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Abstract

The stepped-up reliability coefficient does not have the same

standard error as an ordinary correlation coefficient. Fisher's z -

transformation should not be applied to it. Appropriate procedures are

suggested.
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The stepped-up reliability coefficient R considered here is given

oy the familiar Spearman-Brown formula

R -
1 + r

2r
(1)

where r is the observed product-moment correlation between two supposedly

parallel sets of measurements X
1

and X
2

; or, perhaps better, where r

is the maximum likelihood estimate of their correlation under the assump-

tion that X
1

and X
2

are bivariate normal and have equal population

variances (Jackson & Ferguson, 1941, eq. 85). Of course, R is the esti-

mated reliability of Xi + X2 . Although R is an estimate of a product-

moment correlation'. coefficient, it is not itself a product-moment cor-

relation and consequently does not have the frequency distribution and the

sampling variance of a sample product-moment correlation.

For either definition of' r , assuming bivariate normality, as we

shall throughout, the large-sample variance of r is

Var r = (1 - p2)2/N , (2)

where p is the population correlation. The large-sample variance of R

is easily found from (1) anU (2) by the "delta" method (Kendall & Stuart,

1958, section 10.6) to be

Var R = 4(1 - P)2/N (3)
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where P = 2p/(1 + p) is the population value of R . Kristof (1963)

has shown the exact sampling variance of R to be

2 4(N - 1)(N - 2)
(1 - P)

2
a
R

(N - 3)
2
(N 5)

Since R is not normally distributed in samples of typical size,

research workers sometimes apply risher's z -transformation to R and

assume that the transformed value has a variance of 1/(N - 3) regardless

of the value of P . This is incorrect. The large-sample variance of .

zR E -glog(1 + R) - log(1 - R)) is found to be 4/N(1 + P)2 This is

almost always larger than 1/(N - 3) . It is not independent of P .

The variance-stabilizing transformation for R can be found from (3)

by a standard procedure (Kendall & Stuart, 1958, Exercise 16.18;

Eisenhart, 1947):

_1

Z = f.(N Var R) 2 dP

R

1 dP
2f 1

. -1 R) .
(4)

The large-amLlc variance of Z is 1/N , as required, regardless of the

value of P . Rewriting Z in terms of r shows, as should be expected,

that
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2r
Z log(1 - )

= 2[log(1 + - log(1 - , (5)

which is siLoly Fisher's z -transformation for r . Conclusions reached

from a study of suitably transformed R must be the same as those from

a study of suitaoly transformed r .

Kristof (1964) has given a large-sample, likelihood ratio test for the

case where just two values of R are to be compared. Where tqo or more

values of R are to be compared, they can be transformed by (4) or (5)

and each treated (possibly in an analysis of variance) as normal with vari-

ance 1/(N - 3) . This procedure will have good properties in samples

of moderate size, at least in the case where r is the sample product-

moment correlation, since such properties have been demonstrated for

Fisher's z -transformation. This procedure might be applied, for example,

to data studied by Traub and Hambleton (1972).
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