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ABSTRACT

This study involved an investigation of the use of Pearson r, tetra-

choric r, 15 /./6
ax, and Kendall Tau-B coefficients as measures of association

for the incomplete principal components analysis of simulated Likert scale

attitudinal data, based on a known factor pattern and possessing different

types of severe departures from normality. The results suggested that

in addition to being based on few assumptions, Tau-B was most robust, with

respect to distributional distortion, with large or small samples, and this

coefficient was followed by the Pearson r. The measures based on 2 x 2 tables--

tetrachoric r, 15 and Ajx$ --tended to be less robust and were seen to be-ma

adversely affected by uneven marginal splits, a condition generally present

with Likert scale data.



SOME NOTES ON THE CHOICE OF MEASURE OF ASSOCIATION
FOR THE COMPONENT ANALYSIS OF LIKERT SCALE DATA1

LAURISTON L. KEOWN and A. RALPH HAKSTIAN

University of Alberta

One of the most common summative scales for the measurement of attitudes

is that known as the Likert scale, in which the respondent indicates his

degree of agreement with a particular statement by checking his position on

a five- or seven-point continuum (scales with varying numbers of points have

been used, but the issue of the optimal number of scale values has been

treated elsewhere and is not of interest in the present paper). Often those

engaged in research on attitudes and, in particular, in development of attitude

measures use correlational and factor analytic procedures to identify homogen-

eous and theoretically interesting groupings of such scaled items, and the

question arises as to the most defensible procedures for such analyses.

To begin with, what assumptions can we make regarding the level of measurement

scale with such data? Also, what underlying distributional assumptions are

warranted? As Carroll (1961) clearly noted, there is nothing preventing our

calculating a Pearson product-moment correlation coefficient, for example, on

any set of data, but the interpretation that attaches to the resulting number

has much to do with how closely the data conform to an appropriate statistical

model.

Thus, we could calculate Pearson r's with Likert scale data. On the

other hand, one could disregard the assumption of interval-scale measurement

by dichotomizing the obtained distributions, presumably at a point as near as

possible to the median, and using measures of association based on 2 x 2 tables--



a procedure that has often been recommended for attitude scale data. An obvious

choice for such a measure of association is a point statistic such as the ±

coefficient, which has been discussed in this context by Demaree and Smith (1957).

This coefficient has been seen to result, in some cases, in spurious "diffi-

culty" factors, however (Carroll, 1945; Ferguson, 1941), that is, one or more

faczors reflecting the fact that the items differed in difficulty level. This

shortcoming of the 6 coefficient should not, logically, be present with attitud-

inal data. Further, the limits for are ±1 only if the marginal distributions

are of identical shape. This latter defect can be compensated for somewhat

by dividing an obtained coefficient by the maximum possible value of ± for

that particular pair of marginal distributions (Cureton, 1959), but as

Carroll (1961) demonstrated, the underlying correlation surface of the resulting

/j-nax statistic is somewhat improbable. Nonetheless, at least one factor

analysis text (Guertin and Bailey, 1970) recommends
-1./ax

in such situations.

Probably the most widely recommended measure of association for data in a

2 x 2 table has been the tetrachoric correlation coefficient, rt (see, for

example, Carroll, 1961; Wherry and Gaylord, 1944). Although no assumptions

are made, with r
t' regarding the scale of measurement of the variables involved,

the assumption is made of an underlying bivariate normal correlation surface.

Strictly speaking, rt, as calculated by its most precise formula, does not

share the defect of of being dependent upon the similarity of shape of the

marginal distributions.

One solution to the problem of assumptions regarding underlying

bivariate distributions is to use a nonparametric or distribution-free measure

of association, such as Kendall's Tau, or the version suited for ties, Tau-B

(Kendall, 1962; Kruskal, 1958). Carroll (1961), however, pointed out that

Tau does not very effectively adjust for the scaling error resulting from

broad grouping or censoring. Several possible measures of association exist,



then, for use with data such as Likert scale items, and the question arises

as to which are best as starting points for the subsequent factor analytic

treatment of the data. The purpose of the present study was to compare the

measures of association noted, r, rt,
x
, and Tau-B, in terms of the

-Lma

stability and robustness of correlation and rotated factor matrices over

Likert scale data varying as to the shape of distributions of the variables.

Method

Two factorially simple data sets were generated using computer simulation

proceoures, according to the common-factor model:

Z = XF' + U, (1)

where Z, of order N persons x k variables, is the matrix of standardized

manifest variables, X, of order N persons x k common factors, is the matrix

of common-factor scores, again scaled to have zero mean and unit variance,

F, of order k x k, is the primary-factor pattern matrix, and U, of order N x

is the matrix of the unique parts of the manifest variables. In the present

case, for simplification, the columns of X were approximately orthogonal

(i.e., the factors were hypothesized to be strictly uncorrelated in the population),

and were approximately normal. Two such matrices, X, were generated, one for

N = 200, the other, for N = 100, each with k = 5 columns. A complexity-one

orthogonal factor pattern matrix, F--for 20 variables and five factors, and

displayed in Table 1--was constructed and the common parts of the variables

Insert Table 1 about here

were simulated by XF'. The pattern coefficients were chosen so that the

variables so generated varied in communality from .36 to .72, with a mean

communality of .52. Next, the matrix U, either 200 x 20 or 100 x 20, containing

the unique parts of the variables was generated by first constructing matrices

of approximately normally distributed, approximately orthogonal columns of
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scores and then scaling these columns to the metric of the uniquenesses, the

latter dictated by the earlier fixed communalities.

The columns of the matrix Z--the latter formed by fully column- standardizing

XF' + U--containing near-normal manifest variable scores, were then transformed

to seven-point Likert scale variables, according to the five distributions

shown in Table 2. The logic employed in constructing the Likert scale

Insert Table 2 about here

distributions was that, given an underlying normal population distribution

for each attitude variable, distortions due to (1) sampling and (2) phrasing

of the item stems could result in distributions similar to those displayed

in Table 2. Additionally, the censoring (see Carroll, 1961) involved in

Likert scaling constitutes an additional scaling error that can be seen to

contribute to a certain degree of distortion.

In the seven-point distribution referred to as normal, only this latter

scaling error was operative. In the rectangular distribution, some abnormal

polarization was additionally presumed operative, so that the extreme and

next-to-extreme categories were, in effect, chosen relatively more frequently

than in the underlying distribution. The opposite distortion is seen in the

central distribution, in which an abnormally large number of middle or undecided

responses were presumably recorded. The positive skew distribution reflects

distortion due to a trend toward the left-hand pole of the scale for each

variable. In the mixed skew distribution--the only one in which the same

listortion was not presumed for each variable--the odd-numbered variables

were positively skewed, and the even-numbered, negatively skewed (the latter

skew indicating a trend toward the right-hand pole of the scale).

For each distribution, five correlation matrices were constructed. In

the first, standard Pearson product-moment correlation coefficients, r,

were calculated among the Likert scaled variables. Secondly, tetrachoric
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correlations were obtained, r
t' by dichotomizing each distribution at a point

yielding as nearly as possible, equal proportions in each category. Although

a reasonably precise formulation is available for computing rt (see Kendall

and Stuart, 1958), it involves the evaluation of a complex series expression,

and the computing algorithm has been found to be relatively unstable, often

yielding no usable value for As As reviewed by Castellan (1966), however,

several approximations for It exist, and although not the best approximation

by Castellan's standards, that obtained by the so-called cosine-pi formula

is a generally good approximation and is unquestionably the one in greatest

current use. This formula, then, was used in computing It in the present study;

that is

1
r
t
= COS W

1 + /bc/ad 1

where a, b, c, and d are obtained from the familiar bivariate frequency table

a b

d

(2)

As pointed out by Glass and Stanley (1970), this approximation for /t will be

in error as a function of the degree of departure of the marginal proportions

from .50. As found by Castellan (1966), however, most approximations of It

share this defect.

Next, standard / coefficients were ob'ained, again by first dichotomizing

the distributions at a point as near as possible to the median. Following the

computations of the matrices of /coefficients, new matrices in which the /

coefficients were divided by the maximum possible (in absolute value) ±

coefficient for the particular distributions involved, yielding the coefficient

Illmax'
If we use the fourfold layout in (2), lilmax is given, as shown by

Cureton (1959), by

"max (bc - ad)/bec., (I) positive; (3)
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"max (bc - ad)/a'd', 0 negative, (4)
(

where, in (3), b' and c' are obtained by constructing a table with the same

marginal frequencies as earlier, but with a or d (whichever is smaller) set

to zero, and, in (4), a' and d' are obtained by, again maintaining the,parginal

frequencies, but setting the smaller of b or c to zero.

Finally, Kendall Tau-B coefficients were obtained (see Kendall, 1962).

Tau-B--the version of Kendall's rank-order correlation coefficient suitable

for data with tied ranks--equals the standard Tau (or Tau-A) coefficient if

no ties exist, but, of course, with attitude scale data many ties will be

present.

In general, matrices of It,
-Lmax

, or Tau-B are not gramian--a fact that

has occasionally been noted as a criticism of these coefficients, insofar as

subsequent factor analytic work is concerned. Other things being equal,

however, we regard this defect as relatively minor. Additionally, it can be

seen from Table 2, that for the coefficients requiring a median dichotomization,

It, 15 and 1/6
x , some departure from equal proportions in each category was-ma

inevitable--a situation certainly true of "real" attitude scale data.

After computation of the R matrices, principal components analyses were

performed, and the component pattern matrix obtained in each case was rotated

to a varimax orthogonal simple structure. These factor analytic procedures

were not intended to represent, necessarily, an optimal analytic strategy,

but rather the one that is by far the most commonly used.

Since the coefficients compared are not all based upon identical under-

lying theories regarding distributions and operationalizations of relationship,

the comparisons were, as much as possible, made within a certain coefficient

across the various data distortions. Thus, although It and Tau-B, for example,

are commonly seen as substitutes for r under certain conditions, they are based

upon different assumptions and may be of considerably different magnitude, both



from each other, and each from r. Thus, r computed by the cosine-pi formula

will, given a departure from equal marginal splits, be systematically larger

than the associated r calculated on the underlying bivariate normal correlation

surface. Tau-B generally errs on the other side of r. The central issue, then,

in this study was: given a known factor structure, and correlation and

component pattern coefficients for each measure of association for normally

distributed Likert scale variables, which measure is most robust (yielding

values close to those for the ncrmal data) with regard to distributions that

depart substantially from normal? We thus were less concerned with the values

of all the correlation and pattern coefficients in comparison with the true

Pearson r's calculated on the underlying bivariate normal surface, than we

were with the change in these values--within a certain measure of association- -

as the distributions were distorted away from the normal.

To assess robustness with regard to departures from normality, three

measures were used. The first two involved computing the root mean square

(RMS) statistic between either (1) the obtained values of the measure of

association or (2) the component pattern coefficients of the normal data, on

the one hand, and of each distorted distribution, on the other. In the present

context, the RMS is given by

RMSr 424(13-1)3j111-1 k=i+1 °c1 )2 '

njk jk
(5)

where RMS denotes the RMS computed on correlation matrices, 0 is the value_d

of the measure of association for the particular distorted data, and In is the

value of the measure of association for the normal data. In the case of the

component pattern matrices, F, in (1), we have

k
RMS = v(l/pk) (f - f )

2
, (6)

f i=E
E

ljP 1 d
ij

fn

where f is the value of the rotated component pattern coefficient for the

distorted data, and f is the normal counterpart. Finally, hyperplane-counts
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(number of component pattern coefficients in the range 0 ± .10) weri. made

on each rotated pattern matrix, in order to determine which measure of asso-

ciation yielded a pattern matrix with hyperplane count closest to the true

value of 80, as seen in Table 1. It is noted in passing that although the

common-factor model was assumed to hold for the population, the component model

was employed in the analyses in this study. We believe this to be a close

reflection of common practice--a practice that is not entirely indefensible,

if we conceptualize the component model as representing a close and easily

obtained approximation to the more theoretically complex common-factor model.

Results and Discussion

The values of the }NS coefficients computed on both the R and F matrices

appear in Table 3. These values are for the generated data set with N = 200.

?assert Table 3 about here

Table 3 is to read as follows: the RMS--as defined in (5)--reflecting discre-

pancies between entries in (1) the R matrix containing Pearson r coefficients

for the normally distributed Likert data, and in (2) the R matrix containing

Pearson r coefficients for the rectangularly distributed data was found to

be .0279. The analogous RMS--this time as defined in (6)--for entries of the

rotated component pattern matrices, again based on Pearson r's and involving

the normal and rectangular distribution, was found to be .0296. The actual

RMS values can be roughly interpreted as "average distances" between corres-

ponding elements of the two matrices involved in each case.

From Table 3, it is clear that the effects of distribution distortion were

least--over all distortions--in both the correlation and component pattern

matrices, when T...J-B was used. The next most robust measure of association,

at least according to the present criterion, was the Pearson r, followed by

414max' and lastly
t

. It should be reiterated that the particular computa-



9

tional formula for
t

employed--the cosine-pi formula -yields a substantially

biased result in the face of severe departures from equal marginal splits,

a fact that undoubtedly helps account for the large RMS values for It when

the results for the central data (for which the marginal splits were the most

uneven) were compared with those fc data. With the rectangular

data, on the other hand (for which the marginal splits were the most nearly

even), the marginal splits cannot be blamed for the relative lack of robustness

for r
t

in the face of distribution distortion. Castellan (1966), for example,

found little bias in this estimate of r
t

for marginal splits as nearly equal

as those in the rectangular data. As might be expected, almost perfect

agreement was found between the rank of the measures of association in terms

of the RMS coefficients computed on the correlation matrices and those computed

on the component pattern matrices.

It is apparent from Table 3 that the various distribution distortions

have differing effects upon ti)e actual changes in the values of the measures of

association. A non-normal distribution that tends toward rectangularity can

be seen to cause the least disturbance, with the skewed distributions having

the next least effect. The central distribution appears to result in the

greatest change in computed values of the various coefficients, and this

distribution can certainly be expected with "real" data whenever the combin-

ation of respondents and item, favors a middle or relatively noncommittal

response. It is not irmaediately clear to the authors why the coefficient

appeared as robust as it did with this distribution distortion. The overall

implications of Table 3 appear to be that the measures of association computed

from 2 x 2 tables--r
t, max

I, and 1/ --are least robust when applied with

non-normal data.

A second criterion of robustness with regard to distribution distortion

used in the present study was the degree to which the "true" zero orthogonal
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factor loadings were recovered in the varimax-rotated component pattern matrices.

The hyperplane of each rotated component was taken to be the range 0 ± .10, and

the various obtained solutions were compared in terms of how closely each came

to yielding the "correct" value of 80 entries in this range. The results

are given in Table 4.

Insert Table 4 about here

An additional criterion that could be used is the decision regarding the

number of components in the data, using the well-known Kaiser-Guttman rule of

the number of components with associated latent roots 1;reater than one.

It can be seen from Table 4 that for sample size 100, I, and lAim led to a

decision of six, rather than the correct five, components for all distributions

including the normal. It may well be that the sixth factor that emerged with

the smaller N was a "difficulty" factor, since although Likert items do not

strictly vary in difficulty, the broad censoring of the data resulting from

using a seven-point scale can be expected to lead to quite different marginal

sr'its between variables, particularly with centrally-biased data. A similarly

incorrect decision was reached in the case of r
t

for all data sets except the

normal and rectangular.

A near-normal distribution of Likert scale values results in some depar-

ture from an equal marginal split--as can be seen from Table 2--for those

coefficients computed from 2 x 2 tables. Theoretically, therefore, r

could be exp acted to be least adversely affected with a normal Likert distri-

bution. As can be seen from Table 4, the ranking of the various measures of

association, in terms of the degree to which the "true" hyperplane-count of

80 was approximated, is identical to that for the RMS values. One reason for

the overall superiority of Tau-B on the hyperplane-count criterion is undoubt-

edly the slight difference in metric between this measure of association and the

Pearson r-related coefficients, but this fact is probably less important than
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the relative robustness of Tau-B. As before, and again likely, to a large degree,

a function of uneven marginal splits, rt ranked last on this criterion.

Implications

It seems clear from the present study that the well-known technique of

splitting attitudinal il:ems at the median and computing either 15 ilmax' or

r
t

coefficients, in order to compensate for severe departures from normality

in the item scale distributions, may--in addition to sacrificing information- -

lead to less than optimal correlational and factorial results. In the case

of Likert-type attitude scales, equal median splits on the variables ate,

of course, scarcely possible, and, thus, the measures of association that

depend upon even marginal splits, such as 15 are clearly inappropriate, as

Carroll (1961) pointed out, and as the present empirical findings show.

Carroll's criticisms of jt./
ax

, coupled with the relatively poor results, in
-um

the present study, when this measure was used suggest that Aj._ should not
-max

be used. Although the results with It were not encouraging in the present study,

they do not directly contradict Carroll's (1961) recommendation of this coef-

ficient in the face of scaling error. Carroll correctly noted that the more

precise tetrachoric cormlation coefficient is independent of the dichotomization

points in the 2 x 2 tame, and had we utilized such coefficients in the present

study, It almost certainly would have ranked more highly on the various criteria

used. Unfortunately, as noted earlier this coefficient can and frequently

does present computing problems, and, in the present study, the cosine-pi

approximations used yielded rather biased values when the dichotomization

points were associated with uneven marginal frequencies. Additionally, It

depends, for interpretation, upon the validity of the assumption of an under-

lying normal bivariate surface, with linear regressions, and this assumption

may often, with attitude scale variables, be difficult to make.
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The indication is that it may well be wisest to forego median dichot-

omization of the Likert scale variables and to compute either standard Pearson

is or, perhaps better, Tau-B coefficients. Obtained Pearson r coefficients

for Likert scale data, of course, are not independent of the shapes of the

margfaal distributions and the effects of scaling error, and r
x
may well

-ma

be less than unity. This coefficient does appear, however, from the present

study, to be relatively robust in such a situation, and does, of course, imply

a gramian R matrix. For R to be gramian is not particularly important in the

present context of an incomplete component analysis, that is, an analysis in

which considerably fewer than 2. components are retained, but is, of course,

necessary if a common-factor or image analysis is planned, for which rescaling

in the metric of the uniquenesses is required.

Tau-B, on the other hand, is not based upon the assumptions about

the underlying distributions and regressions that r is, and, consequently,

appears more appropriate in the case of attitude scale variablca, for which

it may also generally be most reasonable to expect only an ordinal scale of

measurement. Tau-B does not meet one of Carroll's (1961) requirements for

a parametric measure of association based on a 2 x 2 table, namely, that it

should be equal to the Pearson r calculated on the underlying correlation

surface. It is not, however, susceptible to unequal polychotomizations, and,

as has been seen, is relatively stable regardless of the shape of the dis-

tributions of the variables.

In this study, a very narrow slice of the overall issue has been studied,

and furtherreseatch is definitely needed before optimal strategies for the factor

analytic treatment of attitudinal data are generally available. Such future

research could profitably be directed at (1) an investigation of the effects of

all distortions occurring simultaneously in the same data set, (2) a more
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systematic study of the effects of N, and (3) a similar analysis as that in

the present study, but involving a more inherently factorially complex factor

pattern matrix than the unifactor configuration used in this study.
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TABLE 1

Input Orthogonal Factor Pattern Matrix
(Decimal Points Omitted)

70 00 00 00 00

80 00 00 00 00

60 00 ('0 00 00

75 00 00 00 00

00 65 00 00 00

00 75 00 00 00

00 70 00 00 00

00 80 00 00 00

00 00 60 00 00

00 00 70 00 00

00 00 75 00 00

00 00 65 00 00
00 00 00 70 00

00 00 00 75 00

00 00 00 85 CO
00 00 00 65 00

00 00 00 00 70

00 00 00 00 75

00 00 00 00 65

00 00 00 00 80
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TABLE 2

Standard Scores Corresponding to Lower Boundaries of Each Likert
Scale Value and Approximate Percentages (in Parentheses)

at Each Value for the Five Distributions

Distribution

Scale Value

1 2 3 4 5 6 7

1. Normal _co -1.65 -1.00 -.35 .35 1.00 1.65
(5) (11) (20) (28) (20) (11) (5)

2. Rectangular -co -1.08 -.58 -.20 .20 .58 1.08
(14) (14) (14) (16) (14) (14) (14)

3. Central -co -2.33 -1.65 -.84 .84 1.65 2.33
(1) (4) (15) (60) (15) (4) (1)

4. Positive Skew -co -.52 .25 .67 1.04 1.48 2.05
(30) (30) (15) (10) (8) (5) (2)

5. Mixed Skew
(a) Even-Numbered -co -2.05 -1.48 -1.04 -.67 -.25 .52

(2) (5) (8) (10) (15) (30) (30)

(b) Odd- Numbered -co -.52 .25 .67 1.04 1.48 2.05
(30) (30) (15) (10) (8) (5) (2)

A
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TABLE 3

Root Mean Square Coefficients between both the Correlation Matrices (R) and
the Rotated Component Pattern Matrices (CP) for the Distorted Distributions

and those for the Corresponding Normal Distributions (N = 200)

Measure of

Distribution

Rectangular Central Positive Skew Mixed Skew

R CP R CP R CP R CPAssociation

r .0279 .0296 .0585 .0456 .0438 .0410 .0447 .0416

r
t .0757 .0500 .2200 .1319 .1245 .0839 .1117 .0747

(I) .0625 .0541 .0064 .0002 .0839 .0752 .0646 .0561

(1)/(1) .0754 .0478 .1120 .0680 .1360 .0826 .1282 .0825

Tau-B .0210 .0173 .0529 .0414 .0238 .0207 .0253 .0215
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TABLE 3

Root Mean Square Coefficients between both the Correlation Matrices (R) and
the Rotated Component Pattern Matrices (CP) for the Distorted Distributions

and those for the Corresponding Normal Distributions (N = 200)

Measure of

Distribution

Rectangular Central Positive Skew Mixed Skew

R CP R CP R CP R CPAssociation

r .0279 .0296 .0585 .0456 .0438 .0410 .0447 .0416

r
t

.0757 .0500 .2200 .1319 .1245 .0839 .1117 .0747

4) .0625 .0541 .0064 .0002 .0839 .0752 .0646 .0561

¢ /¢ .0754 .0478 .1120 .0680 .1360 .0826 .1282 .0825

Tau-B .0210 .0173 .0529 .0414 .0238 .0207 .0253 .0215



TABLE 4

Total Number of Entries, of the Rotated Component Pattern Matrices,
in the Range 0 ± .10 (J1 = 20; k = 5; N = 100 and 200)
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Distribution

Normal Rectangular Central Positive Skew Mixed Skew
Measure of
Association N=100 N=200 N=100 N=200 N=100 N=200 N=100 N=200 N=100 N=200

r 57 74 61 76 58 72 54 75 60 70

Et

4)

x

a
29 58 35 60 46 --

a
64 --

a
58

a
64 --

a
69 --

a
--

a
64 --

a
68 -- 66

a a a a a
-- 60 58 63 67 -- 62

Tau-B 61 77 67 72 57 75 65 77 65 75

a
A solution involving six, rather than five, factors--according to
the Kaiser-Guttman rule--was obtained, thus rendering the compo-
nent pattern and hyperplane-count not directly comparable with
those for the "correct" five factor solutions.


