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' ”1nee;reet measurement of eempenente.vg,v D

Introduction

Factor analysis has proved to be g popular mode of data analysis in
the behavioral sciences. Howsver, what is often referred to as factor
analysis is actually based on the component model :athef than the factor
model and should be called component analysis. - Certainly, of all the
methods currently EVeileble, the most eiaeiy used is the prineipal compo-
nents analyais followed by the varimax rotation, It remains popular not
because it is based on a method or model which ie_ueiverselly'eppreprieteS
but because it is simple, because computer programs are reedily available
and because eompenenﬁ scores are easily calculated. Yet, in spite of the
fact that component scores are easily found, there is a history of them
being found incorrectly.

Good discussions of the measurement ef components from the rotated
principal components solution have been writteﬁ by such authors as
Harman (1967), Kaiser (1962), and Glass and Maguire (1966). Still, many
users of the model have their own ideas of how these Bcores should be ob-
tained. Their methods have great intuitive appeal and appear reasonable
and obvious. One of the most popular of these methods uses factor loadings
as weights of the standardized verieblee and the resulting linear combinations’

are called "factor scores." Another method, claimed to yield approximate

factor scores, sums those standardized variables with "nigh" loadings on a

perticular component. Thus, weights of zero and one are uged in the -linear

composite. -

Both methods are technically incorrect. However, a detailed discussion

of the mathematical reeeene,why the methods are incorrect may not be

- per sugsive to the user who finds them intuitively appealing. Yet these ueers
‘need to be eenv;need. Fer thie reasen, ‘the theeretieel develepment ef this "

’Stuﬂy ie'euppl ented by a ser;ee ef exemples ehewing the reeults ef an -




Theoretical development

If n variables are observed for each of N subjects, the component model,
stated in matrix form, is given by

L]

where Z is the nxN matrix of standardized scores, A, is the complete nxn

T

pattern matrix and F, is & nxN matrix of component scores. If AT represents

T
& complete principal components solution, then

v _a -1 :
(2) FT—AI zZ .

However, the user of the component model usually wishes to retain only the
Alﬂrgést components, say the first m. Thus we work #ith only the first m
églémns Qf AI and the first m rows of F , which we ﬁight denote as A and F
respectively. Since A is an nxm matrix and has no inverse, we cannot use

equation (2) to solve for component scores. Still, & simple solution for

. F exists:
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whgre A'A = DE is a diagonal matrix of the m largest eigenvalues of the
correlation matrix. It is readily proved that the covariance matrix, SF’.
of the components equals the identity matrix a%d the matrix of variable by
component correlations, RZF’ équgls the patteré-matrix A. Also, since the
inverted eigenvalues scale the rows of A', the factor loadings ﬁecame-ghe
effective weights in the linear combinations which préduce the component
scores. Thus, the first method mentioned in the introduction is correct
but fa? a scaling.canstaﬁt and the sEecond méthgd, using weights ;f zero and
one, becomes an approximation which Schﬁeikef (1957) has argued possesses
© Eome désiraﬁle properties.

However, if an orthogonal rotation is performed which results in & nev’




matrix of loadings, say B, we now have 8 new set of component scores, G,
which can be shown to satisfy the following equation:
(4) ¢ = (B'B)" B'Z .
As §§foreg the covariance matrix of these component scores, denoted Sg,
equals the identity matrix gnﬁ the matrix of variable by component correlations,
Ryq» €Qusls the rotated matrix of 1Qadingg'Bi
A comparison of equations (3) and (4) indicates a great deal of simi-
larity and one important differgncég It will be observed that, while A'A
is 8 diagonal matrix, the product B'B is not. Hence, the weights required to
calculate component scores are no longer simply scalings of the loadings in
the rows of B'. If we persist in the use of the rows of B' as welghting
vectors, we will find scores which do not réflect‘the properties of the
solution. |
We can now formalize method one relative to an orthogonally rotated
principal components salutian; Using 1§gd1ngs as weighté; ve find a seﬁ of
composite scores, dencted H, given by
(5) | H=B'2Z.

The matrix H will not equal the correct scores G, nor will it possess proper-
ties of the solutian given by B. '
Twé matrices were utilized to determine the extent to which the in-
correct component scores do not reflect the solution. The first matrix, RZH’

containg the variable by component correlations. If H were correct, EZH and
B would be equal. The second is the correlation mgtrix;,RHH of the incorrect

component scores. The components should be'uncarreléted, g0 BHH’shgulﬂ equal

the ldentity matrix.
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Starting with equation (5) we can easily derive S,» the matrix of

component covariances:
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It can further be derived that this expression will not reduce down to a
diagonal matrix.
To find RZHj we need the variances of H, which reside in the diagonal

of SHi Denoting a diagonal matrix of these variances as DH’ we find

RZHg

2 2
]
=
PO

which will not in general equal the matrix B of loadings.

Finally,

p-H2 g p -1/2

(8) | " = Py Sy Dy .

Again, EBH should be an identity g&trix, but can be shown not to be.

Before studying the three matrices developed above, it is useful to
conglder iﬂ:arregt component scores of the second variety. If, rather than
using elements of B as wgightsg we simply sum the standarized scores of those
variables with "large" loadings, we are effectively uzing a binary matrix of
weights. It was grbitrariiy decided to assign abveight of iigﬂ *o all 7

loadings whose absolute value was greatér than .5 and a zero to all loadings




ﬁs_
of .5 or less in absolute value. Dencte by C this binary analogue to B.
Then ngpéﬁent scores
(9) 1 K

have a covariance matrix

c' Z

[}
i

(10) = C' RC,
and a correlation matrix

(11) R]‘;K : Dlzl/g S]{ Dxél/g

vhere D is a diagonal matrix gf‘cam}egént score variances. Also, the
maﬁrix of variable by ggﬁpDQEﬁt correlations is given by
(12) ’ Ryg = R C jgl/g .
With the mathemstics developed, it remains to study these matrices
for each procedure, The hatriees were calculated for each of a variety
of examples and comyared to the form which they would take if they were

an adequate reflection of their regpective solutions.

Illustrations énd Results

Several correlation matrices were thken from books on factor analysis
and multivariate amalysis, Each matrix was submitted to a principal com-
ponents decémpgsitianAand those vectors whgéé roots were greater than 1.0
were then rotated according to the normalized varimex criterion. Following
this, matrices Row? Byper Rmt and'RKK, &mcné others, wgre calculated. A
clear pattern resulted and fivé examples best illustrating this vattern
‘were chosen and are fepért§§ in Téblég,lg=1é,bela;; i&ble 1f contains the
only éxamﬁle'in which the pattern was not obvious. FE 7

¥

The pattern exhibited is clear. Components supﬁasedly orthogonal to

each other often come out highly correlated (e.g. THEHB = .86 in Table 1d).




TABLE 1

Iliustrative Examples of Variable-by-Component and

Component -by-Component, Correlation ‘Matrites, Using Correct Components
(G), Components Using Loadings‘as'Weights (H) and
_ Components Using-Einary:Weights (K)

la: Eight Physical Variables from Harman (1967, p.80)
Ron Rpg = B R

.93 .63 .90 .26 .9k L6
.93 .58 .93 .20 : +95 Al
.91 .55 .92 .16 .93 . .38
.92 .60 .90 .23 .93 43
57T . W91 .25 .89 N .91
.48 .84 .18 .84 1.37 .86
L2 .80 W11 .84 . .30 .84
|52 78] .25 . 75] | b0 . .80

o R —

1.00  0.74] 1.00 0.4k
0.7  1.00 0.k 1,00

1b: Eight Variables on 100 Rectangles from Cooley and Lohnes (1971, p.134)
7 _ BRpgg=B R

95 .55 .99 .06 O L6

A5 .90 .09 .99 .18 .9l
.96 .56 .99 .56 N SN Y {
16 .89 .10 .89 .48 .92
99 .80 .91 .82 1.99 75
.95 .93 7 93 .96 .89
.82 .99 .55 .99 .84 .98
-9 +70] .97 .70 .99 .62}

- B | — Bgg =

3
- GG . — — KK -
.00 0.79 1.00  0.00 1.00  0.7h
|79 71;@& 0.00 1.00 VQ-_TLE 1.00

le: A 9 Variable Example from Horst (1965, p.122)

S L Bgg= B R
91 .21 .53].  [-92 .00 .18] - 93 .09 .38
.92 .23 56| .91 .02 .22f  l.oh .11 b1
90 .39 .53 |.89 .21 .15 .91 .27 .38
.18 .87 .26 .03 .89 .ob .11 .89 .19
- 1.25 .87 311 - |.09° L0 SbT W89 L2
L5 .33 .84 ~ |s15 .11 .85 .33 .22 .86
W5 .25 0 .8y .16 .01 .88 .33 .1k .86
.53 W9 .80 , 6 ' , '

RHH:*'"

.00 0.40 0.71] ¥

1 0.51 1.00|




ld: A Contrived 1C Variable Example from Mulaik (1972, p.228)
' R ~ R,.=B R

ZH %G ZX

(59 .89 .73 F‘ics B4 .3k 750 .90 .56
L3 76 .53 L0581 19 i .37 .79 .Le
.70 .85 .58 ’ Abhoooo79 0 L06 1.63 .86 .39
73 .65 .86 ok 19 LTh i .66 .55 .86
.39 .38 .73 -.03. .35 .75 .34 .49 .80
,52 .50 .17 .20 .11 .81 tLls 43,83
.86 .50 .53 94 .08 .10 | .89 .41 .36
.90 .69 .61 87 .34 .10 [.91 .61 k2
86 .61 .75 76 .12 L5 | .88 .51 .61
.80 .83  .81] 51 .5k b5 1.80 .82 .6l

Ry I x
1.00 0.83 0.8 “1.00 0.00 0.00] 1.00 0.68 0.58
0.83 1.00 0.86 0.00 1.0v 0.00 0.68 1.00 0.59
0.84 0.86 1,00 0.00 0.00 1.00 0.58 0.59 1.00_

lai A Contrived 10 Variable Example from Fruchter (1954,p.36)
R..- R..=B . R__

— ZH — e - - ZK —
(8 1 78] [Lo3 .81 .58 51 .91 .79
.48 .80 .89 02 .62 .78 | 51 .79 .91
.33 .3+ .88 |-.01 .03 .99 .36 .33 .89
91 .79 LL7 83 .56 -.01 .90 .79 .L6
.81 .90 .6 63 .77 -.02 ‘ B1 .91 L6
.36 .88 .31 .05 .99 -.03 - 1.36 .89 .33
.90 k6 .81 W79 -.02 L,61 l.90 .6 .79
79 b7 .92 ' .59 -.01 .81 81 k6 .91
87 .32 .36 .99 .os .01 .86 .33 .33
_;§6 .8k ‘%EE _;39 L8 49 | .97 .8 -8l |

B _ Bl
1.00 0.71 0.71 1.00 0.00 0.00
.71 1.00 0.69 0.00 1.00 0.00
7L -.69 1.00 0.00 0.00 1.00

1f: Ten Variables Related to Educational and Occupatiocnal
Aspirations of 17 Year-Old Boys from VandeGeer (1971, p.165) -

Ry . PRpg=B o o By —_
.10 k5 -.h7 [jlé .58 -.L6 .10 .58 -.11
46 .65 -.10 0 j.23 .61 -.08 "~ ].35 .TO -.10
k9 sk 22 .35 .43 .24 .35 .35 -.09
.58 k2 by .55 .19 .h7 .67 .26 .04
73 .50 -.15 T2 - 19 13 .75 .35 -.20
-3}4 -15 "-T? 7 QST 3163 -§76 2]— i13 !1-DD
.56 .80 .08 27 .76 .10 . b .78 -.08
.53 .82 o4 21 .81 . .06 .ho .80 -.07
W83 .56 -3 0 [.81 .22 =10 B .38 -.28)
81 ;56, -.061 . .18 .23 -,03] . - |.BL- 38; -.20°| -
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In addition, factor loadings which are small in matrix B, the rﬁtated

prineipal components structure, are often moderate to large in RZH and

. = .12 while r, = ,61l and r 51 in Table 1d). Thus,

RZ-K (é,g-; bgg ZQEE 2952 = .
the researcher who interprets and names components finds that his scores,
H or K, have a completely different meaning than he anticipates. Any'use
of these scores in further cnalysis will result in a serious distortion
of conclusions. Even in Table le, where the distortion was minimal, we
find rHlﬂé to be .78 and one factor lﬁ&éing_@f .23 résulting in o and

o of .56 and .38 respectively.

Coneclusions

The mathematics and illgstraticﬂsAlead us to the c@ﬁclgsian that factor
loadings, used directly or as the basis of binary ?élués are not appropriate
és weights to produce component scores from a rotated solution. But
intuitively they may still make sense. In an attempt to dispatch this idea,
let us draw an anology. Linear composites are also used as the basis be
prediction in multiple regression. However, no person at all familiar with 7
regression analysis would use predictor-criterion correlations as regression

weights., Why then should the use of correlations as weights be considered

[

intuitively appealing in component aralysis?
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