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Adaptive Instructional Medel for Concept Acquisttion

Robert D. Tennyson
Florida State University

ABSTRACT

An adaptive instructional strategy for individualized concept
teaching is represented by paradigms designed according to decision
processes that adjust 1nstructional variables to individual differences
and d1f%erent1ai learning performance. The basic variations c¢v the
strategy are of two functional classes: pretask and within-task
variables. Fretask variables include 1ndiviaual trait difference
and treatment variables; within task-variables provide for manipulation
of such things as the number ot exampies. the degree of prompting and
difficulty, and the type D% feedback/cor-ectional process based on
individvual state criteria. The pretask procedure adapts the presenta-
tion to the learner's entering trait capabilities, while the within-task
pfesentatian is self-modifying because adaption is to the learner's
current response pattern and state levels.

Presented is an adaptive ins;ructianai strategy for teaching
concepts according to a learner's error response pattern after an i~ liv-
mediate evaluation within the instructional sequence: a General Adapti.-
Model and a Specific Adaptive Mode!. The General Model would reduce
learner concept errors by using a predetermined program based upon type

of error committed. The Specific Model would further reduce concept



errcrs by using an individualized strategy bascd on type and degree of
errors. The Snecific Adaptive strategy 3hau1a have direct application
for many of the ccmputEf—pased instructional programs currently being
developed in educational and training instititions. The General
Adaptive strategy could be applied 1n branching programed texts, and

by an instructional manager in an individualized instructional program.
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Adaptive Instructional Model for Concept Acquisitianl

Robert D. Tennyson
Florida State University

The individualization of the learning process represents a
chalienge to the instructional designer and researcher. An instructional
system is needed that is designed for mass usage, but which allows for
unique environments for the many learner characteristics. Instructional
science implies designing the environment to account for individual
characteristics based on a system that adapts to those differences. Thi:
paper presents an adaptive instructional model for concept teaching
which incorporates the humanistic ideal of self-learning.

Adaptive concept acquisition (ACA) models are represented by inst-uc-
tional paradigms designed according to decision processes that adjust
instructional variables to individual differences and differential
learning performance. For the purpose of the adaptive concept acquisition
models, the basic variations proposed are of two functional classes:
pretask and within-task variables. Pretask variables are composed of
individual difference and treatment variables, such as ability and problem
difficulty. These variables serve to set Timits on tﬁe instructicnal
alternatives available, and the media to be used for instruction. 1In
the second class, witii--task variables provide for the manipulating

the number of examples, the degree of prompting, and the nature of

1The instructional model discussed in this paper was designed under U.S.
Air Force contract No. F33615-71-C-1277, "The Analysis and Development of
an Adaptive Instructional Model(s) for Individualized Technical Training."
A computer simulated program of the model was developed to determine 1ts
feasibility for use in the Air Force's Advanced Instructional System.

1
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the feedback/corvectional process based on ndividusl state criteria.
Thus, the flexibrlity of the ACA wiedels are distina 1shed by the varyd -
levels of adaptability. In an educational context, this means that
the model can be modified to reflect the difg;éify of concepts being

taught. The complexities of the targeted concepts should determine

the degree of adaptability to individual differences.

Literature Review

Instruction is a process of maniputating.the environment to
produce a desired change in a learner's behavior. An early attenmpi
to solve the problem of individual differences was grouping or tracking
of students by grades or by scores trom ability tests. This homogeneous
grouping had little effect because the groups seldom received different
kinds of instruction. Different areas of education incorporated Skinner's
(1954) linear programmed instruction which atlowed students to progress
at their own rates. This prccedure emphasized that individuals do
function at different learning rates. However, the material itself
was not individualized since all students received the same instructional
sequence. The influx of téEhﬂD1DQy 1influenced Crowder's (1959) procedures
of intrinsic programming with provisions for branching able students
through the same material more rapidly than slower étudents who
received remedial frames whenever a question was missed. This type e
programmed instruction was not widely used in education's instructicnal
situations because of the difficult developmental task which required

review sections for each alternative answer (M. D. Merrill, 1971).
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There are two basic proceduses for designing concept acquisition
instruction which would have adaptive capabilities extending from ths
above assumptions. The first involves the use of premeasure(s) (such
multiple variables as aptitudes, personality variables, anxieties, etc.)
for diagnosing the Tearner's behavior and, then, prescribes a specific
learning task designed to adapt to these individual differences. Ths
second requires intermediate evaluations of the learner's progress
and assigns adaptive segments to corrvect evrors in acquisition.

Pretask adaptation. Cronbach (1967) suggests that if

development in a wide range of persons is to be facilitated, a wiue

range of environments suited to the optimal development of each individual
nust be offered. Instructional units covering available content in
different formats or sequences would be adapted to differences among
learners. Cronbach's model migﬁt prescribe one type of sequence and
media for a learner of certain characteristics, while another learner of
differing characteristics would receive an entirely different mode of
instruction. The adﬁantage of the ACA model over other systéms is

the F]exibi1ityrof selecting conditions which would change according

to concept content. In order tnridentify methods of prescribing optimal
instriuctional strategies, Cronbach (1967) advocates that an exten-

sive research program be conducted to identify those aptitudes which
interact maximally with instructicnal treatments; this body of resear:z™
has become known as aptitude tféatmén%vintE?actians; and hac been abbreviztad
as ATI. Implicit in Cronbach's model is the assumption that specifie
instructional treatment assignments can be made from empirically deter-

mined measures existing prior to the onset of instruction. A further




4

assumption is that a regression model can be developed for the assign-
ment of individuals to different 1nstructicnal strategies.

Research studies (Tallmadge, Schearer, and Greenberg, 1968;
Cronbach and Snow's review, 1969; Dunham and Bunderson, 1969; P. F. Merrill,
1970; Tennyson and Wolley, 1971) have investigated this assumption to
determine if premeasured individual aptitudes interact with instructfanai
treatment. These stud{es indicate that disordinal interactions (ATtléé
have an elusive nature. Bunderson and Dunham (1970), in the final

report of a three year research project on cognitive abjlities and

¢l

learning, challenged the ATI concent 25 a viable pred ."’ra rrr ady

in "real world" instructional contexts, The reasons for their skepticism
can be summarized as: (a) useful disa;dinai interactions are rare;

(b) disordinal interactions are not sutficiently robust after minor changes
in the task or population; {(c) the benefit from disordinal interactions
may be less than that attainable thrcugh revision of a single optimal
treatment. They suggest that instead of seeking disordinal interactions
in order to assign individuals to aifferent macro=treatments, ATI's

be used to revise the optimal treatment to reduce thé learning burden

of slow aptitude individuals. After the effectiveness of the single

best treatment has been maximized using a systematic apuroach to
instructional design (Bunderson, 1970; Briggs, 1970; Tennyson and
Boutwell, 1971), micru-treatment variables can be applied adaptively

in the instructional program rather than produce entirely different
alternative treatments. This would use the most efficient sequence,

the most appropriate media for display, and the most effective examples.
Adaption within the program would then occur when learners deviated

from the optimai program.
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Within-task adaptation. The second procedure proposes adapting

instructional strategy according to learner's response behavior in the
learning program and to other current state characteristics. The within-
task adaptation procedure is unlike Cronbach's approach because
individuals are ng;assigned to different ma:rﬂatreafments, nor

are measures obtained prior to the entry of the individual into the
instructional task employed. On the other hand, the within-task pro-
cedure differs from Crowder's approach in that Crowder utilizes only
“the last response made by the student in reaching an instructional
decision, The within-task adaptive strategy would make w.siruc. G-,
decisions from an updated history of the student's behavior during

a segment of the concept learning tasks. Furthermore, the reliability
of a pattern of responses compared to a single response should increase
the validity of such adaptive decisions., In educational decisions on
media and mode of instruction for particular units would depend on

what is the most appropriate method of presentation. When Tearners
deviate from the optimal seguence, they can be assigned corrective
instruction. The within-task method of adaptation is such that
remedial "hole patching" (Cronbach, 1967) is avoided gﬁithe basis of

empirically validated instructional theory.

trait or state variables. Trait variables may be characterized as
states, long term indices which are descriptive of a learner's expected
general behavior. State variables, in contrast, may be characterized
as dynamic, short-term indices which are descriptive of a learner's

behavioral response within a given specific situation. There is research
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2vidence (0'Neil, Hansen, and Spielberger, 1969; Leherissey, 0'Neil,
and Hansen, 1970 P. F. Merrill and Towle, 1971; Tennyson and Boutwell.

1972) that trait or state variables measured prior to a learning task
measured during the actual learning of the task  These findings suggest
that it would be possible to include state measures during the task
to adapt instructional sequencing.

The within-task adaptation model is based on three assumptions:
(1) there are a Tlimited number of different kinds of behavior or type:
of 1earning~(Gagn§, 1970 M, D. Meryi1l, 1971} (2) thore §= arn ap o7
group instructional strategy or paradigm based on the conditions of
learning for each behavior level; and (3) individual performance can
be Dpfimized by making adaptations to the group instruciional paradigm
according to individual state response patterns.

Concept Acquisition. Mechner (1965) defined concept acquisition

as the process of generalizing within a class and discriminating between
i classes. “For example, in an electronics course students would have to
identify certain types of wive schemes as being;vériaticns within a given
wiring system, and at the same time discriminate between the systems.; To
teach this skill, Markie and Tiemann (1969) and M. D. Marrill {1971)
postulated that concept acquisitions would result 1f examples used during
instruction differed in the irrelevant attributes associated with ..,
that i;, each kind of wiring system should be presented in many

diffefént colors, thicknesses, structures, etc. Such presentation
promotes generalization within the class. Discrimination between classes

is facilitated by presenting nonexamples which have irrelevant attributes
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resembling those of the given examples; the various wiring systems would
be nonexamples for the one system under instructionr.
In testing for concept acquisition, it is vital (Mechner, 196%;
Markle and Tiemann, 1969; Tennyson, 1972a) that the items on the test

are previously unencountered, in other words, not used in instruction.

A good set of items must have a number of other characteristics. In

order te test for generalization across the total range of examples
included in the concept, test items must cover the. range specified
by a thorough analysis of the concept. The number of examples the
student can correctly classify is less important than the range or
examples to which he can generalize. Discrimination of nonexamples can

key relevant attributes.

Tennyson, Woolley, and M, D. Merrill in a research investi-
gation (1972) designed an optimal group instructional strategy for
teaching concepts based on the theoretical work of Markle and Tiemann
(1969, 1970), M. D. Merrill (1971), and Woolley and Tennyson (1972).
The concept Tennyson et al. (1972) chose to teach was the metrical
concept, "trochaic meter," as exemplified in poetry selections. As a
preliminary estiwnate of range, they asked naive subjects to classify a
Targe number of examples and nonexamples of the concept on the basic ~f
a given definition. Some obvious examples were recognized by almost
all subjects aﬁd were termed high-probability examples. Some nonexamples
were equally obvious and were termed high-probability nonexamples.
Examples which were difficult to recognize were termed low-probability

examples; subtle discriminations, which could not easily be made on
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the basis of the definition, produced low-probability nonexamples. They
hypothesized that different combinations of these high- and low-probal
éxampTes and nonexamples would produce predictable errors in concept
acquisition. Markle and Tiemann (1970) had proposed that restricting
the range of examples would cause a student to undergeneralize, that

is, to accept on a test only the same limited range provided in instruction.

Tennyson et al. produced precisely this effect by giving subjects inctruc~
tion which included the definition, only h%ghﬁprgbabi1ity examples,

and high-probability nonexamples. Markle and Tiemann also proposed

that poor selection of nonexamples, 1in canjunctSDn Wit & LYeil e,

of examples, would cause students to overgeneralize: to accept nonexampies
as members of the class. This effect was produced by providing instruction
including the definition and full range of high- and low-probability
éxampiés; and subtle discriminations taught by the low-probability non-
examples. The effect of a particular limitation on the range of examples,
in which one salient but irvelevant attribute is always present, was also
investigated. The attribute used was the Victorian origin of the
selections. A1l examples of trochaic meter in this treatment were

dated in the Victorian period, while nonexamples were selected from
earlier or later periods. Despite tha definition directing attention

to the meter of the examples as the critical attribute, students sarunAd

a misconception on the test: they generalized correctly only to examp'~-
of trochaic meter written in the Victorian period. They rejected
nonexamples. Tennyson, Woolley, ~and M. D. Merrill's (1972) data

support the position that the selection of both examples and nonexamples
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is an important item in effective concept teaching. A wide range

~of examples prevents undergeneralization, while a good selection of

nonexamples prevents overgeneralization. In instructional development
projects the Tennyson et al. model has application to the design

of ACA instFuctfana] materials. The system provides a method for
éeiecting instances and sequencing them to an optimal task. The component
vaviabTeé are uniquely acaptable to individual characteristics. Thus,
they have the capabilities for within-task adaptation. For example, if
a learner commits a classification error on an intermediate evaluation,
the type and degree of examples and nonexamples can be adjggt5§ te
correct the error. The model also allows for designing a multiple entry
program based on pretésk'measuresg Learners with poor reading ability,
for example, would enter the task with easier high-probability instances
than someone with good reading ability. |

Model Structure

The ACA instructional system incorporates standard individuali-
zation components of learning rate, self-pacing, providing on-line and
off-1ine assistance, flexible utilization by the learner, remedial capa-
bilities, review frames, enrichment material, and behavioral modification
variables, such as, incentives, praise, and motivation. The .two basic
functional classes of the ACA models, pretask variables (set limits on
the instructional alternatives) and within-task variables (modifiable

sequences: a general adaptive model and a specific adaptive model.

Concept adaptive sequences. Upon completion of the initial

segment, the student is tested, then presented an optimal instructional task.
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The test performance is evaluated in relation to the three types of classifi-
cation error (overgeneralization, undergeneralization, and misconcepti:» !
If he reaches criterion, then he continues the unit's instructional
sequence. If he does not reach criterion, his responses, are analyzed
to determine the type(s) of error.

General adaptive model. The first adaptive concept sequence, termed

general adaptive, prescribes a predesigned instructional program which
follows the results of the initia! test to determine if the learner is
committing a classification errcr. This mode! regulates the learner's
instructional sequence as he progresses toward the termiﬁaf ébj;;t;;_

of a given uﬁit of instruction. After the initial evaluation, each
learner's sequence of instruction 1s modified according to the individua?
response patterns. For example, 'earners who overgeneralize on the
beginniﬁg segment of the task would be presented higher probability
instances with increased prompting. The number of intermediate
evaluations is detérminéq by the concept difficulty. Some concepts may
use only one sequence of examples followed by an exam, which would
provide remedial help for those with errors. Another unit might involve
teaching severai compiex concepts, requiring several intermediate tests

and corrective Trames.’

Specific _adaptive model. The second functional class of the
ACA models (within-task variables) 1s utilized in thE'épeciFic adaptiva
model. The learner would receive at the beginning of the instructional
unit a presentation presumed to be optional followed by an intermediate
evaluation. The within=task variables would be adjusted according to

degree and type of error the learner is making at that point. Degree
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vrefers to the measured severity of the errcr, that is, learners

differ in the magnitude of incor-ect responses. Whareas, 1n the gener¢:
model the learner would be given a predesigned task to correct the error,
the specific mode) viould select a unique series of examples, in terms of
difficulty and number of examptes, 10 correct the deg-ee (magnitude) of the
error. Thus, if a learner was only mak{ng a slight overgeneralizaticn,

his corrective 1nstruction would use just a few examples, while a learner
making a gross overgeneralizaticn wciid fecégve a large number of

examples. In each case, the decisicn parameters weuld adjust to the

type and degree of error.

Program sequence se'ection. In the various courses taught in

schools, concepts vary -in terms of complexity. In cases where concepts

are difficult, it 1s desivable to design units with multiple entry points.
In éuch situations pretask measures ccu'd be used to start tﬁe instruc-
tional presentation &t a .eve: of difficuity which is appropriate to an
individual student. For comp’ex ccncepts omitting a pretask measure

to flag appropriate entry points into the program, optimization would

be 1imited to the use of corrective frames to correct errors. The pre-
task measure, for example, allows low aptitude or highly anxious learners
to enter a given program at a point which provides more instructional
examples than a high aptitude learner. Both pre- and within-tasks adantatinng
are, thus, necessary in complex concepts. The use solely of the pretazl
measure, on the other hand, would offer a gross adaptation to the learner's
characteristics., While the pretask procedure adapts the presentation to
the learner's entering trait capabiiities, the within-task makes the

presentation self-modifying since it 1s continuously being adapted to the

learner's current recponse pattern and state levels.
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Interaction of task and learner characteristics. The pretask

adaptive decision process which operates to enter a learner into the u---
is based on an accurate evaltuation of his feaerﬁgirg of prerequisites

to the unit. Preskill evaluation remains the most important component
of the decision process. Other var:abtes play a part in optimizing
entry to the unit: aptitude indices, personoiogical characteristics
(e.g., anxiety, curiosity, etc.)., and cognitive styles.

Once the learner has enteved the unit at his optimal level, these
characteristics will. interact cn & frame-by-frame level with task
variables to produce a given net amount of learning; or, at intemic.« .=
levels, to produce a set state of progress. In order to optimize this
progress, the instruction must adapt to this interaction between task ard
learner characteristics. This interaction can be continuously monitored
by. the computer through an appropriate analysis of the learner cumulative
response record. The basis then tov the specific adaptive decision
process Tfes in a correct classification of the learner's successes and
difficulties as they arve evidenced over time within the unit. Only if
the decision rules effectively deal with this aspect of the process will
prescriptive measures (including both corrective and enrichment) be
appropriate to an optimal progression through the unit. These decision

rules may involve multiple factors, such as degree of correctness nf tha

possible factors. The appropriate mix of factors which enter the decisicﬁ

rules will be heavily task-bound. The optimal combinations will be

. different from task to task and will depend directly on the given

task's specific characteristics. This optimization, of course, wiil
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evolve only through sustained formative evaluation of the decisional
rules included in the model. In the meantime, a less effective approach

can be taken. Broad decisonal parameters can be established on the

basis of the 1imited research evidence in instruction and theory.

Instructional Model

This paper does not present the mgthgdaTagy for the decision/
selection stages in designing the actual instruction task; other sources
give in-depth descriptions of those procedures (Tennyson, 1972a; 1972b).
The instructional model (Figure 1) is designed in accord with conclusiers
from research studieé investigating those variables hypothesizeu to
have a direct application to concept teaching.

1. Pretest. The first component of the instructional model is a
oretest on the concept class to be taught which assesses the learner's
entering behavior. The criterion-referenced testing evaluates minimum
capabilities, If the learner meets criterion, he advances to step five,
classification test; if not, he proceeds with step two.

2. Definition. In the study by Merrill and Tennyson (ié?E) on
prcmptiﬁg effects, it was faﬁnd that subjects performed éignificant1y
better on the learning task when given the definition which identified
the relevant attributes of the concept class. The subjects became confused

without the definition. The definition is a statement identifying thc

to be known by the student. Writing the definition requires a thorough
analysis of the concept, usually resulting in simplication and recon-

Q ceptualization of the class.
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3. Review. Merrill and Tennyson {1972) included a treatment
condition which presented the prerequisite subskills of the concept
being taught. The results did not indicate that this variable was a
significant factor in task performance (efﬁ Merrill, 1965). However,
certain blocking schemes of the data showed that subjects with low
pretest scores who veceived a review did better on the posttest than
similar subjects who did not receive the review. The review com-
ponent is, therefore, included as an option,

4, Instructional task. Tennyson, Woolley, and Merrill (1972)

developed an optimal group instructional strategy for teaﬁﬁing coneante
An optimal strategy consists of presenting examples and nonexamples to
the student in such a way that the relevant attributes are clearly con-
trasted with irrelevant attributes. Task variables affecting learner
processing of this information can be determined by four categories of
procedures which are identified as stimulus simiTaéity variabies,
ﬁ?émpting/feedback variables, sequence variables, and probability range.
A. -Stimulus similarity variabies include the following:
g of examples with nonexamples. An example is

1. Matchin

matched to a nonexample when both share identical or
very similar irrelevant attributes.

2. Divergent examples. Aa example is divergent from

another example when the corresponding irrelevant
attributes are different. Examples which share the

same irrelevant attributes are said to be convergent.
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B, Prompting va-iables inciiude the following:
1. Presenting a definiticn which identifies the relevant
attributes (step 2 of the model).
2., Using various devices 1o identify the relevant
attributég embeddea in examples presented in the task.
3. Explaining why én example is an example or a nonexample
is not an exampie.
C. Sequence vari:bies inciude the 7ollowing:

1).

LA

1. .Sim&?taﬁecus heztentation of examples and nonexamples (7=
2. Optimally organized sequence.
D. Probability range inciudes the following:
1. High probab:lity - those éxampies and nonexamples correctly
‘classified by cne-haii ¢¥ the subjects.
2. Low probability - thcse examples and nonexamples not
correctly ciassified by cne-haif of the subjects.
These four task variables ave manipulated 1ntc an example set (Figure 2).
According to the concept paradigm, two examples should be paired (diver-
gent) so that they differ as much as possible in their frrelevant attri -
butes. Within the same simultaneous presentation, two nonexamples are
presented which are matched to their respective examples by having
irrelevant attributes as similar as possible. This relationship of
“exampies and nonexamples is designed to focus the'1earner's attention
on the relevant attributes. In the investigation by Tennyson (1972b)
on the effect éf nonexamples 1n acquistion, it was shown that subjects
not receiving nonexamples” responded randomly on the posttest, while

‘subjects receiving nonexamples responded as hypothesized.
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Prgﬁpting is used in the example sets to explain why an instance
is an example or why it is not an example. The subject matter determinas
the type and amount of prompting necessary. Example setslraﬂgé in
difficulty from easy to hard (Tennyson & Boutwell, 1972). Depending
on the adaptability of the program and the hardware, the instructional
sequence could have multiple entry points and student control over
exit., Entry in the instructional unit could be determined by student
profile data to individualize on trait and state variables.

5. Classification test.  Tennyson, Woolley, and M. D. Merrill (1972)

designed a posttest which was capable of determining the degree and

type of classification error the subject was making at the conclusion

of the instructional task. The test examined the subject's scoring
patterns four different ways to see if he had an overgeneralization,

an undergeneralization, or a misconception of the concept class (cf.

Markle and Tiemann, 1970). Construction of the classification test follows
the same procedures as outlined for the instructional task, except that

the instances are randomized. The task presentation is expository, that
is, the student is told whether an instance is positive or negative;

while the classification test is inquisitive, that is, the student is not
told the nature of the instances. Students meeting criterion on this

tesf are finished with the lesson. ‘Stuéents not passing the classification
test proceed to the next step where they receive remedial instructien

based upon the type of QTassifﬁ:atian error they made on the test.

6. Adaptive sequence. Concepts whfch are simple would require only

specific review if a student fails the classification test. For concepts

that are complex it is possible to identify the type of student error if
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criterion is not met (Tennyson, et al., 1972; Tennyson, 1972b). Two basic
levels of adaptation are posiibie, géﬁifa]‘aﬂd specific. In the gene. -
.adaptive sequence learners wouid be classified into one of the three errcr
categories. For each catego#y an sptimal group instructional task is
given to correct the error. Fos examp'e, 1t a learner overgeneralizes,
a specific program designed {0 corvect that classification error would be
given. The corrective programs would be:

A. Overgenerairzatvon. Ffev lea-ners who overgeneralize, the

general adaptive p-oeedure wouid be to select instances
of easie~ difticu'ty than normatly would be used in 4
standard example set sequence Also, an increased level
of prompting s y*ven *cr each instance.

B. Undergeneralization. This erros 1ndicates that the student

failed to rdentify difricult examples. To correct thiss-
the exampie sets wouia begin with harder instances than
vsed in thE'ZHStruéffcﬁai task. The SquEﬁée would
basically concentrate on divficult example sets.

C. Misconception. Since the subject seems to be focusing

on some irrelevant attribute, the divergency.cf the
examples would be expanded so that common irrelevant
attributes are practica'ly eliminated.
In all three corrective programs the students in each error category
would receive the same modified sequence,
Specific adaptation 1is ;imiiaf to the general adaptive condition

in that adaptation is made according to.type of error, but the corrective
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procedures also are individuaiized according to the degree of error.
The degree of error is determined by the number of errors of a given
type. A learner who makes many overgeneralization errors would be
given easier instances than a learner who makes few overgeneralization
errors. The specific adaptivg sequence also would increase prompting
in a controlled situation so that no learner is either overloaded or
insufficiently instructed.

7. Adaptive test. This test is designed to evaluate the effect of

the corrective sequence. Test items would reflect the type of error to
be corrected. It would not be a comprehensive test unless that degree
of error was committed. Passing this test would exit the learner from
the prégram. Failing again, the learner would receive one further level
of remedial instruction,

8. Specific review This form of correction has a long history in

the field of programed instruction. Remediation is specific to the

item missed. Again the problem's degree of difficulty determines amount
of corrective review. After this component of instruction a final test
is given,

9. Review test. A standardized test similar to the classification

test is administered. A learner failing to this point indicates that he
learned almost nothing from the instructional task. In such a case this
review test again assesses his ability to perform at criterion. If the
learner meets criterion, he exits; if not, a continuation in the course
is decided.

10. Advisement. In complex courses it is possible that some stucents

will have difficulty with certain concept lessons. In such situations,



2]
a dectsion cen he made: drop the course ¢r continue with another lessan
and reschedule this rezson ‘o7 a ‘ate- date  The learner's individual
CuMuiatsve profile 15 a maier tacter n the decrsien process (Bunderson.

197.).

As proposed, the ACA modeis may become an ‘ntegral part of
Sompute: ~basen and wan enticra: medie app-iaches to concept presentation
and review. Giyen this hrgh=trequency cf Ltiirzetion, the models should

provide for a signit cant ¢a.ings 'n net/uctional time and improved

L

concept retention  As ope-aticna’ teatyres, the tol'owing benefits of

the apprication ot the ACA mode's are proposed: (i) The pfétask variables

of the ACA models &-e adapteb'e to ing:v'dea’ learner trait characteristirs

e

wCculc ass st iIn the assignment ¢f learners to

g

Premeasured .ond tion
app-OL<'ate ent:y po'nts within the -rstsuiticna’ tasks. Such decrsions

! sevings 'n psteucttong! costs by atlowing high

[

E‘j!;

[T

would prsvide ¢/ e
aptitude led:rness 10 1°nish cou'ses ec «er or 16 ‘eLelve enrichment training.
Individoal®zed asstgnment of 'Ow &ptitude persons to appropriate instruction

has shown in research resuits to increase efticiency. . (2) The within-task

state characteristics. Ln a concentrated learning environment individual
per*afmaﬁses‘Fluctuate 50 that premeasvres do not always indicate arcurnta
aé%essmants ot current capabiiitéezy‘ These within-task variables maks *--
presentation self-modifying 1n that 1T 1$ continuousiy being adapted to

the learne-'s curvent response pattern and state levels. (3) Three additional
payoffs are: (a) 1f the ACA mode’s are computer based, each learner would

have immediate access to adaptive instructional materials; (b) instructiohal
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theory concerning media, feedback, knowledge of results, sequencing, role
of examples, type of display, etc. can be designed into the adaptive
individualized packages; and (c) a more precise prediction of the necc.

media and materials should improve the cost effectiveness.
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