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Polynomial conjoint analysis of similarities:

A model for constructing polynomial conjoint

measurement algorithms. 1

A model permitting construction of algor-
ithms for the polynomial conjoint analysis of
similarities is presented. This model, which

is based on concepts used in nonmetric scaling,

permits one to obtain the best approximate sol-
ution. The concepts used to construct nonmet-
ric scaling algorithms are reviewed. Finally,

examples of algorithmic models for nonmetric

scaling, multidimensional unfolding, conjoint

measurement, factor analysis, subjective expec-
ted utility, and the Bradley-Terry-Luce choice
problem are presented.

In his paper on polynomial conjoint measurement, Tversky

(1967) indicated that one of the important unsolved problems

faced by his and similar measurement models is-the construction

of algorithms for obtaining numerical solutions commensurate

with the model. It is the purpose of this paper to indicate a

general solution to this problem.

The first section of this paper presents a brief review of

the polynomial conjoint measurement model proposed by Tversky.

In the next section, it is noted that the piob2e;1t of algorithm

construction has been solved for one polynomial conjoint

1. This report was supported in part by a PHS research grant No.
M-10006 from the National Institute of Mental Health, Public
Health Service, and in part by a Science Development grant,
No. GU-2059 from the National Science Foundation. The author
is indebted to Lyle V. Jones and Amnon Rapoport for their
critical readings of this report.
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measurement model, the nonmetric multidimensional scaling model.

A thorough review of the concepts of nonmetric scaling algorithms

is presented, and it is proposed that the same concepts can be suc-

cessfully adopted for a wide range of polynomial conjoint measure-

ment models. In the next section of the paper a model permitting

the construction of algorithms for polynomial conjoint analysis

is presented. In the final section several examples of specific

submodels are presented.

Polynomial conjoint measurement.

Tversky (1967) noted that one of the goals of scientific

investigation may be regarded as the decomposition of complex

phenomena into sets of basic factors according to some specified

rules of combination. When the factors can be measured indepen-

dently one desires to account for their joint effects by the

appropriate combination rule. It is often the case, however,

that the factors cannot be measured i.dependently, and that only

the order of their joint effects is known. In this case it is

desirable to be able to simultaneously reduce the complex phen-

omena to its basic factors and to obtain a measurement of these

basic factors such that the combination of the a:actors accounts

for the order of the observations. This is the conjoint mea-

surement problem, and the combination rule is known as the con-

joint measurement model.

In particular, a data matrix meets the requirements for

polynomial conjoint measurement. if some monotonic transformation

of the data matrix can be decomposed into several factors. The
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decomposition rule must be some specified series of sums, differ-

ences, and products of the factors themselves. Such a decompos-

ition rule is called a polynomial function.

In his paper, Tversky investigated the necessary and suffi-

cient conditions under which a data matrix can be represented by

a polynomial conjoint measurement model. It is not the purpose

of this paper to delve into these conditions, but rather to pre-

sent a method for measuring the factors and their effects, con-

ditions permitting. If the conditions do not permit such mea-

surement, then the method to be presented obtains a least

squares estimate of the measurements and their effects, as well

as providing information concerning the accuracy of the estimates.

In his paper, Tversky (1967) presents several examples of

polynomial conjoint combination rules. These rules include the

Hullian and Spencian performance models cited in Hilgard (1965),

the Bradley-Terra -Luce choice model (Luce, 1959), the subjective

expected utility model (Savage, 1954), and the nonmetric multi-

dimensional scaling models (Coombs, 1964; Shepard, 1964). For

one of these models, the nonmetric multidimensional scaling

model, the computation problem has been thoroughly investigated

(Guttman, 1968) and several computer programs exist (Kruskal,

1964; McGee, 1966; Lingoes, 1965; Young, 1'168). The relationship

between several of the algorithms has been investigated by Young

and Appelbaum (1968).

It is the hypothesis of this paper that the general approach

to construction of algorithms for nonmetric multidimensional

scaling may also serve as an approach for constructing algorithms
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for polynomial conjoint analysis. In fact, the former is a

special case of the 1-Lter. When the method for constructing

algorithms for nonmetric scaling is understood, and when the rela-

tion between nonmetric scaling and polynomial conjoint analysis

is understood, then it is clear what steps must be taken to

generalize nonmetric scaling algorithms to obtain polynomial

conjoint analysis algorithms.

Nonmetric scaling algorithms.

In 1962 Shepard introduced the first algorithm for nonmetric

multidimensional scaling. He stated that the goal of this anal-

ytic method was to derive the metric structure of an unknown con-

figuration of points in a Euclidian space of unknown dimensional-

ity on the basis of nonmetric information about the proximity of

the points. That is, Shepard's method attempted to simultaneously

convert the proximity measures into Euclidian distances, and to

obtain the coordinates underlying the distances. In polynomial

conjoint measurement terms, the Shepard method, by applying a

Euclidian combination rule, obtained the factors (coordinates)

whose effects (Euclidian distances) were monotonic with the prox-

imity measures. In matrix notation, Shepard's developments can

be expressed as

S
m
= D = f (X) , (1)

where S is the symmetric matrix of proximities between E points,

D is the p-order symmetric matrix of Euclidian distances, and X

is the rectangular matrix of r-dimensional coordinates with E

rows and r columns. The symbol = is used to indicate that the

matrix D is monotonic with the matrix S. That is, if sij ..>s ,

kl

5
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then dij-
-cikl* As indicated in the equation, matrix D is related

to the matrix S through ti-.e function f. The function is the

Euclidian distance function, and is performed on corresponding

elements in all pairs of rows of X. The function is defined as

1/2f(X) = (x. -x. ) , for i,j=1,..,p
a=1

la ja (2)

Notice that for Shepard's developments the monotonicity

requirement is actually a weak decreasing monotonicity require-

ment. That is, his requirement is weak in the sense that two

distances may equal each other even though the two corresponding

proximities do not, and his requirement is decreasing in the

sense that smaller distances correspond with larger proximities.

The analysis of proximities, as represented by equations

(1) and (2), served as the basis for the development of a method

by Kruskal (1964a; 1964b) which became known as nonmetric multi-

dimensional scaling. Perhaps the most important difference

between the two methods is that Kruskal desired to obtain a

matrix of distances that was a least squares fit to a matrix

representing a monotonic transformation of the similarities.

Notice that this differs from the Shepard approach by introduc-

ing an objective definition of the best. solution. As a by-pro-

duct of objectifying the definition of the best solution, Kruskal

found it necessary to introduce a new matrix. This matrix,

called the matrix of disparities by the current author (Young,

1968b), allowed Kruskal to perform computations on numbers which

were 1.onotonic with the similarities without actually violating

6
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the ordinal assumptions about the similarities.

A second important difference between the Shepard and

Kruskal methods is that Kruskal generalized his definition of

the distance function to include all Minkowski spaces. The

fimiliar Euclidian space is a special case of the more general

Minkowski space, as is the "city-block" space used by Attneave

(1950) .

In matrix notation, Kurskal's developments can be expressed

S En-- 6 =*--' D = g(X)
(3)

where 6 is the matrix of disparities (symmetric with p rows and

columns) , and where the symbol = indicates a least squares

approximation. The matrix D is related to the coordinates X

by the function 2. This is the Minkowski distance function and

is defined as

g(X) = i
3

(x.
a ja
-x )

[

1/c
, for i, 3=1,2,...,p, (4)

where the function is defined for corresponding elements in all

pairs of rows of X, and where c is the Minkowski constant such

that c 1.

In summary, nonmetric scaling, as represented by Kruskal's

developments, allowed the analysis of similarities in any

Minkowski space, such that the best possible monotonic trans-

formation was obtained. In polynomial conjoint measurement terms,

Kruskal's nonmetric scaling, using a combination rule defined by the

Minkowski distance function in equation (4), was able to



(7)

simultaneously obtain the factors (coordinates; and their effects

(Minkowski distances) such that the effects were monotonic with

the data matrix (similarities).

Following Kruskal's developments several investigators have

introduced analogous methods of analysis (Lingoes, 1965; McGee,

1966; Young, 1968a). An extremely thorough discussion of the

general considerations for constructing nonmetric scaling algor-

ithms has been presented by Guttman (1968). The relations among

several of the methods have been discussed by Young & Appelbaum

(1968) .

In the next section of this paper it is shown how equations

(3) and (4) can be generalized in order to apply the well under-

stood methods of nonmetric scaling algorithms to polynomial con-

Mint analysis of similarities.

Polynomial conjoint analysis of similarities.

The model for constructing algorithms for polynomial conjoint

analysiE of similarities iwrolves two fundamental generalizations

of the nonetric scaling model. One of these generalizations in-

volves modifying the function relating the matrix X to the matrix

D, and the other generalization involves removing the restriction

that the matrix S be a symmetric matrix.

Analysis of rectangular macx'.ces. The key to understanding

the generalization of the method co include rectangular matrices

is the concept of a supermatrix. It will prove useful to re-

write equation (3) in supermatrix notation as
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S
11

I S
12 I'll 1 `\12

D
11

1 D
12

I m I = I =-

I I

S21 A D
21 1

D
2221 1 22 21 1 '22

. ( 5 )

That is, we are re-defining the matrix S of similarities as

being a supermatrix, and in a parallel manner are re-defining

the matrices A, D, and X as being supermatrices.

Consider each submatrix in equation (5). The matrix S11

contains the similarities of one set of stimuli, let us say

set 1. Notice that the similarities are of the stimuli within

set 1. The matrix S
22 contains parallel information for the

stimuli within set 2. Bcth these matrices are necessarily sym-

metric. We will denote the number of rows and columns in S
11

as El, and the number of rows and columns in S22 as E2. Turn-

ing our attention to the matrix S12, we notice that it contains

similarities between stimuli in sets 1 and 2. This matrix is

rectangular with El rows and p2 columns. We note that S21 is

simply the transpose of S12. The same relationships hold for

the matrices of disparities and distances. In a corresponding

manner, the matrix Xi contains coordinates for the stimuli in

set 1 and X2 for the stimuli in set 2. X1, therefore, has El

rows and r columns, and X2 has E2 rows and r columns.

The final step in generalizing the Kruskal model to in-

clude the analysis of rectangular matrices as well as symmetric

matrices is to assume that there is no information concerning

9
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the similarities within sets 1 and 2. On the basis of this

assumption we write

X
m

, 1S = ., = D = g12 12 12 X
2

(6)

t

where S
12

is a rectangular matrix of similarities which is mon-

otonic with A
12' the rectangular matrix of disparities. The

matrix 112 is, in turn, a least squares approximation to D
12

,

the rectangular matrix distances. The distances in D12, in turn,

are between the points in set 1 (whose coordinates are repre-

sented by X1) and those in set 2 (whose coordinates are repre-

sented by X2). The definition of the function 2 is slightly

modified so that each row in Xi is compared with each row in X2:

we denote the new function g' and it is defined as

g' (X) =
a=1
y

la ja
c

,

i = 1,2,...,1
(x. -x. ) for (7)

j = 1,2,...,2

r

It should be noted that by applying function 2 as defined by

equation (4) to the submatrix Xi we obtain

D
11

= g(X
1
), (8)

and applying it to X2 we obtain

D.
22

= g(X
1

) . (9)

Let us look at matrices X
1

and X
2

for a moment. Both

matrices have r columns corresponding with the dimensionality

of the space the analysis is being performed in. The number of

rows in X1 corresponds with the number of rows in S12, whereas

la
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the rows of X
2

correspond with the columns of S12. That is, the

matrix X
1 may be thought of as representing the row effects of

data matrix S12, and X2 represents the column effects of the data.

Note that X
1
and X

2
must be of the same dimensionality and are

determint:d up to a joint unit and rotation.

In summary, the matrices Xi and X2 are combined, through the

operation j', to produce the matrix D12. D12, in turn, is a

least squares fit to 612, given that 612 is perfectly monotonic

with the data S12. The monotonicity restraint may be either in-

creasing or decreasing and is weak. The matrix Dii is related

to X1 by the operation 2, and D22 is related to X2 by the same

operation 2.

Generalized function. The second generalization of the non-

metric model is to relax the function relating the matrix D of

distances and X of coordinates. The revised function is denoted

h for symmetric cases, and is defined as

h(X) = hi(h2(xi.,xj.)), for i, j=1, 2, ...,p, (10)

and for rectangular cases is denoted h' and is defined as

i=1,2,...,p1
h' (X) = hi (hpxi.,xj.)), for (11)

j=1,2,...,p2

where the notation x. is used to indicate the entire i'th rowi.

of X.

The entire illodel for the polynomial conjoint analysis of

similarities can be represented, for the symmetric case, by the

equation

S T 6 = D =h(X), (12)
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where h is defined by equation (10). For the nonsymmetric case,

the model is represented by the equation

m
= 11S = D1212 12

X1

X2
(13)

where h' is defined by equation (11). It should be noted that

the function h' can also be applied to Xi and X
2

in the rectangu-

lar case, giving us

and

D
11 = 1-0(X

1
)

D
22 = h'( X2)X2

(14)

In summary, for symmetric analyses the matrix X contains

the coordinates (or factors or dimensions, etc.) whose distances

in the space defined by the function h best reproduce the order

(or the inverse of the order) of the entries in the data matrix

S. For rectangular analyses the matrix Xi contains the row

coordinates (or row effects or row factors, etc.) and the matrix
X
2 contains the column coordinates (or column effects, or column

factors, etc.) whose between-set .stances in the space defined

by the function h' best reproduce the order (or the inverso of

the order) of the entries in the rectangular data matrix S12.

Specific Submodels of the General Model

The function h relating the matrices D and X is too general

to be of immediate interest. It is possible, however, to make

specific assumptions concerning the functions hi and h2, gener-

ating what will he called specific submodels of the general model.
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Snme examples of a few familiar submodels are presented below.

Euclidian scaling. The submodel for standard Euclidian

nonmetric multidimensional scaling is obtained by assuming

and

h
1
(h

2
) = [1-1

2
J

1/2

r
h
2'
(x.

' j
) = (x. -x

ja
,x. )- I.. la

a=1

With these assumptions equation (10) becomes the familiar Euclid-

ian distance function prc:I.ented earlier as equation (2). This

submodel corresponds directly with one of the programs of Guttman

and Lingoes (Lingoes, 1965), and with the program presented by

McGee (1966).

Minkowski scaling. The submodel for nonmetric multidimen-

sional scaling in any Minkowski space is provided by assuming

and

h
1
(h
-2

) = [h2 ]
1/c

-

h,(x. ,x. ) = X. -x. lc- 1. 3. la jaa=1

where c is, as before, the Minkowski constant. With these as-

sumNions equation (10) becomes the Minkowski distance function

presented as equation (7). This submodel corresponds directly

with the model proposed by Kruskal, and with the program pre-

pared by Young and Torgerson (1967). One of the important

Minkowski spaces which has been used in psychological research

is the city-block space corresponding with a Minkowski constant

of 1. Attneave (1950) has reported some analyses using this

space.
e.")

1 0
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Multidimensional unfolding. The rectangular version of the

Euclidian nonmetric multidimensional scaling submodel corresponds

with the multidimensional unfolding model proposed by Coombs

(1964). The submodel is obtained by assuming

and

1/2
h1 ' (h) = [112 1]

r
2

h2
,

x. ) = X (x -x. )2 1. 3. la ja
a=1

With these assumptions equation (11) becomes a Euclidian distance

Inction between two sets of coordinates. This function is the

proposed by Coombs, and corresponds with the program prepared

by Lingoes (1966), and the program written by Young (1968a, 1968b).

Minkowski unfolding. The rectangular version of the Minkow-

ski nonmetric multidimensional scaling submodel generates a model

which would logically be called a Minkowski unfolding model.

This submouei is obtained by assuming

and

h'
1

(h'2 ) = Lh'
1/c

2

r
11,1, (x ,x. ) = X lx. -x. I

c
1. 3. la jaa=1

The author is unaware of anyone having proposed this model, but

the program by Young (1968a, 1968b) is capable of performing

analyses based on this model.

Dominance metric. In the area of discrimination and gener-

alization several different models have been presented to account

14
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..,

for response generalization when the stimuli are multidimensional.

Some of these models are discussed by Cross (1967) and, as he has

pointed out, they correspond with differing Minkowski spaces.

One of the lodels corresponds with the Euclidian scaling model,

and another corresponds with the city-block model discussed

earlier. A third model, which Cross calls the dominance model,

corresponds with a Minkowski space with infinite Minkowski con-

stant. In a dominance space the distance between two points is

defined as being equal to the largest of the absolute differences

between the coordinates. In the terminology being used here, we

would define the dominance submodel as

and

h (h ) = h
1 2 2

r
h (x. ,x. ) = max (2 1. J. Ixia-xjal)

a=1

where the vertical lines indicate absolute value. No computa-

tional method has been proposed for this model, to the knowledge

of the author. However, with the Kruskal model, several avail-

able programs will provide essentially equivalent results by

using a very large number for the Minkowski constant.

Conjoint measurement. Luce and Tukey (1964) have presented

a powerful measurement model which they refer to as the conjoint

measurement model. This is basically an additive model and it

can be represented as the specific submodel
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(h' x. ,x. ) = x. +x.2 3. 3 il 31

Two programs exist which can perform analyses according to this

model, one written by Tversky & Zivian (1966), and one by Lingoes

(1968) .

Polynomial conjoint measurement. A subset of the models pro-

posed by Tversky may be generated from our general mcad by de-

fining the submodel

and

h' (h2) = [hu] b1 2

r
W.,

a=1
(x. ,x. ) = 1 (x. +x. )

c2 J. J. la ja

where b and c are integer constants. In this case, equation (11)

becomes

dij. . =
r

c
1 (x.

la
+x.

3aa=1

b

(15)

The submodel represented by equation (15) is actually a class of

submodels, with different submodels generated by different sets

of assumptions concerning the constants r, b, and c. A few

examples follow.

If we assume that r = 1, b = 1, and c = 2, then we see that

dij = xii2 ,
1
...xiixji 4. xii

2
l

which is simply the quadratic function of two variables. If we

assumed that r = 1, b = 1, and c = 3, then we would obtain the

formula for the cubic function of two variables. If, on the

other hand, we were to assume that r = 2, c = 1, and b = 2, we

1$
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would obtain a comp]ex power function of four variables. It

should be clear that by the correct selection of the parameters

b and c we can determine the degree of the polynomial under con-

sideration, and that by changing the value of r we can modify

the number of variables in the equation.

Nonmetric factor analysis. Several nonmetric analogs of

factor analysis have been proposed (Shepard 1962; Lingoes, 1967b).

One possible analog, differing from those presented earlier,

will be presented here. This is specifically an analog of the

Tucker and Messick points-of-view model (1963) as discussed by

Cliff (1968) and Young and Pennell (1967) . If one defines the

submodel as

N. (.11.2) = 1...1-'2

and

h2-2

then equation

,x. ) =
1. 3.

(11) becomes

r

1 (x. x. )

la 3aa=1

r
d.1 = (x. x.

3a
)

3 laa=1

or, in matrix terms,

D = X X'
1 2

i

This corresponds with the Tucker and Messick model which involves

the matrix equation (using our symbols)

D = X
1
rx'

where r is a diagonal matrix of weights.

17
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Subjective expected utility. According to the subjective

expected utility model (Savage, 1954), when a subject chooses

between two gambles he makes his choice by maximizing the sub-

jective expected utility of the choices. The subjective ex-

pected utility of a gamble is equal to the sum, over the var-

ious choice objects, of the product of the utility of an outcome

and its subjective probability of occurance.

For this submodel one defines

hi = h'
1 2 2 '

and
r

h2
1(x. .

,x. )
j

) = 1 ix. x. laa=1 ja

where there are r outcomes for each gamble, and where the xi

represent the utilities and the x. the subjective probabilities.
J

It should be obvious that the nonmetric analog of the factor

analysis model and the subjective expected utility model are

formally identical.

Bradley-Terry-Luce choice model. This model (Luce, 1959)

specifies the relation of choice probabilities when two choice

objects are presented to the scale values of the objects. The

model states that

p(c,d) v(c)

v(c) + v(d)

where v(c) represents the scale values. The ordinal version of

this model can be written

p(c,d) < p(e,f) <=> v(c) - v(d) < v(e) v(f) .

In the terminology used.here, if we assume

18
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hi = h'
1 2 2

1-1(xi.,xj.) = xil xj1 ,

dij = xii xji ,

where d
13.takes on the role of the choice probability between

objectsiandi,andxn,ndx.31 are the scale values of those

objects. It should be noticed that this is eqt.valent to a one

dimensional Minkowski metric.

Conclusions

On the basis of notions fundamental to nonmetric multidi-

mensional scaling, a model has been developed which indicates

a method for constructing algorithms for the polynomial con-

joint analysis of similarities. It has been shown that this

model includes, as special submodels, several of the common

forms of nonmetric scaling, many of the forms of polynomial

conjoint analysis, and several popular choice models. It

should be obvious that, with the proper specification of the

functional relationships indicated by equation (10) or (11),

a great range of polynomial conjoint models is possible.

Perhaps one of the major advantages of the model presented

here is that it provides a means for minimizing the comp2ex

functions represented by equations (10), through (13). The

iterative minimization algorithms used in nonmetric scaling may

be applicable to this new model. In a subsequent paper, an



I

r

(19)

objective definition of what is meant by a "best solution" will

be presented, along with a definition of a combination rule

including a wide range of useful polynomial conjoint measurement

submcdels.
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