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(ABSTRACT)

UNEQUAL CELL FREQUENCIES iIN ANALYS IS OF VAR IANCE :
A REVIEW AND EXTENSION OF METHODOLOGY FOR MULTIPLE MISSING

OBSERVATIONS

Many rese;rchers assume that unequal cell frequencies in analysis
of variance (ANOVA) designs result from poor-planning. However, there are
several valid reasons why one might have to analyze an unequal-n data matrix.
The present study reviewed four categories of methods for treating unequal-n
matrices by ANOVA: (a) unaltered data ({east-quares solution and unweighted
means solution); (b) data substitution (grand mean method, cell mean method,
Winer method, Snedecor-~Cochran method); (c) data deletion, and (d) data
.clusfering.(unrepliéated.ce]l mean method, unreplicated random data cluster-
ing method, replicated random data clustering method). The methods were

compared empirically and theoretical problems with each were discussed.
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(COMPLETE TEXT)

UNEQUAL CELL FREQUENCIES IN
ANALYSIS OF VARIANCE: A
REVIEW AND EXTENSION OF METHODOLOGY

FOR MULTIPLE MISSING OBSERVATIONS!

Co e ® S trs e b et

The majority of experimental studies in educational reseérch that concern
the analysis of variance (ANOVA) contain equal cell fréquencies. Since most
of these invéstigations are completed in tightly contiolled university settings
. or laboratory situations, it is almost always possible to ensure that sufficient
Ss are available to produce an equal-n data matrix in a factorial ANOVA design, -
Thus, it is not surprising that most commonly used texts in educational sta-
tistics discuss only the equal-n, factorial ANOVA solution. Further, many ‘
applied statisticians take the attitude tha; a researcher has done poor pre-

experiment planning if he allows himself tc get into an unequal-n circumstance;

one is even made to feel guilty about it!
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Unfortunately, these equal-pn biases of the majgrjty of educational
statisticians do little for the researchers in large public school sit-
uations where unequal-n ANOVA problems are the.rule rather than the ex-
ception. Apart from possible lack of adequate planning for the experiment,
what are some common reaséns for unequal n's to arise in the factorial

design? One important reason -is inherent dearth of some types of Ss; this
consideration is especially prominent in the study of various handicapped
_populations. If one wants to include such types of Ss in his study, he
either must balance them Qith a like number (pitifully small) of other
aroups ‘for his sfudy,.or he mu;t settle for an unequal-n design._ A
second reason might be inadvertent experimental mortality (attrition)
over the course of the experiment, whern one would not for some reason
have enough supplementary §§ to substitute for the missing ones in the
data matrix. A third reason could be forced experimental mortality during
the study when the investigator learns that some of his Ss who had pre-
viously been identified as being appropriate to the study, really are not
suitable; thus, rather than discard the whole study, the experimenter an-
élyzes his remaiﬁing'unequal-g_matrix. However, whatever the reasons for
attempting to analyze an unequal-n data fAatrix, the range of methods for
treating such matrices are relétively unfamiliar to most researchers. The
purpose of this paper is to sgr@ey existing methods of both common and out-
of-the-way nature, as well as to introduce some previously unpublfshed
techniques.

PROCEDURE

Data:

To facilitate discussion of the methods described herein and to provide

B
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rgaders with a means of verifying the accuracy of their understanding of
the analytical techriques, an empirical compa-ison of all procedures was
undertaken by means of one master data matrix forza 3x3 degign( Winer
(1962) made an initial step in this direction when he used empirical com-
parisons between least-squares and unweighted—m;ans AN6VA; the present

study extends the empirical comparison notion by also including 7 other

unequal-n techniques, as well as the original equal-n solution. Table 1

shows an equal-n matrix where the hypothetical investigator intended 15

independeﬁt observations to be contained in each cell. The matrix reflects

a typicgl unequal-n situation often occurring in the reﬁediation of mentally
handicapped children where one applies treatments (Factor B). iIn particular,
the hypothetical example assumes that 3 perceptual-motor training programs

(the worst being A], Azaverage, and A3 best} were given to 3 levels of in-
telligence (the range of By being 91-105; B,, 76-90;‘83, 61-75). The cri=
terion is assumed to be the visual sequential memory subtest of the lllinois
Test of Psycholinguistic Abilities (ITPA), with a possible score range of

0 to 41. The 3s are assumed to be of chronological age 6 to 8 years. The

data generation for this empirical simulation was aimed at producing quite

_ strong main effects for factors A and B but quite negligible interaction
between the two. Further, to achieve the.gommon happening in which, regardless
of mean differences among factorial levels, score ranges across cell categories’
often overlap to a certain extent, the ITPA scores were allowed to telescope

’

as shown in Table 2. The degree of overlap is consistent across ievels within
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either factor. The individual scores in each cell of Table | were jenerated
by 9 independent randomizations based upon the range limits set in Table 2

(Rand Corporation, 1955 ). The corplete 10/cell-n matrixwas used only as a

TR

pivot’ for discussion in comparing the several unequal-n procedures. Each

' unequal-n analysis was.computed on the, data maérix that results from Table 1
when the italicized entries were deleted. For the unequal-n matrix derived
from.Table |, one sees ghat the cell frequencies range from 10 to 15, with ﬁo
proportionality among ‘rows or columns assumed; that is, the unequal-g.mat(ix
in this study is the 'worst' that could arise with respect to the orthogonality
issue.

Analyses: Since the majority of unequal-n techniques are not available
in programmed form, all computdtions were completed by electronic calculator,
with systematic checking to ensure accuracy. A total of 10 unequal-n proce-
dures were compared in this study. A procedure is described at length only
if it is not available elsewhere. The 10 methods can be grouped under four
ma jor headings.

(1) UNALTERED DATA: The two unequal-n techniques that fall under this

heading are also the most widely known, used, and programmed approaches out

of the 10 discussed in this paper. The two methods are known as least-

squares analysis and unweighted-means analysis. As pointed out by Winer (1962),
in cases where the levels of one factor are proportional to actual population
strata so that irregular cell frequencies result naturally, then least-

squares ANOVA is appropriate. However,'if unequal frequencies in the resultant

working sample are not related to the population in a natural proportionality

(that is, unequal cell frequencies might be the result of random attrition),

then unweighted-means ANOVA is better suited to unequal cell frequencies.

ERIC o -
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Perhaps the best account of least-squares ANOVA is given by Winer (1962,
PP- 224-227, 291-297). Other readable accounts can be found in Snedecor &
Cochran (1967, pp. 477~ 83, 488-493) and.in‘Fergusén (1966, pp. 319-323). For
those particularly interested in trend ANOVA, one should éonsdlt Gaito (1965),
Black & Davis (1966), and Ferguson (1966, pp. 343-346). -For further reading;
see Kempthorne (1952, pp.80-81), Rao (1952, pp. 96~98), Gourlay (1955),
Snedecor (1956), Kenney & Keeping (1954), Wilk & Kempthorne (1956), Brandt
(1932), Strand & Jessen (1943), Yates (1934), Stevens (1948), and Federer &
Zelen (1966).

whgn circumstances .behind an upequal-g_data matrix indicate t@at-un-
we ighted-means AN&VA is appropriate, one can refer to the. examples given in
Winer (1962, pp. 103-104, 222-22L, 241-24l, 374—37&) and Snede;or & Cochran
(1967, pp. 475-477); For fur£her reading, see Gowen (1952).

(2) DATA SUBSTITUTION: Four methods are worthy of consideration: (a)

substitution of the grand mean, (b) substitution of the cell mean, (c) substi-~
tution alh Winer, and {d) substitution al3 Snedecor & Cochran. All four pro-
cedures have in common the attempt to add bits ;%.data to the original un-
equal-n matrix until it becomes, literally, an equal-n paradigm amenable to
classical ANOVA. .The only modifications that must be made to the classical
statistical machinery is, logically enough, to adjus£ the degrees of freedoﬁ
for both within-cells variation and total variance.

For the grand mean method, the mean of the entire uﬁéqual~g_matrix is’
computed and substituted for each bit of missing data. For the cell mean

method, wherever a cell has one or more missing values, thé mean of that

cell is compited and substituted for each missing score within that cell.
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The substitution method of Winer (1962, p. 281) was designed for
situations in which an entire cell is missing! Hcwever, in most real-
life unequal-n matrices, one almost always has some data within every cell.
Thus, the logical éxtens{on of Winer's method in which one obtains row
(and column) means of the cell means within the row (aﬁd column) that con-
tains the missing cell, is to obtain comparable row (and column) means
"-using every individual child's score (inpluding the scores in the deficient
cell). |

Further.discussion;.of data substitution can be found in Cochran and
Cox (is57, pp. 80, 110, 125, 227, 302, L0O, 413, 450, 512), Healy and West-
.nacott_(1956), Lindquist (1953, p. 148), Afifi and Elashoff (1966), Lord
(1955), Federer (1955, pp. 124-127, lBé-lBh),and Bennett and Franklin (1954,
pp. 382-383). Snedecor and éochra; (1967, .pp. 320-321) and Li (1964, pp.
231-236-237) present a very interesting iterative procedure for supplying
two o more missing values in the data matrix. Basically, one chooses any
one of the two or more missing values, estimatgs a réasonable value, and makes
the substitution. The other missing vglue is estimated with a least-squares
formula as though thzre were only one value missing. Then one goes back and
estimates the first value on the basis of the second one and so on, back
and forth, until the values change only by very smail amounts. Degrees of
freedom are again adjusted for total sum of squares and error sum of squares
after stabilization has occurréd. For exact least-squares methods of data
substitution, see Li (1964, pp. 227-243). Winer (1962, pp. 281-283) also pro-
vides a method that minimizes the interaction effects. Another basic refer-

ence with examples is Snedecor and Cochran (1967, pp. 317-321). ‘Finally,
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Examples of data substitution can be readily found in special education

research (e.g., Bloom, 1967; Prehm, 1967; Halpern, Mathieu, & Butler, 1968).

(3) DATA DELETION: Another major attempt to form an equal-n matrix
from an originally unequal-n paradigm is to use random deletion of cell
entries. One looks at the n of the smallest cell andoabcordingly “prunes"’

all other cells down to that size. Independent runs through tables of

‘random numbers are used to accomplish an, unbiased deletion in the ‘'oversized"

cells.

Closely related to ;he topic of random deletion- of oéservations is the
systematic deletion of highly discrepant observations. Snedecor and Cochran
(1967, pp. 321-323) present a very enlightening discussion on the rejection
of extreme obseivations. Most rejection methods are based on tests of sig-
nificance of residuzls of obéérvations from expected values. Edwards (1960,
pp. 166-168) also describes a method for rejection of discrepant vbservations
on the basis of confidence intervals. Mainland (1968), on the other hand,
takes opposition to all methods of rejecting obgervakions; the reader is ad-
vised to examine Mainland's notes before employing test-of-significance
methods. For further-reading, see Anscombe (1960), Anscombe and Tudey (1963),
Li‘(196#, PP. 239-240), and Searls (1963). Some interesting examples of
data deletion in applied situations are Shubert, Jansen, & Fulton (1967) and

Dawson (1967).

(4) DATA CLUSTERING: In line with the philosophy of the attempts of

data deletion and data substitution to form equal-n matrices out of unequal-n

ones, the data clustering techniques coalesce several observations within a

cell into fewer observations but with no loss or gain in data. The data
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clustering techniques are without doubt the least known of u:..qual-n
methods; indeed, some of the procedures to be described here have never
been published before.

The only data clustering technique that has been discussed at ail is
ANOVA where cell means become the units of analysis. In data matrices
_where all cells have some entries, but cell discrepancies are such as to
.violate the approximately-equal frequency rule, the within-cells variation
is ignored. The highest-order interaction is used as the estimate of error;
however,, the.éssumption must be made that the interaction is negligible. In
effect, the ANOVA is carried out as though single replicatioﬁ were the case.
The tasic mathemétical.defense of £he metkod is given by Finney (1960, p. 48)
iﬁ‘terms of differential coefficients of regression functions. The use of
interactions as error terws s discussed by Edwards (1960, p. 211), Ferguson
(1966, pp. 310-311, 314-316), Lindquist (1555..p. 114), and Scheffe (1959, .
pp. 247-146). An example of using the highest-order interaction as error is
given by Ling (1968).

A new procedure of random data clustering was devised in late 1968 or
early 1969 by J. R. McGowan but never before published.h He suggested forming
random clusters of da;; within éach cell of the original unequal-n matrix.
The number of randomly formed clusters is the same as the number of original
entries in the smallest cell. In this sense, the nethod migiit be called
unreplicated random data clustering tecause some of the clu;ters will never
have more than 1 observation. For example, if the smallest cefl has two
entries, then in a céll with seven entries, four data wouid be randomly .
assigned to one cluster and_the remaining three data in that'ce}l would

become the second cluster of the cell. Clearly, the clusters in the smallest
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cell would always contain only one score each. In the example cited, each
cell would contain two clusters, each cluster in turn holding varying numbers
of data. After randomly assigning within a cell all original scores to their
new cluster "identifies“, the average of each within-cell cluster is computed.
The resultin§ matrix of equal-frequency, mean data is subjected to a regular
equal-frequency ANOVA with the new number of averages taken as the number of
data. As fa; as the authors know, McGowan was the first to put forth such a
method. The technique seems to hold inter;sting possibilities. It should be
noted that if ;he smallest cell has only one original observation, then the
Yrandom cluster" method .becomes mergly cell-means ANOVA (single replication),
mentioned just aLéve. In the preseét example, cell Ay By.is of.size 13, while
thensmallest size of any cell is 10. One wants 10 ?Iusters per cell. The
only combination of double clusters {those with 2 s;ores) and single clusters
(those with only | score) that yield a total>of 10 clusters and still use al{
13 individual scores, is 3 doubles and 7 singles. To determinie which obser-
vations within all Ay By go into which of the double and single clusters, the
c!ustcr numbers (labels) of 0 to 9 are assigned Erom a table of random numbers
to the observations in the order that the latter are listed within the unequal-n
data matrix. Once a digit occurs the second time, it cannot be used again.
Further, since one wants only 3 double clusters, only 3 «f the digits can be al-
lowed to occur the second time. The averages of all double clusters are com-
puted and, along with the single clusters of the original observations, are
entered into a new equal-n matrix upon which the classical ANOVA is finally

computed.

-The last method compared in this study is an extension of the preceding
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clustering technique and might be termed replic ted random data clustering;

that is, no cluster will ever have fewer than 2 observations. Iin the present
example whare the smallest cell size is 10, one wants to generate 5 clusters in

each cell so that at least 2 observations per cluster result.

RESULTS AND DISCUSSION

The summary ANOVA table for 9 unequal-n methods are presented in Table 3.

While it must be remembered that the results are only an empirical comparison

within a limited numerical éxample,.one can draw some conclusions. -First, one
needs some basis for comparison before he can suggest that a c;rtain unequal-n
method appears to be a rather poor or good approximation to what would have
been the results of the original equal-n experiment. Since the data in this
illustration were quite carefully selected to reflect pre-specified differences
and to avoid unwanted biases, the complete equal-n solution was available to
serve as the basic '‘control aAalysis. One can.see the strength of the two
main effects, the negligibility of the interaction, and the relatively small
within-cells variation. Because the equal-n solution would normally be un-
available, the exact least-squares ANQVA is perhaps the most appropriate

"control'! for all other unequal-n methods to be compared with. Even though

" the random attrition of the hypothetical example would dictate the unweighted-

means solution, least-squares ANOVA is a better approximation.
The most discrepant set of results occurs in cormection with data sub-

stitution by.fhe grand"hean. Where there should have been a quite negligible

interaction, a significant one emerged. On the other hand, substitution by
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cell means is a quite accurate approximatiqn of the equal-n results.

When one turns to theoretical considerations of the separate unequal-n
methods, a number of interesting insights are yielded. Fi;st, one retusns
to the notion.that dhequalﬁgidesigns can be avoided by sound pre-experiment
planning. When one considers an area such as handicapped children (special
education), most research does not yield equal cell frequencies. It is dif-
ficult enough to get equal nunbers of, say, educable mentélly retarded Ss

for various treatments to be compared on just the factor of treatments it-

_self, but even more difficult to get an equal distribution of sex within the

equi-sized EMR groups under each treatment to produce a factorial design.
Adding more'cont}ol variables usually leads to even greater fluctuations in
ce]i.frequencies. Thus special education researchefs seem more content to
measure differences only among-treatments in nonfactoria], one-way designs.
When an investigator uses one-way ANOVA, valuable information on interactions
with non-treatment varjables (such as sex, age-level, lével of previous func-
tioning, class of brain damage, etc.) is lost.

Nonetheless, proper pre-experiment planning ;hould not be dismissed
lightly with regard to avéiding unequal-n data matrices. Consider the case
of a three-way factorial ANOVA design in which the factors are treatments,
sex, and levels of"auditory impairment. A control variable such as auditory

impairment that lends itself to a numerical continuum often leads to unequal
cell frequéncies when the design paradigm is further subdivided by other
control variables, such as sex: In the present example, during the planning
stages of the experiment, auditory impairment of all potential candidates for

participation in the study is determined. A stratification problem, inherent

in control variables of continuous type, is then posed. The researcher rust
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decide whether he want to form control strata 6n the basis of realistic
special education criteria or on the basis of computational expediency.
On the latter case, equa{'cell frequencies can be established no matter
how artificial the cut-off points. Tco often both theoretical and aﬁplied.
statisticians get side-tracked in tryiné to establish Qerfect designs and
avoiding statistically difficult, but perhaps m&re.meaningful and genercl-
izable, situations. Of course, even if artificial stratification points
have been chosen on the control variable-distributions for achie&ing equal
cell frequencies, experimental attrition may occur during the experimental
period. For further reading, see Hess, Sethi, & Balakrishnan (1966).
However, even the best of experimental planners cannot avoid every
pot-hole %n the road of design. Conseguently, statistical methods for
handling unequal frequencies must be considered. 'With regard to the first
category of unequa‘-g_method; (those dealing with unaltered data), Winer
(1962) claims least-squares ANOVA provides more powerful tests of significance
than unweighted-means solutions. |t should be cautioned that one basic dif~
ference between least-squares ANOVA and unweiyhted means ANOVA is that the
variance relation among the total, betweea, and within components holds only
for the least-squares method. In other words, true -orthogonality of variance
components exists only for the least-squares ANOVA. The only apparent dif-
ference between least-squares ANOVA and unweighted means ANOVA is in obtain-
ing a best-fit regression model based on cell means and average frequencies
without response surface regression weighting. Basically, in a least-squares
two-way ANOVA, one solves a set of normal equations analogous éo that in

multiple regression. As in covariance analysis, one makes adjustments to the

raw sums of squares. He uses the exact cell, column and total frequencies
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along with cell totais. First, one computes unadjusted row, column, and

cell sums of squares. There are then two options: (a) Ssab(adj.) can be
computed directly from means of cell mean; or, (p) one can go.through the
unadjusted, exact frequency analysis, computing SSg (adj.)and'SSa (adj.) by
the abbreviated Doolittle Algorithm or, somewhat easier, by the Dwyer square-
root algorithm, and then ébtain Ssab(adj.) by subtraction. To use a

physical analogy, if one pictures different tltickness poker chips for‘dif~
ferent magnitude scores arranged vertically one on top of thé other in their
respective cells, the least-squares ANOVA drops a respénsé surface blanket
over the stacks of chips Aatura]ly, taking into account different frequencies
as Qel]’as‘different sizes of gcores. On the ;the} hand, unweighted-means
ANOVA does not throw the blanket down over what exisfg; rather, it statis-
“tically builds by leveling of{ the peaks and then fits a uniform unweighted
surface on the situation, takfng account only of differences in cell score
averages. ‘

In dealing with least-squares solutiong, an important and generally un-

appreciated issue is that of how far the observed frequencies can deviate from

the frequencies expected under proportionality. This question could be at-

tacked by an application of factorial Chi-square analysis. However, since Chi-

square is a test of poor power, its results cannot be relied upon too heavily.
The present authors contend that least-squares and unweighted-means ANdVA are
applied too often in situations where their mathematica] appropriateness can-
not be justified. This is especially unfortunate because the tests of ap-
propriateness are themselves rather weak and under-powered. - Under expected
equal frequencies, Snedecor and Cochran (1967) suggest that discrepancies

in cell frequencies should lie within a 2 to 1 ratio, SUt énly if the majority

of cell frequencies are in closer agreement. However, this rule is given
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without any mathematical evidence to support it. Ferguson (1966, pp.
319-323) provides a discussion of ANOVA from the standpoints of Tsao's
{1946) methods for equal and proportional expected frequencies. However,

the readcr must be aware of the possibility of bias, both positive and

negative, in F tests when deviations from the expected frequencies are

large. Unfortunately, oné has no completely satisfactory method of test-
ing such deviations. Similarly, turning from-least-squares solutions to
unweighted-means techniques, one worries about how much varigtion can be
allowed among the unequal-n's relative to the original exﬁected frequen-
cies. The situation is co%pounded by the fact that one uses the harmonic
meaﬁ of: 'the observed cell freqﬁencies in obtaiéing sums of squares, rather
than the original frequencies. .

The second major set of unequal-n methods deals with substitution of
data to obtain an equal-g_matfix. Beginning with the grand mean method,

one might suspect that it would sroduce a very poor approxi.iation to the

» original unequal-n matrix, or at worst, to the l=ast-squares unequal-n

solution. The fact that the grand mean probably is not really close to
any specific cell means distorts the original celi :ieans quite a bit, as
well as increasiné within-cells variation.

Moré positive things can be said about the second technique of data
substitution: insertion of cell means for a cell's missing observations.
First, substitution of cell means does not change the original cell mean.
Second, and perhaps most importantly, the method does not affect the within-
cells variation. Finally, the technique provides a very good appro;imation
to both the_leastjsquarqs and equal~g_sp]utions.

The data substitution method of Winer, as modified for purposes of

this paper, makes use of both main effect means and the grand mean. The

basic structure underlying Winer's technique is both logical and pleasing
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in its ease of application. However, the method suffers from some severe
limitations: (a) it assumes no interactions of any significance; (b)
generalized, 'halo" distortion occurs simply because of data from outside
the cell of interest entering into the estimation; and (c) severe distortion
occurs if the cell with missing data lies at either end of a score continu-
um. Winer suggests that a preferable alternative would be to use a multiple
regress.on equation in connection with the response surface of the experiment.

Both the original Winer. and Snedecor-Cochran substitution methods were
designed for cells that had no data at aii in them. while.Winer‘s:méthod
could be modified to allow any data that might be available with’q the cell
of inter;st to enter into the gubstituted data estimates, the method of

Snedecor and Cochran must remain in its original form and thus could not be

‘Gsed in thc empirical comparison of this study.

Some final comments on data substitution are in order. !n realistic
learning situations where it is likely that experimental mortality will oc-
cur in a one-day study, the investigator might consider running a separate

replication of the primary study so as to have data in reserve for substitu-

tion purposes. It seems statistically more pleasing to substitute real data

.than to make elaborate assumptions about the response surface. For example,

if the desired cell size is 5, and if one cell is missing 2 observations for
purposes unrelated to the experiment, then the corresponding data cell from
the reserve replication would be randomly.'robbed" of 2 entries. The
cautious researcher would then reduce the degrees of freedom for both the
error and total sums of squares by 2. Of course, in any method of data sub~

stitution, the degrees of freedom for the error sum of squares and the total

sum of squares have to be adjusted accordingly; clearly, the principle of

(S
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diminishing returns applies, since the error mean square becomes larger
in the process.

Both conceptually and practically, data deletion, the third major
category of methods for treating unequal-n data matrices, seems quite weak.
The technique is suitable only when the original cell size expectation is
large. This procedure can bé extremely wasteful if cell.fre4uencies are
highly discrepant. A workable compromise {s to find the optimum combin-
;tions of data substitution and data deletjon in order to achieve the
least amount of "synthetiq“ data in balance with the maximum degrees of.
freedom. Whether or not a sﬁbject is to be discarded from analysis'is
an issue which only the'investigator can decide. However, leaving all
original data prese;t'and unmodified seems to be the most defen§ible course.
Suppose, for example, that a normal pupil refused to cooperate on a test or
was obviously working far beloQ'his level. Many analysts would either
discard this data or at least regression-modify it. Clearly, these pro-
cedures violate reality. |f normal pupils occasionally behave erratically,
then the analysis should reflect this fact, not ignore it.

The last group of unequal-n data techniques concern déta clustering.
The use of original cell means as the unit of analysis is the only familiar
method of clustering; in other words, one has turned his unequal-n data
matrix into an equal-n, single replication design. There is very little in
the literature about single replication studies where all factors are fixed.
Ferguson (1966, p. 311) discusses this situation briefly; Perhaps one could
reason that, if the highest-order interaction of completely fixed factors
is to be the error term, or at least part of it, then (since this 'error' is

not operating in a random fashion) it would comprise a systematic overes-

timate. In this case, a randomly operating error term is treated as though

@ v e —eme - ————————— . — —
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normality be met in the case where cell means are used as the units of

“dividual scores cannct even be considered. Perhaps these thoughts, along

Snedecor and Cochran (1367, pp. 278, 324-325), Scheffe 51959, pp. 360-

Proger

it is the minimum error that could exist, and the more systematic the

error tesm, the greater the inflation. In other words, a non-negligible in-

teraction chosen as an error term can be considered an upper limit to the

error. At worst, one has conservative tests of his main effects and other

interactions.

To what extent must the assumptions of homogeneity of variance and

analysis? There is zero variability within each cell. Normality of in-

with the robustness of the F test, make this method of analysis one pf.
the so;ndest of all. .However, one should not assume thét ANOVA b9 cell
means s foolproof; Finney (1960, pp. 88-89) considers the procedure
appropos only when the design is "“saturated" with factors, say § cor mere.

For further discussicns about violation of basic ANOVA assumptions, see

364), Edwards (1960, pp. 125-,28, 132), Box (1953), .Box (1954), and
Lindquist (1953, pp. 72-90).S
The other two methods of data clustering (replicated and unreplicated ' |
random data clusteriné) appear pleasing at first glance because they re-
tain all original bits of the unequal-n data, do not substitute contrived
and di;torted data, and yield equal-n's for classical ANOVA to be applied.
Further, the replicated version seemed to offer somewhat greater reli-
ability of individual cluster means than the unreplicated technique. In
spite of these apparent advantages, the empirical comparison demonstrated
that both techniques were poor approximations to the equal-n-and unequal-n

control solutions.

. -
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SUMMARY

This paper has brought together within a single perspective several
distinct methods for handling complicated, unequal-n data matrices in
ANOVA. A discu;sion of cach technique's virtues and problemé was pre-
sented. Further, an empirical comparison withiq a tightly controlled
numerical example was undertaken among the methods. Substitution by
cell means appeared to give the most accurate approximation to the o?lginal
equai-n solution, as well as to the least-squares unequal-n results. Ho&-
ever, in the final analysis, only formal mathematical statistics can
gétablish_the superiority of one meti:od over the.other. It is hoped
this péper will give impetus to mathematical-résearch Igto the relative
theoretical properties of each technique.

The investigators wish to conclude the review by cautioning the
reader to be thoroughly familiar with the limitations placed upon each
method; none ;f the techniques presented are '"foolproof.!* No one method
suffices for every unequal-n problem the applied researcher meets from
day to day. Some procedures have more severe restrictions than others.
With some thought, the reader can devise completely new techniques, as
well as modifications of those presented in this paper. The field of '
unequal-n ANOVA methodology is far from being a ''dead' research topic in
applied statistics. It should be noted, however, that some statisticians
. would disapprove of several of the methods discussed here, if for no
other reasons on philosophical grounds.

In conclusion, it would be nice if the investigators could tell

the readers to use computer programs for all their unequal cell-frequency
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needs. This cannot be done. While several programs do exist, it must

again be emphasized that most are appropriate only for certain situations.
Many of the more refined programs are difficult to use, and several have

such poor documentation of computational procedure that the user does not

know which of the methods surveyed in this review he is. using.
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1The writing of this paper was jointly supported by Research and Information
Services for Education (RISE) under Title 11! of the Elementary énd Secondary
Education A~t of 1965 (0EG-1-67-3010-2696); by Pennsylvania Resaurces and |n-
formation Center for Special Education (PRiSE), also under Title 111 (R-22-H,

£8-70-0003-0) ; and by Montgomery County Intermediate Unit-No. 23. However, the

* opinions expressed herein are solely those of the investigators and do not neces-
)

sarily reflect the position or policy of the supporting agencies. BBP ig respon=
sible for the review of literature and for the conceptualization of the different
methods of treafing unequalﬁﬁ data matrices, JRMcM prov%ded the basic idea behind
the Qata-clustering techniques, as well as valuable criticism of the basic thinking
in this paper. RGT'and LM also aided in conceptual criticism, Finally, PAG and

LHC performed the empirical analyses for this study.

21he investigators welcome correspondence relating to this article. Address
all comments to Dr, Barton B, Proger, Director of &valuation and Dissemination,
Pennsylvania Resources and Information Center for Special Education, L43 south

Gulph Road, King of Prussia, Pennsyivania 19406, .

3Some of the mathematical premises behind estimation of missing values by
minimization of residual sum of squares have been discussed by Jaech (1966) and
by Sclove (1972) and have subsequently been commented upon in miscellaneous

"letters to the editor' on pp. 57-58 in The American Statistician for October, 1972.

LY

L . . .
Alass, Peckham, and Sanders (1972) studied violation of basic ANOVA assumptions
(non-independence of errors, non-normality, and heterogeneous variances) for both

equal-n matrices and unequal-n matrices. However, the investigators in that study

were not interested per se in different methods of treating unequal-n data matrices.
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TABLE

Ay A, Aq

19 22 21 23 22 19 28 25 27
S22 20 22 27 26 2l 30 28 31
14 2] 5 24 23 20 32 28 28
18 19 16 22 25 27 32 30 28
22 16 18 19 26 19 25 30 28
14 9 13 21 17 21 22 23 25
12 10 15 1 16 Ay 23 25 2l
10 17 17 14 17 20 27 21 26
16 15 12 22 16 16 25 23 21
I 15 16 15 22 20 27 23 23
9 8 6 16 13 14 15 22 15
1 6 9 1 17 17 16 19 1
10 10 6 15 n 9 15 19 20
6 7 8 10 17 El 14 21 2]
5 S b 17 12 14 18 21




Ranges of Test Scores in Hypothetical .

TABLE 2

Example

Levels of Factor A

Levels of
Factor B .
A Ay A3
B 14-22 "19-27 24-32 -
B, 9-17 14-22 19-27
B 4-12 9-17 14-22
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