to be written horizontally. If pry]
is included its value gives the number of degrees that the line of

characters is rotated counterclockwise about the about the point P[1 27.

Z = output string of graphic orders.

cucrve-~Plotting

The function LPLT takes data to be plotted and control paraheters as its input and
automatically produces scaled plots as output.

SYNTAX: A LPLT B i

WHERE: | B is an array containing the data to be plotted. If it is a vector,
the values of the vect‘or componénts are plotted against their index
(i.e., B versus1pB). IfB is amatrix, the first column is
considered to be a set of abscissa values and each succeeding
column to be a set of ordinate values. Therefore, ‘severall sets of

data can be plotted against a single set of independent variable

values.

ERIC | 2

Aruitoxt provided by Eic:

[E

A is a vector of control parameters

0 — scale the data to fit within the plot frame

Al1] =
1 — use the previously computed scale factors to scale the data
0 — draw the axes
AL 23 = § 1 — do not draw the axes" 0 — plot line segments between points
2 — draw axes only (no plot) A[5] =41 — plot symbols on points
0 — use a linear x-axis 2 — plot both lines and symbols
i 1 — use a logarithmic x~axis 0 — do not fabel the axes
(0 — use a linear y-axis 4ls] =31 — label the axes
Alu) =

1 — use a logarithmic y-axis ’ 2 - label_axes only (no plot)

. Only the first component of 4 is required to be entered; it is automatically filled out
with zeros to a length of six if components are missing.

) Lf data falls outside the range 0 to 511, whether "scissoring" will or will not be applied
is datermined by the value of global variable S¢I , as described earlier.

The tétmina; printer records zero-shift and increment values for both axes after each new
plot unless labeling has been called for.

As a final example of the syntax used in GRAPHPAK, we consider the problem ot fitting a
smooth‘cur;ve to a set of data, say XYTEST . If vwe decide we would like to see hovw a straight
line £it would look, we enter:

FIT SL XYTEST

The systen responds by drawing a graph: of the data points and the lcast-sguares best-fit
straight line. Then we try a third-order polynomial: 1

FIT 3 POLY XYTEST

The system “knows™ that it has already drawn the data points and the axes so it doesn't bother
doing that again but proceeds to draw the third order polynomial. In addition to polynonmial
fits, GRAPHPAK has the capability to do power, exponential, log, log-log, and spline-like fits.

Suamarcy

It has been encouraginy to watch the growth of GRAPHPAK®s acceptance. Today, it is being
used in several IBM locations, including Endicott, Fishkill, Lexington, LoS Angeles,
Philadelphia, and Yorktown, and it appears that an applications base will be built in a manner
similar to the way the APL public library base was assenmbled.

GRAPHPAK wvas recently announced as an IBM Field-Developed Program. We expect to find it
applied to a vider class of applications, since, through its development and use, ve have become

convinced that useable, highly interactive, and economical coaputer graphics in t\he context of
APL is very definitely possible in today's technical environment.

POOTNOTES

¥ APL/360 GRAPHPAK, Program No. 5798 AGK-IBM Corp., Program Information Department,
Hawthorne, New York. '

t¥ Time: Share Peripherals corporation, Hiry Brook Road, Danbury, Connecticut 06810.

«*¥% Scissoring is an operation that f.tuncates.inage data to produce the illusion of cutting the
image on the specified boundlari.es.

O

RIC

P o] o0 32 .

This

GRAPHICS IN APL
Alfred M. Bork
Physics Computer Development Project
University of California
Irvine, California

document describes an experimental graphic facility within APL. The terainals are

assumed to be inexpensive timeshared graphic terminals equipped with aa APL character set. We
first describe functions in a jrpahic workspace, and then APL prinmitives for graphing.

User Plotting Fupnctions - Wworkspace DRAW -

The follovwing functions are available as a group called SEE in the DRAW workspace:

DRAW NGSCALE
TEK V CENTER
ARDS SET
TERMINAL INT
ERASE . Vs
SCALE DASH
AXES

DRAW produces a curve on the screen and determines where the curve is to appear.

It imitates, at,6 least partially, the APL/360 PLOT fuaction. PLOT produces point
plots or histograns on the typevriter. Its general fore is

20 S0 PLOT X Vs ¥

VS is an APL function, combining the two vectors X and Y (pX = pY) into an array

" suitable for use in PLOT. The numbers in front have an effect somewvhat like

windowing — they determine the "size" of the plot, the number of lines and the number
of characters in each line.

\\:ﬁe corresponding jraphic function is DRAW. It follows the general specification for

PLOT. DRAW only plots one curve each time, in either tvo or three dimensions. It
seens natural to let the left argument of DRAW specify a "vwindow," a section of the
screéen on which the picture is to appear. It can use the function V5 to coabine
arrays™~for plotting, or 1 by N, 2. by N, or 3 by N arrays can be used directly as the
right argu;

ls::;n
Wwe need four" unbers for a window, the coordinates of points A and B in inches from
the lowver left cornar, as in the diagram, so DRAW can be preceded by a four-vector,
literals or a variable.
If the left arguaent to DRAW is a scalar, the window currently in effect applies; the
value of the scalar is ignored. The initial default wvindov 1is the largest sguare
possible touching the lower and E£ight edges.
DRAW can have a third argument on the right for three-dimensional plotting. Thus

2 2 6 6 DBAW VX Vs VY Vs VZ
plots the three velocity components VX, VY, and VZ in a vindow as showa:

N

<*_4u ——
2" 4n

G
¥ D

We mast have pVX = pVY¥Y = pVZ. VS is extended to allow 3-D arguments to DRAW.
o ;

ERIC ‘»,

P o] 33

2//,—

O

ERIC

Aruitoxt provided by Eic:

The distances for the first arugment of DRAW are measured in inches from the lowver
left corner. After i DRAW, the cursor goes to the next writeable line. DEAW does not
erase the screen, s> it ran be used to overplot curves.

SCALE, NOSCALE, anl CENTER determine the placement of the picture within the window.

SCALE determines the user coordinates for the smallest and largest value, the cormers

of the current windov. The general form is

SCALE A
Forr a 2D plot, A is a four vector; the first tvwo components are the aaximun and
ainimuns values of the horizontal variable, and the next 2 of the vertical variable.
For a 3D curve, pA = 6; the last two components determine the scale for the third,
or 2, axis.

So for a 2D graph where the minimum values are -1.5, and the maximum 3, for both
variables, we have

SCALE 1.5 3 ~1.5 3

The default for SCALE 1is to scale the data to occupy the full ¥indow, finding the
maxima and minipa. ' . .

NOSCALE returns to this default case after the use of SCALE. It has no arguments.

CENTER places the origin of the coordinate system in the ceater of the windown, and
then scales to fit the window. It has no arguments. ’

SCALE, NOSCALE, and CENTER do not retura a value.

ERASE, HOME, and SET control utility functions on the CRT screen.

Screen control functions perform operations on the CRT, as in these exanpies:
ERASE - erases screen, sets cursor at upper left corner
HOME - sets tursorlat upper left corner

3.5 SET 6.2 - the cursor is set to the position on the screen
shown, vith measurements in inches.

(")
€3, 51 =

6.2"

L¥ Y _
AXES -draws axes cCorresponding to the current scaling and windowing conventions. It
has no arguments, and returns no value.

DASH causes the next curve only to be dashed.

. INT establishes an interval. It is often useful in plotting to establish a vector of

equally spaced values. The function for this is INT, as im this example:
A & INT -6 6 100

This fubction sSets up a vector of 100 equally spaced values between -6 and 6, and
assigns it to A. :

ARDS, TEK and TERNINAL set the type of terminal in use. On initial release the APL
Graphics facility supports three terminals: Tektronix 4002, Tektronix 4010, aad ARDS

34

&y

O

ERIC

Aruitoxt provided by Eic:

100. As these terminals have different graphic coding conventions, it is necessary
for APL to know which is in use in order to drawv curves.

In later versions of APL Graphic software terminal specification may use a systea
command. However th2 initial systenm employs .the following functions to set terminal
type: .
ARDS - sets tzrminal as ARDS
TEK 4002 - sets terminal as Tektronix 4002
TEK 4010 - sets terminal as Tektronix 4010
TERMINAL - queries the user as to which terminal he is using, and takes
appropriate action. Intended for use in graphics programs
which do not suppose a highly knowledgeable graphics user.
The default terminal if no terminal is selected is the Tektrunix 4010.
Later Features
Eventually ve will allow the wuser to define what yraphic terminal he is using,
perhaps with a ")TERM" system coamand. Thiss affects both code translation and graphic
data.

We will also allo# the user to "store™ a picture, the actual graphic data; this may
be done with a new data type, "graphic.”

He will later allow for the possibility of graphic input, through tablet, light pen,
joystick, mouse, etc.

DBRAW may also eventually be called upon to construct functions in the complex plane,
assuming that "complex™ is defined as an APL data type.
APL Pripmitives for Sraphics
0] - Quad backspace zero
This is the basic graphic output function. Its use is in.the forn
E]—__.A . :
Por ASCII terminals incapable of drawing APL‘characters the expra#sszian "$Q0"™ can be

used.

The following are l2gal possibilities for xxA:

1. A= 2 v
2D plotting

2. A= ¥

3. A=

4. A= 1 against indices

5. A= N

6. A= 3
3D plotting

7. A= N

This leaves several aabiguous cases. If pA = 2 3, we interpret this as a 2D plot of
3 points. If pA = 3 2, we understand a 3D plot of 2 points. If oA is 2 1 or 3 1,
a point is plotted. If pA is 1 2, or ¥ 3, 2 or 3 points are plotted.

On initial'ilpleuentatiopucéses f, 2, 6, and 7 are available. .

Scaling, wirdowing, and the terainal cur:ently in effect control the conversion of
the arrays to graphic form. The graphic data is set to the terminal; the first bytes
of data set the graphic mode and the last return to character mode. The screen is pot
erased by this operator. o
This primitive is available and known to the user; the character] is legal.

-

35

O

If a single numb2ar is assigned to @, an ASCII control charcter is sent. The
correspondence between integers and control characters is in ascending code order.
Other As give a RANK ERROR&.

At a later time will be used for input, both for interrogatiag the terminal (as
with the TEK 4010) and for graphic input from tablets, joysticks, mouses, etc.

(3] - Quad backspacz §

Memory inset -~ f{or controlling graphic conversion. transfers data entered with
SETPOINT, SCALE, AND DBAW (window data) to the ccde for gemerating graphic data. We
can do this with a coamand of the foram:

vhere S is a new APL primitive, A is a scalar or vector, or a variable with scalar or
vector value, and Z is an integer specifying the function as follows:

c = 1 terminal type 1 = ARDS, 2 = Tek 4002, 3 = Tek 4010
c = 2 lower laft window, x

lower laft window, Yy, pA = 4

upper right window, x) for ¢ = 2

upper right window, y

c = 3 scale, main x pA = 4 or 6
’ scale, zax y
scale, ain y, z arguments are optional
- scale, aaax y
scale, ain z
scale, rax z |
S
cC = 4 setpoint - x ¢ y values. pa = 2
c = 5 Draw axes
c = 6 Controls scaling. If A = 1, use maximum scalinga.
If A = 2, use centered coordinates with maximunm scaling.

If A =3, return to previously set window.
c =7 Dash next curve.
c = 8 Erase screen

Hiqher? values of C presently give a Value Error; some of them aay be used for future
extensions. Por terxinals without APL characters, $QS can be used.

Examples:
1. ‘Changing the window ;
51 2 2 2 4 4
2. Scaling for coordinates, 2D plot

B 3 3.4 7.1 w1 6.3

Eﬂ is a legal ch:facter, but it is expected that it would not normally be employed
directly.

b

The system is implemented in APL under the Universal Timesharing System for the Xerox Sigma
7. Implementation detail% are available in a separate docunment.

ERIC

Aruitoxt provided by Eic:

36

EE

AE INTERACTIVE APL GRAPHICS SYSTEN

Stuart G. Greenberg and Craig I. Johnson
IBM Scientific Cemter
Cambridge, Massachusetts

ABSTRACT

An experimental APL graphics system operating under CP-67/CMS amd coamunicating with an
'1130/2250~-IV is described. Features which make this system useful in interactive design are
emphasized. As an example of the usefulness of the graphics system, an interactive plotting
package is presented in detail.

I. Introduction

The purpose of this paper is to describe an experimental APL graphics system and to justify
portions of the system design by presenting an application of the systeam capabilities. The two
basiz motivations for the 1evelopament of an APL graphics system are the need for providing
interactive graphics for APL and the need for providing computational power for an existing
graphics system. The graphics routines and APL functions described in the paper are experimeantal
prograas for IBY internal use only and are presented in order to air the issues raised by the
desijn of an interactive APL graphics systes.

The major aim in the design of the APL graphics systea was to achieve simplicity of use by
the "non-programmer” while, at the same time, providing enough power to isplement prototype
conplex graphics systeas by the professional programmer. A secondary aim was to iaplement the
systam at a level such that the software would be adaptable to a wide range of display devices.
Simplicity 1is achieved by the choice of the front end language itself. The conduciveness of APL
to graphics applications is discussed in detail in Section 3. The achievement of the second ais
is due to tae fortuitous availability of existing hardvware and software.

The first fortuitous circumstance was the development of APL(CMS) [1] a single user APL
systsw running on a virtual pachine under CP-67/CMS [2]. Effectively, each user of APL{CMS} has
his own copy (and, in some cas2s, version) of the APL interpreter. Experimental facilities exist
wvhich enable the APL{CMS) user to execute externmal {to APL) object code. In particular, the user
can execute the subroutine REIGRALF. REMGBAP is an interface between System/360 programs and the
1130 graphics support for tha 2250 display terminal. The 360 and 1130 comamaunicate via
synchroncus coamunication lines vwhich ‘are managed by a coamunications access method called
HOTLINE. While the user never calls HOTLINE directly whem using REMGRAF, the programnming
interface provided by BREMGRAF nakes available to the user routines which perform graphic
functions on the 1130. The net effect to the user is the seemingly direct call to the 1130
graphics routines.

The restrictiveness of running under CP-67 is overcome somevhat by the ease of interface
modification which follows from the modular structure of the graphics systeam itself. This
molularity lies primarily in tae descriptive data and coamand structures [3,4] - data structare,
picture structure, and graphic "ordecs."” A natural taxonomy of interfaces arises from the
conbinations of ‘the potential places of residence for these structures. Por exanple, the
Systan/360 communicating with a 1130/2250-IV can make use of a problem data structure residing
in .the 360 while the picture structure and graphic orders reside on the 1130 (the system
actually used). This separation of interfaces allows the implementation of compatible schemes
for the use of different display terminals. Por example, with a buffered 2250-I/IXI the data and
picture structures would resida in the 360 and the graphic orders in the 2250 buffer. An
unbuffered 2250-I (in effect, a storage tube) would require all structures to be on the 360 side
and would further require the re-creation of the entire picture for each change. Thus, it is
easily seen that tae advantage of viewing graphics systems in this manner lies in its provision
of a clear one-to-one relationship between interface location and display device capability.:

The description below will relate to the dynamic display device (2250-1Y) actually used in
our a2xperimental implementation. It should be pointed out that use of a different device does
not require medification of the APL functions described in the sequel, but requires modification
of the interface and communication code. The restriction on the APL functions lies in the fact
that as the display device becomes less capable only a subset of the functions are applicable.
The system actually used is pictured below in Pigure 1.

For our purposes, the System/360 side consists of a CMS virtwal machine. The CHS systea
cole occupies the first 73728 bytes of virtual storage and is followed by the APL interpreter
and execution code occupying approximately S0K bytes. REMGRAF and ROTLINE are; loaded after this

4
\

l{lC . 37

Aruitoxt provided by Eic:

and the remaining area (approximately 330K bytes on a 512K byte virtual wmachine) is the APL
Workspace. P

The APL graphics systes described ~in“ this paper differs from the recently announced
GRAPHPAK [5] primarily in its capabilities in dealing with a dynamic display such as the 2250
terminal. Kd

“

System/360 113n 22580
CMS
Virtual Machine

APL 2250
Workspace Picture
Structure
nData Light
Pen
REMGRAF/ Graphics
HOTLINE <« Subroutines B
 MAKF, DELFTE, Function
Fte. Kevhoard
APL 0O 0 0
Interpreter Subroutine ‘o oo
: Interface .Jooo
CcMSs Cormmunications
Packaqe
) ckaqe A

Figure 1 - APL Graphics System Confiquration

The remainder of . the piper will be concerned with the graphics system as it is viewed by
the APL programmer. Section 2 contains a description of the basic graphiss functions which are
available. The advantages of the APL graphics svstem in interactive design are discussed in
section 3, and an application of the basic function< in an interactive plotting package is
presanted in Section 4. Extensions are discussed in the concludiag Sectign S.

II. The Basic APL Graphics Functions

The APL functions listad below correspond to the graphic coamand capabilities of the
1130/2250-IV systen described in the preceding section. The communication interface may be
completely ignored if desirel. However, there exist conmnands which are useful for blocking and
unblocking messages in order to improve performance. The commands fall roughly into five classes
- jinitializatioa, entity creation and deletion, entity manipulation, tramnsmission control, and
offline device control.

Initialization

The commands are GRAPHICS and RESET:

GRAPHICS =~ initializes some global variables and the 2250 at the start of a graphics
_s¢gssion :

RESET - resets the 2250 display terminal

Creation and Deletiom of Graphic Entities

The commands are MAKE, PTEXT, and DELETE:

O

ERIC

38

N

132

The

HAKE - this command is usad to display a set of coordinate pairs on the 2250. The format of
this command as an APL function call is

Y MAKE X

where X 1is the set of abscissa points and Y is the set of ordinate points. There are
several modes in which thase points can be displayed. These modes are controlled by the
global variable PLOTMODE which defaults to the integer value 7, meaning absolute lines.
Using this particular mod2 results in lines connecting the speC1f1ed points. Smooth curves
would normally be displayad in this fashion. The other plotmodes are listed for convenience
in Appendix A. The arrays X and Y should contain integers between 1 and 1024, these nuabers
corcresponding to the actual raster units on tha 2250 display teraminal. The function MAKE
returns an integer identificatioz number by which one may refer to the graphic entity just
created in future operations.

PTEXT - this command ié:used to display character strings on the 2250. The function call is

XY PTEXT STRING

XY is the coordinates of the starting point of the character string on the 2250, and STRING
is the character string to be displayed. The display is wide enough to hold 74 characters.
If a messayge goes off screen it simply wvraps around to the next lower line. ID has the same
meaning as in the function MAKE. Note that for both functxons, MAKE and PTEXT, the normal
id generation can be overriden. If one desires to assign a:given plot or character strxng a
specified id, then assigning this specified id to the global variable NID prior to issuiag
MAKE or PTEXT will achizve this desired effect. A particular instance where this might be
useful is when one wishes to assign a group of plots and/or character strings a single id.

DELETE - this conpand enables one to delete graphic entities which have previously been
created. The function call i's

DELETE ID

ID is, of «course, the identifying integer of the entity to be deleted. One nay delete
several entities at once, that is, the function DELETE may take a vector argument.

raphic Entity Manipulation

conmands - BLANK, UNBLANK, BRBIGHTEN, UNBRIGHT, and BREAD are #ised to modify or manipulate the

display of existing graphic entities.

e

O

ERIC

Aruitoxt provided by Eic:

BLANK - executing the coazand
BLANK ID
causes the named graphxc antity to disappear from the 2250 terminal. The displayed image of

the entity is . stored in the 1130 memory, so that the eatity may be redisplayed at a later
time. ID may be a.vector.

UNBLANK - this command causes blanked eatities to be redisplayed. The function call is
UNBLANK ID
ID may again be a vector.

BRIGHTEN ~ this command causes the display of graphic entiities to bhe brightened on the 2250
display. The function call is

BRIGHTEN ID

ID may be a vector.

.

39

EE

UNBRIGHT - causes brightened emtitiedé to be restored to mormal iateasity. The call is

UBEERTGHT ID

ID may be a vector-

READ - causes a me=smage to be read from the 1130. This message, whick contains positional
and id informatiom, ¥= fnitiated by light pen interaction with the .2250 terminal. The
function call’ .

A~READ

results in the assignment to the vector A eatity id and light position information. Soae
particular uses of this function are described in Section 4.

Transmission Control
The coamands BLOCK, UNBLOCK, and ENDBLOCK control messages to be sent from AP)L to the 1130

BLOCK - causes all graphics commands to be blocked from transamission to the 1130. These
commands are stored in a buffer on the 360 side until a later time whea the blocking is
terminated and all the messages are sent. In effect, many changes may be made to the
npicture” without these changes being reflected to the 2250. This could be considered the
so-called "delayed mode” [6].

UNBLOCK — causes.the -blocked.mode to be termipated. All messages which vere buffered while
in the blocked mode are now sent. The unblocked modé is the default operating mode and
corresponds to the so-~called "movie nmode"™ [6], that is, each change to the picture is
imnediately reflected to jive a dynamic view of the process.

ENDBLOCK - causes all messages buffered while in the blocked aode to be sent. This command
differs froam the unblock command in that the blocked mode remains in effect.

offline Device Control

The commands PUNCH, READER, anl PLOTTER control offline input/output devices

PUNCH =~ this command causes the image on the 2250 terminal to be punched onto cards by the
1442 punch attached to tha 1130.

READER ~ this conman@ xamses a previausly punched deck to be:read by tie: 2501 card reader
attached to the 1130. "emwstored image will be displayed on the 2250 termiEnal. -)

PLOTTER ~ this comman® zcauses the image on the 2250 terminal to be pliotted on-a-Talcomp
plotter -attached to tie:7F30. This is -a means of obtaining hard copy of graphics results.

III. Usefulness for Lnteractiwe .Design

In addition to the aimss.@f simplicitywf use and adaptability to various:ifi'splay devices as
discussed in.Section 1, thes WEL graphics system described .in the :previous section possesses
threz additfonal importamt' mroperties ~ it can exist with: an independent data structure, it is
serially flexible, and it is =artm=msible. These: properties:make .the 'system <idZeal for use in
interactive design applicatioms. :

The independent data stomcture alluded to is that which was discussed briefly in Section 1
in reference to interface clas=ification. The ‘significance of the data structure goes beyond
this, however. It representsi iin -the prograamer's teras, a structural model of what the pictures
displayed on the 2250 actually mean. This is inportant in simple applications and essential for

Q

RIC

: 40

EE

Q

2Nk~

interac €& picture pmanipulation. The functionms of section 2 make use of data which has already
been co rted to meaningful upits for the 2250 terminal. The APL programmer has conmplete
freelor to determine the source of his data ‘and how it should be converted. Moreover, the APL
programmer can build as complete or incomplete a description of the picture data as he desires.
The data editing and computational capabilities of APL can be used to modify the data structure
¥ithout necessarily changing the picture simultaneously.

By serial flexibility a2f a System we opean that the system provides the capability to
bproceed in a step-by-step fashion with each step thoroughly verifiable and correctable. The user
of the system should be able to back up to any step he has been through and proceed once again
from that point. By saving the active workspace at appropriate times, the user of the systenm nmay
try completely recoverable alterpative approaches.

S e
< F
o «

The concept of extensibility is really a feature of the APL syntax itself and: constitutes a
justification for the use of APL as the front ‘end to an interactive graphics system. With very
little effort the APL pProgrammer can package at any .level, that is, application systems can
easily be written for the entire user spectrum up to and :including non-APL users. Clearly, APL
is not unigue in this, but its interpretive pature and.the richness of its operator structure
make the packaging an easier task. The price is paid, of course, in the relatively low execution
speel of APL, a price which czould be prohibitive in interactive design processes which require
heavy, repetitive computations. One fortunate aspect of the APL graphics system is that the
noderately costly command formatting and communications are not interpreted, but involve the
execution of object code. 1In effect, these often ysed procedures have been put almost at the
APL operator level.

The exemplification of these features in an interactive plotting package is contained in
the following section.)

V. Interactive Plotting Package

An interesting example of the usefulness of the APL graphics systes is the development of
an interactive plotting package for, the 2250 terminal writtem in APL. Using APL to write a
plotting package enables one to exploit a natural language syntax vhich cne could achieve in
most other languages only by writing a special purpose interpreter. The plotting package has the
characteristics mentioned in the preceding section - am independent data ibase, serial
flexibility, and exteasibility.

Briefly, the user of the plotting package creates and deletes plotting vindows, makes plots
¥ithin these windows, noves plots from ome ¥indow to amother, and puts labels and axes on
graphs. In addition, some interactive capabilities are provided.

Plotting .wirdovws are created by a command of the form

GRAPH1+WINDOW 0 0 500 500

vhich will result in the display of a box with lower left-hand coordimates {0,0) and upper
right-hand coordinates (500,500). The APL function WINDOW creates an’ integer idemtifier for the
box and returns this as its output value. In the example above the output of WINDOW is assigned
to the variable GRAPH1. One may then use the appellation GRAPH1 to refer to this window and its
contants in the future. In addition to display and identifier creation, execution of the
function VINDOW results in additional entries in the data .base, most importantly, the addition
of a new row in the natrix which is wused to keep track of the various wvindows and their
contents.

After one or npore plotting windows have: been createff, plotting may beginm by issuing, for:
example, the conmand :

PLOT1+PLOT ((COS PIXT) VS T ON GRAPH1

vhere T is a preassigned vector of values ranging from 0 to 1 in imcremeats of 0.02. This
command results in the display of a half wave of the Cosine function which is automatically
Scaled to f£it Wwithin the winlov GRAPH1. The unique identifier assigned by the PLOT function is
placed im the appropriate row af the window data matrix. This value is also returned as the
output of PLOT, and, in this case, is assigned to the variable PLOT1.

RIC | ' 4

Aruitoxt provided by Eic:

O

THE APL function PLOT is more versatile than the above example might imply, &nd may be used
to create aultiple plots, to overlay on existing plots, and substitute for existing plots. The
coamand

B OT2+PLOT (FN1 T),(FN2 T), ... ,(FNX T) V5 T ON GRAPHJ

results im the display of the appropriate functions on GBARHJ. If there are already plots in
windovw GRAPHJ, they will be rescaled and redisplayed with the new plots. The APL variable PLOTZ
will be a vector of ivtegers corresponding to the new plots. The command

HOT2+PLOT (FN11 T),(FN21 T),(FN31 T) VS T FOR PLOT2

issued after the preceding command results in the new plots being substituted for the old plots
denoted by PLOT2. Note that the plotting window need not be specified if it was the last window
referenced.

The function MOVE is related to PLOT. It causes plots on .one graph to be moved to another
graph. Apn example of its usage is

MOVE PLOT2 TO GRAPH1

Note that usage of the functions VS, ON, FOR, and TO adds to the natural language syantax of the
coamand structure.

Created entities may be deleted from the display terminal as well as the data base by using
the ERASE function ’

ERASE NEMYE

where NAME 1is an integer constant or variaible corresponding o a window or a plot. If _a window
is designated, the entire graph :is erased. Erasing a plot will not cause a rescaling -of the
graph from which it has been era:sed. This can be achieved by issuing

REMAKE GRAPH

where GRAPH is the name of the window in which rescaling is desired. One other command, CLEAR,
causes all of the plots in a vimttow to be erased without erasing the window itself.

It should be obvious that all of the above commands make:liberal use of the basic graphics

comrminds MAKE and DELETE. The other content of these functimms is primarily code associated
with data base manipulations.

The default coordinates for plotting are cartesian. Tiie mode of .an existing graph called
NAME may be changed to semilog or loglog by issuing

SEMITOG NAME e
or

LOGLOG NAME

all further plotting associated with the window NAME will be in the appropriate mode. The mode
may be returned to cartesian by issuing the cartesian commanda

The display wmode for a plot can be modified as well. The default mode is LINENODE, but
point plots or dashed line plots may be obtained by issuing -

ERIC

Aruitoxt provided by Eic:

42

EE

POIHNITMODE NAME

or

DASHMODE NAME

N
t . &

where NAME is a plot identifisr. The plot will not immediately be changed, but the next. REMAKE,
PLOT, or MOVE associated the plot will cause it to .be displayed in the appropriate mode.

Polar plots may be obtained by issuing PLOT POLAR instead of PLOT in addition to the usual
syntax.

Labeled axes may be generated for a graph by issuing the command

AXES GRAPH

where GBAPH is a window ilentifier. The mode of the plot (cartesian, semilog, or loglog) is
taken under consideration by-the AXES function. Text labeling can be done by wusing the basic
jraphics function PTEXT. Lo

Lipited interaction wita a light pen is prowided to enrich the basic capabilities of the
plotting package. All of the interactive functions: mmwolve the transmission of a siople nmessage
from the 1130 to the..360 as dascribed in Section 2 under the function READ. These transmissions
are imitiated by the-pressing of function key 10 wiile pointing .at a graphical entity and
prassing function .key 10 ajain to terainate. 'The significant information contained in the
message are the entity pointed at and. the x-y position of the light pen when function key 10 is
tirst pressed and the: position of the light pen when function key 10 is pressed to terminate.
The iateractive functions which have been impiemented are ENTITY, POINT, and SHIFT.

The function ENTITY READS the message sent from the 1130 and returns as output argument the
integer identifier of the graphical eatity pointed to by the 1light pen. An exanople of the
usefulness of this function is the movenment of a plot from one ‘graph to amother in the case
whare the identifier of the plot has not been conveniently recorded. QOne may then command

MOVE ENTITY TO GRAPH2

and then point at “he appropriate“plot vith the .light pen. Note that the counénd may be issued
before:or after the message is sent from the 1130.

The function POLNT is usel to provide the coordinates of a point on a plot. The coordinates
are converted and given: in the original data units of the graph.

By wusing the ifunction SHIFT one may move textual entities.to any desjired positiom. The
textual entity is pointed to at the first pressing of function key 10, and the desired position
is pointed to at the second pressing.

The interactive functions described above are not meant to provide an exhaustive set of
interactive capabilities. Indeed, much of the limitation on the interactive capabilities is due
to the linmited " structure of the message transmitted from the 1130. Eliminating the existing
constraints, hovever, would involve 1130 Programming. This is not meant to imply that hopeless
lipitations exist. .As a matter of fact, the property of extensibility embodied in the plotting
package can lead to ‘interesting generalizations. For example, one might wish to obtain detail in
a” .given plot, that is, display some portion of the plot. This could be achieved by using the
syntax

DETAIL PLOT PNAME BETWEEN POINT AND POINT ON GNAME

where PNAME is the plot which-we wish to see in detail and GNAME is the window in vhich the
expansion is to be displayed. Clearly, the function BETWEEN must extract fron the data base that
portion of the data associated with PNAME which lies between the two points indicated with the
light pen. It is not difficult to see that this major extension of capability requires only a
minor extension in code, namely, the ¥riting of the sinple functions BETWEEN and AND.

Q 43

RIC

Aruitoxt provided by Eic:

Q

ERIC

Aruitoxt provided by Eic:

In order to reinforce the conclusion that the APL graphics system is useful, let us note
some recemt exploitations of the systea.

Comba[7] has made an experimental inplementation of his three-dimensional geometty language
usimj the APL graphics systen and an APL model of a relational data base. Lorie[8)] uses an
existing relational data base system (RAM) as an extension to APL{CMS) in addition to the APL

_graphics system in order to develop an experimental prototype ‘mapping :system. An interactive

design system for transportation guideway optimization was done ax a demomstratiom project for
the U.S. Department of Transportation by perscuoinel of the 1IBA camiridge Scientific Center aad
Federal Systeas Division. Another interesting ‘exploitation was vhat done by the INB Los Angeles
Scheatific Center in the area of three dimensional .sculptured surfaces. The prograas vere
yriginally wriitten to display their results oma Computek storage tube. 'The APL graphics systes
vas flexible emough to allow the ‘conversion to .a 113072250 configuratiom with two days of work
by, one programmer. :
If anythimg philosophical cam be drawn ‘from the above described applications it is that the
APL graphics sgstem is a very “yseful system ‘im which to nhreadiboard™ prototype graphics
applications. In addition, the flexibility imdefining hardvare interfaces adds a significant
dimeasion in that. each prototype systen created is vali@ for =amy different hardwvare
configurations. .
- APPENDIX A — USEPUL DISPLAY HODES

The following modes of display may bhe obtained by approprim#tely sspecifyirmg the global .
svariable PLOTMODE:

1 -~ incremental points

3 - absolute points

5 — incremental lines

6 — short absolute lines

7 - absolute lines ... default
10 - absolute lines beam off for 0dd coordimates ... dashed lines
15 - absolutely positioned large characters

26 — absolutely positioned basic characters

REFERENCES

T APL (CMS) Program Description and Operations HManuale pocument ‘No. SH20-1088-0, IBNM
Corporation, February, 1972.°

2 Cp-67/CMS User's Guide, Document Nod GH20=0859-1, IBM Corporatironm, ‘September, 1971. .

3. Johnson, C.I., "Fundamentals of an Interactive Graphics System;"™ Preprints of the Symposiunm
on Interactive Computer Graphics, pelft, the Netherlands, October,. 1970, pp- 43-58.

4. - Cotton; TIL.W.: and- Greatorex, ‘F.S., 4iData‘.struétu:es‘agdireqhniquesifor_Relpte Computer
Graphics," Proceedings of the Fall Joint Coaputer conference, 1968, pp. 533=544.

S5e 'GRAPHPAK - Inte:acting’:sraphics Package for APL/360, Document No. GB21-041%, 1IBA
Corporation, March, 1972. . :

6. Johnson, C.I., "Interactive Graphics in Data Processing: Principles of Interactive
Systems,* IBM Systems Journal, Vol. ‘7, Nos. 3 and 4, 1968, pp-. 1W47-173. .

7. Comba, P.G., "A Language for Three-Dimensional Geometry,” IBM Systeas Journal, Vol. 7, Mos.
3 and 4, 1968, pp. 292-307. ' ’

8. Lorie, R-A. and Symonds, A.Jd., nInteractive Problerm Solving Using a Relational Data~Base in
APL,* Digest of the 1371 IEEE International Conputer Society Conference, Boston,
Massachusetts, September, 1971, pp. 191-192.

44

MIDELING A SATELLITE EXPERIMENT ON APL

Charles D. Wende
NASA/Goddard Space Plight Center
Greenbelt, Maryland 20771

ABSTRACT

This is a study of the ciarged particle measurements experiment {CPME) wnich will pe: flown
on the INP~H and INP-J satellites. This experiment, although primarily intended <t measure
charjed particles, contains detectors vhich are also sensitive to solar and galacact %-rays.
Considerations aimed at optimizing tthe resulting X-ray data will be discussed, follmwa by a
description of the technique used tto unfold the intensities of individual X-ray stars: f@mmoo the
data. Duamy data were generatel frow: published X-ray starx catalogs and wused to -tzs® this
analysis technique. Of . particular interest to APL users are the storage/ retrieval wr data
packad ‘as binary words of | arbitrary lemgth (to save room .in core) and the programmung, 3 APL,
of | the' womultiple linear-regr2ssiom technique descriped by Bevington in his Data. :Redugtipn .and

Ercor Analysis for the Physical Sciences.
JERRER SR =

1

Introduction

This paper reports a simulaticen study of an experiment which will be flown: .on @& . Sifite
later this summer. As a result of this simulation, sone refinements were made in the mEcidvRAre,
and more refipements will be iacorporated in a second version which will be E£lown :mexs sssr.

The experiments in question are the charged particle measurements experiments (IPSE] on the
IMP-H and IMP-J satellites. Th2se satellites will be placed in orbits around the: ®m=wefi -with
perigees of 35 earth radii and apogees of 39 earth radii (i.e., about half Wa.y hm i moon) .
They will be spin stabilized with their spin axes perpendicular to the ecliptic plame.. &s the
satellite -spins in tnis orientation, the sun moves along the satellite eguator.. TiEs ;ppamt ot
reference on the satellite equator will be the direction of the sun. This satellrte o ot
reference will precess about one degree per day .in a,celestial.coordinqte system.

The CPME package contains five GGeiger tube detectors and a set of threesmis state
deteztors. These detectors ara intended to provide npeasurements of charged pommoeeas 1n
interplanetary space, although the Geiger tubes are also sensitive to solar and galacinrs H¥-zays.
It is this secondary use of th2 Geiger tubes vhich will be addressed further.

"The characteristics of these Geiger tubes are tabulated on Figure 1. The Vthimk cazct. the
'thin' tubes both have relativaly small window areas, apout 1/25 sq. cm., and Wil mwe= wused
primarily for solar observations.' The 'big' tube has a large window relative to the otenscTiEEl ger
tubes and will be used primarily to observe cosmic X-ray sources. MNote also that fiber Gimiger
tubes are sensitive to progressively higher photon energies.

The configuration of th2 CPME package is shown on Figure 2. Of particular concasm::ame the
thre2 Geiger tubes oriented perpendicular to the spin axis. Two other thin tubes are a1gmented
parallel and anti-parallel to the spin-axis, and they comprise the North—-South teliescpe. As
they do not have enough sensitivity to observe cosmic X-ray sources, as they will not tiew. the
sun (if all. goes well), they Will. not be treated further. The solid state dets=—ours are
insensitive to X-rays, and alsd will be.disregarded. ~

Detector Selection

The first problem was t> match the sensitivities and dynamic ranges o the Geiger tubes to

" "the expected X-Ray fluxes. Since this experiment is not a pioneering experiment, some a priori

EE

information was ~known about the solar and cosmic X-ray spectra. Representative spec*rza ‘are
presented on Pigure 3. Three solar spectra are given. One is'a spectrum from a solar if=are,
another is from an active region iwhich spawns flares, and a third is from the .guzet: :sun
backgrourd. These spectra vary with time :scales of minutes, weeks, and years, respectuvely.
Cosmic X-ray spectra shown include Scorpius, the strongest known X-ray star, Cetus, a vacimble
source which was observed only once, Taurus (the: Crab Nebula), which exploded as a supermova: _in
the year 1054 A.D., Virgo, also called ‘M-87, and’ the diffuse component, a background haze which-
is omnidirectional, here integrated over one sterédian. -

The expected count rates wvere compiited by multiplying the photon spectra, at each: mhoton
enerjy, by the Geiger tube efficiency (i.e., the probability that a photon would cause a. count
to be registered), summing, and then multiplyiag by the window area to get counts registmmed by
the tube rather than counts rejistered per square .centimeter. Unfortunately, the calculatmmm of
the Geiger tube efficiency is complicated by its dependence on the type and thickmass of

Q

MC | 45 Z | .

Aruitoxt provided by Eic:

NANME meme WIHHDOV ==m- -~ (GAS -- PASSRALD APERTURT =~=~=-- CCII'ENTS =----
area thickness ' thickness - leV. deg.
sq.cm. mg/sq.cn. mg/sq.cm.

Thin .04 0.35 Mica 0.34 ile. 0.76-2.8 45 cone Solar; 3 tuhes
(only o used)
Thick .04 1.75 llica 0.66 Ar. 1.04-2.C 45 cone Solar
Big .81 1.75 Mica 2.34 Kr, 1.46-14.5 40x11.25 Cosmic; IIMP=J apert.
+9.30 Ce. ,0x22.5 deg.

FIGURE 1. Characteristics of ItiP-H/1I'P-J Geiger Tubes (particle data excluded).

SATELLITE SPIN AXIS

By === NORTH-SOUTH -
TELESCOPE Yy d

BIG TUBE -~--- i S N) el --- THIN TUBE

L —e——

'SOLID STATE -
DETECTORS

=
THIGK TUBE

.
.
Tz

El{lC .

Aruitoxt provided by Eic:

"9Jnledodwo] [e4309dsg snsuaap SOy IJey Junoc) wWJC:w_u TRA3D3AS_ARY~-Y DI1WS0) pue aBfOS ‘¢ 84nd 4

‘X t03a *SIAINLVEIWNIL TVIII3IS 90T *AFA ‘XDHINIT NOIOHd * 907

ANORNOE - Ry DX

08 S ¢ , 0°¢ S 9 0°9 02 ST ‘, c°1 S0 4 00 S°0_
R e e e R el L L Stk S o B e e e R LT Y R el T P
i Vo |
- | Z A | :
] : d I 98 | bo)
| X a vo | a
g . +6°0_ 2 a I 4 +2_. 8§
Ed | I d b] |
| H a N A | .
7§ | L a | 7]
. 4] / d bs A 2
+ 0°0_ N v a L A 17
| I J] v}
g | H o a I A | g
| £ dv 82 a ° | |
4 I | £ A | A
3 7§ + 570 ¢ ad Z +0 4
| g vo S a | X
d | 0 d bo) L A | /
g 4 i | I s 24 | ’
4444444 48 | A o J24a I RO P
d d44d q +0°T ¥V 14 s 2 Iz ‘ + 1
d _ _ ! d | a9]
d a4 | ’ d g i ao il | ¢
dd | a g]
g | Z v o | s a |
\ d + 8T V¥ 4 s + T
i g | ¥ M s |
)] d |
N 4 _ @ | L | I
a | N Vo | i
+0°¢ 0 . i + €
*84SYy TVNId | 0 *dH0O dASNddId = d | |
‘HNULOAdS XA04HOVIE = &] 2 094IA = A i |
*SASVY TVILINT g spunvi = I 4 i]
‘WNHLO3IdS XAodNovid = & d d : snLdo = o ; |
: *SASVH TVNIA' + 52 9 SNId¥0OS = S v o i + 4 :
‘HNHIOAdS 3ILdATHA = F | 0 | 9
*SASVY TVILINT | 7 NNS I3rne = B | 0
‘WAYIDAAS 3344338d = A | NAS AAILOV = V | 1
] HAS HNIHVId = d d -
+0'¢ + G

PES

47

Aruitoxt provided by Eic:

E ©

oM iy

Figure 5. Cosmic X-Ray Scurces in Ecliptic Coordinates.

[¥e]
o
1
|
|
|
t
]
I
]
]
]
]
|
]
|
'
t
]
[}
|
]
|
]
|
|
]
¢
:
]
]
]
1
|
|
'
]
t
[}
]
]
]
|
|
1
|
]
1
|
|
1
1
|
'
]
!
1
]
]
1
[}
'

60

30

~30

T80

90

1

5

I

| 0 0 0

| 8]

| 8]

|- 0 O o o 0 -
| 0O 0 0O oo o oo aon

| 0 0 o

: 8] 0 0

| 0O 0 0 0
0- 0o -
| 0 0 0o 0 O 0

[= = - === - - 00 -+~ - === - - 0---0-0-=====-=«4-- -
O«VIRGO SCORPIUS] O
10 0 + 0 0 TAURUS

|10 0 0ooo ’ + :

| ~0+2+0+0+0+0+00000-+0+0+0+0 +0+0+0+0++0+0-+0+0-+0+0+0+0+[][10+O+0+0+0+0+0-+0+=
|GALACTIC CENTER-{(00] 4 0 0l

| 0 000co suy CETUS-[0

I 0O 0C0O 0 0 0

| = =0- =0 =000 = = = = = = = = = @ & 0 & 4 o o o =t oo - e -
| 0 oo 0

[- 0 00 0 o oG -
i 0 oo

| oo o 0
| 0 O o 0

| oo

I 00oc o o0 o - 0 0

-0 mialn] ~
| 0 0

| 0

|

| 0]

| ‘00 n o - I
SR DUUVSVSN DRI PRI DUN PR I | ! I -
8 v 1

0 270 ‘0 90

DEGREES LONGITUDE

DIRECTION OF
VIED
+

COUNTS BEGIN
COLLE‘CTII‘VG COUNTS CEASE

— COLLECTING

Figure G. Accumulation Sequence Definition.

48

[=2) —--—-—-———————————-—————————D—-—-:]——————————rf?—

EE

material in both the Geiger tube window and the filler gas. Purthet, the absorption coetficients
needad vary ‘logarithmically with the material type and photon energy, and also exhibit stroag
discontinuities due to the atomic structure of the materials. Normally the needed efficiencies
would be calculated by .ploidiny through massive tables of absorption coefficlents and then
griniing through needed additisnal calculations. Usiny APL, the tables were entered oace, and a
short interpolation routine enabled coefficients to be calculated for any wavelength in the
region of interest. The calcuation of Geiger tube efficiencies was reduced to a tew lines ' of
APL. Tne calculation ot expected count rates was also reduced to ore line of APL.

When computing the expected count rates, it was found that the sun would probably saturate
the thin tube. It was important not to coapromise eikther the low enecgy respoase to solar X-rays
or the. low energy response to electrons. These constraints ruled out the simple solution ot
placing a foil, such as beryllium, in froant of the tube. This problem was solved by placing a
copper strip, perforated with holes over one per cent of its area, across the aperture in front
of the thin tube, and orientinj this strip parallel to the.equator of the satellite. Thus, the
count rate due to solar X-Riys would be decreased by a tactor of 100 while the X-ray passband

‘still extended down to 0.75 KeV, and the aperture would, for the most part, reaain clear for the

entrance of 15 KeV electrous. The “jthick tube, having been flown before, did not have this
problem. The big tube, however, would saturate durlng solar flares but probably not during non-
flaring time periods. This handicap vas accepted in order to maintain the sensitivity needed to
observe cosnmic X-ray sources.

Another 'brief exercise that resulted in a small but significant change was the tollowing.
The ratio of the count rate of the thick tube to the count rate of the thin tube was calculated
for various spectra. For historical reasons, initially the gas fills of these two tubes were

reversed. The resulting ratios are shown on Figure 4. It was found-that.the .original combination .

of gas fills produced ambiguous results. That 1is, the thin tube counted hxgher at low
temparatures dur to the thin window, but also counted high at high t:mperatures due to the argon
gas fill. Reversing the gas fills resolved the problenm.

The above exercises ar2 not elegant examples of APL coding. but prove to be extremely
tedisus to do otherwise. The use of APL allowed many different combinations to be tried and the
optimum picked with very littla expenditure of time.

upfolding X-Bay Star Lntensities

The remainder of this paper will be devoted to the teehuiéue developed for analyzing data
from the big tube.

The X-ray sky, as viewed from IMP-H or INP-J, is shown on Figure 5. This coordinate Systen
is fixed in celestial space, haowever, rather than on the sun. The sun will nmove along the
equator as time progresses. Tha aperture on the big tube limits the field of view to w¥within plus
or minus 20 degrees of the ecliptic equator (note the dashed lines). This segment ot the sky
does include many strong X¥-ray sources, such as Scorpius and the clump ot stars at the center of
our jalaxy. One can determine vhich sources should be observable to the experiment and can limit
the number of sources used in further modelling of the experinment.

The panner in which counts are accumulated is illustrated on Figure 6. As the satellite
rotates, when the leading edge of the aperture, or collimator, is pointed in a given ‘'direction

of view,' counts begin collecting in an accunulator; when the traxllng edge of tne collimator. . _. . .

has rotated so that it poxnts in the direction of view, counts stop. collectlng in that accumul-
ator -and begin collecting in the next accumulator. On IMP-H there are 32 of these directions of
view, the first one oftset from the sun by 10 degrees (i.e., the satellite rotation is divided
into 32 sectors). On IMP-J, thare will be 16 sectors rather than 32.

In determininyg the expected count rate from X-ray stars, the aperture function used is not
simply the off-axis area relative to viewing the aperture hkead-on, but rather this relative
response integrated over th2 rotation angle during which counts are being collected. Por an
ideal aperture with a squared off ‘boxcar' relative response (see Figure 7), the aperture
function is triangular shaped with half-power points at the same angles as the aperture edges.
Due to geometric consxderatlon:, the actual relative response is a smooth quasi-Gaussian curve,
and the aperture function 1is a similar smooth curve.

Using. this aperture function and.. the known positions and strengths of the X-ray stars,
count rates can be predicted (see Figure 8). Note that Cetus, Taurus, Scorpius, and ihe galactic
center can be picked out easily, although in the case of IMP-J the galactic center appears as a
lump on the side of the peak due to Scorpius. Knowing this information, one can generate dumamy
data for a specified date, given the position of the sun (which is tabulated in published
ephermerides).

Q

RIC " 49

Aruitoxt provided by Eic:

.

A 1.0 + menpro~pgonnm
P | 0 _ 9
E [O * *) (3 = IDEAL RESPONSE
R | r 0 ~ = IDEAL FUNCTION
T | C * * 3 B = REAL RESPONSE
U 0.8 + r ERE " 4 = REAL FUNCTION
R | 5 C
E | n * R R * y
| r C
R | D xR 444 Ex C
E 0.6 + 0 4 4 r
5 ! Cx B A A R [
P | 4 4 0
0 | *[1p R
N [[ia Al
S 0.4 + {] 0
E | * Al 4 «
/ ! {1 0
o | 4 0 0 4
/] | AR T 0 R4
N 0.2 4 * n 0 *
c | 4R n G R4
T | A [0 4
I [4 G C A
0 | 44~ R 0 G B * A A
N 0.0 A-A-B+2-R-B-U-T0-104- - m4 o m ot em o R +01-M+0-0-R-B-R+R-4-4
15 0 “s5 0 5 10 15
SOURCE DIRECTION RELATIVE TO VIE!! DIRECTION, DEG.
Figure 7. #Aperture Functions.
L 1.50 +
0 | H = IMP-H JJ +SCORPIUS
G | J = IHP-J CTHIT
| Ji J
| J HJ
E 1.25 4 JH J
X | J HJ
p | H J
E | J J
c I H J
T 1,00 + JJ <«CETUS J J
E | JIJd H J
D | JHIJ J H HJ <«GALACTIC
| JIHHI HE J CENTER
c | § HJ HI
0 0.75 + H J J HH J
U | J H E HJ
N | HJ J
T | J H J HJ
| HJ JJJ «TAURUS J
R 0.50 + J J J J J
A | JH Jd JJ J qJ
T |J . Jd H JJ JIIIII JIII J H JJ
E J ‘H HH JJJ JIJ JITIT H JIIIIIIIITII
S | H HH
., 0.25 + H
i H . H H H "
c | H H bij H
/ | HH H HEH IIH HHHHH HHH H
S HHH HHH HHHHHH HHHH HHHEBHH HEHHHRNHHHHHH
0.00 #mmem-tmcmempmcmepommmdmmo oo m oo T et Sabiakel Al dall 5
0 60 120 180 240 300 . 360

ECLIPTIC LONGITUDE, DEG.

Figure 8. ECxpected Count Rates Versus Ecliptic Longitude.

ERIC

Aruitoxt provided by Eic:

EE

In order to store thesa data compactly with the 36 Kbyte workspace, it was decided to
convert tnem into binary words 18 bits lony. The routine to do this counversion used the encode
function followed by an '=1'. The rank vas changed to make the data readable, althouyh this
chauje restricts the input data to ranks less than three. Note that the encode function actually
increases core requirements until tne '=1' operation is performed. Also pote that the IBN XM6
version of APL is inconsistent in its pinary encode-decode operations. For example, a 2 2 2
encole -1 results in a 1 1 1, while a 2 2 2 decode 1 1 1 results in a 7, not —1. The 'BIT' and
*BIT' routines given in the appendix use the first (lettmost) bit das a sign bit and -correct for
this errour.

The piece de resistance of this effort comes, however, with the unfolding of the individual
X-ray star count rates from data in which many of the stars are smeared together. The technique
used derived from Chapter 9 of 'Data Reduction and Error Analysis for the Physical Sciences,® by
P. R. devington, McGraw-Hill, 1969 (available in paperback). This technique employs a least
squares—-nmuitiple regression analysis. Unlike the domino operator used dyadically, this approach
determines, for an overdetermined set of equations, not only the coefficients but also a
background coefficient and the uncertainties associated with all ot these coefficients. Further,
it ‘allovws the use of unequally weighted data.

The system of equations to be solved are shown on Figure 9. The Y's are measured with the
uncertainties U, and the X's are known. JThe X's may be anythinyg - polynomials, trigonometric
tuactions, independent variioles, etc. The coefficients A are to be determined with their
associated uncertainties.

In this application, each sector count rate is a Y(i), and its uncertainty is U(i). Because
of the Low duty cycle due (o limited telemetry and too few accumulators, 12 and 24 hour count
rate sums will be used to determine the Y's. Poisson statistics apply, and the uncertalnties are
simply the square roots of the Y's. The accumulated counts and their uncertainties are scaled to
a per.second basis by dividing by .the accumulation time (in seconds): - = o i

The sector count rates ar2 egual to the background count rate (due to the diffuse component
and charged particles) and the sum of the strengths of the individual X-ray stars, the A(j)°'s,
weighted by the aperture functious, the X (1;j)'s. The X(i;j)'s are functions of the star
longitudes and the directions of view of the sectors. The view directions are known trom the
ecliptic longitude of the sun, and the X~ray star lonyitudes are known from star catalogs or may
be derived from data taken over a period of time (e.g., Figure 8, on which many star longitudes
may be found). Unless a star was observed within a sector, the corresponding X (i;j) #ill be
zero. Rows of zeroes may exist, and the:«. can be eliminated by using the compression operator.

One then defines the correlation matrix, or correlation coefficient matrix, BJK, in terns
of tae sample covariance matrix SJK, and the sample ‘variance vector SJ. RJY is the linear
correlation vector between the Jih variable, X(;3j), and the dependent variable Y. The effect ot
having unequally weighted data is carried through by the constant *C' and by the 1/U%2 terms.

In determining the correlation matrix RJK and the correaltion vector RJY, two obvious
problems can occur; SJ or SY may have terms which are zero, thus causing domain erroks; or RJK
may be singular, which causes _problems as it must be inverted. In the program °*'SIEQ' (tor
simultaneous ejuations) these conditions are tested tor, the first through a 0 or-dot-equal SJ,
SY statenment, and the second through the use of any handy determimant routine. If either SY or
SJ has a zero term, or if the Jeterminant of RJK is less than sonme arbitrary value, such as 10%*-
15, the program will branch to a step which pragmatically throws out one of the original
equations, and then will branch to the beginning of the program. Since we are dealing with an
overietermined set ot equations, the effect of throwing out an equation is to reduce the degrees
of treedon by one, perhaps increasing the errors slightly, and to permit the program to run
without abandoning the user to a domain error. Of course, the program also checks to ascertain
that the set of equations is still overdetermined. If the set is no longer -overdetermined, the
user is flagged and a result of iota 0 is returned. The coefficients resulting fromr this
analysis are given on Figure 1). The program *SIEQ' returns these data as an =~ *1j by 2 matrix.

The proof of the pudding, naturally, lies in the eating. Dummy data were used pext in an
analysis routine which also needed, as input, a vector of the longitudes of the X-ray stars. The
unfoided data resulting from this routine should be a set of constant Gount rates and their
corresponding uncertainties.

For the first trial, 3 small set of X-ray star longitudes was used - Scorpius, Taurus,
Cetus, and the galactic center. The results are shown on Figure 11, hardly an example of smooth
untolding! Next, a source cataloy of seven longitudes was used. The results are shown on Figure
12. Note the relatively straight lines. The variation in Scorpius is typewriter digitization
noise, and the variation in th2 Galactic center is due to the fact that the galactic center 1is a
clump of many X~-ray sources. Clearly in the first trial (four sources) too few stars were used,
and the program bhad to vary the fluxes tc obtain the best fit. In the second case (seven
sourcesj, there were enough sources for the proyram to provide a fairly good fit. The numerical

Q

RIC 51

Aruitoxt provided by Eic:

TO SOLVE FOi THE A'S IN TEE SET QF EQUATIONS:
YO13,0011 « A[0] + (AC1Ixx01313) + ... + (ALJIxxL1;d3) + ... + £LHIxX(1;0]

Y[21,002] « Af2] + (4010xx[2;1]) + ... + (ALJ]XX[2;J]) + oo + ADNIxX[2;N]

YOI1,UCI] + Afo] + (ADLIxXLI510) + o0t (ALTIxXLI3]) + ..o + ALEIXXLJI 0]

(THE U'S ARL THE UHéERTAINTIES IN THFE VNEASUPED Y'S, X'S ARE XNOUM)
DEFINE:

COVARTANCE MATRIX: (SJELT;K]%x2) <« Cx+/(+U*x2)x (X[3J1-Z[F1Ix(X[; K1-X[#1)

COVARIANCE VECTOR: (SJY[J1%2) « Cx+/C2Ux2)yx (X[3J1-X[J1)x(Y-Y)

SAMPLE VARTICE: (57071%2) < (SIKLT3d1%2)
STANDARD JEVIATTON: ~GYx2) f%§+ Cx+/(+Ux2)x(¥-Y)*2
L CORRELATION “UATRIX+~ RIELI K]+ *« (SJEL ;K] %2) 3STLT ISTLEY -
LINBAR CORREL. VECTOR: RJY[J] « (STY[TI*2)+5J[T 15
WILRE:

XIJ] « (+/(3Ux2)xX[3J1)24/U%2
. 7 « (+/(3sU%2)xY)2+/U%2

c + (NasN-1)s+/Ux2

Figure 7. Definition of the !lultiple Linear-Regression Problem.

RESULDS :
ALIT + (SY35JTT1)%(RIT+. XORIE<BRIIIT] T « 1,24uee
ALO0] « (2+4/U*2)%+/(sU*x2)xY-X+.xA[1.2,...,7]
(VATJT1%2) « CxRIELJ 3J14SI0J 1%2
(UALO]*2) « Cx((n-1)+n)+(en—1)x+/((z[J]*2)ngK[J;J]+SJ[J]*2)+
$/ X0 Tx X EIXRIELT 3 K] 2STLT IxST K] ’
CHI-SQUARED + +/(euéé)x<Y—X+.xA[1.....Hj)*2

DEGREES OF FREEDOi! « I-N-1

.-Figure 10. Solution of the luitiple Linear—Régression Problem.

ERIC

Aruitoxt provided by Eic:

S S
S5

IFFUSE COMPONENT

CORPIUS

S
CETUS
GALACTIC CENTER

SS8855s

[5] [L { S (R { S 1]
0 , NOBRQ

5§55 88 S S

S
G

s S S

DIRONNAMA ODODIE gy -

cccecceccececceoe

G GG
ccc

cccecceccececee

GGG e
c

G\
c

O\,

<

IrDDD
D TTT

rTrTTTTCTY
) DDDDDDDD
e e R R e Dty

IS

DDD
T

L e ik P e &

30

25

20

10

15 .

DAY I AUGUST,

1972,

Figure 11.

Unfolded Bata Using Four Sources.

O

IC

E

53

Aruitoxt provided by Eic:

40 +
|
|
|
| s S 558588858 S S 5588585888558 S s S
35 + S S S S S s S
|
U |
N |
F |
0 30 + S = SCORPIUS
L] C = CETUS
D] G = GALACTIC CENTER
E ! T = TAURUS
n] D = DIFFUSE COMPONENT
25 +
c |
0 |
U l ”~
N | "
T 20 +
| N
R]
A |
T |
EFE 15 +
\,yr’/.’? S } R
|
c |
/] 10+cCccccccceccecceccecececcccecce cceccceccecceccexzc
S | G
. | G G G GGG
| ¢ G GCGGGG G GG GGG G GG GGG
| G G G G
5 +
|
|
7727227 P T TT?TT?T?TTTTTTTTTTTT T ?PTTTTTT
| DDDDDDDDDDDDDDDDDDDDDDDD DDDDDD
0 +----+----'+---—-+----+----+----+----+----+----+—---+----,+----+
(] 3 10 15 20 25 30
DAY IN AUGUST, 1972.
Figure 12. " Unfolded Data Using Seven Sources.
DATA ACCUMULATED OVER i INTERVAL.
SOL, LONG.
START: 129.30 130.30 131.20 132.20 133.10 134.10 135.10.
STOP: 129.30 130.30 131.20 132.20 133.10 134.10 135.10
TLACC]T: 171.40 171 .40 171.40 171.40 171.40 171.40 171.40
SOURCES:
BKGND: 1.18 1.19 1.19 1.20 1.18 1.17 1,16
0.07 0.06 0.07 0.07 0.11 0. 12 QLA e T T e e
Sun: 5000.0 5000.0 5000.0 5000.0 5000.0 5000.0 5000.0 o
6.1 6.1 6.1 6.1 6.1 6.1 6.1
25.7 0.437 0.87 0.91 0.98 ¢.95 0.93 0.90
0.35 0.37 0.36 0.34 0.35 0.33 0.31
32.9 9,71 9,78 9.73 9.68 9.74 9.79 9,82
0.42 0.42 0.40 0.38 0.37 0.38 0.39
83.4 2.13 2.11 2.09 2.10 2.13 2.17 2.18
- 0.21 0.21 0.22 0.23 . 0.28 0.31 0.33
245.2 35.60 35.37 35.57 .35.45 35.59 35.59 35.53
0.70 0.65 0.62 0.60 0.61 0.61 0.60
258.2 2.63 3.04 2.81 2,71 4.50 2.54 2.50
1.08 0.78 0.60 0.47 0.41 0.38 0.40
266 .0 6.67 6.35 6.73 6.79 6.97 7.04 7.17
0.99 0.64 0.50 0.tk 0.4k 0.u48 0.58
273.0 4.60 4,66 L.4% 4.u3 . 4,33 4,36 4,36
_ 0.46 0.36 0.34 0.35 0.40 0.u47 . 0.55
El{llc Figure 13. Tabular Unfolded Data Using Seven Sources’;
o o)

54

results are tabulated on fijute 13, Hote that the variation in the flutes due to the uzfolding
algorithe is usually less than 30 per ceat of the uncertainty due to the count rate statistics

The above analysis scheae vas used on dugay data from both INP-H and INP-J to deternine the
Eensibility of changing 14BJ from a 32 sector systen to a 16 secter systen. [t vas shovn to be

teasible, and this change will incresse the duty tjcle by a factor of 4, thus increasing the
statistical precision by a factor ot 2

7 Lol SIEQ I BLLC
[l o
- ‘ ‘ ‘ , (2] +>/p2)i80
e utility of this study does not end with the launch of the satellites. Recently an
extended file systen vas adéed to the Goddard ABL spsten. This addition allows data tapes fron
the experinent to be placed on a disc vhere they can be accessed by the A2L systen. dith only

vinor changes, these sane analysis routies vill be used to wfold the satefllite data, The sume

prograns used to optinize potextial data prior to launch will then be used to analyze the actual
dita after lauch, ‘

(91 “tipky! UNRNOVIS, ‘iiel;' EQUATIONS,
(4]

(5] GO:0+{pSST)2("1a085T /88 Te41(5202
4

; Vel o 4 Y5074, %) 44/581
ACKNOYLEDGEAENTS (6] BIEed-({thal)p0)o a L (8004, 00014/
70 §relexssTe (M0 0Tl 53T+ 01511054/)2)
br. 5. N frinigis and his colleagues at the Applied Physics Laboratory of the Johns
Hopking University are to be tnanked for imviting the author to garticipate on their [ap-H/Tap~d
experinenter tean, Thanks are also due to Dt J. L. Vatte aad L. R. Davis tor bhei help and
encouragenent and Cor vaking tre facilities available for doing this vork

0.5
[a] #(0v, 251,80 e(Cx§8T+ QIR 2)0, 5)/CHP

(0] BIpe{Ox(SSTRL 10000 03816
APPEIDIR, PRIGTATS, (00 BoRelOxRISET T L0020 I 5500 54
BRI [410 ((487t5) <R BE) /ot
. (11w 370" comveRts p) {3spp8) 1870 37880Y [12] 'DEDY 25 A BANDY DETERATDANT ROUTINE, SUCH AS
(20w 10R05 0 3253 500G (T0CLDING sogp g, ['DeEE 1t DLIILA 02,5000, 10,4570), LA,

(31 2e(1<0),[1] 1=((N-i)o?)T[0.5+(-1+N1-1)[(-2*1‘J-1)[Y [16] # xp, i xplt; JeBilxptiel Thi 30 Je L oD o)
[4] ﬂ+((1r(1%nY)X1<ooY).(NXI['1+py))p,o(y,1rx/py)p,5 (1) CHP:X+(i+('1*2\1*01)10)*X‘
)

(18] Y«i?

(471 'DELETE 1 FRON TRE ', (7xt42)HBOT0N,TOP,
Wy ~ o

LT v g fhesmeess snite s compangy o e, S

o | : (200 ge{(34/887)ea/SSIX030] 44 x2), 0

30 20, o) 0200 Do e fp 1)) 0, ¢

4 (2] 2o, ((+4/SD)400/ (LR Ix(s 1 4 AIx T 95JH)++/(!°.’X)*

(81 Sel(tio2he, (BN amb-)oaut, Copgilpthie DITASISds 60)40.L
¥ .

(200 2¢(2,0.5% 00000, ({04 1 1 887)x 1 1 §/0)s

0.5 ' f

VIl R0 ¥ ' (23] CHISQe(+/SSIX T3 -He,x0201:0)80) ((+/od)-1)
[L3 n 'SU0" DISBLAYS RITARY DATY GEVEATED BY 'RIT TN A1 [24] Jere{efeierd
(2] o ZASIEY READASLE PR, 7

(3 2eCCC oo meallollot), 0N 011 [1a)

(ledeb 5p7114120

10797 7%
Ty
N
012 3 '
506 7.3 9
Q :
ERIC
iﬁﬁliﬁiiﬁﬂ , & 5

Q

ERIC

Aruitoxt provided by Eic:

s

1000

1011

0000

0101

U«X+4 BIT X

00100

11110

4 SHO X
1000 1000
1100 1101
0001 0010

0110 0111

1001
1110
0011

0111

57

1010

1111

0100

0111

O

ERIC

Aruitoxt provided by Eic:

REPRESENTING NEGATIVE INTEGERS IN BIT VECTORS

A Short Note

L. J. Woodrum
IBM Corporation
Poughkeepsie, N. Y. 12601

To represent a positive or negative inggqer as a bit vector, "two's ?omplement” arithme;ic
may be used. By using a radix vector, R«2 "2,(D=2)p2, if N is ~a positive or a negative
integer, and (N2-2xD)AN<2xD is true, then X+«R7N makes X a bit vector in two's-complement
form. Similarly, RiX is the scalar ¥. :

58

APL AS A TEACHING TOOL: TWO VERSATILE TUTORIAL APPROACHES

Leslie N. Davis, Jak Eskinazi and Daniel J. Macero
Syracuse University
Syracuse, New York 13210

Introduction

Copputer assisted instruction has played a significant role in several audeggraduate
courses in the Chemistry Department at Syracuse Umiversity. Programs for drill, ciboriaif1,2,3],
and simulated laboratory pracedures have been implemented for an introductory Course for non-
science najors, while programs for data analysis, tutorial instruction[4}, and examimstions are
used in an upper level cparse tor chenistry Rajotis:. Owr experience leads us to Leilieve that
interest in and implementatilcm of the zopputer as ¢ classroom tool will contintve to grow there
and elsewhere, and promEMs wmimg b2 tutorial approach will contribute significanmtly to this
grovwth.

By "tutorial" we mean that the program gives the Computer the capability to adjust to each
student's needs on an individuval basis not only with respect to the depth and speed »¢ coverage
of the paterial presented, but also for the analysis of specific student errors when ¥Hey occur,
be they mechanical in nature (i.e., dividing by 10 instead of 100) @r coaceptuai (eabs, trying .
veenn€ 0. 4OCK .. .pH. problens before understanding logarithws) . Because—of mhé”@xtrdﬁfdlwbrﬂ?ﬁﬁxsatility
of the APL language, there are as many #Wa$s to.appteéact: twtorial program desigm <% $here are
teaching personalities. This psipeir femeribes 0 approaches that we have takem "Wt of their
significance is their won-lisitluy npwn-=nded design which suggests applications ouwzide the '~
field of chemistry or even sciences.)

Our APL programs are accessed on the University's IBM 370/155 computer via more than one
hundred IBY 2741 terminals located all over the campus, including five in &he chemistry
building.

Program Design

v The basic decisidN in the development of any APL-CAI program is the kind of response the
student is expected to input to the computer. The programs we have chosen to discuss, while
fundamentally similar in their tutorial design philosophy, are distinct in their methods of
inputting student responses.

The pH-logarithm program deals with subject nmatter and student responses exclusively
humerical in nature. This type of material allows an essentially infinite number of problems to
be randoaly generated by tae Conputer. It is noteworthy that the actual student input is
accepted by this proyram as APL ljteral, not numeric data, because the analysis of significant
figures, juxtaposed digits, etz., is possible only on literal input.

The programs in chemical instrumentation require sentences or phrases for mpst responses.
In order to fulfill this requirement and the additional one that data outputting for these
programs be amutually compatible, the multiple choice format is Gtilized for student responses.
This also provided needed flexibility in individual prograsa design and alloved rmuch larger
question libraries for the avajilable workspace size than would have been possible using other
input systeams.

k]

self-Teaching pH and Logarithm

[t

When introducing undergraduates, particularly at the freshman level, to the concept of pH
it is often found necessary to reinforce and improve their background in logarithms. Most
students at this level will not othervise be able to use logarithas efficiently for simple
conversions betveen pH and hydrogen jom concentration. To save valuable classroom tiss» aad be
able . to bring all students up to the same level of proficiency at their own. pace, vwe decided to
develop an interactive APL progranm.

Although student responses are numerical, input is accepted as a character striang. This
allows an incorrect answer to be literally dissected in order to give a clue as to wyhere the
error lies. Bven when a control word is entered a check is made to see if it is a galid woid, if
the proper number of characters have ‘been entered, if tvo characters have been trak&posed, or if
incorrect characters (up to two) have been entered. : : :

The CAI program is dividel into sixteen units (Table I). The computer adjusts itself to the
studeat's rate of progress by requiring two successive correct answers before ROVing.on to the
next unit. Within a given unit the basic format of the question is the same; however, since each

ERIC I 59

Aruitoxt provided by Eic:

TABLE I

TOPICS COVERED IN pH AND LOGARITHMS PROGRAM

UNIT DESCRIPTION
A ‘Review of exponents
B Logarithms to different bases
c ‘Log of powers of ten,
D Hoﬁvtﬁ.use tables to find logs
E Antilogs of simple numbers
F Using logs in multiplication and division
G Log of numbers greater than ten
H Antilogs of positive numbers
I Log of numbers smaller than one
J Antilogs of negative numbers
X Using logs in multiplication
L Using logs in division
M Finding powers with logs
N Taking roots with logs
g 0 A chemical application, finding pH
P FPinding [H+] from pH
Q Interpolations in finding logarithms
R Interpolations and antilogs

O

Rrovos oo e : 60

O

ERIC

Aruitoxt provided by Eic:

WORD

CALCULATION

EXAMPLES

INFORMATION

COMMENT

SKIP, X

"REVIEW, X

REPEAT

CONTINUE

Ay

STopP

TABLE IX

CONTROL WORDS FOR LOG PROGRAM

DESCRIPTION

Allows use of computer as desk calculator.

Gives answer to present question and one
example on the current material.

Depending oﬁwqueséidn, either solves a similar
problem in step-by-step detail or gives a hint
on how to solve it. .

Allows student to enﬂér comments at any time on
any aspect of the{yfbgram.

Skips ahead to unlt designated by X and puts
control in hands of student (i.e., answers are

not evaluated by computer) until control word
"CONTINUE' is entered.

Reviews unit designated by X. Otherwise same
as 'SKIP'. ’

Causes repetition of previous question until
"SKIP':, 'REVIEWN', or 'CONTINUE' command is used.

Skips to next consecutilve unit with computer
taking control of the program.

Stops program, gives sign-off information.

[E

nuzber in an example is randomly yenerated, eacn juestion is different regardless of how =any
times it is repeated. .

At the start of each unit a typical problem from the unit is solved for the student without
joing into much detail. Then a different problea of similar difficulty 1s presented to the
student for him to solve. A student who is usinyg tane program as a review exercise should be aple
to solve the problem and move on without further delay. However, a student who has no 1dea howv
to opegin to answer the question will require further help. He can get help by entering the word
INFORMATION as a respounse to the juestion. This control word directs the computer to solve a
problem of similar difficulty in step-by-step detail. Since each nuaber is randomly generated,
INFORMATION can be reguested as many times as the student Jesires. After the execution ot
INFORMATION the computer restates the original problem and awaits the student's response.

The student has nine =zontrol words at his disposal (Table II). SKIP enaples hia to skip
material he teels competent with and allows umore time for new material. Irf he feels the need for
more detail in a yiven segment, REVIEW allows him to back track to another unit. STOP suspends
the program and gives sign-off information.. At the next sign-in the progyram resumes exactly
Jhera it left otr when the worl STOP was entered. The other control words are explained i1u Taple
II. ’

The primary aim of this program 1s to introduce the student to the concept of pH and
uevelop sufticient skill with logarithms for satisfactory pH manipulations. The following
typical student-computer interaction illustrates the method.

First, the subject is presented and an example 1is given:

0) THE CONCEPT OF PH

IF THE HYDROGEN ION CONCENTRATION ([H+]) IS 4.63E 5 MOLES/LITER,

THE PH OF THE SOLUTION IS L4.33LL,

Then a question is asked for tae student to-sclve:
0) GIVEN THAT THE HYDROGEN ION CONCENTRATION IS 3.24E7 4

THE PH OF THE SOLUTION IS

after typing the lines and backspacing to the first underline, the computer waits tor the
student entry.* He has the option of entering his answer or a control word. Suppose he enters
INFORMATION. The computer responds:

THE CONCEPT OF PH

[CHTIP S

WHEN THE CONCENTRATION OF HYDROGEN ION IN SOLUTION IS EXPRESSED
AS bRAM—IONIC NEIGqTS PER LITER,.THE PH.(LOWER CASE P, UPPERCﬁSE;H)
CONCENTRATION.

FOR EXAMPLE, WATER AT 25 DEGREES CENTIGRAQE HAS A HYDROGEN
IonN CONCEHTRATIOE [H+] OF 1E™7 AND OF H}DROXIDE ION [OH™] OF ZE™7
MOLES/LITER. THUS THE PH OF WATER IS 7 AT 25 DEGREES.

TO SUMMARIZE, TO FIND THE PH TAXE THE LOG OF THE HYDROGEN ION
CONCENTRATION AND CHANGE ITS SIGN. ‘

IF YOU DO NOT kNOW HOW TO FIND THE LOG OF NUMBERS SMALLER

THAN ONE, REVIEW UNIT I.

“

*The quad-quote input-output used in this program is ‘unique to the SU Computing System, but
could be incorporated into any APL systenm.

O

RIC ‘ 62

Aruitoxt provided by Eic:

P

[E

dow the guestion asked above is repeated. A student who wished to review Unit I would enter
#EVIEW, L. Let us assume the student responds with an answer, 3.8495, instead of the <correct
answer 3.48Y95 (i.e., second anl third digits transposed). The computer responds as follows:

JOHN, TWO OF YOUR NUMBERS ARE WROING.

THE PH OF THE SOLUTION IS 3.272795

The juestion is now restated. If the correct answer is entered, the computer responds:

VERY GOOD'! GIVEN THAT THE HYDROGEN I0: CORCENTRATION IS 3.2LE 4

THE P# OF THE SOLUTION IS 3.8893

[he student is given credit fr the answer and further reinforced by seeing the correct answer
printed out once more. ‘At this time, depending on the circumstances preceding the guestion, the
computer wvwill either ask anothzr question in the unit or move to the next unit.

Lu view of the fact that this program is designed to instruct and drill students, not test
their knowledge of the material, we did not see the need to gather data on their progyress. If
needed, however, all data pertinent to the use of the program can be cocded and .stored for later
retrieval without alterinyg the performance of the system in any way. It is also possible to
disable the control words and to transform the program into a type of examination which will ask
sixteen guestions (one from each unit) and record student answers as either right or wrong. This
would require minimal editiny of the subprograms. The flexibility of the program is further
reflected in the fact that questions may be added or deleted at any time providing the sanme
skeletal framework of the program is paintained.

CAI Topics in Chemical Instrumsntation

The interactive programs used in our upper level course in chemical instrumentation allow
the student to learn, self-test, and review several specialized topics at a rate of progress
adjusted to the student's responses. In programming a given topic, the subject matter is divided
into four to six groups of questions vhich are further subdivided into three ot four subgroups
of related guestions. The wmethod of question presentation is similar to that described by
Castleperry and Lagowski[5]. Tae student is first presented with a gquestion from Group I,
Subgroup 1. If he answers it correctly the program chooses the next question randorly trom Group
I, Subygroup 2, then from Subgroup 3, and then from Group II, Subgroup 1, etc. Student mistakes
result in hints which may h2lp lead him to the correct answer. The hints try to offer a bhrief
discussion to clarify the studznt's tkinking. A mistake followed by a correct answer causes the
next question to be selected from the same subgroup in which the mistake was made to make sure
the concept under consideration is well understood and to check that the answer was not guessed
at. A typical terminal printout from the ELECTRONICS program follows, including both student
entries and computer responses:

FEN

z22
L [o _
| |
[I\ |
1 VOLT PP o--/\/\/\Neee|leca|=\ |
SQUAREWAVE 21 S I N
- /- 7
Tl)
Vi
v

WHEN E(IN) IS IN THE POSITIVE HALF OF T4E CXCLE, THE VOLTAGE AT S
IS A. > E(CIN) B. > E(OUT) C. < E(OUT) D. E(OUT) =~ E(IN)

c
SINCE E(IN) IS5 +, E(OUY) #UST BE -. WHERE DOES THAT LEAVE S?

B . e

' CORRECT! E(IN) AND E(OUT) ARE OF OPPOSITE POLARITY. IF E(OUT)
IS5 - IT IS AT A POTENTIAL LOWER THAN GROUND.

O

RIC B o

Aruitoxt provided by Eic:

.y

EE

Q

v

WHERN E(IN) IS IN THE POSITIVE HALF OF THE CYCLE, THE POTENTIAL ACROSS
22 IS A. <0 B. 0 c. >0 D. ALWAYS = E(IN)

- A

RIGHT YOU ARE, JOHN! SINCE E(OUT) IS NEGATIVE, POTENTIAL ACROSS
22 < 0. .

YOU ARE DOING WELL, JOHN! KXEEP IT UP!

The progress of the student is monitored continuously and the computer will end the session
if the student is scoring less than B0X correct answers, subject to certain other conditions. If
a student is signed-~off by the computer he is advised where his weaknesses are and is invited to
try again after further study and consultation with his instructor.

The data generated by the studenis as they use the progranms is coded and Siored in one
literal and two numeric vectors which are automatically extended each time a progral® is used 1in
a yiven workspace. Dpata from student workspaces is copied periodically by the instructor into a
Central data managing workspace where output programs store it sad/or print it out in tabular
form. Data from any of the proyrams can be stored and accessed intermixed in any order.'

Upon successful completion of an entire program, the computer rints out a special
certificate (Figure 1) which attests to the student's having ‘achieved a certain level of
competence in that particular subject area. Few students ask about a numerical "grade" once they
have finished a program. Since they are .naware of the exact criteria on which they are ge%ting
through they tend to pay more attenton to the content of the programs and less on keeping track
of tne nuabe¢i of right and wrong answers.

. . Since the _proyrams are skeletally identical irrespective of subject patter, editing
individual questions is a simple aftair, requiring minimal APL experience.

Table III 1lists the program titles used in the instrumentation course and the topics
covered.]

student reactiofis to these programs have been very favorable. Most of our upper level
studests are far more anxious to try CAI than the typical freshman. Once they realize they are
not being graded by the computer they settle down to the chailenge of getting it to print out
their certificate as soon as possible. The programs have provision for students to enter
comments about them; about 30% of the students take advantage of this opportunity, the najority
of these expressing positive attitudes such as, "I found it very interesting and most important
of all, it is a good way of learning®, and "I wish we had things like this in treshman and
organic chemistry", and, "It vas fun." Dccasionally a student will pention how or why a

particular gquestion confused- him and this has led to periodic revision of the question
libraries. :

Students who have wused the CAI progyrams have done better on midterm and final ¥ritten

‘examinations than students who were not exposed to the ‘programs. The written examinations given

are generally of the problem-solving type and never repeat questions in the computer libpraries.
Castleberry and Lagowski[5] have encountered a similar effect of CAI on exam grades in a
freshman chenistry course.

Conclusions

Tutorial teachbing programs can play an important part in chemistry courses on any level.
BRegardless of the nuture of thz material or the type of desired student response, 1t is asually
possible to design tutorial programs which are both interesting and useful to the students. our
experience has been that these programs free the instructor to do more individualized teaching,
assure a npeasured ninimum level of competence on the part of the studeats, and most important,
allow this competence to be achieved at a rate determined mainly by the students' interests and

abilities. It is our intention to continue to expand the scope of the courses we are involved in
with additional CAI paterials.

MC 64

Aruitoxt provided by Eic:

O

ERIC

Aruitoxt provided by Eic:

*
*k *
*%k K kK
LA R X2 3]
% &k Kk
** %

*

6/19/72

rTo0O WHOM IT MAY COGHNCERNUN

'PZEASE BE ADVISED THAT ON THIS DATE,

B T =Y B R B P SV S

B R s € e et o e e e e ot
BILL BROWN
A bbbt Rodooh ettt - +
flAr > L e e At e e e e e e

HAVING LABORIOUSLY DEVOTED MUCH TIME AND ENERGY TO THE
PASCINATING STUDY OF
¢AS CHROMATOGRAPHY
HAS SUCCESSFULLY AND HONQURABLY COMPLETED A COMPUTER
ASSISTED PROGRAM THEREIN IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS IN THE COURSE OF STUDY IN
CHEMICAL INSIBUMENIATIOQON

WHEREBY, WE HEREOW AFFiX OUR SIGNATURES IN TESTIMONY AND

PITNESS TO THIS OUTSTANDING EVENT.

o - w~1f4Anye
[o} [e] IBM 370-155\APL,
[o] (o] ’ PROFESSOR OF CAI
oSYR.UNIV, o
o) o
o) o
o)
* x *

rhkK hkk
Khbd KA AK
ExhAK Ksthhh
KAk Er KAAARK
AXARXKK AXKNF K
XN KEAKE AKX AKRKE

65

O

ERIC

Aruitoxt provided by Eic:

PROGRANS

Progran NDescrintion
ELECTRONTICS Series and parallel netwnrls, properties of

VTVil's and oscillosceopes, passive networks,
feedback, operational amplifier propertics,

simple onerational amplificr circulits,

GAS CHROMATOGRAPHY Separation theory, thermal conductivity
uetector theory and circuiltry, specific.
operation of the Carle instrument used
in the course.

~

SPECTROSCOPY Basic theory of UV, visible and IR spectro-
scopy and instrumentation, and the use of
instruments availablé in the course: Bausch
and Lomb Spectronic 20, Beckman DB, and

Perlin-Elmer 237R.

BIBLIOGRAPHY

Corfey, C. E. and Macero, D- J., "Computer Assisted Instruction in an Introductory

Cnemistry Course", paper yiven at the Pinger Lakes Regional Computing Oorganization (PLARCO)
at Eisenhower College, Seneca Falls, New York, April 24, 1971.

Coffey, C. E. and Maceras, D. J., "Computer Assisted Inst:uction jin Chemistry", talk given
at IBM Filed Systems Centar, Syracuse, New York, October 20, 1971,

Eskinazi, J. and Macetfo, D. J., "An Interactive Program for Téaching‘pﬂ", J. Chem. Educ.,
in press (1972). :

Davis, L. N. and Macero, D. J., "Computer Assisted Instruction in a Chemical
Instrunentation Course", J. Chem. Educ., in press (1972).

Castleberry, S. and Lagowski, J. J., J. Chem. Educ., 47, 91 (1970).

66

[E

Y

THE RVYOLUTION OF AN INTERACTIVE CH:ZAISTRY LABOAATOHY PROSRAN

. Fitomas R. Dehn2r and Bruce E. dorcross
. State Uniwvorsity of New York at 3inghamton
3injhamton, Yew York 13901

Intcoduction

buring " the past soveral yeirs a proyram has been leveloped 1t SUNY-Binjhamton tor the
introductory Chamistry laborat>ry which allows the student to test his laboratory results an a

particulacr experiment against thdse vresults expect2d for his sampl2. This test is pacformed "

luringy th2 rejyularly schedulsl laboratary period, by the student, at a terminal locatéd
adjatent to the lahoratory, anl permits a rapid decision to be made by the student as to whether
or nnht he snould rep2at the experiment in order to obtiin worthwhile data. This operdtion 1s
1cToaplishad by way of the APL program CHEMLAB!, which pertaras the appropriate cildéulations an
ths student's raw data. At the tine the rep2at-no repeat decision is made, tie stilent does not
have, or get, the rasults of the detailed calculations made by the comsputer. 5hould a rapsat pe
necessiry, the student has end213h time to pacrform a duplicate experinent .On his relatively
5iapla apparatus before the enl of the lab periol. Should no repeat be necessary, as is the case
60-73% of the time, the student can disnantle his apparatus and proceed with the calculations at
his leisure, assured that the lata is capable of providing a ceasonable answer.

-~ -After——the2 --student —has -understord~—the ~concepts of ‘the exberiment, and pa2rtormed the

appripriate calculations, he miy entar his calculated Jata at the.” terminal, and receive a
tasular output which tells hin how well hHe did on the calculations and in the experiment. These
interictions of the student 3ad the program are shown in Figures.-1 and 2. This output is tucned
in 4ith the student lab r2port, and sarves 3s a basis for sStudent comments on the relative
succ2ss or failure of his expecimental work and calculiations. '

The l2velopment of the prajram, and its use and receptioh Dy students, teachiny assistants,
anl faculty have peen describel bhefore in 3 jeneral, user-oriented, non-technical, approach [1].
During the evolution of ta2 opraojran, a numper of APL -programming features were developed to
aczonmodate the particular tys2s of student interaction desicted or observed. It is the pucpose
3 this paper to discuss in 1etail some of these features, and how they accomplish the desired
enis. - : :

301¢ Programming Features
s .

We have tried two kinds 5f stuleot name entry for CHEMLAB. In the more yeneral projram, a
studant enters his name on reqaesst, and it is thep stored, exactly as written, for future usSe.
In the second version, a nane tahle is filed initially with names ot students in a particulac
laboratory section. These stud2nts must then entar that workspace tor their computar expericnce.
Both versions are 1in use, and have parti¢hlar advantages for different purposes. Tha tirst
neth>d makes the program generally available to anyone. The second version iS more etticient for
larg2 class production use. 3

Two kinds of lata =2ntry aTe availablé for this program. Originally a step-by-step method
was used in which each separat2 itenm was" called for individually. Such entry required a
quzstion-answer sequence for each datum; euch sequence requiringy an irreducinle anmount ot

transmission-respons2 ‘time. Since it was’ important to reduce the. time-.at.the terminal tor . each.

studznt duringy the first =21try into’ the proyram, which occurs during a laboratory period, an
attenp} td> cut the number of s2parate entries per student was explored.
. . -

T'he approach used was to have .the stulents enter the primary data in vector fo?m. A clear
liffarence in time reyquired for the’initial sessioh was found only vwhen the students prepared
for the vector entry by orjanizing their raw data in the order desirced before signiny oL the
terminal. This aspect can be mus2f4l in wncouraging students to set up a proper data table in
th2ir lab notebooks. Otherwis®, the directei nature of the step-by-step 2ntry was more
efficient. Und2r ocrdinary circinstances, a student should be at the terminal for less than tive
nizutes for each part of CHE¥LAB. Two terminals available for the last hour of a three-nour lab
accommodate on2 section of 24 students without excessive delays. Two tarminals available tor the
last two hours . of such a-thcee-hour laboratory period accomazdodate most of the students in two

24-student laboratory sections. '’ .

67

O

RIC

Aruitoxt provided by Eic:

[E

RIC .

rorerorieio v: S 68

Error “méssaqes designel to correct faulty entry seem to stimulate some programmers to
excesses of cuteness or sarcasd. while a light touch wita prose responses is often stimulating
anl _entouraging to the stud2ats, it is easy to misjudge th? appropriateness of a responsz from

coasidaration of only one situition. For instance, an 2acly -iraft arror .nessage reuexved Ly one

who 2ntered d4 yuantity regquast23l to be in liters with a flve-ﬂxgxt number (obvxously miliiliters
inste2ad) was faced with the messaye: J ;

™ :
e |
.

I SAID LITERS, DUMMY. TRY AGAIﬁ} / '
!

I'his message miyht be an appropriate rap on the/(;ucxles for the brignt but careless student who
vas secure in his unierstandiny of the experiment and the calculation involvei. It nmost
deciledly was not a proper rasponcse for the ordinary intrsductory student becoming acjuainted
with the coamputer for the firs:t time. That part of the program now is:

PN

(152] RETURN+RETURN ,(I26)+1

[153] '1{6| MOLAR VOLUME OF OXYGEN (IN LITERS)'
[154] +~((TEMP210)A((TEMP{155G)) /AROUNDY

(1551 'MOLAR VOLUME IN_LITERS, PLEASE!

(1561 ~RETURN(pRETURN]

(1571 AROUNDW:DATALI ,SWITCH 14 1«TEMP

.

It can b2 seen that if the test in step 154 is not net successfully, a3 more appropriate message
is given (step 155), and the 2rogram returns to the question (step 153) for a repeat.

. It is important to place checxs for decimal points or proper dimsnsions in a gragram which
involves numerical input, with responses which will permit a studenmt to find aun acceptable
answer before bouncing him fzom the proyram, with or without an error signal. For instance, an
early version of the CHEMLAB program had the following sequence: :

(621 ' |4| TEMPERATURE OF THE OXYGEN [CENTIGRADE]:'
[63] DATALI;SWITCH;51«LTEHP<])

(641 +(0.5>TEMP~DATAL L ;SWITCH;51) /AROUND

(651 DATALT;SWITCH;51«DATALT ;SWITCH ;5+1

(661 AROUND: (126)+FUDGY

(671 RETURN<RETURN (126)+1

(681 '|S|. BAROMETRIC READING; UNCORRECTED AT': DﬁTA[I;SMfTCH;S]; ' oCENTIGRADE'

In step 62, the studant is reguested to respond to a yuestion concerning gas temperature.
His numerical answer, indicatel by the open box at the extreme rigyht-hand end of step 63, is
stor2d in a location callel TEMP. This value 1is shorn of any fractlonal part (by the APL
oparitor XXXX) and the resilting 1integer i stored in a data array ~ location named
DATA] I; SWITCH;5]. Step 64 checks to see if the difference between rgMpP (which is an integer)
ani oArA[I SWITCH;5] is less taan 0.5. If sd, the roanded value 1is properly stored, and the
pragram is branchpj to that step labelled AROUND (step 66), which in turn sends th2 program to
st2p 68 - a npew-gquastion. However, if the value found in step 64 is not less than 0.5, the
prayram does not branch to AROUND, but falls tnrough to step 65, which increases the value
stor2d in DATA]I;SWITCH;S] by 1. These four steps in effect round .off the temperature values
entered to the nearest dejr2e (latar versions of this program perform this oparation more
efficiently). This temperaturz value, storel in DATA{I;SWITCH;5], will be used later as an index
to pick out a vapor pressure -orrection from a table stored in the workspace. This value of the
vapor pressure of water at the temperature of thes experiment is then used in a calculation of a
conputer-jerived result whiza is used as the basis for coaparison with the student-calculated
result. .)

\.1 ey

[E

-

Fhe programming problem and solution outlined above igndres two alternative passible
studznt responses: the ‘temperature ncasured may fail outside either extreme of thz temperature
tabple, or, the =student may pake 2 typing or understainding error in enteriny the datum S5 that
th2 number entzced is not a t2pperature value at all. Since this is the kind of arror such a
projram should recognize, a ch2ckiny sub-routine h%s been introduced:

[52] ;?ETURIW-RE'TUR}‘/, (126)+1,
(53] '|4| TEMPERATURE OF THE OXYGEN [CENTIGRADE]:!
(541 ~((TEMP216)A((TEMP+{1)<33))/ AROUND
- - ' .[55] "DATA QUTSIDE RANGE OF TEMPERATURE CORRECTION TABLE; 1esTsaaaE'
567 >RETIURN[pRETURN]
(571 AROUND: DATALI ;SWITCH;5 J«TEMP
(58] +(126)+FUDGY
(591 RETURN<RETURN,(I26)+1
[60) '|5] BAROMETRIC READING; UNCORRECTED AT ROCM TEMPERATURE. !

In this sequence, step 53 asks for the observed temperature. Step 54 tests the entered
valua, .stored in TEMP, to se2 if it falls within the range of 1633 dejyrees C. If this
rejuicement is @met, the projcanm branches to the naxt "AROUND™, which is step 57, and the value
of TEMP is stored in position DATA[{I;SWITCH;S }. .

Should this requirement not be nat, the progran proceéds to the next line, whizh is an
2rror message: '

-
DATA QUTSIDE RANGE OF TEMPERATURE CORRECTION TABLE;. 16sT<33¢C .

After this printout, the n2xt ' step, 56, returns thna progyram to step 52, which begins the
juzstion-and-ansver seguenc2 ajain. Checks of this type have been introduced at -many points in
the proygram.

Anothar major feature of tnis program is the inclusion of a routine which permits a student
to examine hi§»input data, ideatify a mistake, and correct it without having to reentar all
lata. An example of the sta2ps which accomplish this are rfound in lines 72-82 of the CHEMLAB
program, Figures 3 and 4..Sinc2 this guastion-retry routine is one of the more opajue “sajments
>f this program, a 3detailed 2nalysis of the steps follows (some earlier steps are included in
th: analysis, since they set irdicators‘necessary for the branching. routines):

Line 37: This line is the beginning of Part 1.

Line 39: PFUDGY is an index to control branchiny. It is initially Set to 1 so that the
operation -(126)+FUDGY will yield a branch to the succeeding line. Later on, PUDGY
will receive values which will cause branching to predeteruined locations within the
function. 1

Line 40: .RETURN is a va2ctor composed of the statement numbers associated with data input
statements. It is constructed by catenating togetaer the statement numbers of these
lin2s as the stulant nakes his first pass through the input statemants. Should the
stulent reyuire an ipdating of information already entered, a bfanck can be made back
to the appropriat2 line by way of these statement numbers. A statement of this kind
is used before every data entry.

Line 43: Line 43 is a variable branch statement. When FUDGY has a value of 1, the branch
is to the followiny line. When FUDGY has some other value (calculated in -line 81},
the branch is to that statement specified by 126 (the statement being executed)
plus the value of FJDGY. This statement appears after each data entry.

Line 77: RETURN. is. th2 vector .of statement-numhers; its last element is the statement

number associated with the beginning of the Question Retry Area. GOTO is a vector
composed of the statzment numbers associated with only those areas the stuient wishes
to retry. GOTO's last element is the same as RETURN's last element.

Line 78: 3ATE is a matrix composed of juestion entry points matched with corresponding exit

points. Example: Lii2 66 is the entry point for Juestion 3, and Line 68 is its exit
point. ’

O

RIC e

Aruitoxt provided by Eic:

I
STUDENT | COMPUTER QUTPUT
& \ -
SETS UP.APPARATUS, WEIGHS CALCULAYES EXPECTED GAS OK, PROCEED
UNKNOWN SAMPLE, MEASURES VOLUME FOR STUDENT'S OR
TEMP. AND PRESS.,CONDUCTS EXPERIMENTAL CONDITIONS, HAS ERROR,BUT OK
EXPERIMENT, OBTAINS PRODUCTS' AND COMPARES IT WITH OR
WEIGHT AND VOLUME. PRIMARY RESULTS, AND BRANCHES - ~REPEAT
TO APPROPIATE MESSAGE.

ENTERS PRIMARY DATA

f N ——_— -

! v v —
(REPEATS EXPERIMENT) OR CALCULATES THEORETICAL PRINTS OMT

PROCEEDS WITH CALCULATIONS
OF MOLAR VOLUME

ENTERS RESULTS OF CALCULATIONS

RESULTS FROM KNOWN SAMPLE

RESULTS FROM STUDENT
PRIMARY DATA;AND TABULATES
STUDENT INPUTS

(

O

ERIC

Aruitoxt provided by Eic:

T

FOLLOW SAME PROCEDURE FOR>
PER—CENT COMPOSITION
]

COMPOSITION; CALCULATES | -

AND COMPARES
THREE DATA SETS;

‘WITH APPROPRIATE
ERROR MESSAGES

v
EVALUATES RESULTS, INCLUDING

ERRORS, AND SUBMITS WRITTEN REPORT.

Figure

WEIGHT OF OXYGEN.

ABSOLUTE TEMPERATURE.

CORRECTED BAROMETRIC..
READING.

PRESSURE DVUE T0O OXYGENW.

VOLUME OF 02 AT STP.

MOLAR VOLUKE OF 02,

‘ALL STUDENT PRIMARY DATA IS
STORED FOR SUBSEQUENT RETRIEVAL

AND ANALYSIS BY EXECUTION OF

1. Student Interaction with CHEMLAB1

AUXILLIARY PROGRAM-LAB INSTRUCT'

[=m~meeeae HMACHINE COMPUTED

USING YOUR DATA.

|
YOUR ~ |
DATA. N ! MACHINE COMPUTED*
; ' | | -- THEORETICAL
| | | VALUES.
3 + +
0.3186* 0.3186 0.3437" ~
2987.0 297.2 267.2
739.3 739.1 739.1
716.9 i 716.7 716.7
219% . 217 241
22.2 21.8 2204

COﬁ!PARI.S:OI»’ OF THEL*® COLUMS ALLOWS YOU TO CHECK BOTH YOUR CALCULATIONS
AND THE AGREEMENT BETWEEN YOUR EXPERIHENTAL DATA AND THE THEORETICAL

VALUES FOR YOUR SAMPLE.

" ERROR MESSAGE ILTERPRETATION:

* 5 - 10
*x 10 - 20
xxx 20 - 4o
® >4 0

PERCENT ERROR
PERCENT ERROR
PERCERT ERROR
PERCENT ERROR

PLEASE HAND IN THIS TABLE WITH YOUR FINAL LAB
REPORT. IF YOUR SAMPLE IS AN UNKZOWi, YOU MAY PROCEED

TO PART 3, WHEN READY,

BY TYPING CHENLAE1l AGAIN.

Figure 2, CHEMLAB1 Output, Part II

70

O

ERIC

Aruitoxt provided by Eic:

{28]
[291]
[30]
'a1]
L32]
(33]

L3u]

Las]
L36]
(37]
[38]
L3g]
Lun)
[41]
(n2]
(u3]
fuy]
(us]
Lue6]
[u7]

[ug]l

[u9]
[50]
{51]
[52]
53]
[su]
[55]
[56]
[57]
[58]
{59]
[60]
[61]
[(62]
[63]
[6u]
[65]
[66]
(671
[68]
[69]
[70]
{711
[72]
[73]
[74]
[75]

L78]

{771
[78]
£791]
L80]
[81]
[82]
(831
L8ul

[85]
[86]

[87)
[88]
[89]
[90]

SWITCH«(]
*(DAWA[VA 1OWITCH 1]‘14)/DRACULA
SAHPLE DESIGHARION ™-{.IF.
DATALY A SHITCH ;1)«FUEBAN (]

DRACULA : *((1u)c0ATA[I*ZA;SWITCH;15])/FAH,FURTHE?
FAREST : ! NY RECORDS INDICATE

THE SANPLE!

‘' PYPE AND TRIAL CEUSEN. THIS I
ID REASON TO CHARGE!

‘' THIU DATA, INUDICATE IT IN YOUR
+0

FAR:Y PANT 1: ESTER THE FOLLOWILG

1

FUDGY+PT+1
RETERN+(T26)+

vt WEIGHT OF TUBE AND CONTENTS

DATALI ;SWwITCH 2]+l
+(I126)+FUDCY
RETURIRETUNL , (126)+1

puRE

KCLO3, TYPE PURE)!

LAVE ALREADNY ENTERED VALID IXFORMATION FOR

Yoy
NICRISATION CAY
LABCRAY

WJEINALE ,FAREST

J07 BY ALTEREDR. IF THERE IS A VAL

"ORY REPOKT.!

G PIZCES OF DATA:

BEFURE HEATI

el P

2] HELGUT OF TUBE AND RESIDUE AvFTER HEATING.!

DATALI ;5wITCH 3]+ U
+(I26)+FUDGY

RETURR<REDUEL, (I26)+1

'3 WEIGHT OF BMNPTY TUBE.
DATALI ;OWITCH yu]«
+(I26)+PUDGY)
RETURN«<RETURG, (I26)+1

Y TENPERATURF OF THE OXYGEN [CRETIGRADE]:

+((PEMP216)A((TENP+(1)$33)) /AROUND

! DATA QUTSIDE RANGE OF TEMPERATURE CORRECTION TABLE; 16<T<33 oC!

+RETURNL p it TUKE]
AROUND :DATALI yUWITCEH 35 J«TEMP
+(I26)+FUDCY

RETURN«RETUKI!, (I26)+1

tis| BAROLETRIC READING; UNCORARECITED AT ROOHM TEMPERATURE .
+((PEMP2710)A((TEMP+)<769))/AROUID 2 .
' DATA OUTSIDE RANGE OF PRESSUKE CORRECTION TABLE; 710<$P<769 MM. HG'
+RETURN[pAETURN]
AROUND2 :DATACI ;SWITCH ;83 «TENP
+(126)+FUDCY :
RETPURN+RETURH, (I26)+1 7
t6| VOLUiE (UNCORRECTED) OF OXYGE! COLLECTED. o
DATALI ;S9ITCH 7]+ J
+(I26)+FUDCY .
RETURN+RFTURI LAST+(126)+1
L) B
' UHAVE YOU MADE ANY ERRORS Il ENTERING YOUR DATA 2!
+(N /{L2=\3)/GOTCHA,GOAL ,GOLLY
! ENTER THE WUMBER OR NUMRERS

SSOCIATED WITiH?
' THE DATA YOU WISH TO CORKxCIT.
ATE WITH BLANKS.!

S (FOUND IN THE | |) OF THE IMPUT STATEMENTS A

I &

CRL THAI

GOTO+0, (((\ (DY+phETURN)=-1)ell) ,1)/RFIURN

GATE«(2,Du)p HETURN 1 Q(RETURE -2)
+((pGOT0)=2)/RESURNI D] e
GOTO+1+46010 7 ’

FUDGY+(126)-GATEL2;(GATEL1; JeGOTOLl])/tDJ]+2

+G0TO[1]

ONE NUMBER IS TO BE ENTERED, SEPAR

GOQChA.HAHf*((2OXLO.5+DATA[I;uWIlLH;dJ%2@)~7OO)+2O

PART«DATALL ;SWILCH 81-TCTABLELLO.S+DAPALT

0.03

PART+PART -/PLYABLELLO . S+DATALT ;UWIYCH;;5)~15]

DATALI ;5wITCH 6]+(lTanNfLHUIBAH]X(UATA[I SWITCH;;2]- DATA[I SWITCH;4])%x25528020x(

DATALI ;8WLTCH 35]4273.16))

SWIYCH 35)-15;PART]+

DATALI ;50TTCH 6J+DATA[I,SW I'CH 36)433475,758xPARY
WITCH ;7])+DATALI ;SWITCH ;6)

fUDfL+I(DATA[I SWITCH;6)-DATALI ;¥

+((FUDGE<0. 1).1(0 1SFUDGE)a(FUDGES0.2)), ((0.25F

0.3)),(FUDGE>0.3))/VG,KG,PG, UA
- Figure 3, Steps 28-60 of CHEMLAB1

B

71

Figure 4,

UDGE)A(FUDGE s

Steps 61-90 of CHEMLAB1

)

/////
\

Line 79: This line is the Question Ratry Area termination check. It checks to see 1f GJTD
has fewer than 2 elepents; this should occur only after the last student retry
request has been processed.

Line 80: This "line trascates from GOTO its first element; this element is the statement
number associated with the question that has just been proce55ed. On the first pass,
this elem2nt is set to zero and truncated. .

Line 81: This lina calculates the Vvalue of FUDGY necessary to cause a branch vack to jLirne
79 which is the Oﬂe:tlon Retry Area termlnatlon check. Note that this Hranch-back

Line 82: This is a branch to the first element of GOTO, vnxch is always a statement number

and always a questlon entry poxnt.
THe ralatlvely elaborate data entr1 ani correctxon features just described pmake it zasy for
Stud2nts newv to the computer to use it without frustrating delay. These kinds of teatures are

2sp2sially important in the programming 9of functions to be used by a large number of students
within : specified, limited, pariod of time

Other features 9f this program and auxilliary programs necessary for its operat*An Hlll be
prasa2nted, as time permits, in the oral presentation.

Seneral Observations and Conclusions !
A major program evolves, in yeneral, from many drafts. Problems often seem to arise where
no ﬂifficulties were anticipat=3. It is very important that the academic directions and
dezisiodns come from the faculty member. It follows from this that a faculty member needs to keep
in cloge touch with the develdsnent and debugging of the program, particularly in the early
stages{—AK good, operdtlnq, interactive program repr2sents a large investment of programmer and
facultyN\time. Some of this invsstment may be recovered if an attempt is made to gena2ralize the
pragram So that significant blocks of it can be used in other appllcatlons with minor changes.

If the <computer 1is not under your personal contrcl, it is meortant to consult with the
cozputer center before, trying to process a large number of students in a fixed period of time
through' an interactive program. Languages such as APL are often run sxmultaneously with other
remote languages, and with ba,kground batch processing. A low prxorxty assignment to tha APL
5yst2m you are using may result in celatively long delays between the transmission of a line by
1 student and the response by the computer. Delays of 10. .sec 5nds are long, and of 30 seconds or
a1ore destructively frustratiny. Often a change in priority will reduce such delays to a few
seconds at most. . e

Some stulents’ viev any kind of computer mediation of insturction as a negative,
depersonalizing, undesirable interference- with ‘the educational process. It appears to us to be
important to- emphasize whenever possxble that programs such as CHEMLAB are intended to improve
studznt-faculty contact by movxng some routine data manipulations to the computer, and using
that time saved for dealing” with whatever some of the current "real” problems are. In other

.words, the time spent-by-the faculty-and -student in the laboratory is-not- necessarily -reduced,

EE

but the guestions and discussions which occur seem to be devoted more to "how" ani "why" rather
than "is the number right?" or "what did I do wrong2?n,

ACKNOWLEDGHMENT

We are particularly Lndebted to Mr. James Higgins, academic manager of the SUNY-Binghamton
computer center, for his encouragement and support of the development of our computer
applications in Cheristry. We were very fortunate in having available to us the programming
assistance and expertise of Mr. Kevin Kelley and Ms. Anne Kellerman.

FOOTNOTES

1. Thomas R. Dehner and Bruc2 E. Norcross,

N "The Use of AP in Computer-issisted Instruction in
Freshman Chemistry"; presanted at:

'

a. 158th National American Chemical Society Meeting, “New York, September 8, 1969;
b. "Second Conference on Computers in the Undergraduate Curricula", June'23-25, 1971,
Dacrtmouth College, Hanover, New Hamgshxre* K

f
Ce "Conference on. Computers in Chemlcal Education and Research", Jdlﬂla9—23, 1971,
Northern Illinois University, Dekalb, Illinois. ‘

Q

RIC

s v 72

EE

RIC) ' 73

A COLLECTION OF GRAPH ANALYSIS APL PUNCTIONS

E- Girard, D. Bastin and J. C. Rault
Laboratoire Central de Recherches
Thomson-CSP
Domaine 'de Corbeville, B. P. 10 ,
(31) Orsay, Prance

A sSet of functions dealing with graph theory is presented: graph description,
aojifications, k-connectivity inalysis, and search for paths with given properties. Graph coding
coherence and the modulacity of APL functions enable one to link these different procedures at

.will and_to use them in. such different...problemss .as —~gigital - circuit iwmplementatiom;, —fauit

detection, and I. C. mask layoat.
The APL functions are givan in Appendix 1 and detailed examples in Appendix 2.
e ‘
1 - Lntroduction
Graph theory is encountered in wmany fields of application. Graphs are very useful for
modeling and describing processes and systeas. Thus there is a constant need for algorithas
dealing with graphs and 1@adiny to efficient computer prograas. :

bDuring the development »of several projecks concerniny simulation of digital circuits,
generation of fault detection and location sequences, and layout of printed and/or integrated
circuits, we had ar opportunity to experiment with many graph theoretical algorithas. This led
us to write a collection of APL functions which we intend to describe in this paper.

The main data structures and general functions for handling them are first described. Then
a collection of APL functions lealing with many aspects of graph theory are detailed. -

2 - 3raph Description
L]
The choice of a good dascription for graphs is not a trivial task. Two main constraints,
usually conflicting, prevail: - a2

- keeping memory occupation to a minimum,

- providing efficient execution.

Several coding schemes are generally used. On the one hand, Ei;re are list structures
vhich meet the first requirement but have the drawback of being unwieldy to handle; on the other
hand there is the connection matrix in which the Ith row contains the puabers of the vertices

Zuunected {next neighpors, prélecessors or successors as the case zay be) to vertex numbered I.
This coding scheme meets tie second requirement but has ‘the objectionable feature of wasting
®eaory unmecessarily.

‘This state of affairs m2ins that one should not have a single coding scheme but rather the
capability of several schemes with the appropriate routines for switching easgily from ocne to the
other. ,

In wvhat follows we use mainly two coding scheaes:

* In the first method, akin to list procassing, graphs are described by means of a
single vector vhose components are either zero or integer indices. The indices for
the vertices connacted 'to vertex labeled I (adjacent vyertices predecessors ofr
successors accordinjly) are the conpnnents of this vector comprised between the Ith
and the I-1th .z2ro. This way of describing graphs is convenient for APL for it
keeps memory. occupition to a minimum while it is well suited to APL operators. The
enly disadvantage in certain applications such as graph reduction, is the requiraent
that vertices be nuabered from 1 to N, with N the total number Of vertices in the
graph under consideration. '

. In the second metaod, graphs are described by means of the so-called arc aatrix (or
. edge matrix in the -ase of unoriented graphs). This matrix has two columns and as
many lines . as th2re 'are arcs (or edges) in the graph. This scheme leads to memory
occupation usually Larger than that in the first scheme but it is better fitted to

the array capabilities of APL operators. '

Q

JAruitoxt provided by ERic

According to the preceling coding schermes it is necessary to handle vectors consisting of
groups of indices included betveen tvo separators, narely zeros.

v PR X extracts the Nth group from Vector V.
Example:
230130124030 P82
i 3
v PP N gives the components stored in a given vector V betwveen

the zero whose index im V is N, and the preceding zero.

Example:
230130124030 £8P 10
1 2 4
, ¥ SN N indicatz2s which groups contain a component of value N.
Example:
2301301250394/ 3)
1 2 4 |
V SR N . gives the indices of ez:h 0 ivmediately following the
components of value M in a given vector V
Example:
2 3013 04%% 4030 S8R3
3 6 12
vV MODIFY W replaces in the vector V the group of number W[1] by the
group formed by 8¥[2], ...XXXXX
Exanple:
) 23013012403 ¢CHNOCIFY:25 €7
| 2 3 0 5 6 7 0.1 2 &% 0 3 0f
N PERL V exchang2s in vector V components whose values are N and N[2]
Example:
j 3 4 PERL 23 013012 %030
’ : 2 4% 0 1 % 0 1 2 3 0 4w ¢
! S
N PERB V exchang2s ian vector V the two blocks whose ranks are N[1] and N[2]
Example:

~
ERIC

74

Three special functions for sorting and deletion are constantly
usad. These are:

TTRIC V: s>rts a given vector V in ascending order with
d2letion of multiple occurences.

e s

GoM V: d2letes wmultiple occurrences in a given vector V.

TRI V: .a2rges groups from a describing vector having comamon .
components, into a single group..

CODE DECODE vV d2codes the vector V according to the code provided by the matrix
CIDE where the first rov corresponds to the new nunbering and the
sz2cond one to the. first puphering. :

M
0 1 2 3 4 ‘ S :
0 2 L 1 \\\~q5w, _\uvw/‘__/
I'DECCDE 230 1301240 3c¢
2 1 0 4 1 0 4% 2 3 B 1 o

4 - Graph-Describing Functions

This niladic fufction simply builds wup, in a conversational mode, the graph describing
vector for both oriented and unoriented graphs.

Input: for each vertex the list of its successors (or of the adjacent vertices)
Output; the resalting describing vector.

. In the case of unorieated graphs the description is checked for inconsistencies and ill
described vertices are printel out. !

-An example is given in Appendix 2 and will be used throughout this paper for illustrating
the different APL functions,; . - o

A
. ‘_.i'
Fuactions OBTPRE and QBTSUC:
N) R 1\“
These two complementary ,.monadic functions allow, in the case of oriented graphs, one to

obtain the predecessor vector PREDEC from the successor vector SUCCES and vice-versa.

A .

Example:
A SUCCES : :
: 35 0 30 4 6 5 € 6 ¢ &L T ¢ = € 0 S ¢ 7 10 0 € 11 € 12

3
C 13 0 Ty 15 0 12 0 16 17 0 iy 18 C 0 0 2o 0 22 C 2z c

LePREDEC«OBYPRE LUCCES
¢ v 1 ~ 0 3 L [V

A3
[8]

¢ 12 1w 0 1z 0 1o

My

O
Fad
)

n
~

LCEL5UC PRLDEC

3003 o'+ 0 5 0 6 0 4 7 C 5 € & & ¢ 7 1 C & 2%
¢ 22 ¢ 13 0 1 35 ¢ 13 o ¢ 2 v FhoRE o

B " ¢ 1 ¢

O

RIC

o o _ 75

“'the other, AREF, vhén multiple edges are present.” ~

O

ERIC

Aruitoxt provided by Eic:

This is for deriving the i1noriented g:éph associated with an oriented graphb.

Example: 5
L+ADSAC+0ELADI SUCCE S

3 03 ¢ 1 2z & ¢ 3 5 C 0 4% 6 7 0 8 5 7 6 5 ¢ 8§ 9
¢ .7 8 1¢ 6 7 € 30 0 ¢ 911 0 16 12 2z © 11 13 i 0
12 14 15 0 42 13 16 0 13 1€ 17 © 1% 15 12 0 15 C
it 6 26 6 49 22 C 2% © 11 20 21 G

Fuactjons ARETE apd 7ECI:

The arc matrix ARCMAT or the edge matrix EDGMAT are derived from the corresponding
describing vectors SUCCES or ADJAC by means of the function ARETE (French for "edge"):

‘ARCHAT < ARETE SUCCES

EDGMAT <~ ARETE _ADJacC

In fact tyo different functions are used: one, ARETE, if multiple edges are not considered;

Conversely, the describing vectors SUCCES and ADJAC are derived from the coxresponding
matrices:

— SUCCBS = VECT ARCMAT

ADJAC e VECT EDGHAT

fheels

Punction ROUE (Prench for "wheel®) builds up the describing vector ADJAC for a wheel of
given order. The. "hub®™ is the vertex labeled ! and the otehr ones are on the ris.

- ; ADJAC < ROUE N
Example:
2
3 -
6 2
!
W
-3
_ HOUE 5 . R
2 5 4 5 6 0 1 ¢ 3 0 1 & 2 01 5 3 ¢ 1 ¢ 4 G
1 5 2 ¢
76

Adjacent Vertices

Vertices adjaceat to a given vertex labsled N are provided'by the dyadic fuaction ADJA:

ADJA < SUCCES ADJA N

Example:

SUCCES ADJA 11
10 12 22

Sot ast e

SUCCIL ADJA 1

[

Apgestors of a Given YVertex

Function ASCEND gives the set of vertices from which a given vertex labeled N
reached. -

ANC <= SUCCES ASCEND N
Exaaple:

R LUCCES ALCERD 22
260 21 19

LUCCES ALCEND 3

Conversely the function DESCEN gives the set of vertices which aay be reached from

labeled N.

"DES «- SUCCES ‘DESCEN N -

N
Exasple:
SUCCZE DELCEN 12
13 14 15 12 16 17 16
: SvCCEL DELCUN 8
9 7 10§ b % 12 & 13 14 15 1¢ 17 18

Q '

ERIC . - 7

Aruitoxt provided by Eic:

aay be

vertex

.

+

Function COMCO derives the weakly-connected conponent to vwhich the vertex labeled N
beleongs:
CSC == ADJAC CONCO N
Exaaple:
) s
2 3 4 3 7
2
|
. 1 NPT J¢»~———f%t:;;;;;-————lg
T @
{ S ;; ;:j -© lo
A t !
3 T; 12 ry 2.9 o—9
... U a‘
TN S A
ALJAC Clico 1é
12 112 9 10 g
ADJIAC COLCC 20
20
e

Function COPFCO in a similar vay gives the strongly-connected component to which the vertex
. labeled N belomgs.

CFC <— SUCCES COFCO- "N
Exasple:
L LUCCEL COFCO 3 \
3, LUCCEL COFCO 7
S 6 69 4w 7 10

SUCCRL COFCO 10
¢ v 7 10 0y L4

5 - 3raph-Structuring Punctions

Here are gathered several functions used for modifying graphs bysremoval, additiom or
duplication of arcs and/or vertices. The functions given belov in this paper concern unofiented
graphs oaly. similar functions exist for oriented graphs. 3

—rhenwadded~<vertexu—iswlabeled.uith.an,indexwequal_toﬂthemhighestmlentaxnindﬁ!_iﬂ,thﬂthéR!,

plus opne. It is sufficient to indicate by the vector N vhich .of the.verftices .should be adjacent ~
to the nev vertex. p

\ N
Example: '
i x'V
{
3 !
5
4 N i ...-.-“_-.f.-”_- =
q
g : o s 7"‘-.07“".1?_‘”3A—’ut‘t\:‘:—r%:hﬁ5~~—»-O e G TR e Saatb vt
|
\ I
.
B T O o]
o .

1 4 6 AGOLIL GRAFZ
7 « 0 1 3 4 0 VR c 7 PR ¢c 3 % 6 0 7 S
.. 0.1 % 6. ¢ -
Deletxon of :a Vertex
Seue"a: .vertices may be removed from.a graph by means of the function ENLBVSn The, vertlces“__
to be removed are given in vector N. Vertices are relabeled. '
Example: o
4
”,'N)
- - --- - 90 .///// R S
Q
1 26 ENLEVS GRAF2
3 0 3 ¢ 1 Z ¢
Addition of am Edge '
The additioa of an edge is perforvwed through the dyadic function AJOUTAZ’
KDJAC & N AJOUTA ADJAC .
'.‘
Here "N i§-a Ewo-component-vectosr indicating-the.two vertices incideat to the added\edge.

Example:
_ 3 4 AJOUYA GRAF2 S :
2 0 1 3 4 0 2 5 2 § 3 0 3 4 6 0:!5 .0
WJ:EEE ’ 79

<

‘ e
Deletion of an Rdge

Similarly an edée is deleted with the function ENLEVA:

Z 4 ENLEVA GEAF2 .
2 0.1 3 0 2 5 0 5 0 3 4 6 € 5 0

C e e

_________ N _is_ a ,tvo:COIponont lecton_gltlngﬁlndlces_of_lect.ces to_be_nerged.

On merying tvo vertices, the resulting vertex is incideni to all the edges incident to the

2 L lnltlal Vﬂrtxces. Edges vhich =may 1link these two vertices are deleted. Vvertices are
relnbeled. ’ . :

B

(ADIAC - b courra TABINET e

. . - - PN ; T
N - e o m i e . @ v e wrane i

E.Q_Eie—
- 3 .
1 q
*—- ¢
&
, .
3 5 CONThn GRAF:Z !
2 0 1 3 L ¢ 2 oy 5 0 2z 3 0 3 o0
. _ .
Vertex Splifting . o - -~

A given vertax may be split 30 as to generate tvo vertices. One of these vertices keeps the
initial index, the other is labeled v1th index ¥ + ¥ where ¥ is the total number of vertices ina
the initial graph. -

Bdges imitially incident to the considered vertex are assigned to two resultiry vertices
according to the user's choica. The way the splitting is perforsed is fixed ip the left
_argu:ent of the corresponding function dubbed MITOSE for obvious reasoas. This left argumeat is
a-vector W whose first coeponeat has for its value the index for the vertex to be split. ..The
other componeats aTre the iadices for the vertices wvhich should be kept adjatent to the first
resulting vertax.

ADJAC = 1§ METOSE | . ADJMC

Example:

ERI!

oo . 80

Baximal Subgraph Extraction

Bxtracting a aaximal sudgraph from a graph (which means simply keepiag im tke graph a set
of N vertices alonj with all tae associated edges in the given graph) is performed with the
function SS5GBMAX. Vertices of the subgraph obtained in this way are then relabeled vith indices
ranging from 1 to ¥ in correspindence wvith the imitial order.

GRAPH o= SG SSGHAX GRAPH

Example:

2 45 6 SS5GMAX GLAE?2
2 0 1 3 0 2 4 0 3 o0

6 -~ 3raph Amalyzing Punctions

» In this section we give a non-exhaustive set of functlons for the determination of the
v characteristic conponents of. or the :eductlon of, g:aphs.

. e e N e - . I

*'_—__?Gtﬁfliﬂlrfﬂf In—Degrees.anl Out-Degrees

The function DEADEG detarmines the in- . out-degrees of A Subset; SET; of-verticesiim.a

given graph. : S

D @ SUCCESS DENDRG SET

D is a two~component vector thre D[1] and D[2] are the in~degree and the out-degree of SET.

~UCCES DEMDEG 12 13 14 15 16

Checking for Cycles

Cycles 1in a graph (assuped to be connected) are detected with the function CYCLE. The
procedure used here consists ia deleting pendent vertices from the graph. Then pendent vertices
are deleted from the resulting graph and the procedure is iterated uiatil no more vertices can be
deleted. If all vertices have been considered, no cycle i% presast.

» CYCLE 2 0 13 %0 250250346050
L GRAPHE POSSEDE 4U. NOTNS W CCLE.

a

)

CYCIE ™2 01 o e o 4 0 23 s o u o 27 8 06 06 0
T e T bb ‘GRAPHE EST SANS CYCLE. - ' o

ERIC S

s e ;

co
[

Ty

ud

Checking Whether a Graph is a dheel

The aomnadic functioh WHEEL returns
a wheel of order N.

N
Exasple:
ol
LEDEL 2
S
C
Determination 2f a Spamuing Cr2e

This is a classical algoritha
describing vector for the zpanning tree

$pT «0LTADY CCD

ERIC

Aruitoxt provided by Eic:

zero if the tested graph is not a wheel, aad Rif it is

<- WHEEL GRAPH

S

3 4 0.13601248%60130Y 04360532280

A
i/}!SEL31&036012105501350143'50‘5320

implesented by function A3BCOV. The result is siaply a
- GRAPH rust be renunbered by the fuactioa FEWNOT:

£ DCCODE ARLCOY WIVILOT GRAPH

GETL T

N
=}
-
w
o
N
P~
o
w
. .
o
P~
o
o
w
o
v

82

.

-

Ciccuits

Fuaction CIRELM inplemeats an algoritha devised by J. C.

Terman(9]-

ELCIR & CIRELH GRAPH

Exapple: CIRELM SUCCEL
4 5 ¢
5 6 7 ;
7 8 9 K
g 9 10
12 1 14
12 i3 15 iG 14

- L 5 [0 5 c 7 o 7 1 9 [8 Q 1c 0 12 13
2 12 13 1§ 1€ 14 o
Ngmber of Spanning Trees In A iheel

Function NSTW returns the nuaber

The algorithm is describel by B.

In fact, two different fuactions
o e meegeer i e el eiae e
EXample:
RSN 3
‘1€
ASTH &
L5
W ST S
121

= Graph Decomposition Into

Reduction

of spanning trees in a wheel of order N.
NUMBER <— NSTW N
R. Myers[5].

are us=d,

P .

WS 3
186

KSTH 4
45

WSTH L
121

one is recurrent (HSTH), the other not

1u

{§STN):

of graphs int» their ueakly—connected'conponents is performed with the function

" DGCSC which uses a classical pcocedure. The set of vertices connected to vertex 1 is first

w’

derived and extracted from the initial graph, then the procedure is iterated on the remaining

graph.

§SCCOMP & DGCSC

O

ERIC

Aruitoxt provided by Eic:

GRAPH

&

WCCOMP is a vector foraed by tie sets of indices of the differeat components delimited by zeros.

Exaaple:

JLUC ADJAC =
¥ s 6 7 0 8 9 10 11 12 O
6 17 18 15 19 0 20 o0 21 22 O

Graph Decoamposition Into Stronjly Connected Components
Graphs are reduced in th2ir strongly conmected coaponents by the function DGCFC gbich uses
a procedure similar to that described above: VB
Exaaple:

DGCFC SUCCES -

0 =z 0 3
17 0

Determination of Pend.nt Vertices

0O 5 ¢ 4% 7 6 9
18 ¢

13 0 z0 o

Indices for pendent vertices appear only once in the describing vector

PENVER <— SOMPEN

:PENVER is a wector whose compoaents are

Deterainatjon of Rooted Irees

Vertices beleanging to rooted trees
then determining paths froa them to the

corresponding trees but are coansidzred as articulation points.

by the function REARZO:

iaput argument:

resu’ ..

O

ERIC

Aruitoxt provided by Eic: IS

GRAPH

the indices of .pendent vertices.

are determined by comsidering first pendent vertices and

roots. For convenrience, roots are aot included ian their
Their deteraiaation ia pecforaed

describing. vector

a vector contaiming the sets of indices of the diffecrent

. reoted trees. Ce e -

84 : ‘ o

[E

P i e B - - g5 - - N

In the following, graphs are assumed to be connected.

Determination of Cycles

Independent cycles are letzrmined while building a spanning tree, Rooted trees are first
detected and deleted froa the graph:

input data: vectors describing respectively the graph and its
possible roote3d trees.

result: ’ a describing vector for independent cycles whose nusber
is equal to the graph cyclomatic number.

Determination of Lobes

A lobe (2-comrected component) is. a set of cyeles im which two cycles skhare a commor edge.
Lobes are determined with the function RELOBE whose input argument is the cycle-describing
vector and whose output is the lobe-describing vector. :

EY :
i‘s

Determination of Cut-pBdges

Cut-edges (bridges) are edges which belong neither to a lobe nor to & rcoted trea. Cut-
edges sharing a commoa vertex ire considered as a single one. : :

sre mimwemaes .. F R o s w. s D A I S . i e e

Deteraination of Cut-Vertices

. This sectior 1is concerned with the determinmation of cut-vertices betuveen tuofiobss, one
lobe and one rooted tree, or ome rooted tree and oase cut-edge. Cut-vertices within a rooted tree
or a cut-ed:e are not considered -here. Function REPOAR is“used for this purpose.

Por each é&t—vertex threc sets of datz are provided as follovs£

a. cut-vertex betweem two Lobes: - v .
. : : i
Y 1. index of the cat-vertex)) j
i 2. & 3. ranks of tha two lobes in the lobe describ.ag vector. i
b. cut-vertex betweer a‘lobe and a rooted tree:
’ 1. index for the cut-vertex
24 rank of the lobe in the lobe-describing vector.
3. negative of the ramk of the corresponding rooted
tree in the rocted-tree-describing wvector.
Ts Cut-vertex between 2 rooted tree and a cut-edge:
1. index of the cut-vertex ’
2. negative of the rank of the correspondiag cut-edge ia
the cut-edge-lescribing vector
3. rank of the corresponding rooted tree in the

rooted-tree-dascribing vector.
T

This way of representiag cut-vertices {or articulation points) is convenient for finding
the Compouenis they ccmnect. ’ : 1

Several of the above fuactions.are gathered in a single function, DECONP, for the rxedictiom

and the determinatiom of characteristic elements in a graph. &
Y) '
An exaaple is detailed iw Appemdix 2. . |}) %

G

O

RIC | | o | Lo - R

Euleciap Circuits
Eulerian circuits are 3ietermined through a "aminirecoil" procedureb[7,8] implemented by
function EULER.

In the case where the graph under copsideration is not Zulerian it is modified by
'iuplicating a minimum nunber of edges in the graph. Punction ACHEN performs this operation.

data input for EULER: graph describing vector .
result: a message indicating whether the given graph is Eulerian
- or aot. :

If not, the list of the paths to be duplicated is printed out. The Eulerian circuit is
described by a vector formed by the indices of the vertices, given im the order they are
encountered along the circuit. :

Example: -
. - 2 Ny
a/ Y
¥
A 3
S
EULER [+V
; 2 2 0 4 3 0 S5 & 0 7 8 0 i 2 0 3 38 0 5 6 0 7 7
. . LE GRAPIZ N'EST PAS LULLRIEYN; CHEMINS AJOUTES ’
' - 2 4
'f : 3 5 1 ‘
. 75 2 4 8. : i ,
. Lt T . !
P ‘ . CIRCUIT EULERIEN o
_ 1 2 4 8 7 5 2 4% 8 7 5 2 4 7 6 3.6 3¥s 1 2 3 5 1
rs
o ;gggggpésigggg Into 2- and_3-Coanect Compencats
N
This dgéqmposition takes advantage of results, established b} Kleitman[4], for miniamizing
. the @umber of pairs of vertices for which either two- or three-vertex disjoint paths are sought.
- * The .graph is 2-connected for 3-connected) if these two (or three) disjoimt paths are fouand.
r In the case that no such paths exist, the cut-vertex (or cut-set) linking two sets of 2-
- comnacted (or -3-cnnnect=d) componeats is provided. .
“This procedure is then itarated on the two resulfing sets. :
. : i
: . A special labeling procedire is.performed to find the vertex disjoint paths[3].
. 5 - .)
i ’:v -
, * ’ v
‘ ; i T
Q .,) i
ERIC. - Y ~ | ~ 1
—_— . . E 86

[
4

CODE DEC3IC [eA1
4.5 8 0 3 8 9 0 2 % 7 0 1 3 5 6 7 0 1 4. 6 8 o

1'% 5 0 3 4 g 0 2 5 g4 0 2 7 8 o0

COMPUSANIE $-CO¥NEXE: 1 4 5 & . '
- COMPOSANTE 3-CONNEXE: 2 3 4 1 8
ELEMENT NON 3-CONNEXE: 4 5 g

7 = EQ_QQIU_S_;QE R L ECI

f . . . ' . . .
¥ The use of this set of furctions, which is constantliy undergoing isprovemert and extension,
is"illustrated in Appendix 1. : - ' .

It has beea proved to be very useful due to modularity, eztensibility and interactior
capabilities provided by ts2 APL systenm.

. Interaction is desitabls for problems which camnot reasonably be solved in a fully
automatic manner. ilis is the zase for problems encountered in graph theory.) ‘

. Yntil now, however, in this study APL has been considered more as a tool for establishing
rapldly and economically the marits of different algorithms dealing with graphs.

As 'soon as an algorithm or a set of algorithms are declared suitable, they are turned over
to professional programmers for transiatszon 1nto another liuiquage (mainly FORTHEAX) in order to
produce a more efficient progrim which is of easier access to the whole engineering community.

At the present time this system is intendzd for developaent purposes; but with the spread
of APL and the imminent availability of computing sSystems built around APL Fhis situation pay be
reversed. In this case the use of such design automation tools could be contemplated at any
stage in the design process. _

" The f:ansfer, 6f algoritsas from the designer to the engineering preogran developer usualiy
rejuires no flovwcharting. The APL listing itself is considered here as a reference docuaent.

) ¥e feel also that the use of APL language could be extenrnded as a convenient vehkicle for
communication. We suggest generalizing its use to the formal description of algorithms 4Jealing
with graphs.

ACKNOWLEDGHENTS

Yeu

o T T e e e e g e e e an — e g o b e it gy et g g e T — ; _‘
The authors wihs to express theif gratitidé t6 HrI" Pr~RUSENSEisR1I"GE 1*'Bcole Pratique des
) Hautas Etudes (PARIS) for his advice and many stiaulating discynsions, aad to the SESCOSEM
Coupany for their finamcial support. . 5
b

BIBLIOGRAPHY

1. . C. Berge. The Theory of s3raphs. MNethuen and Co.: Loadon, 1962.

[RC w

Aruitoxt provided by Eic:

Ko

O

3.

8.

9.

ERIC™

Aruitoxt provided by Eic:

C~ Berge. Graphes et _xggggt hes (DUNOD), Paris, 1970.

I. T. Prisch. "Aa algorlthl for vertex-pair connectlvlty" int, gl contgol., 1967, Vol. 6,
No. 6, P» 579-593.

*

D. J. Kleitnann. 'uethsd for investigating comnectivity of large graphs™, IEBE Trans. on
Ciccuit Theory, May 1569, p. 232-222. L

B. R. Eyers. ®“Nuaber of spanning trees in a wheel™, IBEE Traps. on Circuit Theory, Hdarcy
1971, p. 280-82. ’

0. Ore. Theory 9f Graphs. American Mathematical Society: PrOV1dence, 2. I., 1%62.

P. Rosenstiehl. Graphes laurs vecteurs et leurs nots. Cours a 1*Ecole Polytechnique, Paris,

(avec la collaboiuz;on de P. HMomiez et J. C. burmoad).

P. Rosen&&xehl “L@thlntholoaie Mathematigue® pathsmatiques et Sciesges ﬁunéig§§ {9ase

‘annee No. 33, 197%, p. 5-32.

J. C. Terman. "An efficient search algorithm to find the elementary circuits of a graph",
coa. of the ACH, Vol. 13, Ko. 12, p. 722-72¢, December 1970.

- ey S

L&

88

/I/PPEHDIX 1
APL Punctions
Statistics showing the f-eguencies of occurence for the differemt APL operaiors is given

below. It has been used for a quantitative:' cemparisoa. betwveen - APL and - PORTRAN " programs
performing the same operatioan. ‘

OPERATGR NUMEER OF TIMES FREQUENCY
OPERATOR OCCURS .
OPERATEUR NCLBKE D'CCCURRERCES FREGUEKCE
- - 528 20.5527
, 293 11.4082
. / 241 9.28106
L 233 2.06968)
"+ 181 o LTRONSS N e
- B p R L A A Tt €.86984
-+ 1€7 N 6.5005¢
= 128 ; v 4,982u40
v 116 P 4,51538 : ,
X g8/ j 2.6409y i
- €3’ [T z,45232 i
x 58, | . 2,25769
€ 531 ; v 2.06206
~ - 37 { 1.655025
ot 35 1 1,3€24
. S 33 B 1,%28455
> I T e 1.2067
= 31 .o 1.20¢€7
r 15 - C.583885
2 1y ; 0.544959
A 12 C.4671¢C8
] 12 0.4€7108
- 11 o 0.428182
: . 7 0.27248
: v 5 0.19462¢
L 5 0.154628
¢ 3 0.116777
§ 3 0.216777
\ 2 €.0778513
| 2 0.0778513
3 1 0.0389257
s 1 0.0389257 .
o 1 0.0389257 e
° 1 0.03£9257
;o 1 L 0.0369257 4
e T 0 :
[]] 0
! 0 0
A 0 0
e | ©)
1 10 0
T 0 . 0
- s
: ! i .
. 1 -

o | ~_ _ B . .

GACEE S Lol V383 I15d

(113 [+ T<'0

[z} S(e+r=T780310), 00, (47 0;23=01)- +/’L;-;"J-f+1

rzl I AD PR

{41l (1 5)9' VOILE GRAPEHE NO'CET PAL EULTHIVY Y CHEXNTUE ASCUTZE
{s3 DLi(L<0) /el

[6] Ve(id+(0>0)/1pD),d+C

71 ”(v/LH&H*TTFIC(N[;1]<H)/H[;2])/§

18] 7 Vel 0,V :

(o3 HeTle((DRc) DN)01])

[10) +(104dJ=4/V=20) ,Bo(Te((TeV P8 J«J+13/I(I=20321)/001)02 5
[11 3 0Lz .p#])«(DLELL133-1), 00l el334T-1

[12] ~(12+(I+I+1)= o”)..l<((1+(ol)[1]).?‘5(.NfiJ;]),F[TJ.H[I+1].,PTJ+1(pﬁ)l;]—ﬁv'?+#(;12nc

[13] ~(bx~ay0=0),7+T,(1+pb*H)pO
(18] (1 w)p' '3'LE GRAPFE ELT EULEEIEN.
(151 ¥

. VoV LDJA I
[11] s«TTRIC(V PE)Y,V LN I
[2] v

Vi+h AJCUTA VA8
[1] @ (2x~Dell} ,LeV
[2% e ((VIBI-1002) A (LRI EUP (VLA T-1)e), (B+L/B) , (T 2+ (Ve (Z=0) /ae 2)[A«T/u])DFOP L
L3 v o .

Syl AJOUTS ViIik

[11] k+l+4/V=I+0
[zl S((T«I+1)>pN)/ Y
[33 =+2.V<V RODIFY ilIJ.E,v Ph #0173 !
[4] L«V N ,0
[s] v i
VieARBCOV Q134
(11 I«l+u+0 AN = :
(2] +2,([/(A<I)/A<h PRT«I+1),0
[3] +2xJ<+/W=0
ful

v

VM-LRET VA I4F
(1] F«+/V= I<DM*10
[z3 *(‘+I F) Mel,(IxA= 0)+A*((’XpA)pO 1)\A«V PR I«I+l
[3} «((~F-pV), 2)pF
[4] V

VAM«ARELE Vi3A B IGF
(1] FPet/VzI+pk+r0 =
P +{(2+I2F) M«M (IxB= “)+B*((zpr)pC 1INA«LTRIC V PR I«I+1
] I*((F- DV) Z)Oh
[u] v

) Vo+VY ALASCEKRKD N;I;A
[11] +(0=pZ«V SN N)/I«O
[21] +2xJzp l+«7 , (”AEZ)/A*V SN Z[I*I+1]
V4

(31 v .
- yd
. 7
] L
L -
/././,
..//..
Q i . L) | ‘ o R ’

s e
‘ 90

£ ow o B
S e e by e Red s

1
LS an Wan R an W an W Wen Wos I
‘o N e

~—
w0
Pt

. (101

[111]
(121
[13]
faug
[1s]
[16]

'»El{fC‘

Aruitoxt provided by Eic:

Vw0 CHERIN Vid 30300388y LoV le 37l

(W C2+/V=0)/plL+1L
Tel il T4 fE 3100 oo/ (M~ARETE

VIst+d 0]

PARK«((nSFLOT) ,2)pAFLO«(c2) (1 oo ELCo+ (i 731 J)oermeg

+((J>pSFLCT) , T=d«J+1)/9 &
HARWLE I,7 :

- (¥=0T) /11
Tr-T

+((NC=2T),2)/3 5

Cl0X02ICeNC -1 ’
+2,(L+L ,I++/ L1} ,V+I ENLFVS V

SME+(MARKL;13=0)/ v (prAAK)I1]
SKEw(RAAKL 323=0) /1 (o ARE)[1]

CHTTREIC((~SHEe LML)/ EME), (~V 0T

+(0=pL})/0

L¢2pL, b+ ((22pL)x 52l /L)+24 5+ 22 /L e
v

VEeCIAELE G3PH I 3d 18l 3CDiA
PelNp (K1) H+(W++/G=0)pd +p 210

*((GPHK[J]>P(1])A(~CPRK[J]eP)A~(GPRK+(G Pr PLEYY,0)[J«d+13e# P P[¥1)/10

+(J<pUGPRK)/C
+(~£[1 jeGPRE) /T
i, (L~(P=0)/P),0
+(X=1)/12

H«ll MOLDIFY ,PLK]

Ctel HODFPY(PLA-13), (U PR PLE=13),PLKT - o o

+2 K+ K-14J«P[X]+0
E+K+1

+2,(J+0) ,P[K1+(G Pk P[K-11)(J]

+(PL[11=§)/0
+2, (P(1]«P[1 1+ K+1) ,H+Npd «0
v ;)

VZ+V CCFCO 1

» - see. e ..

2+((~1eL)/N),2«(Ze¥V ASCIID B)/i«V DESCEN N
v

ViV COMCO I;K:A
L T+E+0

»(K<pZ+2,(~AeZ)/ A<V PR Z(E+E+11])/2

v

VZ<N CUNTRA V34

V<V MCDIFY n[1].((A=¢[2])/A«V PE N[11),(A=N[1])/A«2«V PE He21
2+((A-1+oz)pV).(A+((v=0)71pV)Ln[2]])DLOP Ve(VxVaeli L2 1)+ ({1 Ix V=N 2 1)~V N (2]
' H :

VCYCLE ViV -

WAL\ [/heV 1«0

+3+0=p8«(~Teh)/ T

+1+3x12pV~T ENLEVE v

(25%0=p L) DROP(25+35%x0=p7)p 'LE
v

Vieh DECODEIV
ZeMI1;M402 W]
v

=

GEAPHE EST 54NS CYCLE .LE GRAPHE POLSEDFE AU EOINS U CYCLE .’

91

B

VDECOMP V -
1

[1)-

{z1l ' *******w*******g*****************m*‘xW
£al ' * ELEMENTS REMAKQUADLES DU GRAPHE *!
(4] ' ' I e Y S R AR 22 SRR L R
(51 1

{61 ARBO+REARBO V
(71 LOBES+«RELOBE RECYCL V
(8] PONTS«REPUNT V
(9l POAR*REPOAF v

(101 !

[i1] t *******************k*****k~w*********t*******ﬂ********'
[1z]) ! * ENCHAINEMENT DES ELEMENTS REMARQUABLZZ DU GRAPHE +!
{131 - *************************k+*+*******1***x*********r*r*'
(1] "

{151 DECRIK

(161 ¥

VDECRIR ;I ;A Vi1 ;W2
[1] I+0
(2] E1:+((I+«I+1)>+/PUAKR=0)/E2
[3] +{(A023<0),(A«POAR PR I)[3]<O)/E
(4] h1<«' AU LOBE !
(5] +E 4 ,W2+«LORES PR A(3]
[6] E3:l1«' A L''ARBORESCENCE ';U/2«ARBC P
(7] Eu:+E1,[+'LE POINT D''ARYICULATICE '.nli #TLI7 LE LOBE ';LOBES PR Al2];W1;W2
(8] E9:~+E1 U« 'IE POINT D''ARDICULATION 'ilAil TOLTM LD DPONY Vi ROVRS PR-sialit AT
[9] EZ:I+0 e oo v,w o R P
[10] &5:+((I«I+1)>+/PCNTS=0G)/pH1~1V+0 : AHZORRUCENCE ';ARRO PR AL2]
{11] A<«PONTS PR I
(121 E6:+((V<«V+1)>pA)/E7
[13] -EG,W1+Wi,(~W2ek1)/W2<LO0BES UN ALV
[1u] E7:v+«1
[15]) E8:~((V«V+1)>p¥1)/ES
(161 ~E8,L+'LE PONT ';A;' KELIE LE LORE ';LOBES PR W1[11;' AU LOBE ';LOBES PR WilV]
(171 ¥ ,

VCK DEC2C V;I;A;K;C1 .
L1l +((I«0)=p,A+2 CHEMIN V)/5
(2] C1+C1i+(C1+«DGCSC A ENLEVS V)24
[3] CKLKILEC2C (K«§TRIC A ,Ci Pit I+«I+1)5SGMAZ V
ful »8xI<+/C1=0
(5] (22X2290K)DBOP(22+23X2290K)9'COMPOSAHTE 2-CONNEXE: ELEMENT KON 2- COANEXE 'iCK
(el v T

VCK DEC3C V;I;A:KiC1
(1] +((I+0)= p.A*3 CHEMIN V) /5
~[21] C1+(C12[/A)4C1+C1+(C1~DGCEC A ENLEVS V)2L/A
. [3] CKLKIDEC3C(K«T"RIC A ,C1 Pit I+I+1)LSGHAL(Ax~ALY Jev PR AL21)AJ0UTA V
Lu]l +3xJ<+/C1=0)
[s1] (22x32¢CK)DROP (22+23%32pCK) ¢ "COMPOSANTE 3-CONNEXE : ELEMENT NON 3-CONNEXE: ';CK
v ‘ : .

L2

VZ+DEGRAF ORIENT-I;SON-FTV'J'“OMMET;A
11 20p" ';23ptx' 7
(23] 20p! ’;'*DESCRIPTION U ”F/Pda*'
[al 20p' ';23p'w!
[q] 1y
(s] ~'LE GRAPHE EST-IL ORIENTE ? (REPONDRE OUI ouv NON)
(6] DON1 : ORIENT+3pi¥ »
{71 +((A/ORIENT='QUI')VA/ORIERT='NON')/SUITE1
(8] COR1:+DON1 ,U«'MAUVAISE REPONSE, RECOMMENCER'
{93 SUITE1:ORIENT+A/ORIENT='OUI'
:10] 1t
{113 20p' ';23p'x';(Uxt= ORIENT)p *':8p'x')
(121 20p' ';'«DESCRIPTION DU GRAPHE ';(ux1- ORIENT)p'NON ', YORIENTEx"
(13] 20p' '3;23p'+';(4x1-ORIENT)p'*"'; do'*'
(14 !
(15] 'LISTE DES '3(12xOQRIENT)p'SUCCESSEURS *;(18x1-0RIENT Ye "ol WMETS ADJACENTS

/’/'
%
-

ERIC

o , 92

[1€]
£171]
(18]
(19l
[20]
[z11]
[22]
[231
{241
[251]
{261
(271
{281
(291
{301l
{311
£32]
{331
f[3u]
{351
{3c]
;0371
- [38]
I [39]
“[uol
[41]
[u21]
f43]
fun)
[usl
fus]
(471
fus]
fug]
(501

e e
[AN SN o
(] S)

O

ERIC

Aruitoxt provided by Eic:

CSUITZ2:'SOMMET ';I+«I+1
CE0M«, L

tt

' INSTRUCTIONS!

Y e e eeemmmaaen .- 1 .

‘EN Cﬂu D''ERREUK DE DESCRIPTICON POUR LE UCHMET IL,YAPER: SOMNET I A LA PLACE'
'‘DE LA DEGCRIPTIUN D''UN SOMMET ULTERIEUR.' =

'‘POUK TERMNINER LA DESCRIPTION TAPER FIn?

'

1

Z*\FIV*SOAqET*I*J*O

+(02pZ0M) /TEET

SMODIFx1J

+SUITE2,05¢2,0

TEST1: »((1 p SCH)AS0MIL]=0)/TE

+(501(11=0)/5VITES

+MGDIFx1d

+SUITE2,2+2,501,0

SUITES 10«1

I«50%02]1-1

+SUITE?

NODIF:e+% MODIFY ,I,50M ;

J +0 !

I+«+/i=0 . - ')
+SUIYE?2 "
L) N
TESTF:'NOMBRE [E SCMMETE DU GRAPHE . ';I-1
+(ORIENT=1)/0 :
TESTCOtA«VERIFY 2

+{(0=pA)/ I«0 °

SUITES : '50MMET ';ALT«T+1] ©
2«2 MODIFY A(I1,0

+(I<cA)/ BUITES '

+TESTCO :

v o | B

VZ+V DEMDEG A;I : -
Z+2pI+0
»(2x1<pA) (ZL21«Z(2]1++/~ (V P" ATT1YcA) 201 3ez01 4 4/~(V SH ALI+I+11)eA

g

VZ«V DESCEN N;I;A

+(0=p4+V PR N)/I<«0O
+2xJ2pZ+2,(~Ael)/A+V PR I[I«I+1]}
v

VZ«DGCFC VI .

G+vI+0 " : . : ‘ <
+((I>+/V=0), (I*I+1)eZ)/0 2

+2,4+2,(V COFCO I),0

v A

Vi+«DGCEC, Vi3I

Z+I+0)
+((I>+/V=0),(I«I+1)eZ)/0 2
+2,3+«%,(V CuMCO I),0

v ,

vZ«N DROP V : : ' :
Z«((Np0),(((pVI-N)pl))/V - : %
v A .

VvZ«N ENLEVA V ;A
Z+(V MODIFY L[x] (A=A[/1N[2]]*0)/A+V PR PL11)MODIFY NI[2], (A=A[A1N[1]]+O)/A+V PR N[2]

: v . . L2l

VZ«N ENLEVS VI
Z« (~VeN«TTRIC ,N)/V+I+0
+(2xI2pNeN-1),2+((V~1+p2 PR BLI1)p2), (V((2= 0)/1pZ)[V[I]J)DHOP Z«Z-N[I«I+11<Z

.V

™y

93

[1]

VECEULEH ViIsT sl

Te(plivARET V)ILL+Z+,11p0
(2] ACHENM
[3] »(~0el[I+(Z[11=4; z])/\(pﬁ)[x]J)/S
[4] #0402 3¢-2020) (P LI1«1), 0+L, (i {I«((0=0[T 1)/)02 0:10,5)01]
(51 . »(1=pi)/8 .
(6] 2«L[I+"1+4pL)% ; o
(71 +3,L+IplL '
(81 (1 5)p' '";'WIKCUIT hbbbnlmu
(9] Z«d(2»0)/2
{103 v
VE+GOM ViR
{11 +(0=pV«,V)/pZe1X+0
(2] +(2xK<pV), 2«2 ,(~VI[K]e2) /VIK+K+1]
(3l v .
Vi+M INDIC V
[1] e (MA =V)/ v (pM)[1]
f21] v
Vi«LS N
[1] »(l=1 2)/3 &
[23 0 ,2«(LS K-1)+LS N-u
T [3] +0,2+1 o ’
[4] 2+3
{5] v .
VYMAEQUE V ;SMyMI' ;R 3RT:P T
[1] HAKK[SM; 2J+SM+VL I+1]
(2] HNT+Q(7 ,0R)p (,QMIR;1) . (,QMARKTIMLR;21:1),SFLOTLMIR; zJJ WAFLOTL (R« (ML ;1 1=MIT1) /v (&)1 D),
[3] +((P+MARKISM(I];]:0)[2] 05§ - e '\ ’
£ [41 +(5+P[13=0) ,MT[33 J«nT[33 4B 31 TxA /ML 52 & J=0 ¢ RTeML32J=SHMLIT) /1 (pk)I1]]
5] MTL suleMTLsul+MT0 1Jx</MT[1 7J=o
[6] =7, (uy+uM NT[((V/NARKEV[R.4] J=MTL 33 uJ)/l(pMT)[1J) 2]) (MTL 33 «MP0 ;3 0+MP (32]x2== /T
Milsu 3 5] 0
€71 ~+(B+V/MARK(V(2];]=0,..HARA[JL1.¢J Tell ;5 41 43 5120 MTL ;4 JeMTL 34+ HEL ;2)x25 -
[8] +(247x{pSk)<I«I+1) :
[9] P«I+v(2] e
{101 ~+(0=pI«(~MARK[I;led,I)/MARKII;]1}/0
[11] ~+(10+2xI= V[1]).P«P I+I[1]
(12] Z2+T+I*1,0pSFLOT[I]¢~SFL0GT[I+(~PeV) /P+{P]
(131 =~(AFL(¢? [h*h INPIC V«P(F,I+111=1)/1¢6
[14] “(AFLOTLRT<M IHNDICOHVI=0)716
(151 =27 ,AFLOLL. RZ 1« SFLOT[V]+0
[16] AFLOPLRI+~~AFLOT[R]
(173 =((pP)>I+I+1)/13
18] . MARK«(pKARK)poO
(191 ¥
V2+l LITOSE V, Ul,d NI
"[1] Z+(V MODIZI‘MI .n«*++/V=I+o),(U+(~Ueb~r[1+1'1+pr3)/5+v PR 71),(W1+F[11]),0
[21 +((I+I+1)>pu)/o
(3] +2 ,%+Z MODIFY ULIJ,N,(n2W1)/W+¥ 2R ULI]
(41" v S ‘
VIl 4ODIFY 'V M
El% Z+((M 1+pl PR NVI11)pW), (1 DROP NV),0, (2 ((¥=0)/1pk)[NVI1]])DROFP ¥
2
VL*HEMNOT Wil
21 Z«CODE+ W ; I+1 .
2] Ze (7 J)PERL(I J+((~2I+I+1)/&)I‘J)PEfB Z
[3] CODE<(I,J YPERB CODE
[u] +(I<+/2=0)/2
[513 CODE+(2,1+pCODE)p0,(CODE+GOM(CODE#0)/CODE),0 GGM(Zzo)/z
[61] v
VZ+«NSTW N ‘
(1] Z«((LS N)Y*2)+ux"14+2|N
[21] v

ERIC

Aruitoxt provided by Eic:

94

VZ~08TADS VI
[11] 2+ I+0
[2] +(2xI<t/V=0),4+5,(YTRIC(V PFE I),Y Sk I+It1),0
(31 v

VZ«0OBTPRE VI
(1] 41 I+0 o .
{z] »(2xI<t/V= 0),u*a.(v SN I«[+1),0 ’ 4
[31] ¥ - »

V4+0BTSUC VI

[1] 2+ J+0

[2] >(2xI<t/V=0),4¢25(V SN T«I+1),0
(3] v

4+l PERB iV !
£11 Ve (k=0)/1p2«W

[2). . »(1=pN«TTRIC N)/0U

[3] Z4(VIANC11-10e k), (W PR N[21),0,((VIF[e]-10-VT/L1]])pVINLL]] RGP W), {h PR N1

Eu]_ v) 23, VINL2]3] pROP &
Vi« N PERL W
{11 ZvW

(2] +(N[1]J=H[21)/0

[3] L2402 xivsh(13)+(WEL Ixit=ii [2 1)t hix~Wed

[4] v N (
Vi+V PP N;&

(1] S(((4«(V=0)/1pV)i)=1)/3

[2] >0, We(N~1)pV

[3) W+El(otW)-11BECP(Ii-1)pV

') v

YW«¥ PR N2 . 3
[1] +(N=1)/3 '
[23] 0, k= (((V=0)/1peV)21]-2)pV
(3] Wed [N - IJDRUP((uf[V 0)/vei)LAI-1)pV
[4] v

V4«hEARBU Vik;;I:A 383K .
] W«SOMPEN V, berI«K+«)
1. »((HeK+2)>pk) /0
] +(U=pB+(~Bek)/B«¥ PR WLZ1)/2
] +(1<p(~Aek')/A+V PR B)/2
] >y H*h B
] >((I«I+1)>pl)/K+0
(71 +((B8+,W[IJ)e2)/6
R +(8+K=pB),B+B, (~AeB)/A«(Aek)/A«V PR BIK<K+1]
{93 +6,(4+2,5,0), U+'ARD0RE60ENC& : ;B
[10] ¢ '

VZ«RECYCL ViK;I;A N NC;F;ARB;AATREE

[1] >(0=NC+1+((+/¥=20)+2)=+/V=0)/pZ+«TREE+ \N+I+E+0 .

[2] A«<(~AeARBO)/A+V PR ARB+,((~AeF+(ARBO=0)/ARBO)/A+1+/V=0)[1]

[31] +(ALI+I+1)eAkB)/5

[4] 43 ,(I+0),(A«(~AeF ,ARBL 1+pARB])/A«V PI ALIY) ARB«ARE,ALI]

[5] »((HC>N+A+1)xo -3xI<pA),(2+2,AA,0),[:«"CYCLE : ';AA-(2+ARB\ALI))DROP ARB
[6] +(0=pA+(~AcARB,F ’RFD)/A*V PR ARB [(pARB)-K+K+1])/G

[7] +3,(I+X+0), (AhB+((pAnd) K)pARB).”REE+TREE.Kp¢ARB

(81 v

ERIC . . 05

Aruitoxt provided by Eic:

Vi+«RELOBE ViKid ;U W
f11] K+0 ’ .
[z] K«K+1
3] +((J*«K)>+/V= 0)/10 i
[4] W«V PR &
[53 +((J«J+1)>+/V=0)/2
[¢] *(2>+/WHel+V PR J)/5
(71 +8+Kk=1
[s1] *3,V(Z[K-11pV) (20L& 1DK0OP ZLJ-11pV),(CO% W,U),((Z~(V=0)/1pV)[JI-1)DRCP V
fy] +3, V4 (2[11200P 2[J-11e¥), (GOX i’ ,J),((2+ (V= o)lan)[J] 1)DROP ¥
! [10] a+V+k+0
(111 ‘*((K*K+1)>+/220)/0
(12] 11,0« 'LOBE &+ ';7 PA K

[13] W
VZ+REPOAL V ifizI K B;C;d

[11] Z+\I+K«0)

(2] +((I«I+1)=+/LOUBES=G)/" !

[31] A+«LOBES PR keI

[4] . +((K+«K+1)>+/L0O3E5=0)/2

[5] +(1#pB+«(AeC+«LOBES PR K)/A)/4

(6] +4,2+2,B,I,K,0

(71 I+0 .

[81] *((I+I+1)>+,AnBo=0)/K+o

£s1] A«ARBO PR I

[10] +((K+«K+1)>pA)/8

[41] +»(0=pB+(~Be¢ARBO)/B«V PR A[{X])/10
[12] *((J«0)=pC+LOBES S8 B)/15

[13] ((J+J+13>pC)/E

(14l =+13,%+2,8,C,-7,0

(151 +8,2«%Z,B,(-PONTS SN B),I,0

[16] ¥

Ve«REPONT ViIAB3K U
[1] Z+1\I+0
[z] +((I«I+1)>+/V=0)/9
(3] ~+(IcARBO)/2 :
[u] +(0=¢B«LUBES SN I)/2
(5] U« K+0
[61] +(&+K=pF) ,J«U,LOBES Ph S{X€X+i]
[71 +(0=pA«(~A€ARBO U)/4~V PE I)/2
(81 +2,2+4,I,A,0
9] Z+”RI 5
[10] V

Vi«ROUE NI
[11] Z«(1+\N),0,1 ,(N+1),(i+I«2),0
[2] *(2+4I=N),4+2,1,(1+I«T+1),T,0
[3] 2+«%,1,7,2,0
(] v

“VH«SL Nii;71
[1] Z+1 ,3;I+2
[21] Z«7, z[I 214507 1+I*I+1]
[3] +2x\I<l
[4] Hez (]

sl v
: VZ+V SN K;I:4
1] +(0=pA+(V=N)/1pV)/p2¢1T+0 i
(2] +(2xI<pd), 2+2,1++/0= V[\A[I+I+1]]
[3] v
VZ«S50MPEN V “
- (11 Vvl /v3«s
(2] Ze(~2T/W)eV Y/ /V
[3] v _
J
J :
1%

El{j}:‘ | ‘ - ; | | ; ‘95‘

Aruitoxt provided by Eic:

Té+«V SR N;U; A
] (0= pA*(u—b)/\pV)/oZ*\O
] *(2XO¢QA*(~AeU)/A) Z+Z, U*(O VIAJ)/A«A+1
] v -

VI«G SSGMAX V3T
(1] VeiWel ,03/V,2+17+C
(2] =+({FT+1)eG)/u
[3] +(2=I<[/C),(V«V-V>+/2=C),2+2-2>+/2=0
4] +(2x1<[/G),s+«%,(V PR I),0
tsy v ‘

VY+TRI ViKid 32330
[1] Y+V4K+0
Lz] k+«K+1 .
3] +((J~K)>+/Y¥Y=0)/0
(4] W+Y PR X
(sl +((J+J+1)>+/Y=0)/2
el +(0=v/WeU«Y FE J)/5
[71 +(K=13/9
(8] +3,Y«{2[K-11pY),(2[KIDEUP ZLJ-11pY), (GOH 7 ,v),((2«(Z=20)/1pX)[J]-1)1 DRCP ¥
(9l 3 Y«(Z[l]DEOP 20 -10pY) J(GOH W,U), (2« (Y=0)/1¢cY)[JI-1)ROP Y
[10] -V .

V4«TRIC ;K
e [17 +(0=pz+he,H)/K+0
(2] +(2xK<ph), 2+ ((2<W[K1)/2),((2= Iz K])/Z) (7>h[K+K+1J)/Z .
{31 4 o°IHe i
CHARACTER ZRROR
4 oIHe
. A
., [3] YCLEAR
YCARD
VZ+TRIC W;K
(1 +(Grplel+ i) /K0
(2] +(zxXeph),2«((2<w[X1)/5),((2=0[K1)12), (2> K[K+K+11)/ &
[3] v '

VZ«TPRIC W;K

] +(Osplele W)/ 4«0

] 2 (2xK<pk),2«((Z<W[K])/2) WK, (Z>WI[K+K+11])/2
1w A

VZ«VEQT M;I A

] A« /(M) ,2¢1I+0

1 2 2xI<A),2+Z,((M[;1)=I«I+1)/M[;2]),0
).

VZ+«VERIFY WyI;V1;V2

] Z4+1J+0

] A0:+(A/(V1i+W PR IdeV2«W SN I«I+i)/A1

] 2«6, IT,(~Viev2)/Va

1. Al:+(A/V2eV1)/A2

] 2«2 ,I,(~V2eV1)/V2

] A2:+(I<+/W=0) /40

(71 +(0=pz«TTRIC &) /A3

[8] +0 D#'EA DESCRIPTION DES SONHEfS ADJACENTS AUX SOMVETS ':2;' EST INEXACTE'®
[9]] :*LA DESCRIPTION DU GRAPHE EST COHERENTE.
{10 V

VZ«WHEEL V3Tl

(1] livt/V= I*Z*O

[2] +((N<I),(3=+/V=I«I+1),320)/5 2 4
(3] +2x02Z«(N-1)x(H-1)=+/V=I

(4] +3+0
[s] 2+ (3x(N=y)xZ=0)+(Z=0)xN~-1
(6] v

VZ«HWSTN N) _
(1] Z«((SL N)Y*2)+u4x"1+2|N
[2] v .

' El{lC 4 | 97

Aruitoxt provided by Eic:

»

N
APPENDIX 2
e e

EXAMPLES

———

************f**«*'{*%***
- xDESCRIPTIUN Dl GRAPHE

KAk Ak RKRKKKKK kg kX &5 khk g baday

LE GRAPHE Z49-IL OEIENTE ? (REPUNDEE OUI QU KON)
ourI ~

khkkhkrdRkxhkkgd L Tk oy A
*DESCRTVIPTON LU GRAPHT ORIENTE«
Ahkhk Rk kXA ARk ¥ AN kLt VR kg kK kg ok kk

LISTE PES SUCCESSEURS

ot

INSTRUCTIONS
EN CAS L'I'KREUR B DESCRIPYIGL pUGL LE SOMMET T ,YAPER: 'SOMKET,T A LA PLACE
DE LA PESCKIPTION D'UN SOMMNET, GLTERIEUE.
POUE TERMINEN LA DwSCr [P 108 Paphin, 718

SOMMET 1
L: C

3
SOMMET 2
i

SOMAEEY 3
s 0. .
: i
SONMEY 4
{z
5
SO_."H/!ET 5
L
6
SOMMET ©
0:
. 4 7
SOMMET 7
C:
5 8
SONMET 8
[9 N
T SOMMEY 9 o
Lit :
710
SOMMETL 10
G:
8 11
SOMMEY 11
Ls ,
12
SOMMET 12
O:
13

O

ERIC

e : : ag

Q

ERIC

Aruitoxt provided by Eic:

“

SOMMNET 13
0: :
14 15
GOMMET 14
L:

12
SOMMET 15
L

16 17

| GOMKEY 16 .
gz

14 18
SOMMET 17
{:

1 0
SCMNET 18
L

10
SCOMMED 19
L

o

2
SON#ET 26
L.:

2¢
SONMET 21
U

22 -
SOMMED 22
L: i

11
SOMNET 223
G

FIN
NOMBKE DE SQMMNWTS

|

DG SGRAPHe @ 22

SUCCES

3 6 3 0 4 0 5 0 6 0 4
17 6 14 15 0 0 0 20

_«~PREDEC«UBTPRE SUCCES
o 01 2 0 3

13 6 15 O 0

[+0Br SUC PREDEC
1 0 3 0 4 0 S5 G 6 0 4
17 0 14 18 0 T Z

o

s
8 0 4 7 0
15 1

99

12 0 13 0 14

1C

12

e
W

12

16

16

1€

Li*ADJAC«CBTADJ SUCCEL

3 0°'3 0 1 < 4 6 3 5
11 0 10 12 227 0 11
1¢ 0 20 o 19 22 C

SUCCEL ADJA 11

10 12 iR
SUCCES ADJA 1 %
4
3
SUCCEL ASCEELD 22
20 21 19

SUCCES ASCEND 3

LUCCES DESLCER
13 1y 15 12 16

[
e

SUCCES DESCEN 8
g 7 10 5 €& 11 6 12 &

- SUCCEL CUFCO 3

3
SUCCES COFCT 17
5 8 °6 9 4 7 10
SUCCES COFCD 10
g 9 7 16 5 6 4.
o
miiﬁﬁn

13

14

15

100

16

17

18

)

O

RiC

Aruitoxt provided by Eic:

LECOK?

AFFCRELCENCE
ARBORESCENCE
ARBCRELCENCE
ARBORLLCENLE
CYCLE : & §
CiCLE : 5 ¢
CYCLE : 7 &8
CYLE : 8 9
CYCLE : 12

CXCLE : 13

LORE + & 5

" LORE : 7.8
Loerr ¢ 12 13

ADJAC

LR AR LR L RS SE] .
UL IENE LENATG LATLES T
* %

KA XK KKK XK S % 2. 302K kkR

10

14 16 ° 15

e s v APRAK
GREAPHNE =

Ak Lk kXA kkkkxk

****z**ii***

*

ENCHAINEMENT DES ELEMENTS KEMAEQUABLES DU GRAPFE =

*********************************9{*-\'*')“k* AR R R AR R EES S

Lz PCINT D'AFTTCULARION 7 RELIE LE LOBE & S5
LE POINT D'ARTICULATION u KELIE LE LOBE & 5 &
LE PUINY D'ARTICULAYION 15 RELJE LE LOBE 12 13
LE POINT D'ARTICULATION 1€ FELIE LE LOFE 12 13
LE PCINT I'ARTICULATION 11 RELIE LE PONT 10 11
LE POKT 10 11 12 RELIE LE LCBE 7 8 9 10 AU LOBE 12 13 14 16 15

101

7 AULOBE 7 8 9 10

7 A L'ARBORLSCENCE 1 3 2

14 16 15 A L'ARBOPESCENCE 17
A% 16 15 A L'AKBCFRSCENCE 18
12 ‘A L'ARBORESCENCE 19 20 22

21

' MANAGEMENT OF APL TIME~SHARING ACTIVITIES
J. Higgins and A. Kellerman
) Conputer Center
State University of New York. (SUKY)
Binghamton, New York -

ntraductiop

The managenent of a terzxinal systes at a university or industrial installation. provides a
formidable task. The user needs take arious forms: (a) an educational program in the syntax of
the languge and techniques of programming to take advantage of the attributes of the language,
{b) consultation on prograzming problems (both trivial " requests and those involving desing,
foraat, and construction of complex tasks, (c) publicity on operational considerations such as
hours of operation, the location and availability of terminals, scheduling, etc., (d)
docunmentation on existing programs and packages, and (e) assistance in administrative activities
such as the restoration of vorking copies of damaged programs, groups, vorkspaces, etc., and the
transportation of packages from our installation to another. The successful management of a
terminal systes such as APL than involves not only the proper wmaintenance and honing of the
system to irsure optimal utilization of coaputer resources for day by day activities, but well
defined procedures for providing the additional personnel support to satisfy the above stated
needs.

SUNY-Binghaaton's APL Systea

! B . R

SUNY-Binghanton has off:red APL since the suamer of 1967 and currently operates the XM&
version of 0S APL/360. There are 1750 APL account pumbers on .the-sysStem; some of these shared by
a nunber of users. Practically every department on.campus - from theatre to geology and business
to nursing — uses APL, vith various emphases. In addition %o supporting the local campus, seven

5

sister SUNY institutions and six area high schools access our APL systen. i

The instruction and education section of the Coaputer Center cffers a variety of forams of
education and consultation tu ... useCn. Both potential. aua experienced users _— stuaents,
facalty, and staff - feel free to request support at various levels and have received a
ceasonable degree of satisfaction. Initially, here as elsewhere, potential users vere being
solicited. Now, rather than acting as apostles and missionaries, ve are in a position of
Tesoponding to ever-groving demands for service froam existing and potential users. This change
in the nature of support is very gratifying, yet presents cectiain problems. ' .

Coincident with these rewards of satisfaction, the generation of enthusiasm, apd staff
sotivation are the assorted and. varied problems of developing the most effective system for 'aiil
levels of wuser education, of effectively motivating and supporting vorthwhile classrooa and
individual projects, of developing ways and eans of evaluating user and systen performance, of

» maintaining the syster, and of general administration- with linmited staff, facilities, and
budget. These’problems with these restraints are present to some degree in all installations
supporting terminal systems. It therefore seems appropriate to present some of our experience,
probleas, solutions and attempts at solutions with the hope ©of developing a dialogue with other
installations. - =

It is the purpose of this paper, then, to discuss those problems inherent in maintaining
the system and in providing sufficient documentation and "publicity” on the availability of the
systea and its features, and in posing some partial solutions for providing support foxr ensuing
generations of a core of competent and satisfied users.

Sose Approaches e e e .

Terminal Allocation. It is an axiom of time sharing that accessibility of terminals to
users iucreases usage to a very large extent. It is - therefore desirable ~to have terminals:
dispersed in strategically located positions to encourage usage. - This provides considerable
problems, hovever. It is desirable to have terninals proctored for varioas reasons, including
programaing assistance, terminal maintenance, and general supervision of scheduling and use.
These proctors are usually und2rgraduate students who, in addition to carrying - out the above
tasks, interface vell with students and faculty on a one-to-one basis. Pinancially it is not
possible to proctor locations, which are scattered around campus and house only two or three
terminals. E

" For the most pirt ¥e hav2 avoided any serious probiéns by having some diverse locations of
terminals periodically checked; twvo large terainal rooas, containirg 22 terminals, are.
constantly proctored. : -

“

Aruitoxt provided by Eic:

| El{llC » . /oﬂ/ 103 ‘ R

System Maintemance. In. the spring of last year, 1971, space was rapidly depleting for
saving of APL vorkspaces on two 2314 packs, vith no prespect of adding an additional 'pack. APL
users were encouraged to cut dovwn on the amount of material saved and the additional workspace
allotment was strictly controlled. However, by the beginning of Hay, with users getting "HKO
SPACE™ messages, the situnation wvas critical.

™~ = :

The policy at that time of deleting users who have been inactive for three montas was not
generating space fast eaough.

As a last resort, all users verz required to turn in a vritten form, .giving their account
nusber and the vorkspaces that they wanted to be maintained on the systen. S :

After several abortive attempts resulting froam misinterpretation of the documentation on
the standrard APL IBM utility, lack.of complete documentatior on the APL utility, our - imability
to fool the utility ipto accepting an incremental dukp tape for a full dump tape, and various
other blunders, the followving procedure wvas iwplemented. With the heip of three programaers and
a keypunch operator, cards wera punched for each requested vorkspace. A full dump tape was made
and new APL packs wcre created. From the APL utility, an ACCT O to tape was made. Tkis ACCT O
lists all users and account numbers. This tape was accepted with a program that punched cards
with the system command) ADD for each account nusber oa the old system. This deck vas read into
the 1050 {a terminal eguipped with a 1056 card reader) to add all usors to build the
directories, to the newly created APL packs. The process was very slow, since the 1050 reads a
card every 6.7 seconds and there were 1576 caris. :

The worskspaces, for which "save forms" wvere turmned in and for which a card had been
keypunched, were restored to the nevw system, using the APL utility which: can restore 100
vorkspaces at_a time. ‘

A coaplete backup set of tapes was képt for people who neglected for various reasons to
subait save forms - for la%=r recovery. : :

Although this method worked sufficiently well, there were several objections te it.’ First,
the very fact that the final prccedure was the result of a series of biruders with no " better
sotution in sighe Jleft ilittle Coarv:nz., deLOuu, .ue Process Or KeypukChiny the cards tor tue
.workspaces and processing them through the 1056 reader was very tige concuming. The paperwork
was a nuisance. The retrieral of. WS's from the old packs and the creation of the new packs
monopolized the computer for a full-day. ' ' :

These' Gisadvamtages coupled with .the fact that there was a general displeasure in the-
amount of information conveyed by the form of the APL account numsber lead to our present method.
This @method hopefully will bLbe mnupdated to something better, perhaps tied to the addition of
files, to improvemerts in the APL utility, and to broadening the scope of the system commands to
handle multiple entries. ’

Account Nupbers. Instead of assigning numbers accordimnqg to a 5 digit departament code with
the last four digits of a social security numbez, for ‘a sine digit number, the following scheae
was adopted. The first digit rajresents status, the next five represent department, and-the last

three are assigned sequentially according to edepartment. The status digit consists of 1-4 for

undergraduates, 7 for. graduates, 8 for faculty, and 0 for people vho vwe feel need their number

for cnly one semester. In the past everyone was arbitrarily assigned -1 workspace. UKNow 0

workspace . quota is ‘given t5 people who are using the CAI packages. Tae 0 numbers are deleted

every semaster; the 7 aand senior aumbers in June. The process for deletion is carried out in the

following manner. A general purpose selection program is run against the APL ACCT 0 (under TSO)

produced by the utility to seacch -for 0's or 7's or any particular combination desired. This

program creates a data set with the selected records. This.data set is accessed vwith another
program that punChES‘C&IdS with the app;bptiate APL system command and uSer number. These cards

are processed through the 1050. The general purpose selection program can also select records of

users of suchicombinations as all senior biology majors going to Corning Comaunity College who

have been conzacted to-the system for over 35 hours. A developing interest in the school is the
psychology of the time-sharing user. This type of outPut, along with information obtain=d fron

the I-bsam 'readings, provide psuch information for oan-line collection and analysis of data in

this realn. ‘ .) ’

A similar procedure was-ased; that is panching a deck ¥ith the systes coamand ")LOCK under
nusber,® to change over to the new nuabering scheme- Users were giver one month to- copy old
information into their new number. The old numbers were delsted with a ")DZILETE™ deck. We have a
©) CONTINUBE® deck that can periodically be read through the 1020 to cleamn up the CONTINUE
vorkspaces that users fail to irop. (Figure 2).

k4

SUBMARY. QF THE.DIFFERENT SPSCE SAVING PROCEDURES

El{j}:‘ ' Ll : ¥0?

Aruitoxt provided by Eic:

2
o

&.ﬂw

EE

RIC | 105 ,

Aruitoxt provided by Eic:

et

P

Before Aftor
" Users on System Tracks Workspaces Users on Systea Tracks Workspaces
GRAND RETRIEVE (MAY) -
T 178 7399 . 1748 4850 1576

Loc;lx;—ax‘ﬁéxcx (5EpTENBER) ' .4 '

1640 - 6266 o 2910 1476 5395 1694
DELETE 0's STATUS NUMBERS (JAHUARY, 'i'r972) '

1769 ' 7521 st a2 572 - 2118
MARCH STATUS (CURRENT) - R APTER DELETING CONTINUES (MAY 9)

1777 . 9025 3124 1777 6960 2288

Use of [I-Beams- in Monitoring Systes Usage. Using an APL function, MOWITOR, reqniring a
privileged terminal, information can be obtained on & continuous basis, on specific port usage,
specific account number usage (such as histograms. of graduate student usage thronghont the day),
and total numbers of users inp a giver time intecrval. ' Prom the data collected and from the
results of any desired additiopal Statistical analysis, decisions can be made concerning

terminal usage, location suitability, suitability of APL schedule as vell as information on

amounts of use by different types of users. (Piqure 3).

"By using I-beanms 1-1u,lvhiéﬁﬁfequire a privileged terminal, varions information about the
APL system performance can be collected on line. (Pigure 4).

'The ' I-beaas, representing histogram data, return a vector of integers seach element of
which represents a full word of data. - Since this information, collected froa the time APL
starts ronning nntil shutdovn, is collected in half-word counters, each I-beam vector has to be
decoded, split into its two half-word components with the following APL function. (Pigure 5).

FPor example I2 - reprasents the system reaction time from wvhen the user's retnrn is
detected, Mntil his vorkspace is dispatched. (Figure 6).)

Although our experimentation with the I-beans is still rudimentary, atteampts are being made
to use this data as input to a siaulated time-sharing system, for stndying systea performance
unier different loads,. and for analyzing the behavior of the time~-sharing user.

Priority and Quantum. &hen operating in. a Rulti-prog-amming environment, the effect -

'depending on factors such as configuration, number of terainals connected, types of- jobs -~ of

APL - "on . batch jobs and vice versa can be substantial. Various parameters internal to APL can be
adjusted. APL ensures that othar partitions receive frequeat CPU service by alternating its own
priority betveen high. and. low. When APL “'has:a low priority, other partitions will get CPO
service. The normal proportion of time that APL has high priority is coatrolled bnq a function
PRIORITY " a,b, which is ‘distributed with the vorkspace, OPPNS. The priority proportion varies
approximately linearly frog ==~~~————w-- depending on the nuaber of ports in use. There are
other factors involved such as the quantum, the time allotted an active vorkspace in core, that
can also be set internal to APL by an APL function.

‘Psychologically a time-sharing user desires at most a 3-5 second response time, (depending
on the complexity of the regnest) bnt batch users object to at times 400% degradation in their
jobs caused by APL. Hence some compromises have to be made. See Figure 7 for comparison data
vhere the priority and quantum have been varied.

Securjty of the APL System. Theft of numbers of unauthorized users vho search wvastepaper
baskets, unauthorized copies of OPPNS, disastrous experimentation by inguisitive but wvell-
keaning users who desire to probe the ’aysterious inner vorkings of APL, and mischievousness make

‘secnrity an annoyiny but necessary task.. As far as the Computer Center has determined no simple

procedures or solutivas are in evidence in the current IBM APL release. Various attempts at
devising elaborate check functions for privileging "authorized" users at terminals outside the
confines of the Computer Center have alvays been cracked.

Beyond these basic considerations there are the very real problems of offering security of

Creativity to those who desire it. Hith the possibility of patents for original algorithms and
use of functions for trading with other installations or for publishing, workspace and fnnction

Q

{---01--0-1- --i

onGoa0o
n0aaoao
000 ooo
000 ooo
000 0oo
0ogo o0
0oo 0o
goo oo
000 00
0oo 0o
ooo oa
0o 0o
00 oo
g 0o
o 0o

uoo
000
0uo

Cc o 0O o o oo o0 o o oo

a
0
o

0

q-g saubtd -
[ol] 0¢ 0c ct 0
c==1-0--|----0-00-1000- | ----|-0001 00 %0

Dmummummummmu 0DODOob 0 00 00000000 |
0000000000000 0000000 0 00 0000 000 |
0000000000000 Q000000 O 00 0000 000 |
0000 00700000 0ORQOD0 0 00 0000 0o0 - |
0000 00 00000 000ODE0 0 00 0 0.000 (szo
0UCO 00 00000 O O Dum/m//mu‘ ‘oo |
0000 00 00000 00 000 0 O oooo! 1

000 00 00000 0 0 000 O O 0Dooo

000 00 00000 0 00000 O Jm/mmn |
00000000000 OO0 O 0 0001050

00 0O0OGIOG 000 O oooo | "

00 0 00 00 0o o 0Doog - S

On 0 00 00 oo o ooo)

00 000 00 oo ooo

0 oo oo 000

jsL o

THAGWNN JY0d *SA AWIL ZIOINNOD SYNOH J0 dIGHAN

e-¢ 2anbtg

AVO 40 FWIL
- SA
@3103NNGD STYNIWYIL 40 ¥ITWNN

05T 09ST 04aT 0esT
. ._... L... L . L . ; . ; oro
i e
I e
L
i

m ww m - Joese
: g*l€

O

106

Aruitoxt provided by Eic:

[E

Figure 3-c

»
ACCOUNT NUMBER: 41001

20|

0TS OF ACCOURT purpops VS, TIFF o® onay
' T = m0rAnL purerp on
*
o]

- NUMRER QR puorr o LInn
- JUNEEP QP ARprIpR

15} o O O :
i o .0 0 O
| o o B B B. 6 0D
! 1 8 oo @
-
10| - B @8 g @
| * E B ,
I ‘
I - & -
[.
5|
I
|
l
I S S . * %

e e Rt E el e L Sy By R Sy PP S B

1530 1540 1550 1560 1570 1580 ‘ 1590 v 1600

Q ‘ -

ERIC ' 107

Aruitoxt provided by Eic:

O

ERIC

Aruitoxt provided by Eic:

(1]
[2]
[31]
(4]
[51]
[el
(71
[aY

{111
[12]
[13]
{14]
{15]
[16]
[171]
[z8]
[191
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
301
[31]
[32]

. [33]

[34]
[35]
[36]
[37]
[38]

[39]

{13
[21
[3]
N
[s]
(s8]
(71
(8l
{93l

{101
v

Figure 3-4,
VMONITOR(C]V

V DELAYA MONITOR UNTIL;P;A;CO

TIMER«TERMNUM+10
UNTIL+ 72 60 L24UNTIL.
' INPUT ACCOUNT NUMBERS YOU WISH MONITORED OFE AT A TIME
NUM« 0 5 poO
L2:+(A/'STOP'=44+P«M)/EON
© NUM«NUM,[1] 1 S5 p 5+P
. +L2 ‘
rON Qe P«52p0
., . UMY, 0 3)p0
L OPibE..a2 DELAYA
PIME+« 24 60 124 72 60 60 60 TI20
TERMNUM«TERMNUM, 123
PIMER«TIMER ,100x+/(72 60 TTIME)+ 1 60
CONNECT<CONNECT+({(152)eO0N)
A«((14pNUM), 1 3)pCO+0 -
INL:ALCO31;]«(pP),(+/P<21),+/21SP+«ACCT NUM[CO«CO+1]
*(CO<1+pHUM)/INL
MAT«MAT,[2] A
+(TIME<UNTIL)/LOOP
ABORT:'NUMBER OF TERMINALS CONNECTED VS. TIME OF DAY
30 90 PLOTT TERMNUM VS TIMER
10 1 p* !
CONNECT+(CONNECTXDELAYA)+3600
'NUMBER OF HOURS CONNECT TIME VS. PORT NUMBER.
PORT+152
30 90 PLOTT -CONNECT VS PORT

CO+«0
10 1 p' !
' PLOTS OF ACCOUNT NUMBERS VS. TIME OF DAY'
' t;Pcl11;' - TOTAL NUMBER ON'
' ';EQ[2];' - NUMBER ON PHONE LINE'
' *sPC[31;' - NUMBER ON HARDWIRE'
310"
LP:' ACCOUNT NUMBER: ';(' '=NUMLCO;])/NUM[CO+CO+1]

*(0¥+/+/+/MAT[CO.,])/(I26)+2
+((126)+2),0pl«'NONE OF THIS ACCOUNT NUMBER SIGNED ON'
30 90 PLOTT MAT[CO..] VS TIMER

+(C0<14pNUM)/LP

vaccrilGIv

V R+«ACCT N;OR;X

+((A/'0'=N),1=pN+(" '#N)/N)/ZER,STAT,0p0R«6I 0 0
R«1+L(71108)%#1000

R+(10%x5)xR-LR+R+10%5

R+«LR%+10x5-p¥N

+ZER-2

STAT: R+1+L(71108)+10*8
R+(XeR+(R=101'0123456789°1N)/ALL)/X+ON

+ZER+1

ZER: R*(((1+7:1oa)>1oooooo)A(1+7:108)<1oooooooo)/ALL
OR«+610,0R

in the Operator's workspace.

108

INPUT STOP

Note: .Good for 52 ports. Additional functions used are found

Figure 4

i
i
X
i
!

4

I-Beam ‘ - No. Of Max. C
Number Unit Elenients Value - Significance

0 - S 13 -] . Count of special disk oper-
ations. The elements of the
decoded vector give the number
of times each of the following
system commands has been used:
DROP, SAVE, LOAD, COPY, ADD,
LIB, OFF, DELETE, LOCK, UNLOCK.

1 1 perceat 100 100 The percent of elépsed time
given to service an input.

2 1/60 sec. 240 4 sec. The system reaction time from
wiaen the user's return is
detected, until his workspace
is dispatched.

3 1 second 120 2 min. " User keying time, from the

: time the keyboard -unlocks,
until the user hits return.

4 - 1/60 sec. 120 2 sec. Compute time per input.

5 (a transfer vector of absolute addresses)

6 1 minute 120 2 hours Connect time for each session.

7 -l second 240 24 sec. CPU time for each session.

8 i”byte : 148 148 bytes Raw input character count,

: including backspaces, etc.
9 1 second . 120 2 ﬁinutes Input arrival time (from‘one
‘ carrier return to the next).
10 - 1 byte 148 148°bytes internal oufputzline length.
13 250 bytes 200 50000 bytes ‘Garbage in woxrkspace at time
' . of swap write.
14 250 bytes 200 50000 bytes Active size of workspace at
‘ time of swap write.
Figure 5

Decoding the I-Beams

The data in core storage is read-out by a histogram I-beam
in increments of full words. To decode the I-beams the following
APL function can be used. ’

VSPLITLOIV
V R«SPLIT I
{113 R«(14I),,® 65536 65536 Ti+Il
: v

EIK\[C . . 4 109 ‘ -

Aruitoxt provided by Eic:

o

ERIC

A e Provided by R

g
§l"‘?’{\Figure 6

IBEAM

TUIS HORKGPACE iIAS COLLECTED A GRAND TOTAL OF 1 IBEAM READINGS.

TALY ARL FOR DHUL FOLLOWING DATES AND TIMLS:

a1) 10:491194% Gl G2/14/72

AillCd DATL AKD TIME DO YOU WISH ? (SPECIFY BY NUMBER)
—i .

willch i (0-14 LXCEPT 5) DO YOU WANT?

LAk

2
DU, YUU KART DHL UNCODLD IBLAM DISPLAYED?

‘b

u: ’
L8

371202 31064072 1310742 ° 4y4506558..103158272 .-16318793-- 25559486 --27984253 25627201 17094924 12845163 (226010
3857752 3538989 2621478 2816094 1966109 1245207 1Lu1812 1507343 12453197 104B8S89 u4SB8762 458765
655372 55367 262148 720903, 458758 458756 458757 262348 327680 G5340 262346 €55uC E55ul 196510
131074 390611 196611 1 65538 65540 65538 131076 65540 262145 196608 2621uu 1 65%37 0 (5536
133072 . 65536 196609 196612 65538 65539 65536 65537 3 4 0 196609 o0 0 O 2 1 O -3 655 3¢€
2 65536 1 196608 65537 2 131072 65536 65536 131073 65536 1 65536 2 65536 131072 O [+
G 131072 2 0 65536 65536 65536 65536 65537 O 65537 1 O 1 65538 3 06 2 2 1 0 © €553¢

131072 0 0 0 0 131072 18u

;

WNODED VUCTOR IS:w7w B 20 22 68 110 3155 192 209 329 390 4u6. 427 383 330 321 270 " 204 196

. 4107 - 85 S0 61 56 Sy 45 40O 38 w3 u6 30 29 19
‘ 7 4

23 22 20 23 3% 19 13 16 13 1 10 7
a

R ‘13 13 1 10 7 u oy i1 7 7 G 7 5 i u 8 1 4 u 2 1 u 1 5 3 2 2 2 3 3
S 3 3 Q@ 1 1 2 -1 u 1 2 2 4 1 u o u b I 0 4 ¢ o 1 1 1 0o 0 1.0 2 0 b 4] 3 1
3 4 M 2 1) 1 o 1 1 o] [} u 0 Q 3 1 0 [} o 0 0o o 0 2 c 1 [} c c 3 1 o
c 2 i o 0 i K] 1 i 0 2 2 0 1 © 1 [} 2 1 1 0o o 1 1 0o ¢ 2 1 c 2 ¢ 0 0
\D o 0 o 2 c ©o 2 0o o 1 o 1 o0 1 0 i 0 1 1 0o 0 1 1 o0 13 0 0 O 1 1 2 0 1
£ 0 0 2 0 2 0 1 0o 0 ..0 3 1 0.2 0 0 0 © 0 O O 0 O 2 0 0 18u
i T OF IS IBEAM IS AS FOLLUWS: :
; HLEL OF OVDBFLOWS WAS: 184 ‘
CHZITOTAL OPF-SCALL READINGS WERE: 474 o
"12: The system reaction time from
when the user's return is detected,
until his workspace is dispatched.
500
.
. .
koo| , : First 100 elements of
.
: the decoded 2.
i
. "
: .
300
L]
L]
2001}, =
L]
r *
: 100 .
.
o
[o
1A) i i e e
‘ 5*11 Units of 1/60 of a sécond™
-0} |— f‘#m-hunuy)
0 50 100

110

R

———

—~—

-—

200
190
160
/¥o
(20
100
20
&0
yo

A0

B W 9

T F/jure 7

BATCH RN TIME ys—PRIORITY
IME Y5 LORITY

—

RON WME {M/”) ShHown: T
for CPU bound N
. e QUANTA =, 1

Batch JTeb
| v 'R QUANTA=,08

N\ CONCLUSION - VARYINE
QuAnTw = FRoM .02 10 ..1
MRS No EFfecT own
 BATcH RUN TIME

2 TERMivALS (cpu
. ' TJuwk)

A2 3 Y s e 7 8 9 -~
' PRIORITY F

RuN T (s ec) .

APL ' ’2”’) Tiwne VS Priorrly
anslanf Looped cpU
.Tdb Ir} Ba#c;) |
3 TERMINALS Y
~ 2 reEMmS vnew&e’ QUAN T4
Fﬂdﬂ 02,.04,.06.08

3 has g oer e
CHectd

/“'/ |

| TERMINAL

A2 3 ¥ 5 6.7 2 9
| PRIORITY

111

_video tapes - primarily for the purpose of discouraging note-takin

‘recovered. We do not publicize this capability.

security and some form of credit has to be given- to programmers and researchers while
encouraging APL users to share their work with the world.

Another security problea of a different nature is the disappearance of the contents of
wvorkspaces accidentally or because of internal damage. If users report their aishap to the
Center within the period of a cycle of dump tapes (3 weeks) their workspace can usually be

F

océasionally vorkspaces come ouUt DAMAGED (IMPEACHED) in the twvice weekly dulp-:e%tore
procedure meaning that they are guestionable, but are dumped and restored. We try to elifninate
the gquestionability by either copying them over or restoring from a hackup tape. Whether this
is necessary or not, we da not know. PFor -example, we hawe difii ,.5d that the upper and
lovercase idle character cause an’ inpeached workspaue, bUi use of wuv functions containing these
characters is in no way hamperzd.

‘Towur~dismay dn #Harch, becauseé of later to be discovered probleas in formatting the disks,
ve had several workspaces DAMAGED and REJECTED as .opposed to being DAMAGED and IMPEACHED. The
contents of these workspaces are gone. But ‘Ftheir nanme remains in the directory. If a user
atteapts to save irto these workspaces, ABL. abends. It is necessary to bring APL up again and at
all possible speed)DROP these workgpaces=ros the directories.

Bducation. There is no un@ergradpate 'computer: science prograam at SUNY-Binghamton, hence
thare are no “prograsmming® courses..There are graduate.courses (in APL & PL/1) in the School of
Advanced Technmlogy which undergr ates can take, by-petitioan, for credit. The vast majority of
students, staff and faculty look tmithe Cosputer, Center for instruction. We have produced a
series of video instruction (9 tages, 45 minutes each) which introduce. students to APL/360. The
tapes are run, with a knowledgzable ﬁanterwenployee in-attendance, twice a semester - usually
twice a day (noon and 6:00 p.m.}. From +wo. to three=hundred :people per year are introduced to
APL. in this mamner. The Center employee is::necessary .primarily to provide the encouragement and
motivation for all standents to get on the terpinal as soon. as possible and not just take the
video course fmr theory. Durinj each summer a special class for. faculty only is held, and is
well attended. There is a 50 Page supplementary manual available which is used to follow the
g during the tapes. Copies are

‘available.

In addition to the viieo classes, which ame: vell received, we offer live classes for
groups, such as individual classes, op a demand basis. There is.also a series of vorkspaces in.
APL which iastruct a user in the AR, syntax: in a "CHEI® mode. WHe offer personalized instruction

. to users who-read the User's Mapmal o our Puick Guide on their own. The Quick Guide is a brief.

EE

introduction to APL/360 with motexs concerning .specifically our installation, and saaple .
executiogs of some of our public libraries: This guide was written to hand to people who stop in-
the day -after the APL classes emd and ask vhen:we'll be teaching an APL class. Copies are
available on reguest. N : '

Assistance to Users

in providing assistance to faculty we.find various categories of needed support: (1) those
wvho are sophistiicated programmers, have good. ideas forrapplications ‘in their courses, and merely
request account muabers for their students, ireservation of terminals, and perhaps demonstrations
of APL in-group sessions; (2) those’ with .gmod ' plans ‘for .applications, but lack ideas ' for
implesentimg thwa; (3) and those vhose onlywattributezis enthusiasm. The last two categories of
pecple are: best ‘handled on a one-to-one basis, tryinmg:to adapt their meeds to techniques and
existing ‘programs. With a sufficient mumiber of examples ' of problen-sélving techaiques,
simulation and tutorial prograas they can fimd something consomant with their interests that
vill provide the supplement or ewbellishmest to.their course: that they songht.

—

students -

Studeusts vho use the APL system do:so alsoc for varions reasons: (1) course requirements,

(2) their own research or other class worxk, Y3) general ungmided curiosity, and mass productions’
of SNOOPY posters. Homever, it is trme :tha* most stndents ‘become, for various reasons, much more

sophisticated and elegant APL programmers chan faculty:and ‘that a great deal of conrse-related

APL vork can be traces tc student initiatiom ‘by saggestion mr actual development.

Computer Center Assisgance
- In nmogt cases, APL ﬁroject& have themmost success wmhien they are tailored to a specific

ptbfessor @nd wlass. We have, howevéi, developed some gemeral purpose CAIX techniques that are
applicable to various circnastau§®s. We are currently evaluting the Author Tutorial Systea

Q

RIC 112

Aruitoxt provided by Eic:

EE

available through IBM. The object is to allo¥ professors, with a limited knowledge of APL, to
construct tutorials and drills. Students _can respond to questions in free fors semtes :es.
Statistics of student performance can be obtalned.

In terms of particularx applxcatxons, so#e jdeas have reguired a great deal of effort On our
part and on the part of the okigibator. The first step 'is to determine whether or not the
praject is "worthy" of implementation.

The determination of the "worthiness® of a given appllcatxon is not well-defined. Probable
uge, time, and liamited personnal constitute the primary copstraints. }t freguently goes beyond
differentiating what is or is not a good APL application. ¥hat we may conceive of as a "bad"
application can, in some instances, serve a definite need. Many applications such as the
CHEMLAB, APL laboratory mgnitor, are not .cost effective yet, but represent excellent prototypes.

Certain wmodificaitons of ideas and proCedureS invariably aust occur' to make them suitable
for APL impleaentation. Interestingly enough, because of the ability of APL in siaulating
axperisents to their very 1limit, many of ‘the planned Preshaman PhysicCs lab experiments were

modified - mainly because the original experiRental procedur2s, takem to the 1limit, produced

less acccurate results than the modified prOcedures on APL. The neCessary algorithas must then
be developed, and then coded. Prograam editind, a ~continuwal dialogue between programmer and
originator, is an interactive process that €an be VYery time consuaing. Once the programming is
conpletded, arrangements are made to allow stndents easSy access to the - prograas. Student
reaction is an.isportant 1ngredxent 1n the detern1natlon of modifications and enbell1shnents.

‘Documentation

It is axiomatic in user service-oriented organizations that effective publicity is an all-
smportant ingredient for success. We publish the Cosmputer center Newsletter four or five times a
year. (If you'd like %o be on sur mailing 1ist, ve have applxcat1ons with us.) APL news ¢ets the
aost coverage. ¥e also publish a list of publlc library workspaces and their contents; we also
have copies hece for distribution. He also paintaip Standardized "on-line" documentaiton.

A large :number of our APL users afe i1nterested jn statistical functions. We have two
statistical packages: STATPAK and a package frop New Paltz. Several additions have been written
by SUNY-Binghamton people. Unfortunately, a larkge portjon of potential users know statistics but
cannot uanderstand the descriptions that use 3 large amount of APL terminology. Our = student
proctots know: APL, but not statistics. We haVe developed a descrxpt1Ve workspace STATHELP which
gives even additional help to bridge this gap-

Weé ‘have iaplemented a MAIRIXHELP that describes some things that can be done with matrices’
and APL and points to other matrix workspaces in the public libraries. A FOBMATHELP workspace
contains ' functions and’ help to format data, functions and help in writing CAI and dxrectxons on
use of the various plot functions that have aCCunulated in our libraries.

.

Future Efforts

Some areas of future emphasis, in @addition to ‘those gmentioned above, include more
concentration in Psychology, the School of Maunagement, the Scheol of Nursing, and applied
mathematics in the School of Advanced TechnolOgy (SAT). ‘ : o :

Since we do not currently have a file Systes ¥ith our APL system ¥e are restrained by the
36K WS limitation - especially for statxst1c61 app11Cat10ns, long simulations, and CAI prograas
requiring the logging of studeat statistics, ¥e feel a distinct need to provide more.information
to users on good program@ming habits and on tiRe/space tradeoffs. A programger in SAT, Grant
Sullivan, has done some investigation in Plogras@ing ;techniques to save space and time/space
tradeoffs. His work provxdes some help and gsldance in googd progralnxng techniques - in the above
ATBAS »

Of the 1750 users on. our systerR a relatively small proportion exhibit exceptional
progranming mkilis. It is a testimony to the ©fficiency of the APL/360 implmementation that less
than good prograamming does not necessat1ly plaish the user, There are users who are very clever
with the APL syntax but do not use it well jp everyday practice. There are, of course, users
vho, no matter what the asount of effoft, 'will never be good programmers. It is probalby
impossible and certainly impractical to ilpose‘restrictions on the user comaunity to attempt to
enforce programaing standards..’ Be would, BOwever, like to increase computer-related skills in
all areas. : -

Some of this improvemeat comes with knowledge of pasic computer.concepts and numerical
methods. Most of our users do not have the tiBe to dedijcate several courses to achieve this type

RJ!:‘ | ' 113

Aruitoxt provided by Eic:

[E

O

of knowvledge. S0 we .« .a the poosition of hai .ag .o comnsider ways of capsulizing APL and
statistics, advanced APL, numesical methods useful in coding APL probleas, etc.

Finally, there 1is the task advising users vhat systea to use. Initially ve did not ofter
any choice of conversational terminal facilicies. However, we currently run TSO and anticipate
situations, such as taking the determinant of 50 x 50 matrices, vherve our advice will be to
channel the application to the most applicable terminal systen.

The .ultimate . goals are to transport as many useful programs to our systea as we can, to
provide a large base of available routines, to encCourage the development of curriculua materials
in our consortium, to adeyuately publicize that which is available, and to provide the
consultation and assistance necessary to eiliminate or reduce impediments to general
davelopment. We feel ve are. in an embryonic stage nov, but look forwvard to increased service to
otr users. We would appreciate sharing experiences and prograas with other installations. There
is much to be gained by cooperative efforts.

MC o - : 114

Aruitoxt provided by Eic:

EVERY LITTLE BIT HURTS:

Saving Money by Saving Space in APL

Richard Alercia, St&te University of New Yotk
Rob2rt Swiate), Binghamton Public Schools
Gerlad M. Weinberg, State University of Nev York
Bingharton, New York

&

The State University of New York at Binghamton has been a user of IBM's APL system since
the earliest releases, and currently runs about 50 ports on a model 155. At the time of our
study, 1400 user numbers accounted for approximately 5000 tracks of 2314 space. A persistent
trouble in our system seems to be one of inadequate space on disk files. At the beginning of a
senmester there is quite a bit of space, but as the weeks pass on, the disks £ill monotonically
until users begin to feel the 2ffects. Each passing year seemed to see the addition ot another
2374 to the -system, in ordar to solve the.previous year's problems, and each year the systen
fills up. Other installations have told us of the same difficulty, so we decided to investigate

the problem. S

We conducted our investigation ‘during the Fall. of 1971, through a survey and through
detailed investigation of a random sample of individual users' workspaces. Our sample generated
295 user numbers, two of which were no longer in use and 48 of which wvere locked. We respected
all locked numbers and workspaces--of which there wvere only. seven wunder unlocked numbers.
Altogether, then, we investigated 245 numbers. We realize that the profile of locked nuambers may
be different from that of .the unlocked, but we do not know how to adjust for the difference. We
conjecture that the average locked user is a larger, more sophisticated user, and since they
seem to wvaste more space amony the unlocked, we imagine that our esimates are consegueitly on
the conservative side.

In parallel with the study of workspaces, vwe distributed a questionnaire to 35 persons,
most of whom were in the School of Advanced Technology and so might be expected to be more
knowledgeable about APL than the average yser at Binghamton. The purpose of ‘the questionnaire
vas to estimate what effect knovledge of APL has on space usage, and wvhat possibilities there
might be for space savings. We also carried on a number of informal discussions vith users, and

.observed users at worke.

State Indicators

One of the first sources of wvasted space is the space used for susperded functions. If a
function is suspended during execution and the state indicator is not cleared, a certain number
of bytes gets wasted unless execution is resumed., Of the 245 users we checked, 48 had some such
vasted space. The number of bytes ranged from 68 to 20, 504 per 32K’ workspace. The total for the
sample wvas 75,994, or about 3)0K bytes per 1000 users. For our vhole installation, if this rate
is representative, 420K bytes are consumed in this manner, or about 70 tracks. .

our survey showed that at least one-third of the respondents did not know the meaning of
the SI symbol, and recall that this survey was among the most 'knowledgeable group of APL users
on campus.. But even people vho knev what SI meant had wasted:bytes in their workspaces and had
bytes consumed by SIs, even damaged SIs. Indeed, the more "sophisticated"™ the user, the more
space he wasted in this wvay. -

Duplicate §orkspaces

We found a number of people to have two workspaces which wvere precisely the same, while
others had very similar workspices. We also found two or mpore- users who had identical
wvorskpaces. ‘The main reason for such duplication is the presence of a CONTINUE workspace, wvhich
is presumably-around in case of, or because of, system difficulties.

In our saﬁple, ve found 92 CONTINUE workspaces for 245 users. Erasing only the ones vhich

" were exact duplicates of other workspaces would have reduced the 640 tracks used by these 245

E

users. to'509 tracks. Dropping all CONTINDE vorkspaces would have reduced the total space to 363
trackS.. This. saving comes to approximately 1130 tracks per 1000 users, or ome- 2314 for betveen

3.000 :and. 4,0QC users.
B

115

Q

RIC

Aruitoxt provided by Eic:

Handling of Libraries

0of major importance is the space wasted by copies of functions which can be found in sone
other vorkspace. These could be in either the APL public library or some private library. While
it is difficult 1in the present APL iaplementation to say precisely, our best estimate of the
number of public library functions per workspace is two. The average size of these functions is
approximately 2000 bytes, or 4000 bytes per workspace. Over the 1657 non-CONTINUE workspaces in
our system, this represents about 6,600,000 bytes, or more than"20 percent of the total tracks.
If CONTINUE workspaces are included, thxs duplication of public functions accounts for over one-
quarter of the space consumed in our system.

Space consumed by ,non—public, or semi-public, functions is difficult to estiwate, but ve
found several sets of functions which were duplicated quite frequently. Most of these seem to
have originated in some teachar‘'s vorkspace. A typical situation is for an instructor to create
functions for his class to use--functions hich each nmember of the «class saves in his .own
wvorkspace. One case, for instamnce, invelved two tracks, so if -there were 20 people in the class,
40 unnecessary tracks would have been consumed. ‘

Miscellaneous ¥Wastage

Disk space also gets wasted in numerous small vays which will probably be xnaccessxble to
any systeas solution. A person who khows the system well potentially has good control over his
space utilization. Given an incentive to save space, he will be able to. do so. On the other
hand, a persoa using the systes with little knowvledge will most likely be wasting space, even if
he has reason not to. Our survey indicated that many users vere not sufficiently awvare of the
vorkings of the system to save space even if they had vanted to.

But knowledgeable users can also be space wasters. Though they knov how, they are simply

tos lazy to clean up their workspaces - especially since our installation does =nto charge for

-‘disk residence. We ran across one person who had seven workspaces, five of which were the saume.
This totalq 166,000 wasted bytes, or roughly 24 tracks.

Some vorkspaces had fuactions vhxch wvere obviously to be used only once, yet they vere
saved. Others had two or more similar copies of a function, one of which, at least, contained a
syntactic error and thus couldn*t possibly run. It is probably of no value to save a function
which vwon't execute, especially if the number hadn't been used for six months.

Though ve found no trace 2f it, there vas a vell—organxzed APL baseball league going around
campus. The grapevine tells us that these workspaces are carefully locked. ¥e did, hovever, find
some unlocked workspaces with other games. One was a basketball workspace featurlng the New York
Knicks. Whether.or not these functions had value for teaching or learning, we leave to others to
decide. ' ‘ - ' ; _ :

We. encountered one copy of APL NEWS OF THE WEEK from 1969. Another individual had a single
function in his vorkspace which printed five other APL nuambers. In additon, we found one
unlocked MISS APL - using 7000 bytes - and three unlocked SNOOPIES.

7

There are a number of rataner clear steps which could be taken by the IBM APL implementation
to cut down on the amount of wasted space on disks. We shall ceasider these ' recommendations’ in
turn, indicating which problem they :address and hov much saving they might be expected to

tealize in an installation such as ours which might be reasonably typical for a <University
environment.

State Ipdicator Vecto

[a]

-

For 99.9 percent of the users 99.9 percent of the time, saving the state indicators of the
pragranm after an attention seeas a vaste of space, since few 'programmers kno¥W about their
existence, fewer know their meaning, and almost nobody ' uses them to resume execution.
Nevertheless, the advantages of saving the state can be maintained without the wastage of space
if a few sinple changes ace male.

The system could prevent automatic storing of the state when) SAVE is executed. The state
would only be saved uhenfé”Spe:ial version of)SAVE is executed -~ such as

) SAVE WSNAME SI 2
N

3

Q

]EIQJ!:‘ 4 ' | 116 .

Aruitoxt provided by Eic:

—

This approach leaves only system shutdowns or crashes to contend with. In these cases, one
may be interrupted unintentionally, so the state could be saved - but erased autdmatically after
the first)LOAD oc) COPY, and in any case after, say, one week. If the prograamer hasn't loaded
the interrupted space after ona week, it can hardly be an urgent patter.

Estimated savings from this approach are 50 tracks/1000 users.

CONTINUE Workspaces

We recommend, at a minimum, that CONTINUE vorkspaces not be available except as an
emergency storing place in cass of sytem crash or shutdown. Many users eaploy CONTINUBg to gain
an affective increase in Workspace quota, but they can be satisfied by whatever.regular
assignaent procedure exists. In any case, it is poor practice to. save in CONTINUE, for a syten
crash while working ou somethiag else will wipe out that version of CONTINUE.

In the case of emergency saving, CONTINUE workspaces should be retained for a maxisuwr time
of, say, one week and then automatically dropped from the system. Moreover, when a user signs
on, he should be given a message that he has a CONTINUE wvorkspace, and asked to use it right
then or lose it. Unfortunately, this strategy is not sufficient, for ‘the great wmajority of
CONTINUE workspaces are siaply sitting behind numbers which won't be used for months. Therefore,

a time limit must also be set on inactive numbers.

‘ In our system, inplementiay this policy wouid save 1130 tracks/1000 users. After our study,
our Computing Center institated the policy of periodically erasing all CONTINUE vorkspaces.
There seem to have been no complaints, and the savings are commensurate with our estimates, thus
proving an empirical demonstration that this approach works aad is not unbearable to the users.

?robably the greatest wastage of space in our APL system is browght aboyt by duplicates
upon duplicates of certain library functions stored under number after itumber, and sometines
many times under the same user number. When a workspace containing a locked function originally

loaded from a public library is saved, only the name of the function need be saved. Then, when a

- JLOAD or.)COPY is executed, the copy is brought anew from the public library. Currently, we

estimate that this operation would save 20-25 percent of the disk space in our system, but this
space saving would tend to gravw as the library grows and the users stay longer with the systen,
So ‘that their knowledge of the library grows.

This operatios is almost transparent to . the user, and would be entirely so if it‘uere not
for the possibility of new versions of library functions being issued froa time .to time. If the

librsry functions are functionally equivalent, but are improved in space and/or time, this

"System has the further advantage of giving all users the benefit of the latgst improved library
routines. Only if functional changes are made could a user get into difficulty with a program
not working which once worked. Iyn any case, such troubles can be prevented by issuing the new
version with a newv name - whiCh is probably best if the function has changed.

Wl

-an the User Do It?

I

An alternative solution to this same set of problems is to modify user behavior. Well-
trained and conscientious users would, before saving any workspace, clear the SI and” generally
Clean .up garbage in the workspace. They would certainly not store copies b6f libracy functions,
but would erase them before saving ard copy them at their next work session. When loading after
a crash they would carefully drop CONTINUE.

Were all our users like this, our APL system would be.a neat and triam little operationa
From our survey, however, we camnot find any evidence that any users are like this. While they
may spend hours trimming a few bytes so as to make a job rum in one vorkspace, they will not
spend a few seconds copying library functions anew with each load. On the Contrary, those users
who do knov enough toc save space for the system will readily do the opposite if it‘is to their

advantage.

For “instance, at the peak of last year's space crisis, users began to experience NO SPACE
messages when they tried to save their active workspace. In order to avoid lesing any. " work,
knowledgeable programmers filled ‘each workspace with long vectors so as to ensure a full five
tracks would be occupied. This prevented NO SPACE - for them - and they could shorten the duamy
vector as needed. : : -

At the other extreme, we find those users who might be happy to cooperate with the systena,
in saving space, but don't even know what "space® jis. .

[

Q . . M

ERIC 117

Aruitoxt provided by Eic:

[E

O

No doubt an APL installation with one hundred percent knowledgeable and conscientious users
could save much more disk space than the system changes reconmended in this paper. VNo . doubt,
too, _there will never be such an installation. Given the realities of user ignorance and
selfishness for the large majority, significant dead storage savings pmust come from systenr

changes - changes which. are transparent to the user, cor at worst within the override control of
the knowledgeable programmer. : . . ‘

Wwhen APL was a young system, users could afford to ‘put up with such glaring i1nefficiencies
in storage management. In the first place, the nuamber of users is always smaller when the systen
is first installed; in the second, the space per user grows as the number of users grows, so
that the total space grows faster than linearly with time. Installitions cannot go on
indefinitely devoting additional disk packs to APL with each passing year. Charges for space can
be expected to provide feedback to the users which will ultimately stabilize space per user, but

once charges for space are iastituted, users themselves will begin to edemand the kind ot

automatic space controls ve have suggested.

In any case, these thre2 simple systems changes we propose would reduce the configuration
needed in our installation by one 2314 in three. Installations with larger numbers of users
cotld expect proportionately larger savings in disk remtal - rental vhich is effectively rental
on an inefficient systems design.

" ACKNOWLEDGEMENT

We should 1like to thank all the members of our Computing Center staff who gave us support
and encouragement, but especially-M¥s. Anne Kellerman. 'We would also like to thank our 245
anonymous participants who (unknowingly) permitted us to exaaine their deepest secrets.

118

RIC

Aruitoxt provided by Eic:

EE

SECURITY OF APL APPLICATIONS PACKAGES

Paul Penfield, Jr.
17 Bradford Road,
Weston, Massachusetts 02193

By the terp “applicatidns package” is meant a set of interacting APL functions and
variables that a user calls, along with certain "background" functions and data that are only
called ipdirectly. 1If there is a proprietary interest in the package, then it is necessary to
devise techniqUes to assure th2 security of the package.

An interpreted language like APL might be thought to pose severe security problems, since
{(unlike a cOmpiled language such as PORTRAN) the source code is alwvays somevhere nearby.
However, with proper design, reasonable security (consistent with the value of the goods
protected) cap be achieved. This paper deals with security for packages installed bbth on
private computets, and on commarcjal time-sharing systems, with the emphasis on the latter.

Why Security

‘ The purpoSe of a security system is to make it more difficult (i.e., more expensive) for a
potential thief to get at the package without authorization, than it would be for him to do so
legally.’)
More specifically, there arz four general tyes of acts. that a security system should protect
against. Pirst ls display of the functions (and possibly the . data), for example by someone
trying to discovVer the coding. Second is unauthorized propagation of the package, for example by
means of DUHP¢sS- Third is modification of the package, and fourth is unauthorized use.

There ar® four classes of people that the security system is directed to. First are
unauthorized us@rs. Second ars authorized users, or users that are authorized for only certain
types of use- Third is the operations staff of the computer, and fourth are corputer systenm
programmers. Th®re is no effective way to prevent a system programpmer, if- he wishes, from
violating the security of th2 package. I assume that any Systen programmer knows how to access
the syabo)l table, how to -unlock functions and hovw to beat the file system. The security of a
package relieS -on the fact that such people are generally not dishonest, and therefore try to
"play the game" fairly, and will not go out of their way to steal the package. It is therefore
sufficient to desjgn the systez so that they do not stumble upon any secrets by accident. As for
the operatjons Staff, this is a larger set of people and it is probably wise not to tempt them.
What is npecesSSary is to ‘design the package in such a way that nontrivial work is required for
them to "heat" 1t, As for the end users, a few of them will regard it as a challenge to try to
beat a security system, and therefore the security aspects must be designed as though all end
users were malicjous, scheming, knowledgeable APL programmers intent on stealing and/or
destroying the Package. :

@

g
¥o security systenm is £oalproef=/§ortunately, however, foolproof behavior is not required.
The only requif®ment is that tae cosq/of beating the system _be, and appear to be, greater than
the worth of the goods it protects.//

In the cas® of an applicationﬁlpackage, the ‘g::;\:;;_lvo separate upper bounds although if
there is a data bank, the valuz of the data might{ be higher. Any package vill by necessity have
a user's mpanual vwhich defines/the interface between the user and the package. A competent APL
prograrmer who is also knowledgeable in the particular discipline can,-in principle, duplicate
any package mer€ly from the us2r's manual. .One upper bound to the worth of a package is the cost
of doing jyst that. The other upper bound is the price charged for the sale, lease, or use of

t he package.

/

- Protecting Aqailst Unauthorizel pisplay

Q

UnaUthoriZ?d displai of functions can of course he prevented'by simply lecking them. In
some cases locklng the vworkspace may also be a slight help, but in typical ' packages the
wvorkspaces in Juestion‘are supposed to be available to usets and it would not be appropriate to
lock thea. ‘ -

Soue installatidns have provisions for rendering functions and variable names unprintable.
I have never been’'told, but I assume that this is done by changing the name in the symbol - table
to blanks, or to a "name" including a nonalphanumeric symbol or starting with a blank. This of

RIC - ‘,/’ 119

T /

-

EE

zourse should only be done to names that are not part of the user%s vocabulary (i.e., only loca:
vaciables and background functions and data)} but is effective in preventing the display of some
variables, especially local variables duriug progran suspension.

Some installations have the ability to make a variable unprintable by changing its type, but if

this can be done by the user it can also be undone and therefore is not an effective security
measure. v :

One way of propagating.a package, of course, would be to display the functions and data and

-then manually re-enter then elsevhere. There are other methods, however. The most.obvious is to
‘request a selective dump of a vorkspace and then carry the mnmagnetic tape to another

installation. Some installations have conventions by which certain cozmrents in a locked function
make it un-dumpable, but aside from these there is little that a package designer can do to
prevent a DUNP.

There is much that ha can do, however, to make such propagation fruitless. Most
installations have special individual features; the common ones are file systems, and fast
formatters. If the package is individually tailored to use these features, it 9ill not cun on
other systems. =

There is some danger of unauthorized propagation by actual reproduction of the tape which
originally carries the package to the installation. There are a couple of easy things that can
be done to make this ineffective. Pirst, there is the "you add the eggs" approach whereby a
simple but necessary variable is omitted, and is then inserted manually after the package has
been loaded. The other is to send the tape with one or more functions unlocked and in error.
Then, Since only you know what corrections are necessary, only you can make them, and the tape
without the corrections is worthless. 2

N

protecting Against Unauthorizel Modification

With a package containing many functions and variables there is some danger of wrong
cesults if some of the functions are replaced or.missing. To protect against this, and therefore
to preserve the integrity of tae package, there is little that the package designer can do. What
is logically required is the concept of a "locked group” vhich during 3cOPY,)PCOPY,)GROUP, and
YERASE commands, would always stay together. Another useful feature of such an arrangemrent would
be jdentification of the locked group with the user nuamber of the person who locked it, and
therefore "owns" it. The rulz then would be that only the owner could)SAVE a lockgd group; 1if
anyone else tried 'to)SAVE a workspace containing the group, it would be erased before the save
is execuyted.

However, this is just a suggestion. It is not implemented, and usually there is nothing a
package designer can do to prevent modification of his package (although one installation has a
similar arrangement applying to workspaces).

Protecting Against Upauthorjzel Use

Protecting against unauthorized use requires a validatioa systes of some sort. Such a
systen need not be absolﬁte, in the sense that it need not protect all functions in the package.
It is sufficient to protect certaim "critical" functions. This approach reduces the nuaber of
validation tests, and also eliminates many lines of code.

- The cost. of repf¥ated valilatioms can he eliminated by somehov "conditioning™ the workspaces
to allow spbseguentghse without another validation. This can be most easily done by . setting a
global variable, called the "conditioning variable,” to match the results of a test calculation.
If the conditioning variable is OK, computation proceeds; if it is not, the validation routine
is called and either the user . is -validated - and ;proceeds (without even realizing he wvas
validated), or else the calculations are aborted. For this atrangement to be effective, the
conditioning variables ®ust not have aa obvious value. The formula for calculating it must be
secret, and new versions of tha package should incorporate new formulas with new arbitrary
constaats. ‘ ‘ '

A - conditioned uo:kspice must not appear conditioned under too general circumsstances. For

example, it would be bad if an authorized user could condition the workspace,)SAVE. it, and :then

have an unauthorized user)H0OAD it and proceed. Similarly, if it is ever desired to remove
authorization from a user, the conditioning must be set so as to expire automatically. These

comditions can be assured if the value of-the_ conditioniamg variable depends upon I29 and I125.

b

Q

RIC : . 120

Aruitoxt provided by Eic:

e

A separate function to do the Validation process should be avoided, since a user can

substitute his own versicn. A better plan is to incorporate the validation code cight in one

the critical functions of the package. If for some reason it is necessary to use a separate
validation function, it should be written so that it vorks properly only within the environment
provided by the functions that call it. This may be done by referencing local variables ian the

calling functions, or by referances to 127.

¥hether or. not a separate validation function is used, a user can interrupt within the

function and then branch to any line number. Por this reason it may be wise to incorporate
I19 check to foil such attempts.

If possible, the conditioning variable and the validation routine name should
unprintable.

If the list of authorized users is kept ir ;the workspace, it takes wp space, so perhaps the
validating algorithma should reset it to a scalec - On the other hand, if ‘there is a file systen,
the list of valid users cam be stored in a reid-only file, with the wser nuabers coded in some

way. The file password (if ome- is used) should:te secret, and should nax: appear as part of

variable which can be displayed during program suspension. The list of authorized users should

be used and iamediately discaried, on the same . line, to keep that list itself confidential.
systam could be devised to require a password from the user, if desired.

other Uses of a Security System

A security procedure of a type described here, if it is based on a file system, is capable

of providing other services as well.

¥ »

First, the system can provide a monitoring of usage of the package, to any desired degree.
Atteapts by unauthorized users that are foiled by the security system might be recorded, partly
to identify people who are trying to bust the system, and partly to identify potential

customerse.

Second, such a system can provide a means of communication from the owners of the package
to the users. Unauthorized users can receive a polite notice of rejection, if that is desired,
or notices can be posted to be read by each user the next time he validates. These notices can

be anything from announcements of package modifirations, to suggestions for better use of
package, to descriptions of new literature about the package.

Finally, such a systen might even include a procedure for messages from uUsers to the owners

of the package, for example, raquesting literature or special assistance.

E l{lC : 121

Aruitoxt provided by Eic:

EE

Q

A PL/1 BATCH PROCESSOR FOR APL

S. Charmonman and J. E. gell
University of Hissousi
Columbia, Missouri

ABSTRACT

This paper describes a translator for batch processing of APL. It was written in PL/71 and
has been operational through the usual card reader for input and the printer for output as well
4s through.a typewriter terminal under Remote Job Entry of the Conversational Proyramming Systen
for poth input and output. The subset of APL accepted by the translator is at the leevel of
APL/1130. "The translator provides rile processing -facilities via PL/1 aund a form of object
program for: subsequent runs. It has served as a temporary substitute and then a supplement to
APL/360. . .

Intrpduction

Ideally we should have interactswe and batch facilities tor any good high-level languaye.
in the case of APL[9] the interactive .xccess has been excellently provided by the 1nteractive:
APL/300[10] and APL/1130[2] systems. Experimentation with algorithms and debugyirg ot programs
are best done in the interactive gode. However, onie.d program has baen debuggyed and is r 1y
for production the source proyram need not and should not be reinterpreted over 2:.d over tor
2vary run. An object program or an intermediate raapresentation should be set up tor subseguent
Cuns. It the subsequent runs are done throuoh patch the terminal could also be used tor sonme
productive purposes instead of having its keyboard locked up to wait for the result of execution
of a program. . :

In a non-ideal situation Jike at the University ot Missouri in 1970 (due to reasons not 1n
the scope of this paper) it was decided not to provide APL/360, bvz to provide cps
(Conversational Programming System)[1] with conversational PL/1, BASIC ant zZsaote job entry. The
senidor author was (and still is) strongly for APL and wanted his students to have access to APL.
50, 1 home-grown translator far batch processing of APL was developed[4].

in order to have the translator operatiocnxzl as soon as possible, it was decided to use a
high-level language rather than an assembly lanyuage. PL/1[7,8] was chosen for it is richer than
FORTRAN IV; has been used for systen progragminy [5,6] and was available at the University ot
Missouri.

The resultiny translator is more than an interpreter but less than a compiler. It provides
an object program not in assemaly language but in a Polish form of descriptor Liocks with tables
of information to bpe used for subsequent runs if desired. version 3.0 of the translator was
coapiled on the IBM 360/65 at the University of Missouri-Coiumbia. It runs in a - batch
environment with any APL program entered through a card reader and its result printed on a prin~ -
er; or with both the program and the result communicated through an IBM 2741 under remote job
2ntry mode of CPS.

Qcyanization of the Tranmslator

Figure 1 shows the general orgyanization of the translator. The source progra® is processed
tarough the lexical phase and syntactic phase one statement at a time to convert the original
source program into a modified Polish notation. During this processing the tables of intormation
are produced and modified.) ’

After the source program ias been completely transformed into the modified Polish notation,
the execution phase executes on the nmodified polish notation to produce the results of
computation. Any data to the APL source progranm is read in during execution phase and the three
tables created during the lexizal phase are podified tc reflect changes 'in the information they
contain during execution of the APL source program. For simplicity it was decided that only
values and not expressions would be allowed as data in version 3.0 of the translator.

buring the lexical phasa each atom of the APL source program is recoded into a uynit of
information which will be referred to as a descriptor block. A descriptor block serves as the

source of all information related to the atonm for which it stands. e

Each éegcriptor block itself is logically divided into two parts. The first part, callec
the type section, contains 8 bits each of which may be 0 or 1. The second part, called the jindex
section contains an integer number. Each descriptor block is exactly three bytes long, the type

Ric ‘ ' /Q??7/123

Aruitoxt provided by Eic:

O

ERIC

Aruitoxt provided by Eic:

section being ou. .; 2 and the index section being two bytes. Figure 2 shows the logical brcak
down of a descriptor b¥ neck.

The first t.:me bigrs of the type section are grouped together to fora a type code. Eight
type codes are possiidile, Zmt only:‘five are: used presently. The Hit pattern and meanings of each
possible type codiz= are :alsd “shown in Pigure 2. The type :code of each descriptor block is
determined during the lexiical phiwse when the descriptor :plock irs. created.

3 7 APL)
? PROGRAM f
4 TABLES OF
INFORMATION
LEXICAL ANALYZER
SYMBOL
TABLE
o y
7 o
SYNTACTIC ANALYZER
FUNCTION
TABLE
MODIFIED POLISH
FORM OF APL_PROGRAM| ...
it VALUE
: TABLE
EXECUTOR

OUTPUT. FROM
APL PROGRAM

—

FIGURE l: GENERAL ORGANIZATION

124

Q

ERIC

Aruitoxt provided by Eric

TYPE SECTION

TYPEP BIT (8)

T
1
'
1
]

¥
|
'
!
)
H

T
!
[}
Ll
.

e

TYPE CODE
000
001

" 010

011

100
101
110
111

FIGURE 2:

INDEX SECTION
PTRP BIN (15)

I1/0 XEY

NUMERIC INDEX

OR DUMMY SUBSCRIPT MARK

BRACKET LEVEL INDEX

o

MONADIC/DYADIC MARK
OR NUMERIC/CHARACTER MARK

TYPE CODE

MEAINING
END OF STATEMﬁNT
NOT USED
FUNCTION
CONSTANT
NOT USED
VARIABLE
NOT USED
OPERATOR

DESCRIPTOR BLOCK

125

E

Q

8it tour may take on tud different meanings depending on the ‘type code of the descriptor
block. If the descriptor block is typed as being that of a constant -‘then bit four 1s wgmarked
during the lexical phase to indFicate the numeric {(0) or character (1) attribute ot the constant.
It tue descriptor block is typ2d as beiny an operator then bit four is marked during the
syntactic phase to indicate ta2 monadic (0) or dyadic (1) unature of the operator

Bits five, six, and sevanr are grouped togetuer to rorm the bracket level index. During the
syntactic phase the bracket level index is set to reflect the imbededness ot each descriptor
block - in a subscript. The fact the the bracket level index is a three bit pattern accounts tor
tne restriction of seven levels of subscripts in Version 3.0 of the translator.

Bit eight may take on tso> different meanings depending on the type code of the descriptor
blocx. If tne descriptor block is for an operator and the index section is set to indicate an
input/output operation then it eight is set during the syntactic phase to indicate whether it
is an ioput (0) or output (1) operation. It will be noted here that the translator 1internally
handles an I/0 symbol 4s in operator rather than a variable. If the bracket level index 1s
greater than zero then bit eight is set during the syntactic phase to indicate whether the
descriptor block marks an actuil subscript (0) or is a plave marker (1) for a subscript which is
implied, but does not appear, 2.gy., the first subscript is A[:2].

The index section of tae descriptor block with its numeric index may indicate any one of
several things depending on th2 type code found in the type section of the descriptor: block. For
variapvle~type descriptor blocks or constant-type descriptor blocks the index section contaxns an
index to the array of pointers to the symbol table. This indeax may be used to 1ndex the array-
of-pointer variables to th2 symbol table to get the pointer to a symbol-tdble entry and nhence
tha symbol-table entry for the variable or constant in whose place this descriptor block stands.
The index to the array-of-pointer varidole to the symbol table is placed in the descriptor block
during the lexical phase for constants and variables.

For <function-type descriptor block the index section of the descriptor block contains an
index to a pointer array to th2 function table. This index may be used ~to chain back to the
function-table entry for whiczh a function-type descriptor block stands. The index section ot a
function-type descriptor block is completed during the lexical phase. If the type code for a
descriptor block is set to indicate an operator then the index section of the descriptor block
contiins tne operation code as determined by an operator matrix in the lexical phase for the
operator for which the descriptor block stands. :

For each variable, constant, and statement label found in an APL source program during the
lexical phase a symbol-table entry is created. Symbol-table entries are allocated dynamically as
needed and a pointer to each allocation is kept in an array of pointer vdriables called PTRSE.
The index section of descriptor blocks for variable, constant, and statement label contains an
index to PTKSE. The limitations on the number of variables, constants, and statement labels
contained within one APL sourc2 prograam is set by the length of the poxuter arcay PTRSE and the
area of core available for allocatlng symbol-table -entries.

Bach symbol-table entry is logically organized into five sections. The first section
coatains the name of the symbol represented by the symbol-table entry. The name is placed in the
bymbol~tab1e entry when it is allocated and may be up to eight‘characters long in the present
version. The second element .is called the type fiags and is one byte in length.’ Version 3.0 of
the translator uses only the eighth bit to indicate whether the value area associated with the
tabl: entry in question contaias character (1) or numeric «{0) values. The third section contains
the " rank and the shape of the structure. For simplicity Version 3.0 of the translator allows
structures only up to the 'rank of three. The values -1 and -2 in the rank »oyte are used to
indicate the empty vector and undefined structure respectively. The fourth section gives the
extent of the value area and the fifth uectxon the pointer ito the value area.

Value areas are allocat2d and freed dynamically. If no value area has been allecated to a
synbol-table entry then the extent value is set to zero and the pointer set to null.

For each functxon found in the APL source program, a function-table entry is created during
the lexical phase. Function-taole euntries are created dynamically and a pointer to each
allocation’ is placed in -an array of pointers to the function-table entries (FPTR). The index
section of a descriptor block for function contains an index to PPT#. The pointer array FPTR in
the Version 3.0 of the translator is 100 members long and each function-table entry requires 13
bytes of core storagye. Therefora, up to 100 unique functions may be used within one source
program. provided ‘enough core storage is available.

Each function-table entry is logically divided into four elemeiits. The first element
contains the name of the function exactly as found in the source prograp. The name may be fronm.
onz to "~ eight characters lonj. The second element of a symbol table entry contains a type code
set during the syntactic phase to indicat@,hov many arguments will be passed into the function.

=

RIC | 126

Aruitoxt provided by Eic:

A type ~code of ™1" judicates the presence ot a right hand argument and a type code of "2"
indicates the presence of both 2 right band and left hand argumeat.

The next two elements of-a2 function-table entry are entered into the function table durinyg
the syntactic phase and contaii the line number or.address of the function header and the line .

nupber ©of the last statement of the definition. This informatiom is used during the execution
phase for execution of the funztion. ‘

The last element of a fuaction-table entry is a .pointer to a parageter list. The parameter
list contains a list ot indexes to the array of pointers to the symbol table .(PTRSE), the
parameter list isg dynamically created to the length needed to coetain indexes to each variable
found on the function-header statement. The order of the indexes in the parameter list 1is
significant. The first position in the list contains either an index to the symbol-table entry
in vhich the result of the funztion will be found at the termination of the function, or the
tirst position will contain zero to indicate no result will be returned by the function. The
second position of the paramet2r will contain either the .index of a local variable as listed on
the function header, or the 'iniex of the right~hand argument if the function is not niladic. The
third position of the parameter list contains either the index of a local variable or the index
of the left-hand argument if the . type code 1s set to two. The remaining positions of the
parareter list contain the ind2xes to PTRSE for the remainig local variables. The wminimum
length of the parameter list is one for function with no argument and no local variable.

The relationship betwees a descriptor block and symbol table, functicn table and operator
table is shown in Figure 3. :

Sample Progranms

As nmentioned earlier, I/0 for the translator may be either through -reader-printer or IBM
2741 terminal. With the card card-reader-printer, APL' source program aund output must be
represented in PL/1 charactar set such as a modification of [3]. Through IBM 2741 the present
version of the translator accepts only PL/1 character set, but a front-end is peing developed to
aliow use of APL character set.

A sample CPS session of “APL is shown in FPigure 4. After the 2741 terminal has been
connected to the computer a session begins by the user making a login request. The computer
responds by asking for the pissword to be typed in by the user in the black-out spaces. If the
corr2ct password is not given by the user after a few attempts, the machine will force him out
by lockiug the keyboard. Otharwise, it will print a message including the time and date. After
this point Uf the pmachine expezts you to type any line it will underscore, backspace and wait.
Ir other words, any line you type in wvill appear with the first letter underscored.

In Figure 4 (a) the first command or regquest the user made after logging in was "load" and
"list" a progran. segment named "aplrje". This program segment is the set of PL/1 job control
cards for processing an APL program {or a batch of programs) and channelling the output to a
cataloged data set to be writtsn via the terminal.

The set of PL/1 job coatrol cards shovwn in the listing of "aplrjp" is for processing APL
and channelling the output to the printer rather than the typewriter terminal.

.
)

The last listing on Figure 4 (a) is a sample APL progran Completetvith its job control
cards (and not PL/1 job control cards). It has been stored under the name "a3601".

To schedule .a job we use the CPS instruction

sched(A))B)).ff)
when "A}”B:m:::ﬁ”é;;wgﬁzuﬁ;;és”of'pgggrams which have been stored, and the symbol ">>" the PL/1
catenation.operator. For example, in Figure 4 (b) after the listing of his library, the user

------- - schedules the proyram obtained hy catenating the set of job control cards in "aplrje" and the
APL segment in "a3601". The system responds by giving the job number (94 in this case) and the
time it :enters the queue. The status of the job may be reguested by the CPS command "find (A)"
wvhere A isrthe job pumber. On the fourth line from the bottom of the listing on Figure U4 (b),
the” machine responds to "find {94)" that this job has been completed at 9:56:23 which is about

_ §ix minutes_ turn-around- time. : e T

Once :the job is completel the output may be printed by using the reader program which is a.
PL/1 program to be executed in CPS PL/1 and not CPS RJE mode. Therefore, the user must logjout
from RJE -as shown on the last two lines in Figure 4 (b), and log-in PL/1 as shown on the fxpst
line of Figure 4 (c). The reader program is executed by the CPS command "xeq® and it asks for
the file name which is "printax" in "aplrjp". -

Q T

"ERIC | S

Aruitoxt provided by Eic:

O

[E

Aruitoxt provided by Eic:

RIC.

The output of the APL prb;ram "a3601" is shown in Figﬁre 4 (¢). In general, the output fronm

version 3.0 of the translator is arranged in two sections.

heading identifying the translator.
line 1s numbered. Errors fucnd during the lexical-syntactic
1n which the error occurr2l and containm a reference

oceuicred. Provided the program passes the lexical-syntactic
errocs were found during tae syntactiz scan and that
printed out.

The second section is headed by a heading which
translator or system output. The output from the APL source
side of the page. The right-hand side of the page may
consists of the statement numb2r and, optionally, variable

The first
Below the heading the APL program is reproduced and each

section is headed by a
scan are printed out below the line

to the statement in which the error
scan, a message indicating that no
the execution phase. is in control is

indicates the program output and the
progras is printed on the left-hand
contain system output. System output
name associated with each output

operition executed in the APL spuTCe program. Execution errors are printed out as they occur and
will generally reference an APL source statement in which they occurred.

DESCRIPTOR BLOCK

TYPE
CONgEANT OPERATOR FUNCTION
VARIABLE
POINTER POINTER
1
ARRAY - _ | ARray
o OPERATOR MATRIX 0
SYMBOL - FUNCTION
TABLE TABLE
SYMBOL FUNCTION
L« TABLE = TABLE P—
VALUE AREA
PARAMETER LIST
FIGURE 3: RELATIONSHIP BETWEEN A DESCRIPTOR BLOCK
AND TABLES
128 s

login(cps003,n24,rje)

PASSWORD: RARARN

GOOD MORNING; USER 01; TIME 9:40:54 5/27/71;
load (aplrje)

Tist
~ 10, 0100 //XJOBCARD JOB (K11157, ,280K) , CHARMONMAN ,MSGLEVEL=(1,1) ,REGION=310K
20. 0200 //S1 EXEC AMPLE
30. 0300 //SYSPRINT DD DSN=CPS003,N24,PRINTAX,DISP=(,CATLG),
40. 0400 // UNIT=2314,SPACE=(TRK, (1,1)),VOL=SER=MFC163
50. 0500 //APL.SYSIN DD *
load(aplrip)
Tist :
10. 0100 //XJOBCARD JOB (K11197,,280K),CHARMONMAN,MSGLEVEL=(1,1),REGION=310K
20. 0200 //S1 EXEC AMPLE,TIME=2
30. 0300 //SYSPRINT DD SYSOUT=A
40. 0400 //APL.SYSIN DD *
load(a3601)
list :
~ 10. 0100)JOB
20. 0200 3 e* 4 e.
30. 0300 X 1< 3 @* 4 e.
40. 0400 X e.
50, 0500 Y :< 5 a.
- 60, 0600 X@+Y e.
- 70. 0700 P <1234 e.
T 80. 0800 P @* P e.
90. 0900 P e* Y Q.
100. . 1000 Q :< 'CaTs' Q.
110. 1100 (O @e.
120. 1200)DaTa
130. - 1300)END
140. 1400 /*
4
(a) JOB CONTROL CARDS AND A SAMPLE PROGRAM
1ib 1ist :
rm *xbrm *desc *a) watjcl wattst watdat pascal
a3601 cardd facmn® apljcl apil jclwat jclapl aplxxx
aplpg apljob aplrje aplx4 a3602 nodata pscld aplmod
*aplrd aplpgl aplpg2 aplrjp aplipg3 aplpg4 facfun permt
job endjob fnmain expand .
sched(aplirjela3601)
JOB CPSJOB94 ENTERED QUEUE 00 AT 9:50:18 71.147
~logout. . . : ‘
TIME 9:50:54; TIME USED: CPU 00:00:06; TERM 00:09:59; PAGE 00:09:50;
login(cps003,n24,rje)
PASSWORD: MARBAN
GOOD MORNING; USER 01; TIME 9:55:52 5/27/71
£ind (94) :
JOB CPSJOB94 COMPLETED AT 9:56:23 71.147
logout (resume)
TIME 9:56:41; TIME USED: CPU 00:00:02; TERM 00!00:49; PAGE 00:00:41;
(b) SCHEDULE AND FIND
= FIGURE.4: A SAMPLE CPS, SESSION (CONTINUED)
Q . :
ERIC 126

Aruitoxt provided by Eic:

[E

Jogin (cps003,n24)
PASSWORD: BA#BEE
GOOD MORNING; USER 01; TIMRE 9:57:03 5/27/71;
load(reader) a59sys
xeq
Enter simple file
name
‘printax’
VERSION 3.0 PFPL/UMC
COMPUTER SCIENCE DEPARTMENT
UNIVERSITY OF MISSOURI, COLUMBIA®

1 3 e*x 4 e. G200
2 X < 3 @* 4 @. 0300
3 X e. 0400
4 Y :< 5 e. 0500
5 X@+Y e. 0600
6 P <1234 : e. 0700
7. D @* P R a. 0800
8 P e*ry - e. 0900
9 0o :< 'CATS' e. 1000
0 Q e. 1100

COMPILATION COMPLLTL
***x**NO ERRORS ENCOUNTERED IN SYNTACTIC SCAN, NORMAL PROCESSING CORTINUING

** k% *LXECUTION PHASE NOW IN CONTROL*****
KA KKk kkkkhkhhkhkkdhkhkhkkhkkdkkkkkdkkkkkhkkkkkkkkx**k**{_PROGRAM OUTPUT

APL/UMC SYSTEM OUTPUT

v
STATEMENT# *| VAR NAME
12 —=> 1
12 ———=> 3 X
7 . ——-> 5

1 4 9 16 ecomey 7
5 10 _15 20 ae—u> g
CATS ———> 10 ©

%*SAMPLE PROCESSING COMPLETE*

(c) OUTPUT ON THE TERMINAL
FIGURE 4: A SAMPLE CPS SESSION (CONTINUED)

CPS editing facilitieS- may be used to edit any APL progran. A sample editing session is
shown in Figure 5 with comments on the right-hand side of the CPS listing.

One of the assets of ZPS is the ability to store user-defined fuuctions in the CP5 data
“set. On scheduling an execution, any set of these functions can then be concatenated onto any
source program requiring them.

Other sample executiéns of the translator are presented in Figure 6 and 7.

_.The batch processing translator presented has been operational on the IBY 360/65 at -the
Univarsity of Missouri, first is a temporary substitute for a yedr and then as a supplement to
APL/360. As a substitute it provides access to a torm of APL for teaching and research. It
allowed a local yroup of APL users to be set up and became a factor in the university's decision
to wmake APL/360 available in 1972. As a supplement it allows access to APL when terninals are
occupied for ATS and CPS. It also allows progyrams to be entetfed through the card reader, edited
on the terminal, sample output checked on the terminal, and final output printed on the printer
it desired. S .

Although the subset of APL accepted by Version 3.0 of the translator is at the level of
APL/17130 the translator does provide file processing facilities via PL/1! and CPS RJE. It also
provides object code in the form of Polish strings of descriptor blocks and information tables
for possible uses in subsequent runs.

] One .of-the-drawbacks of tae translator is, of course, the character set. This probler would
be solved if and when an an APL print chain becomes available. With a minor modificatior of the
translator, a program may be 2ntered on IBNM 2741 with APL type ball and program listing done on
the terminal in APL. If the nunerical result of computation is voluminous, it may be printed on
the printgr, leaving the terminal available for other uses. :

Qo . . .)

RIC ... | s

MlIA rimext providsa by eric IR

O

FRIC

Aruitoxt provided by Eic:

login (cps003,n24,xrje)

PASSWORD: @AHBEAR :
GOOD MORNING; USEP 02; TIME 11:12:15 -5/28/71;
10. N :< &= e.
5. #= 1< 'PASCAL SRARNCLE' e.
51
- 5. $#= :< 'PASCAL START' e.
Tist
- 5. 0050 £= :< 'PASCAL START'
10. 0100 N :< #=
#20,10 4= < P < I :< 1 Q.
30. Ar= $= < P : {0 @, P) @+ P @, O e.
40. > (M @> I :< I e-1) ¢4/ B e.
50. “#= :< 'ENC OF SAMPLE PROGRAM' e.
60.
list 5 thru 10
- 5. 0050 #= :< 'PASCAL START'
10. 0100 N s< #=
40 *MAN*
T 40. :> (N@> I :< 1 - 1) %/ B Q.
40! /@-/@+/B/n/
~ 40. > (N @> I :< I @+ 1) #/ A .
45. #= :< 'PASCAL END' e.
Tist 45 thru 50
45, 0450 #= :< 'PASCAL END'
50 ‘ 0500 #= :< 'END OF SAMPLE PROGRAM!
erase 50 thru 50
1ist i
- 5. 0050 #= :< 'PASCAL START'
10. 0100 N :< #=
20. 0200 #= :< P :< I :X1
30. 0300 A:= #= :< P :< (0 @, P)@+ P @, O
40. 0400 :> (N @ I :< I @+ 1) #/ A
45, 0450 #= :< 'PASCAL END'

§pve(pasca1)

Q.
€.

e.
@.

e.
e.
e.

ERASE ANY CHARACTER BY

: BECKSPACING OVER IT.

TO SEr A LINE, TYPE ONE
OF THE FOLLOWING TWO:
<LINE NO>!
<ATT>LIST

AUTOMATIC LINE NUMBERING.

LIST SPECIFIC SECTION OF
PROGRAM.

REPLACE A SUBSTRING IN A LINE.

REPLACE SEVERAL SUBSTRINGS.

ERASE A NUMBER OF LINES.

FIGURE 5: A SAMPLE EDITING-SESSION _

VERSION 3.0

$+ R:< "PASCAL" N

= < P :< I :< 1

A:= #= :< R :{ P :<(0 @, P)

> (N @ I :< I @+ 1) #/ A

S+ ’
6 R

COMPILATION COMPLETE

[S10F VSl SN

:< "PASCAL" 5

e+ p @, 0

APL/UMC
COMPUTER SCIENCE DEPARTMENT
UNIVERSITY OF MISSOURI, COLUMBIA

e. 0020
e. 0030
e. 0040
e. 0050
e. 0060
e. . 0070

**%x*NO ERRORS ENCOUNTERED IN SYNTACTIC SCAN, NORMAL PROCESSING CONTINUING

*****EXECUTION PHASE NOW IN CONTROL**#***

**(—.—pROGRAM QUTPUT

APL/UMC SYSTEM OUTPUT

-V
STATEMENT# | VAR NAME

——
m———> 3
——> 3
———> 3
———> 3

***AMPLE PROCESSING COMPLETE** *

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
FIGURE 6: A USER'S DEFINED FUNCTION

131

VERSION 3.U

OO NN WA

COMPILATION CUMPLETE

APL/UMC
COMPUTER SCIENCE DEPARTMENT
UNIVERSITY OF MISSOURI, COLUMBIA

IN < Xk (Y4+Z+(K/L)/B)+EXB/(A/(JEKEL)I+2)° de
K:< 1 a.
ST :< 8] $2 1IN .
STITKE) <t a' d.
SP < 01 2 3 0_1000 q.
1P :< 4 1 2 3 11000 a. .
QP 1< t(+%/)a*' d.)
0D :< "ABCDEFGHIJKLMNUOPQRSTUVHXYZ® de
OoT :< $1 1 < 0 a.

L0:= 1 =< I a+ 1 ad.
:> (~+ IN(ZIZT) $E OD) #/ L1 Q.
OT =< 07 oy IN(ZTIZ) Q.
#= 1< 0T Q. :
2> L0 ad.
Ll:= =D(IN(BIZ) .@= *)*) #/ L2 3.
S>> (IN(ZIZ) a= 'a*') #/ L3 a.
L7:= XX < OP &) ST(IKE) a.

YY :< OP $] IN(Z]%) 2.
> (SPUZTXXZ) ~< IP(TYYZE)) ¥/ L4
K < K 3+ 1 a.
ST(3KZ) =< IA(ZIZ) 3.
#= < ST ade
:> L0 3.
Lés= OT < OT @, ST(ZIKE) Q.
K < K a- 1 3.
> L7 d.
L2:= :D(ST(BKZ) a= "(*.) #/ L5 .
or =< OT @y ST(TKZ) Q.
#= :< 0T Q.
K < K a- 1 a.

)
.

> L2 de

L5:= K < K a= 1 d.
t> LO 2.

L3t= D>(~+ ST(TKI) a= 'Aa*) #/ L6 d.
t> L8 a.

L62= OT :< OT @, ST(2ZKZ) J.

K t< K a- 1 a.
> L3 2.
LB:= H= :< *THE FINAL POLISH STRING IS ' 2.
#= :< OT 3.

i

[

*+4k&NO ERRORS ENCOUNTERED IN SYNTACTIC SCAN; NORMAL PROUCESSING CONTINUING

*ex82EXECUT ION

ERIC

Aruitoxt provided by Eic:

PHASE NOW IN CONTROL*%%x%

FIGURE 7: A SHUNTING ALGORITHM

132

EREERERERDERARRERARXRAEEREEEL ERKKXKKXEE--PROLRAM QUTPUT

APL/UML SYSTEM OUTPUT
v

SIAIEMENIE _1_VAR_NAME

X : ----> 13 07
ax ---=> 22 ST
ax(- ====> 22 ST
XY ---=> 13 0T
a¥(+ : --==> 22 ST
XYZ ----> 13 QT
ax(+ A --=-=> 22 ST
arlsl - Ce===> 22 ST
TXYZ4K - ----=> 13 07
ax(+(/ -——=> 22 ST
XYZ+KL --=-=> 13 07
XYZ+KL/ - : -=-=> 29 0T
ax(+// --==> 22 - ST
XYLZ+KL/B -===> 13 07
XYZ+KL/B/ ' : ---=>» 29 OT
XKYZ+KL/ B/ + ----> 2y 07T
a+(+// -—==> 22 ST
XYZ+KL/B/+%E ----> 13 071
avx+// --==> 22 ST
XYZ+KL/B/+%EB --=-=>. 13 0T
ave//7 ‘ --=-=> 22 ST
a+x// . -—==> 22 . ST
XYZ+KL/ B/ +%EBA ---- 13 0T
arx/(/ - ---=x 22 ST
are/(/1 --==> 22 ST
XYZ+KL/B/+*£BAJ A --=-=> 13 0T
A+e/(/(% --=-=> 22 ST
XYZ+KL/B/+*EBAJK ---=> 13 07
Avk/ (/1% ---=> 22 ST
XYZ+KL/B/+*EBAJKEL ---=> 13 o7
XYZ4+KL/B/+*EBAJKR*LE --==> 29y .07
sex/(#(% -—-=> 22 ST
XYZ+KL/B/ +*EBAJRXLE/ ---=> 13 07
XYZ+KL/B/+%EBAJKRLE/Z+ --==> 29 O7
THE FINAL POLISH STRING 1§ = - ====> 39
XYZEKL/B/AREBAIKEL*/ L4/ %+ -——==> 40 H

%XAMPLE PROCESSING COMPLETE#%x%

FIGURE 7: A SHUNTING ALGORITHM kCONTINUED)

ERIC v 133

BA 1701 provided by ERic:

REFERENCES

Andrada, 4J. E., et al, Conversational Programmihg System, Program No. 360D-03.4.016, I34
HaWwthorne, New York, 1969. ’

Berry, P. C., ABL/1130 Primer, Form No. GC20-1697, IsM Corporation, 1968

CharponwaB, S., "Sixty-Cnharacter Representation of APL Symbols," APL Quote guad, vol. 2,
No. 2 (Jguly 1970), pp. 5-10.

Chacponman, S., Bell, J. E., Browns, W. J., McGee, P. A. and Simmons, C. B., APL/ZUMC:z A

Experimeptal Translator far Batch Processing of a Subset of APL, Technical Report No.

Department of Computer Science, University of Missouri-Columbia, May, 1971.

Graham, R- M., Use
Cambridger Massachu

of Higya Level Language for System Proqramping, Report No. MAC TH-13 MIT,
setts, September 1970.

Hedbick, G. E., An Implementation o

£ Systems Program which Demonstrates the
Feasjbility of systems Prajrampiug in a H
7

a 1
gh Level Language, Report \No. IS-2244, TIowa

State UniVersity, Apes, Iowa, January 19

O

ERIC

Aruitoxt provided by Eic:

e A s i i e - i L

134

E

SUBTASKING IN APL

Alain tiville-deCh€ne and Louis P. A. Robichaud
Université Laval
Quebec, P. Q., Canada

In this paber we discuss 1 modificaiton to APL/360 which allows rather interesting podes of
us2 of APL, such as subtasking, rultitasking, working without a terninal, conmunicating between
terminals synchronously or asyachrounously, etc.

By subtasking e mean the subdivision of a main program into parts- called subtasks, which
hay be executed concurrently, permitting such things as the overlapping of input/output with
proceassing. One might consiler that multitasking is involved in a situwation where a number of

APL users are controlled by tha same APL task.

In APL each signed-on user executes only one program at a time, although APL is a system in
which a pumber of users are (conceptually) working concurrently. However they are essentially
wvorking independently of one another, except when sending messages.

) APL . contains .the basic elements for our subtasking needs. However subtasking requires a
more sophisticated means of control and commumication between tasks, as well as the ' ability of
starting and stopping tasks. : ’

Basic Concepts : N
If one user could be -onnected to anotiher user's Workspace, he would then have complete
coatrol of what is done in that workspace. W

~%ne functions:

SL « SEND 'TXT!

Z <+« RD 5L

rallow communication to port 5L just as if our termimal vas physically connected to port SL. It
is important to note that the text 'TXT' is seen by port SL exactly as if it were being typed on
its own terminal.

The output produced by port SL in response to 'TXT? can be, read and assigned to a character
variable Z. BRD will read only one line of output at a time. It is used in the function:

Z « READ SL
which will read all the output from port SL and remove characters such as the 6 blanks produced. .
by APL. Por exaaple: . . L T e
‘ - ~ BG SEND')LCAD 1234 WS . o
Ok
VSAVE!
READ 60
SAVED 14,05,02 05/11/72- -nm -
1 2 3 4 5
15.02.05 05/11/72 1234 WS
o JCOPY 1234 WS.R.... . .
SAVED 15.02.05 05/11/72
R

1 2 3 4 5
" In order to make ‘the systaz pore practical znd to avoid interferimg with a real user it was
necessary to be able to automatically sign-on other ports, hereafter called SLAVES. The port
which causes. the sign-on i3 called the MASTER port, and it can have a number of SLAVES. Each
slave has the same user-identification and vorkspace quota, as the master, and is seen by the
APL systen as a normal user. Exaaple: _ : : : ‘

)PORT AMD
013 AMD
Gs
62 - b L T e S e m B el DL A R . “i‘
- ~)PORT “AMD)
013 AMD : o : .
062 AMD

62 SEND')OFF!

O

RIC " 135

Aruitoxt provided by Eic:

EE

Q

wherz ‘GS (get slave) is a function causing the sign-oa of a slave port (by % saster or by a
slave). This operatiom is extramely fast (a fev.milliseconds) since there is pno need for the
systzm to validate an account aumber.

It aust be carefully notel that master and slaves form a group, completely iandependent fron
any other master—slave group im the system. The master always has complete control over his
slaves and he can not affect other user's slavss except wvhen specifically authorized by these
users - a process called SHARI¥G, to be discussed later.

Buffer Supervision

Bach port has a block of information called PERTERN describing the state of that port and
sontaining information pertaining to. the signed-on user (account number, inmitials, etc...)

APL/360 uses 'a dynamic buffer allocation scheme. All I/0 buffers are grouped in a buffer
pool amd are linked tqgether to form chains.

Bach PERTERN has pointars to two chains of buffers, one eack for input and output. The
interpreter gets the character string to be analyzed froam the input chain. §When an dinput line
has been analyzed, the buffers used to hold that line arelreturned‘to the buffer pool.

All of the slaves' I/0 goes through the buffers, each of which has space for 20 bytes of
outgoing data and 19 bytes of incoaing data. The system allocates a maximum of 20 buffers to any
port. With such limitations, a certaia amount of control over buffer allocation becomes
necessary, sibce a slave attempting to use nmore than 20 buffers will be suspended until enough
buffers are available to continue execution.

The Sollowing functions are used . to control buffers:

R « BFA SL - retuirns the number of buffers curreatly allocated to slave SL.
NOObT SL - causes the system to ignore output regquests froa bbrt .SL . Text already
in output buffers is not ‘affected and can be read at any time. ‘
our SL - reverses the effect of NOOUT
. FO ST - frees all gﬁffers-iﬁ

the output chain of portsSL.

AN

:
A

Proper use of the above functions can avoid all probleas of buffer allocation.

Syachronisatjop and Interrupts

Bach PERTERH has a full word called the nglobal® variable vhose value is independent of the
users® workspace.

R+® - returas the value of this variable vithout changing it.

R +el,F - changes “its-value-for-M-and-returas—the-ocld-value.——

The symbel e is the priiitive operator affectionately called “GLOBUL" [1,2) which is used
in monadic a2nd dyadic form for a number of special purpose functions.

SL. SYNC ARG 1sfusgdﬂtowsynchrohize~tasks-‘It tests-bits ‘or values in the global variable

"of another port and, depeading on the result of the test, sither falls through to ‘continue -

exacution or enters the vait state. Testing is retried every 1/2 second until the conditions are
met. (Pig. 1)) .

ARG is a vector of & >r 5 elements used to build two machine-language instructioas, -one
test, and one branch.

RIC e

Aruitoxt provided by Eic:

17.14,22

MASTER
ICLI CGLBL+3,1|+ 62 SYNC 2 3 18
|3CR 8,RETRN |+ .
D

+ .
SYGPEASIOH++++4

RESUMPTION +++++ .

SLAVE(52)

®1 0

.
44

@1 1

FIG 1: A SIMPLE EXAMPLZT OF SYNCHROIISATION

A TERMIIAL 1

YLOAD T35T
SAVED 17.12.18 05/11/72

GS
62

62 SHARE 62

12 SHARE 82

62 SEAD')LOAD TEST
700UT 62
FO 62
COPLIB®

62 1 TZST17000°" ‘
17.14.21 -

062, AMD: TRANSFERING 17.14%.,33 "
17.45.00 I
YLIB 987 :

31

A TIRMINAL 2
JLOAD 314158 TEST
SAVED 17.12.18 05/11/72
62 2 TEST'987?

17,13, 45

1%..14,34
17.:14.59

752 JES— P

O

ERIC

Aruntoxt provided by Eic

753
YLOAD 987 WS1

SAVZD 17.14.35 05/11/72
JLOAD 987 WS2 :

S4VED 17.14.46 05/11/72
JLOAD 987 W33

JAVED 17.14.58 05/11/72
YPORT AiD

012 AMD

023 AiMD

A THZ SLAVE ON PORT 62 COMMTTTED SUICIDE.

SLAV®R ynTon pFXRoUTRS QNPLIR,

137

FTO 2:0UTDIIP ap PR TN TERUTPALS QONURPGTEYN Tn Tpw

~

O

ERIC

Aruitoxt provided by Eic:

ARGT11) type of compariswmas

0 CLC compare logical character
1 ™ test under mask
2 CLI cowpare logical inmmediate

ARGT 2} poesition (0,1,2 or 3) from left of the first. (or only) byte of the
TCrmEparison.

ARG[33 smmediate mask .for CLI and TM or length of the :cowparison for CLC. (The
“k=wgth must he <t~ ARG[2T)

ARG[H] -condition code used in a BCR 1instruction. If the branch is taken,
.testing is stopped and execution of the program continues.

ARG(5] constant .to .compare with in the CLC instruction (ARG[11-0)}

ATTN SL causes an attention on port SL.

SPIE LN intercepts errors occuring during the execution of programs. When an
error occurs (SYNTAX, RANK, ETC...), the system automatically branches to
line LF in the program. PR

R<FSW . returns an integer vector of length two: ercor code, line in which the

error occured. N
INT 5L generatas an 'INTERRUPT* error vhen slave SL is executing a prograa.
This ertor occurs just before starting the execution of a new line in the
slave's program. If the SPIE function was executed, the slave can process
the intarreupt and the execution of:

@

o + "1 4 FSW

will return to the point of xnterruptxon. The xnterrupt is prevented from
occuring in the middle of a linme in order that statements of the type:

A« (I+I+1) pA

do not jet executed twice.

LAVES is accoaplished by: ' PPN

WHO SHARE SL :

The master uses this fuctlon to permlt pert WHO to use*his slave SL. ‘Por the time
being, a SHARER..can use all af Bhe slave functions on a shared slave. A function will
soon be ipplementad in ordmarto limit a sharer s access to only one or more of the
slave functiomsz=as: Jecided by the naster.

There is an .“m#eresting case wvhen a slave is shamed on itseflf. It can then sendw,

——itself—input-anitmead-its—own output~ "= ‘a gross - simulation “of the € .(unguote)

function.

-

sMhen the massE-z esxls his ses=ion,. all his slaves are normally famred off the systen.

“There are soneeEpplications where .a progran 1s essentxnlly CPU hﬂwnd and monopolizes
the use of 2. tesmmiral for notddng. e . P A R

KEEP. * SL ' * pemmits keepxng :az:slave signed=-on and uorkxng evenuwhen -the master has
‘'signed off. In @:sibsequent sign=on the master can see. if~ the :slave's program is
"progressing noEmally.

UNKEEP SL rewer==s the effect of‘KEEP.

A more powerful use of this stand-alone mode of operation cam be had by sharing the
slave on itself. Th2 slave can then -send itself involved sequences of coamands,
analyze its own output and posstbly correct some errors.

T EXPRESS SL. forzes a sxgn-off of port SL in T minutes, This functlon is noimally

applied to stand~alone slaves, in order to make certain that the slave does not get
caught in the systea.

138

[E

UNEXPRESS SL reversss the effect of EXPRESS.

A saipple problem is given in the appendix in order to illustrate a nuaber of the functions
described above.
Conclusion

The system presented here is in an early stage of development. However, even at this stage,
it extends the usefulness of APL in our environment. In the near future we plan to add sach
thinys as: slave quotas-analog>us to vworkspace quotas, and limitations on the access of sharers.
It will be possible to reserve slaves foar certain time periods to make certain that slaves are
available.

REFERENCES
Colloque APL, Paris 9-10 septeabre 1971
Institut je Recherche d'informatique.et d'automatique
Domaine de Voluceau - 78 Rocquencourt - France.
- G. Dhatt, L. P. A. Robichaud. APL, flow graphs and finite elements. p. 37-69.

2. P. ~H. Portin, D. Samsan, P. Laverdiere, L. P. A. Robichaud. Utilisation d*APL dans le
cadre du projet des statuts du Quebec. pp. 115-137.

APPERDIX

This example is not ope of a typical application, but rather a coacise presentation of many
ot 'the slave functions. It illustrates the follovwing points. (see figures 2 and 3).

1. Getting a slave
™ the master gets a slave
b. a slave gets a slave
2. Sharing a. slave
a. witth another port
b. . on itself :
3. Sending 'input to a slave for execution
a. master to slave
b. sharer to slave
Ca slawve: to slave
4. Synchronisation
R a. . master-slave
b. sharer-slave
C. slave-slave
5. Reading the output of a .slave

The COPLIB function, executed by a slave, copies-.all the. workspaces:zof a library into
another (or the same). There are’ two usérs Communicating wiith the:.slaves the master who sends:
the identificaiton of the syurce library, .and a sharer wiho pruwmides the ‘identification of the
sink. Synchronisation is necessary to make sure. that the:wmlue of ‘the sink is not sent before
that of the source. S .

The left argument of thes TEST fuaction is a two elesents numeric vector consisting of the
port number of the slave and a code: 1 for the master, 2 for the ‘sharer.

The right argument is a library number - the source or the sink depending on who is
executing the function. Three time-values are printed:
1. entry into the function
2. _ transeission-of -input-for -the slave
3. - the end of the library copy operation

O

RIC - 139

Aruitoxt provided by Eic:

O

ERIC

Aruitoxt provided by Eic:

The EXEC function executzs a series of systeam commands. The slave first sends itse:rf {port
aumber: @) the system commands as input and a 0. It then executes a [. The first systesz
sommand is read and executed. The O againm asks for input. This continues uatil a 0 is vead..
This 0 becomes the result of the [J .and the EXEC is termipated. For exaaple:

R
O:
YSAVE TEST
12.57.09 05/10/72
O:
JLOAD WS e

SAVED 23.12.40 05/09/72
n HERE WE CAN DO ANYTHING
YLOAD TEST

SAVED 12.57.08 05/10/72

0:
0

140

T COPLIB:R:3:30U:SINL:1A:L
ril n PIIMIT THT FIRST TERMINAL TO SEJD IJPUT FOR THE YPCOMING 0l
ra23 ® 11
[31] n GET 4 SLAVE AJD SEND IT)YLIB 00000 .,
Ts] n A% 1 1 IS TO AVOID RACE COH4DITIONS... WE COULD TRY TO RZAD
rsi A, TidE SLAVE'S QUIPUT BEZFQRZ IT HAD STARTED TO EXZICUTE THE)LI3

6] (5«63) SEID ')LIB ',(SOU<DEC T1tP«J),CR,'e1 1!

[71 A 5.5 GOING T0 BX A ¥x11 MATRIX, T3 RESULT 092 YLIB

[8]. L« 011 o' !

91 A JAIT FOR THE ®1. (CLI GLOBVAR+3,1 :BCR 8,2FETURN)YV

[10] 5 SY¥WC 2 31 8

[11] (' "A.=64R3«7D 5)/2+126

{121 =+(71+126),p5+«L,[11] 1143

Lx3:) s ¥3 DON'Y WEEZD THE SLAVE AFY MORZ.

[14] .S 3Eip ')OFF? .

Cs] ZXIC *)45GH ', (DZC(® 1 2)pP),' TRAJSFERING ', TIMT

U181 SIdX«DiC “14p+]) s

(178 A 77 AISFE? HE HORKSPACES >

(181 ZXzC ')54VZ y'ILOAD *,STY,Y " L,ALLR,VIWSID ', S5INK, (A« ',, 1 11
+5),C3, ')"AVS' "’ , Y)LOAD T"””'

[18]1 +(x1ppL+« 1 © +L)/ 1+126

n COMMIT SUICIDE

EXEZ Y)OFF?»

ZX3¢ BLA .

(®6) SEND BLA,CR,'0"

Y A INPUT WILL BR BXZCYTED IN THE il

C=il BLA«d .

vV J TEST LIB
L1y TIME
[2] (V«1pil) SYNC 1 3 y(14),1
[y & EID(DSCQE) ' LI

w3 TIV“
[s] § SYiVc 2 308
el .7r1M=

7 -

V RDIC i
[11 R+«'01234568789'[(11)+(10p10)T"'po¥]

PTr 3:LTSTTNG A% PRRITHRPT DyNopTANG,

': E]{[\C | 141

A v 7ext Provided by ERC

SUGSESTION FOR A "MAPPED"™ EXTENSION OF APL

C. Leibovitz
University of Alberta
Computing Ceater

Users of APL are under the "spell® of .beauty, conciseness and elegance of the language.
They have however to go back to> Fortran, for instance, whenever -they cannot avoid a. loop
exacuted a great number of times in order to :limit the CPU time used.

The natural desire for enlarging the class{1] of cases in which ™it would pay™ to use APL,
is the origin of a great number of suggestions for modifications to -and extensions of APL.

However, an APL interpreter is a compllicated collection of int=rrelated software forming a
unity that should not be disrupted. A modifiication in any part of the» collection will have
repercussioms on the operatica of the remwainder of the prograas and thssre is no a priori reason
preventing these repercussions fron bexng*hixmful and in need of necsssary corrections that nmay
mot be welcamed (if at.all possible).

~-?

It 1is therefore not enough to show "that a given modification idAsmeeded; it is necessary to
show that it is indeed implementable and has no disruptive charactez.

our prioposed modification is, in a sense,. a "mapping” of an actmal interpreter. The logical
structure of the mapping is suzh that ve'may ‘conclude that: "if there exists an APL interpreter
that wvorks, then our mapping will work too."

Each time a line is enterz=d from a termimal, the interpreter checks; the nature of the line:
is it fFor instance a command? zr a lime in.deffinition mode? @r im ewmecution nmode?... Let us
designate by CHECK the module o>f the intamprestar that finds mmt the mnature of a line and decides
#hit other module is to handle the line. Tf @ike: line has been :entered ‘in the execution mode, 1t
will be executed fros right to left. ‘Hmwever, 7Tor .a number of reasons, this cannot be a
straightforward procedure:

i
H
[

1. There is no one-td-one correspondence between a "primitive :mathematical symbol" and
an execution routin2. One same symbol may be a nonadic“function or may .be a dyadic
one. ‘

2. . The npathematical :seaning of a .symbol may depenil on. ‘the:.-nature of:another symbol.

placed at its left.
3. There may b2 brackets altering the'mormal right-to-left order of operations.
4. Thkere may be mxstakas in the line:making it unexecutabile..

. There nmust therefore "exist a module that will analyse tthe- line, will call execution
iroutines in a proper order and provide those routines with the valuwes:of ‘the variables.

Ve are not concerned here with the wayy in which this is done, it is enough. for us to know
tthat it is actually done, i.e. there existsi in the interpreter a.module, we call.it GRAM, that
stakes 'care of a line in execution mode. GRAM issues "orders" for.space, for fetching values for
paraaeters and variables, for 2rasing - intermediate unnecessary :results, for storing - needed
internmediate results, for finding out which .roautine is to be called, for calling it, for issuing
ercor messages. :

We thus designate by 3RAM all - the parts of the interpreter that stand between a line
recognized in execution.mode, and its actual execution. Everything - the computer does in
execution wmode is therefore. the consequence of "orders” issued to the computer by GRAM while
analysing an entered line in _execution mode.

The Need For A Modification

The correct execution of a statement results from the collection of correct "orders" issued
by GRAM 'in a correct sequence. However, the main work done by GRAM is not so much to issue
those orders but to find out which orders are to be issued, :

" In the WAPPED LEVEL {the name we give to our APL modified versxon), the function is to be
stored in such a way that the orders to be executed, and their proper sequence, is = known in

Q |

ERIC 142

Aruitoxt provided by Eic:

EE

v

advance. The execution of th2 function thus becomes faster because there is no need for syntax
checking tipe.

Mapped Level

¥e recall that CHECK examines the nature of a line and delivers it tn GRA® ¥ -tihe lipe is
in execution mode. CHECK has of course other alternatives than calling GRAM. Me:mifli:not modify
the existing alternatives; ve will add one alternative more that ve call Mappes lwwal. It means
‘that once a line is entered, CEECK will ask an additional questxon. is it a sapping-:command? A
negative answer will result in ‘the unmodified procedure going on. A posxtxve sanswer Wiill result
in a modified procedure described. below.

It nay be possible laterto allow the use of the nappxng coanand to all u=sgEa. Houever, in
order to simplify our discussion ve will consider the case in which the mapmimg: command is
available to a priviledged APL..user. :

Using the mappiag mode, the user can form a library of v“mapped functions® ¥t cannot be
edited or modified but can be 2xecuted by any APL user..

fhen -the user issues .thz napping command, he nmust add two "parameters™ whicy are the nanme
of the unmapped function and the name under vhich the mapped function 'will e .'stored. The
fonction to be mapped eithar does not call for another function orrwcaliigh & & number of
functions that have already be=n mapped. The list of all wmapped functioms: s mpame=d in the
syabol ‘table in the workspace 9f the priviledged user. -

The mapping commpand will "deliver"™ the function to be naﬁped to a module:swesz=zil]l MAPGRAM to

. inlicate that, in a sense, this module is a mapping of the GRAM module.

MAPGBAM - will proceed to analyse the lines the function in the way ‘GHK® wwild have done
it with the following differenzes. 3 “% ’ .
1. MAP5RAM considers all synbollc names as defined and does nor IisSNue walue-error
messages. Every syabolic name is compared with the syubol table of mapped :functions.
Depemding if the symbolic name exists or does not exist in the taide, WXPSINT will
respectively considar it a defined function or variable.

2, HMAPGRAM will analyse lines of a function already tested ia the unmspmesd mode by the
user. This function is supposedly syntax-error free (this concept 'wiflli %3 discussed
later.) Therefore, for proper values of the arguments, GRAN wamilif fmre issued a
number of "orders": fetch, store, reserve storage place, call for emew®®im. routine,
erase, etC..= # .

MAPGRAM will issue "“mapped” orders that could be described by: "copy anf stSwxmms in proper
orler the ‘orders' that GRAM would have issued." Por instance, whenever GRAMN womk® ssve called
for storage, MAPGRAM will order to store a copy of the call for storage spaza:;swierever GRANM
would have called for a givem a2xecution routxne, MAPGBAM will order to store = ~ogry of this
execution coutine.

In short, the -mapping of' the function will consist of the collection inimsmper order of
copies of fetchlng routines, store routines, executxon routines, etCee..

These routines will be linked either by MAPSYNT or by the nodule LINK actdire at execution
mode for mapped functions. The linkage consists of taking care of the proper order: :and of the
addrasses of the intermediate results and transforaing the copy of a call into an actual call of
a roatine. It must for instanca insure that the output address of a given execution routine may
have to be identical with the input address of the next execution routine.

In short LINK takes cara2 of a mapped function in the execution mode. LINKuissamalled every
time the name of a mapped ‘function appears.in a line at execution tinme.

APL .delivers two kinds of error messages. The first kind corresponds to’ what:ive call a
"built-in error™. It is delivered when GRAM concludes that there does not exist an :execution
routine corresponding to the symbols entered in the liae. This kind of error will be:delivered
for instance if there is, at execution time, a symbolic name not yet defined or if = 1line is

_eatered with mathematical symbols in a non-sensical sequence. The second kind of .emror messages

is delivered by an execution routine when GBAN does find out, at a given stage & :execution,
that execution routine is to be called and when this routine cannot be executed Emx—-the values
and number of arguments delivered to it {rank erroct and domaim error for instance)...

Q

MC | 143

Aruitoxt provided by Eic:

The built-in errors can be detected during the mapping operation by ‘MAPGRAE in exactly the
same way as GBAM is doing it, i.e. by taking over in MAPGRAM the procedure followed by GRAM in
this case. The error messaje could display the faulty line and indicate the place where the
error has occured.

This however cannot be done f£or the second kind of errors. They cam be detected at the
mapped level only during execution time. The function is then stored differently and there is no
record, at this mapped level, >f the form in which tbe function was entered urmapped.

However, this kind of error would have been detected at the unmapped level by an execution
toutine which could tell the nature nature of the error (rank or domain) and since we have at
the mapped level a copy of the execution routine, it is still possxble to deliver at this level
an error message containing thz following informatione.

a. The nature of the routine that has detected the error (addition or nultiplxcatxon or
iota operator routine etc...)

b. The nature of the error (rank 2rror or domain error) .

C. The values of the arguments for which the error was detected.

This means that the copizs of the execution routines stored at the mapped level have to be
slightly modified in their error nmessage subroutines.

If the user is mapping fuactions already tested at the unmapped level and if he checks that
all functions called by the on2 he is mapping have already been napped before, ' there will
therefore be no error messige delivered during the mapping process; those are the functions
refetred to before as Syntax—-error-free functions.

The Agzegsgg__s of The Mapped Lzvel Suggestion
The. Mapped Level modified APL has many of the advantages of a coampiler while being gquite
distinct from it. :

It is clear that the execution of the functions will be much faster at the mapped level.
The fact that the syntax analysis has been done makes them close to compiled functions. However
ther2 is this important difference wetveen the mapped level and a compiler:s A compiler delivers
an object program in the machine language that can be directly executed. In particular- the
compiled function should have all the needed instructions for storage handling, whereas a
function stored at the mapped level is still in need of the module LINK at execution tine.

It 1is also clear that th2 interractive feature of APL is not disrupted by the introduction
of the mapped level as it would have been with the use of a compiler. 1In the case of nost

Fortran. compilers. for instance, alternating orders of compiling, executing, compiling,- executing --- -

ett... require successive loadings of the compiler. In our case, the same interpreter will
remain loaded in the computer while mapping or- executing. :

Another advantage is the flexibility of the combination of the two levels; ir particular,
it facilitates the editing and debugging process. A function can be tested and displayed at the
unmapped level; the faulty lime is then displayed with an indication of the place and the kind
of error. It is then possible to execute parts of the line instead of executing the whole
function. Such a facility would not have been available with a compiler. Once edited and
debugged, the function may be stored at the mapped level.

ACKNOWLEDGEMERTS

The author is indebted to Dr. #.S. Adams, Dr. D.H. Bent and to Mr. G. Gabel for suggestions
and fraitful discussions.

N , REPERENCES:

1. In the Computing Center of the Upiversity of Alberta, a 360/67 IBM computer is used
(mainly under K.T.S.). The c.p.u. time needed for loading an object program froms a
file is greater than the loading time needed in the APL case. There is therefo.e a
class of programs that would take less time to be executed with APL than with a
FORTRANG generated sbject program (if loading time is added to the execution tine).

: E[{I(j | | ’144

PR A v e Provided by R

Q

ERIC

Aruitoxt provided by Eic:

APL AS A NOTATION FOR STATISTICAL ANALYSIS

K. W. Smillie
Department of Computing Science
University of Alberta
Edmonton, Alberta, Canada

Abstract

This paper discusses the wuse of APL as a notation for statistical analysis and presents as a
simple example the derivation of the chi-square statistic for indcpendence in a two-way
contingency table.

1. Introduction

The last few years have witnessed the remarkable growth in popularity of the APL language, until
now it has been classified along with FORTRAN, PL/1, BASIC and a few other languages as one of
the most important programming languages in use as present, and perhaps for the next decade.
Such a development should indeed be most gratifying, especially to those who have been
associated with the use of APL almost from the time of its first implementation and who must
have had doubts from time to time about its survival. However, the acceptance of APL as a
programming language has tended to owscure the origins of APL as an attempt to develop a
notation for derlvlng and describing alyorithms that was more powerful, more consistent and less
ambiguous thdn conventional mathematical notation, and which was, incidentally, directly
implementable on a computer. For these reasons it may be of some interest to consider the use
and implications of APL- as a notation.” We shall consider as an example the derivation for a
two-way contingency table of the maximum likelihood estimates of the expected frequencies on the
assumption of the independence of the two categories of classification, anc %he use of these
frequenc1es to obtain a convenient expression for the calculation of the chi-square statistic
for independence. We shall first summarize the analysis in conventional notation and then
derive the results rlgorously in APL. We shall conclude with a few remarks on the use of APL as
a notatlon. .

2. ‘ Summary of analysis in conventional notation

Suppose . that we havé a two-way contingency table with r rows and ¢ columns in which a sample of
N observations is classified according .to two attrlbutes. Let fij , where i=1,....,r, and
j=1,....,6, be the number of observations occurring in the ith class of the first category and
the jth class of the second category. Let ri= 4 fi5 and Ccj= Z fij be the marginal row and
column totals, respectively. Thus N=3Xrj = zicq . If” wé let mii be the probability
according to some hypothesis that an individual selected at random will fall in the ith class of
the first category and the jth class of the second category, then the correspondlng expected
frequency is 'eij = N#¥ij . A measure of the deviation of the observed frequencies from
expectation is given by the statistic ” \

z (f :)

___j_____;l
i,j 1] ‘
which has the chi-square distribution with (r-1)(c-1) degrees of freedom.

a2

If we assume that the . two cadéqories of cla551f1cat10n are independent, then we may write
;:1% ¥i7rj, where A7; 1is -the marginal probability of an individual picked at random falling

he ith class of the first category independent of its classification according to the second
category, and Ts is a similarly defined marginal probability for the jth class of the second
category. = Thus,” in order to calculate the .expected frequencies on the assumption of
independence, we must estimate these marginal probabilities from the sample. According to the
method of max1mum ikelihood the marginal probabilities are determined to maximize the

likelihood (ﬂlﬂj) ij , of the sample, where the i and 75 are subjgct to the
restrictions ﬂ1_1 and ?ﬂj =1. Thus, we find the unrestricted maximum of the
expression i

£,
L=2gn I (m 1r) iy A(Z'n -1) + u(E'nj-l),

i,j J
where A and u _are the Lagranglan multipliers. If we differentiate L partially with
respect. to mi, 17j, ~Xx and u , set the partial derivatives .to zero, and solve asthe resulting
equations, we find that the = estimates of 47j and 5 are given by i = ri/N and -

ﬁ'j = cj /N, respectively. Thus, we find that the expected frequencies "are given by
eij —rlcj/N , and the value of X2 may be simplified to

£2
2 _
X 3 .
i,3 7173

/45

[E

o 147"

RIC

Aruitoxt provided by Eic:

3. Analysis in APL notation.

Suppose that we have-a sample of observations arranged in a two-way contingency table according
to two categories of classification, and that we wish to test the hypothesis that the two

categories are indecpendent. Let the data be represented by the two-dimensional array F so
that F[I;J] , where Tei(pF)[1] and Je1(pF)[2] , represents the number of observations in
the Ith class of ctne first category and the Jth class of the second category. For

convenience, we shall let the row sums of F be given by the vector R , where
(1] R«t/F ,

the column sums by
[2) cC++/L1FF ,

-and the total number of observations by
(3] N+«+t/ER .

We shall assume that there is a probability matrix P , where pF ++ pF , so that P[I;J] is
the probability that an individual selected at random will fall in the Ith class of the first
category and the Jth class of the second category. Since the expected frequencies in'the
contingency table are T NxP, which may be represented by E, say, the deviation of the observed
frequencies from expectatlon is given by the statement)

o

Z +> +/+/((F-NxXP)%2)+NxP

BT

Since we wish to test the hypothesis that the two categories are independent, we may replace P
by the outer product. Ao .xB, where A4 ++ +/P gives the margxnal probabilities of the first
gategory regardless of the second category, and B «+.+/[11P g1ves the marginal probabilities

for the second category. ance these marginal probabllxtxes are unknown, they must be estimated =

from = the sample data F °, "We shall derive these estimates by the method of maxlmum likelihood.

The likelihood of the observed sample is given by
x/x/(Ae .xB)*xF ,

where A and B are subject to the restrictions +/4 <+ 1 and ,+/B ++ 1. TIf we take the
natural logarithm of this expression and make use .of some simple Ldentltles, we may-write

@x/ x/(Ao .XB)*F +~» +/+/anAo.XB
+ +/+/FX(0A)o.+oB
=+ ((oA)+;&+/F)+(eB)+.X+/[1]F

«r ((94)+: xR)+(OB)+ XxC .

Therefore, we must find the unrestrxcted maximum of the expressxon

L ++ (((@A)+ XR)+(0B)+ . xC)+(Gx 1++/AY+dx 1++/B ,
where G and H are the scalar Lagrangian multipliers. ‘ e

Let us represent the maximum 1likelihood estimates of A and B by AHAT -and BHAT ’
respectively. If we differentiate L with respect to 6 and set the derivative to zero, we
have - o

+/AHAT «+ 1,

Similarly, by dxfferentxatlng L with respect to H we have

+/BHAT 1,
Now differentiate L with respect to the vector 4 and equate the derivative to zero, and
obtain

(:AHATYSR ++ G .

Therefore, .
R «+ GXAHAT. .00 T

If we sum both sides of .this.expression, we obtain
N «+ @ ,
and thus

AHAT «+ RN , - ‘
Similarly, by differentiating- L with respect to 2 we may snhow that -

BHAT «+ C+N .

Thus the expected frequencies may be estimated by
E «+ NxAHATo .xBHAT

“> NX(R*N)O xC+N -

3 Nx{Re ,xC)t Nk 2
“+ (Re .XC)N .
Therefore, the deviation of the observed frequencies from expectation is given by

Z «+ +/+/((F E)y*2):+E

“+ +/+/((FxF)~-(2xF-xE)-~ExE) +E
+«+ +/+/(F*xF+E)-(2xF)-E

«+ (+/+/FXF+E)-(2x+/+/F)~+/+/E .
Now

+/+/F «+-§-, ..

and e e e e e e e o e e

+/+/E «+ +/+/(Ro-.xC)t N
«> ((+/Ry> xrJE) &N
«+ NxN+ N

- N o

- -——Therefore,

O

ERI

7 <F (*+/+/F><F*E') (2><1.,-N

i b v

> (+/+/FxF+EY-N3" 5
s (.,./.,./FxF-:(Ro) N)-N
«+ Nx(+/+/FxFtRo ,xC)-1

«+ Nx 1++/+/F xFtRo .xC ., ’ ‘
Therefore, we may compute the test statistic for the deviation of the observed frequencies from
expectation by the statement

4] 2 «+ -Nx 1++/+/F xF+Bo .xC

4, Implementation

‘The four numbered statements appearing in the analysis of the preceding section may- be

considered to be the body of the monadic defined function CHSQ with a right argument F and
a. result Z. ~ This function is given in Figure 1, which also gives two examples of its use with
some sample data Fi.and F2. ‘

148

PAruntext provided by enic [l

e Tocts

O

ERIC

Aruitoxt provided by Eic:

V Z«CHSQ F3;CiN;FR
. [1] Re+/F
. [23 C«+/01] F
[3) Net+/R
(4] 2«Nx"1++/+/FxF:Ro xC

v
5 9
11 15
CHSQ F1

0.1648351648

F2
42 31 12 17
34 25 31 22
48 37 18 13

CHSQ F2
15.27832566

Figure 1. Function CHSQ and
scme examples of its use.

5. Conclusions

The example which we have discusged in this paper is an illustration of how the use of APL as a.
notation may remove the need for programming in the conventional sense since selected statements
of the analysis become the body of a defined function which is executed on the computer.
Although this example is a very simple one, and, indeed, was chosen for this reason, the ease
with which APL was used for the analysis hopefully will suggest that such an approach may be
worth considering for other more complicated problems. Some topics which coine -immédidtely to
mind are multiple regression analysis, analysis of variance for factorial designs, nonparametric
methods, and the analysis of incomplete block designs. The limited work which appears to have
been done on some of these topics is most encouraging, and suggests that most interesting
results await the persons who will consider them in detail. Only by gaining experience in the
use of APL as a notation, as well as a programming language, will the adequacy of APL in this
role, as well as the direction of further extensions to the language, become apparent. It is
hoped that this short paper may help stimulatc research on these subjects.

€. Reference
Keeping,' E.S., 1962. Introduction to Statistical Inference. p. van Nostrand Co., Inc.,

Princeton, New Jersey.

e e o i e n . H

149

O

ERIC

Aruitoxt provided by Eic:

AN ADAPTIVE QUERY SYSTEN

E. Kelleraan
. 1IBM Corporation
Systemrs Development Divisios
P. 0. Box 6
Endicott, New York 13670

This paper will describe an adaptive query program coded in APL. The purpose of the progranm
is to allow users to ask questions in everyday English and to receive answers with wminimal

- delay.

The progranm is "taught®™ tie correct answers by a human "instructor®, sitting at a terminal,
asking it questions on the subject of interest. As the program learns the answers to some of the
questions, it attempts to guess at the answer to "similar" questions. If the progranm is “very"
sure of the answer it has givean, them it does not request verification, otherwise it requests ’
confirmation of the correctness of the answer it has given. Even when the program does not
request verifijcation of the answer given, the instructor still has the option of informing the
program that an incorrect reply vas given, by entering *2'. If the program gives an incorrect
reply, but the instructor feels <“hat the program should Xnow the answer, he can request the
program to 'try again®'. Consider the following teraminal session,” which starts with a complete
unknowledgeable program. The lines typed by the terminal are preceded by *#%«s¢:

HOW DO T GET OFF? HOW DO I DUP CARDS?
*RAWHAT IS ANS 7 ***USE LIST.
HIT CARRTAGE RETURN!| %% WAS THAT RIGHT?

PP vy |

TRY AGAIN
WHAT PROGRAMS ARE AVAILABLE? **%USE DUP
**#JHAT IS ANS 7 ‘ *%% WAS THAT RIGHT?
LIST, DUP, AND INTER. YES
WHAT DOES—LIST-DO? - oo = o T HOW DG T DUP T GARDS? T)
**AWHAT IS ANS ? : *REUSE DUP
LISTS CARDS. , k% WAS THAT RIGHT?
. YEP o
WHAT DOES DUP DO? _ o
T e ek T IS TS TCARDS T i) HOW DO 1 INTER CARDS
“REX WAS THAT RIGHT?) *%*USE LIST.
NO ‘ '
#5XWHAT IS ANS ? ? .
DUPLICATES CARDS. #5% WAS THAT RIGHT?
TRY AGAIN
. WHAT DOES INTER DO? *EXUSE INTER.
*%XLISTS CARDS. *%% WAS THAT RIGHT?
*%% WAS THAT RIGHT? Y EAH
NO : .
*XXWHAT IS ANS 7 : HOW 1Y) I INTER. CRDS?
INTERPRET CARDS+=) : *NRUSE INTER.
,\) HOW DO I LIST cx_\f&f,?” HOW DO I LIST CDS.
N ERMHAT IS ANS ?// v **%USE LIST.
Y\ USE LIST. Ve v _
%“ S WHAT PROGRAMX AVAILABLE?
) HOW DO I DUPICATE CARDS? **XXLIST DIP, AND INTER.
y ***USE LIST, .
**% AS THAT RIGHT? WHAT DO$ DUP DO?
, J NO S ***DUPLTCATES CARDS.
el e ***wnm[is ANS 7 . :
. L\\ USE Dyp, - , N0W DO I DUPLIMATE CRGS.?

- " *%%USE DUP. -
S g ¥
HOW™DO I INTERPRET CARDS? ’

*XXUSE DUP. - i . HOW DO I INTERPRETARE CRDS.?
*%*X YAS THAT RIGHT? i *%XJSE INTER.

NO . ;

*XAWUAT TS ANS 7 WHAT DO INTER DO

USE INTER. . i . *"‘*INTEREI(ET CARDS «

150

HOW DO T LST CRDS?
***USE LIST.

WHAT DOES LIST DO?77?
*+%LISTS CARDS.

WHAT DEOS INTRE DO?
***INTERPRET CARDS.

HOW DO I SIGN OFF.
***HIT CARRIAGE RETURN!!

HOW DO I GET OFF?
**MWHAT IS ANS 7
HIT CARRIAGE RETURN!I

WHAT PROGRAMS ARE AVAILABLE?
*®IUHAT IS ANS ?
LIST, DUP, AND INTER. ;

WHAT DOES LIST DO?
*XAWHAT IS ANS 7
LISTS CARI. .

WHAT DOES DUP DO
***X,ISTS CARDS.
«%x% WAS THAT RIGHT?
NO
. **XJHAT IS ANS ?
DUPLICATES CARDS.

WHAT DOES INTER DO?
. RRALISTS. CARDS....... b
*%% WAS THAT RIGHT?
NO -
*%MIHAT IS ANS 7
INTERPRET—CARDS .-

HOW DO I DUP CARDS?
***USE DUF.

*** WAS THAT RIGHT?
YEP ‘

HOW DO I INTER CARDS
***USE LIST.

?

***% WAS THAT RIGHT?
TRY -AGAIN

***USE INTER.

**x* WAS THAT RIGHT?
YEAH

HOW DO I INTER. CRDS?
***USE INTER.

HowWw DO I LIST CDS.
***USE LIST.

WHAT PROGRAMX AVAILABLE?
*#*LIST, DUP, AND INTER.

WHAT DOS DUP DO?
***DUPL1CATES CARDS.

HOW DO I DUPLIMATE CRDS.?
***USE DUP.

HOW DO I INTERPRETARE CRDS.%
***USE INTER.

_ WHAT DO INTER DO

***XINTERPRET CARDS. "

HOW DO I LST CRDS?

HOW DO I"LIST CARDS?
*XMJHAT IS ANS ?
USE LIST.

HOW DO I DUPLICATE CARDS?
***USE LIST.

**%x WAS THAT RIGHT?

NO

**HMUHAT IS ANS ?

USE DUP.

HOW DO I INTERPRET CARDS?
*%X*USE-DUP. - -

*%% WAS THAT RIGHT? -

NO
**MIUAT IS ANS ?
USE INTER.

HOW DO I DUP CARDS?
***xUSE LIST.

*%%x WAS THAT RIGHT?
TRY AGAIN

**x*USE DUP. ,
*x**% WAS THAT RIGHT?
YES :

**AYSE-LIST=

WHAT DOES LIST D077?7
*XXLISTS CARDS.

WHAT DEOS INTRE DO?
***INTERPRET CARDS .

HOW DO I SIGN OFF.
*#*HIT CARRIAGE RETURN!!

EV

O

ERIC , 151

Aruitoxt provided by Eic:

At the heart of the adaptive qguery prograam is an algoriths for evaluating the similarity of
two character strings. This algorithm was developed by G. L. BRouse, D. C. Gause and the author.
An application for a patent has been made. A description of the algorithm is now given. Call the
character strings to be compared A and B. Then: :

sStep 1: -
Fore a lairix. N, bf assigning a 1 to M[{I;J] if and oamly if A{I) = B[J].

Othervise H[I;J] is set to 0; This satrix is formed by the following APL
expression: %Y¢-A ° . = B. Por example, if A °¢ANNE® and B ®AENIE’ then M is:

BN

coocoRrN
OCOrRrO=
COoORrmkLoOo
mrooo oty

-

Step 2:

If a rov or a coluasr of M contains more thanm one 1, then retain only the one
closest to thz main diagomal; the following APL expression does this:

M+N=Q((pB),pA)p(X/pM)pSS+O=SS+F/(N¥Mx1000-I(1pA)o.—1pB)

]
Note that if two 1's are equidistant from- the diagonal, the expression would
retain both. :

' From the precsding example we would get:

M=1000 """
0100
0010
0 00O
00 0 1

Step 13:
Consider the 1's in M as points on an X-Y coordinate system. That is, if

M[I;J] is equial to 1 then we have a point vith the Y-coordinate equwal to I, and
the X-ccoordinate equal to J. The APL expression for this is:

'X*D/(S+pD+,M)p1pP
Y«D/,8((pB),pAd)pSprnd

From the precading example we would gets:

Step 4=

The standard correlation coefficient (vhich measures linear dependence) of the

points is takean as a measure of similarity betweeu the two strings. The closer

to 1, the greater the similarity, the closer to -1 the greater the difference.
- The following APL expression evaluates the standard correlaticn coefficient:

CC*((NX+/XXY)-XIXY1)+(((NX+/Y*2)-(Y1*+/Y)*2)*O.5)*((Nx+/X*2)-(X1*+/X)*2)*0-5

For exasple, conszider the resalts of applying this algoriths to deteraine the similarity of the
question 'WHAT IS TODAY?! vith several other phrases: ~

El{lC : : 152

Aruitoxt provided by Eic

O

ERIC

Aruitoxt provided by Eic:

Phrase Correlation Value

WHAT IS TODAY 1.00
. WHTA IS5 TODAY . 0.994
WHAT IS TODAY : 0.997
WHAT IS TDAY? - 0.997
WHAT TODAY 0.97
WHAT DAY 0.92
TODAY IS WHAT -0.05
YATOD SI TAHW -0.36
MY NAME IS ED 0.001

Jith this algorithm in hand, the implepentation of the Query System 1is Eairly
straightforvard. A table is kept of questions seen and their associated answers. Associated with
each gquestion 1is a threshold which the correlation value must exceed in order for verification
not to be requested. This verification threshold 1is adjusted so that verification 1is not
requested more than once for any given input question. Also assotiated with each question is a
threshold “value which the cCorr2lation”value must exceed for the question to be considered a
match. When a 1new question is entered, a correlation value between that question, and all the
questions in the table is computed. Only questions whose correlation value is higher than the
associated threshold value 2iare considered as candidates. Amongst the candidates, the one wvith
th2 highest correlation value is chosen, and the answer associated. with that question is given.
If the ansver given turns out to be incorrect, the threshold value associated with the selected
question is raised to be slightly higher than the correlation value obtained for that question,
thus insurimg that the gquestion would not 'be a candidate when the samre question is posed to the
sytem. Also, the new question is stored and the prograp; asks asks what the correct answver to it
should be, thus, another entry into the question-answer table is made. The threshold imitially
associated with a nev question is set to a “low value.' .

The attached flowchart gives a more detailed description of the prograem.

Note that this adaptive qiery system has many applications; some possible. uses-include:-

- alloving CAYX ([computer aided instruction) users to ask guestions, at any point,
about the subject baing taught, . o
- questioning a system (such as APL) to find the type and use of available
comnands, and

- igmnoring sinmple spelling errors in conmpilers.

~=———" ;l r—-=-n
I oe2ze V3. I3 i
| g33 |3 bghp !
i Est 1xs I 3£¢

[hu8 1|38 1 8gg
1ogEE |3 gz |
{ 58 1 i |l &< -J[

=
L__T__J

/

7
D
]
)
‘/// i

D
]
>
/
>
/

PR R

b__ ————

x
R 3
..’v"gs -
SEEE 3 i
o
§a3eal = c
3 & z : £ -
525 | g d ' S = 1z
fre o~ = T EERE € vEl |) o H o H c o
2 o - =] 2288y 3 36 - = z “ 3 R 3 &<
. REIRE] LR A MHAFRRERERERE ARERLIEIRE: § i3
al ErM 8 e s oy FEELEM S P Erp i EIM I T s T I ¢
™Mallz{1=F sces8 |2 [L] - g RN EH R
PRELI gl fxsfal o] E5| | % : i IREREE R
14 Y @ 952%<E 9 B = = £ = 8 3"
i 2 Fuios ® 2 & v 3 <
1 0om=2 25 S oo 4
I 2=§§§ S 5 =
i \/ 133z \ % N\ \ £ N
L1] LRSS ' N e
| Uod£ d z >
o :
| = ———a : L
[[|
1ogs
l | :: i 3
LI EE5 et
T ORET
| -] -
] § -
| S|

153

HICROPROGRAM TRAINING - AN APL APPLICATION

Ray Polivka and Kent Haralson
IBM Corporation
Poughkeepsie, New York 12601

Introduction: Nature of Microprogramming

When given a.computer systea, probably the first thing a user looks at is the instruction
set. This information is uUstually found in a Principles of Operation manual. Here also resides
the architectural flavor of the ‘'system. Nov move from the yser of a Computer system to the
implementors of a coamputer system. At what do they look? Certainly they aust ypderstand the
instruction set and architecture. But, in addition, they neel to know the pature of the hardware
with which they have to work. They must know such things as the functions vhich can be executed
by the Arithaetic and Logic Jnit and how data can flov between the storage registers that make
uUp the hardware of the computer. All of this information in great detail is found in the
functional specification of the computer system. Much of this informatiom is represented
graphically as a data flow. It describes how data can move within the hardvware that comprises
the computer systen.

The computer system can not yet operate since a very important item, the element of tine,
is missing. The determination 5f when data should move within the data flow makes up what is
referred to as control design. The specification of these controls for a data flow is a very
intricate and involved affair. Microprogramming is one technique of control design. One of its
salient features is that all the control information is stored in an orderly fashion as an
array. This array is referred to as a control Store. Information is selected from control store
a small portion at a time. This portion, called a microinstruction, contains the information
hecessary to control the data flow for a small period of time, usually a“kmachine cycle.

Objective "

The use of microprogramaing has grown quite rapidly over the past few Years. This in tucn
has produced a corresponding increase in interest ip microprocgramming. SDD Programming Education

has developed a course jip microprogramming which ..presents to a student -the-concepts-and—~"""

funasucifl;*ﬁfiﬂdiﬁréé”ﬁiderlyiiq”ﬁfdfbﬁiﬁifﬁﬁﬁiﬁﬁl'Ii“édaifibn to such concepts and principles,
it is-highly desirable that the student actualiy do sonme microprogramming. This requiremeat was
met by developing an interagtive APL simulation package. This package is based upon a
hypothetical machine developad by C. W. Gear im his textbook Computer Organization and
Programming. Here wve have a well defined architecture vithwwa-~da£§“‘floi";u~,e 2uvuyns to be’
realistic and yet simple enough to avoid unnecessary confusion over details. With this package
the student is able to develop and execute both machine and micro code. The APL in which it was
developed is transparent to tha student.

This package is used in conjunction with printed paterial presented during the course. It
consists of (1) A Principles of Operation manual (6 pages), {2) A User's Manual {7 pages), and
- {3) A Microprogramming Manual (25 pages). The Principles of Operation manual describes the
architecture of the machine anl its instruction set. The User’s panuval defines the nature of the
assenbly langnage. Finally, the Microprogramaing manual contains the data flow and accompanying
descriptive material as well as the microprogramming language in which to write the micro-code.

Usage
Ho knowledge of APL is nelessary. Initially the student need ‘type only ‘tiree keywords, IPL,
TEST1, and START, to have a complete simulation of the execution of three machine instructions
and its supporting microcode. In this way the student can’ become familiar with the mechanics of
the package. Figure 1 contains the data flow which is simulated. Pigure 2, 1illustrates the
sequance Of events that occur when the three kXeywords are entered. When he has faniliariazed
‘hinself with the procedure, he has available another package TEST2 which' he wmay use. This
;package loads nmemory with a spall assembly program, ‘but he nmust provide the supporting
microprogranm. The nature of TEST! and TEST2 are described in EXPLAINY and EXPLAIN2, §
respectively. From this point he should be able to ‘generate both assembly instructions and the
supporting microcode. Figure 3 portrays a sequence of assembly instructions as entered on the
terninal. Pigure 4 illustrates the input of a set of microinstructions asg well as three asseably
instructions. Hote that it als> illustrates some of the diagnostics that the user can get. The
facilities available to the studeat can be subdivided into three parts. The first part consists
of the functions which simulate the machine definition. ' The second part consists of those
functions which initialize or reset memaory and control store. The third pacrt consists of
" extemsive diagmostic aids. Wwith these aids he has the ability to dump portions of both - control
> i .

El{j}:‘ o ‘154

Aruitoxt provided by Eic:

Figure 1 Data Flow

| ‘ ' - 1ss

LrEYRCAIC oA
R A B

ir
v

ytyvntatousy

dUTQadE " s
Sa1474

qreoysiz”
d*oo* oo ano
qJavEton

€

CHYECE0HAY

 aanhry

[N AR N,
diL2
aves

el
o
QDO

0 IdOLS
T

raay
Il
ndav
2 il

HE

Ta

20l

€O
guT
w9
g

:Eq
v

ytesntatousn

Rl)

£CGY 01

oY

HCay
0z
Haay
14
rHetv
1%
[
hacy
S0 ¥ALHAN LD
Hai! Kaagv
naaqv
Hdz Haay

HIHTdHOI

ST

24nb61 4

LNVISH0D
IRVESNOD
LAVESII0D
d0LZ

anrin
JL0L8
aecy

0
0
c
0
91 0
]
0
0 ans
0
o
0
0
0
0
Q

a1t o0

o

aey
aved
avog
avot
cvo!

hT
hl
ST
€1

OO OOCOoO

avyy

hl

oﬁ
&
2
L
e}
S
b

€
1Me 20K

ST
LN
€1
¢t
1t
¢

Do~

w

N

i

,w:.

i
)

SHIDXI dNTHIOVIlI ZE =

ALLHXMQ::

Py

T ASVE) XEOHAN

2 :
{
adasn ¥iI1d Fxxxxxxx LOP JO (44
’ £t eSO w4
q4IN03XT UGSHI-
aasn SATVID ANTHOVE Te '
e =4I h =00 66 =XIS 0 =X
=g 0 =¥ HOSLOGISBEL =4UJl & =yVH
1]
4
, e
L]
A]
n -
]
t ns
23
d* 4I‘oy¥3z* xGF iayv ¢
Qa4 LNIIXY HLSHI~IF S
. —
aasn SIV3X0 FUIHOVH ¢
0 =4I Z =00 10T =JI§ O =¥
0 =g 0=V h =H§UN 1 =yvH .
d* 22° 20 ANO HAGV ¢
. aazNoaxa ¥ISHI-i
v a4sn SIATIXI ANIHOVH T
0 =4I T =900 101 =XIS 0 =¥
0 =g 0=V h =yaH T =HVN |
y'ave' 00‘oyiz Kauv 1 .
@dLa04Xq HISNI-F
aasn S3TIXI ANIHIVH O
0 =4I T =00 10T =Y¥IS O =X
0 =¢ 0 =V 0 =¥dk O =4VK
T :

NIVH NT INIOd DNIZEVIS HHI SI IVHH

LYYLS
TLSHL
dLATIHO0I ST LASHH NALSLIS

IC

Aruitoxt provided by Eic:

adr

E\.

NOTLVICH

o aanbiy

L0600C00CO
TVRTIAAVE3d

11100600000L00000000600000 060000 0 C
AO0ISVLON ZUVHLE

€

JHIOd VHIdJ0LE
€

SETI0d TNV
AvIdSic

It okHZ*
20¢ Do
200

Haif NEGY €
peay w

Hadv

i

€

o
22

2Hi0d DRIIAO.
Sl
&aaomuaw&mtsn

2AoL AVicora

TTT006R000C00000000600000000C000
16T HOVIS HHL GO Hid
11100000060000000000000000000000
P51 06 S8A008d ANV NOX KBOITE 2T dEOH LKENEND HIE

0000%21000000CGCG

Y51 NOILINELSNT JEIAD

dIHH

(IH1XaCH] T F5P8) F¥

G ouanbiyg i

SETIED BUIHIVIC 61 = (ASN HRIL *¥¥¥xxvrxx HOP J0 LY
sht

hih

S

4

- D

T

X HIVH NI IHIOd DUTTHVES EHE SI LVi:
4 IHYIS

_
—

4

.
-

J07 &5 149 * T
R2ENT ‘2071 LS TLI T

§oau ‘HINN ‘001 IS 1L9
DHNIOVYL 20 JUALVN

0
ALVOIAN1
777
1)
FTQYEFODY T4V (ANOH: HO WTTV.
. agovul 89 of *S907 AYOLS TI0 HAINA
| FOVYIITS

L0 HHIIOVN 61 =

i @asn GHIE *xxxxxxx 40P d0 ANE
.
s "
X2G57 1 ASVE) XYOKAH NIV NI INI0d DHILUYIS IHI ST IVH!
FUVES
ﬂ
| 2il0N
i HE
; ATAVEAHIOV AUV VFNOH, HO WTTV,

0LS TLI HALIS
SOVHLLTS

aasvyr 4g o5 *SJ01 &

O

157

IC

E

Aruitoxt provided by Eic:

Q

memory and ®main memory and to selectiveiy trace the execution. Figure 2 illustrates an execution
wvith a full trace. Pigure 5 shaws the nature of trace selection. In Figure 6 we see tWo nmore
diagnostic aids, HELP and D)ISPLAY. HELP yields a snapshot of the pertinent p#wyhs ot the data
flow. It is useful wvhen the microprogram goes awry. DISPLAY allows one to disg 7 either main
meaory or control store. Coatrol store is displayed mpemonically and main memory is displayed
in bipary and hexadecimal notation.

echnigues Used

This package was developed using the APL/360 X¥6 release; it resides completaly within a
32K workspace. The key function iz the START function. It is the ezmbodiment 2% ¢he ziven data
flow. The timing of eveits is incorporated in the sequence that the actions are performed in it.
The function is written deliberately in a vertical fashion. This was done in orier that the
changes that a studemt uwight likxe 2o make to K4“ data flow could be accraplishesd easily. The
START function steps sucCsmsiwaly ticoaugh a binwery array called MCODE. MCDDE is the control
store im which ed#ick row (g a :microinstruction. The sequence of micoinstructions chosen fron
MCODE is controlled by another binary array MEMORY. In MEMORY resides the binary representation
of the machine instructions. Ajain each row contains one machine instruction.

Building these binary asatrices is no more palatable than writing Pragessiss in binary. A
stanlard assembler approach provides a mnemonic means of creating the proper hifts waatterns. Thus
each machine instruction is implemented as a dyadic fuiiction. Tiwe namie of it matcilli=s the name ot
the instruction. Thus for)

4 LOAD 0 0 15

which is a machine instruction, LOAD is, in APL, a dyadic function. Its right argument is a
three component vector defining the nature of the effective address. The first and second
components are binary and define uﬁether indirect addressing or indexing is t® occur. The thircd
component is an absolute address component. The left argument is the absolut® address in MEMORY
Which will contain the binary configuration generated by the mpemonic instrus¥ian,

The microinstructions far this mpachine are 1in either ot two fosms, the data flow
controlling form and the sejuence wonfrolliag, fora, see figure 7. For the data flow controlling
microinstructions e4ch péssible “unction perpitted in the function field is iwplemented as a
dyadic function. Its left argument ‘is again the absolute address_in MCODE which will. contain_the
generated bit configuration.—Its right arfgument is a four component vector which corresponds to
the-other”four fields in the microinstruction. The general form is

Loc PCN Inl, In2, Output, Memory

All the components of the right argument nmay be‘Hrittenmmqgmdnically- For example, to add the
contents of register X to the Contents of register B, put the result in register MAR, and
finally issse a read of memory.would appear as) -

7 ADDM X,B,MAR,R

The sequence controlliny npicroinstruction is also a dyadic function. The name of the
function matches the mnemonic for the test condition. Its left argument is the absolute address
in HCODE for the generated bit configuration. Its right argument is the absolute address in
MCODE of the next microinstruction to be in control. For example the microinstruction

7 TRM 64

vhan executed causes an unconditional transfer to the microinstruction in control store location
64, . i

This techrique while pot elaborate proved quite adequate. If an error ¥ere made in either
an imstruction or a microinstruction, correction simply consists of reentering it. Occasionally
this was hard to grasp by an experienced programmer since he expected sneething isore involved.
If the user is a kmowledgable APL user, he may use the defimed function facility of AfL as an
asseabler. Instead of entering the instruction individually, they may be collected together as a
niladic function. Por example,

e

Aruitoxt provided by Eic:

O

ERIC

Aruitoxt provided by Eic:

!
0 DATA
i
0 1 3 6 9 13 15
- QUTPUYT (3 BITS)
TUNCTION (4 BTI?TS)
— T2 (3 BITS)
Iri (3 3ITS)
ME:'ORY (2 BITS)
!jj] SEQUENCE CONTROL
0o 1 " 15
BRANCH ADDRESS
: (12" BITS)
— TEST CONDITION
) (3 BITS)
Figure 7
T e - BULL TRACE PARTIAL TR.* 10 TRACE
i Sl

1. 3 MACHIND® INSTR. lCLOCK 16 MIN 35 SEC| 1 MIN 45 SEC 29 SE
32 CNTRL THSTR. P 17.25 SEC 5.5 SEC 4,25 SEC
(BUIl 0i1 CP-67)

2. w2 MACHINE IiSTR. CLOCK 28 4N 52 SEC 12 MIN 323 SEC
558 CHNTRL rnustr. | cpy 1 MIF 35 SEC |1 MIN & SEC
(UN 0¥ CP-67) ‘

3. 3 MACHINE INSTR.} CLOCK 7 MI{l 55 SEC 30.5 SEC 20.25 SEC
32 CHNTRL TISTR. -| CPU 1.5 SEC 917 SEC .883 SEC
(RUN ON MOD 85) .

Loy COJATROL

* JUST CONTROL STORE

Figure

8

159

LOCATIONS DISPLAYED

9EXANPLE
{11 3 LoAD 017

[2] y STORE 0O 0 39

Changes to programs then canm be wmade via the editing facilities of APL. A word of caution
though, this does tend to f£ill up the workspace.

Timing and Effort

This training package.uas essentially written in about 100 mar hours over a period of three
veeks. Many improvements were sudgested and even made by students as they used it. This proved
to he very valuable input.

Since several levels of simulation are involved, the execution time for the individual
machine instructions are inherently slow. Pigure 8, contains some sample times. The first and
third cases eXxercise the microcode to execute two LOADs and & STOP. The second case exercises
all the amicrocode to execute all but one of the machine instructions at least once.

Projeciions -

- This package can serve as a ready foundation for further modifications and extensions. For
exanple several additional imstructions could be added to the repertoire of the machine. Or one
coulld nake changes in the data flovw. The addition or deletion of registers and modifications to
the jata paths are possibilitizs. The timing with respect to memory references could be nmade
more realistic. A nore ambitious undertaking would be to treat this data flow or subset as an
I/0 control umit. With two such versions, one an I/§ <control unit and one 'a CPU, dynaaic
interaction could”occur. :

This package has been successfully used to introduce the concept of Bmicroprogramming. It
enahles a student to actually write and execute microcode in an interactive environment. This
leads to a proper appreciation of what is involved. The package appears readily extendable
offecing several avenues to follow.

A technical report contalnlng complete student manuals is currently being written and will
be available from the authors.
REFERENCE

1o Gear, C. W., Computer chanizatxon and Progrannlng, chrau—H111 1969.

Q ’ 160

ERIC

Aruitoxt provided by Eic:

!

EE

Q

CARL
AN APL ELECTRONICZ CIRCULT ANALYSIS PROGHAMN

fandall %. Jenseu, Jerry A. lHigbee and Paul M. ifansen
Electronic Design Associates
1536 Zast 1220 North
Logan, Utah 21

danagement Systems Corporation
15 North West Temple
Salt Lake City, Utah 84103

ECAPL {(APL Electronic Circuit Analysis Program) is an interactive integrated system ot
programs developed by Randall . Jeasen, Terry'A. digbee, and Paul M. Hansen of Electronic
Desijn Associates for Hanagem2at Systems Corporation, 15 North Jdest Temple, Salt Lake City, OUtah
34103. The programming system was developed primarily to aid the electrical engineer 1in the
desiyn and analysis of electronic circuits. The system's capabilities are similar to those ot
tha L[BM/360 ECAP{ 1] program, hdwever, the techniques used toc perform the analysis are ditterent.
Ths user familiar with ECAP will have little difticulty making the transition to ECAPL.

_ The ECAPL system consists of four clsely related progranms.

Input Language: This projram acts as the communication link betveen the user and the three
analysis programs. The interactive language is user-oriented and allows complex circuits to
be simply described to th2 computer. The four basic types of Statements used 1n the progranm
completely define the topdlogy of the circuit, the circuit element values, the type of
analysis to be perform2d, the driving functions, and the output required. Each input
statement is analyzed when entered for validity and syntax so that the user is completely
isolated. from the APL system. Compreheusive diagnostics are supplied to -aid input
debugging. These features make it possible to learn to use ECAPL in a short time.

DC Analysis: The dc analysis program obtains the dc or steady-state solutions of linear
electrical netwdorks and provides the worst-case analysis, standard deviation (statistical)
analysis, and sensitivity coefficients if requested. This program also provides an

_autopatic parameter and.tdopology-modification capability.

AC Analysis: The ac analysis program obtains the steady-state solution ot electrical
networks subject to sine-wave excitation at an arbitrary fixed frequency. Since this
program also contains taes automatic network-modification capability, it is easy to obtain’

frequency and phase-response solutions.

Transient Analysis: Th2 transient analysis program provides the time-response solution of
linear or nonlineayr electrical networks subject to arbitrary, user-specified driving
functions. Nonlinear elezents are modeled by using combinations of switches and resistors,
capacitors, or inductors to provide piecewise linear approximations to the nonlinear
characteristics. ' :

ECAPL is not difficult to use.: Tt is not necessary for the user to have any knowledge of
APL >r Of the internal mechanics of the ECAPL system and he needs no prior computer oOC
proyramming experience. However, he must know the technigues ot communicating with the computer
via ECAPL. These include {1) the means of converting the circuit schematic to a written format
acceptable to the program, (2} the information required to obtain the desired analysis, and (J)
tha knowledge to interpret the output results. The techniques involved in using ECAPL are easily
learned by an electrical engineer because ECAPL's input:language and its output are written 1n
electrical circuit terminology. ' B !

The ECAPL input data provides information describing the interconnection of the branches,

‘the types of elements, their vaiues, tolerances, gains, inductive couplings, initial conditions,

anl dynamic changes in their values. There are only eight different data card types required to
provide thiis information: passive branch data, current gain or transconductance, mutual
inductive coupling, switches to provide dynamic changes, independent voltage and curcrent
sourzes, and three types of tine-dependant sources. The eight types of data cards specify ‘the
elem2nt values in a 'standard" branch.

The standard branch shown in Figure 1 is the basic building block of ECAPL. It consists of
1 nopnzero passive element; R, 3, L, or C. In additioa, it may include a voltage source E and/or
a sWwitch A in series with the 2lément and/or an independent current source I in .parallel. It may

.also contain any number (200) of dependent current sources i, 'as shown, in parallel with the

elem2nt. The positive current lirections and voltage polarities are shown in the figure.

RIC) 161

A i Tox provided by ERi

4
i

| aanbty

P A

o WESAN

youexq ,woIy, = w axaym
‘ mE

: TAT#WY

10 Usg,vrag

Jupn-Tuan

1-04

a+Fusn-Tuan
L=

/

Ad

UT
23]
B pama by, sscacamises o | i e

i

Ad

od

Ad«

od

162

Aruitoxt provided by Eic:

ER]

‘\)

ERIC

Aruitoxt provided by Eic:

Besides the branch dati statements, ECAPL also includes tvo additional types of input
statements; command and control. The command statement EX or EXECUTE signals the -end of the
input data and causes the analysis to begin.

Solution control statemants are of two types. The first contains data’of a general nature
that pertaius to the analysis »f a circuit({e.g., frequency, time step, etc.). The second type
specifies calculations to be made, other; than a nominal solution (e.g., sSensitivity
coefficients, vorst case, etc.). The page control (PC) owutpat control statement is a special
form of solution control statament which stops the analysis atter each block of output to allow
the user to insert a new sheet of paper in the terminal. The analysis |is reactivated by
depressing the carriage retucn key. .

«

The statement formats for dc analysis, ac analysis aud tramnsient analysis are summarized in
Figure 2. :

163

sheulod JuUdWaje3g s1sAlvuUy Od (¢)g 2anbryg

od TOHINOD IOd4LAC
Ui Vg=(na]do |
; 150 o= Lol s w
¥ Louty d=[{yoayjul
i [SROTIVINAIG QUYANY] IS '
! [SHILIATLLSL}AS ,

94 (IEVD LSU]OM-

TOYLNOD HOILNIUS

ba=y- - [} | . IduN0S
af INFUNTGHUNT
L33 a : ; dDUM10S
d="9q+7q‘u W ! T INIEUND.
ﬁmam_m ; INIAHIHd
. Hu YIva
by=3uectusq Hu_ dAISSYd
(d4Ln03] XA § " ANVI3.0D

==

)

anIva I1nvdad

WHOJd &ENEWHLYLS

o™

JdAL LNIRIIVLS

164

i

O
ERIC
s

W

Lo

R

sjewIo IUDWOIRIS SISATRUY. OV (UY)Z munuﬂm

od

TOYLNOD LOdLN0

|
|
|
|
|

i
LGO" G d=ld0ddjdi TOYILNOD NOILINIOS
€ i e
d=q AHW HOUNOS
14 INEANH JRANT
¢z L .LZHAmooo
a=“q«"a’n EA13,00ANI
z a1 i EONA0S | VINd -
d="q«<"q’u . WY ILNRIY D
{vza]g INIANIAFA
) >
, T
- T
Cfa=tuctuig (o TATSSYA
i d ”
(21009] Xd ANYIWOD
i

sPIva LIMZasad

m,

et

WRI0d INEWLLYLS

HdAL INHWIIVIS

O

165

IC

E

Aruitoxt provided by Eic:

Sy

{¢/1) S3BWIO JUBWOIEIS STSATRUY JUSTSURIL W (D)7 oanbrd

ou~ov~xmwc~voﬂymc~QwMAH

TepTOSNUTS
DTPOTIBd
DTPOTIBUUON

SADU0S
LNITANHATA~TWI L

SNOILIANOD
IYILINI 3
$EOYN0S od

HOLIMS

d04N08
- LNHHENO YiLva
CILNIANAHAEA

AAISSYd

[410D4] Xu

[

ANVYIWWOO

dIva LTaVdAEda

WEOd LRHEWILYLY

ddAL INMWNHLYLS

O

166

IC

E

B A Fuiimext providea by R

N

S
(¢/¢) sS3ewlod u:meumum. mﬂm\yﬁmcd" JuaTsue] p)e Wu:uﬂ.m

| | |

W

|

!

i

]

od TOUINDD ILNdLOO

L B 4= [LNEWEMONT - @Dua] 05
' _w:zHazucu
Lol . d=(Na} ao
L0°0 noo a=[I¥O0] HS
00 . , y a=[EhIL TUN] Id
0%0 } ; y o d={anil IVILI) NI
i ; d= [TvANEINT 10dL] no
Lo o " . :mmnmommumm
LU0°0 -1 " a=[uouylay
o1 d={daLs AW IL

{WnIugITIIN} 04

P

TOULNOD NOILNTIOS

4OTVA LIOV4EA

WO INFWALVLIS

ddAL INIWHLYLS

167

O

IC

E

Aruntoxt provided by Eic

i,

-4

s3jeuIog onfep Iajaweded (®) ¢ 2anbTa

i

5

. - JpouU Teutry ="Uu.
" - T
! 9pCGU’ TET3ITUT = W
youeaq ,ec3, = un ’ Jaqunu TeTIas = U
3 < :

youeay ,woxj, = g) Jaqumu youexq = n.rn ‘q

pe30979s °oq 3ISNW anolb oy3 JO JFUSWSTD SUO SIFLOTPUT A v
; RS-
UOTJRWIOJUT TRUOTIdO Sa3edTpUut |]

—

ATSAT308USDI ‘NUJO vrm‘emozm Aq peooeTdax oae ssniean D pue 7 |

suTea ‘*** ‘sulea ‘autrejp

A 1A ‘

> ZRE v W (zeniep ‘ienimp)
|

Xewsseyu UTWOSBYU/Xew (JUSWSIOUT) UTW

,W‘ aseyd/anten

t

meMﬁucwEwuocﬂv uTH

(xeuw ‘utw) TEUTWON

Awncmuwwou meMowvv TeuTuoN

NN NN

w , sntea

O

168

Aruitoxt provided by Eic:

[E

[E

When the EX command at tae end of the circuit description 1s accepted, ECAPL requests that

the user specify the output desired. The program prints each of the possibie output types {e.g.,
V) to which the user replies with one of the response forms in Table 1.

-
V

.Table 1 Nutnut Descrintors

FORM FUNCTION
numbers snecifies node or branch numbers desired
: e,g. 157

n, »n, smecifies all numbers from a to n inclusive

-n deletes number n from outnut list

-n, s n, deletes all numhers from n to n .inclusive
from the outnut list

». . ; . .

0 ’ deletes all nrevious numbers wvrior to 0, e.a.,
137 0 2 U snecifies numbers 2 and 4 onlv.

+ - continuation mark to allow numhers to he continued
on next line.

carriace no outnut desired

For examnle, a resmonse to the’ outnut tvne Y mimwt be 1.5 H—>15
-11 would remuest. element voltages 1,5, 9, 10, 12, 13, 14, and
15. ' :

The use of ECAPL is best illustrated with a series of examples. These examples demonstrate
tha interactive procedure and the simplicity of the input language. The first example is a dc
dnalysis of the two-stage aimplifier shown in Figure 3 represented by the eguivalent circuit
shown 'in Figure 4.

hH™

I [.) o .

The user reqiests an ECAPL %na1ys;§~bymtyping~the~statement*ECA*fottowed~bywa carriage
return. -The system replies witi SPECIFY TYPE:OF ANALYSIS to which the user responds ' either DC,
AC, or TR. In this case 'tha response ‘was DC. Next, the circuit description is entered as shown
in Figure 5. The coamzand F? #% the end of circuit description informs ECAPL. that the .circuit
data is complete. The systzi rCesponds with the number of nodes and branches used in the circuit
and ‘a2 request for the outputs lesired. Each output variable is typed by ECAPL and the user nmust
respond wvith a carriage return (no output) or a specification.as described in Table 1.

At the end of the output requests the system dictates the commands to load the appropriate
apnalysis package. A circuit moiification (parameter or topology) can be performed at the end of
each analysis by reloading the 1language module, entering the modifications, and loading the
analysis module as shown in Fijure 5-9. '

o : | =

RJ!:‘ 169

Aruitoxt provided by Eic:

R
1

dUYTAITdHY HdOLSISNYYL dUVLS=UND £ 2anbTg

LOdLAOO

hﬂv . » .“ c

I

LNJINI
- 0098
[L N
1¢ °
881
AL
]I

000t

AQE~

170

O

Aruitoxt provided by Eic:

E

LINOYID LNITVAINLA mmHLH..H&.._E UUYLS-UML i oanbty

N o001 @

+ =
Ht|F 11
-y etne) | tous B 0] 1 °
- t . g 1
_ ﬂ E lllllllllll J ' _
+ — .. —
0 — A0s > w ‘ y
® 05
‘ s 8
L°0 : ﬂ . @
0001 - MEL m_

171

Aruitoxt provided by Eic:

E\.

o

ERIC

Aruitoxt provided by Eic:

Examples of the ac anal
6 through 9 respectively.

o Vi et o e

ysis and transient analysis capabilities are iliuétrated in Pigures

172

O

ERIC

Aruitoxt provided by Eic:

SPECIFY TYPZ OF AMALYSIS
DC---TEST PROBLEM (DC ANALYSIS OF THO STAGE AMPLIFIER)
ENTER CIRCUIT DEGCRIPTION

R1,0-1=5,8753(,N5)
£2,2+1=810
E2=".7(".e,”.5)
R3,D+6=02(.03)

Kt ,6-+2=220(.05)
R5,7+3=50F3(.03)

"R6,3+5=1253(.05)

R7,4+3=347

E7=".7(".8,7.5)

R8,0+4=153(.05)

R9,4+7=50%3(.05)

R10,7+5=173(.05) -
R11,3+0=,1

El1=30(.0%}

R12,1+4=29R3(.05)

R13,8>1=1

Rik4 ,0+8=1%6

B1,2+5=60

B2,7+9=60

B3,13+i4=0

3E

de)

rc .

EX :) -

N0, OF BRAFCHES: 1u
H#0, OF {{ODES: 8

SPECIFY OQUTPIT DRSIRED

TYPE THE ¢ HMAYDS JERASZ rLaNg
YCORY TERRYDC DC
22X

FIGURE $-1

. 373

A

DC ANALYSTS

L I N R AT R A

PARTIAL DTRIVITIVES AND SRHSITIVITY COLEFFICIENTS

fol

HIP{l REGPECT PO RESISTANCEZS -~
r
ps

oDE PARTIALS SRHSIOTVITY
BRANCH 1
1 T2.41432E8705 T1.352027 02
2 T2.23322%8705 T1.284285 93
3 7.36617F 0y 4,12508F702
4 7.32153E 704 4.,10006Z2702
5 "6.920865708 T3.875587706
6 "6.22688F 06 T3.4R7085 0L
7 T7.5354557 04 “4.21¢852702
8 T2.81432E705 T1.352027703
BRANCH 2
1 T2.33179R7° T1.88875% 0y
2 3 45" 2.75794% 95
3 ks T9,00331F" "
4 e T8.9un"
. 497865 °
1.20511%5" .. 0B
- 1.19885E ..d858706
5 6.84618% 8.84618E 06
6 S.15314F 5.15314% 08
7 7.62012) u3 7.62012F 06
8 1.978615 04 1.97881E797

et . s et st 1258 " B RA”CH 1.2.~,-.4..,,..,.mw [e e
1 6.852717 05 1.505805723
2 6.510283:06 _1.434027703
3 T2.1125787 04 _4.B4T7E5E 92
4 T2.100423_ 0k 4.62092% 52
5 1.87225E708 4.118977776
.6 1.76986% 08 3.892707 3y
7 2.048517% 04 4.506723 772
8 6.86271F 06 1.50980572.3
FIGURE 5-u
Q B 174

ERIC . .~

Aruitoxt provided by Eic:

BRANCI 13

DN EWNP

BRANC:

OOV EWNR

14

T7.571530F 10
“7.19182F" 10
2.31003F708
2.29602F° 08
T2.170335 712
T1.952757710
T2.363125708
1.260115706

~7.571307°10
T7.19182FE710
2.31093F708
2.29603%708
“2.,17038% 12
“1.95275E 10
T2.368312E708
~7.58390F 10

HITH RESPECT TO BETAS

e

“7.571305712

-77.19182E 12

2.31003E710
2.29603E710
T2,17C38F 14
T1,952755712
T2.363127°10
1.26011E708

T7.571305706
T7.19182E706

2.316032° 0y

2.29603F 04
T2.17038X°08
~1.952752766
T2,36312E7 04
~7.58396E706

NODE PARTIALS SENSITIVITY
BETA 1
. 1 _1.62414F70y 9.74485E705
A 2 1.84607F 04 “1.10784E704
3 1.02916E:02 6.17u935703.
y 1.022937702 6.137595°03
5 :9.54719E 07 T5,782325 07
6 ~5.01251F 05 “3.007518735
7 1.05058%702 76.30352E793
8 1.62414E70Y 9.74484E 05
BETA 2
1 TH.99734F 0y T2.99°40F My
2. _4.79183F 0y 2.875105° 71
3 -2.4289L7703 T1.457375 03
y 3.03216%5°03 T1.81929377%3
5 _4.708592707 2,825155°D7 —
6 1.3010087 0y T7.806557 W5
7 _u.911s1n‘03 2.918917° 13
8 4,99733870Yy “2.9ssun3'mu
FIGCURE 5-5

ERIC

Aruitoxt provided by Eic:

175

O

ERIC

Aruitoxt provided by Eic:

=
]
o
w

o e
® N v E WNRP

WITH RESPE

NOoDE

BRANCA 2

WNOWUMF WO

BRANCH 7

MO FWNPRP

BRANCH 11

MO WV F WN R

" .FICURE 5-6

7.57130%27 04
7.19182Z 04
T92.31003%702
T2.29E035702
2.170385706
1.95275504
2.36311E8702
7,58390Z 04

0.00009200
- 0.00000700
0.00000500
0.00000EN00
0.009993290
0.00000309
0.00000500
0.00000E90

CT TO VOLTAGE SOURCES

PARTTIALS

8.55085E_01
T1.28151F701
. 4.12363700

. 4.09836X00
“3,8299467 04
- T3.47950% 02

T4.17401500
8.65084E 01

“2,239687702
T2.12302E702
8.565765 01
T1.425628 01
2.16883K° 05

- T5,76848E703

1.455255 01
T2,23968%F 02

T9.235647702
T2.14536%702
T1.362265701
~1.355192701
T9.9997977 01
T5.825155°03
“8.61385F 01
T2.296645 02

176

SENSITIVITY

6.05560F 03
T8.97057E 04
2.885585702
2.86327E7 02
T2.68097Z 06
T2.43572E 0y
T2.92181E702
6.055597 03

T1.56778270Y4
T1.88611F7 9y
© 5,93603%°03
T9.9793RE 01

1.513185707
T4.,03514E765

1.01857F 03
T1.568777F Iy

.. T6.709925703

T6,43RG3703
T4.,08679E702
“4.065572° 52
T2.9999457p1
T1.747547703
T2.5381557 0
T6,70391F p3

Full Tt Provided by ERIC.

MAXIMY

T1.06217529n
Tu.1784u701
T6.134B4720
T5.4776850
T2.75990701
T1.123527701
T1.90103301

T1,06217200

NODE VOLTAGES I
NoDE NOHINAL TN TMYY
1 . T1.28487800 '1Vu7sussno
2 T5.39041F7 01 617523225701
3 T7.57297FE00 "9.21a53%0
4 T6.83505550 TH.40754390
) 5 T2.99991F01 T3.23032701
6 T1.483528 701 T1.85u620701
7 T2.30218701 “2.67830701
L) 8 T1.26007° ¢ T1.476485E90
BRANCH VOLTAGRS .
BRANCH _ _VALUS o o s e
1 1.26N087500
, 2 7.21833F 701
| 3 1.463627 01
VL B 3.926795 01
\ 5 7.03393F00
. 6 2.24261%01
B/ 7.37927F8°01
8 6.82505700
9 1.61855%01
-~ 10 8.,97752E00
11 T2.99991501
12 5.57417500
13 1.260875° 06
14 1.26087200"
ELEMENT VOLTAGRS
BRANCH VALUR
, 1 1.26087E00
pan #30 AR AN 2 2.18331E:02
: 3 1.463327 01
y .'3,926797701
5 7.03393800
6 2.24251201
7 3.79266R 02
8 . 6.83505700 K
g 1.61865701 .
10 - 5,97752F00. o
.11 B.BUR3ITE Ou
12 ; 5.57417-700 &
13° - . 1,260878705
14 " 4.26037R00
(.
- " FICYRE 5-7
\
t L .
-.1;,?, \\
, R e W)

e o s ..

R

-~y

b e

\
i
FLEMENT CURRENTS
BRANCH VALYZ
1 2.25158% 0u
2 2.,6354587n5
3 1.7842372703
i 1.78u49077013
g 1.7578557°03
6 1.86385F 03
7 1.1G8962 04
8 6.835057703
, 9 6.377522°03
: 10 6.977528°03 ,
11 ' 8.84837R°03 <
12 2.533725 0y
) 13 1.26087%706
. T T PN ¥ .-1.260822705.. . e . e e s s mee e e
BRANCH CURRENTS
BRAMNCH - VApyr
1 2.251565 04
2 2.695458 05
3 1.78u4907703
Iy 1.784907703
5 1.75795£7 03
.6 1.868R857703
7 1.1089658 0un
8 6.835055°03
9 6.9775275703
10 6.977527% 63
11 8.RLR3TETO3
o 12 2.533717° 0y
13 1.26087E706
1u 1.26087E 06
"ELEMENT POUERS
BT _VALUE
g 1 2.8389377 08 - ’
: 2 5.88502%707 .
3 2.681242E70Y , o
i u . 7.0N0394727 04 ‘
5 . '1.235537°02 - W
| 6 ©/4,191107702 \§§ﬂﬂ
v vi .. 4y20593E706 _ C
't 8 4.67178F°02, : o
{ 9 . 1.129428 01
10 © 4 ,8RA53E702
11 7.825R32F706
5 Sl 12 1.41723uE703
; ’% 13 1.589807" 12
| .
: FIGURE S-8"~ a ’
s ' : ; - -
t
.]) 7
y T - :
A = C . e i S R L L

N
R

iEl{lCt.f

B A v provided by ric ["

39

e

SPECIFY TYFE OF ANALYSTS

-MODIFY-~-WORST CASE CALCULATIONS JITY MAX. BETA

ENTER CIRCUIT DESCRIPTION

R2=1034
R7=u3¢
R1=78
B2=78
./0

PC

ol - ve rasen e e - @ . b e B e e ma . ew .

X0, OF BFAHCFHS. 14

KO. OF NODEL: 8

SPECIFY ONTPUT DESIRED
nv
18

Yyl
1+14
EC
114
BV
1414
BC
1+14
EP
1+14
MISC
0

TYPE THE COHIPANDS :% YERAST LANG
) COPY. "TERRYDC DC
EX

FIGURE 5-9

,,,,,,

179

Full Tt Provided by ERIC.

DC ANALYSTS (MODIFY

L L R I R R R I B DY Y

HOhE PVCLTAGES

.t

nops NOMINAL
1 T1,26954F00
2 T5.,476018% 701
3 “7.u8791700
Y "6.75108E500
5 T2.99991F01
6 T1.486375701
7 ~2.30n834F01
8 T1.26254500
o .. BRANCH VQLTAGES
- 2RANCH VALUE
1 1.26954E00
2 72212075701
3 1.486375 01
& 3.9R782F7 01
. 5 © B.,940K45700
. -5 2.25112E501
7 7.36831F 01
3 6.75108F00
9 1.63323F01
10 "6.S1576500
N i1 T2.84391F01
12 5.48154500
13 1.2695427 06
14 1.25954500
ELEMENT VOLTAGES
ERANCH VALUR
1 1.26354T00
2 2.212017702
3 1. 48637501
4 3.98782F° 01
5 6.98049500
6 2.25112501
B 7 3.69318F702
, 8 “6.75108%00
; 9 .1.63323201
o 10 6.91576700
/ ‘ ’ 11 s R.T791707 704
: . 12 T 5.8815:500
13 1.%5954%"06
S 1.26955F00 -

FIGURZ S-10

180

L N NN

MIZ TN

-71.4860N500

—6.855777701
9.132327F00
T8.32043K00
T3.234932701
“1.8B77585701
~2.68601%01
1.48500F00

MAYIMUN

T1.06995F00
“4.2618u8 01
“6.05387F00
T5.39911700
T T2.75990%01
T1.116307701
T1,904655Q%
T1.06996F00

o BRALCE W

2.2 " ."0u
2.113785705
1.812557703
1.812657°03
1.791u455703
1.87593F 03
8.4475RE 035
5§.751087703
6.915785703
10 5.915765 03
11 8.791705703
12 2.49161F70y
13 1.26954F 08§
14 1.289547 08

WOmYID W& WN R

PR G e e e PPN Ce e . - e e e e e FE,

BRAIICA CURRZUTS
BRANCH VALUE

1 2.26703F 0u
2 2.11878K705
3 1.81265F° 03
4 1,81265F°03

5 1.791458703
& 1,87589387 92
7 3.44758% 05
-8 6.751085703
9 6.91576E° 03
' .10 5.91576F 03
T 11 8,79170F 03
12 2.8915157 04
13 1.26954F 06

1y 1.2695uF 06

ELEMENT POIERS

BRANCE VALUE
1 2.8785377 01
2 4,686768 07
3 2,69426F 0y .
4 7,228512° 04
5 1.2432358702
6 © 4,222967 02
.7 3.111377706
B L 8 4,557798°02)
e “ \ .9 » 1.12950% " c1 '
. _ 10 - 4..782783702
- 11 .- .. 7.72929R70%
12 1.36578% 0"
_ : 13 1.81473R7 L8 o '
b : 14 1.611725706 -

FIaiRg 5.3

| E[{I(j'“,‘ “~;‘¥, o ' : f‘\"g 18

B 11701 Provided by ERiC

— kK . ' -
B ! g

. MYUMLAN ITIWYXH SISATUNY OV 9 2InbTg o v) _ e

182

- J
RS

4

../._

.
._ op
. 4\ 3
+

S

c e ms -

A,

.159155
TYPE THE COMMAIDS:) YERASE LAYG
: YJCOPY ECARL 4C -
B 1B
T
FIGURE T-1 ‘ -
Ry N e
. ‘—“‘:—-w_,_« P w ‘..j»--- ~ ’
B - 183 3

SPECIFY TYPE OF ANALISIS
AC---TEST PRO3LEM
ENTER CIRCUIT DESCRIPTION

F1,0+i=1
Ei=t/0
F2,1+2=1
L3,2+3=1

R4 ,3+0=1 1
L5,2+4=25

LG, 4+5=4
R7,5+0=1
M1,3+6=1
M2 ,3+5372 -+ - bee e ke e
M3,5+6=" 4

PC

EX

M0. OF BRAJICHES: 7
nO0. OF MODES: S

SPECIFY OUTPUT DESIRED

NV

1+5

2V

147

EC

1-+7

3V _ | -
1-+7

BC

1+7 .
EP -

1+7

MISC

1

SPECIFY FREQUENCY (H2Z) MIN MAX INCREMENT

AC ANALYSIS

L I T R I T T S

FRTN= 0.159155
HNODE VOLTACES
NODE JAGKITUDR - PHASE
1 6.707225701 8.00
2 2.777645704 29.53
3 3.00309%701 12,34
n 2.84899F 01 6€,02
. 5 5.15028E 02 “34,51
AR , T T o BEANCH VOLTACES
) __ BRANCH. ... MAGNITUDE PHASZE
J s . 6.70722E_ 84 - T172.00
‘ 2 3.485482 01 15,54
.3 2.53359% 01 82.06
B 3.003092 01 T12.34
5 2.34888F 01 19,25
6 3.003092701 77.66
7 5.15026E702 “3u.51
ELEMZNT VOLTAGES :
BRANCH MAGRITUL PHASE
§ 1 - 3.ugs5u8r 01 15,54
2 3.485u48C 01 T15.54
3 2.53359F 01 82.06
L y 3.003085° 01 . T12.34
5 ! 2.348885°01 . T19.%25
6 3.00209E701 . 77.685
7 5.15026E 02 T34.51
_— ELEMENT CURHEITS : ‘
BRANCH MAGIITUDE PiASE
1 3.455485701 15,54
2 3.485488702 . “15.54
3 . 3.003095701 712,34
4 3.00309E701 12,34,
5 5.150285 02 “3u4.51
6 o 5150268702 734,51
7 “ 5.150265702 T3u.51

; o FIGYRE 7-2

FRIC 1 | . . i ‘ " '1841M%?

[AruiToxt Provided by ERIC

BRailcii CURRENTS

BRAICH MAGHRITUDS PHASE
1 3,485480 G1 715,54
2 3,48548E 01 T15.5n A
3 3,00308E701 12,34 '
N 3.003088701 T12.34
5 5.15026% C2 © 734,51
. 6 5,15026E702 ~“au,51
7 5.1502862°02 34,51
ELENZNT PONERS
* . © BRALCH . MAGNITUDE
) 1 1.21485E701
. 2 ~1.21485F 01 ;
3 g B BB s tee e e eee s s Y
L 9,015575702 ’ S
5 _1.16711E_02
4 5 5,83554F 03
7 2.65252E703
YR
o 274 0 0 O
| ¢ 14 0 0 O
6 0 1 0 0
o o o 9 0
. o 0 0o 0 1
81 '
0 0 0 c . : 2
0 1.8437 1.625 0.,40625 ~0.1875
0 1.625 T1.8 70.375 0.25
0 _0.40625 0.375 0,34375 0.3125%
0 0.1875 0.25 0.3125 0,375 e T
ECVR ‘ - B
1 0 0 0 O o
ECVI : ! i
o o 0 0 0 ‘ C
LNAT o o
. . 1.8 0.125 T0.25
0.125 ~ 0.09375 0:0625 7
“e.25 - - . 0.00625 0.275
‘ FIGURE 1-3 B o .
; . .
o o
I3
. ot | - | :’, ‘ . ' -
O) . - : . . 7 . "
.ERIC . ‘, ' o es o S
: . ‘ o] . : S A e U S e
:j': :)

e

.- Bt baan

et

P

L

(I

I
e

Py
.—--—""/../
I

ad'

%

!

~E

IC

Aruitoxt provided by Eic:

186

O

ERIC

Aruitoxt provided by Eic:

L SF2 BEN

SPECIFY TXDR OF AUALYSIS

TRANSIENT
ENTER CIRCUIT DESCRIPIIOL

F1.0+1=.001
ET1.,0,10,

30=1i0 :

G2,1+0=1
C3,1+0=("1276, 1.25)
E3="1
G4,1+0=(1£76,2.25)
Euy="1.5

SH1,343 -

rI=1
FI=5
pPC .
EX

J0. OF BRANCHES: &
NO. OF IODES: 1
SPECIFY OUTPUT DESIRED
BV
1 ‘
EV .

EC -

L1444

BV

BC

EP

MNIGC

TYPE THE COMMANDS: YERASE LANG

YCOPY TERRYTRA# TRAN
- EY

FIGURE 9-1

sl

& 187

i

P T T

* wm s av

v eevams -

ERIC

Aruitoxt provided by Eic

e e

e -53998SAETET Tt et e enees
1.50000F° 06
TINE= 1
NODE VOLTAGES
NODE VALUZ
1 9.999012701 . ‘
ELEZMENT CURRENTS .
BRANCH VALUE :
1 9.996015701
2 9.930015_01 -
3 _9.99000F" 10 "
4 5.009335 07
SHITCHES OFF: 1--
[}

TRAJSTEIT ANALYSIS

LA R I O O O I) L

TINE= 0

NODE vanrLTaGES
YODE VALUE

1 4.99500£710

ELEMENT CURREITS
BRANCH VALUZ

“u4.,99500F5707
4,995003 1

£ 0N e

TIMNE= 1 -

NODE VOLTAGES
NODE VALUZ

o , _ -

: 1 9.999765701 :

7 s e v g ¢ m{
FIGURE 9-2 ‘

188 5 5

owem - ~
ELENRND ¢ 1l ITs
A

LR
L

" ' BRAKCiH VALUE .
1 1.00001E00
2 9.999775701
3 2.93035570¢%
L 5.000222°07
TINE= 1.1990
NADE VOLTAGES ,
e b e m e e meee s UODE U UVALUT e e e e e e
1 1.49913700)
ELEMENT CURRENTS
'BRANCH VALUE g
1 8.752192701
2 1.49912E00
. 3 ~6.23906E 0%
B y 8.742655 10
SWITCHES ON: 2
’ Pt “:\
\Q
&
K
3
A
FIGURE 9-3 ‘
. H N T,:' - -
; . 1

S . H - T
-ERIC . . .~ asg

Mg o

BISLIOGRAPHY

P

1. The 1620 Electromic Ciccuit Analysis Program (ECAP) (1620-EE-02X) User's Magual, shite
s,

Plainp New York: International Business Machines Corporation, 1965.

B
%
- L
B T s L T S s e - - ¢ s e L e e .
U“I
.
8
",
b2
-
N !
A
R A T BN
T . ____M
L .
.
o -
“ .
:
3 ""‘
R

. a . . - . . B T i ‘ o

USE OF APL IN TEACHING ELECTRICAL NETWORK THEdRY

paul penfield, Jr. '
Massachusetts Institute of Technoloyy '
Capbridge, Massachusetts 02139

This paper discussed .an experiment in which APL wvwas Uused in a college course about
electrical network theory. .

The course is 6.01, Introluctory Network Theory, which is taught to Preshmes and Sophomores
at M.I.T. It covers both continuous networks (BLC networks with dependent sources) and discrete !
networks, including finite-stite machines and combinational-logic networks. In the casz of RLC- -
petworks, both time-domain and frequency-domain aspects are covered. This course is r~reguired
for all students majoring in ~electrical engineeriny (including computer science) at N.IaTe
Except for an 2lective course in compatation, it is the first exposure most of the students have
to =2lectrical engineering. . It therefore serves as a common foundation for many courses to
followu. -

There is an encollment each tz2rm of betwean 100 and 300. Each student 1s expected to
attead two lectures and two recitations per week, and then a one-hour tutorial wvith a single
tutor. In addition, . of coirse, there is homework and in the Spring 1972 term, some of that
involved the use of the computar.

Four APL terminals wers available sixteen hours per day and this turned out to be
sufficient. .

Purpase

The APL notation was adopted instead of standard algebraic notation because of its
preciseness and completeness. The computer was used partly as motivation for the students, but
primirily as a ‘tool - to chack the correctness of circuit-theory algorithms vritten by the
studa2nts. .

Note that the purpose is not . to iantroduce the students to a computer, nor to learn a
coaputer language, nor to learn anything about numerical methods or computer-aided design. APL
was used simply as a languajyz to express algorith@s. Since much of mathesatics is, behind the
surfice, algorithmic, and sincz2 much of circuit-theory is mathematical, APL merely served as a
language in which to express ijeas relating to circuit theory.

-

Us

nw

APL notation was used in the lectures, in the notes, in the recitations and in the
tutorials. Initially, the staff (which consisted of six graduate studemts and four recitation
instructors) was -unfamiliar «ith APL. In _the recitatioas, the use of APL never did take over
completely. In the tutorials, ¢hather APL or standard notation was used depended largely on the
prafarences of the tutors anl the individual students. Because the staff vas not familiar with
APL 1t first, there were severil instances of confusion over precedence rules, or the use of the
equals sign. Many of the equations had an unusual appearance. For example, the equation relating
tha voltage and current in a s2nmiconductor, diode, which in ordinary notation is ‘

i = T eqv/kT . e
8 .

- came out in APL notation as ‘ TN

I o ToxxQxV+KxT

lhich‘to nost of us, appeared relatively avkward at firsta

The first .lecture, .recitation, and homework set exposed the sttvdents to the language "APL

'and how to use it on the computar. This exposure turned out to be sufficient. Use vas made of
. APLCOURSE in Library 1, ani as part of the first homevork set, the studepts vere asked to run
. "APLCOURSE vith a spacified s2t of primitive functions. The students wvere also given drill
S ‘ : : : N ‘

b

QR 1 Tox Provided by ERIC

problens to do off-line anl asked to verify them at the tzrminal. The APL User's fManual was a’
“suggested Text"; ia retrospect, it should have been a required text, In addition, Gilean and
Rose, APL 360, An Interactive Approach, was also a "Suggested Text."

After ths first week, the students vere expected to be able to tse the computer vhen
rejuested. The typical way in ¢hich the homevor' sets were handled is as follows. Consider the
aljorithms that are necessary to compute the equivalent resistance of two resistors in parallel
JF t40 resistors in series. If these two functioms, p and § are dyadic functions with a return,
then any series-parallel rasistor 'network can be anaiyzed - by repeated use of th»se two
functions. The students wvere first-asked to solve several series-parallel networks by hand.
These were relatively simple networks, coasisting of not mdse than four or five resistors, and
elzma2nt values vere chosen so rasults would usually be integers. Next, the students wera asked
to Write the algorithms for § and P. in APL, off-line. In the next¢ problem, they were asked to
impl2ment these on the computer, and.test thea by using thz examples that they had already
solv2d by hand. Pinally, taay were asked to find the eqguivalent resistance of a relatively
cozplicated netvork with fourt:en resistors, which in principle, they could have done by hadn,
but in practice, would have b2en tedious. Jther veeks the particular algorithas vere different,
but the same general approach w#as used. The students alwiys did simple cases by hand, then vrote
th2 algorithms,” then implem2nted them on the computer, then tested the implementation on the
examples that they had already done, and finally, solved a problem that vas toc Coaplicated to
3o by hand. About five homework sets out of 13 had such problens. i

Results

The use of APL as a aotation worked well Zor thgmfiﬁsg_half of the term. Howeve-~, vhen-
~diffarential equations- were en-ountered, j.e., when RLC netvorks in the time~domail were
introduced, the APL npotatioa was insufficient. The lack of notation for derivatives arnd

intejrils proved to be fatal. APL notation vas‘ abandoned, although it was returned to at a.later
tize. ‘)

Up until .this point, how2ver, the APL notation was effective as a communication mechanisnm,
despite the fact that neither the students nor the staff was familiar with it at the outset.
dhather it was any more effactive than standard notation is unclear; it was certainly no les

so, and students had no probleas in switching back and forth. . o

e As far as the computar is ceacerned, the students dgg"thewhomevork'éeis‘ag they vere

axpezted to and they appear to-have learned the_Eigguit:theory“élgorithns by implementing them.
Tha students! experiences are probably best—summed up by the answer I received from a number of

oo studants when I asked them the gquestion, "Did you find putting the algorithms on the coaputer to
be aducational?" Their answ2- universally vwas "No" followed by the statement that putting thenm
on the computer did not teach thenm anything, but writiag them prior to putting them wn did.

0f coursz, . the use of tie computer vas not appropriate for all aspects of circuit theory,
anl was not used every week. In particular, the lack of softvare dealing with differential
ajaations virtually precluded . its use for time-domain analysis of linear netvorks. However, .
studants did write functions for complex arithmetic, which they then wused to inmplement sone

H

freqeency-domain analysis techniques for -RLC Detworks.

-

In fgéneralbwthe students 1id reparkably well on the computer problems. Of the students who
consistently turned in the homa2work over 30% got the computer probiems done correctly most

tizes. ‘Some students did a minimunm. of work ou the couputer and some appeared to dislike it, but
nost did more than was asked aid seemad to enjoy the experience and learn fronm it. !

The time spent on the terminals was not excessive. For example, for the series-parallel
aljorithas discussed above, th2 typical terminal time was less than one hour per student.

Assessaent
. My assessment of this- 2xperiment, as far as the ~notation -alone is concerned is
incoaclusive. The lack of notation for derivatives. and integrals is a flav vhich is very
unfortunate -because differential equations have an important role in circuit theory. o
i3 ag far as. the studemt use Of the computer is concerned, -this vas very helpfal. The
" stodants learned from the compiter and.they found it enjoyable and vrovocative..

3

It’ should be emphasized that APL was used merely as a.vehicle in vhich to express and test
algorithms having to do with circuit theory. Too often it - is assumed that the purpose of
computers in - scientific ‘anl engineering courses is to allow the studénts a "canned” program,,
sinca2 .such.- prograns generally Jo automatically the very steps we vant the st.dents to learn. The
assumption . behind the experimznt reported here is that the computer should,. instead, be used as

’

Q. e : 192 o

Aruitoxt provided by Eic: v . e

1 20iium in vhich the students can express ideas relating to the subject matter. In a sense, the ’
corxputer then plays the role of a proolem grader, forcing a student to continually sharpen his
id2as until he "passes," i.e., until his algorithms tun'‘properly.

Present plans are to zontinue the use of APL in future terms, based on.the experience
reported here. : ‘

C | 193 ‘ S , o R

