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THE ACCEPTABILITY OF REGRESSION SOLUTIONS:

ANOTHER LOCK AT COMPUTATIONAL ACCURACY
Abstract

Longley proposed a set of data for use in testing regression pro-
grams. This paper shows that the numerically accurate solution is likely
to be an unreasonable estimate of the regression coefficients for this
problem. This is true because the accuracy oi the data and appropriate-
ness of the model may affect the solution more than the computational
method. An easily computed index is derived that can be used to indi-
cate such computational instability. The basic conclusion is that a
concern about highly accurate computational methods must be tempered

with a concern for whether<the data are accurate enough to make the

results of such computation meaningful.




THE ACCEPTABILITY OF REGRESSION SOLUTIONS:

ANOTHER LOOK AT COMPUTATICNAL ACCURACY

Albert E. Beaton, Donald B. Rubin and John L. Barone

Educational Testing Service

l. Introduction

Multiple regression is an extremely popular and powerfil metunod of
data analysis. Recently, there has been increasing ccn€?§n about the
numerical accuracy of common computer programs r.ow available and in use.

The paper of Longley (1967) is perhaps the most startling paper on this sub-
ject in the recent statistical literature. Longley took what seems to he a
reasonable set of economic data and verformed a six-"ariable multiple regres-
sion analysis using several different yprograms on several different computers.
He found that d&fferent regression programs resulted in very different solutions
including differences in sign and first significart digit.‘ This finding

seems tc indicate that one should be very careful about the program and

machine he uses.

We feel that the computer program is often not the most important factor
in computing a regression analysis, and that tre best thing a program can do
for some problems is to refuse to complete the calculations. Numerical
experiments in this paver will Shoﬁ that the computationally accurate solu-
tion to this regression problem--even when computed using 40 decimal digits
cf accuracy~-may be a very poor estima*e of regression coefficients in the
following sense: small e.rors beyond the last decimal place in the data can
result in solutions more differe:ut than those computed by Longley with his

less preferred programs. The computationally accurate solution is shown to
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be nowhere near the center of the distribution of a iarée number of presumably
equally possible solutions.

The solution to a regression problem is affected by the data, the
statistical model, and the program. This pavner will explore the actual
accuracy of the data used and show in what sense they are inadequate for .
the solution of this model. A reduced statistical model will be fit under
which the results are not seriously affected by small errors in the data
or the particular programming algorithm. Various algorithms are shown to-
be sufficiently accurate for most practical purposes if a regression model
has a reasona?%y stable solution.

We then show how knowledge of the error variance in the independent
variables can be used to compute a simple "perturbation index" which indi-
cates the stability of the computed solution over the range of possible

true data sets.

2. The Longley FProblem

At firs; glance the Longley problem seems very much like a typical
multiple regression analysis of a time series in which one "dependent”
-variable Y is regressed on six "independent" variables. The variables are

Y Total Derived Employment (in thousands)

X1 Gross National Product Implicit Price Deflator (in tenths)

X2 Gross National Product (GNP) (in millions)

X3 Unemployment (in thousands)

Xk Size of Armed Forces (in thousands)

X5 Noninstitutional Population 14 Years of Age and Over (in
thousands)

X6 Year
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Longley also presented seven components of Total Derived Employment which

are discussed in Section 4. Longley fit the following regression model

Y= By b By B, ¥ BKis kB, 4 BX ¢ BXic k€

Ti=1,2,...,16 . .

The Longley analysis was computed on the data available for the 16 years from

1947 to 1962. The basic data are shown in Table 1 along with the means,

- Insert Table 1 about here

standard deviations, ratios of the means to standard deviations, and inter-
correlations.

The means and standard deviations do not seem go indicate any particular
difficulty for analysis. A careful research person might try to improve
computational accuracy through standardizing each variable by subtracting
its mean and dividing by its standard deviation, thus converting the raw data
matrix to a matrix of standard scores (Golub, 1969). The ratio of the mean
to the standard deviation is an indicator of the sort of computational problem
discussed by Neely (1966); although the ratios here are not zero, as would be
the case with standard scores, the ratios, except for X6, do not seem unduly
large. The high intercorrelations among the independent variables portend a

conditioninrg probleml since no fewer than five of the 15 unique off-diagonal

correlations are greater than .99 and a sixth is nearly .98. We feel that )
most statisticians would advise a client not to fit a model with such high
intercorrelations. Nevertheless, Table 2 gives the usual regression solution

for this problem produced by the DLSSQ program discussed in detail later.

Insert Table 2 about here ) |
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Longley fit the model with these data by a high-precision desk calculator

method and by a number of different regression programs on different machines.

The results of some of the programs used by Longley and two programs used in

P

this paper are shown in Table 3,

The first two lines are the solution of the regression model by the
higp precision desk calculator method and by an IBM 1401 program that per-
forms calculations using 40 decimal-digit accuracy. We have inserted the
calculated solution of two programs (DORTHO and DISSQ) which were written for
the experiments performed in this pape . All four solutions agree to at least
seven decimal places and thus may be considered identical for most practical
purposes. This vector of regression coefficients will be referred to as the
"unperturbed” solution without regard to the method of calculation.

T ~ remaining part of this table has the solutions computed by Longley
with eight programs on four different machines. The variations are striking.
Some programs gererate regression coefficients different in sign and in most
Significant digit from the unperturbed solution. The results of the ORTHO pro-
gram are closest to the unperturbed solution. The ORTHO algorithm has been pub-
lished by Walsh (1962) and used in the OMNITAB program (Hilsenrath et al., 1966)

of the National Bureau of Standards.

3. Is the Unperturbed Solution a Good Solution for This Sample?

Although calculation to very high precision is satisfying, we wish to

explore the unperturbed solution further. We do not question that the unperturbed
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solution is a possible solution to this regression problem, but there are a
large number of other solutions, each in a sense as likely to be the correct
solution as any other or as the unperturbed solution.

Taking an extremely conservative position, we cannot avoid the likeli-
hood that the 1947 value of variable X1, GNP Implicit Price Deflator, was not
exactly 85.0 but some number between 82.5 and 83.499..; that the Gross
National Product is not orecisely 234,289,000,000, but some number between
234,288,500,000.00 and 254,289,499,999.99. All of the variables, X1 through
X5, are subject to this type of deviation. Even X6, Year, is_not an exact
variable, although it may have a smaller error than the other indepe:.dent ‘
variables. For our purposes here, we will ignore errors in the dependent
variable, Total Derived Employment, even though that measure is clearly not
exact either. Ue presume, then, that the data in Table 1 are absolutely
accurate as far as they go, but do not go as far as possible.

The error introduced by such rounding would seem to be trivial since
the data are presented with three to six digits of accuracy. To investigate
this assumption, we have performed a numerical experiment by taking a ranSZF“”“*n%
sample of possible exact values to see if these perturbed data sets would
result in a solution similar to the unperturbed solution. A sample of 1,000
plausible sets of six independent variables was generated by adding a
rectangularly distributed random number2 between -.5 and +.499... in the
digit after the last published digit. ALl deta sets would be exactly the

same as the publishea set if rounded to the published number of digits, and
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in this sense each of these data sets is as likely to te the exact date as
any other or as the published data,
We next computed a thousand regression analyses using these perturbed

values and tne DORTHO subroutine.5 The results are shown in Table 4. The

results of this experiment are very striking indeed. Looking first at the
highest and lowest values of the regression coefficients, these miniscule
variations in the values of the independent variables hav? resulted in .-~
changes in the computed regression coefficients from -232.2792 to 237.0467
for Bl, and equivalently elsewhere. There are differences in sign and
magritude for all regression coefficients.

One might hope that nearly ell possible solutions would agree with the
unperturbed solution to at least one significant digit. Not so. For all vari-
ables except X4, the unperturbed regression coefficients agreed to a single
significant digit with a perturbed solution in about 2% of the cases; X4 agreed

to at least one place in about 95% ot the cases. Not one of the 1,000 sets of

estimated regression coefficients agreed with the unperturbed to one decimal

place in all seven coefficients. '
Perhaps the unperturbed solution is at }east near the center of the thousand

perturbed solutions. PBut no. The mean and median of the thousand solutions

are shovn in Table 4. TFor Bl and B2 » the mean and median differ in sign

from the unperturbed solution; only fq;‘QBh do the unperturbed solution and the

mean agree to one significant digit. Assuming that the unperturbed solution is

the true mean of all possible samples and that the sample means are normally

b~~~
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distriouted about the unperturbed solutién, then we can apply the standard stu-

dent t ~test to the hypotheses that the unperturbed values are the true éopula-

tion means. The t -statistics are also shown. The hypothesis that the unper-
‘ turbed solution is’ the average of all solbtions for these equally likely data

sets is entirely implausible with the absolute values of the t -statistics rang-

ing "frov. about 22 td 116.

If the number of observations (N = 16) were large, we would expect the
average of these thousand solutions to be as indicated in the row labeled
P-1lim in Table 4a. The reason will be discussedflater. For now, notice that
the average is much closer to P-lim than to the ‘unpe:turbed and that P-lim

'Qv
is not at all close to the unperturbed. &

o

These results are shown graphically in Figure 1 which depicts histograms

N

of each regressﬁon,coefficient including the intercept, BO . Each histogran
is centered at the mean of the perturbed solutions and includes the range
from three slandard deviations below to three staudard deviations above the
mean. The vertical line with an encircled U represents the unperturbed
solution; the absclssa has been extended to include this point wherever
necessary. The line with an encircled P represents the P-1lim value.
The effect of these nerturbations on éhe squared multiple correlation 1
is shown in Table 4b. All R2 's are high, but tge unperturbed R° is not

near the center of the distribtution. Tt is in fact 65 standard ercors

away fromithe mean R2 + The estimated values of Y for the unperturbed

solution and the mean of a thousand perturbed solutions are sho%n in Teable
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. he., 1In all cases the predictions_ agree to severgi Places, but it is not true
that the unperturbed estimates are near the average df Ehe perturbed estimates.
The absolute values of the t -statistics forsghe differences between the
unperturbed &nd average perturbed solution%ran e from 3.5 to 82.“

We conclude, thefefore, tha€ it is extremély unlikely that the unperturbed
solution is the "correct” solution of this problem. ~Assuming uniform round-
ing error in the independent variables, it is highly likely that téirof the
unperturbed coefficients are incorrect in sign and all but one are not correct
to one significant digit. The unperturbed multiple correlation and estimated
values,‘although close enough to the avé?age perturted values for most
practical purposes, are nevertheless significantly different.

The unperturbed solution is, therefore, in this sense totally unsatisfactory.
Since regression analysis is a combination of model, data and algorithm, we

will now explore these individually to see what effect each has had in the

analysis. <

4, The Data

Since a regression analysis can be sensitive Lo small perturbalions of

the data, wegthink ir, worthwhile to make some ccmments about the actual

i

accuracy of the: Longley data. Tn fact, the error is often many orders of

S

magnitude larger than the error we have introduced. Tn general, data are
_ subject to errors in sampling, measurement, calculation, copying, and to a
host of other factors and. inconsistencies., A thorough analysis of the error in
these data ii far beyond the scope of tﬁis papef, but we will point out a
few salient facts about each variable. This discussion may seem to be
focusing on trivia, but we have seen that smaller errors mey have enormous

effects.

¥
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The Longley data come from four governme;t reports:

1. The United States Department of Labor "Manpower Report
of the President and a Report on Manpower Reguirements,
Resources, Utilization, and Training,” March 1963,
Table A-4, o. 14i. (USDLA)

2. The United States Department of Labor "Employment and
Earnings," vol. 10, #3, September 1963, Tables A-1 and
B-1. (USDLB) PR

5. The United States Department of Commerce, Office of
Business geonomics "Survey ¢ Current Business,” July
1963, p. 12, (USDC)

L, Council of Economic Advisors, Econom:c Report of the

President, January 1964, Table C-6, p. 21k. (CEA)

USDLA is drawn from the Depariment of Labor Monthly Labor Eorce Survey.
Presumably, this is the same monthly survey descrived in USDLB,which is
described next.

The USDLL data are drawn from several sources; the prime resources are:

1. A monthly labor force survey sampling of 39,000 house-

holds in 77 areas in the country.

2. Payroll employment statistics iupplied monthly by a sample
of industrial, commercia’., and govermment establishments
employing collectively about 2% million workers.

%. Unemployment contribution reports filed by employers sub-

ject to state unemployment insurance laws. These are

considered bench-mark data and cover about 75% of the

o
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total nonfarm employees. Other bench-mark data are
collected from various govermment agencies.

4, Labor turnover statistics, supplied by a sample of manu-
facturing, mining, and communication industries.

The USDC bench-mark data come primarily from census data. Also,the
Bureau of Census provides an annual sample survey of manufacturers which
are used as a basis for estimating a number of GNP statistics. Comprehen-
sive annual reports of government agencies and annual data from private
sources are also used.

CEA was used for the estimated implicit price deflators which are based
primarily on data from the Consumer Price Index of the Bureau of Labor
Statistics. These data are supplemented by infermation drawn from the
Agricultural Marketing Service, Department of Commerce, Interstate Commerce
Commission, and various other government statistics.

Clearly, data from such sources may be subject to errors of many different
types. Let us look at some char-~cteristics of individual variables. “*

Y. Total Derived Employment (in thousands). The dependent variable is

the sum'of the estimates of

Y1. Agricultural Buployment (from USDLB)

Y2. Self—Eknployxne;lt (from USDIA)

Y3. Unpaid Family Workers (from USDLA)

Y4. Domestic Workers (from USDLA)

Y5. Nonagricultural Private Workers (this was computed by
subtracting the total government workers from the
total nonagricultural) (from USDLB)

Y6. Tederal Workers (from USDLB)

Y7. State and Local Government Workers (from USDLB)
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Both data sources warn that there are several periods of noncomparability
over time in these components because of the introduction of data from the
19%0 census and the admission to statehood of Alaska and Hawaii. Total
employment figures were increased by 350,000 and 300,000 respectively.
There is also a systematic difference in the interpretation of figures
since variables Y2, Y3, and Y4 have not been adjusted for a change in the
definitions of emplcyment and unemployment adopted in 1957, whereas Yl and
(we think) Y5, Y6, and Y7 have been adjusted. The change in definition
involved a decrease of 250,000 in total number of employed. The overall

effect of these errors is in the hundreds of thousands, perhaps millions.

¥1. Gross National Product Implicit Price Deflator (in tenths). The

implicit price deflator index is the ratio of GNP in current prices to GNP in
constant prices. We have not been able to estimate its error. However, the
publication "U.3. Income and Output, Supplement to Survey of Current Business"
(1958, p. 92) notes:

...we called atiention to the shortcomings of price inflation.

These stem from lack of price informetion directly applicable Tgﬁ

to many componeunts of the current-dollar product flow; from the

fact that, generall, «cpeaking, available price information cannot

vake adequate account of premiums, discounts, and bargain sales;

and from the cven more basic problems encountered 1n pricing

items subject to ;ignificant quality change, or whose physical

wits are not nearly definable for other reasons.

X2. Gross Netional Product (in millions). The Gross National Product

is also subject to many kinds of error. Actually, GNP can be computed from

either the nation's input or output, and both caiculanions should result in




-12-

identical figures. 1In practice, the estimates do not, and over the years
from 1947 to 1962 the discrepancy between the two measures ranges from +3.5
to -3.0 billion dollars.

X3. Unemployment, X4. Size of Armed Forces, X5. Noninstitutional

Population (in thousands). These variables come from the same table (USDLB)

and thus have the same properties. The data from 1947 to 1950 have been

adjusted to reflect changes in the definition of employment and unemployment. Q\
These variables are not comparable over time because of the introduction of data
from the 19%0 census and the introduction of Alaska and Hawaii.

X6. Year. The yea. is perhaps the most difficult of these variables to
understand. It is a catchall variable, and it is difficult to descriBe Jjust
what it purports to measure. Gross National Product is the sum of a number
of things over a year, whereas the population figures (X3, X4, and X5) are
values that fluctuate during the year and perhaps can be considered average
values. To what does year refer? Is it a calendar year or fiscal year? Are
the different employment figures collected at the same point in time? We do
n@t know.

All in all, one has the feeling that these data are good to a little
over two significant digits except for X6. One also has the feeling that
the various government agencies have gone to great pains to make the data
as accurate as possible. Of course, there are other types of error that we

cannot estimate here. Although these data may be sufficiently accurate for ]

some purposes, they clearly are not sufficiently accurate to "support" the

unperturbed solution.




The Model

The selection of a mathematical model is a very important part of a
regressicn, analysis. Tdeally, a research person specifies a model, then
collects data to estimate parameters, choosing the independent variables
carefully to minimize the interindependent variable correlations and avoid-
ing the problem of multicollinearity. But persons working with observational
data often cannot avoid high correlations. Thus, if the research person is
really interested in performing linear regression using all his variables,
the results of Section 3 indicate that he may have to collect his data with
extreme vrecision to generate reasonable estimates of regression coefficients.
Suct precise measurement i3 seldom possible.

On the other hand, many studies of observational data do not have a
strong causal basis which dictates a model; in fact, many persons use the
deta and a stepwise regression program te construct a model. The question to
which we address ourselves here is: Would a different model have been as
sensitive to such wminor errors in the data?

As indlcated above, we doubt that many statisticians would approve of
a regression analysis including such highly correlated independent variables.

We have therefor= decided "o try a different model
= + A X €
Y BO + BJXl BDX? + Bh p t

which deletes variables such thal no X 's are correlated higher than .95.
The highest correlation among these variables is .62 between Xl and X5 .
We first fit this regression model without perturbation using the DORTHO

routine. The results are shown in Table 5 which also contains the results

fo§\3he same thousand sets of perturbed data.h

]
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Insert Table 5 about here

First, the perturbed results always agreed with the unperturbed in sign
and in at least the first significant digit. The lowest and highest values
are not far enough apart to change interpretation. The t -statistics
indicate that it is not wireasonable to presume that the solutions from the
DORTHO routine would be the average of all perturbed solutions. The P-lim
row indicates that, in contrast to the six-variable problem, the average
perturbed solution in large samples would be very close to the unperturbed
solution.

We conclude, then, that this model is not affect.d much by minor perturba-
tions of these data. In fact, as we shall see shortly, even very poor programs

compute good solutions to this model.

6. The Program

The question of computational accuracy involves both algorithm and
precision and both must be related to cost. Longley's experiment indicates
that different programs do indeced yield different results, and thus one might
assume that a research person is obliged to use the numerically best progranm
for all problems. Our experiment shows that the eiffects of minor errors in.
the data are greater than differences due to program; in fact, meny of the
coefficients estimated from the poor programs are closer to the mean of the
perturbed solutions than the unperturbed solution. But are we usually in trouble
using less stable programs?

Many numerical analysts prefer the modified Gram-Schmidt method for

regression analysis. The algorithm avoids computing a cross-products
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matrix, thus does not "square" its problems; that is, the condition number of
: the data matrix is the square root of the condition number of “hne raw cross-
prodpcts matrix, thus almost certainly better conditioned. Most packaged
regression programs do compute a cross-products matrix and solve the normal
equations using a maﬁrix inversion subroutine. A1l the programs in Table 3
that disagreed (and some of those that agreed) with the unperturbed solution
tried to solve the normal equations.

Why do programmers fail to use the modified Gram-Schmidt algorithm?
Basically, modified Gram-Schmidt is too expensive for a general program: it
requires a pass over the data for each independengrvariable. The ORTHO
routine is more efficient, requiring only two passes. If all data can be
kept in compuier memory, then the extra multiplications to calculate regression
coefficients required by Gram-Schmidt can be justified, especially if residuals
are to be calculated, but, if the data matrix exceeds computer storage, then
the number of logical rewinds--whether on tape or disk--will ordinarily
discourage programmers and users.

To avoid rewinds, one might use less preferred methods with double pre-
ncision. The Longley paper seems to indicate that double precision does not
help since the IiM doubic rrecision solution was only trivially better than
single precision. However, this finding is not general but due instead to
a subtle bug in the IBEM prograﬁ.b

To investigate the effects of algorithm and accuracy, we have programmed
two subroutines, DLSSQ (Double precision Least §gpares) and WRYLG (the Worst

Routine You are uikely to Get) in addition to DORTHO. The DLSSQ is not a
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"good" program but is about what one might expect in packaged regression
programs. The WRYLG is the single precision version of DLSSQ and is about as
bad a program as one might come upon, excluding those programs with real bugs.
Bugs in programs can usgplly be caught by methods such as those suggested by
Longley (1967) and by Mullet and Murray (1971).

Both DISSQ and WRYLG use fairly standard computing procedures. The
cross-products are computed without subtracting means, The cyross-products

ZXin are centered by the notorious algorithm

N _ _ 2(%, (X, )
ifl (Xij B Xj)(xik B Xk) = ZXiJXik ST TH .

where N is the number of observations and j and k index any pair of
variables. The inverse is computed by the Gauss-Jordan method. Pivoting is
done in order without reordering by size. DISSQ requires that a pivot be
greater than .0l of the original variance; WRYIG requires only that a pivot
be positive, no matter how small. Aside from this, the only difference
between these routines is that DISSQ is in double precision on the IBM 360.

We submitted the unperturbed Longley data no both of these subprograms.
The DISSQ routine agreed quite closely with the desk calculator solution as
shown in Table 3. The WRYLG is not shown in Table > since it could not com-
pute a solution because of a negaitive pivot. In fact, the single precision
representation of the augmented cross-products matrix has a negative eigen-
vaelue and determinant.

The l;OOO sets of perturbed data were submjtted to both DLSSQ and WRYLG.

The DISSQ and DORTHO programs are compared in Table 6. There is an average




of over 7.9 significant digits of agreement for all coefficients. In the

worst case the two programs agree to 4.34 digits. Apparently, the perturba-
tions affect both programs similarly.

A swmmary of the 1,000 solutions by WRYLG are shown in Table 7. WRYLG

rejected the problem because of a nonpositive pivot in fully 65% of the
samples. The analyses that went to completion tend to vary more than those
from DORTHO. As with the DORTHO routine, the coefficient of Xl+ agreed with
the unperturbed solution to one significant digit in about 95% of the cases
in which a solution was produced. We might view this program as poorer because
of the increased variability in results; however, we might also consider WRYLG
superior because it indicated that the problem has no solution in 65% of the
samples.

The six-variable problem is one in which we know that small errors have
major effects, but is the WRYLG adequate for the three-variable problem?
DL3SQ and DORTHO agree to an average of over 13 digits for the 1,000 data

sets where tﬁree variables are used. A comparison of the WRYLG and DORTHO

is shown in the bottom of Table 5. WRYLG and DORTHO agree to an average of

5.5 to 4 significant digits,6 even though the t -statistic indicates that

the average difference is significantly different from zero. The means'aﬁd
standard deviations of the differences, and the largest and smallest differ-

ences, are also shown.
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We summarize, then, that the DLSSQ routine agrees substantially with the
DORTHO routine in every comparison. Single precision routines including WRYLG
are more variable in the poorly conditioned six-variable problem. The WRYLG
agrees with DORTHO to about 3.5 digits on the average in the three-variable

problem.

7. A Perturbation Index

It clearly would be helpful if the standard ou%put of regression programs
included some indicator of the effect of perturbations on the calculated
coefficients. A possible candidate is the list of standard errors or t -tests
of the coefficients; these,however, do not indicate such instability but
rather the instability of the coefficients over repeated sampling of new Y's
for the same X's. Thus the gross instability of the solution might surprise
some researchers.

The instal:lity should not be surprising to numerical analysts.Wilkinson
(1965, 1967" has developed a system of error analysis which places bounds on
the effects of perturbation on calculated solutions due to the finite word
length of computers. The Longley data are so il%—conditioned that the

Wilkinson procedure does not give an error bound even with double precision

on the IBM 360.7 As Wilkinson says

Tt would be more reasonable to ascribe the loss of accuracy in such
a case to be apparent sensitivity of the equations rather than to
speak of "severe accumulation of rounding errors."
Our motivation here is to indicate how much the soluticen can vary due to
perturbations beyond the last supplied d%git even assunming an infinite word

length computer. To do this we first consider the large sample limit of the
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equally likely solutions. This limit, called P-lim in the previous tables,
can roughly be thought of as thas center of the distribution of the equally
likely solutions assuming a large sample size. Since, in large samples,

almost all perturbed solutions are extremely close to this central value, it

is the summary of interest.

Consider the regression model

y =18 + ¢

where y is an N x 1 vector of dependent variables, T is an N x m
matrix of correct values of the m independent variables, B is an mx 1
vector of parameters we wish to estimate, and € is the N x 1 catchall
vectcr for the unpredictable portion of y . Letting X represent the
actual observed data and ¥ the difference between X énd T, we have
T=X+E. Ve assume8 that “he expectation of eacn component of E is

zero and that the individual errors are independent with known variances di :

e(E) = 0, %-e (E'E) =D = "0 , E(E'X) =0
e

I{ we knew the true values of the independent variables the usual least

squares estimator would be
A V-lrl Ny -1 .
B=(r1) "0y = [(Xx+E)' (X +B)] (X +E)y

(X'X + E'X + X'E + E'E]'l(x +EB)'y .

As the sample size N gets larger (N — w) the values of gquantities in the

!

. X
sample approach their population values; more formally, assuming Zﬁ— = cxx’

1
a fixed mx m matrix, and Zﬁx = ny, a fixed m-vector for all N
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) _ -1
. PumB=I[c +Dl7C .
A _ ' - - -1
B, = (x'x) Sy = CoCry -

The difference between éx and P-lim é is an indicator of the effect

of the error perturbation on the calculated solution. This difference is

A A -1 -1
B, - P-lim B = cxxcxy (cxy + D) cXy
-1 -1,
- [Cxx - (Cxx + D) ]bxy

o Le
XX XY

(1 - (1 + clp)™

- -1 =194
(1 - (1 + CXXD) ]Bx .

Ip-0  , then B = p-lim B. If ¢

. . 11t "
If the matrix Cxx o wx 1S small

~

compared to I ,-then E&% P-lim B. The phrase "small compared to I"
really means that all of the eigenvalues of- C;iD are close to zero. The
largest eigenvalue of a matrix is commonly used to measure its size and is
called the "spectral norm." A simpler measure is the trace of C;iD, which
equals the sum of the eigenvalues which are nonnegative because Q;i is
positiv§ and D is nonnegative. If the trace of C;iD is substantially

less than 1, we can be confident that Bx = P-lim ‘é because the largest eigen-

value must be substantially less than unity. Equivalently, if the "perturbation

index"
PI = tr(c'lD)
XX

Now the usual least squares estimator éx based on the obsérved values is
1
is substantially less than 1, we can be confident that the effect of perturba- |

tion error on the computer -lution will be small,especially for large N . i
Q
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Alternatively, the perturbation index can be written

mo . m L.
PT = £ Ciid. =N £ (x'x)¥a.
=1 = !

where Cii and (X'X)jj are the diagonal elements of C;i and (X'X)-l,
1
(1 - RrY)sS
44
where sj is the marginal variance of Xj and R? is the squarggtwg;tiple

respectively. The diagonal elements of C;i can be written C;i =

ey

correlation between Xi ahd all the other X variables.9 Since I is a

1

diagonal matrix with elements dj ;s the diagonal elements of C;iD are
d./s?

1 - R,
( J

.

5.0 and hence the perturba“ion index can be written

)

— J

PI =
j=1 (1 - Ri)

m d./s?

[}
The numerator of each term of PI , dj/sg ; 1s the ratio of the rounding

™,

error variance to the marginal variance. The denominator of each term of

PT , 1 - R? > has been standard output for some time in some regression
routines as a measure of collinearity.lO The caiculation of the order of
magnitude of PI 1is trivial given an estimate of the original rounding error

variances and either the diagonal of the inverse matrix, or the marginal vari-

ances and collinearity indices. f&y\
Since in our experiment the random numbers were rectangular, the value
1 for which the value was 1/1200.

To compute the P-lim solution for the Longley problem the values of Ndj

of dj was 1/12 for all variables except X

were added to the diagonal of X'X before using the DLSSQ regression sub-

program. The results are shown in Tables 4a and 6. Although the P-lim solu-

tion is much closer to the center of the distribution than the unperturbed

2,2’
)
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é

sclution, it 3s still significantly different from the mean of the perturbed

solutions in all coefficients; perhaps this is not surprising because N = 16
is rather small for our assumptions.

The values of (X'X)jj and dj , and the collinearity indices for both
the three- and six-variable problems are shown in Table 8. The perturbation
indices are 2.86 x lO-5and 2.9777 respectively.

We note in the three-variable problem that nore of the indiviiual

»
s very small.

elements of the perturbation index are larger than lO_i which 3

in the wnrtable six-variable problem, the component associated with variable 6

is mach greater than unity so that we would expect instabilitv. e reran the

problem excluding variable 6with the results that the pertu;ied and%he ordinary
& |

least squares solutions agreed to at-least three decimal places and all the

components of the perturbation index became small.

8. Summary

The purpose of this paper has been to show that regression coefficients
can fluctuate wildly as a function of seemingly minor errors En “he data as well
25 by choice of algorithm, precision of the computer program or the model

indeed, under the assumptions stated above, computations using very high

-2

zoceuracy may resull in a solution very unlikely to be close to the most likely
solution. fhe results of these experiments are summarized in Table Y.

The first line in the table compares the regression solution with three

vazriables Lo Lhe solution with six variables. The marked oirfect ot the

&




. (

. A . . .

additiod®of highly correlated independent variables should be no surprise
’ J

to statisticians. In none of the seven coefficients was there a single

significant digit of agreement. Two coefficients, B

o and, Bl ’ d}ffered

by orders of magnitude. Since the three-variable model assumes that the
coefficients B? s 85 , and B6 are identically zero, the number of digits
of agreements for these is exaclly zero.

Then the thousand perturbed solutions using DORTHO were compared with
the unperturbed solutions for both the three- and six-variable problems.
The perturbations affected the regression coefficients after the second

significant digit for the three-variable problem. For the six-variable

“Ei provlem, no regression coefficient averaged a single significant digit of

agreement with the unperturbed solution. Three coefficients averaged differ-
ences in orders of magnitude. The effect of perturbation is, therefore, very
serious in the highly collinear six-variable model.

The next comparison is between the DORTHO algorithm and the DLSSQ algorithm,
both of which are double precision. The same thousand perturbed sets of data
were given to bo’h programs and the results compared. We note that the algorithms
agreed to an average of over 12 significant digits for the three-variable problem
and over 7 significant digits in the six-variable problem. We conclude, therefore,
that the choice of algorithm is not important if sufficient precision is used.

The last compariso1 is between the double precision (DLSSQ) ard single
precision (WRYLG) lcasi squares algorithms. It is clear that precision must

at some point affect a solution. For the three-variable problem, the effect

of single precision versus double precision was, on the average, after the third
place or approximately an order of magnitude less than the effect of perturbation.
For the six-variable problem, 60 solutions were rejected because of negative
pivots, and the remaining %90 comparisons of sets of regression coefficients did
not avecrage & single significant digitof agreement; in fact, four coefficients

were off by an order of magnitude.
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We cannot know what the "true" solution to the Longley problem is, but it
is clear that the use of stable algorithms and high precision is not likely
to yield a valid answer without more accurate data. If data are sufficiently
accurate, then the additional labor of special algorithms may befworth the
trouble,'but we feel that in many cases the attempt at estimating regression
coefficients in highly collinear problems cannot be justified statistically.
We propose that the perturbation index discussed in section 7 be used

routinely to indicate the existence of severe instability in regression
£ .

solutions.

i

- ’

‘4
|
|
|
|
|
|
|
|
|
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Footnotes

lHowever, moderate simple correlations do not guarantee good
conditioning.

eThe uniform pseudo-random numbers were produced by a double precision
Tausworthe (1965) generator.

5The ORTHO algorithm which Longley found most satisfactory for fixed
word-length computers was programmed to investigate the Longley data. Our
subroutine is called DORTHO and is programmed in double precision for the
IEM 360/65. Although the algorithm is classical Gram-Schmidt in nature, it
avoids numerical instability by a second-stage correction. » DORTHO produces
regression coefficients that agree with Longley's hand czlculated solution
in every published place. We have been very careful in coding this routine
since we wish there to be no question about its accuracy, even though the
following arguments cal.s for belief in only one or two significant digits.

2hl’he lines involving WRYLG will be discussed in the next section.

5The IBM solution was computed with two programs (CORRE and MULTR) in
the IBM Scientific Subroutine Package (SSP). These subroutines were designed
for single precision (24-bit mantissa), but the comments in the program
instruct the user that, to make the routine double precision, one need only

make some arrays double precision. A statement using one of these arrays is
R(JK) = R(JK) + D(J)*D(K)

where R 1is a double precision matrix in which sums of square¢s and cross-
products are accumulated and D(J) and D(K) are single precision data.
Unfortunately, in IBM FORTRAN the product of two single precision numbers

is a single precirion number, thus FORTRAN compiles instructions to multiply
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D(J) by D(K) , then truncates the product to single precision; since

the sum of single precision and double precision addends is double precision,
the program fills out the least significant part of D(J)*D(K) with zeros
before adding. These sums of squares and products are, of course, but little
better than single precision. This FORTRAN idiosyncracy could have been

avoided by the statement
R(JK) = R(JK) + DBL(D(I))*D(J)

and the resulting regression solution would have been considerably closer to 1
Longley's.

6We have used the method of calculating significant digits suggested by
Jordan {1968) and used by Wampler (1970).

7To compute the Wilkinson error bound the quantity

e'tn'Sk(A)

must be less than unity, where t = 56 is the number of bits in the mantissa
of a computer word, n =7 is the number of equations being solved, and
k(A) = 2.361 x 1019 is the spectral norm. For this problem the result is
approximately 8.7. 1
8Note that these assumptions correspond to the Berkson case (seq Berkson,
|
1

1950, or Cochran, 1968) and are not the usual assumptions of errors of 1

measurement (see Lord & Novick, 1968 or Cochran, 1968).

Actually this relation hole¢s only if the vector of constant ones is 1
included (i.e., if the regression plane is not forced through the origin)
and does not hold for the diagonal corresponding to the constant variable.

2 .
More generally, sj should be interpreted as the raw sum of squares ° Xj
\

and Rj the cosine of the angle between Xj and the hyperplane spanned- ‘

1

by the other independent variables.
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loThis index is called tj by Longley. We note that this index is 4

also subject to computational error but our numerical experiments indicate

that such error is not important.

L A

=
T

o
g
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TABLES

Four Variable educed Model

&
By B B, b,
DORTHO 30393.4125 358.0758 -1.0725- -.8165
.
— =5
WRYLG 30389.23uk 398.1814 -1.0735 -.E17k
Mean 30393.6397 39€.06705% -1.072% . =0.806k
Hedian 30393.2430 398.0951 -1.0725 ~G. 8164
Standard Daviation 32.2601 0.5L18 0.0056 S L,
w Lowest Value 30289.7507 166.2621 -1.0804 =a.hak0
5 R —
i rrghest Value 30486. 0691 399.7687 -1.0532 AT
- i . -—
2 Fercent# } !
rerce N . 100,71,
- - Apreement : 100.0 100.0 oA
: T : - -
t-salue for ! i
roansunieriurbed L2226 -.3092 i - 477 LT ;
: ¥
R 36393.979L 398.06L7 i -1.072L R
! .
: i t=value Cor ; ! ‘\\"
- . a v - - N . - 25 ’
! ZaunsP-11m ; .3328 L3384 i 3921 i !
G ez g e e - § - :
tean ; 0.7602 -0.0043 i -0.0001 SRR :
| ——
= ; ! '
B Stendard Deviatidn i 3.03%1 5.0806 i 0.000; | o
k] | H ! —
P - ! ;
B aryest ! i '
- g Negative ! -8.9499 -0.1961 i ~5.0027 : - ‘
£ 3 Mileraence ) a i, {
T RY] ! '
R b .
TR ; '
4 3 lzargest | i : .
3 © Positive : 9.9655 0.1873 | 0.03.7 ' ) '
L Difference | § !
SO 1
~ i N
Y D 1 1 ——
z |
E‘) Avg. Number ! .
3 of Agresing ! h. 2386 ; L.06L6 . 2 584¢) : PP
i < gig. Dig. ! , i
s L
t=value ‘or ! . 4
meun differonce=0 7.906 ! -2.2L3 N -6.320 .t
! { ! .
€
|
4
|
|

ERIC

Aruitoxt provided by Eic:




- e

-36-

&
S1181q
7700° L 2975 9L69°9 LTOR"9 ggnl n 604E " c189'9 | IUBSTITULTS
1S9Ma g
'3t 318
£69L° L 6n1e g GGLS 8 6250°¢Q QGeEL L LIT6° L T™eEL L Jo
# Bay
g T Sg g tg g T g

000T=N
BSSIA PUT OHIYOd JO uostaeduod

9 314vL

O

Aruitoxt provided by Eic:

[E




*3TJTp SUO 3S®IT 3B O3 UOTANTOS paq.maIodun Y314 933188 qvY3 SUOTINTOS palvTnoTHd 0SE 30 3u30x3d OYLww
*30ATd sATa1soduou B 64 9P p23ddlfox atoM saTdums 049y

T
9g°c 000 €Nt 66 000 00°0 ! 00°0 00e # 3 3UBWISIBY
UIDIBG

8R96°60n9e | 6£64° 0~ 65600~ 996€ ' LL €L9)'9 §4n9°96- 0102 006%E anTes 3SOYITH

£EQn "9 06/ L6~ STT0" He- N9t o~ 950070 Sogn " 0ggTe- unnnngnez oo aNTBA 352407

-5

080T %452 | LITL'Y 6965 T 26966 ST6R" 0 9656 6T9T STLg lodgnen ., UOT4BTABG PIVPUEIS

s9se-6ge 998T "1~ §999°0- eleeo 88eT" 0 9egeeee- 1812968198~ ueTpap

f4
$068 " Leg - g€09- 2~ 9€6g° 0~ Loyt gnEe o goTL" L6G~ THET QOogLET = uvapy

g Sg g g 2 g Og

»06E=N
DTXUM !

B¥3B(Q PIQINGIAG ATQBTABA § UO quamyradxy ﬂwqﬂuon:~\uo s1TNSaYy

~

L aays ///

pat S

Aruitoxt provided by Eic:

[E ©




TABLE 8

Perturbation Indices

Diag[(X'X)_l] a,

Diag(x'x)‘116di

Four Variable Reauced Model

3, .7569 x 10t 0

3 12092 x 1072 IE%B 2789 x 107"

3, .2259 x 1076 3%; .3011 x 10~

3, .3193 x 1076 3%? 4256 x 1070
Diagl (x'X)™1] a, Diag(X'X);ll6di

Full Model

B, .8531 x 107 ¢

B, 7759 x 107 5o L1034 x 107 |

B, .1207 x 1077 'I%' .1608 » 107 ’

By .2567 x 10'5’ E%" .3422 x 1077

B), .4oko x T 'I%_ 6586 x 107°

Bg .5499 x T E%" .T331 x 1070

B .2232 x 107 = .2976 x 10°
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