
ED 073 164

AUTHOR
TITLE

DOCUMENT RESUME

TM 002 413

Beaton, Albert E.; And Others
The Acceptability of Regression Solutions: Another
Look at Computational Accuracy.

INSTITUTION Educational Testing Service,*Princeton, N.J.
REPORT NO ETS-RE-72-44
PUB DATE Sep 72
NOTE 43p.

EDRS PRICE MF-$0.65 HC-$3.29
DESCRIPTORS *Computer Programs; *Data Analysis; *Mathematical

Models; *Measurement Techniques; *Multiple Regression
Analysis; Technical Reports

IDENTIFIERS *Longley (J W)

ABSTRACT

Longley proposed a set of data for use in testing
regression programs. This paper shows that the numerically accurate
solution is likely to be an unreasonable estimate of the regression
coefficients for this problem. This is true because the accuracy ofthe data and appropriateness of the model may affect the solution
more than the computational method An easily computed index is
derived that can be used to indic to such computational instability.
The basic conclusion is that a co cern about highly accurate
computational methods must be tempere with a concern for whether the
data are accurate enough to make the results of such computation
meaningful. (Author)



RH-72-44
U S DEPARTMENT OF HEALTH.

EDUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRO
DUCED EXACT: Y AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIG
MATING IT POINTS OF VIEW OR OPIN-
IONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY

THE ACCEPTABILITY OF REGRESSION SOLUTIONS:

ANOTHER LOOK AT COMPUTATIONAL ACCURACY

Albert E. Beaton

Donald B.-Rubin

and

John L. Barone

This Bulletin is a draft fcr interoffice circulation.

Corrections and suggestions for revision are solicited.

The Bulletin should not be cited as a reference without

the specific permission of the authors. It is automati

cally superseded upon formal publication of the material.

Educational Testing Service

Princeton, New Jersey

September 1972



THE ACCEPTABILITY OF REGRESSION SOLUTIONS:

ANOTHER LOOK AT COMPUTATIONAL ACCURACY

Abstract

Longley proposed a set of data for use in testing regression pro-

grams. This paper shows that the numerically accurate solution is likely

to be an unreasonable estimate of the regression coefficients for this

problem. This is true because the accuracy Gf the data and appropriate-

ness of the model may affect the solution more than the computational

method. An easily computed index is derived that can be used to indi-

cate such computational instability. The basic conclusion is that a

concern about highly accurate computational methods must be tempered

with a concern for whetherthe data are accurate enough to make the

results of such computation meaningful.



THE ACCEPTABILITY OF REGRESSION SOLUTIONS:

ANOTHER LOOK AT COMPUTATIONAL ACCURACY

Albert E. Beaton, Donald B. Rubin and John L. Barone

Educational Testing Service

1. Introduction

Multiple regression is an extremely popular and powerful method of

data analysis. Recently, there has been increasing conc.An about the

numerical accuracy of common computer programs now available and in use.

The paper of Longley (1967) is perhaps the most start]ing paper on this sub-

ject in the recent statistical literature. Longley took what seems to he a

reasonable set of economic data and performed a six---ariable multiple regres-

sion analysis using several different programs on several different computers.

He found that different regression programs resulted in very different solutions

including differences in sign and first significant digit. This finding

seems to indicate that one should be very careful about the program and

machine he uses.

We feel that the computer program is often not the most important factor

in computing a regression analysis, and that the best thing a program can do

for some problems is to refuse to complete the. calculations. Numerical

experiments in this paper will show that the computationally accurate solu-

tion to this regression problem--even when computed using 40 decimal digits

of accuracy--may be a very poor estimate of regression coefficients in the

following sense: small e.rors beyond the last decimal place in the data can

result in solutions more different than those computed by Longley with his

less preferred programs. The computationally accurate solution is shown to
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be nowhere near the center of the 3.istribution of a large number of presumably

equally possible solutions.

The solution to a regression problem is affected by the data, the

statistical model, and the program. This paper will explore the actual

accuracy of the data used and show in what sense they are inadequate for

the solution of this model. A reduced statistical model will be fit under

which the results are not seriously affected by small errors in the data

or the particular programming algorithm. Various algorithms are shown to-

be sufficiently accurate for most practical purposes if a regression model

has a reasonably stable solution.

We then show how knowledge of the error variance in the independent

variables can be used to compute a simple "perturbation index" which indi-

cates the stability of the computed solution over the range of possible

true data sets.

2. The Lonfaey Problem

At first glance the Longley problem seems very much like a typical

multiple regression analysis of a time series in which one "dependent"

-variable Y is regi'essed on six "independent" variables. The variables are

Y Total Derived Employment (in thousands)

X1 Gross National Product Implicit Price Deflator (in tenths)

X2 Gross National Product (GNP) (in millions)

X3 Unemployment (in thousands)

X4 Size of Armed Forces (in thousands)

X5 Noninstitutional Population 14 Years of Age and Over (in

thousands)

X6 Year
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Longley also presented seven components of Total Derived Employment which

are discussed in Section 4. Longley fit the following regression model

Yi °1X1 °2Xi2 °3Xi3 °5Xi5 (36Xi6 ci

i = 1,2,...,16

The Longley analysis was computed on the data available for the 16 years from

1947 to 1962. The basic data are shown in Table 1 along with the means,

Insert Table 1 about here

standard deviations, ratios of the means to standard deviations, and inter-

correlations.

The means and standard deviations do not seem to indicate any particular

difficulty for analysis. A careful research person might try to improve

computational accuracy through standardizing each variable by subtracting

its mean and dividing by its standard deviation, thus converting the raw data

matrix to a matrix of standard scores (Golub, 1969). The ratio of the mean

to the standard deviation is an indicator of the sort of computational problem

discussed by Neely (1966); although the ratios here are not zero, as would be

the case with standard scores, the ratios, except for X6, do not seem unduly

large. The high intercorrelations among the independent 1,ariables portend a

conditioning problems since no fewer than five of the 15 unique off-diagonal

correlations are greater than .99 and a sixth is nearly .98. We feel that

most statisticians would advise a client not to fit a model with such high

intercorrelations. Nevertheless, Table 2 gives the usual regression :solution

for this problem produced by the DLSSQ program discussed in detail later.

Insert Table 2 about here
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Longley fit the model with these data by a high-precision desk calculator

method and by a number of different regression programs on different machines.

The results of some of the programs used by Longley and two programs used in

this paper are shown in Table 3.

Insert Table 3 about here

The first two lines are the solution of the regression model by the

high precision desk calculator method and by an IBM 1401 program that per-

forms calculations using 40 decimal-digit accuracy. We have inserted the

calculated solution of two programs (DORTHO and DLSSQ) which were written for

the experiments performed in this pape . All four solutions agree to at least

seven decimal places and thus may be considered identical for most practical

purposes. This vector of regression coefficients will be referred to as the

"unperturbed" solution without regard to the method of calculation.

7 - remaining part of this table has the solutions computed by Longley

with eight programs on four different machines. The variations are striking.

Some programs generate regression coefficients different in sign and in most

significant digit from the unperturbed solution. The results of the ORTHO pro-

gram are closest to the unperturbed solution. The ORTHO algorithm has been pub-

lished by Walsh (1962) and used in the OMNITAB program (Hilsenrath et al., 1966)

of the National Bureau of Standards.

3. Is the Unperturbed Solution a Good Solution for This Sample?

Although calculation to very high precision is satisfying, we wish to

explore the unperturbed solution further. We do not question that the unperturbed
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solution is a possible solution to this regression problem, but there are a

large number of other solutions, each in a sense as likely to be the correct

solution as any other or as the unperturbed solution.

Taking an extremely conservative position, we cannot avoid the likeli-

hood that the 1947 value of variable Xl, GNP Implicit Price Deflator, was not

exactly 83.0 but some number between 82.5 and 83.499..; that the Gross

National Product is not orecisely 234,289,000,000, but some number between

234,288,500,000.00 and 234,289,499,999.99. All of the variables, X1 through

X5, are subject to this type of deviation. Even X6, Year, is, not an exact

variable, although it may have a smaller error than the other independent

variables. For our purposes here, we will ignore errors in the dependent

variable, Total Derived Employment, even though that measure is clearly not

exact either. We presume, then, that the data in Table 1 are absolutely

accurate as far as they go, but do not go as far as possible.

The error introduced by such rounding would seem to be trivial since

the data are presented with three to six digits of accuracy. To investigate

this assumption, we-have performed a numerical experiment by taking a random

sample of possible exact values to see if these perturbed data sets would

result in a solution similar to the unperturbed solution. A sample of 1,000

plausible sets of six independent variables was generated by adding a

rectangularly distributed random number
2
between -.5 and +.499... in the

digit after the last published digit. All data sets would be exactly the

same as the published set if rounded to the published number of digits, and
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in this sense each of these data sets is as likely to to the exact data as

any other or as the published data.

We next computed a thousand regression analyses using these perturbed

values and tne DORTHO subroutine.3 The results are shown in Table 4. The

Insert Table-4 about here

results of this experiment are very striking indeed. Looking first at the

highest and lowest values of the regression coefficients, these miniscule

variations in the values of the independent variables have resulted in

changes in the computed regression coefficients from -232.2792 to 237.0467

for Bl, and equivalently elsewhere. There are differences in sign and

magnitude for all regression coefficients.

One might hope that nearly' all possible solutions would agree with the

unperturbed solution to at least one significant digit. Not so. For all vari-

ables except X4, the unperturbed regression coefficients agreed to a single

significant digit with a perturbed solution in about 2% of the cases; X4 agreed

to at least one place in about 95% of the cases. Not one of the 1,000 sets of

estimated regression coefficients agreed with the unperturbed to one decimal

place in all seven coefficients.

Perhaps the unperturbed solution is at least near the center of the thousand

perturbed solutions. But no. The mean and median of the thousand solutions

are shorn in Table 4. For B
1

and B
2

, the mean and median differ in sign

from the unperturbed solution; only flax 134 do the unperturbed solution and the

mean agree to one significant digit. Assuming that the unperturbed solution is

the true mean of all possible samples and that the sample means are normally
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distributed about the unperturbed solution, then we can apply the standard stu-

dent t -test to the hypotheses that the unperturbed values are the true popula-

tion means. The t -statistics are also shown. The hypothesis that the unper-

turbed solution is'the average of all solutions for these equally likely data

sets is entirely implausible with the absolute values of the t -statistics rang-

ing frau: about 22 to 116.

If the number of observations (N = 16) were large, we would expect the

average of these thousand solutions to be as indicated in the row labeled

P-lim in Table 4a. The reason will be discussedlater. For now, notice that

the average is much closer to P-lim than to theunpeiturbed and that P-lim

is not at all close to the unperturbed.
a.

These results are shown graphically in Figure 1 which depicts histograms

at.

116.

Insert Figure 1 about he

of each regression_ coefficient including the intercept, Bo . Each histogram

is centered at the mean of the perturbed solutions and includes the range

from three standard deviations below to three standard deviations above the

mean. The vertical line with an encircled U represents the unperturbed

solution; the abscissa has been extended to include this point wherever

necessary. The line with an encircled P represents the P-lim value.

The effect of these nerturbations on the squared multiple correlation

is shown in Table 41). All R
2

's are high, but, the unperturbed R
2

is not

near the center of the distribution. It is in fact 65 standard errors

away fro the mean The. The estimated values of Y for the unperturbed

solution and the mean of a thousand perturbed solutions are shown in Table



4c. In all cases the predictions agree to several places, but it is not true

that the unperturbed estimates are near the average of the perturbed estimates.

The absolute values of the t -statistics for he differences between the

unperturbed and average perturbed solution ran e from 3.5 to 82.

4

We conclude, therefore, that it is extremely unlikely that the unperturbed

solution is the "correct" solution of this problem. ,,Assuming uniform round-

ing error in the independent variables, it is highly likely that tlici of the

unperturbed coefficients are incorrect in sign and all but one are not correct

to one significant digit. The unperturbed multiple correlation and estimated

values, although close enough to the average perturbed values for most

practical purposes, are nevertheless significantly different.

The unperturbed solution is, therefore, in this sense totally unsatisfactory.

Since regression analysis is a combination of model, data and algorithm, we

will now explore these individually to see what effect each has had in the

analysis.

4. The Data

Since a regression analysis can be sensitive to small perturbations of

the data, we chink worthwhile to make some comments about the actual

accuracy of the:Longley data. In fact, the error is often, many orders of

magnitude larger than the error we have introduced. In general, data are

subject to errors in sampling, measurement, calculation, copying, and to a

host of other factors and, inconsistencies. A thorough analysis of the error in

these data is far beyond the scope of this paper, but we will point out a

few salient facts about each variable. This discussion may seem to be

focusing on trivia, but we have seen that smaller errors may have enormous

effects.
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The Longley data come from four government reports:

1 The United States Department of Labor "Manpower Report

of the President and a Report on Manpower Requirements,

Resources, Utilization, and Training," March 1963,

Table A-4, p. 141. (USDLA)

2. The United States Department of Labor "Employment and

Earnings," Vol. 10, #3, September 1963, Tables A-1 and

B-1. (USDLB)

3. The United States Department of Commerce, Office of

Business ,iconomics "Survey q: Current Business," July

1963, p. 12 (USDC)

4. Council of Economic Advisors, Economic Report of the

President, January 1964, Table C-6, p. 214. (CEA)

USDLA is drawn from the Department of Labor Morithly Labor Force Survey.

Presumably, this is the same monthly survey described in USDLB,which is

described next.

The USDLB data are drawn from several sources; the prime resources are:

1. A monthly labor force survey sampling of 35,000 house-

holds in :T7 areas in the country.

2. Payroll employment statistics supplied monthly by a sample

of industrial, commercia'., and government establishments

employing collectively about 25 million workers.

3. Unemployment contribution reports filed by employers sub-

ject to state unemployment insurance laws. These are

considered bench-mark data and cover about 75% of the
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total nonfarm employees. Other bench-mark data are

collected from various government agencies.

4. Labor turnover statistics, supplied by a sample of manu-

facturing, mining, and communication industries.

The USDC bench-mark data come primarily from census data. Also,the

Bureau of Census provides an annual sample survey of manufacturers which

are used as a basis for estimating a number of GNP statistics. Comprehen-

sive annual reports of government agencies and annual data from private

sources are also used.

CEA was used for the estimated implicit price deflators which are based

primarily on data from the Consumer Price Index of the Bureau of Labor

Statistics. These data are supplemented by information drawn from the

Agricultural Marketing Service, Department of Commerce, Interstate Commerce

Commission, and various other government statistics.

Clearly, data frOm such sources may be subject to errors of many different

types. Let us look at some char-,cteristics of individual variables.

Y. Total Derived Employment (in thousands). The dependent variable is

the sum of the estimates of

Yl. Agricultural Employment (from USDLB)

Y2. Self - Employment (from USDLA)

Y3. Unpaid Family Workers (from USDLA)

Y4. Domestic Workers (from USDLA)

Y5. Nonagricultural Private Workers (this was computed by
subtracting the total government workers from the
total nonagricultural) (from USDLB)

Y6. Federal Workers (from USDLB)

Y7. State and Local Government Workers (from USDLB)



Both data sources warn that there are several periods of noncomparability

over time in these components because of the introduction of data from the

1950 census and the admission to statehood of Alaska and Hawaii. Total

employment figures were increased by 350,000 and 300,000 respectively.

There is also a systematic difference in the interpretation of figures

since variables Y2, Y3, and Y4 have not been adjusted for a change in the

definitions of employment and unemployment adopted in 1957, whereas Yl and

(we think) Y5, Y6, and Y7 have been adjusted. The change in definition

involved a decrease of 250,000 in total number of employed. The overall

effect of these errors is in the hundreds of thousands, perhaps millions.

Xl. Gross National Product Implicit Price Deflator (in tenths). The

implicit price deflator index is the ratio of GNP in current prices to GNP in

constant prices. We have not been able to estimate its error. However, the

publication "U.3. Income and Output, Supplement to Survey of Current Business"

(1958, p. 52) notes:

...we called attention to the shortcomings of price inflation.

These stem from lack of price information directly applicable

to many components of the current-dollar product flow; from the

fact that, genera12, peaking, available price information cannot

take adequate account of premiums, discounts, and bargain sales;

and from the even more basic problems encountered in pricing

items subject to significant quality change, or whose physical

units are not nearly definable for other reasons.

X2. Gross National Product (in millions). The Gross National Product

is also subject to many kinds of error. Actually, GNP can be computed from

either the nation's input or output, and both calculations should result in
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identical figures. In practice, the estimates do not, and over the years

from 1947 to 1962 the discrepancy between the two measures ranges from +3.5

to -3.0 billion dollars.

X3. Unemployment, X4. Size of Armed Fordes, X5. Noninstitutional

Population (in thousands). These variables come from the same table (USDLB)

and thus have the same properties. The data from 1947 to 1950 have been

adjusted to reflect changes in the definition of employment and unemployment.

These variables are not comparable over time because of the introduction of data

from the 1950 census and the introduction of Alaska and Hawaii.

X6. Year. The yea.. is perhaps the most difficult of these variables to

understand. It is a catchall variable, and it is difficult to describe just

what it purports to measure. Gross National Product is the sum of a number

of things over a year, whereas the population figures (X3, X4, and X5) are

values that fluctuate during the year and perhaps can be considered average

values. To what does year refer? Is it a calendar year or fiscal year? Are

the different employment figures collected at the same point in time? We do

not know.

All in all, one has the feeling that these data are good to a little

over two significant digits-except for g. One also has the feeling that

the various government agencies have gone to great pains to make the data

as accurate as possible. Of course, there are other types of error that we

cannot estimate here. Although these data may be sufficiently accurate for

some purposes, they clearly are not sufficiently accurate to "support" the

unperturbed solution.
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5. The Model

The selection of a mathematical model is a very important part of a

regression,analysis. Ideally, a research person specifies a model, then

collects data to estimate parameters, choosing the independent variables

carefully to minimize the interindependent variable correlations and avoid-

ing the problem of multicollinearity. But persons working with observational

data often cannot avoid high correlations. Thus, if the research person is

really interested in performing linear regression using all his variables,

the results of Section 3 indicate that he may have to collect his data with

extreme precision to generate reasonable estimates of regression coefficients.

Suet, precise measurement is seldom possible.

On the other hand, many studies of observational data do not have a

strong causal basis which dictates a model; in fact, many persons use the

data and a stepwise regression program to construct a model. The question to

which we address ourselves here is: Would a different model have been as

sensitive to such minor errors in the data?

As indicated above, we doubt that many statisticians would approve of

a regression analysis including such highly correlated independent variables.

We have therefor=: decided " try a different model

Y =
0 j )
+ p x + p_x_ + p x + E

4 4

which deletes variables such that no X 's are correlated higher than .95.

The highest correlation among these variables is .62 between X1 and X3 .

We first fit this regression model without perturbation using the DORTHO

routine. The results are shown in Table 5 which also contains the results

foNtne same thousand sets of perturbed data.
4
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Insert Table 5 about here

First, the perturbed results always agreed with the unperturbed in sign

and in at least the first significant digit. The lowest and highest values

are not far enough apart to change interpretation. The t -statistics

indicate that it is not unreasonable to presume that the solutions from the

DORTHO routine would be the average of all perturbed solutions. The P-lim

row indicates that, in contrast to the six-variable problem, the average

perturbed solution in large samples would be very close to the unperturbed

solution.

We conclude, then, that this model is not affect-d much by minor perturba-

tions of these data. In fact, as we shall see shortly, even very poor programs

compute good solutions to this model.

6. The Program

The question of computational accuracy involves both algorithm and

precision and both must be related to cost. Longley's experiment indicates

that different programs do Indeed yield different results, and thus one might

assume that a research person is obliged to use the numerically best program

for all problems. Our experiment shows that the effects of minor errors in

the data are greater than differences due to program; in fact, many of the

coefficients estimated from the poor programs are closer to the mean of the

perturbed solutions than the unperturbed solution. But are we usually in trouble

using less stable programs?

Many numerical analysts prefer the modified Gram-Schmidt method for

regression analysis. The algorithm avoids computing a cross-products
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matrix, thus does not "square" its problems; that is, the condition number of

the data matrix is the square root of the condition number of the raw cross-

products matrix, thus almost certainly better conditioned. Most packaged

regression programs do compute a cross-products matrix and solve the normal

equations using a matrix inversion subroutine. All the programs in Table 3

that disagreed (and some of those that agreed) with the unperturbed solution

tried to solve the normal equations.

Why do programmers fail to use the modified Gram - Schmidt algorithm?

Basically, modified Gram-Schmidt is too expensive for a general program: it

requires a pass over the data for each independent variable. The ORTHO

routine is more efficient, requiring only two passes. If all data can be

kept in computer memory, then the extra multiplications to calculate regression

coefficients required by Gram-Schmidt can be justified, especially if residuals

are to be calculated, but, if the data matrix exceeds computer storage, then

the number of logical rewindswhether on tape or disk--will ordinarily

discourage programmers and users.

To avoid rewinds, one might use less preferred methods with double pre-

cision. The Longley paper seems to indicate that double precision does not

help since the Ir3M doublf2 1)recision solution was only trivially better than

single precision. However, this finding is not general but due instead to

a subtle bug in the IBM program.)

To investigate the effects of algorithm and accuracy, we have programmed

two subroutines, DLSSQ (Double precision Least Squares) and WRYLG (the Worst

Routine You are 1,ikely to Get) in addition to DORTHO. The DLSSQ is not a
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"good" program but is about what one might expect in packaged regression

programs. The WRYLG is the single precision version of DLSSQ and is about as

bad a program as one might come upon, excluding those programs with real bugs.

Bugs in programs can usually be caught by methods such as those suggested by

Longley (1967) and by Mullet and Murray (1971).

Both DLSSQ and WRYLG use fairly standard computing procedures. The

cross - products are computed without subtracting means. The cross-products

a.X. are centered by the notorious algorithm

N E(X..)(LX. )

(X.. 7c.)(x. ) = zx..x. aj ik

j ik ij ik
i=1

where N is the number of observations and j and k index any pair of

variables. The inverse is computed by the Gauss-Jordan method. Pivoting is

done in order without reordering by size. DLSSQ requires that a pivot be

greater than .01 of the original variance; WRYLG requires only that a pivot

be positive, no matter how, small. Aside from this, the only difference

between these routines is that DLSSQ is in double precision on the IBM 360.

We submitted the unperturbed Longley data to both of these subprograms.

The DLSSQ routine agreed quite closely with thc desk calculator solution as

shown in Table 3. The WRYLG is not shown in Table 3 since it could not com-

pute a solution because of a negative pivot. In fact, the single precision

representation of the augmented cross-products matrix has a negative eigen-

value and determinant.

The 1;000 sets of perturbed data were submitted to both DLSSQ and WRYLG.

The DLSSQ and DORTHO programs are compared in Table 6. There is an average
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Insert Table 6 about here

of over 7.5 significant digits of agreement for all coefficients. In the

worst case the two programs agree to 4.34 digits. Apparently, the perturba-

tions affect both programs similarly.

A summary of the 1,000 solutions by WRYLG are shown in Table 7. WRYLG

Insert Table 7 about here

rejected the problem because of a nonpositive pivot in fully 65% of the

samples. The analyses that went to completion tend to vary more than those

from DORTHO. As with the DORTHO routine, the coefficient of X4 agreed with

the unperturbed solution to one significant digit in about 95% of the cases

in which a solution was produced. We might view this program as poorer because

of the increased variability in results; however, we might also consider WRYLG

superior because it indicated that the problem has no solution in 65% of the

samples.

The six-variable problem is one in which we know that small errors have

major effects, but is the WRYLG adequate for the three-variable problem?

DIZSQ and DORTHO agree to an average of over 15 digits for the 1,000 data

sets where three variables are used. A comparison of the WRYLG and DORTHO

is shown in the bottom of Table 5. WRYLG and DORTHO agree to an average of

3.5 to 4 significant digits,6 even though the t -statistic indicates that

the average difference is significantly different from zero. The means-and

standard deviations of the differences, and the largest and smallest differ-

ences, are also shown.
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We summarize, then, that the DLSSQ routine agrees substantially with the

DORTHO routine in every comparison. Single precision routines including WRYLG

are more variable in the poorly conditioned six-variable problem. The WRYLG

agrees with DORTHO to about 3.5 digits on the average in the three-variable

problem.

7. A Perturbation Index

It clearly would be helpful if the standard output of regression programs

included some indicator of the effect of perturbations on the calculated

coefficients. A possible candidate is the list of standard errors or t -tests

of the coefficients; these,however, do not indicate such instability but

rather the instability of the coefficients over repeated sampling of new Y's

for the same X's. Thus the gross instability of the solution might surprise

some researchers.

The instability should not be surprising to numerical analysts.Wilkinson

(1965, 1967' has developed a system of error analysis which places bounds on

the effects of perturbation on calculated solutions due to the finite word

length of computers. The Longley data are so ill-conditioned that the

Wilkinson procedure does not give an error bound even with double precision

on the IBM 360.7 As Wilkinson says

It would be more reasonable to ascribe the loss of accuracy in such

a case to be apparent sensitivity of the equations rather than to

speak of "severe accumulation of rounding errors."

Our motivation here is to indicate how much the solution can vary due to

perturbations beyond the last supplied digit even assuming an infinite word

length computer. To do this we first consider the large sample limit of the
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equally likely solutions. This limit, called P-lim in the previous tables,

can roughly be thought of as the center of the distribution of the equally

likely solutions assuming a large sample size. Since, in large samples,

almost all perturbed solutions are extremely close to this central value, it

is the summary of interest.

Consider the regression model

y = T6 + E

where y is an N x 1 vector of dependent variables, T is an N x m

matrix of correct values of the m independent variables, 6 is an m x 1

vector of parameters we wish to estimate, and E is the N x 1 catchall

vectcr for the unpredictable portion of y . Letting X represent the

actual observed data and the difference between X and T, we have

T = X + E . We assume
8
that the expectation of eacn component of E is

zero and that the individual errors are independent with known variances di

dl

e(E)
1

o , g (E'E) = D = 0.0 ,.g(E'X) = 0 .

d

Tf we knew the true values of the independent variables the usual least

sauares estimator would be

= (T'T)-1T'y = [(x + E)'(X + E)1-10( E)*y

[X'X + E'X + X1E + E'E] -1(X + E)'y .

As the sample size N gets larger (N -4 00) the values of quantities in the

sample approach their population values; more formally, assuming
X X
--- = C ,

xx

a fixed m x m matrix, and 112:= C
xy, , a fixed m-vector for all N
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P-lim = (C + D] iC
xx xy

Now the usual least squares estimator based on the observed values is

(xtx)- .p1y= c)-(cxy .

The difference between
x

and P-lim is an indicator of the effect

of the error perturbation on the calculated solution. This difference is

.10x - P-lim p = c
xx
1
c
x

(c + D)
-1

cy
(Cry

xy

= (c
-1

(c
XX

+ D) -1}C
xx xy

= [I - (I + cD)-1]cc
xx xx xy

= (I - (I + .

xx

If the matrix C
1
D = 0

MXT11 XX
, then

x
= P-lim . If C

1
is "small"XX

compared to I ,then p. The phrase "small compared to I"

really means that all of the eigenvalues of C
-1
D are close to zero. Thexx

largest eigenvalue of a matrix is commonly used to measure its size and is

called the "spectral norm." A simpler measure is the trace of Cxx1D, which

equals the sum of the eigenvalues which are nonnegative because C
xx
1

is

positive and D is nonnegative. If the trace of C
-1
D is substantiallyXX

less than 1, we can be confident that p
x
= P-lim p because the largest eigen-

value must be substantially less than unity. Equivalently, if the "perturbation

index"

PI = tr(C)(D)

is substantially less than 1, we can be confident that the effect of perturba-

tion error on the computer 'lution will be small,especially for large N .
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Alternatively, the perturbation index can be written

m
PI = E C"d. = N E (XIX)ijd.

xx j
j=1

where Cji and (X'X)ii are the diagonal elements of C-1 and (X'X) -1,xx xx

respectively. The diagonal elements of C
-

can be written g xj -
1i

xx
1

2 2x

2 2wheres.is the marginal variance of X. and R. is

V*.

(1 R.)s
j

the squared multiple

correlation between X. and all the other X variables.9 Since P is a

diagonal matrix with elements d. , the diagonal elements of C
-1

D are
xx

d./s2

2\
, and hence the perturbation index can be written

(1 - R.)
/m d./s.
2

PI = E 3' j 2\
j=1 (1 - R.)

/

iThe numerator of each term of PI , d./s. , is the ratio of the rounding
J j

error variance to the marginal variance. The denominator of each term of

P1,1-Ii.2 , has been standard output for some time in some regression

routines as a measure of collinearity.
10

The calculation of the order of

magnitude of PI is trivial given an estimate of the original rounding error

variances and either the diagonal of the inverse matrix, or the marginal vari-

ances and collinearity indices.

Since in our experiment the random numbers were rectangular, the value

of d. was 1/12 for all variables except X
1

for which the value was 1/1200.
J

To compute the P-lim solution for the Longley problem the values of Nd.

were added to the diagonal of X'X before using the DLSSQ regression sub-

program. The results are shown in Tables 4a and 6. Although the P-lim solu-

tion is much closer to the center of the distribution than the unperturbed
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o
s(:,luion, it is still significantly different from the mean of the perturbed

solutions in all coefficients; perhaps this is not surprising because N = 16

is rather small for our assumptions.

Thevaluesond the collinearity indices for both

the three- and six-variable problems are shown in Table 8. The perturbation

indices are 2.86 x 10
5
and 2.9777 respectively.

G

We note in the three-variable problem that none of the individual

, "
elements of the perturbation index are larger than 10 - ,which is very small.

In the unrtable six-variable problem, the component associated with variable 6

is much greater than unity so that we would expect instability. We reran the

problem excluding variable 6 with the results that the perturbed andtthe ordinary

a
least squares solutions agreed to atleast three decimal places and all the

components of the perturbation index became small.

Insert Table 8 about here

o. Summary

The purpose of this paper has been to show that regression coefficients

car: fluctuate wildly as a function of seemingly imi.nor errors in the data as well

as by choice of algorithm, precision of the computer program or the model

indeed, under the assumptions stated above, computations using very high

,:uracy may result in a solution very unlikely to be close to the most likely

solution. Phe results of these experiments are summarized in fable 9.

Insert Table 9 about here

The first line in the table compares J ;he regression solution with three

variables to the solution with six variables. The marked eCfoct, 0 C thP
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addition{ of highly correlated independent variables should be no surprise

to statisticians. In none of the seven coefficients was there a single

significant digit of agreement. Two coefficients, B0 and Bl , differed

by orders of magnitude. Since the three-variable model assumes that the

coefficients B2 , B5 , and B6 are identically zero, the number of digits

of agreements for these is exactly zero.

Then the thousand perturbed solutions using DORTHO were compared with

the unperturbed solutions for both the three- and six-variable problems.

The perturbations affected the regression coefficients after the second

significant digit for the three-variable problem. For the six-variable

problem, no regression coefficient averaged a single significant digit of

agreement with the unperturbed solution. Three coefficients averaged differ-

ences in orders of magnitude. The effect of perturbation is, therefore, very

serious in the highly collinear six-variable model.

The next comparison is between the DORTHO algorithm and the DLSSQ algorithm,

both of which are double precision. The same thousand perturbed sets of data

were given to both programs and the results compared. We note that the algorithms

agreed to an average of over 13 significant digits for the three-variable problem

and over 7 significant digits in the six-variable problem. We conclude, therefore,

that the choice of algorithm is not important if sufficient precision is used.

The last comparison is between the double precision (DLSSQ) and single

precision (WRYLG) least, squares algorithms. It is clear that precision must

at some point affect a solution. For the three-variable problem, the effect

of single precision versus double precision was, on the average, after the third

place or approximately an order of magnitude less than the effect of perturbation.

For the six-variable problem, 650 solutions were rejected because of negative

pivots, and the remaining 350 comparisons of sets of regression coefficients did

not average a single significant digitof agreement; in fact, four coefficients

were off by an order of magnitude.



We cannot know what the "true" solution to the Langley problem is, but it

is clear that the use of stable algorithms and high precision is not likely

to yield a valid answer without more accurate data. If data are sufficiently

accurate, then the additional labor of special algorithms may be worth the

trouble, but we feel that in many cases the attempt at estimating regression

coefficients in highly collinear problems cannot justified statistically.

We propose that the perturbation index discussed in section 7 be used

routinely to indicate the existence of severe instability in regression

solutions.
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Footnotes

1However, moderate simple correlations do not guarantee good

conditioning.

2
The uniform pseudo-random numbers were produced by a double precision

Tausworthe (1965) generator.

5
The ORTHO algorithm which Langley found most satisfactory for fixed

wor'i- length computers was programmed to investigate the Longley data. Our

subroutine is called DORTHO and is programmed in double precision for the

IBM 360/65. Although the algorithm is classical Gram-Schmidt in nature, it

avoids numerical instability by a second-stage correction. 0)ORTHO produces

regression coefficients that agree with Longley's hand calculated solution

in every published place. We have been very careful in coding this routine

since we wish there to be no question about its accuracy, even though the

following arguments call. for belief in only one or two significant digits.

14.

The lines involving WRYLG will be discussed in the next section.

5
The IBM solution was computed with two programs (CORRE and MULTR) in

the IBM Scientific Subroutine Package (SSP). These subroutines were designed

for single precision (24-bit mantissa), but the comments in the program

instruct the user that, to make the routine double precision, one need only

make some arrays double precision. A statement using one of these arrays is

R(JK) = R(JK) D(J)*D(K)

where R is a double precision matrix in which sums of squarEs and cross-

products are accumulated and D(J) and D(K) are single precision data.

Unfortunately, in IBM FORTRAN the product of two single precision numbers

is a single precision number, thus FORTRAN compiles instructions to multiply
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D(J) by D(K) , then truncates the product to single precision; since

the sum of single precision and double precision addends is double precision,

the program fills out the least significant part of D(J)*D(K) with zeros

before adding. These sums of squares and products are, of course, but little

better than single precision. This FORTRAN idiosyncracy could have been

avoided by the statement

R(JK) = R(JK) + DBL(D(I))*D(J)

and the resulting regression solution would have been considerably closer to

Longley's.

6
We have used the method of calculating significant digits suggested by

Jordan (1968) and used by Wampler (1970).

7To compute the Wilkinson error bound the quantity

2-tn.5k(A)

must be less than unity, where t = 56 is the number of bits in the mantissa

of a computer word, n = 7 is the number of equations being solved, and

k(A) = 2.361 x 1019 is the spectral norm. For this problem the result is

approximately 8.7.

8Note that these assumptions correspond to the Berkson case (see, Berkson,

1950, or Cochran, 1968) and are not the usual assumptions of errors of

measurement (see Lord & Novick, 1968 or Cochran, 1968).

9
Actually this relation holds only if the vector of constant ones is

included (i.e., if the regression plane is not forced through the origin)

and does not hold for the diagonal corresponding to the constant variable.

2Moregenerally,s.should be interpreted as the raw sum of squares I X.

andR.thecosineoftheanglebetweenX.and the hyperplane spanned-
0

by the other independent variables.
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1
°Thisindexiscalledt.bY Longley. We note that this index is

also subject to computational error but our numerical experiments indicate

that such error is not important.
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A
0.

0

TABLE 5

Four Variable :leduced Model

li
0

B1 B., B,

DORTHO 30393.4125 398.0758 -1.0725k -.8165

WRYLG 30389.2344 398.1814 -1.0735 -.818

mean 30393.6397 398.0705 -1.0725 -D.8164

Median 30393.2430 398.0951 -1.0725 -0.8166

Standard 23vtation 32.266'1 0.5418 0.0056 1

Lowe at Value 30289.7507 396.2621 -1.0894

r,Ighest Value 30486.0691 399.7687 -1,0532

Percent*
'..- Ai4reunent

100.0 100.0

t-ialue for
rean=u*erturbed .2226 -.3092 -.1477

r-1.T 30393.9791 398.0617 -1.0721 i

i

t-value for
:ratu.n=P-11m

i

-.3328 .3384 ! - .3922 I .. _

i

1

i

)

Mean 1 0.7602 -0.0043

!

1 -0.0001

i

-' %'".-

Standard Devtaticin 3.0331 0.0606 0.000;
I

I

Largest
Negative

Di:ference
-8.9499 -0.1961

!

! -0.0027

I

1

Largest

Positive
Difference

9.9655 0.1873

1

1

Avg. Number
of Agreeing
Sig. Dig.

4.2386 4.0646 , 3 58.;)

,

1

i

t-alue or
mean difference..0 7.909 -2.243 -6.320 -).

1
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TABLE 8

Perturbation Indices

d. Diag(vx)-116d.

Four Variable Reauced Model
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