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Welcome to the study of_physics. This volume, more of a

student's guide than a text of the usual kind, is part of a

whole group of materials that includes a student handbook,

laboratory equipment, films, programmed instruction, readers,

tra-isparencies, and so forth. Harvard Project Physics has

designed the materials to work together. They have all been

tested in classes that supplied results to the Project for

use in revisions of earlier versions.

The Project Physics course is the work of about 200 scien-

tists, scholars, and teachers from all parts of the country,

responding to a call by the National Science Foundation in

1963 to prepare a new introductory physics course for nation-

wide use. Harvard Project Physics was established in 1964,

on the basis of a two-year feasibility study supported by the

Carnegie Corporation. On the previous pages are the names of

our colleagues who helped during the last six years in what

became an extensive national curriculum development program.

Some of them worked on a full-time basis for several years;

others were part-time or occasional consultants, contributing

to some aspect of the whole course; but all were valued and

dedicated collaborators who richly earned the gratitude of

everyone who cares about science and the improvement of

science teaching.

Harvard Project Physics has received financial support

from the Carnegie Corporation of New York, the Ford Founda-

tion, the National Science Foundation, the Alfred P. Sloan

Foundation, the United States Office of Education and Harvard

University. In addition, the Project has had the essential

support of several hundred participating schools throughout

the United States and Canada, who used and tested the course

as it went through several successive annual revisions.

The last and largest cycle of testing of all materials

is now completed; the final version of the Project Physics

course will be published in 1970 by Holt, Rinehart and

Winston, Inc., and will incorporate the final revisions and

improvements as necessary. To this end we invite our

students and instructors to write to us if in practice they

too discern ways of improving the course materials.

The Directors
Harvard Project Physics
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Prologue . Curiously, the oldest science, astronomy, deals

with objects which are now known to be the most distant.

Yet to you and me, as to the earliest observers of the skies,

the sun, moon, planets and stars do not seem to be far

away. On a clear night they seem so close that we can al-

most reach out and touch them.

The lives of the ancient people, and indeed of nearly

all people who lived before electric lighting, were dom-

inated by heavenly events. The working day began when the

sun rose and ended when the sun set. Human activity was dom-

inated by the presence or absence of daylight and the sun's

warmth, changing season by season.

Over the centuries our clock has been devised so we can

subdivide the days, and the calendar developed so we can re-

cord the passage of days into years. Of all the units used

in regular life, "one day" is probably the most basic and

surely the most ancient. For counting longer intervals, a

"moon" or month was an obvious unit. But the moon is unsat-

isfactory as a timekeeper for establishing the agricultural

year.

When, some 10,000 years ago, the nomadic tribes settled

down to live in towns, they became dependent upon agricul-

ture for their food. They needed a calendar for planning

their plowing and sowing. Indeed, throughout recorded his-

tory most of the world's population has been involved in

agriculture in the spring. If the crops were planted too

early they might be killed by a frost, or the seeds rot
in the ground. But if they were planted too late, the crops

might not ripen before winter came. Therefore, a knowledge

of the times for planting and harvesting had high survival

'-alue. A calendar for the agricultural year was very impor-

tant. The making and improvement of the calendar were often

the tasks of priests, who also set the dates for the religious
festivals. Hence, the priests became the first astronomers.

Many of the great buildings of ancient times were con-

structed with careful astronomical orientation. The great

pyramids of Egypt, tombs of the Pharaohs, have sides that

run due north-south, and east-west. The impressive, almost

frightening, circles of giant stones at Stonehenge in Eng-
.

land appear to have been arranged about 2000 B.C. to permit

accurate astronomical observations of the positions of the

sun and moon. The Mayans and the Incas in America, as well

as the Chinese, put enormous effort into buildings from

which they could measure the changes in the positions of the

Even in modern times outdoors-

men'use the sun by day and the
stars by night as a clock. Di-

rections are indicated by the
sun at rising and setting time,
and true south can be.determined
from the position of the sun at
noon. The pole star gives a
bearing on true north after dark.
The sun is also a crude calendar,
its noontime altitude varying
with the seasons.

If you have never watched the
night sky, start observations
now. Chapters 5 and 6 are based
on some simple observations of
the sky.

1

4



Stonehenge, England, apparently
a prehistoric observatory.
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Section of Babylonian clay tab-
let, now in the British Museum,
records the positions of Jupiter
from 1:2 B.C. to 60 B.C.
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sun, moon and planets. Thus we know that for thousands of

years men have carefully observed the motions of the heaven-

ly bodies.

At least as early as 1000 B.C. the Babylonians and Egyp-

tians had developed considerable ability in timekeeping.

Their recorded observations are now ,:ing slowly unearthed.

But the Egyptians, like the Mayans and others, were inter-

ested in practical forecasts and date-setting. To the best

of our knowledge they did not try to explain their observa-

tions other than by tales and myths. Our westet-n culture

owes Much to the efforts of the Egyptians and Babylonians

who carefully recorded their observations of heavenly cycles.

But our debt is greatest to the Greeks who began trying to

explain what was seen.

The observations to be explained were begun out of idle

curiosity, perhaps by shepherds to pass away the time, and

later took on practical importance in calendar making. These

simple observations became, during following centuries, the

basis for one of the greatest of scientific triumphs: the

work of Isaac Newton. The present unit tells how he united

the study of motions on the earth with the study of motions

in the heavens to produce a single universal science of

motion.



The Greeks recognized the contrast between forced and

temporary motions on the earth and the unending cycles of

motions in the heavens. About 600 B.C. they began to ask a

new question: how can we explain these cyclic events in the

sky in a simple way? What order and sense can we make of

the heavenly happenings? The Greeks' answers, which are

discussed in Chapter 5, had an important effect on science.

For example, as we shall see, the writings of Aristotle,

about 330 B.C., became widely studied and accepted in western

Europe after 1200 A.D., and were important in the scientific

revolution that followed.

After the conquests of Alexander the Great, the center of

Greek thought and science shifted to Egypt at the new city

of Alexandria, founded in 332 B.C. There a great museum,

actually similar to a modern research institute, was created

about 290 B.C. and flourished for many centuries. But as

the Greek civilization gradually declined, the practical-

minded Romans captured Egypt, and interest in science died

out. In 640 A.D. Alexandria was taken by the Moslems as they

swept along the southern shore of the Mediterranean Sea and

moved northward through Spain to the Pyrenees. Along the

way they seized and preserved many libraries of Greek

documents, some of which were later translated into Arabic

and seriously studied. During the following centuries the

Moslem scientists made new and better observations of the

heavens, although they did not make major changes in the ex-

planations or theories of the Greeks.

During this time, following the invasions by warring

tribes from northern and central Europe, civilization in

western Europe fell to a low level, and the works of the

Greeks were forgotten. Eventually they were rediscovered by

Europeans through Arabic translations found in Spain when

the Moslems were forced out. By 1130 A.D. complete manu-

scripts of one of Aristotle's books were known in Italy and

in Paris. After the founding of the University of Paris in

1170, many other writings of Aristotle were acquired and

studied both there and at the new English Universities, Ox-

ford and Cambridge.

During the next century, Thomas Aquinas (1225-1274) blended

major elements of Greek thought and Christian theology into

a single philosophy. This blend, known as Thomism, was widely

accepted in western Europe for several centuries. In achiev-

ing this commanding and largely successful synthesis, Aquinas

accepted the physics and astronomy of Aristotle. Because the

science was blended with theology, any questioning of the

3



Louis XIV visiting the French
Academy of Sciences, which he
founded in the middle of the
seventeenth century. Seen through
the right-hand window is the Faris
Observatory, then under construc-
tion.
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science seemed al5cto be a questioning of the theology.

Thus for a time there was little criticism of the AriJtotelian

science.

The Renaissance movement, which spread out across Europe

from Italy, brought new art and new music. Also, it brought

new ideas about the universe and man's place in it. Curiosi-

ty and a questioning attitude became acceptable, even prized.

Men acquired a new confidence in their ability to learn about

the world. Among those whose work introduced the new age

were Columbus and Vasco da Gama, Gutenberg and da Vinci,

Michelangelo and Durer, Erasmus, Vesalius, and Agricola,

Luther, and Henry VIII. The chart opposite page 29 shows

their life spans. Within this emerging Renaissance culture

lived Copernicus, whose reexamination of astronomical the-

ories is discussed in Chapter 6.

Further changes in astronomical theory were made by Kepler

through his mathematics and by Galileo through his observa-

tions and writings, which are discussed in Chapter 7. In

Chapter 8 we shall see that Newton's work in the second half

of the seventeenth cehtury extended the ideas about earthly

motions so that they could also explain the motions observed

in the heavens--a magnificent synthesis of terrestrial and

celestial dynamics.
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Greac scientific advances can affect ideas outside science.

For exa.ple, Newton's impressive work helped to bring a new

sense o'f (7oalfidence. Man now seemed capable of understanding

all things in heaven and earth. This great change in attitude

was a characteristic of the Age of Reason in the eighteenth

century. To a degree, what we think today and how we run our

affairs are still based on these events of three centuries

ago.

The decisive changes in thought that developed at

start of the Renaissance within a period of a century can be

compared to changes during the past hundred years. This

period might extend from the publication in 1859 of Darwin's
Origin of Species to the first large-scale release of atomic
energy in 1945. Within this recent interval lived such

scientists as Mendel and Pasteur, Planck and Einstein, Ruther-

ford and Bohr. The ideas they and others introduced into

science during the last century have had increasing importance.

These scientific ideas are just as much a part of our time

ar the ideas and works of such persons as Roosevelt, Ghandi

.1nd Pope John XXIII; Marx and Lenin; Freud and Dewey; Picasso

and Stravinsky; or Shaw and Joyce. If, therefore, we under-

stand the way in which science influenced the men of past

centuries, we shall be better prepared to understand how

science influences our thought and lives today.
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5.1 Motions of the sun and stars. The facts of everyday astron-

omy, the heavenly happenings themselves, are the same now as

in,the times of the Greeks. You can observe with the unaided

eye most of what they Eaw and recorded. You can discover

some of the long-known cycles and rhythms, such as the sea-

sonal changes of the sun's height at noon and the monthly

phases of the moon. If our purpose were only to make ac-

curate forecasts 3f eclipses and planetary positions, we

could, like the Babylonians and Egyptians, focus our atten-

tion on the cycles and rhythms. If, however, like the

Greeks, we wished to explain these cycles, we must imagine

some sort of relatively simple model or theory with which

can predict the observed variations. But before we can under-

stand the several theories proposed in the past, we must

review the major observations which the theories were to
explain: the motions of the sun, moon, planets and stars.

Each day the sun rises above your horizon on the eastern

side of the sky and sets on the western side. At noon, half-

way between sunrise and sunset, the sun is highest above your
horizon. Thus, a record of your observations of the sun

would be similar to that shown in Fig. 5.1 (a). Every day

the same type of pattern occurs from sunrise to sunset. Thus

the sun, and indeed all the objects in the sky, show a daily
motion. They rise on the eastern horizon, pass a highest

point, and set on the western horizon. This is called the
daily motion.

Day by day from July through November, the noon height
of the sun above the horizon becomes less. Near December 22,

the sun's height at noon (as seen from the northern hemi-

sphere) is least and the number of hours of daylight is

smallest. During the next six moaths, from January into

June, the sun's height at noon lowly increases. About June

21 it is greatest and the daylight is longest. Then the

sun's gradual southward motion begins again, as Fig. 5.1 (b)
indicates.

This year-long change is the basis for the seasonal or

solar year. Apparently the ancient Egyptians thought that

the year had 360 days, but they later added five feast days

to have a year of 365 days that fitted better with their

observations of the seasons. Now we know that the ...pier year

is 365.24220 days long. The fraction of a day, 0.24220, raises

a problem for the calendar maker, who works with whole days.

If you used a calendar of just 365 days, after four years

New Year's Day would come early by one day. In a century

you would be in error by almost a month. In a few centuries

Fig., 5.2 Midnight sun photographed at 5-minute intervals over
the Ross Sea in Antarctica. The sun appears to move from
right to left.

See "Roll Call" in Protect
Project Physics Reader 2.
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Fig. 5.1

a) Daily path of the sun through
the sky.
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Dee.22
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Har.21 June 21 Sept 21' D,c.22

b) Noon altitude of the sun as

seen from St. Louis, Missouri
throughout the year.
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the date called January first would come in the summertime!

In ancient times extra days or even whole months were in-

serted from time to time to keep a calendar of 365 days and

SC 5.1 the seasons in fair agreement.

Such a makeshift arrangement, is, however, hardly satis-

factory. In 45 B.C. Julius Caesar decreed a new calendar

which averages 365 1/4 days per year (the Julian calendar),

with one whola day (a leap day) being inserted each fourth

year. This calendar was used for centuries during which the

small difference between the decimal parts 0.25 and 0.24220

accumulated to a number of days. Finally, in 1582 A.D.,

under Pope Gregory, a new calendar (the Gregorian calendar)

was announced. This had only 97 leap days in 400 years. To

reduce the number of leap days from 100 to 97 in 400 years,

century years not divisible by 400 were omitted as leap years.

Thus the year 1900 was not a leap year, but the year 2000

will be a leap year (try comparing 97/400 to 0.24220).

Fig. 5.3 Orion trails, a combi-
nation star and trail photograih.
The camera shutter was opened for
several hours while the stars
trailed, then closed for a few
minutes, then reopened while the
camera was driven to follow the
stars for a few minutes.

Fig. 5.4 Time exposure showing
star trails around the North
Celestial Pole. The diagonal
line was caused by an artificial
earth satellite. You can use
a protractor to determine the
duration of the exposure; the
stars move about 15° per hour.

Which of the star trails in
Fig. 5.4 might be that of Pola-
ris? Defend your choice.

8

You may have noticed that a few stars are bright and many

are faint. Some bright stars show colors, but most appear

whitish. People have grouped many of the brighter stars into

patterns, called constellations, such as the familiar Big

Dipper and Orion. The brighter stars may seem to be larger,

but if you look at them through binoculars, they still ap-

pear as points of light.

Have you noticed a particular star pattern overhead and

then several hours later seen that it was near the western

horizon? What happened? During the interval the stars in

the western side of the sky moved down toward the horizon,

while those in the eastern part of the sky moved up from the

horizon. A photograph exposed for some time would show the

trails of the stars, like those shown in Fig. 5.3. During

the night, as seen from a point on the northern hemisphere

of our earth, the stars appear to move counter-clockwise

around a point in the sky called the North Celestial Pole,

which is near the fairly bright star Polaris, as Fig. 5.4

suggests. Thus the stars like the sun show a daily motion

across the sky.

Some of the star patterns, such as Orion (the Hunter) and

Cygnus (the Swan, also called the Northern Cross), were

named thousands of years ago. Since we still see t..e same

star patterns described by the ancients, we czn r^nclnde that

these star patterns change very little, if at all, over the

centuries. Thus in the heavens we observe both stability

over the centuries as well as smooth, orderly daily motion.

To explain this daily rising and setting almost every early
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culture has pictured the sun, moon, planets and stars as

attached to a great bowl that turns around the earth each

day.

But there are other motions in the sky. If you have ob-

served the star patterns in the west just after twilight on

two evenings several weeks apart, you have probably noticed

during the second observation that tl'e stars appeared nearer

the horizon than when you made your first observation. As

measured by sun-time, the stars set about four minutes ear-

lier each day.

If you told time by the stars,
would the sun set earlier or
later each day?

From these observations we can conclude that the sun is

slowly moving eastward relative to the stars, even though we

cannot see the stars when the sun is above the horizon. One

complete cycle of the sun against the background of stars

takes a year. The sun's yearly path among the stars is

called the ecliptic. It is a great circle in the sky and is

tilted at about 231/2° to the equator. The point at which the

sun, moving along the ecliptic, crosses the equator from
See "The Garden of Epicurus" in

south to north on March 21 is called the Vernal Equinox. Project Physics Reader 2.

Thus we have three motions of the sun to explain: the daily

rising and setting, the annual eastward cycle among the

stars, and the north-south seasonal motion.

SG 5.2

CM What evidence do we have that the ancient
people observed the sky?

Q2 For what practical purposes were
calendars needed?

0.3 What are the observed motions of the sun
during one year?

Q4 In how many.years will the Gregorian
calendar be off by one day?

5.2 Motions of the moon. The moon also moves eastward against

the background of the stars and rises nearly an hour later

each night. When the moon rises at sunset--when it is op-

posite the sun in the sky the moon is bright and shows a

full disc (full moon). About fourteen days later, when the

moon is passing near the sun in the sky (new moon), we can-

not see the moon at all. After new moon we first see the

moon as a thin crescent low in the western sky at sunset.

As the moon rapidly moves further eastward from the sun, the

moon's crescent fattens to a half circle, called "quarter

moon," and then within another week on to full moon again.

After full moon, the pattern is reversed, with the moon slim-

ming down to a crescent seen just before suhrise and then

several days being invisible in the glare of sunlight.

As early as 380 B.C. the Greek philosopher Plato recognized

that the phases of the moon could be explained by thinking of

These end of section questions
are intended to help you check
your understanding before going
to the next section. Answers
start on page 123.

Moon: 17 days old

9



Moon: 3 days old

the moon as a globe reflecting sunlight and moving around the

earth, with about 29 days between new moons. Because the

moon appears to move so rapidly relative to the stars, people

early assumed the moon to be close to the earth.

The moon's path around the sky is close to the yearly

path of the sun; that is, the moon is always near the eclip-

tic. The moon's path is tipped a bit with respect to the

sun's path; if it were otherwise, we would have an eclipse

of the moon at every full moon and an eclipse of the sun at

every new moon. The moon's motion is far from simple and

has posed persistent problems for astronomers as, for ex-

ample, predicting accurately the times of eclipses.

Q5 Describe the motion of the moon during Q6 Why don't eclipses occur each month?
one month.

Sun

Mercury

0 Earth

0

Fig. 5.5 The maximum angles
from the sun at which we observe
Mercury and Venus. Both planets
can, at times, be observed at
sunset or at sunrise. Mercury
is never observed to be more
than 28° from the sun, and Venus
is never more than 48° from the

sun.

Venus

10

Sun

40 Earth

5.3The wandering stars. Without a telescope we can see, in

addition to the sun and moon, five rather bright objects

which move among the stars. These are the wanderers, or

planets: Mercury, Venus, Mars, Jupiter and Saturn. (With

the aid of telescopes three more planets have been discov-

ered: Uranus, Neptune and Pluto; but none of these was

known until nearly a century after the time of Isaac Newton.)

Like the sun and moon, all the planets are observed to rise

daily in the east and set in the west. Also like the sun

and moon, the planets generally move eastward among the

stars. But at certain times each planet stops moving

eastward among the stars and for some months moves west-

ward. This westward, or wrong-way motion, is called

retrograde motion.

In the sky Mercury and Venus are always near the sun.

As Fig. 5.5 indicates, the greatest angular distance from

the sun is 28° for Mercury and 48° for Venus. Mercury and

Venus show retrograde motion after they have been farthest

east of the sun and visible in the evening sky. Then they

quickly move westward toward the sun, pass it, and reappear

in the morning sky. During this motion they are moving

westward relative to the stars, as is shown by the plot for

Mercury in Fig. 5.7.

In contrast, Mars, Jupiter and Saturn may be found in

any position in the sky relative to the sun. As these

planets (and the three discovered with the aid of telescopes)

move eastward they pass through the part of the sky opposite

to the sun. When they pass through the point 180° from the

sun, i.e., when they are opposite to the sun, as Fig. 5.6

indicates, they are said to be in opposition. When each of



these planets nears the time of its opposition, it ceases its
eastward motion and for several months moves westward (see

Fig. 5.7). As Table 5.1 and Fig. 5.7 show, the retrograde

motion of Saturn lasts longer, and has a smaller angular dis-

placement than do the retrograde motions of Jupiter and Mars.

Table 5.1 Recent Retrograde Motions of the Planets

Westward
Planet Duration of Retrograde Days* Displacement*
Mercury April 26 to May 30, 1963 34 15°

Venus May 29 to July 11, 1964 43 19°

Mars Jan. 29 to April 21, 1965 83 22°

Jupiter Aug. 10 to Dec. 6, 1963 118 10°

Saturn June 4 to Oct. 21, 1963 139

Uranus Dec. 25, '65 to May 24, 1966 152 4°

Neptune Feb. 22 to Aug. 1, 1966 160 3°

Pluto Dec. 28, '65 to June 2, 1966 156 2°

70

*These intervals and displacements vary somewhat from cycle
to cycle.

The planets change considerably in brightness. When

Venus is first seen in the evening sky as the "evening star,"

the planet is only fairly bright. But during the following

four to five months as Venus moves farther eastward from the

sun, Venus gradually becomes so bright that it can often be

seen in the daytime if the air is clear. Later, when Venus

scoots westward toward the sun, it fades rapidly, passes the

sun, and soon reappears in the morning sky before sunrise as

the "morning star." Then it goes through the same pattern

of brightness changes, but in the opposite order: soon

bright, then gradually fading. The variations of Mercury

follow much the same pattern. But because Mercury is always

seen near the sun during twilight, Mercury's changes are

difficult to observe.

Mars, Jupiter and Saturn are brightest about the time

that they are highest at midnight and opposite to the sun.

Yet over many years their maximum brightness differs. The

change is most noticeable for Mars; the planet is brightest

when it is opposite the sun during August or September.

Nut only do the sun, moon and planets generally move east-

ward among the stars, but the moon and planets (except Pluto)

are always found within a band only 8° wide on either side of

the sun's path.

Planet Earth Sun

ID

Fig. 5.6 Opposition of a planet
occurs when, as seen from the
earth, the planet is opposite to
the sun, and crosses the meridian
at midnights

Mt Stay

.0^ de .

Fig. 5.7 The retrograde motions
of Mercury (marked at 5-day in-
tervals), Mars (at 10-day inter-
vals), and Saturn (at 20-day
intervals) in 1963, plotted on
a star chart. The dotted line
is the annual path of the sun,
called the ecliptic.

Q7 In what part of the sky must you look to
see the planets Mercury and Venus?

Q8 In what part of the sky would you look
to see a planet which is in opposition?

Q9 When do Mercury and Venus show retrograde
motion?

0.10 When do Mars, Jupiter and Saturn show
retrograde motion?

011 In what ways do the retrograde motions
of the planets differ? Is each the same
at every cycle?
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5.4Plato's problem. About 400 B.C. Greek philosophers asked a

new question: how can we explain the cyclic changes observed

in the sky? Plato asked for a theory or general explanation

to account for what was seen, or as he phrased it: "to save

the appearances." The Greeks appear to have been the first

people to desire theoretical explanations to account for

natural phenomena. Their start was an important step toward

science as we know it today.

How did the Greeks begin their explanation of the motions

observed in the heavens? What were their assumptions?

At best, any answers to these questions must be tentative.

While many scholars over the centuries have devoted themselves

to the study of Greek thought, the documents available as the

basis for our knowledge of the Greeks are mostly copies of

copies and translations of translations in which errors and

omissions occur. In some cases all we have are reports from

later writers of what certain philosophers did or said, and

these may be distorted or incomplete. The historians' task

is difficult. Most of the original Greek writings were on

papyrus or cloth scrolls, which have decayed through the ages.

Many wars, much plundering and burning, have also destroyed

many important documents. Especially tragic was the burning

of the famous library of Alexandria in Egypt, which contained

several hundred thousand documents. (Actually, it was burned

three times: in part by Caesar's troops in 47 B.C.; then

in 390 A.D. by a Christian fanatic; and the third time in

640 A.D. by Moslems when they overran the country.) Thus,

while the general picture of Greek culture seems to be

rather well established, many interesting particulars and

details are not known.

The approach taken by the Greeks and their intellectual

followers for many centuries was stated by Plato in the

fourth century B.C. He stated the problem to his students

in this way: the stars eternal, divine, unchanging beings

move uniformly around the earth, as we observe, in that most

perfect of all paths, the endless circle. But a few celestial

objects, namely the sun, moon and planets, wander across the

sky and trace out complex paths, including even retrograde

motions. Yet, surely, being also heavenly bodies, they too

must really move in a way that becomes their exalted status.

This must be in some combination of circles. How then can

we account for the observations of planetary motions and

"save the appearances"? In particular, how can we explain

the retrograde motions of the planets? Translated into more

modern terms, the problem is: determine the combination of

simultaneous uniform circular motions that must be assumed

12



for each of the objects to account for the observed irregu-

lar motions. The phrase "uniform circular motion" means that

the body moves around a center at a constant distance, and

that the rate of angular motion around the center (such as

one degree per day) is uniform or constant.

Notice that the problem is concerned only with the posi-

tions of the sun, moon, and planets. The planets appear to

be only points of light moving against the background of

stars. From two observations at different times we ob-

tain a rate of motion: a value of so many degrees per day.

The problem then is to find a "mechanism," some combination

of motions, that will reproduce the observed angular motions

and lead to predictions in agreement with observations. The

ancient astronomers had no observational evidence about the

distances of the planets; all they had were directions, dates

and rates of angular motion. Although changes in brightness

of the planets were known to be related to their positions

relative to the sun, these changes in brightness were not in-

cluded in Plato's problem.

Plato's statement of this historic problem of planetary

motion illustrates the two main contributions of Greek

philosophers to our understanding of the nature of physical
theories:

1. According to the Greek view, a theory should be based

on self-evident concepts. Plato regarded as self-evident the

concept that heavenly bodies must have perfectly circular

motions. Only in recent centuries have we come to understand

that such commonsense beliefs may be misleading. More than

that we have learned that every assumption must be criti-

cally examined and should be accepted only tentatively. As

we shall often see in this course, the identification of

hidden assumptions in science has been extremely difficult.

Yet in many cases, when the assumptions have been identified

and questioned, entirely new theoretical approaches have

followed.

2. Physical theory is built on observable and measurable

phenomena, such as the motions of the planets. Furthermore,

our purpose in making a theory is to discover the uniformity

of behavior, the hidden likenesses underlying apparent irreg-
ularities. For organizing'our observations the language of

number and geometry is useful. This use of mathematics,

which is widely accepted today, was derived in part from

the Pythagoreans, a group of mathematicians who lived in

southern Italy about 500 B.C. and believed that "all things

are numbers." Actually, Plato used the fundamental role of

13
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numbers only in his astronomy, while Aristotle avoided

measurements. This is unfortunate because, as the Prologue

reported, the arguments of Aristotle were adopted by Thomas

Aquinas, whose philosophy did not include the idea of mea-

surement of change as a tool of knowledge.

Plato's assumption that heavenly bodies move with "uniform

motion in perfect circles" was accepted for many centuries

by those working on the problem of planetary motion. Not un-

til around 1600 A.D. was this assumption abandoned.

Plato and many other Greek philosophers assumed that there

were a few basic elements that mixed together to cause the

apparent variety observed in the world. Although not every-

one agreed as to what these elements were, gradually four

were accepted as the explanation of phenomena taking place

on earth. These elements were: Fire, Air, Water and Earth.

Because substances found on earth contained various mixtures

of these elements, these compound substances would have a

wide range of properties and changes.

In the heavens, which were separate from the earth and

were the abode of the gods, perfection must exist. Therefore

motions in the heavens must be eternal and perfect, and the

only perfect unending geometrical form was the circle. Also,

the unchanging heavenly objects could not be composed of ele-

ments normally found at or near the earth, but were composed

of a changeless fifth element of their ownthe quintessence.

Plato's astronomical problem remained the most significant

problem for theoretical astronomers for nearly two thousand

years. To appreciate the later efforts and'consequences of

the different interpretation developed by Kepler, Galileo

and Newton, let us examine what solutions to Plato's problem

were developed by the Greeks.

Oa What assumptions did Plato make in his incomplete?
problem?

OM Why is our knowledge of Greek science
014 What basic assumption did the Greeks

make about the nature of a theory?

5.5The first earth-centered solution. The Greeks observed that

the.earth was obviously large, solid and permanent, while

the heavens seemed to be populated by small, remote, ethereal

objects that continuously went through their various motions.

What was more natural than to conclude that our big, heavy

earth was tilts steady, unmoving center of the universe? Such

an earth-centered model is called geocentric. With it the

daily motion of the stars could easily be explained: they

were attached to, or were holes in, a large surrounding

spherical dome, and were all at the same distance from us.
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Daily, this celestial sphere would turn around an axis

through the earth. As a result all the stars on it would

move in circular paths around tne pole of rotation. In this

way the daily motions could be explained.

The observed motion of the sun through the year was ex-.

plained by use of a more complex model. To explain the sun's

motion among the stars a separate invisible shell was

needed that carried the sun around the earth. To explain

the observed annual north-south motion of the sun the axis

of this sphere for the sun should be tipped from the axis of

the dome of the stars. (See Fig. 5.8.)

The motions of the planets Mercury, Venus, Mars, Jupiter

and Saturn were more difficult to explain. Because Saturn

moves most slowly among the stars, its sphere was assumed to

be closest to the stars. Inside the sphere for Saturn would

be spheres for faster-moving Jupiter and Mars. Since they

all require more than a year for one trip around the sky,

these three planets were believed to be beyond the sphere of

the sun. Venus, Mercury and the moon were placed between

the sun and the earth. The fast-moving moon was assumed to

reflect sunlight and to be closest to the earth.

Such an imaginary system of transparent shells or spheres

can provide a rough "machine" to account for the general mo-
tions of heavenly objects. By choosing the sizes, rates

and directions of motion of the supposed linkages between

the various spheres a rough match could be made between the

model and the observations (as in Fig. 5.9). If additional

observations reveal other cyclic variations, more spheres and
linkages can be added.

Eudoxus, Plato's friend, concluded that 27 spheres or mo-

tions would account for the general pattern of motions.

Later Aristotle added 29 more motions to make a total of 56.

An interesting description of this system is given by the
poet Dante in the Divine Comedy, written in 1300 A.D., shortly

after Aristotle's writings became known in Europe.

Aristotle was not happy with this system, for it did

not get the heavenly bodies to their observed positions at
quite the right times. In addition, it did not account at

all for the observed variations in brightness of the planets.

But we must not ridicule Greek science for being different

from our science. The Greeks were just beginning the de-

velopment of scientific theories and inevitably made as-

sumptions that we now considgr unsuitable. Their science

was not "bad science," but in many ways it was a quite dif-

ferent kind of science from ours. Furthermore, we must

V.

Fig. 5.8 The annual north-south
(seasonal) motion of the sun was
explained by having the sun on a
sphere whose axis was tilted 23°
from the axis of the sphere of
the stars.

lost4cosmooA4rs

11- La Figure & nombrc

Cercles de la Sphere. Chap. 111.

04411e chok di la Sphere.

Q.44 hole chi czieu ale la Sphere
T w imietbr` rj7I Saw; I pop:
JLdi s. nom Stbere forlefewletl fi «wee.

Fig. 5.9 A geocentric cosmolo-
gical scheme. The earth is fixed
at the center of concentric ro-
tating spheres. The sphere of
the moon (1....tse) separates the

terrestrial region (composed of
concentric shells of the four
elements Earth, Water, Air and
Fire) from the celestial region.
In the latter are the concentric
spheres carrying Mercury, Venus,

Sun, Mars; Jupiter, Saturn and
the stars. To simplify the dia-
gram, only one sphere is shown
for each planet. (From the
DeGolyer copy of Petrus Apianusl
Cosmographie, 1551.)
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realize that to scientists 2000 years from now our efforts

may seem strange and inept.

Even today scientific theory does not and cannot account

for every detail of each specific case. As you have already

seen, important general concepts, like velocity and accelera-

SC 5 3 tion, must be invented for use in organizing the observations.

Scientific concepts are idealizations which treat selected

aspects of observations rather than the totality of the raw

data.

As you might expect, the history of science contains many

examples in which the aspects neglected by one researcher

turned out later to be quite important. But how would better

systems for making predictions be developed unless there

were first trials? Through tests and revisions theories may

be improved or they may be completely replaced.

a15 What is a geocentric system? 016 Describe the first solution to Plato's
problem.

5.6A sun-centered solution. For nearly two thousand years af-

ter Plato and Aristotle the geocentric model was generally

accepted. However, another radically different model, based

on different assumptions, had been proposed. In the third

century B.C., Aristarchus, perhaps influenced by the writings

of Heracleides, who lived a century earlier, suggested that

a much simpler description of heavenly motion would result

if the sun were considered to be at the center, with the

earth, planets and stars all revolving around it. A sun-

centered system is called heliocentric.

Unfortunately, because the major writings of Aristarchus

have been lost, our knowledge of his work Is based mainly on

comments made by other writers. Archimedes wrote that

Aristarchus found, from a long geometrical analysis, that the

sun must be at least eighteen times farther away than the

moon. Since the distance to the moon was known roughly,

this put the sun several million miles away. Furthermore

Aristarchus concluded that this distant sun must be much

larger than the earth. He believed that the larger body,

which was also the source of sunlight, should be at the

center of the universe.

Aristarchus proposed that all the daily motions observed

in the sky could be easily explained by assuming that the

earth rotates daily on an axis. Furthermore, the annual

changes in the sky, including the retrograde motions of the

planets, could be explained by assuming that the earth and

the five visible planets move around the sun. In this model

16



the motion previously assigned to the sun around the earth

was assigned to the earth moving around the sun. Also, no-

tice that the earth became just one among several planets.

How such a system can account for the retrograde motions

of Mars, Jupiter and Saturn can be seen from Figs 5.10 (a)

and (b), in which an outer planet and the earth are assumed

to be moving around the sun in circular orbits. The outer

planet is moving more slowly than the earth. As a result,

when we see the planet nearly opposite to the sun, the earth

moves rapidly past the planet, and to us the planet appears

to be moving backward, that is westward, or in retrograde

motion, across the sky.

The heliocentric (sun-centered) hypothesis has one

further advantage. It explains the bothersome observation

that the planets are brighter and presumably nearer the

earth during their retrograde motion.

Even so, the proposal by Aristarchus was attacked on
three bases:

First, it aid violence to the philosophical doctrines

that the earth, by its very immobility and position, is dif-

ferent from the celestial bodies, and that the natural place
of the earth is the center of the universe. In fact, his

contemporaries considered Aristarchus impious for suggesting
that the earth moved. Also, the new picture of the solar

system contradicted common sense and everyday observations:

certainly, the earth seemed to be at rest.

Second, the attackers offered observational evidence to

refute Aristarchus. If the earth were moving in an orbit

around the sun, it would also be moving back and forth be-

low the fixed stars, such as the North Star. Then the angle

from the vertical at which we have to look for dny star

would be different when seen from the various points in the
earth's annual path (see Fig. 5.11). This shift, called the

parallactic shift of the fixed stars, should occur on the
basis of Aristarchus' heliocentric hypothesis. But it was
not observed by the Greek astronomers.

This awkward fact could be explained in two ways. The stel-
lar parallax could be too small to be observed with the naked

eye, though this would require the stars to be either enor-

mously distant, perhGps some hundreds of millions of miles
away. Or the earth could be fixed, and the theory of Aris-
tarchus was wrong.

Today with telescopes we can observe the parallactic
shift of stars so we know that Aristarchus was correct. The

Fig. 5.10 Retrograde motion of
an outer planet. The numbers in
(b) correspond to the numbered
positions in (a).

(a) Actual configurations of
sun, earth and planet for retro-
grade motion.

Sun
(a)

(b) Apparent path of the planet

against the background stars as
seen from the earth.

ifstar

Fig. 5.11 How the changing po- /.0
sition of the earth in its orbit r sun
should cause a parallactic shift %,,
in a star's position.
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stellar parallax is too small to be seen with the naked

eye and indeed so small that even with t'Aescopes it was

not measured until 1838. The largest parallactic shift is

an angle of only 1.5 seconds of arc, equivalent to the

diameter of a penny seen at a distance of about two miles!

The parallax exists, but we can sympathize with the Greeks

who rejected the heliocentric theory because the parallactic

shift required by the theory could not be observed at that

time.

Third, Aristarchus does not seem to have used his system

for making predictions of planetary positions. His work

seems to have been purely qualitative, a geneial picture of

how things might be.

Here were two different ways to describe the same obser-

vations. But the new proposal required a drastic change

in man's image of the universe not to speak of the fact

that the stellar parallax which it predictea das not observed.

Actually Aristarchus' heliocentric hypothesis had so little

influence on Greek thougr't that we might have neglected it

here as being unimportant. But fortunately his arguments

were recorded and eighteen centuries later stimulated the

thoughts of Copernicus. Ideas, it seems, are not bound by

space or time, and cannot be accepted or dismissed with

final certainty.

007 What two radically new assumptions were G19 What change predicted by Aristarchus'
made by Aristarchus? theory was not observed by the Greeks?

018 How can the model proposed by Aristarchus 0.23 Why was Aristarchus considered impious?
explain retrograde motion"'

5.7The geocentric system of Ptolemy. Disregarding the Helio-

centric model suggested by Aristarchus, the Greeks continued

to develop their planetary theory as a geocentric system.

As we have seen, the first solution in terms of crystalline

spheres lacked accuracy. During the 500 years after Plato

and Aristotle, astronomers began to want a more accurate

theory for the heavenly timetables. Of particular impor-

tance were the positions of the sun, moon and planets along

the ecliptic. A better theory must account for both the

large general motions and the numerous smaller cyclic varia-

tions. To fit the observations, a complex theory waS needed

for each planet.

Several Greek astronomers made important contributions

which resulted about 150 A.D. in the geocentric theory of

Claudius Ptolemy of Alexandria. Ptolemy's book on the mo-

tions of the heavenly objects is a masterpiece of analysis,

which used many new geometrical solutions.

1.8



Ptolemy wanted a system that would predict accurately

the positions of each planet. But the type of system and

motions he accepted was based on the assumptions of Aris-

totle. In the preface to The Almagest Ptolemy states:

For indeed Aristotle quite properly divides also
the theoretical [in contrast to the practical] into
three immediate genera: the physical, the mathema-
tical, and the theological....The kind of science
which se,ks after Him is the theological; for such
an act can only be thought as high above somewhere
near the loftiest things of the universe and is ab-
solutely apart from sensible things. But the kind
of science which traces through the material and
the hot, the sweet, the soft, and such things,
would be called physical, and such an essence...
is to be found in corruptible things and below the
the lunar sphere. And the kind of science which
shows up quality with respect to forms and local
motions, seeking figure, number, and magnitude, and
also place, time, and similar things, would be
defined as mathematical.

Then he defines the problem and states his assumptions:

...we wish to find the evident and certain appear-
ances from the observations of the ancients and our
own, and applying the consequences of these concep-
tions by means of geometrical demonstrations.

And so, in general, we have to state, that the
heavens are spherical and move spherically; that the
earth, in figure, is sensibly spherical...; in posi-
tion, lies right in the middle of the heavens, like
a geometrical center; in magnitude and distance, [the
earth] has the ratio of a point with respect to the
sphere of the fixed stars, having itself no local
motion at all.

Ptolemy then argues that each of these assumptions is

necessary and fits with all our observations. The strength
of his belief is illustrated by his statement: "...it is

once for all clear from the very appearances that the earth

is in the middle of the world and all weights move towards
it." Notice that he has mixed the astronomical observations
with the physics of falling bodies. This mixture of astron-

omy and physics became highly important when he referred to

the proposal of Aristarchus that the earth might rotate and
revolve:

Now some people, although they nave nothing to
oppose to these arguments, agree on something, as
they think, more plausible. And it seems to them
there is nothing against their supposing, for
instance, the heavens immobile and the earth as
turning on the same axis [as the stars] from west
to east %tory nearly one revolution a day....

But it has escaped their notice that, indeed,
as far as the appearances of the stars are con-
cerned, nothing would perhaps keep things from

19



Center a protractor on point C
of Fig. 5.12 and measure the de-
grees in the arcs 1-2, 2-3, 3-4
and 4-1. Consider each 1°
around C as one qty. Make a
graph of the days needed for
the plant. to move through the
four arcs as seen from the earth,
E.
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being in accordance with this simpler conjecture,
but that in the light of what happens around us
in the air such a notion would seem altogether
absurd.

Here Ptolemy recognizes that the "simple conjecture" of

a moving and rotating earth would perhaps satisfy the as-

tronomical observations. But he rejects this conjecture

by spelling out what would "happen around us in the air."

The earth would spin at a great speed under the air, with

the result that all clouds would fly past toward the,.west,

and all birds or other things in the air would be carried

away to the west. If, however, the air turned with she

earth, "none the less the bodies contained in It would al-

ways seem to be outstripped by the movement of both (the

earth and the air)."

On these assumptions and arguments Ptolemy developed

very clever and rather accurate procedures by which the posi-

tions of each planet could be derived on a geocentric model.

In the solutions he used circles and three other geometrical

devices. Each device provided for variations in the rate

of angular motion as seen from the earth. To appreciate

Ptolemy's problem, let us examine one of the many small vari-

ations he was attempting to explain.

One irregularity that must be explained will be immediate-

ly apparent if you consult a calendar. Let us divide the

sun's total path around the sky into four equal segments,

each an arc of 90°, and start from where the sun's path

crosses the cele;tial equator on March 21. Although there

may be a variation of one day between years, due to the in-

troduction of a "leap day," the sun is usually farthest

north on June 21, back at the equator on September 23, then

farthest south on December 22.

As Table 5.2 shows, the actual motion of the sun during

the year is not at a uniform rate.

Table 5.2

Irregular Motion of the Sun in Moving through 90° Arcs

Day count
of year

Difference
in days

March 21 80th day
92

94

90

89

June 21 172nd day

September 23 266th day

December 22 356th day

March 21 (80 + 365) 445th day



1. The eccentric. Previously, astronomers had held,

with Plato, that the motion of a planet must be at a uniform

angular rate and at a constant distance from the center of

the earth. This is what we defined in Sec. 5.4 as uniform

circular motion. Although Ptolemy believed that the earth 2

Was at the center of the universe, it need not be at the

center around which the radius t"rned at a uniform rate. He

used a new arrangement called an eccentric (Fig. 5.12) which

has the radius of constant length moving uniformly around

the center C, but with the earth E located off-center. As

seen from the off-center earth, the pia' ts, sun, etc.,

would require unequal numbers of days to move through the

quadrants, 1-2, 2-3, etc.

An eccentric motion, as shown in Fig. 5.12, will account

for the type of irregularity reported in Table 5.2. However,

the scale of Fig. 5.12 is misleading; the earth need be off-

set from the center by only a small amount to satisfy the

data of Table 5.2. Notice that Ptolemy was giving up the

old notion that the earth must be at the center of the mo-

tion.

2. The epicycle. While the eccentric can account for

small variations in the rate of motion, it cannot describe

any such radical change as retrograde motion. To account

for retrograde motion, Ptolemy used another type of motion,

the epicycle (see Fig. 5.13). The planet P is considered to

be moving at a uniform rate on the circumference of a small

circle, called the epicycle. The center of the epicycle D

moves at a uniform rate on a large circle, called the

deferent, around its center C.

With a relatively large radius or short period for the

epicycle, the planet would be seen to move through loops.

If from the center C we look out nearly in the plane of the

motion, these loops would look like retrograde motions.

Fig. 5.14 shows the motions produced by a simple mechanical

model, an "epicycle machine."

An epicycle -an be used to describe many kinds of motion.

We may select ratio of the radius of the epicycle to

that of the deferent. Also we may choose the directions and

rates of angular motion of the epicycle. To obtain apparent

retrograde motion as seen from the center of the deferent,

the epicycle must turn rapidly or have a radius .which is a

sizable fraction of the radius of the deferent.

To describe the three outer planets Ptolemy had to make

a strange assumption. As Fig. 5.15 shows, he had to have

the radius of each epicycle always parallel to the line from

1

3

4

Fig. 5.12 An eccentric. The
angular motion is at a uniform
rate around the center, C. But
the earth, E, is off-center.

Fig. 5.13 An epicycle. The
planet P revolves on its epi-
cycle about D. D revolves on
the deferent (large circle)
centered at the Earth C.

(a)

Fig. 5.14 Retrograde motion
created by a simple epicycle
machine.
(a) Stroboscopic photograph of
epicyclic motion. The flashes
were made at equal time intervals.
Note that the motion is slowest
in the loop.
(b) Loop seen from near its plane.

(b)

1



Fig. 5.15 Simplified representation of the Ptolemaic system. The
scale of the upper drawifig, which shows the earth and sun, is ten
times that of the lower drawing, which shows the planets that are
further than the sun. The planets are shown along a line to em-
phasize the relative sizes of the epicycles. The epicycles of the
moon are not included.
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the sun to the earth. This required that each epicycle

have a period of exactly one year. As we shall see in

Ch. 6, Copernicus wondered about this limitation of the epi-

cycles.

Not only may the use of an epicycle describe retrograde

motion, it also could explain the greater brightness of the

planets when they were near opposition, as you can see from

Fig. 5.14. However, to accept this explanation of the

changes in brightness would oblige us to assume that the

planets actually moved through space on epicycles and defer-

ents. This assumption of "real motions" is quite different

from that of considering the epicycles and deferents as only

useful computing devides, like algebraic equations.

3. The equant. But even with combinations of eccentrics

and epicycles Ptolemy was not able to fit the motions of the

five planets. There were more variations in the rates at

which the planets moved than could be fitted by eccentrics

and epicycles. For example, as we see in Fig. 5.16, the ret-

rograde motion of Mars is not always of the same angular

size or duration. To allow for these motions Ptolemy intro-

duced a third geometrical device, called the equant (Fig.

5.17), which is a modified eccentric. The uniform angular

motion is around an off-center point C, while the earth E

(and the observer) is equally off-center, but in the opposite

direction.

Although Ptolemy displaced the earth from the center of

the motion, he always used a uniform rate of angular motion

around some center. To that extent he stayed close to the

assumptions of Plato. By a combination of eccentrics, epi-

cycles, and equants he described the motion of each planet

separately. His geometrical analyses were equivalent to a

complicated equation for each individual planet. Ptolemy

did not picture these motions as an interlocking machine

where each planet moved the next. However, Ptolemy adopted

the old order of distances: stars, Saturn, Jupiter, Mars,

Sun, Venus, Mercury, Moon, Earth. Because there was no in-

formation about the distances of the planets, the.orbitsrare

usually shown nested inside each other so that their,epi-

cycles do not quite overlap (see Fig. 5.15).

Notice how radically this set of geometrical motions

differed from the propositions of Plato stated 500 years

earlier. Although Ptolemy used uniform angular motions and

circles, the centers and radii of these motions could now be

adjusted and combined to provide the best fit with observa-

tions. No longer was the center of the motion at the earth,

mo.

114.. 1.14

I

Fig. 5.16 Mars is plotted at
four-day intervals on three con-
secutive oppositions. Note the
different sizes and shanes of
the retrograde curves.

Fig. 5.17 An equant. The planet
P moves at a uniform rate around
the off-center point C. The

earth E is equally off-center
in the opposite direction.
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but the center could be offset by whatever amount was needed.

For each planet separately Ptolemy had a combination of mo-

tions that predicted its observed positions over long peri-

ods of time to within about two degrees.

However, there were some difficulties. For example, his

proposed motions for the moon involved such large epicycles

that during a month the observed angular diameter of the

moon should change by a factor of two.

The Ptolemaic description was a series of mathematical

devices to match and predict the motion of each planet

separately. A recently discovered manuscript of Ptolemy's

describes his picture of how the planet orbits were related

in a way similar to that shown in Fig. 5.15. Nevertheless,

in the following centuries most people including Dante

believed that the planets really moved on some sort of

crystalline spheres as Eudoxus had suggested, but that the

motions were described mathematically by Ptolemy's combina-

tions of geometric devices.

In Ptolemy's theory of the planetary motions there were,

as in all theories, a number of assumptions:

1. that the heaven is spherical in form and ro-

tates around the earth once a day;

2. that the earth is spherical;

3. that the earth is at the tenter of the heavenly sphere;

4. that the size of the earth is negligible compared to

the distance to the stars;

5. that the earth has no motions;

6. that uniform angular motion along circles is the

only proper behavior for celestial objects.

Although now discarded, the Ptolemaic system, proposed

in 150 A.D., was used for about 1500 years. What were the

major reasons for this long acceptance? Ptolemy's theory:

1. predicted fairly accurately the positions of the

sun, moon and planets;

2. did not predict that the fixed stars should show

a parallactic shift;

3. agreed in most details with the philosophical

doctrines developed by the earlier Greeks, in-

cluding the idea of "natural motion" and "natural

place";

4. had commonsense appeal to all who saw the sun,

moon, planets and stars moving around them;

5. agreed with the comforting assumption that we

live on an immovable earth at the center of the

universe.
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Also:

6. could survive better because at that time there were

very few theoretical astronomers.

7. fitted in with Thomas Aquinas' widely accepted syn-

thesis of Christian belief and Aristotelian physics.

Yet Ptolemy's theory was eventually displaced by a helio-

centric one. Why did this occur? What advantages did the

new theory have over the old? From our present point of

view, on what basis do we say that a scientific theory is

successful or unsuccessful? We shall have to face such

persistent questions in what follows.

SG 5.4

021What assumptions did Ptolemy make for
his theory?

Q22 What arguments did Ptolemy use against
the idea that the earth rotated?

Q23 What limitation did Ptolemy have to
assign to his epicycles?

Q24 Was the Ptolemaic system proposed as a

description of real planetary orbits,
or only as a means for computing posi-
tions?

Q25 In what way did Ptolemy disregard the
assumptions of Plato?

1126 ny was Ptolemy's system accepted for
more than a thousand years?

Study Guide

5.1 a) List the observations of the mo-
tions of heavenly bodies that you might
make which would have been possible in
ancient Greek times.

b) For each observation, list some
reasons why the Greeks thought these
motions were important.

5.2 Describe the apparent motions of the
stars and their times of rising and
setting if the earth's shape were:

a) saucer-shaped,
b) flat,
c) a pyramid or cube,
d) a cylinder having its axis north-

south.

5.3 Throughout Chapter 5, many references

are made to the importance of recording
observations accurately.

a) Why is this so important in as-
tronomy?

b) Why are such records more impor-
tant in astronomy than in other
areas of physics you have already
studied?

5.4 As far as the Greeks were concerned,
and indeed as far as we are concerned,
a reasonable argument can be made for
either the geocentric or the heliocentric
theory of the universe.

a) In what ways were both ideas suc-
cessful?

b) In terms of Greek science, what
are some advantages and disad-
vantages of each system?

c) What were the major contributions
of Ptolemy?
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34
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35
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Man breaking through the vault of the heavens to new spheres.26 (Woodcut, circa 1530.)



6.1 The Copernican system. Nicolaus Copernicus (1473-1543) was

still a young student in Poland when Columbus discovered

America. Copernicus was an outstanding astronomer and

mathematician, and also was a talented and respected church-

man, jurist, administrator, diplomat, physician, classicist

and economist. During his studies in Italy he learned

Greek and read the writings of earlier philosophers and

astronomers. As a canon of the Cathedral of Frauenberg

he was busy with civic and church affairs, but increasingly

he worked on 11.1.s astronomical studies. On the day of his

death in 1543, he saw the first copy of his great book which

opened a whole new vision of the universe.

6.1) .

Copernicus titled his book De Revolutionibus Orbium

Coelestium, or On the Revolutions of the Heavenly Spheres,

which suggests an Aristotelian notion of concentric spheres.

Copernicus was indeed concerned with the old problem of

Plato: the construction of a planetary system by combina-

tions of the fewest possible uniform circular motions. He

began his study to rid the Ptolemaic system of the equants

which were contrary to Plato's assumptions. In his words,

taken from a short summary written about 1530,

...the planetary theories of Ptolemy and most other
astronomers, although consistent with the numerical
data, seemed likewise to present no small difficulty.
For these theories were not adequate unless certain
equants were also conceived; it then appeared that a
planet moved with uniform velocity neither on its
deferent nor about the center of its epicycle. Hence
a system of this sort seemed neither sufficiently ab-
solute nor sufficiently pleasing to the mind.

Having become aware of these defects, I often con-
sidered whether there could perhaps be found a more
reasonable arrangement of. circles, from which every
apparent ineauality would be derived and in which
everything would move uniformly about its proper cen-
ter, as the rule of absolute motion requires.

In De Revolutionibus he wrote:

We must however confess that these movements [of
the sun, moon, and planets] are circular or are com-
posed of many circular movements, in that they main-
tain these irregularities in accordance with a
constant law and with fixed periodic returns, and
that could not take place, if they were not circular.
For it is only the circle which can bring back what
is past and over with....

I found first in Cicero that Nicetas thought that
the Earth moved. And afterwards I found in Plutarch
that there were some others of the same opinion....
Therefore I also...began to meditate upon the mobility
of the Earth. And although the opinion seemed absurd,
nevertheless, because I knew that others before me had

Fig. 6.1 Nicolaus Copernicus
(1473-1543). In Polish his
name was Kopernik.

What wr= "the rule of absolute
motion"?
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been granted the liberty of constructing whatever cir-
cles they pleased in order to demonstrate astral phe-
nomena, I thought that I too would be readily permitted
to test whether or not, by the laying down that the
Earth had some movement, demonstrations less shaky than
those of my predecessors could be found for the revolu-
tions of the celestial spheres....I finally discovered
by the help of long and numerous observations that if
the movements of the other wandering stars are correla-
ted with the circular movement of the Earth, and if
the movements are computed in accordance with the rev-
olution of each planet, not only do all their phenomena
follow from that but also this correlation binds togeth-
er so closely the order and magnitudes of all the
planets and of their spheres or orbital circles and the
heavens themselves that nothing can be shifted around
in any part of them without disrupting the remaining
parts and the universe as a whole.

After nearly forty years of study Copernicus proposed

a system of more than thirty eccentrics and epicycles

which would "suffice to explain the entire structure of

the universe and the entire ballet of the planets." Like

the Almagest, De Revolutionibus uses long geometrical

analyses and is difficult to read. Examination of the

two books strongly suggests that Copernicus thought he was

producing an improved version of the Almagest. He used

many of Ptolemy's observations plus a few more recent ones.

Yet his system, or theory, differed from that of Ptolemy in

several fundamental ways. Like all scientists, Copernicus

made many assumptions as the basis for his system:

See the Preface to Copernicus'
Revolutionibus in Project Physics
Reader 2.

"1. There is no one center of all the celestial circles

or spheres.

2. The center of the earth is not the center of the

universe, but only of (gravitation] and of the lunar sphere.

3. All the spheres revolve about the sun...and therefore

the sun is the center of the universe.

4. The ratio of the earth's distance from the sun to the

(sphere of the stars] is so much smaller than the ratio of the

earth's radius to its distance from the sun that the distance

from the earth to the sun is imperceptible in comparison with

the (distance to the stars].

5. Whatever motion appears in the (sky] arises not from any

motion of the (sky], but from the earth's motion. The earth

together with its (water and air] performs a complete rotation

on its fixed poles in a daily motion, while the (sky remains]

unchanged.

6. What appear to us as motions of the sun arise not from

its motion but from the motion of the earth and...we revolve

about the sun like any other planet. The earth has, then,

more than one motion.
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Fig. 6.2 Copernicus' diagram
of his heliocentric system.

(From his manuscript of De
Revolutionibus, 1543.) This
simplified representation omits
the many epicycles actually used
in the system.
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7. The apparent retrograde...motion of the planets arises

not from their motion but from the earth's. The motions of

the earth alone, therefore, are sufficient to explain so many

apparent [motions] in the [sky]."

Comparison of this list with the assumptions of Ptolemy,

given in Chapter 5, will show some identities as well as

some important differences.

Notice that Copernicus proposed that the earth rotates

daily. As Aristarchus and others had realized, this rotation

would account for all the daily risings and settings observed

in the sky. Also Copernicus proposed, as Aristarchus had

done, that the sun was stationary and the center of the

universe. The earth, like the other planets, moved about

some point near the sun. Thus the Copernican system is a

heliostatic (fixed sun) system in which the sun is located

near, but not at, the various centers around which the

planets moved.

Figure 6.2 shows the main concentric spheres carrying the
planets around the sun. His text explains the outlines of
the system:

The ideas here stated are difficult, even almost
impossible, to accept; they are quite contrary to
popular notions. Yet with the help of God, we will
make everything as clear as day in what follows, at
least for those who are not ignorant of mathematics....

The first and highest of all the spheres is the
sphere of the fixed stars. It encloses all the other
spheres and is itself self-contained; it is immobile;
it is certainly the portion of the universe with ref-
erence to which the movement and positions of all the
other heavenly bodies must be considered. If some
people are yet of the opinion that this sphere moves,
we are of a contrary mind; end after deducing the mo-
tion of the earth, we shall show why we so conclude.
Saturn, first of the planets, which accomplishes its
revolution in thirty years, is nearest to the first
sphere. Jupiter, making its revolution in twelve
years, is next. Then comes Mars, revolving once in
two years. The fourth place in the series is occu-
pied by the sphere which contains the earth and the
sphere of the moon, and which performs an annual
revolu:ion. The fifth place is that of Venus, re-
volving in nine months. Finally, the sixth place
is occupied by Mercury, revolving in eighty days.

In the midst of all, the sun reposes, unmoving.
Who, indeed, in this most beautiful temple would
place the light-giver in any other part than that
whence it can illumine all other parts...?

In this ordering there appears a wonderful sym-
metry in the world and a precise relation between the
motions and sizes of the spheres which no other ar-
rangement offers.



co What reason did Coperni,:us give for re-
jecting the use of equants?

Q2 What could Copernic.s have meant when he
said, "There is no one center of all the
celestial circles or spheres," and yet
"All the spheres revolve around the sun
as their mid-point, and therefore the
sun is the center of the universe"?

Q3 In the following table mark with a P the
assumptions made by Ptolemy, and with a
C those made by Copernicus.

a) The earth is spherical.

b) The earth is only a point compared to
the distances to the stars.

c) The heavens rotate daily around the
earth.

d) The earth has one or more motions.

e) Heavenly motions are circular.

f) The observed retrograde motion of
the planets results from the earth's
motion around the sun.

6.2 New conclusions. As often happens in science, a new way

of looking at the observations--a new theory leads to new

types of conclusions. Copernicus used his moving-earth

model to get two results not possible with the Ptolemaic

theory. He found the periods of motion of each planet

around the sun. Also he found the distance of each

planet from the sun in terms of the distance of the earth

from the sun. The distance between the earth and sun is

known as the astronomical unit (A.U.).

To get the periods of the planets around the sun Coper-

nicus used observations that had been recorded over many

years. For the outer planets, Mars, Jupiter and Saturn, he

found the average number of years needed for the planet to

make one trip around the sky, as Table 6.1 shows. When

averaged over many years the period is rather close to the

planet's actual orbital period.

Table 6.1 Copernicus' Derivation of the Period of Mars,
Jupiter and Saturn around the Sun.

Years Cycles
of among the Period

Planet Obs. Stars Ratio Copernicus' Modern

Mars 79 42 79/42 687d 687.0d

Jupiter 71 6 71/6 11.8y 11.86y

Saturn 59 2 59/2 29.5y 29.46y

For the quick-moving inner planets, Mercury and Venus,

If a body is observed to make

6 full cycles of the sky in
24 years, what approximately is
its orbital period?

Fig. 6.3 Clock analogy of the
"chase" problem. The small
disk, representing the earth,
is on an extension of the minute
hand. The larger disk, repre-
senting a planet, is on an ex-
tension of the hour hand. The
sun is at the center. The se-
quence shows the earth over-

taking and passing the planet.

the procedure of Copernicus had a form which we call the (a) 11:55 (e) 6:30
(b) 12:00 (f) 6:35

"chase problem." As an example of such a chase, consider (c) 12:05 (g) 9:45

the hour and minute hands of a clock or watch, as shown in (d) 3:15

f f
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Earth

R

Venus

r

Deferent

Epicycle

Fig. 6.4(a) The orbit of Venus
according to Ptolemy. The maxi-
mum angle between the sun and
Venus is about 45° east and west
of the line connecting the fixed
earth and the revolving sun.
r = 0.7R

Earth

Fig. 6.3. If you were riding on the long hour hand shown in

Fig. 6.3, how many times in 12 hours would the minute hand

pass between you and the center? If you are not certain,

slowly turn the hands of a clock or watch and keep count.

From this information, can you derive a relation by which

you would conclude that the period of the minute hand around

the center was one hour?

Sun
Now for a planetary application. We assume that Mercury

and Venus are closer than the earth is to the sun, and that:

they have orbital periods less than one year. Because the

earth is moving in the same direction as the planets, they

have to chase the earth to return to the same apparent posi-

tion in the skysuch as being farthest eastward from the sun.

We can solve such a chase problem by counting for an interval

of T years the number of times N a planet attains some partic-

ular position relative to the sun. The actual number of trips

the planet has made around the sun in this interval of T years

is the sum of N and T. The planet's period, years per revo-

lution, is then T/(T + N). From observations available to

him Copernicus formed the ratios T/(T + N) and found the

periods shown in Table 6.2. His results were remarkably

close to our present values.

Table 6.2 Copernicus' Derivation of Periods of Mercury
and Venus around the Sun

Fig. 6.4(b) The orbit of Venus,
according to Copernicus. With
the earth in orbit around the
sun the same maximum angle be-
tween Venus and the earth-sun
line is observed. Here r = 0.7R
in astronomical units.
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Number of
Times

Farthest
Years of East
Orbits of the Sun T Period

Planet N (T+N) (T+N) Copernicus' Modern

Mercury 46 145 191 46/191y 88d 88.0d

Venus 8 5 13 8/13y 224d 224.7d

For the first time in history, Copernicus was able to

derive distances to the planets in terms of the distance of

the earth from th? zun (the astronomical unit). Remember

that the Ptolemaic system had no distance scale; it provided

only a way of deriving the directions to the planets. If, as

Copernicus proposed, the earth moved around the sun, the dis-

tances of the inner planets to th,1 sun could be found in

terms of the earth's distance, as Fig. 6.4 indicates, from

their maximum angles from the sun. The values found by Coper-

nicus (with the modern values in parentheses) are: Venus

0.72 (0.72 A.U.), Mercury 0.38 (0.39 A.U.). The earth's

distance from the sun has been taken as 1.00, or one A.U.

In the Copernican system, the large epicycles of Ptolemy,

shown in Fig. 5.15, p. 22, were replaced by the orbit of



the earth. The radius r of Ptolemy's epicycle was given by

Copernicus in terms of the radius R of the deferent, which

was taken as 10,000 (see Table 6.3). From these numbers

we can find for each planet the ratio of the radius of the

deferent to that of the epicycle; these are listed in the

third column of Table 6.3.

As Figs. 6.5(a) and (b) show, we can in imagination expand

the scale of the planet's orbit (according to Ptolemy), both

the deferent and epicycle, until the radius r of the epicycle

is the same size as the orbit of the sun about the earth (or

the earth about the sun). Figure 6.5c shows that we can then

displace all three bodies: planet, sun and earth, along

parallel lines and through equal distances. By this displace-

Fig. 6.5(a) The orbit of the
sun S around the earth E and the
deferent and epicycle of an outer
planet P, as shown in Fig. 5.15.

(b) The deferent and epicycle are
enlarged while maintaining the
same maximum angle of displace-
ment for the epicycle until the
epicycle has the same radius,
r', as ES, the earth-to-sun
distance.

Fig: 6.5(c)

(c) The three bodies E, S and P
are displaced on parallel lines
by equal distances. The relative
positions are the same as in part
(a), 'ant now the sun is the cen-

ter of the system and the earth's
orbit replaces the epicycle of
the planet P.
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ment we move the earth from the center of all the motions and

put the sun at the center. Also, we have el.mirated the

planet's epicycle and replaced it by the orbit of the earth.

In addition, we have changed the frame of reference and put

the sun instead of the earth at the origin of the coordinate

system and the center of the planetary motions. Now the

model resembles the Copernican system. Furthermore, the

relative distance from the sun to each planet is set.

Table 6.3 The Sizes of Planetary Orbits

Ptolemy's Ratios
Deferent/Epicycle

(R/r)
Copernicus'

R, wher. r = 1 Modern Values

Saturn 1.0,000/1090 9.2 9.54 A.U.

Jupiter 10,000/1916 5.2 5.20

Mars 10,000/6580 1.52 1.52

Earth (one astronomical unit) 1.00 1.00

Venus 0.72 0.72

Mercury 0.38 0.39

Q4 What new results did Copernicus obtain possible with a geocentric model for the
with a moving-earth model which were not planetary system?

6.3 Arguments for the Copernican System. Since Copernicus

knew that to many his work would seem absurd, "nay,

almost contrary to ordinary human understanding," he tried

to meet the old arguments against a moving earth in several

ways.

1. Copernicus argued that his assumptions agreed with

dogma at least as well as Ptolemy's. Copernicus has many

sections on the limitations of the Ptolemaic system (most

of which tad been known for centuries). Other sections

pointed out how harmonious and orderly his own system

seems and how pleasingly his system reflects the mind of

the Divine Architect. To Copernicus, as to many scientists,

the complex events they saw were but symbols of the working

of God's mind. To seek symmetry and order in the observed

changes was to Copernicus an act of reverence. To him the

symmetry and order were renewed proof of the existence of

the Deity. As a highly placed and honored church dignitary,

he would have been horrified if he had been able to foresee

that his theory would contribute to the sharp clash, in

Galileo's time, between religious dogma and the interpreta-

tions that scientists gave to their experiments.

2. Copernicus' analysis was as thorough as that of

Ptolemy. He calculated the relative radii and speeds of

the circular motions in his system so that tables of

pJ.anetary motion could be made. Actually the theories of
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Ptolemy and Copernicus were about equally accurate in

predicting planetary positions, which for both theories

often differed from the observed positions by as much

as 2°, o. four diameters of the moon.

3. Copernicus cleverly tried to answer several objec-

tions that were certain to be raised against his helio-

centric system as they had been, long ago, against that of

Aristarchus. To the argument that the earth, rotating so

rapidly about its own axis, would surely burst like a fly-

wheel driven too fast, he asked, "Why does the defender of

the geocentric theory not fear the same fate for his rotating

celestial sphere so much faster because so much larger?"

To the argument that birds in flight and clouds should be

left behind by the rapidly rotating and revolving earth,

he answered that the atmosphere is dragged along with the

earth.

To the old question of the absence of parallax for

the fixed stars, he could only give the same answer as

Aristarchus:

...the dimensions of the world [universe] are so
vast that though the distance from the sun to the
earth appears very large as compared with the size
of the spheres of some planets, yet compared with
the dimensions of the sphere of the fixed star:
it is as nothing.

However, would you expect that those who believed in a small

earth-centered universe would be persuade& that the stars

were far away because their parallax was not observed? The

argument was logical, but not convincing.

4. Copernicus claimed that the greatest advantage of his

scheme was its simple description of the general motions of

the planets. Figure 5.7, p. 11, shows how the retrograde

motions will appear from a moving earth.

Yet for computations, because Copernicus would not use

equants, he needed more small motions than did Ptolemy to

account for the observations.

Q5 What arguments did Copernicus use in
favor of his system?

Q6 What were the largest differences between
observed planetary positions and those
predicted by Ptolemy and Copernicus?

Q7 In what way was Copernicus' conclusion
about the distance to the stars not
convincing?

Q8 Did the Copernican system provide simple
calculations of where the planets should
be seen?

6.4 Arguments against the Copernican system. Copernicus' hopes

for acceptance of his theory were not quickly fulfilled.

More than a hundred years passed before the heliocentric

system was generally accepted even by astronomers. In

the meantime the theory and its few champions met power-
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ful opposition. Most of the arguments were the same as

those used by Ptolemy against the heliocentric ideas of

Aristarchus.

1. Apart from its apparent simplicity, the Copernican

system had no scientific advantages over the geocentric

theory. There was no known observation that was explained

by one system and not by the other. Copernicus introduced

no new types of observatiohs into his work. Furthermore,

the accuracy of his final predictions was little better

than that of Ptolemy's results. As Francis Bacon wrote

in the early seventeenth century: "Now it is easy to see

that both they who think the earth revolves and they who

hold the old construction are about equally and indiffer-

ently supported by the phenomena."

Basically, the rival systems differed in their choice

of reference systems used to describe the observed

motions. Copernicus himself stated the problem clearly:

Although there are so many authorities for saying
that the Earth rests in the centre of the world that
people think the contrary supposition...ridiculous;
...if, however, we consider the thing attentively,
we will see that the question has not yet been decided
and accordingly is by no means to be scorned. For
every apparent change in place occurs on account of the
movement either of the thing seen or of the spectator,
or on account of the necessarily unequal movement of
both. For no movement is perceptible relatively to
things moved equally in the same directions--I mean
relatively to the thing seen and the spectator. Now
it is from the Earth that the celestial circuit is
beheld and presented to our sight. Therefore, if
some movement should belong to the Earth...it will
appear, in the parts of the universe which are outside,
as the same movement but in the opposite direction, as
though the things outside were passing over. And the
daily revolution...is such a movement.

In that statement Copernicus invites the reader to shift

the frame of reference from that of an observer on the

earth to one at a remote position looking upon the whole

system with the sun at the center. As you may know from

personal experience, such a shift is not easy for us even

today. Perhaps you can sympathize with those who preferred

to hold to an earth-centered system for describing what

they actually saw.

Physicists now generally agree that all systems of

reference are equivalent, although some may be more com-

plex to use or think about. The modern attitude is that

the choice of a frame of reference depends mainly on

which will provide the simplest solution to the problem
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being stuLied. We should not speak of reference systems as

being right or wrong, but rather as being convenient or incon-

venient. However, a reference system that may be acceptable

to one person may involve philosophical assumptions that are

unacceptable to another.

2. The lack of an observable parallax for the fixed stars

was against Copernicus' model. His only reply was unaccept-

able because it meant that the stars were practically an

infinite distance away from the earth. To us this is no

shock, because we have been raised in a society that accepts

the idea. Even so, such distances do strain our imagination.

To the opponents of Copernicus such distances were absurd.

The Copernican system led to other conclusions that were

also puzzling and threatening. Copernicus found actual dis-

tances between the sun and the planetary orbits. Perhaps

the Copernican system was not just a mathematical procedure

for predicting the positions of the planets. Perhaps Coper-

nicus had revealed a real system of planetary orbits in

space. This would be most confusing, for the orbits were

far apart. Even the few small epicycles needed to account

for variations in the motions did not fill up the spaces be-

tween the planets. Then what did fill up these spaces?

Because Aristotle had stated that "nature abhors a vacuum,"

there had to be something in all that space. As you might

expect, those who felt that space should be full of something

invented various sorts of invisible fluids and ethers to

fill up the emptiness. More recently analogous fluids have

been used in theories of chemistry, and of heat, light and

electricity.

3. Since no definite decision between the Ptolemaic

and the Copernican theories could be made on the astro-

nomical evidence, attention focused on the argument con-

cerning the immobility and central position of the earth.

For all his efforts, Copernicus was unable to persuade

most of his readers that the heliocentric system was at

least as close as the geocentric system to the mind and

intent of God. All religious faiths in Europe, including

the new Protestants, found enough Biblical quotations

(e.g., Joshua 10: 12-13) to assert that the Divine Archi-

tect had worked from a Ptolemaic blueprint. Indeed, the

religious reformer Martin Luther branded Copeinicus as

"the fool who would overturn the whole science of astronomy."

Eventually, in 1616, when storm clouds were raised by

the case of Galileo, the Papacy put De Revolutionibus on
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the Index of forbidden books as "false and altogether

opposed to Holy Scriptures," and withdrew its approval of

an earlier outline of Copernicus' work. Some Jewish

communities forbade the teaching of the heliocentric

theory. It was as if man insisted on the middle of the

stage for his earth, the scene of both his daily life

and prayer in a world he felt was created especially for

him.

The assumption that the earth was not the center of the

universe was offensive. But worse, the Copernican system

suggested that the other planets were similar to the

earth. Thus the concept of the heavenly ether was threat-

ened. Who knew but what some fool might next suggest that

the sun and possibly even the stars were made of earthly

materials? If the other celestial bodies, either in our

solar system or beyond, were similar to the earth, they

might even be inhabited, no doubt by heathens beyond the

power of salvation! Thus the whole Copernican scheme led

to profound philosophical questions.

4. The Copernican theory conflicted with the basic

propositions of Aristotelian physics. This conflict is

wall described by H. Butterfield:

...at least some of the economy of the Copernican
system is rather an optical illusion of more recent
centuries. We nowadays may say that it requires
smaller effort to move the earth round upon its axis
than to swing the whole universe in a twenty-four
hour revolution about the earth; but in the Aristo-
telian physics it required something colossal to
shift the heavy and sluggish earth, while all the
skies were made of a subtle substance that was sup-
posed to have no weight, and they were comparatively
easy to turn, since turning was concordant with
their nature. Above all, if you grant Copernicus
a certain advantage in respect of geometrical
simplicity, the sacrifice that had to be made
for the sake of this was tremendous. You lost
the whole cosmology associated with Aristoteli-
anism the whole intricately dovetailed system in
which the nobility of the various elements and the
hierarchical arrangement of these had been so beau-
tifully interlocked. In fact, you had to throw
overboard the very framework of existing science,
and it was here that Copernicus clearly failed to
discover a satisfactory alternative. He provided
a neater geometry of the heavens, but it was one
which made nonsense of the reasons and explanations
that had previously been given to account for the
movements in the sky.

Although the sun-centered Copernican scheme was equiv-

alent to the Ptolemaic in explaining the astronomical

observations, to abandon the geocentric hypothesis seemed

"philosophically false and absurd," dangerous, and fan-
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tastic. What other reaction could one have expected?

Learned Europeans at that time recognized the Bible and

the writings of Aristotle as their two supreme sources of

authority. Both appeared to be challenged by the Coper-

nican system. Although the freedom of thought that marked

the Renaissance was just beginning, the old image of the

world provided security and stability to many.

Similar conflicts between the philosophical assumptions

underlying accepted beliefs and hose arising from scien-

tific studies have occurred many times. During the last

century there were at least two such conflicts. Neither

is completely resolved today. In biology the evolutionary

theory based on Darwin's work has had major philosophical

and religious overtones. In physics, as Units 4, 5 and

6 indicate, evolving theories of atoms, relativity, and

quantum mechanics nave challenged other long-held philo-

sophical assumptions about the nature of the world and

our knowledge of reality.

Q9 Why did many people, such as Francis
Bacon, adopt a ho-hum attitude toward
the arguments about the correctness of
the Ptolemaic or Copernican systems?

Q1O What was the major difference between
the Ptolemaic and the Copernican systems?

WM How did the astronomical argument become

involved with religious beliefs?

Q12 In what way did the Copernican system
conflict with the accepted physics of
the time?

Q13 List some conflicts between scientific
theories and philosophical assumptions
of which you are aware.

6.5 Historical consequences. Eventually, the moving-earth model

of Copernicus was accepted. However, the slowness of that

acceptance is illustrated by a recent discovery in the diary

of John Adams, the second President of the United States: he

wrote that at Harvard College on June 19, 1753, he attended

a lecture where the correctness of the Copernican system was

disputed.

Soon we shall follow the work which gradually led to the

general acceptance of the heliocentric theory. Yet within a

century the detailed Copernican system of uniform circular

motions with eccentrics and epicycles was replaced. We shall

see that the real scientific significance of Copernicus' work

lies in the fact that a heliocentric formulation opened a new

way for understanding planetary motion. This was through

the simple laws of ordinary (terrestrial) mechanics which

were developed during the 150 years that followed.

The Copernican model with moving earth and fixed sun

opened a floodgate of new possibilities for analysis and

description. According to this model the planets could

be considered as real bodies moving along actual orbits.
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Mars

Sun

Fig. 6.6 In the Copernican
systep, the center of the def-
erent of Mars was offset from
the sun to point C. In addi-
tion, a small epicycle was
needed to account for minor
variations in the planet's
motion.

What other scientific theories
do you know which challenge the

assumption that man is the sum-
mit of creation?

Now Kepler and others could consider these planetary paths

in quite new ways.

In science, a new set of assumptions often leads to new

interpretations and unexpected results. Usually the sweep

of possibilities cannot be foreseen by those who begin the

revolution or by their critics. For example, the people

who laughed at the first automobiles, which moved no faster

than a walking horse, failed to realize that those automo-

biles were but a crude beginning and could soon be improved,

while the horse was in its "final edition."

The memory of Copernicus is honored for two additional

reasons. First, he was one of those giants of the fif-

teenth and siNteenth centuries who challenged the contem-

porary world-picture. Second, his theory became a main

force in the intellectual revolution which shook man out

of his self-centered view of the universe.

As men gradually accepted the Copernican system, they

necessarily found themselves accepting the view that the

earth was only one among several planets circling the sun.

Thus it became increasingly difficult to assume that all

creation centered on mankind.

Acceptance of a revolutionary idea based on quite new

assumptions, such as Copernicus' shift of the frame of

reference, is always slow. Sometimes compromise theories

are proposed as attempts to unite two conflicting alter-

natives, that is, to split the difference." As we shall

see in various Units, such compromises are rarely success-

ful. Yet the conflict usually stimulates new observations

that may be of long-term importance. These may lead to

the development or restatement of one theory until it is

essentially a new theory, as we shall see in Chapter 7.

Such a restatement of the heliocentric theory came

during the years after Copernicus. While many men pro-

vided observations and ideas, we shall see that major

contributions were made by Tycho Brahe, Kepler, Galileo

and then Isaac Newton. New and better solutions to the

theoretical problems required major improvements in the

precision with which planetary positions were observed.

Such improvements and the proposal of a compromise theory

were the life work of the astronomer Tycho Brahe.

Q14 In terms of our historical perspective,
what was probably the greatest contrib.-
tion of Copernicus?

Q15 How did the Copernican system encourage

the suspicion that there might be life
on objects other than the earth? Is
such a possibility seriously considered
today?
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6.6Tycho Brahe. Tycho Brahe (Fig. 6.7) was born in 1546 of

a noble, but not particularly rich, Danish family. By

the time Tycho was thirteen or fourteen, he had become

intensely interested in astronomy. Although he was

studying law, he secretly spent his allowance money on

astronomical tables and books such as the Almagest and

De Revolutionibus. Soon he discovered that both Ptolemy

and Copernicus had relied upon tables of planetary posi-
tions that were inaccurate. He concluded that before a

satisfactory theory of planetary motion could be created

new astronomical observations of the highest possible

accuracy gathered during many years would be necessary.

Tycho's interest in studying the heavens was increased
by an exciting observation in 1572. Although the ancients

had taught that the stars were unchanging, Tycho observed

a "new star" in the constellation Cassiopeia. It soon

became as bright as Venus and could be seen even during
the daytime. Then over several years it faded until it

was no longer visible. To Tycho these changes were astonish-
ing: change in the starry sky! Since the ancients had firmly

believed that no changes were possible in the starry

heavens, at least one assumption of the ancients was
wrong. Perhaps other assumptions were wrong, too. What

an exciting life he might have if he could study the

heavens, searching for other changes of the stars and
91anets.

See "The Boy Who Redeemed His
Father's Name" in Project Physics
Reader 2.

See "The Great Comet of 1965" in
After observing and writing about the "new star," Tycho Project Physics Reader 2.

travelled through northern Europe where he met many other

astronomers and collected books. Apparently he was con-

sidering moving to Germany or Switzerland wh re he could

easily meet other astronomers. To keep the young scien-

tist in Denmark, King Frederick II made Tycho an offer

that was too attractive to turn down. Tycho was given an

entire small island, and also the income derived from various
farms to allow him to build an observatory on the island and
to staff and maintain it. The offer was accepted, and in a

few years Uraniborg ("Castle of the Heavens") was built
(Fig. 6.8). It was a large structure, having four large

observatories, a library, a laboratory, shops, and living

quarters for staff, students and observers. There was oven
a complete printing plant. Tycho estimated that the observ-

atory cost Frederick II more than a ton of gold. In terms
of the time of its building, this magnificent laboratory was
at least as significant, complex and expensive as some of
the great research establishments of our own time. Primarily

41



IbNi...414:.

5

z.

42

Fig. 6.7

I. 4

101

orK

At the top left is a plan of the observatory,
gardens and wall built for Tycho Brahe at Urani-
borg, Denmark.

The cross section of the observatory, above
center, shows where most of the important in-
struments were housed. Under the arch near the
left is Tycho's largest celestial sphere.

At the left is the room containing Tycho's
great quadrant. On the walls are pictures of
Tycho and some of his instruments.

Above is a portrait of Tycho painted about
1597.



a research center, Uraniborg was a place where scientists,

technicians and students from many lands could gather to

study astronomy. Here was a unity of action, a group effort
under the leadership of an imaginative scientist to advance

the boundaries of knowledge in one science.

In 1577 Tycho observed a bright comet, a fuzzy object
which moved across the sky erratically, unlike the orderly
motions of the planets. To find the distance to the comet

Tycho compared observations of its position seen from

Denmark with its positions observed from elsewhere in
Europe. At a given time, the comet had the same position
among the stars even though the observing places were many
hundreds of miles apart. Yet the moon's position in the

sky was different when viewed from the ends of such long
baselines. Therefore, Tycho concluded, the comet must
be at least six times farther away than the moon. This
was an important conclusion. Up to that time comets had

been believed to be some sort of local event, like a cloud
in the sky. Now comets had to be considered as distant

astronomical objects which seemed to move right through

the crystalline spheres. Tycho's book on this comet was

widely read and helped to undermine belief in the old as-

sumptions about the nature of the heavens.

12h 11h 10h 9h Oh 7h
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Fig. 6.9 The bright comet of
1965.
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Fig. 6.10 Motion of Halley's
Comet in 1909-10.

8h 7h 6h

SOUTH

5h 4h 3h 2h lh 24h

.4

10

20

23h

C18 What stimulated Tycho to become inter-
ested in astronomy?

Q17 Why were Tycho's conclusions about the
comet of 1577 important?

018 In what ways was Tycho's observatory
like a modern research institute?

019 What evidence can you find that comets
had been considered as omens of some
disaster?

020 How can you explain the observed motion
of Halley's comet during 1909-1910 as
shown in Fig. 6.10?
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6.7 Tycho's observations. Tycho's fame results from his life-

long devotion to making unusually accurate observations of

the positions of the stars, sun, moon, and planets. He

did this before the telescope was invented. Over the

centuries many talented observers had been recording the

positions of the celestial objects, but the accuracy of

Tycho's work was much greater than that of the best astrono-

mers before him. How was Tycho Brahe able to do what no

others had done before?

Fig. 6.11 One of Tycho's in-
struments, a quadrant; a device
for measuring the angular alti-
tude of heavenly objects.
Unfortunately all of Tycho's
instruments have been destroyed
or lost

See "A Night at the Observatory"
in Project Physics Reader 2.

For a more modern example of
this same problem of instrumen-
tation, you may wish to read
about the development and con-
struction of the 200-inch Hale
telescope on Mt. Palomar.

Singleness of purpose was certainly one of Tycho's

assets. He knew that observations of the highest preci-

sion must be made during many years. For this he needed

improved instruments that would give consistent readings.

Fortunately he possessed both the mechanical ingenuity to

devise such instruments and the funds to pay for their con-

struction and use.

Tycho's first improvement on the astronomical instru-

ments of the day was to make them larger. Most of the

earlier instruments had been rather small, of a size that

could be moved by one person. In comparison, Tycho's

instruments were gigantic. For instance, one of his early

devices for measuring the angular altitude of planets was

a quadrant having a radius of about six feet (Fig. 6.11).

This wooden instrument was so large that it took many

men to set it into position. Tycho also put his instru-

ments on heavy, firm foundations. Another huge instrument

was attached to a wall that ran exactly north-south. By

increasing the stability of the instruments, Tycho increased

the reliability of the readings over long periods of time.

Throughout his career Tycho also created better sighting

devices, more precise scales and stronger support systems,

and made dozens of other changes in design which increased

the precision of the observations.

Not only did Tycho devise better instruments for making

his observations, but he also determined and specified the

actual limits of precision of each instrument. He realized

that merely making larger and larger instruments does not

always result in greater precision; ultimately, the very

size of the instrument introduces errors since the parts

will bend under their own weight. Tycho therefore tried

to make his instruments as large and strong as he could

without at the same time introducing errors due to bending.

Furthermore, in the modern tradition, Tycho calibrated

each instrument and determined its range of systematic

error. (Nol:adays most scientific instruments designed



for precision work are accompanied by a statement, usually
in the form of a table, of systematic corrections to be
applied to the readings.)

Like Ptolemy and the Moslem observers, Tycho knew that
the light from each heavenly body was bent downward in-

creasingly as the object neared the horizon (Figs. 6.12

and 6.13), an effect known as atmospheric refraction. To

increase the precision of his observations, Tycho carefully
determined the amount of refraction so that each observa-

tion could be corrected for refraction effects. Such

careful work was essential if improved records were to
be made.

At Uraniborg, Tycho worked from 1576 co 1597. After

the death of King Frederick II, the Danish government

became less interested in helping to pay the cost of

Tycho's observatory. Yet Tycho was unwilling to consider

any reduction in the costs of his activities. Because

he was promised support by Emperor Rudolph of Bohemia,

Tycho moved his records and several instruments to Prague.

There, fortunately, he took on as an assistant an able,

imaginative young man named Johannes Kepler. When

Tycho died in 1601, Kepler obtained all his records about

Mars. As Chapter 7 reports, Kepler's analysis of Tycho's

observations solved much of the ancient problem.

4.,

Fig. 6.12 The oblate setting
sun. The light's path through
the earth's atmosphere caused
the sun to appear both oval and
rough-edged.

Apparent Light Path
Direction from star

Fig. 6.13 Refraction, or
bending, of light from a star
by the earth's atmosphere. The

amount of refraction shown in
the figure is greatly exagger-
ated over what actually occurs.
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Q21What improvements did Tycho make in as-
tronomical instruments?

Q22 In what way did Tycho correct his obser-
vations to provide records of higher
accuracy?

Fig. 6.14 Main spheres in
Tycho Brahe's system of the
universe. The earth was fixed
-ad was at the center of the
universe. The planets revolved
around the sun, while the sun,
in turn, revolved around the
fixed earth.
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6.8 Tycho's compromise system. Tycho's observations were

intended to provide a basis for a new theory of planetary

motion which he had outlined (Fig. 6.14) in an early

publication. Tycho saw the simplicity of the Copernican

system by which the planets moved around the sun, but he

could not accept the idea that the earth had any motion.

In Tycho's system, all the planets except the earth moved

around the sun, which in turn moved around the stationary

earth. Thus he devised a compromise theory which, as he

said, included the best features of both the Ptolemaic

and the Copernican systems, but he did not live to publish

a quantitative theory. As we look at it today, his system

is equivalent to either the Copernican or the Ptolemaic

system. The difference between the three systems is the

choice of what is regarded as stationary, that is, what

frame of reference is chosen.

The compromise Tychonic system was accepted by some

people and rejected by others. Those who accepted

Ptolemy objected to Tycho's proposal that the planets

moved around the sun. Those who were interested in the

Copernican model objected to having the earth held

stationary. Thus the argument continued between those

holding the seemingly self-evident position that the

earth was stationary and those who accepted, at least

tentatively, the strange, exciting proposals of Coper-

nicus that the earth might rotate and revolve around

the sun. These were philosophical or aesthetic prefer-

ences, for the scientific evidence did not yet provide an

observational basis for a choice. To resolve the conflict

and to produce a drastically revised sun-centered model

was the work of Kepler wno analyzed Tycho's high-quality

observations of Mars.

All planetary theories up to this time had been devel-

oped only to provide some system by which the positions

of the planets could be predicted fairly precisely. In

the terms used in Unit I, these would be called kinematic

descriptions. The causes of the motionswhat we now call

the dynamics of the motionshad not been questioned. The

motions were, as Aristotle said, "natural." The heavens

were still considered to be completely different from

earthly materials and to change in quite different ways.

That a common physics could describe both earthly and

heavenly motions was a revolutionary idea yet to be

proposed.



The Copernican system opened again the argument mentioned

at the end of Chapter 5: were the Copernican orbits actual

paths in space, or only convenient computational devices?

We shall see that the eventual success of the Newtonian

synthesis led to the confident assumption that scientists

were describing the real world. However, later chapters

of this text, dealing with recent discoveries and theories,

will indicate that today scientists are much less certain

that they know what is meant by the word reality.

The status of the problem in the early part ,of the

seventeenth century was later well described by the

English poet, John Milton, in Paradise Lost:

...He his fabric of the Heavens
Hath left to their disputes, perhaps to move
His laughter at their quaint opinions wide
Hereafter, when they come to model Heaven
And calculate the stars, how they will wield
The mighty frame, how build, unbuild, contrive
To save appearances, how gird the sphere
With centric and eccentric scribbled o'er,
Cy'le and epicycle, orb in orb.

a23 In what ways did Tycho's system for plan-
etary motions resemble either the Ptole-
maic or the Copernican systems?

0,24 To what degree do you feel that the Co-

pernican system, with its many motions
on eccentrics and epicycles, reveals real
paths in space rather than being only
another means of computing planetary
pos itioris?

Study Guide

6.1 The diagram to the right shows the
motions of Mercury and Venus east and
west of the sun as seen .rom the earth
during 1966-67. The time scale is in-
dicated at 10-day intervals along the
central line of the sun's position.

a) Can you explain why Mercury and
Venus appear to move from far-
thest east to farthest west more
quickly than from farthest west
to farthest east?

b) From this diagram can you find a
period for Mercury's apparent
position in the sky relative to
the sun?

c) With the aid of the "watch model"
can you derive a period for Mer-
cury's orbital motion around the
sun?

d) What are the major sources of un-
certainty in the results you de-
rived?

e) Similarly can you estimate the
orbital period of Venus?

Got
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Since divine kindness granted us Tycho Brahe, the
most diligent observer, by whose observations an er-
ror of eight minutes in the case of Mars is brought
to light in this Ptolemaic calculation, it is fitting
that we recognize and honor this favor of God with
gratitude of mind. Let us certainly work it out, so
that we finally show the true form of the celestial
motions (by supporting ourselves with these proofs
of the fallacy of the suppositions assumed). I my-
self shall prepare this way for others in the follow-
ing chapters according to my small abilities. For
if I thought that the eight minutes of longitude were
to ',e ignored, I would already have corrected the
hypothesis found in Chapter 16 (that it, by bissect-
ing the eccentricity). But as it is, because they
could not be ignored, these eight minutes alone have
prepared the way for reshaping tne whole of astronomy,
and they are the material which is made into a great
part of this work.

The geometrical models of Ptolemy and Copernicus based

on uniform circular motions had to be abandoned. Kepler

had the finest observations ever made, but now he had no

theory by which they could be explained. He would have to

start over to account for the difficult questions: what is

the shape of the orbit followed by Mars, and precisely how

does the speed of the planet change as it moves along the

orbit?

01What brought Kepler to the attention of
Tycho Brahe?

Q2 Why did Kepler conclude that Plato's

problem, to describe the motions of the
planets by combinations of circular mo-
tions, could not be solved?

7.2 Kepler's Law of Areas. Kepler's problem was immense. To solve

it would demand the utmost of his imagination and computational

skills, as well as of his persistence and health.

As the basis for his study Kepler had only Tycho's observed

directions to Mars and to the sun on certain dates. But these

observations were made from a moving earth whose orbit was

not well known. Kepler realized that he must first determine

more accurately the shape of the earth's orbit so that he

would know where it was when the various observations of Mars

had been made. Then he might be able to use the observations

to determine the shape and size of the orbit of Mars. Finally,

to predict positions for Mars he would need some regularity

or law that described how fast Mars moved at various points

in its orbit.

Fortunately Kepler made a major discovery which was cru-

cial to his later work. He found that the orbits of the

eartn and other planets were in planes which passed through

the sun. With this simplifying model of planets moving in

individual planes Kepler could avoid the old patterns of

Ptolemy and Copernicus which required separate explanations

for the observed motions of the planets north and south of
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Fig. 7.3 Edge-on view of orbit-
al planes of earth and planet.

S -- - -
/; E 1M

(a)

Fig. 7.4 How Kepler determined
approximately the shape of the
earth's orbit. Initially, (a)
Mars is opposite the sun. Af-
ter 687 days, (b) Mars has re-
turned to the same place in its
orbit, but the earth is almost
450 short of being at its ini-
tial position. After Mars makes
one more cycle, (c) the earth
lags by about 90°. Since the
directions from the earth to the
sun and Mars are known, the di-
rections of the earth as seen
from the sun and Mars are also
known. Where these pairs of
sight-lines cross must be points
on the earth's orbit.
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the ecliptic. Kepler discovered that the changing positions

of a planet could result from the planet's motion in its or-

bit viewed from the earth moving in its plane (the plane of

the ecliptic) as shown in Fig. 7.3.

From his many studies Kepler knew that the earth and Mars

moved in continuous paths that differed a bit from circles.

His aim was to obtain a detailed picture or plot of the

orbits as they might be seen by an observer above the ecliptic

plane looking down on these moving bodies. To such an observ-

er the planets would look like marbles rolling alorg nearly

circu'ar paths on the floor. Although the heliocentric idea

gave a rough guide to what this system would look like, Kep-

ler's task was to cind from the data the general rules, or

laws, that precisely fit the observations. As we work through

his brilliant analysis, you will see the series of problems

that he solved.

To derive the earth's orbit he began by considering the

moments when the sun, earth and Mars are essentially in a

straight line. After 687 days, as Copernicus had found, Mars

would return to the same place in its orbit. Of course, the

earth at that time would not be at the same place in its

orbit as when the first observation was made. Nevertheless,

as Fig. 7.4 indicates, the directions of the earth as seen

from the sun and from Mars would be known. The crossing

point of the sight-lines from the sun and from Mars must be

a point on the earth's orbit. By working with several groups

of observations made 687 days apart, Kepler was able to de-

termine fairly accurately the shape of the earth's orbit.

The orbit Kepler found for the earth appeared to be al-

most a circle, with the sun a bit off center. Kepler also

knew, as you have read in Sec. 5.7, that the earth moves

around the sun fastest during December and January, and

slowest during June and July. Now he had an orbit and time-

table for the earth's motion. In Experiment 15 you made a

similar plot of the earth's orbit.

With the orbit and timetable of the earth known, Kepler

could reverse the analysis. He triangulated the positions

of Mars when it was at the same place in its orbit. For

this purpose he again used observations separated by one

orbital period of Mars (687 days). Because this interval is

somewhat less than two earth years, the earth is at different

positions in its orbit at the two times (Fig. 7.5). Then the

two directions from the earth toward Mars differ, and two

sight-lines can be drawn from the earth's positions; where



they cross is a point on the orbit of Mars. From such

pairs of observations Kepler fixed points on the orbit of

"tars. From a curve drawn through such points you can get

fairly accurate values for the size and shape of Mars'

orbit. Kepler saw at once that the orbit of Mars was not

a circle around the sun. You will find the same result

from Experiment 18.

Because Mars, like the earth, moves faster when nearer

the sun, Kepler began to wonder why this occurred. Perhaps

the sun exerted some force which pushed the planets along

their orbits. Here we see the beginnings of a major change

in interpretation. In the systems of Ptolemy and Coperni-

cus, the sun was not a special object in a mechanical or

dynamical sense. Even in the Copernican system each planet

moved around its special point near the sun. No physical

relation had been assumed, only a geometrical arrangement.

Motions in the heavens had been considered as perpetual

motions along circles. Now Kepler began to suspect that

there was some physical interaction between the sun and the

planets which caused the planets to move along their orbits.

While Kepler was studying how the speed of the planet

changed along its orbit, he made an unexpected discovery:

during equal time intervals a line drawn from the sun to the

moving planet swept over equal areas. Figure 7.6 illustrates

this for an orbit in which each pair of points is separated

by equal time intervals. Between points A and B, the planet

moves rapidly; between points G and H it moves slowly. Yet

the areas swept over by the line from the sun to the planet

are equal. Although Kepler discovered this Law of Areas

before he discovered the exact shape of the orbits, it has

become known as Kepler's second law. In its general form

the Law of Areas states: the line from the sun to the moving

planet sweeps over areas that are proportional to the time

intervals,.

Perhaps you are surprised that the first general law

about the motions of the planets is concerned with the areas

swept over by the line from the sun to the planet. After

we have considered circles, eccentric circles, epicycles and

equants to describe the motion, we come upon a quite unexpec-

ted property, the area swept over per unit time, as the first

property of the orbital motion to remain constant. As we

shall see in Chapter 8, this major law of nature applies to

all orbits in the solar system and also to double stars. Per-

haps yriu can sympathize with Kepler, who wrote that he was in

ecstasy when, after great labor and ingenuity, he finally

found this law. At last the problem was beginning to crack.

Mars' Orbit

Earth's
Orbit

Fig. 7.5 How Kepler determined
points on the orbit of Mars by
triangulation.

14 L

Fig. 7.6 Kepler's second law.
A planet moves along its orbit
at a rate such that the line
from the sun to the planet
sweeps over areas which are
proportional to the time inter-
vals.
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As we shall see, Kepler's other labors would have been of

little use without this basic discovery, even though it was

an empirical discovery without any hint why this law should

be. The Law of Areas establishes the rate at which Mars (or

any other planet or comet) moves at a particular point of its

orbit. But to use this for making predictions of positions,

viewed from the sun or from the earth, Kepler needed also to

know the precise size and shape of Mars' orbit.

Q3 What types of observations
use for his study of Mars?

Q4 What were the new problems
had to solve?

Q5 What important simplifying
about planetary orbits was
Kepler?

did Kepler

that Kepler

assumption
added by

CaiState Kepler's Law of Areas.

Q7 Summarize the steps Kepler used to de-
termine the orbit of the earth.

Q8 Describe the velocity changes of a planet
as it goes around the sun in an elliptical
orbit. (See next section.)

7.3Kepler's Law of Elliptical Orbits. By using the analysis we

have described and illustrated in Fig. 7.5, p. 53, Kepler

established some points on the orbit of Mars. But what sort

of a path was this? How could he describe it? As Kepler

said, "The conclusion is quite simply that the planet's path

is not a circle it curves inward on both sides and outward

again at opposite ends. Such a curve is called an oval."

But what kind of oval?

Many different closed curves can be called ovals. Kepler

thought for a time that the orbit was egg-shaped. Because

such a shape did not agree with Kepler's ideas of physical

interaction between the sun and the planet, he rejected the

possibility that the orbit was egg-shaped. Kepler concluded

that there must be some better way to describe the orbit and

that he could find it. For many months, during which he

often was ill and poverty-stricken, Kepler struggled with

the question incessantly. Finally he was able to show that

the orbit was a simple curve which had been studied in detail

by the Greeks two thousand years before. The curve is called

an ellipse. It is the shape you see when you view a circle

at a slant.

As Fig. 7.8 shows, ellipses can differ greatly in shape.

They also have many interesting properties. For example,

you can draw an ellipse by looping a piece of string around

two thumb tacks pushed into a drawing board or cardboard at

points F1 and F2 as shown in Fig. 7.7. Then, with a pencil

point pull the loop taut and run the pencil once around the

loop. You will have drawn an ellipse. (If the two thumb

tacks had been together, what curve would you have drawn?

What results do you get as you separate the two tacks more?)

A page from Kepler's notebooks.

minor axis y

Fig. 7.7 An ellipse showing the
semi-major axis a, the semi-
minor axis b, and the two foci
F1 and F2. The shape of an
ellipse is described by its
eccentricity, e, where
e = F0/0Q, or e = c/a. (7.1)

In any ellipse the sum of the
distances from the two foci to
a point on the curve equals the
length of the major axis, or
(F1P + F2P) = 2a.

This property of ellipses allows
us to draw them by using a loop
of string around two tacks at
the foci. Should the length of
string tied into the loop have
a total length of (2a + 2c)?
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e= 0.3

e= 0.5

e= 0.7

e= 0.8

e = 0.94

e = 0.98

Fig. 7.8 Ellipses of different
eccentricities. A saucer was
photographed at various angles.

The terms perihelion and aphelion
come from the Greek, in which
hellos is tie sun, lea means
nearest, and apo means farthest.
What other words do you know in
which the prefixes lea and
ma, or 22, have similar mean-
ings?

56

Each of the important points F1 and F2 is called a focus

of the ellipse.

What Kepler discovered was not merely that the orbit of

Mars is an ellipse--a remarkable enough discovery in itself

but also that the sun is at one focus. (The other focus

is empty.) Kepler stated these results in his Law of Ellip-

tical Orbits: the planets move in orbits which are ellipses

and have the sun at one focus. That this is called Kepler's

first law, although discovered after the Law of Areas, is an

historical accident.

The long or major axis of an ellipse has a length 2a. The

short or minor axis, perpendicular to the major axis, has a

length 2b. The point 0 midway between the two foci, F1 and

F2, is called the center, and the distance between the foci

is called 2c. Thus the distance from the center to either

focus is c.

The distance from any point P on the ellipse to the two

foci can easily be found. Imagine that the loop is pulled

out until your pencil is at the extreme point Q2. Here the

distance F1Q2 is (a + c). At the other extreme point Q1 the

distance from F2 is also (a + c). When we subtract the

distance 2c between the foci, the remainder is

FOP + F2P = 2a.

For astronomical orbits the distance a is called the mean

distance of a point P from one focus (the sun).

As you probably discovered, the shape of an ellipse

depends upon the distance between the foci. For that reason

the shape of an ellipse is described by the ratio c/a, which

is called the eccentricity of the ellipse and is denoted

by e. Thus e = c/a. For a circle, which is an extreme form

of an ellipse, the foci are together. Then the distance

between foci is zero and the eccentricity is also zero.

Other ellipses have eccentricities ranging between 0 and 1.

If Fig. 7.7 were to represent a planetary orbit, the sun

would be at one focus, say F1, with no object at the other

focus. The planet would be nearest the sun when it reached

point Q1, and farthest from the sun at point Q2. The point

nearest the sun is called the perihelion point and the point

farthest from the sun is called the aphelion point. The

distances of these two points from the sun are called the

perihelion distance and the aphelion distance respectively.

An example will show how these properties of an ellipse

can be used to provide new interesting information. For the

planet Mercury the perihelion distance (Q1F1 in Fig. 7.7)



has been found to be about 45.8 x 106 kilometers while the

aphelion distance F1Q2 is about 70.0 x 106 kilometers. What

is the eccentricity of the orbit of Mercury?

e = c/a

(Q1F1 + F1Q2)
a

2
, or

45.8 x 106 km + 70.0 x 106 km
2

= 57.9 x 106 km

c = (mean distance - perihelion distance)

= (0Q1 - QFI)

= 57.9 x 106 km - 45.8 x 106 km

= 12.1 x 106 km.

12.1 x 106 kmThen e 57.9 x 106 km = 0.21 .

As Table 7.1 shows, the orbit of Mars has the largest ec-

centricity of all the orbits that Kepler could study; those

of Venus, earth, Mars, Jupiter and Saturn. Had he studied

any planet other than Mars he might never have noticed that

the orbit was an ellipse. Even for the orbit of Mars, the

difference between the elliptical orbit and an off-center

circle is quite small. No wonder Kepler later wrote that

"Mars alone enables us to penetrate the secrets of astronomy."

Table 7.1 The Eccentricities of Planetary Orbits

Orbital
Planet Eccentricity Notes

Mercury 0.206 Too few observations for Kepler to
study

Venus 0.007 Nearly circular orbit

Earth 0.017 Small eccentricity

Mars 0.093 Largest eccentricity among planets
Kepler could study

Jupiter 0.048 Slow moving in the sky

Saturn 0.056 Slow moving in the sky

Uranus 0.047 Not discovered until 1781

Neptune 0.009 Not discovered until 1846

Pluto 0.249 Not discovered unti11930

The work of Kepler illustrates the enormous change in out-

look in Europe that had begun well over two centuries before.

Scientific thinkers gradually ceased trying to impose human

forms and motivations upon nature. Instead, they were be-

ginning to look for and theorize about mathematical simpli-

cities and mechanical or other models. Kepler rejected the
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e = 0

0<e<1

e = 1 parabola

e>1 hyperbola

Fig, 7.9 Conic sections. These
four figures are formed when a
cone is cut at different angles.

Empirical means "based on ob-
servations, not on theory."

ancient idea that each planet had a "soul." Instead he, like

Galileo, began to search for physical causes. Where Coperni-

cus and Tycho were willing to settle for geometrical models

by which planetary positions could be predicted, Kepler was

one of the first to seek causes for the motions. This new

desire for causal explanations marks the beginning of modern

physical science.

Like Kepler, we must have faith that our observations

represent some aspects of a reality that is more stable than

the emotions, wishes and behavior of human beings. Like

Plato and all scientists, we assume that nature is basically

orderly, consistent and therefore understandable in a

simple way. This faith has led scientists to devote them-

selves to careful and sometimes tedious quantitative investi-

gations of nature. As we all know, great theoretical and

technical gains have resulted. Kepler's work illustrates

one of the scientific attitudesto regard a wide variety

of phenomena as better understood when they can be described

by simple, preferably mathematical patterns.

After Kepler's initial joy over the discovery of the law

of elliptical paths, he may have asked himself the question:

why are the planetary orbits elliptical rather than some

other geometrical shape? While we can understand Plato's de-

sire for uniform circ'ilar motions, nature's insistence on

the ellipse is a surprise.

In fact, there was no satisfactory answer to Kepler's

question until Newton showed, almost eighty years later, that

these elliptical orbits were required by a much more general

law of nature. Let us accept Kepler's laws as rules that

contain the observed facts about the motions of the planets.

As empirical laws, they each summarize the verifiable data

from observations of the motion of any one planet. The first

law, which describes the paths of planets as elliptical

around the sun, gives us all the possible positions of each

planet. That law, however, does not tell us when a planet

will be at any one particular position on its ellipse or how

rapidly it will then be moving. The second law, the Law of

Areas, describes how the speed changes as the distance from

the sun changes, but does not involve the shape of the orbit.

Clearly these two laws complement each other. With these

two general laws, numbers for the size and shape of the

orbit, and the date for one position, we can determine both

the position and angular speed of a given planet at any time

relative to the sun. Since we can also find where the earth

is at the same instant, we can derive the position of the

planet as seen from the earth.



0.9 What can you do to a circle to have it motion of Mars fortunate?
appear as an ellipse?

cmn Summarize the steps Kepler used to de-
0.10 Why was Kepler's decision to study the termine the orbit of Mars.

7.4Using the first two laws. Fig. 7.10 represents the ellipti-

cal path of a planet with the sun at one focus. By a short

analysis we can determine the ratios of the speeds v
P

and v
a

of the planet when it is closest to the sun and farthest

from the sun. As you note in Fig. 7.10, at these two points

the velocity vectors are perpendicular to the radius. In

Fig. 7.6, p. 53, the time intervals during which the planet

moved from one marked point to the next are equal. In imag-

ination let us make that time interval very small, At. Then

the orbital speed becomes the instantaneous linear speed v.

Also, as Fig. 7.11 suggests, the distances from the sun

at the beginning and end of that interval are almost

equal, so we may use R for both distances. Since we know

that the area of any triangle is h base x altitude we

may write the area of any such long thin triangle between

the sun and a small section of the orbit as: area = h RvAt.

But by Kepler's Law of Areas, when the time intervals At

are equal the areas swept over by the radius are also equal.

Thus we can equate the area at aphelion, Ra, to the area at

perihelion, R
P
, and have

h Rava At =1/2RP vAt.

After cancelling out the common parts on both sides of the

equation, we have

Rava = R
P
v
P

. (7.2)

We can rearrange this equation to obtain the more interesting

form:

v
a
/v

p
= R

p
/R

a
. (7.2a)

Eq. (7.2a) shows that the speeds at perihelion and aphelion

are inversely proportional to the radii at these two points.

If we return to the example about the orbit of Mercury,

p. 57, we (*11 find how the speeds at perihelion and aphelion

compare:

v
a
/v

p
= R

p
/R

a

v
a
/v
p = 45.8 x 106 km/70.0 x 106 km

= 0.65.

The speed of Mercury at aphelion is only about 2/3 that at

perihelion.

Vp

R

110:,
Sun

SG 7.3

SG 7.5

R

Fig. 7.11

I vAt

When Mercury is at perihelion at
0.31 A.U., its orbital speed is
58 km/sec. What is its orbital
speed at aphelion at 0.47 A.U.?
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Does Eq. (7.2a), derived for perihelion and aphelion posi-

tions, apply to any point on the orbit, or was some assumption

hidden in our analysis? We must be careful not to fool our-

selves, whether in words or in mathematical symbols. We did

make an assumption: that the displacement, vat, taken as

the altitude of the thin triangle, was perpendicular to the

radial, sun-planet line. Therefore our results apply only

to the two points in the orbit where the velocity vector is

perpendicular to the radius. This condition occurs only at

the perihelion and aphelion points.

The equation which takes the place of Eq. (7.2a) and holds

PLANET for any two points along the orbit is Ri(v1)., = R2(v2)1,

where the i means that we consider only the component of the

velocity which is perpendicular to the sun-planet line. Can
v,

you see how you could use this knowledge to derive the

velocity at any point on the orbit? Remember that the

velocity vector is always tangent to the orbit. Figure 7.12

shows the relationships.

When we know the size and eccentricity of the elliptical

orbit and apply Kepler's two simple laws, we can predict for

past or future dates where the planet will be along its

orbit. The elegance and simplicity of Kepler's two laws are

impressive. Surely Ptolemy and Copernicus would have been

amazed that the solution to the problem of planetary motions

could be given by such short statements. But we must not

forget that these laws were distilled from Copernicus' idea

of a moving earth, the great labors and expense that went

into Tycho's fine observations, and the imagination, devotion

and often agony of Kepler's labors.

Fig. 7.12
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7.5 Kepler's Law of Periods. Kepler's first and second laws

were published in 1609 in his book Astronomia Nova, or New

Astronomy. But Kepler was dissatisfied because he had not

yet found any relation between the motions of the different

planets. So far, each planet seemed to have its own ellip-

tical orbit and speeds, but there appeared to be no overall

pattern relating all planets. Kepler, who had begun his

career by trying to explain the number of planets and their

spacing, was convinced that there must be some regularity,

or rule, linking all the motions in the solar system. His

conviction was so strong that he spent years examini:.g many

possible combinations of factors to find, by trial and error,

a third law that would relate all the planetary orbits. His

long search, almost an obsession, illustrates a belief that

has run through the whole history of science: that nature

is simple, uniform and understandable. This belief has



uy ,yuiLy atlu IiLS V111CL assistants; trig motion Ot Mars was

unusually difficult to explain. Years later, after he had

solved the problem, Kepler wrote that " . . . Mars alone

Fig. 7.1 Johannes Kepler (1571-
1630).

7.6 The new concept of physical law. One general feature of

Kepler's life-long work has had a profound effect on the

development of all the physical sciences. When Kepler began

his studies he still accepted Plato's assumptions about the

importance of geometric models and Aristotle's emphasis on

natural place to explain motion. But at the end he stated

mathematical laws describing how planets moved, and even at-

tempted to explain these motions in terms of physical forc-

es. His successful statement of empirical laws in

mathematical form helped to establish the equation as the

normal form of laws in physical science. Thus he contributed

to a new way of considering observations and stating con-

clusions.

More than anyone before him, Kepler expected an accept-

able theory to agree with precise and quantitative observa-

tion. In Kepler's system the planets no longer were

considered to move in their orbits because they had some

divine nature or influence, or because they had spherical

shapes which served as self-evident explanation for their

circular motions. Rather, Kepler tried to back up his

mathematical descriptions with physical mechanisms. In fact,

he was the first to look for a universal physical law based

on terrestrial phenomena to describe the whole universe in

quantitative detail. In an early letter he expressed his

guiding thought:

I am much occupied with the investigation of the
physical causes. My aim in this is to show that
the celestial machine is to be likened not to a
divine organism but rather to a clockwork...insofar
as nearly all the manifold movements are carried out
by means of a single, quite simple magnetic force,
as in the case of a clockwork, all motions [are
caused] by a simple weight. Moreover, I show how
this physical conception is to be presented through
calculation and geometry. [Letter to Herwart, 1605.]

The world as a celestial machine driven by a single force,

in the image of a clockwork this was indeed a prophetic

goal! Stimulated by William Gilbert's work on magnetism a

few years earlier, Kepler could imagine magnetic forces

from the sun driving the planets in their orbits. This was

a promising and reasonable hypothesis. As it turned out,

the fundamental idea that a single kind of force controls

the motions of all the planets ma: correct; but the force is

not magnetism and it is not needed to keep the planets moving.

Kepler's statements of empirical laws remind us of Gali-

leo's suggestion, made at about the same time, that we deal

first with the how and then with the why of motion in free

fall. A half century later Newton used gravitational force

,u., or.eca co W.LV cuuusii

to include the small epicycle
used by Copernicus.

See "A Search for Life on Earth"
in Project Physics Reader 2.

See Galileo's "The Starry Messen-
geein Project Physics Reader 2.
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Kepler the epicycle seemed "unphysical" because the center

of the epicycle was empty and empty space could not exert o

any force on a planet. Thus from the start of his study

Kepler was assuming that the orbits were real and that the

motions had some causes. Even though Kepler's teacher ad-

vised him to stick with "astronomical" (only observational)

rather than physical assumptions, Kepler stubbornly stuck

to his idea that the motions must have causes. When finally

he published his results on Mars, in his book, Astronomia Nova,

the New Astronomy, it was subtitled Celestial Physics.

For a year and a half Kepler struggled to fit Tycho's

observations of Mars by various arrangements of an eccentric

and an equant. When, after 70 trials, success finally seemed

near he made a depressing discovery. Although he could rep-

resent fairly well the motion of Mars in longitude (along

the ecliptic), he failed miserably with the latitude (the

positions perpendicular to the ecliptic). However, even in

longitude his very best fit still had differences of eight

minutes of arc between the predicted and Tycho's observed

positions.
See "Kepler on Mars" in
Project Physics Reader 2. Eight minutes of arc, about a fourth of the moon's diam-

eter, may not seem like much of a difference. Others might

have been tempted to explain it as observational error. But,

with an integrity that has come to be expected of scientists,

Kepler did not use that explanation. He knew from his own

studies that Tycho's instruments and observations were rarely

See "Kepler's Celestial Music" in error by as much as two minutes of arc. Those eight min-

in Project Physics Reader 2. utes of arc meant to Kepler that his best system using an

eccentric and an equant would not do.

In his New Astronomy Kepler wrote:
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to tie together Kepler's three planetary laws for a helio-

centric system with the laws of terrestrial mechanics in a

magnificent synthesis (Chapter 8).

au To what did Kepler wish to compare the Q14 Why is Kepler's reference to a "clock-
"celestial machine"? work" model significant?

7.7Galileo's viewpoint. One of the scientists with whom Kepler

corresponded about the latest scientific developments was

Galileo. Kepler's contributions to planetary theory were

mainly his empirical laws based on the observations of

Tycho. Galileo contributed to both theory and observation.

As Chapters 2 and 3 reported, Galileo's theory was based on

observations of bodies moving on the earth's surface. His

development of the new science of mechanics contradicted

the assumptions on which Aristotle's physics and interpreta-

tion of the heavens had been based. Through his books and

speeches Galileo triggered wide discussion about the dif-

ferences or similarities of earth and heaven. Outside of

scientific circles, as far away as England, the poet John

Milton wrote, some years after his visit to Galileo in 1638:

..What if earth
Be but the shadow cf Heaven, and things therein
Each to the other like, more than on earth is thought?

[Paradise Lost, Boo!. V, line 574, 1667.]

Galileo challenged the ancient interpretations of ex-

perience. As you saw earlier, he focused attention on new

concepts: time and distance, velocity and acceleration,

forces and matter in contrast to the Aristotelian qualities

or essences, ultimate causes, and geometrical models. In



city to city by the religious wars of the time. Few people,

other than a handful of friends and correspondents, knew of

or cared about his studies and results.

Galileo's situation was different. He wrote his numerous

papers and books in Italian, which could be read by many

people who did not read scholarly Latin. These publica-

tions were the work of a superb partisan and publicist.

Galileo wanted many to know of his studies aLd to accept tne

Copernican tneory. He took the argument far beyond a small

group of scholars out to tne nobles, civic leaders, and re-

ligious dignitaries. His reports and arguments, including

often bitter ridicule of individuals or ideas, became the

subject of dinner-table conversations. In his efforts to

inform and persuade he stirred up the ridicule and even

violence often poured upon those who have new ideas. In the

world of art similar receptions were given initially to

Manet and Giacometti, and in music to Beethoven, Stravinsky

and Schiinberg.

7.8 The telescopic evidence. Like Kepler, Galileo was a Coper-

nican among Ptolemaeans who believed that the heavens were

eternal and could not change. Hence, Galileo was interested

in the sudden appearance in 1604 of a new star, one of those

observed by Kepler. Where there had been nothing visible in

the sky, there was now a brilliant star. Galileo, like Tycho

and Kepler, realized that such changes in the starry sky

conflicted with the old idea that the stars could not change.

Furthermore, this new star awakened in Galileo an interest

in astronomy which lasted throughout his life.

Consequently, Galileo was ready to react to the news he

received four or five years later that a Dutchman "had con-

structed a spy glass by means of which visible objects,

though very distant from the eye of the observer, were dis-

tinctly seen as if nearby." Galileo quickly worked out the

optical principles involved, and set to work to grind the

lenses and build such an instrument himself. His first tele-

scope made objects appear three times closer than when seen

with the naked eye. Then he constructed a second and a third

telescope. Reporting on his third telescope, Galileo wrote:

Finally, sparing neither labor nor expense, I succeeded
in constructing for myself so excellent an instrument
that objects seen by means of it appeared nearly one
thousand times larger and over thirty times closer
than when regarded with our natural vision" (Fig. 7.13).

Fig. 7.13 Two of Galileo's
telescopes displayed in Florence.

Galileo meant that the area of
the object was nearly 1000 times
larger. The linear magnifica-
tion was over 30 times.
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Fig. 7.14 Two of Galileo's
early drawings of the moon.
(From Galileo's Sidereus Nuncius,
which is often translated as
The Sidereal Messenger or as
The Starry Messenger.)
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What would you do if you were handed "so excellent an in-

strument"? Like the men of Galileo's time, you probably

would put it to practical uses. "It would be superfluous,"

Galileo agreed,

to enumerate the number and importance of the advantages
of such an instrument at sea as well as on land. But
forsaking terrestrial observations, I turned to celes-
tial ones, and first I saw the moon from as near at
hand as if it were scarcely two terrestrial radii away.
After that I observed often with wondering delight both
the planets and the fixed stars....

What, then, were the findings that Galileo made with his

telescope? In the period of a few short weeks in 1609 and

1610 he made several discoveries, each of which is of first

rank.

First, Galileo pointed his telescope at the moon. What he

saw led him to the conviction that

..the surface of the moon is not smooth, uniform, and
precisely spherical as a great number of philosophers
believe it [and the other heavenly bodies] to be, but
is uneven, rough, and full of cavities and prominences,
being not unlike the face cf the earth, relieved by
chains of mountains, and deep valleys. [See Fig. 7.14.]

Galileo did not stop with that simple observation, which

was contrary to the Aristotelian idea of heavenly perfection.

He supported his conclusions with several kinds of observa-

tions, including quantitative evidence. For instance, he

worked out a method for determining the height of a mountain

on the moon from the shadow it casts. His value of about

four miles for the height of some lunar mountains is not

far from modern results.

Next he looked at the stars. To the naked eye the Milky

Way had seemed to be a continuous blotchy band of light;

through the telescope it was seen to consist of thousands of

faint stars. Wherever Galileo pointed his telescope in the

sky he saw many more stars than could be seen with the un-

aided eye. This observation was contrary to the old argu-

ment that the stars were created to provide light so men

could see at night. If that were the explanation, there

should not be stars invisible to the naked eye but Galileo

found thousands.

After his observations of the moon and the fixed stars,

Galileo turned his attention to the discovery which in his

opinion

...deserves to be considered the most important of all
the disclosure of four PLANETS never seen from the
creation of the world up to our own time; together with
the occasion of my having discovered and studied them,



their arrangements, and the observations made of their
movements during the past two months.

He is here referring to his discovery of four (of the twelve

now known) satellites which orbit about Jupiter (Fig. 7.15).

Here, before his eyes, was a miniature solar system with its

own center of revolution around Jupiter. This was directly

opposed to the Aristotelian notion that the earth was at the

center of the universe and could be the only center of

revolution.

The manner in which Galileo discovered Jupiter's "planets"

is a tribute to his ability as an observer. Each clear

evening during this period he was discovering dozens if not

hundreds of new stars never before seen by man. When looking

in the vicinity of Jupiter on the evening of January 7, 1610,

he noticed "...that beside the planet there were three star-

lets, small indeed, but very bright. Though I believe them

to be among the host of fixed stars, they aroused my curiosi-

ty somewhat by appearing to lie in an exact straight line..."

In his notebook he made a sketch similar to that shown in

the top line Fig. 7.16. When he saw them again the following

night, he saw that they had changed position with reference

to Jupiter. Each clear evening for weeks he observed that

planet and its roving 'starlets" and recorded their nositions

in drawings. Within days he had concluded that there were

four "starlets" and that they were indeed satellites of

Jupiter. He continued his observations until he was able

to estimate the periods of their revolutions around Jupiter.

Of all of Galileo's discoveries, that of the satellites

of Jupiter caused the most stir. His book, The Starry

Messenger, was an immediate success, and copies were sold

as fast as they could be printed. For Galileo the result

was a great demand for telescopes and great public f...1e.

Galileo continued to use his telescope with remarkable

results. By projecting an image of the sun on a screen, he

observed sunspots. This was additional evidence that the

sun, like the moon, was not perfect in the Aristotelian

sense: it was disfigured rather then even and smooth. From

his observation that the sunspots moved across he disk of

the sun in a regular pattern, he concluded that the sun

rotated with a period cf about 27 days.

He also found that Venus showed all phases, just as the

moon does (Fig. 7.17). Therefore Venus must move completely

around the sun as Copernicus and Tycho had believed, rather

than be always between the earth and sun as the Ptolemaic

astronomers assumed (see again Fig. 5.15). Saturn seemed

Fig. 7.15 Jupiter and its
four brightest satellites. The
lower photograph was taken 3
hours later than the upper one.
(Photographed at Yerkes Observa-
tory.)

EAST
I

WEST

JANJAN 7 0
8 0

W 0
8 0
a 0
W 0
6 0
M 0
1.5 0
17 0

Fig. 7.16 Galileo observed and
recorded the relative position
of Jupiter's brightest satel-
lites 64 times between January 7
and March 2, 1610. The sketches
shown here are similar to Gali-
leo's first ten recorded observa-
tions which he published in the
first edition of his book Si-
dereus Nuncius, The Starry Mes-
senger.

If there are four bright satel-
lites moving about Jupiter, why
could Galileo sometimes see only
two or three? What conclusions
can you draw from the observa-
tion (see Figs. 7.15 and 7.16)
that they lie nearly along a
straight line?
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Fig. 7.17 Photographs of Venus
at various phases taken with a
constant magnification.

to carry bulges around its equator (Fig. 7.18), but Galileo's

telescopes were not strong enough to show that they were

rings. With his telescopes he collected an impressive array

of new information about the heavens and all of it seemed

to contradict the basic assumptions of the Ptolemaic world

scheme.

0.15 Could Galileo's observation of all phases
of Venus support the heliocentric theory,
the Tychonic system or Ptolemy's system?

0.16 In what ways did the invention of the

telescope provide new evidence for the
heliocentric theory?

0.17 What significance did observations of
Jupiter have in the development of
Galileo's ideas?

A small eighteenth-century re-
flecting telescope, now in the
Harvard University collection.
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7.9 Galileo's arguments. To Galileo these observations supported

his belief in the heliocentric Copernican system, but they

were not the cause of them. In his great work, the Dialogue

Concerning the Two Chief World Systems (1632), he stressed

arguments based on assumptions as much as on observations.

The observed motions of planets alone, says Galileo, do not

decide uniquely between a heliocentric and a geocentric

hypothesis, "for the same phenomena would result from either

hypothesis." But Galileo accepted the earth's motion as

real because it seemed to him simpler and more pleasing.

Elsewhere in this course you will find other cases where a

scientist accepted or rejected an idea for reasons arising

from his strong belief in particular assumptions.

In the Dialogue Galileo presents his arguments in a
systematic and lively way. The Dialogue, like the Discourses
Concerning Two New Sciences, which are mentioned in Chapter 2,
is in the form of a discussion between three learned men.

Salviati, the voice of Galileo, wins most of the arguments.

His antagonist is Simplicius, an Aristotelian who speaks for

and defends the Ptolemaic system. The third member, Sagredo .

represents the objective and intelligent citizen not yet com-

mitted to either system. However, Sagredo's role is written

so that he usually accepts most of Galileo's arguments.

Galileo's arguments in favor of the Copernican system as

set forth in the Dialogue Concerning the Two Chief World

Systems were mostly those given by Copernicus (see Chapter

6), and Galileo made no use of Kepler's laws. However,



Galileo had new evidence from his own observations. After

deriving the periods of Jupiter's four moons or satellites,

Galileo found that the larger the orbit of the satellite,

the longer was the period of revolution. Copernicus had al-

ready found that the periods of the planets increased with

their average distances from the sun. (Kepler's Third Law

stated the relation for the planets in detailed quantitative

form.) Now Jupiter's satellite system showed a similar pat-

tern. These new patterns of regularities would soon replace

the old assumptions of Plato, Aristotle and Ptolemy.

The Dialogue Concerning the Two Chief World Systems relies

upon Copernican arguments, Galilean observations and rea-

sonableness to attack the basic assumptions of the geocentric

model. Finally, Simplicius, seemingly in desperation, dis-

misses all of Galileo's arguments with a characteristic

counterargument:

...with respect to the power of the Mover, which is
infinite, it is just as easy to move the universe as
the earth, or for that matter a straw.

But to this, Galileo makes a very interesting reply; notice

how he quotes Aristotle against the Aristoteleans:

...what I have been saying was with regard not to the
Mover, but only the movables....Giving our attention,
then, co the movable bodies, and not questioning that
it is a shorter and readier operation to move the
earth than the universe, and paving attention to the
many other simplifications and conveniences that fol-
low from merely this one, it is much more probable
that the diurnal motion belongs to the earth alone
than to the rest of the universe c.Ncepting the earth.
This is supported by a very true -taxim of Aristotle's
which teaches that..."it is point..ess to use many to
accomplish what may be done with fewer."

7.10The opposition to Galileo. In his characteristic enthusiasm,

ralileo thought that his telescopic discoveries would cause

everyone to realize the absurdity of the assumptions that

prevented a general acceptance of the Copernican system.

But men can believe only what they are ready to believe. In

their fight against the new Copernicans, the followers of

Aristotle were convinced that they were surely sticking to

facts and that the heliocentric theory was obviously false

and in contradiction with both observation and common sense.

The evidences of the telescope could be due to distortions.

After all, glass lenses change the path of light rays; and

even if telescopes seemed to work for terrestrial observa-

tion, nobody could be sure they worked equally well when

pointed at these vastly more distant celestial objects

0'
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Fig. 7.18 Sketches of Saturn
made from telescopic observations
during the seventeenth century.
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Consider each of Galileo's tele-
scopic observations separately
to determine whether it streng-
thened or weakened the case for
(a) the geocentric theory, and
(b) the philosophical assump-
tions underlying the geocentric
theory. Give particular atten-
tion to the observed phases of
Venus. Could these observations
of Venus be explained by the
Tychonic system? Could the
Ptolemaic system be modified to
have Venus show all phases?
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Furthermore, theological heresies were implied in the

heliocentric view. Following Thomas Aquinas, the Scholastics

had adopted the Aristotelian argument as the only correct

basis for building any physical theory. The Aristotelians

could not even consider the Copernican system as a possible

theory without giving up many of their basic assumptions, as

you read in Chapter 6. To do so would have required them to

do what is humanly almost impossible: discard their common-

sense ideas and seek new bases for their moral and theological

doctrines. They would have to admit that the earth is not

at the center of creation. Then perhaps the universe was

not created especially for mankind. Is it any wonder that

Galileo's arguments stirred up a storm of opposition?

Galileo's observations were belittled by the Scholastics.

The Florentine astronomer, Francesco Sizzi (1611), argued

why there could not, indeed must not be any satellites

around Jupiter:

There are seven windows in the head, two nostrils,
two ears, two eyes and a mouth; so in the heavens
there are two favorable stars, two unpropitious, two
luminaries, and Mercury alone undecided and indiffer-
ent. From which and many other similar phenomena of
nature such as the seven metals, etc., which it were
tedious to enumerate, we gather that the number of
planets is necessarily seven [including the sun and
moon]....Besides, the Jews and other ancient nations,
as well as modern Europeans, have adopted the divi-
sion of the week into seven days, and have named them
from the seven planets; now if we increase the number
of planets, this whole system falls to the ground....
Moreover, the satellites are invisible to the naked
eye and therefore can have no influence on the earth,
and therefore would be useless, ana therefore do not
exist.

A year after his discoveries, Galileo wrote to Kepler:

You are the first and almost the only person who,
even after a but cursory investigation, has...given
entire credit to my statements....What do you say of
the leading philosophers here to whom I have offered
a thousand times of my own accord to show my studies,
but who with the lazy obstinacy of a serpent who has
eaten his fill have never consented to look at the
planets, or moon, or telescope?

7.11 Science and freedom. The political and personal tragedy

that occurred to Galileo is described at length in many

books. Here we shall only mention briefly some of the major

events. Galileo was warnea in 1616 by the Inquisition to

cease teaching the Copernican theory as true, rather than

as just one of several possible explanations, for it was

now held contrary to Holy Scripture. At the same time

Copernicus' book was placed on tne Index Expurgatorius, and

was suspended "until corrected." As we saw before, Co-



pernicus had used Aristotelian doctrine to make his theory

plausible. But Galileo had reached the new point of view

where he urged acceptance of the heliocentric system on its

own merits. While he was himself a devoutly religious man,

he deliberately ruled out questions of religious faith anu

salvation from scientific discussions. This was a funda-

mental break with the past.

When, in 1623, Cardinal Barberini, formerly a dear friend

of Galileo, was elected to be Pope Urban VIII, Galileo

talked with him regarding the decree against the Copernican

ideas. As a result of the discussion, Galileo considered

it safe enough to write again on the controversial topic.

In 1632, after making some required changes, Galileo obtained

the necessary Papal consent to publish the work, Dialogue

Concerning the Two Chief World Systems. This book presented

most persuasively the Copernican view in a thinly disguised

discussion of the relative merits of the Ptolemaic and Co-

pernican systems. After the book's publication his opponents

argued that Galileo seemed to have tried to get around the

warning of 1616. Furthermore, Galileo's forthright and some-

times tactless behavior, and the Inquisition's need to

demonstrate its power over suspected heretics, combined to

mark him for punishment.

Among the many factors in this complex story, we must

remember that Galileo, while considering himself religiously

faithful, had become a suspect of the Inquisition. In

Calileo's letters of 1613 and 1615 he wrote that to him God's

mind contains all the natural laws; consequently he held

that the occasional glimpses of these laws which the human

investigator may gain were proofs and direct revelations of

the Deity, quite as valid and grand as those recorded in the

Bible. "From the Divine Word, the Sacred Scripture and

Nature did both alike proceed....Nor does God less admirably

discover himself to us inNature's actions than in the Scrip-

ture's sacred dictions." These opinions held by many

present-day scientists, and no longer regarded as being in

conflict with theological doctrines could, however, be

regarded at Galileo's time as symptoms of pantheism. This

was one of the heresies for which Galileo's contemporary,

Giordano Bruno, had been burned at the stake in 1600. The

Invisition was alarmed by Galileo's contention that the

Bible was not a certain source of knowledge for the teaching

of natural science. Thus he quoted Cardinal Baronius'

saying: "The Holy Spirit intended to teach us [in the Bible]

how to go to heaven, not how the heavens go."

-015:;,11!
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'Over 200 years after his confine-
ment in Rome, opinions had changed
so that Galileo was honored as in
the fresco "Galileo presenting his
telescope to the Venetian Senate"
by Luigi Sabatelli (1772-1850).
The fresco is located in the Tri-
bune of Galileo, Florence, which
was assembled from 1841 to 1850.
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Though he was old and ailing, Galileo was called to Rome

and confined for a few months. From the proceedings of

Galileo's trial, of which parts are still secret, we learn

that he was tried, threatened with torture, induced to make

an elaborate formal confession of improper behavior and a

denial of the Copernican theory. Finally he was sentenced

to perpetual house arrest. Accor,ing to a well-known legend,

at the end of his confession Galileo muttered "eppur si

muove"--"but it does move." None of Galileo's friends in

Italy dared to defend him publicly. His book was placed

on the Index where it remained, along with that of Copernicus

and one of Kepler's, until 1835. Thus he was used as a

warning to all men that the demand for spiritual conformity

also required intellectual conformity.

But without intellectual freedom, science cannot flourish

for long. Perhaps it is not a coincidence that for 200

years after Galileo, Italy, which had been the mother of

outstanding men, produced hardly a single great scientist,

while elsewhere in Europe they appeared in great numbers.

Today scientists are acutely aware of this famous part of

the story of planetary theories. Teachers and scientists

in our time have had to face powerful enemies of open-minded

inquiry and of free teaching. Today, as in Galileo's time,

men who create or publicize new thoughts must be ready to

stand up before other men who fear the open discussion of

new ideas.

Plato knew that an authoritarian state is threatened by

intellectual nonconformists and had recommended for them

the well-known treatments: "reeducation, prison, or death."

Recently, Russian geneticists have been required to reject

well-established theories, not on grounds of persuasive new

scientific evidence, but because of conflicts with political

doctrines. Similarly, discussion of the theory of relatively

was banned from textbooks in Nazi Germany because Einstein's

Jewish heritage was said to invalidate his work for Germans.

Another example of intolerance was the "Monkey Trial" held

during 1925 in Tennessee, where the teaching of Darwin's

theory of biological evolution was attacked because it con-

flicted with certain types of Biblical interpretation.

The warfare of authoritarianism against science, like

the warfare of ignorance against knowledge, is still with

us. Scientists take comfort from the verdict of history.

Less than 50 years after Galileo's trial, Newton's great

book, the Principia, brilliantly united the work of Co-

pernicus, Kepler and Galileo wits Newton's new statements
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of principles of mechanics. Thus the hard-won new laws and

new views of science were established. What followed has

been termed by historians The Age of Enlightenment.

SG 7 6

GM What major change in the interpretations
of observations was illustrated by the
work of both Kepler and Galileo?

Q19 What are some of the reasons that caused
Galileo to be tried by the Inquisition?

Study Guide

7.1 If a comet in an orbit around the sun
has a mean distance of 20 A.U. from the
sun, what will be its period?

7.2 A comet is found to have a period of
75 years.

a) What will be its mean distance
from the sun?

b) If its orbital eccentricity is
0.90, what will be its least
distance from the sun?

7.3

c) What will be its velocity at ap-
helion compared to its velocity
at perihelion?

What is the change between the earth's

Palomar Observatory houses the
200-inch Hale reflecting tele-
scope. It is located on Palomar
Mountain in southern California.

lowest speed in July when it is 1.02
A.U. from the sun and its greatest speed
in January when it is 0.98 A.U. from the
sun?

7.4 The mean distance of the planet Pluto
from the sun is 39.6 A.U. What is the
orbital period of Pluto?

7.5 The eccentricity of Pluto's orbit is
0.254. What will be the ratio of the
minimum orbital speed to the maximum
orbital speed of Pluto?

7.6 What are the current procedures by
which the public is informed of new
scientific theories? To what extent
do these news media emphasize any clash
of assumptions?
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distance is a. Specifically, the law states that: the

squares of the periods of the planets are proportional to

the cubes of their mean distances from the sun. In the

short form of algebra, this is,

T2 = ka3, or T2/a3 = k. (7.3)

For the earth, T is one year. The mean distance of the

earth from the sun, a, is one'astronomical unit, A.U. Then

by Eq. (7.3) we have

(1 year)2 = k(1 A.U.)3, or k = 1 yr2/A.U.3.

Because this relation applies to all the planets, we can

use it to find the period or mean distance of any planet

when we know either of the quantities. Thus Kepler's third

.aw, the Law of Periods, establishes a beautifully simple

relation among the planetary orbits.

Lepler's three laws are so simple that their great power

may be overlooked. When they are combined with his discovery

that each planet moves in a plane passing through the sun,

they let us derive the past and future history of each

planet's motion from only six quantities, known as the

orbital elements. Two of the elements are the size and shape

of the orbit in its plane, three other elements are angles

that orient the planet's orbit in its plane and relate the

plane of the planet to that of the earth's orbit, while the

sixth element tells where in the orbit the planet was on a

certain date. These elements are explained more fully in

optional Experiment 21 on the orbit of Halley's Comet.

It is astonishing that the past and future positions of

each planet can be derived in a simpler and more precise way

than through the multitude of geometrical devices on which

sC.

We know from observation that
the orbital period T of Jupiter
is about 12 years. What value
for a, the mean distance from
the sun, is predicted on the
basis of Kepler's third law?

Solution:

a.3 = T.2 /k

= 144 (yr2)/1 (yr2/A.U.3)

= 144 A.U.3

a. = 3547776.3
3

= 5.2 A.U.
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Introduction: science in the seventeenth century. In the

44 years between the death of Galileo in 1642 and the publi-

cation of Newton's Principia in 1687, major changes occurred

in the social organization of scientific studies. The New

Philosophy" of experimental science, applied by enthusiastic
and imaginative men, w-s giving a wealth of new results. Be-

cause these men were beginning to work together, tney formea

scientific societies in Italy, England and France. One of

the most famous is the Royal Society of London foi Promoting

Natural Knowledge, which was founded in 1660,, Through these

societies the scientific experimenters exchanged information,

debated new-ideas, published technical papers, and sometimes
quarreled heartily. Each society sought support for its

work, argued against the opponents of the new experimental
activities and published studies in scientific journals,

which were widely read. Through the societies scientific

activities were becoming well-defined, strong and inter-
national.

This development of scientific activities was part of the
general cultural, political and economic changes occurring

in the sixteenth and seventeenth centuries (see the chart).

Both craftsmen and men of leisure and wealth became involved
in scientific studies. Some sought the improvement of tech-

no,%.lical methods and products. Others found the study of

nature through experiment a new and exciting hobby. But the

availability of money and time, the growing interest in sci-
ence and the creation of organizations az ?. not enough to

explain the growing success of scientific studies. Histori-
ans agree that this rapid growth of science de...w.nded upon

able men, well-formulated e.7oLlems and good mathematical



precision .eplaced Tycho's observations.

These tables were also important for a quite different

reason. In them Kepler pioneered in the use of logarithms

and included a long section, practically a textbook, on the

nature of logarithms and their use for calculations. Kepler

had realized that logarithms, first described in 1614 by

Napier in Scotland, would be very useful in speeding up the

tedious arithmetic required for the derivation of planetary

positions.

We honor Kepler for his astronomical and mathematical

achievements, but these were only a few of the accomplish-

ments of this great man. As soon as Kepler learned of the

development of the telescope, he spent most of a year making

careful studies of how the images were formed. These he pub-

lished in a book titled Dioptrice, which became the standard

work on optics for many years. Like Tycho, who was much im-

pressed by the new star of 1572, Kepler similarly observed

and wrote about the new stars of 1600 and 1604. His obser-

vations and interpretations added to the impact of Tycho's

similar observations in 1572 that changes did occur in the

starry sky. In addition to a number of important books on

mathematical and astronomical problems, Kepler wrote a popular

and widely read description of the Copernican system as modi-

fied by his own discoveries. This added to the growing in-

terest in and acceptance of the sun-centered model of the

planetary system.

Q12 State Kepler's third law, the Law of
Periods. Why is it useful?
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See "Newton and the Principia"
in Project Physics Reader 2.

In Unit 1 a newton was defined

as the force needed to give an
acceleration of 1 meter per sect
to a 1-kilogram mass. In new-
tons, what approximately is the
earth's gravitational attraction
on an apple?
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8.1 A sketch of Newton's life. Isaac Newton was born on Christ-

mas day, 1642, in the small English village of Woolsthorpe

in Lincolnshire. He was a quiet farm boy, who, like young

Galileo, loved to build and tinker with mechanical gadgets

and. seemed to have a liking for mathematics. With financial

help from an uncle he went co Trinity College of Cambridge

University in 1661. There he initially enrolled in the

study of mathematics as applied to astrology and he was an

eager and excellent student. In 1665, to escape the Black

Plague (bubonic plague) which swept through England, Newton

went home to the quiet farm in Woolsthorpe. There, by the

time he was twenty-four, he had quietly made spe-tacular

discoveries in mathematics (binomial theorem, differential

calculus), optics (theory of colors) and mechanics. Refer-

ring to this period, Newton once wrote:

I began to think of gravity extending to the orb of
the moon, and...from Kepler's rule (third law]...I de-
duced that the forces which keep the Planets in their
orbs must be reciprocally as the squares of their dis-
tances from the centers about which they revolve: and
thereby compared the force requisite to keep the moon
in her orb with the force of gravity at the surface of
the earth, and found them to answer pretty nearly. All
this was in the two plague years of 1665 and 1666, for
in those days I was in the prime of my age for inven-
tion, and minded mathematics and philosophy more than
at any time since.

Thus during his isolation the brilliant young Newton had

developed a clear idea of the first two Laws of Motion and

of the formula for gravitational attraction. However, he

did not announce the latter until many years after Huygens'

equivalent statement.

This must have been the time of the famous and disputed

fall of the apple. One of the better authorities for this

story is a biography of Newton written in 1752 by his friend

William Stukeley, where we can read that on one occasion

Stukeley was having tea with Newton in a garden under some

apple trees, when Newton recalled that

he was just in the same situation, as when formerly,
the notion of gravitation came into his mind. It was
occasion'd by the fall of an apple, as he sat in a
contemplative mood. Why should that apple always de-
scend perpendicularly to the ground, thought he to
himself. Why should it not go sideways or upwards,
but constantly to the earth's centre?

The main emphasis in this story should probably be placed on

the word contemplative. Moreover, it fits again the pattern

we have seen before: a great puzzle (here, that of the

forces acting on planets) begins to be solved when a clear-

thinking person contemplates a long-known phenomenon. Where

others had seen no relationship, Newton did. Similarly



Galileo used the descent of rolling bodies to show the use-

fulness of mathematics in science. Likewise, Kepler used a

small difference between theory and observation in the motion

of Mars as the starting point for a new approach to planetary

astronomy.

Soon after Newton's return to Cambridge, he was chosen to

follow his teacher as professor of mathematics. He taught

at the university and contributed papers to the Royal Society,

at first particularly on optics. His Theory of Light and

Colors, when finally published in 1672, involved him in so

long and bitter a controversy with rivals that the shy and

introspective man resolved never to publish anything more
(but he did).

In 1684 Newton's devoted friend Halley came to ask his

advice in a dispute with Wren and Hooke about the force

that would have to act on a body moving along an ellipse in

accord with Kepler's laws. Halley was pleasantly surprised

to learn that Newton had already derived the rigorous

solution to this problem ("and much other matter"). Halley

then persuaded his reluctant friend to publish his studies,

which solved one of the most debated and interesting scien-
tific questions of the time. To encourage Newton, Halley

became responsible for all the costs of publication. In

less than two years of incredible labors, Newton had the

Principia (Fig. 8.2) ready for the printer. Publication of

the Principia in 1687 quickly established Newton as one of

the greatest thinkers in history.

A few years afterwards, Newton had a nervous breakdown.

He recovered, but from then until his death 35 years later,

in 1727, he made no major new scientific discoveries. He

rounded out earlier studies on heat and optics, and turned

more and more to writing on theological chronology. During

those years he received honors in abundance. In 1699 he

was appointed Master of the Mint, partly because of his

great interest in and knowledge about the chemistry of

metals, and he helped to re-establish the British currency,

which had become debased. In 1689 and 1701 he represented

this university in Parliament, and he was knighted in 1705

*by Queen Anne. He was president of the Royal Society from

1703 to his death in 1727, and he "Abs buried in Westminster

Abbey.

Newton made the first reflecting
telescope.

PHELOSOPIHNIE
NATURA.LIS

PRINCIPNA
MATHEMATICA

Autore 7S. NEWTON, 7.0, (WI Gaul,. Sae. IN.uhcreos
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pH S. s615.

LONDINI,
jar, &mien' ReAne ac Tying 7ofrpla Swot, Proflat spud

plum Bibliopolas. hum MDCLXV.:VII.

Fig. 8.2 Title page of Principia
Mathematica. Because the Royal
Society sponsored the book, the
title page includes the name of
the Society's president, Samuel
Pepys, whose diary is famous.

Q1 Why might we conclude that Newton's iso-
lation on the farm during the Plague
Years (1665-66) contributed to his sci-
entific achievements?

Q2 What was the important role played by
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the scientific societies? Do such soci-
eties today perform the same functions?

Q3 What was important about Newton's mood
when he noticed the apple fall?



See Newton's Laws of Motion and
Proposition One in Project Phys-
ics Reader 2.

These Rules are stated by Newton
at the beginning of Book III of
the Principia, p. 398 of the
Cajori edition, University of
California.Press.
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8.2 Newton's Principia. In the original preface to Newton's

Principia one of the most important books in the history

of science we find a clear outline of the book:

Since the ancients (as we are told by Pappus) es-
teemed the science of mechanics of greatest importance
in the investigation of natural things, and the mod-
erns, rejecting substantial forms and occult qualities,
have endeavored to subject the phenomena of nature to
the laws of mathematics, I have in this treatise cul-
tivated mathematics as far as it relates to philosophy
(we would say 'physical science')...for the whole
burden of philosophy seems to consist in this from
the phenomena of motions to investigate (induce) the
forces of nature, and then from these forces to demon-
strate (deduce] the other phenomena, and to this end
the general propositions in the first and second Books
are directed. In the third Book I give an example of
this in the explication of the system of the World;
for by the propositions mathematically demonstrated
in the former Books, in the third I derive from the
celestial phenomena the forces of gravity with which
bodies tend to the sun and the several planets. Then
from these forces, by other propositions which are
also mathematical, I deduce the motions of the planets,
the comets, the moon, and the sea (tides]....

The work begins with a set of definitions mass, momentum,

inertia, force. Next come the three Laws of Motion and the

principles of composition of vectors (forces and velocities),

which were discussed in Unit 1. Newton then included an

equally remarkable and important passage on "Rules of Rea-

soning in Philosophy." The four rules or assumptions, re-

flecting his profound faith in the uniformity of all nature,

were iiltended to guide scientists in making hypotheses.

These are still useful. The first has been called a Prin-

ciple of Parsimony; the second and third, Principles of

Unity. The'fourth is a faith without which we could not use

the process of logic.

In a short form, with some modern words, these rules are:

I Nature is essentially simple; therefore we should not

introduce more hypotheses than are sufficient and necessary

for the explanation of observed facts. "Nature does nothing

...in vain, and more is in vain when less will serve." This

fundamental faith of all scientists is almost a paraphrase

of Galileo's "Nature...does not that by many things, whirh

may be done by few" and he, is turn, quoted the same opinion

from Aristotle. Thus the rule has a long history.

II. "Therefore to the same natural effects we must, as

far as possible, assign the same causes. As to respiration

in a man and in a beast; the descent of stones in Europe and

in America; ...the reflection of light in the earth, and

in the planets."



III. Properties common to all those bodies within reach

of our experiments are to be assumed (even if only tenta-

tively) to apply to all bodies in general. Since all physi-

cal objects known to experimenters had always been founa to

have mass, this rule would guide Newton to propose that

every object has mass.

IV. In "experimental philosophy," those hypotheses or

generalizations which are based on experience are to be

accepted as "accurately or very nearly true, notwithstanding

any contrary hypotheses that may be imagined" until we have

additional evidence by which our hypotheses may be made

more accurate, or revised.

The Principia was an extraordinary document. Its three

main sections contained a wealth of mathematical and physi-
cal discoveries. But overshadowing everything else in the

book is the theory of universal gravitation, with Newton's

proofs and arguments leading to it. Newton uses a form of

argument patterned after that of Euclid--the type of proofs

you encountered in your geometry studies. Because the

detailed mathematical steps used in the Principia are no

longer familiar, the steps which are given below have often
been restated in modern terms.

The central idea of universal gravitation can be very
simply stated: every object in the universe attracts every

other object. Moreover, the magnitude of these attractions

depends in a simple way on the distance between the objects.

Such a sweeping assertion certainly defies full and detailed

verification for after all, we cannot undertake to measure

the forces experienced by all the objects in the universe!

Q4 Write a brief simple restatement of each Q5 Why is the Principia difficult for us
of Newton's Rules of Reasoning. to read?

8.3A preview of Newton's analysis. We shall now preview New-

ton's development of his theory of universal gravitation.

Also we shall see how he was a "?.. to use the theory to unify

the main strands of physical ,science which had been develop-
ing independently. As we proceed, notice the extent to

which Newton relied on the laws found by Kepler; be alert

to the appearance of new hypotheses and assumptions; and

watch for the interaction of experimental observations and

theoretical deductions. In short, in this notable and yet

typical case, aim for an understanding of the process of

the construction and verification of a theory; do not be

satisfied with a mere memorization of the individual steps.
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The curvature of planetary mo-
tions requires a net force.

dotion influenced by any central
force will satisfy the Law of
Areas.

The net force accelerates the
planets toward the sun.

1.

8 2

What were the known laws about motion that Newton

unified? He had his own three laws, which you met in Unit

1. Also he had the three Laws of Planetary Motion stated

by Kepler, which we considered in Chapter 7.

Newton (from Chapter 3) Kepler (from Chapter 7)

1. A body continues in a
state of rest, or of uniform
motion in a straight line,
unless acted upon by a net
force. (Law of Inertia.)

2. The net force acting
..)n an object is directly
proportional to and in the
same direction as the
acceleration.

3. To every action there
is an equal and opposite
reaction.

1. The planets move in
orbits which are ellipses
and have the sun at one
focus.

2. The line from the sun
to a planet sweeps over
areas which are proportional
to the time intervals.

3. The squares of the
periods of the planets are
proportional to the cubes
of their mean distances
from the sun. T2 = ka3
Eq. (7.3).

Now let us preview the argument by which these two sets

of laws can be combined.

According to Kepler's first law, the planets move in

orbits which are ellipses, that is, curved orbits. But

according to Newton's first law a change of motion, either

in direction or amount, results when a net force is acting.

Therefore we can conclude that a net force is continually

accelerating all the planets. However, this result does

not specify what type of force is acting or whether it

arises from some particular center.

Newton's second law combined with Kepler's first two

laws was the basis on which Newton achieved a brilliant

solution to a very difficult prob'em. Newton's second

law says that in every case the net force is exerted in

the direction of the observed acceleration. But what was

the direction of the acceleration? Was it toward one center

or perhaps toward many? By a geometrical analysis Newton

found fiat any moving body acted upon by a central force,

that is, any force centered on a point, when viewed from

that point, will move according to Kepler's Law of Areas.

Because the areas found by Kepler were measured around the

sun, Newton could conclude that the sun at the focus of

the ellipse was the source of the central force.

Newton considered a variety of force laws centered xi

points at various places. Some of his results are quite

unexpected. For example, he found that circular motion

would res .t fro :i an inverse-fifth power force law, F .,1/115,



acting from a point on the circle! But, as we have just

seen, the center of the force on the planets had to be at

the sun, located at one focus of the elliptical orbits.

For an elliptical. orbit, or actually for an orbit along

any of the conic sections discussed in Chapter 7, the

central force from the focus had to be an inverse-square

force: F a 1/R2. In this way Newton found that only an

inverse-square force centered on the sun would result in

the observed motions of the planets as described by Kepler's

first two laws. Newton then clinched the argument by find-

ing that --rich a force law would also result in Kepler's

third law, the Law of Periods, T2 = kal

From this analysis Newton concluded that one general

Law of Universal Gravitation, that applied to the earth

and apples, also applied to the sun and the planets, and

all other bodies, such as comets, moving in the solar

system. This was Newton's great synthesis. He brought

tcgether the terrestrial laws of motion, found by Galileo

and others, and the astronomical laws found by Kepler.

One new set of laws explained both. Heaven and earth were

united in one grand system dominated by the Law of Universal

Gravitation. No wonder that the English poet Alexander Pope

wrote:

Nature and Nature's laws lay hid in night:
God said, Let Newton be! and all was light.

As you will fi.d by inspection, the Principia was filled
wit long geometrical arguments and was difficult to read.

Happily, gifted popularizers wrote summaries, through which

many people learned Newton's arguments and conclusions. In

Europe one of the most widely read of these popular books

was publish.d in 1736 by the French philosopher and reformer

Voltaire.

Readers of these books were excited, and perhaps puzzled

by the new approach and assumptions. From ancient Greece

until well after Copernicus, the ideas of natural place and

natural motion had been used to explain the general position

and movements of the planets. The Greeks believed that the

planets were in their orbits because that was their proper
place. Furthermore, their natural motions were, as you

have seen, assumed to be at uniform :rates in perfect circles,

or in combinations of circles. However, to Newton the nat-

ural motion of a body was at a uniform rate along a straight
line. Motion in a curve was evidence that a net force was

continually accelerating the planets away from their natural

nc'ion along straight lines. What a reversal of the assump-

+ions about the type of motion which was "natural"!

If the strength of the force

varies inversely with the square
of the distance, that is,

F = 1/R2,

the orbits will be ellipses, or
some other conic section.
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This sketch of Newton's argument outlines his procedure

and the interweaving of earthly physics with astronomical

conclusions from Kepler. Now we shall examine the details

of Newton's analysis and begin as he did with a study of the

motion of bodies accelerated by a central force.

Q6 Complete the following summary of New-
ton's analysis:

Step 1. Kepler's ellipses + Newton's
first law (inertia) - ?

Step 2. Newton's second law (force),
+ Kepler's area law + ?

Step 3. Add Kepler's ellipses + ?

Step 4. What observed properties of
the planetary orbits required that
F a 1/R2?

Step 5. Does the result agree with
Kepler's Law of Periods?

altitude base
B'

CC' AB
BB' AC
AA' BC

Fig. S.3 The altitude of a tri-
angle is the perpendicular dis-
tance from the vertex of two
sides to the third side, which
is then the base.

Q Q' 0

s- 0

0

Fig. 8.4(b) A body moving at a
uniform rate in P straight line
is viewed from point 0.
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8.4 Motion under a central force. How will a moving body re-

spond to a central force? Before we proceed with the

analysis, we need to review one basic property of triangles.

The area of a triangle equals 35 base x altitude. But, as

Fig. 8.3 shows, any of the three sides can be chosen as the

base with the corresponding vertex being the intersection

of the other two sides.

1. Suppose that a body, initially at rest at a point Q,

is exposed to a brief force, like a hammer blow, directed

toward O. The body will be accelerated toward O. It will

begin to move toward 0, and after some definite time inter-

val At, it will have moved a definite distance a new

point Q', i.e., through the distance QQ'. (Fig. 8.4a.)

2. Suppose that the body was initially at some point

P and moving at a uniform speed v along the straight line

through PQ. (See Fig. 8.4b.) In equal :.rtervals of time,

At, it will move equal distances, PQ, QR, RS, etc. How

will its motion appear to an observer at some point 0?

To prepare for what follows and to make incidentally a

discovery that may be surprising consider first the tri-

angles OPQ and OQR. These have equal bases, P0 and QR; and

also equal altitudes, ON. Therefore they have equal areas.

And therefore, the line from any observer not on the line,

say at point 0, to a body moving at a uniform speed in a

straight line, like PQR will sweep over equal areas in

equal times. Strange as it may seem, Kepler's Law of Areas

applies even to a body on which there is no net force, and

which therefore is moving uniformly along a straight line.

3. How will the motion of the object be changed if at

point Q it is exposed to a brief force, such as a blow,

directed toward point 0? A combination of the constructions

in 1 and 2 above can be used to determine the new velocity

vector. (See Fig. 8.4c.) As in 1 above, the force applied



blow

Fig. 8.4(c) A force applied
briefly to a body moving in a
straight line QR changes the mo-
tion to QR'.

blow

Fig. 8.4(d) The areas of OPQ
and OQR' are equal.

at point Q accelerates the object toward the center. In

the time interval At, a stationary object at Q would move

to point Q'. But the object was moving and, without this

acceleration, would have moved to point R. Then, as Fig.

8.4c indicates, the resultant motion is to point P.'. Fig.

8.4d shows Fig. 8.4c combined with Fig. 8.4b.

Earlier we found that the areas of the triangles OPQ and
OQR were equal. Are the areas of the triangles OQR and OQR'

also equal? To examine this question we can consider the

perpendicular distances of R and R' from the line Q'Q as the

altitudes of the two triangles. As Fig. 8.4e shows, R and

R' are equally distant from the line Q'Q. Both triangles

also have a common base, OQ. Therefore, the areas of tri-

angles OQR and OQR' are equal. Thus we may conclude that

the line from the center of force, point 0, to the body

sweeps over equal areas in equal time intervals.

If another blow di:,:ected toward 0, even a blow of a

different magnitule, were given at point R', the body would

move to some point S'', as indicated in Fig. 8.4f. By a

similar analysis you can find that the areas of triangles

OR'S" and OR'S' are equal. Their areas also equal the

area of triangle OPQ.

In tn3 geometrical argument above we have considered

the for:.:e to be applied at intervals At. What motion

will result if each time interval At is made vanishingly

small and the force is applied continuously? As you

would suspect, and as can be shown by rigorous proof, the

argument holds for a continuously acting central force. We

then have an important conclusion: if a body is continuously

acted upon by any central force, it will move in accordance

with Kepler's Law of Areas. In terms of the planetary orbits

from which the Law of Areas was found, the accelerating

force must be a central force. Furthermore, the sun is at

the cent- of the force. Notice that the way in which the

strength of the central force depends on distance has not

been specified.

Fig. 8.4(e) The distances of
R and R' from QQ' are equal.

P

09-
0

Fig. 8.4(f) A force applied at
R' causes the body to move to
S".

SG 8 1

Does this conclusion apply if
the central force is one of re-
pulsion rather than attraction?

Q7 What types of motion satisfy Kepler's
Law of Areas?
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See "Newton's Laws of Dynamics"
in Project Physics Reader 1.

Newton assumed that:

1
F
gray

R 2

How can you explain the histori-
cal fact that many scientific

discoveries have been made in-
dependently and almost simul-
taneously by two or more men?
What examples can you list?
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8.5 The inverse-square law of planetarl, force. In the last

section we found that the force influencing the motion of

a planet had to-be a central force toward the sun. But many

questions remained to be considered. How did the strength

of the force change with the planet's distance from the
center of motion? Would one general force law account

for the motions of all the planets? Or was a different

law needed for each planet? Would the force law be

consistent with Kepler's third law, T2 . R3? How could this
be tested? And from what observations could the amount of

the force be determined?

Clearly, the nature of the force law should now be

found; but how? The Law of Areas will not be useful, for

we have seen that it is satisfied by any central force. But

Kepler's first law (elliptical orbits) and third law (the

relation between distance and period) remain to be used. We

could start by considering what the relation between force

. and distance must be in order to satisfy the third law.

Newton preferred to assume a force law and tested it against

Kepler's third law.

Some clues suggest what force law to consider first. Be-

cause the orbits of the planets are curved toward the center

of motion at the sun, the force must be one of attraction
toward the sun. While the force might become greater with

distance from the sun, we could expect the force to decrease
with distance. Possibly the force varies inversely with

the distance: F a 1/R. Or perhaps, like the brightness of

a light, the force decreases with the inverse square of the

distance: F a 1/R2. Possibly the force weakens very

rapidly with distance: F 1/R3, or even F 1/Rn, where
n is some large number. One could try any of these pos-

sibilities. But here let us follow Newton's lead and test

whether F a 1/R2 agrees with the astronomical results.

Actually Newton's choice of this inverse-square law was

not accidental. Others such as Wren, Halley and Hooke

wele attempting to solve the same problem and were con-

sidering the same force law. In fact, Halley came to Newton

in 1684 specifically to ask if he could supply a proof of

the correctness of the inverse-square law which tl'e others

were seeking in vain. Even if Newton had not already de-

rived the proof, it is likely that someone would have soon.
At any one time in the development of science, a rather nar-

row range of interesting and important problems holds the

attention of many scientists in a given field, and often

several solutions are proposed at aY the same time.



Because Kepler's third, or Harmonic, law relates the

periods of different planets to their distances from the

sun, this law should be useful in our study of how the

gravitational attraction of the sun changes with distance.

We have another clue from Galileo's conclusion that the

distance d through which a body moves as a result of the

earth's gravitat. .ial attraction increases with the square

of the time, t2. The full relation is

d = hat2,

where a is a constant acceleration.

We wish to compare the central forces, or accelerations,

acting on two planets at different distances from the sun.

Fig. 8.5 indicates the geometry for two planets moving in

circular orbits. For convenience we can consider one of

the planets to be the earth, E. The other planet P can be

at any distance from the sun. According to Newton's Law of

Inertia, any planet continually tends to move in a straight
line. But we observe that it actually moves in an orbit

which is (nearly) a circle. Then, as Fig. 8.5 indicates,

in a small interval of time t the planet moves forward,

and also falls a distance d toward the sun. No matter

how large the orbit is, the motion of each planet is similar

to that of the others, though each has its own period T.

This time t taken for either planet to move through the

portion of the orbit indicated in Fig. 8.5 is a fraction of

the total time T required for the planet to make one revolu-

tion around the sun. No matter how large the orbit, the

fraction y required to move through this angle, will be the

same for any planet. But while the planet moves through

this arc, it also falls toward the sun through a distance d.

From Fig. 8:5 we can also see that the distance d increases

in proportion to the distance R.

Now let us use Galileo's equation to compare the "falls"

of two planets toward the sun:

d
P

1/2a
P

t
P
2 dP aP tP 2

d- t c-r-o r =
E E E E

aE tE 2

But because the values of d are proportional to R, we can

replace the ratio (dp/dE) by (RP /RE) and have:

R.,
r r

tp2

R
E

aE tE2

Now, if we can express the a's in terms of R's or t's, we

can see whether the result agrees with Kepler's third law.

d = "Fall"

Rr

Fig. 8.5 The "fall" ...a the

earth and a planet toward the
sun.
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Assume that a .1/R2 . Like Newton, let us assume that a varies with I/R2. By

rearranging the equation we have:

1

2
t 2

R
P

R
P

P

1
, or

E t 2RE E

R 3 t 2

ir 3 =

This has the same form as Kepler's third lay but involves

the times t for the planet to move through a small arc,

rather than the full period T. However, we have seen that

the times t required for planets to move through the same

arcs of circular orbits were the same fractions of their

SG 85 total period. Thus we can replace t by T and have

In the analysis above we substi-
tuted 1/R2 for a in the general
relation R = at2. That results
do you get if you set a = 1 /R n,

where n is any number? What
value must n have to satisfy
Kepler's Third Law?

Rp3 Tp2
= or Rp 3 = k T 2 ,

RE3 TE2

where the constant k adjusts the equality for the units in

which R and T are expressed. This last equation is Kepler's

Law of Periods which we saw as Eq. (7.3).

In this derivation we have made a number of assumptions:

1) that Galileo's law of acceleration relating times and

distances of falling bodies on the earth applies tJ the ac-

celeration of the planets toward the sun, and 2) that the

acceleration toward the sun changes as 1/R2. As a result we

have found that the planets should move according to Kepler's

Law of Areas. Since they do, we can (by Newton's fourth

:tile) accept our assumption that the sun's gravitational

attraction does change with 1/R2.

We assumed that the orbits were circles. However, Newton

showed that any object moving in an orbit that is a conic

section (circle, ellipse, parabola or hyperbola) around a

center of force is being acted upon by a net force which

varies inversely with the square of the distance from the

center of force.

08 Why is Kepler's third law (R2 a T3) use-
ful for testing how the gravitational
acceleration changed with distance from

the sun?

Q9 What simplifying assumptions were made
in the derivation here?

8.6 Law of Universal Gravitation. Evidently a central force is

holding the planets in their orbits. Furthermore, the

strength of this central force changes inversely with the

squara of the distance from the sun. This strongly suggests

that the sun is the source of the forcebut it does not

necessarily require this conclusion. Oc.wtsn's results might

be fine geometry, but so far they include no physical mech-
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I

...

A

anism. The French philosopher Descartes (1596-1650) had

proposed an alternate theory that all space was filled with

a subtle, invisible fluid which carried the planets around .e

the sun in a huge whirlpool-like motion. This was an ex-

tremely attractive idea, and at the time was widely ac-

cepted. However, Newton was able to prove that this mech-

anism could not account for the quantitative observation

of planetary motion summarized in Kepler's laws.

Kepler, you recall, had still a different suggestion. He

proposed that some magnetic force reached out from the sun

to keep the planets moving. To Kepler this continual push,

was necessary because he had not realized the nature of

inertial motion. His model was inadequate, but at least he

was the first to regard the sun as the controlling mechanical

agent behind planetary motion. And so the problem remained:

was the sun actually the source of the force? If so, on

what characteristics of the sun did the amount of the force

depend?

At this point Newton proposed a dramatic solution: the

force influencing the planets in their orbits it nothing

other than a gravitational attraction which the sun exerts

on the planets. This is a gravitational pull of exactly

the same sort as the pull of the earth on an apple. This

assertion, known as the Law of Universal Gravitation, says:

every object in the universe attracts every other

object with a gravitational force.

If this is so, there must be gravitational forces between a

rock and the earth, between the earth and the moon, between

Jupiter and its satellites and between the sun and each of

the planets.

But Newton did not stop by saying only that there is a

gravitational force between the planets and the sun. He

further claimed that the force is just exactly the right

size to account completely for the motion of every planet.

No other mechanism is needed...no whirlpools in invisible

fluids, no magnetic forces. Gravitation, and gravitation

alone, underlies the dynamics of the heavens.

Because this concept is so commonplace to us, we are in

danger of passing it by without really understanding what

it was that Newton was claiming. First, he proposed a

truly universal physical law. He excluded no object in the

universe from the effects of gravity. Less than a century

before it would have been impious or foolish even to suggest

that terrestrial laws and forces were the same as those that

regulated the whole universe. But Kepler and Galileo had

Sun

Earth

The sun, moon and earth each
pull on the other. The forces
are in matched pairs in agree-
ment with Newton's third law.
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begun the unification of the physics of heaven and earth.

Newton was able to carry a step further what had been well

begun. Because Newton was eventually able to unite the

mechanics of terrestrial objects and the motion of celestial

bodies through one set of propositions, his result is called

the Newtonian synthesis.

A second feature of Newton's claim, that the orbit of a

planet is determined by the gravitational attraction between

it and the sun, was to move physics away from geometrical

explanations toward physical ones. He shifted the question

from "what are the motions?", wfiich Kepler had answered, to

"what force effects the motion?" In both the Ptolemaic and

Copernican systems the planets moved about points in space

rather than about objects, and they moved as they did be-

cause they had to by their nature or geometrical shape, not

because forces acted on them. Newton, on the other hand,

spoke not of points, but of things, of objects, of physical

bodies. Without the gravitational attraction of the sun to

deflect them continually from straight-line paths, the

planets would fly out into the darkness of space. Thus, it

was the physical sun which was important rather than the

point at which the sun happened to be located.

Newton postulated a s)ecific force. By calling it a

force of gravity he was not, however, explaining why it

should exist. He seems to be saying essentially this: hold

a stone above the surface of the earth and release it. It

will accelerate to the ground. Our laws of motion tell us

that there must be a force acting on the stone driving it

toward the earth. We know the direction of the force and

we can find the magnitude of the force by multiplying the

mass of the stone by the acceleration. We can give it a

name: weight, or gravitational attraction to the earth.

Yet the existence of this force is the result of some unex-

plained interaction between the stone and the earth. Newton

assumed, on the basis of his Rules of Reasoning, that the

same kind of force exists between the earth and moon, or any

planet and the sun. The force drops off as the square of

the distance, and is of just the right amount to explain the

motion of the planet. But why such a force should exist re-

mained a puzzle, and is still a puzzle today.

Newton's claim that there is a mutual force between a

planet and the sun raised a new question. How can a planet

and the sun act upon each other at enormous distances with-

out any visible connections between them? On earth you can

exert a force on an object by pushing it or pulling it. We

90



stone

stone

ti;

earth

Fig. 8.7(a) The gravitational
force on the earth is equal and
opposite to the gravitational
force on the stone.

of stone
on earth

m
stone

x a
stone

= force or
of earth
on stone

= xm a
earth earth

is proportional to the mass of the stone. Then by Newton's

third law the force experienced by the earth owing to the

stone is eq ally large and opposite, or upward. Thus while

the stone falls, the earth rises. If the stone were fixed

in space and the earth free to move, the earth would rise

toward the stone until they collided. As Fig. 8.7 indicates,

"the forces are equal and opposite," and the accelerations

are inversely proportional to the masses.

The conclusion that the forces are equal and opposite,

even between a very large mass and a small mass, may seem

contrary to common sense. Therefore, let us consider the

force between Jupiter and the sun, whose mass is about 1000

times that of Jupiter. As Fig. 8.8 indicates, we could con-

sider the sun as a globe containing a thousand Jupiters.

Let us call the force between two Jupiter-sized masses,

separated by the distance between Jupiter and the sun, as

one unit. Then Jupiter pulls on the sun (a globe of 1000

Jupiters) with a total force of 1000 units. Because each

of the 1000 parts of the sun pulls on the planet Jupiter

with one unit the total pull of the sun on Jupiter is also

1000 units. Remember that each part of the massive sun not

only pulls on the planet, but is also pulled upon la the

planet. The more mass there is to attract, the more there

is to be attracted.

Planet

mPlanet

R

Fig. 8.7(b) The gravitational
force on a planet is equal and
opposite to the gravitational
force, due to the planet, on the
sun.

Sun = 1000 Jupiters

1111111111

tft ft
0

Jupiter

Fig. 8.8 The gravitational for-
ces between the sun and a planet
are equal and opposite.

SG 8.3
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Force depends on mass of sun.

Force depends on mass of planet.

SG 8.7

F
total

varies with (mp x ms) .

(8.1)

mP
F cc

gray
R2

Mp X
F
gray

R2

(8.2)

The gravitational attraction is proportional to the mass

of the large body and the attraction is also proportional to

the mass of the small body. How do we combine these two pro-

portionalities to get one expression for the total force? Do

we multiply the masses, add them, or divide one by the other?

Figure 8.8 already suggests the answer. If we replaced

the sun (1000 Jupiters) by only one Jupiter, the force it

would exert on the planet would be only one unit. Likewise,

the planet would attract this little sun with a force of

only one unit. But because the sun is a thousand times

larger than Jupiter, each pull is 1000 units. If we could

make the planet Jupiter three times more massive, what

would the force be? You probably answered immediately:

3000 units. That is, the force would be multiplied three

times. Therefore we conclude that the attraction increases

in direct proportion to increases in the :fess of either

body, and that the total force depends upon the product

of the two masses. This conclusion should not be surpris-

ing. If you put one brick on a scale, it has a certain

weight (a measure of the earth's gravitational attraction

on the brick). If you put three bricks on the scale, what

will they weigh? That is, how much more will the earth

attract the three bricks compared to one brick?

Thus far we have concluded that the force between the sun

and a planet will be proportional to the product of the

masses [Eq. (8.1)]. Earlier we concluded that this force

also depends upon the inverse square of the distance between

two bodies. Once again we multiply the two parts to find

(8.3) one force law [Eq. (8.2)] that relates both masses and dis-

tance.

Try a thought experiment. Con-
sider the possibilities that
the force could depend upon the
masses in either of two other
ways:

(a) total force depends on
(m
sdn

m
planet

), or

(b) total force depends on
(m
sun /al planet).

Now in imagination let one of
the masses become zero. On the
basis of these choices, would
there still be a force even
though there were only one mass
left? Could you speak of a

gravitational force when there
was no body there to be accel-
erated?
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Such a proportionality as (8.2) can be changed into an

equation by introducing a gravitational constant, G, to allow

for the units of measurement used. Equation (8.3) is a bold

assertion that. the force between the sun and any planet depends

only upon the masses of the sun and planet and the distance

between them. We should notice what the equation omits.

The force does not depend upon the name of the planet or its

mythological identifications. Furthermore, it does not con-

sider the mass of sun or earth as being in any way special

compared with the mass of some other planet.

According to Eq. (8.3) the gravitational force is deter-

mined by and only by the masses of the bodies and the dis-

tance separating them. This equation seems unbelievably

simple when we remember the observed complexity of the

planetary motions. Yet every one of Kepler's Laws of Plane-



tary Motion is consistent with this relation, and this is

the real test whether or not Ea. (8.3) is useful.

MoreoVer, Newton's proposal that such a simple equation

defines the forces between the sun and planets is not the

final step. He believed that there was nothing unique or

special about the mutual force between sun and planets, or

the earth and apples: a relation just like Eq. (8.3) should

apply universally to any two bodies having masses mi and m2

separated by a distance R that is large compared to the

diameters of the two bodies. In that case we can write a

"general law of universal gravitation" [Eq. (8.4)]. The

numerical constant G, called the Constant of Universal

Gravitation, is assumed to be the same everywhere, whether

the objects are two sand grains, two members of a solar

system, or two galaxies separated by half a universe. As

we shall see, our faith in this simple relationship has be-

come so great that we assume Eq. (8.4) applies everywhere

and at all times, past, preient and future.

Even before we gather the evidence supporting Eq. (8.4),

the sweeping majesty of Newton's theory of universal gravita-

tion commands our wonder and admiration. You may be curious

as to how such a bold universal theory can be tested. The

more diverse these tests are, the greater will be our grow-

ing belief in the correctness of the theory.

The general law of Universal
Gravitation:

Gm1m2
F
gray

=

R2

SG 82

(8.4)

013 According to Newton's Law of Action and
Opposite Reaction, the earth should rise 014 What meaning do you give to G, the
toward a falling stone. Why don't we Constant of Universal Gravitation?
observe the earth's motion toward the
stone?

8.8 Testing a general law. To make a general test of an equa-

tion such as Eq. (8.4) we would need to determine the numer-

ical value of all quantities represented by the symbols on

both the left and right side of the equality sign. Also we
should do this for a wide variety of cases to which the law

is supposed to apply and check to see if the values always
come out equal on both sides. But we surely cannot proceed

that way. How would we determine the magnitude of F
gray

acting on celestial bodies, except through the application
of this equation itself? Newton faced this same problem.

Furthermore, he had no reliable numerical values for the

masses of the earth and the sun, and none for the value

of G.

But worst of all just what does R represent? As long

as we deal with particles or objects so small that their

size is negligible compared with the distance between them,
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cble to show, as we did in Section 8.5, that the general

statement of Eq. (8.4) applied also to the motion of planets

around the sun along orbits that are conic sections (in this

case, ellipses).

010 In what way did Newton compare the mo- (119 Explain the significance of the numeri-
tions of a falling apple and of the cal results of Newton's computation of
moon? the moon's acceleration.

See "Gravity Experiments" in
Project Physics Reader 2.

F
c
= mass x acceleration

= mpac

= mp (4r2R/T2)

mPmS
F = G
gray

R2

(8.7)

(8.3)

but F
c
= F

gray

so 4v2R
- G

olpm
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P

T2 R
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=---]R3
P Gm (8.8)

T 2 = kR3 is Kepler's Third Law.

In Chapter 7 we wrote T2 = ka3,
where a was the mean distance in
the orbit. However, in Chapter
8 we have used a for accelera-
tion. To lessen confusion we
use R here to describe the mean
distance of an orbit.

m1m2
F
gray

R2

= G
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(8.4)

8.10 Gravitation and planetary motion. The line of discussion

used to consider the force of the earth's gravitational at-

traction upon the moon opens up a further opportunity to

check Newton's theory. Newton made a very important assump-

tion: the gravitational attraction must be the cause of

centripetal acceleration.

Zquation (8.6) related the centr: .1 acceleration, ac,

to the distance and period of a body moving in a circle.

Therefore, for a planet going in a circular orbita good

approximation for this purposethe centripetal force Fc is

just the acceleration multiplied by the mass of the planet

(Eq. (8.7)]. Earlier we found that the gravitational force

on a planet in its orbit around the sun was given by Eq.

(8.3). Now we can equate the relations, Eqs. (8.3) and

(8.7), for Fgrav and F. After canceling the quantity m

on both sides and rearranging the symbols, we have Eq.

(8.8) which has the form of Kepler's third law, T2 = kR3.

The quantity within the bracket of Eq. (8.8) occupies the

same place as the constant k which we earlier found to be

the same for all planets. The brackets contain only the

terms: G, which is supposed to be a universal constant; ms,

the mass of the sun; and the numbers 4r2. Since none of the

terms in the brackets depends upon the particular planet,

the bracket gives a value which applies to the sun's effect

on any planet.

This does not prove that k = 412/Gms. If, however, we

tentatively accept the relation, it follows that Gms = 4r2/k.

Therefore, while we have not seen how one could determine

either G.or ms separately, the determination of G would al-

low us to calculate the mass of the sun, ms.

We must still question whether G is really a universal

constant, i.e., one with the same value for all objects that

interact according to Eq. (8.4). Although Newton knew in

principle how one might measure the numerical value of G, he

lacked the precision equipment necessary. However, he did

provide a simple argument in favor of the constancy of G.

Consider a body of mass ml on the surface of the earth (of

mass mE), at a distance RE from the earth's center. The



body's weight, which we call F
gray'

is given by mpg. Then

we can again equate the earthly gravitational force, mpg,

with the force predicted by the Law of Universal Gravitation.

The result is Eq. (8.9). At any one position on earth,

(RE2/mE) is constant (because RE and mE are each constant)

regardless of what the numerical value of this ratio may be.

Then, if all substances, at that place show precisely the

same value for g, the gravitational acceleration in free

fall, the quantity G also must be constant there. This con-

clusion should hold regardless of the chemical composition,

texture, shape and color of the bodies involved in free fall.

That g is constant at a given location is just what Newton

showed experimentally. His measurements were made not by

just dropping small and large bodies, from which Galileo

had previously concluded that g cannot vary significantly.

Instead Newton used the more accurate method of timing pendu-

lums of equal lengths but of different materials such as wood

and gold. After exhaustive experiments, all pointing to

the constancy of g, and therefore of G at a given location,

Newton could write:

This [constancy] is the quality of all bodies
within the reach of our experiments; and therefore
(by Rule 3) to be affirmed of all bodies whatsoever.

Thus G attained the status of the Universal Constant of

Gravitation--one of the very few universal constants in

nature.

Weight =
gray

= mpg, but also

mlmE
= G , thenF

R
E
2

aiimE

= G --7-, and
R
E

.[RE
2

mE

0.20 How did Newton use the centripetal force
in his analysis of the motions of the
moon and planets?

Q21 On what basis did Newton conclude that

G was a universal constant?

(8.9)

Q22 Since the value Jf g is not the same at
all places on the earth, does this mean
that perhaps G is not really constant?

8.11 The tides. The flooding and ebbing of the tiaes, so im-

portant to navigators, tradesmen and explorers through

the ages, had remained a mystery despite the studies of

such men as Galileo. Newton, however, through the applica-

tion of the Law of Gravitation, was able to explain the

main features of the ocean tides. These he found to result

from the attraction of the moon and sun upon the fluid

waters of the earth. Each day two high tides normally oc-

cur. Also, twice each month, when the moon, sun and earth

are in line, the tides are higher than'the average. Near

quarter moon, when the directions from the earth to the moon

and sun differ by about 90°, the tidal changes are smaller

than average.

Two questions about tidal phenomena demand special at-

tention. First, why do high tides occur on both sides of

What are the phases of the moon
when the moon, sun and earth
are in line?

99



coon

1/592

1/602

1/612

59R

60R

the earth, including the side away from the moon? Second,

why does the time of high tide occur some hours after the

moon has crossed the north-south line (meridian)?

Newton realized that the tide-raising force would be the

difference between the pull of the moon on the whole solid

earth and on the fluid waters at the earth's surface. The

moon's distance from the solid earth is 60 earth radii. On

the side of the earth nearer the moon, the distance of the

water from the moon is only 59 earth radii. On the side of

the earth away from the moon the water is 61 earth radii

from the moon. Then the accelerations would be those

shown in Fig. 8.11. On the side near the moon the accelera-

tion is greater than that on the rigid earth as a whole,

so the fluid water on the surface of the earth has a net

acceleration toward the moon. On the far side of the earth,

61R the acceleration is less than it is on the earth as a whole,

so the water on the far side has a net acceleration away from

the moon. We could say that the rigid earth is pulled away

from the water.

Fig. 8.11 Tidalforces. The
earth-moon distance indicated
in the figure is greatly reduced
because of the space limitations.

If you have been to the seashore or examined tide tables,

you know that the high tide does not occur when the moon

crosses the north-south line, but some hours later. To ex-

plain this even qualitatively we must remember that the

oceans are not very deep. As a result, the waters moving in

the oceans in response to the moon's attraction encounter

friction from the ocean floors, especially in shallow water,

and consequently the high tide is delayed. In any particular

place the amount of the delay and of the height of the tides

depends greatly upon the ease with which the waters can flow.

No general theory can be expected to account for all the

particular details of the tides. Most of the local predic-

tions in the tide tables are based upon the cyclic variations

recorded in the past.

SG 8.16 Since there are tides in the fluid seas, you may wonder

if there are tides in the fluid atmosphere and in the earth

itself. There are. The earth is not completely rigid, but

bends about like steel. The tide in the earth is about a

foot high. Tne atmospheric tides are generally masked by

other weather changes. However, at heights near a hundred

miles where satellites have been placed, the thin atmosphere

rises and falls considerably.

an Why do we consider the acceleration of
the moon on the ground below a high tide
to be the acceleration (DI the moon on

the earth's center?

Q24 Why is there a high tide on the side of
the earth away from the moon?



8.12 Comets. Comets, whose unexpected appearances had through

antiquity and the Middle Ages been interpreted as omens of

disaster. were shown by Halley and Newton to be nothing more

than some ;ort of cloudy masses that moved around the sun

according to Newton's Iaw of Gravitation. They found that

most comets were visible only when closer to the sun thaa

the distance of Jupiter. Several of the very bright comets

were found to have orbits that took them well it the

orbit of Mercury to within a few million r .,. .2 sun,

as Fig. 8.12 indicates. Some of the orbits nave eccent:ic-

ities near 1.0 and are almost parabolas, and those comets have

period.; of thousands or even millions of years. Other faint

comets have periods of only five to ten years. Unlike the

planets, whose orbits are nearly in the plane of the ecliptic,

the planes of comet orbits are tilted at all angles to the

ecliptic. In fact, about half of the long-period comets move

in the direction opposite to,the planetary motions.

Edmund Halley applied Newton's gravitational theory to

the motion of bright comets. Among those he studied were

the comets of 1531, 1607 and 1682 whose orbits he found to

be very nearly the same. Halley suspected that these might

be the same comet seen at intervals of about 75 years. If

this were the same comet, it should return in about 1757as

Fig. 8.12 Schematic diagram of
the orbit of a comet projected

onto the ecliptic plane; comet
orbits are tilted at all angles.

Fig. 8.13 A scene from the
Bayeux tapestry, which was em-
broidered about 1070. The
bright comet of 1066 can be seen
at the top of the figure. This
comet was later identified as
being Halley's comet. At the
right, Harold, pretender to the
throne of England, is warned
that the comet is an ill omen.
Later that year at the Battle
of Hastings Harold was defeated
by William the Conqueror.
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See "Boy Who Redeemed His

Father's Name" in Project Physics
Reader 2.

See "Great Comet of 1965" in
Project Physics Reader 2.

it did after moving out to 35 times the earth's distance

from the sun. This is Halley's comet, due to be near the

sun and bright again in 1985 or 1986.

With the period of this bright comet known, its approxi-

mate dates of appearance could be traced back in history.

In the records kept by Chinese and Japanese this comet has

been identified at every expected appearance except one

since 240 B.C. That the records of such a celestial event

are incomplete in Europe is a sad commentary upon the in-

terests and culture of Europe during the so-called "Dark

Ages." One of the few European records of this comet is

the famous Bayeux tapestry, embroidered with 72 scenes of

the Norman Conquest of England in 1066, which shows the

comet overhead and the populace cowering below (Fig. 8.13).

A major triumph of Newtonian science was its use to explain

comets, which for centuries had been frightening events.

0.25 In what way did Halley's study of comets
support Newton's theory?

T2

iLa-11/3 (8.8)
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1.13 Relative masses of the planets compared to the sun. The

masses of the planets having satellites can be compared to

the mass of the sun the use of Eq. (8.8) even though we

do not know the value of the Universal Gravitational Con-

stant, G. This we can do by forming ratios involving the

periods and distances of the planets around the sun and

of satellites around the planets. As a start W3 rearrange

Eq. (8.8) into the form of Eq. (8.10). This relates the

period of a planet to its distance from the sun and the

total mass of the sun plus planet, but the mass of the

planet can be neglected. If we change the subscripts, this

relation applies equally well to a planet P and one of its

satellites, Sat. Then we may find the ratio of the mass

of the sun to the mass of the planet:

mass of the sun-planet pair [42] RP3
sun G T 2

mass of the planet-satellite pair [4r2] R
G

Sat3
T
Sat

2

The brackets cancel. After some rearrangement we have

['Sat RP3

mP

m
sun

T
P
2 R

Sat
1 (8.11)

Now, for example, we can determine the relative mass of

Jupiter and the sun. We know the period Ts and the distance
R between Jupiter and one of its satellites--Callisto, one



of the Galilean satellites. Also we know the orbital period

T and the distance R of Jupiter from the sun. Table 8.1
SG 811

P P

presents the modern data. In the margin we have worked out SG 812

the arithmetic.

Table 8.1. Data on the Motion of Callisto around Jupiter,
and on the Motion of Jupiter around the Sun.

Obiect

Callisto

Jupiter

Period (T), days Distance, R, miles

16.71

4,332

1,170,000

483,000,000

In this way Newton found the masses of Jupiter, Saturn

and the earth compared to the sun's mass to be: 1/1067,

1/3021 and 1/169,282. (The modern values are: 1/1048,

1/3499 and 1/331,950.) Thus the application of gravita-

tional theory permitted for the first tint.. a determination

of the relative masses of the sun and planets.

Newton's relative value for the
mass of the earth was in error
because the distance from the
earth to the sun was not accu-
rately known.

Q26 Even though Newton did not know the value
of G, how could he use Eq. (8.10),

m
S

= [--- -- ,

4Tr21 R3

T2

to derive relative masses of some planets
compared to the sun? For which planets

could he find such masses, in terms of
the sun's mass?

currif the period of a satellite of Uranus
is 1 day 10 hours and its mean distance
from Uranus is 81,000 miles, what is the
mass of Uranus compared to the sun's
mass?

814 The scope of the principle of universal gravitation. Al-

though Newton made numerous additional applications of his

Law of Universal Gravitation, we cannot consider them in

detail here. He investigated the causes of the irregular

motion of the moon and showed that its orbit would be con-

tinually changing. As the moon moves around the earth,

the moon's distance from the sun changes continually. This

changes the net force of the earth and sun on the orbiting

moon. Newton also showed that other changes in the moon's

motion occur because the earth is not a perfect sphere,

but has an equatorial diameter 27 miles greater than the

diameter through the poles. Newton commented on the problem

of the moon's motion that "the calculation of this motion is

difficult." Even so, he obtained predicted values in reason-

able agreement with the observed values available at his

time.

Newton investigated the variations of gravity at different

latitudes on the bulging and spinning earth. Also, from the

differences in the rates at which pendulums swung at differ-

ent latitudes he was able to derive an approximate shape for

the earth.
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See "Universal /.ravitatIon" in
Project Physics Reader 2.

What Newton had done was to create a whole new quantita-

tive approach to the study of astronomical motions. Because

some of his predicted variations had not been observed,

new improved instruments were built. These were needed

anyway to improve the observations which could now be fit-

ted together under the grand theory. Numerous new theoret-

ical problems also needed attention. For example, what

were the predicted and observed interactions of the planets

upon their orbital motions? Although the planets are small

compared to the sun and are very far apart, their inter-

actions are enough so that masses can be found for Mercury,

Venus and Pluto, which do not have satellites. As precise

data have accumulated, the Newtonian theory has permitted

calculations about the past and future states of the plan-

etary system. For past and future intervals up to some

hundreds of millions of years, when the extrapolation

becomes fuzzy, the plznetary system has been and will be

about as it is now.

What amazed Newton's contemporaries and increases our own

admiration for him was not only the range and genius of his

work in mechanics, not only the originality and elegance of

his proofs, but also the detail with which he developed

each idea. Having satisfied himself of the correctness of

his principle of universal gravitation, he applied it to a

wide range of terrestrial and celestial problems, with the

result that it became more and more widely accepted. Remem-

ber that a theory can never be completely proven; but it be-

comes increasingly accepted as its usefulness is more widely

shown.

The great power of the theory of universal gravitation

became even more apparent when others applied it to prob-

lems which Newton had not considered. It took almost a

century for science to comprehend, verify and round out his

work. At the end of a second century (the late 1800's), it

was still reasonable for leading scientists and philosophers

to claim that most of what had been accomplished in the

science of mechanics since Newton's day was but a develop-

ment or application of his work. Thus, due to the work of

Newton himself and of many scientists who followed him, the

list of applications of the principle of universal gravita-

tion is a long one.

02$ What are some of the reasons which caused Q29 What were some of the problems and ac-
Newton to comment that "the calculation tions that needed further effort as a
of the moon's motion is difficult"? (See result of Newton's theory?
Fig. 8.10.)
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forces could oe exertea at such distances. Newton himself,

however, did not claim to have discovered how the gravita-

tional force he had postulated was transmitted through space.

At least in public, Newton refused to speculate on how the

postulated gravitational force was transmitted tl"rough space.

He saw no way to reach any testable answer which would re-

place the unacceptable whirlpools of Descartes. As he said

in a famous passage in the General Scholium added to his

second edition of the Principia (1713):

...Hitherto I have not been able to discover the cause
of those properties of gravity from phenomena, and I
frame no hypotheses; for whatever is not deduced from
the phenomena is to be called an hypothesis; and hy-
potheses, whether metaphysical or physical, whether
of occult qualities or mechanical, have no place in
experimental philosophy. In this philosophy par-
ticular propositions are inferred from the phenomena,
and afterwards rendered general by induction. Thus
it was that the impenetrability, the mobility, and
the impulsive force of bodies, and the laws of motion
and of gravitation were discovered. And to us it is
enough that gravity does really exist, and act ac-
cording to the laws which we have explained, and
abundantly serves to account for all the motions of
the celestial bodies, and of our sea.

We quoted Newton at length because this particular pas-

sage is frequently misquoted and misinterpreted. The

original Latin reads: hypotheses non fingo. This means:

"I frame no hypotheses," "I do not feign hypotheses," or

"I do not make false hypotheses."

Newton did make numerous hypotheses in his numerous publi-

cations, and his letters to friends contain I..any other

speculations which he did not publish. More light is 'shed

on his purpose in writing the General Scholium by his manu-

script first draft (written in January, 1712-13). Here

Newton very plainly confessed his inability to unite the

This quotation is part of an
important comment, or General

Scholium, beginning on page 543
of the Cajori edition, Univer-
sity of California Press. The
quotation is on page 547.
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8.15 The actual masses of celestial bodies. The full power of

the Law of Universal Gravitation could be applied only after

the numerical value of the proportionality constant G had
been determined. As we noted earlier, although Newton

understood the process for determining G experimentally,

the actual determination had to await the invention of

delicate instruments and special techniques.

The procedure is simple enough: in the laboratory,

measure all of the quantities in the equation

mim2
-Fgray - R2

(8.4)

except G, which can then be computed. The masses of small

solid objects can be found easily enough from their weights.

Furthermore, measuring the distance between solid objects of

definite shape is not a problem. But how is one to measure

the small gravitational force between relatively small objects

in a laboratory when they are experiencing the large gravita-
tional force of the earth?

This serious technical problem of measurement was eventu-

ally solved by the English scientist Henry Cavendish (1731-

1810). As a device for measuring gravitational forces he

employed a torsion balance (Fig. 8.14), in which the force

to be measured twists a wire. This force could be measured

separately and the twist of the wire calibrated. Thus, in

the Cavendish experiment the torsion balance allowed measure-

ments of the very small gravitational forces exerted on two

small masses by two larger ones. This experiment hea been

progressively improved, and today the accepted value of. G is

G = 6.67 x 10 -11 Nm2/kg2

Fig. 8.14 Schematic diagram of
the device used by Cavendish for
determining the value of the
gravitational constant, G. The
large lead balls of masses MI
and M2 were brought close to
the small lead balls of masses
ml and m2. The mutual gravita-
tional attraction between MI
and ml and between M 2and m 2

caused the vertical wire to be
twisted by a measurable amount.

To derive the gravitational

force between two kilogram mas-
ses, one meter apart:
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Ground

Fig. 8.6. Because falling
spleres of unequal mass accele-
rate at the same rate, the
gravitational forces on them
must be proportional to their
masses.
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physics of the heavens which explains the motion of bodies

by the forces between them. Therefore the general statement

that a universal gravitational force exists has to be turned

into a quantitative one that gives an expression for both

the magnitude and direction of the force between any two

objects. It was not enough to assert that a mutual gravi-

tational attraction exists between the sun and say Jupiter.

Newton had to specify what quantitative factors determine

the size of that mutual force, and how it could be measured,

either directly or indirectly.

While studying Newton's Laws of Motion in Unit 1, you

first encountered the concept of mass. Indeed, Newton's

second law, F
net = ma, states that the acceleration of any

object depends upon the net force and the mass. Consider

the two spheres in Fig. 8.6. Let us say that body B has

double the mass of body A. Newton's second law tells us

that if a net force causes body A to be accelerated a cer-

tain amount, double that force will be needed to accelerate

body B by the same amount. If we drop bodies A and B, the

earth's gravitational attraction causes them to accelerate

equally: aA = aB = g, so the force on B must be twice the

force on A. Twice the mass results in twice the force

which suggests that mass itself is the key factor in deter-

mining the magnitude of the gravitational force.

Like Newton, let us propose that the gravitational force

on a planet, due to the pull of the sun, must be proportional

to the mass of the planet itself. It immediately follows

that this force is also proportional to the mass of tl'e sun.

We can see that the second proportionality follows, if we

consider the problem in terms of a stone and the earth. We

saw before that the downward force of gravity on the stone

How to Find the Mass of a Double Star

demonstrate the poor of :.ewton's
laws, let us study a dotn.le Yot.
can even derive its mass fro- yo.,:r
observations.

An interesting doui,le star of short
period, which can be seen as a clouble.
star with a six-inch telescope, is Kru,:er
60. The find-chart shows its location
less than one degree south of the variaLde
star Delta Cephei in the northern sky.

The sequential photographs (Fig. 8.15),
snaced in proportion to their dates,
show tl,e double star on the right. An-
other star, which just happens to be in
the line of sight, shows on the left.
The photographs show the revolution
within the double-star system, which s
a period of about 45 years. As you cin
see, the components were farthest apart,
about 3.4 seconds of arc, in t%e mid-
1940's. The chart of the relative posi-
tions of the two components (Fig. 8.16)
shows that they will be closest together
at 1.4 seconds of arc around 1971. The
circles mark the center of mass of the
two-star system. If you measure the
direction and distance of one star rela-
tive to the other at five-year intervals,
you can make a plot on graph paper which
shows the motion of one star relative to
the other. Would you expect this to be
an ellipse? Should Kepler's Law of
Areas apply? Does it? Have you assume-1
that the orbital plane is perpendicular
to the line of sight?

The sequential pictures show that the
center of mass of Kruger 60 is drifting
away from the star at the left. If you
were to extend the lines back to earlier
dates, you would find that in the 1860's
KrUger 60 passed only 4 seconds of arc
from that r''erence star.

A finding chart for Kruger
60, with north upward, east
to the left.

Fig. 8.15 The or-
bital and linear
motions of the vis-
ual binary, KrUger
60, are both shown
in this chart, made
up of photographs
taken at Leander
McCormick Observa-
tory (1919 and
1933) and at Sproul
Observatory (1938
to 1965) .

From the sequential photographs and
the scale given there we can derive the



Ti,e masses of the two stars of Kruger
60 can be found from the photographs
shown in Fig. 8.15 and the application
of Eq. (8.11), when we developed Eq.
(8.11) we assumed that the mass of one
body of each pair (sun-planet, or planet-
satell'te) was negligible. In the equa-
tion the mass is actually the sun of the
two, so for the double star we must
write (ml + m,). Then we have

(m m,) pair '1;
92
pair!'

m T Rpair E

(8.11)

The arithmetic is greatly simplified
if we take the periods in years and the
distances in Astronomical Units (A. U.),
which are both unit for the earth. The
period of Kruger 60 is about 45 years.
The mean distance of the components can
be found in seconds of arc from the dia-
gram (Fig. 8.16). The mean separation is

tmax + mini 3.4 seconds + 1.4 seconds
2 2

4.8 seconds
2

2.4 seconc:s.

Earlier we found that the distance from
the sun to the pair is near
8.7 , 10= A.U. Then the mean angular
separation of 2.4 seconds equals

2.4 A 8.7 Y A.U.
10 A.U.,

2.1 x

or the stars are separated by about the
same distance as Saturn is from the sun.
(We might have expected a result of this
size because we know that the period of
Saturn around the sun is 30 years.)

Now, upon substituting the numbers
into Eq. (8.11) we have:

m
(m1 + m.) pair fl (10)3

sun U15) IT-J

1000
= 0.50,

2020

or, the two stars together have about
half the mass of the sun.

We can even separate this mass into
the two components. In the diagram of
motions relative to the center of mass
we see that one star has a smaller motion
and we conclude that it must be more
massive. For the positions of 1970 (or
those observed a cycle earlier in 1925)
the less massive star is 1.7 times farther
than the other from the center of mass.

.0.11111

Fig. 8.16 Kruger 60's components trace elliptical orbits,
indicated by dots, around their center of mass marked by
circles. For the years 1932 to 1975, each dot is plotted
on September 1st. The outer circle is calibrated in
degrees, so the position angle of the companion may be
read directly, through the next decade.

So the masses of the two stars are in
the ratio 1.7 : 1. Of the total mass of
the pair, the less.massive star has

1
, 0.5 0.18 he mass of the sun,1 + 1,7

while the other star has 0.32 the mass
of the sun. The more massive star is
more than four times brighter than the
smaller star. Both stars are red dwarfs,
less massive and considerably cooler
than, the sun.

From many analyses of double stars as-
tronomers have found that the mass of a
star is related to its total light out-
put, as shown in Fig. 8,17.

SG 8.15

MOSS

Fig. 8.17 The mass-luminosity relation. The three
points at the bottom represent white dwarf stars.
which do not conform to the relation.
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(8.10)

very large masses we compute for other large bodies. Per-

haps for this reason Cavendish preferred to give his

result not as the mass of the earth but as the mass divided

by its volume (known quite well from geographical surveys).

He concluded that the earth was 5.48 times as dense as water.

It is a tribute to his experimental skill that his result

is so close to the modern value of 5.52.

This large density for the earth raised questions of very

great interest to geologists. The average density of rock

found in the crust of the earth is only about 2.7, and even

the densest ores found rarely have densities greater than the

earth's overall average. Since much mass must be somewhere,

and it is not at the surface, apparently the material making

up the core of the earth must be of much higher density than

the surface material. Some increased density of deep rocks

shouldbe expected from the pressure of the upper layers of

rock. But squeezing cannot account for most of the differ-

ence. Therefore, the center of the earth must be composed

of materials more dense than those at the surface and prob-

ably is composed mainly of one or more of the denser common

elements. Iron and nickel are the most likely candidates,

but geologists are also considering other alternatives.

With the value of G known by experiment we can also find

the mass of the sun, or of any celestial object having some

type of satellite. Once we know the value of G, we can sub-

stitute numbers into Eq. (8.10) and find ms. In the case of

the sun, the earth is the most convenient satellite to use

for our computation.. The earth's distance from the sun is

1.50 x 1011m, and its period is one year, or 3.16 x 107 sec.

We have already seen that G = 6.67 x 10-11 m3/kgsec2. Upon

substituting these numbers in Eq. (8.10), we find the mass

4112(130 x 1011 m) 3 4112(1.5n x 1011 )3 m3
mS

(6.67 x 1011 m3/kg sec2)(3.16 x 107 sec) (6.67 x10-11)(3.16 x 107)2 m3 sec

kg sec 2

m = 2.0 x 10 3° kg

of the sun to be 2.0 x 1030 kg. Earlier we found that tne

mass of the earth was about 6.0 x 1024 kg. Thus, the ratio

of the mass of the sun to the mass of the earth is

2 x 103° kg
6 x 1024 kg

which shows that the sun is 3.3 x 105 (about a third of a

million) times more massive than the earth.
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This same procedure can be used to find the actual mass

of any planet having a satellite. For planets not having

satellites, their attraction on other planets can be used.

But all methods rely at some point on the Law of Universal

Gravitation. The masses of the sun, moon and planets rela-

tive to the earth are listed in Table 8.2. Notice that the

planets taken together add up to not much more than 1 /1000th

part of the mass of the solar system.

Table 8.2

The mass of the sun, moon, and planets relative to the
mass of the earth. The earth's mass is approximately
6.0 x 1024 kg.

Sun

Moon

Mercury 0.056

333,000.00

0.012

-1-

Jupiter 318.

Saturn 95.

Uranus 14.6

Venus 0.82 Neptune 17.3

Earth 1.00 Pluto 0.8?

Mars 0.108

See "Life Story of a Galaxy"
in Project Physics Reader 2.

See "Expansion of the Universe"
in Project Physics Reader 2.

See "The Stars Within Twenty -two
Light Years That Could Have
Habitable Planets" in Project
Physics Reader 2.

030 How was the value of G determined experi-
mentally by Cavendish?

cun What geological problems result from the
discovery that the meari density of the
earth is 5.52?

S.16 Beyond the solar system. We have seen how Newton's laws

havebeen applied to explaining much about the earth ana the

entire solar system. But now we turn to a new question. Do

Newton's laws, which are so useful within the solar system,

also apply at greater distances among the stars?

Over the years following publication of the Principla

several sets of observations provided an answer to this im-

portant question. At the time of the American Revolutionary

War, William Herschel, a musician turned amateur astronomer

was, with the help of his sister Caroline, making a remark-

able series of observations of the sky through his home-made

high-quality telescopes. While planning how to masure the

parallax due to the earth's motion around the sun, he noted

that sometimes one star had another star quite close. He

suspected that some of these pairs might actually be double

stars held together by their mutual gravitational attrac-

tions rather than being just two stars in nearly the same

line of sight. Continued observations of the directions

and distances from one star to the other of the pair showed

that in some cases one star moved during a few years in a

small arc of a curved path around the other (see Fig. 8.18).

When enough observations had been gathered, astronomers

found that these double stars, far removed from the sun and

planets, also moved around each other in accordance with

Fig. 8.18 The motion over many
years of one component of a
binary star system. Each circle
indicates the average of observa-
tions made over an entire year.
Oper circles designate the years
1831 -1873. Dark circles are
used for the years after 1873.

See "Space, The Unconquerable"

in Project Physics Reader 2.
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Fig. 8.9 The net gravitational
force on a point, A, in a
spherical body is towards the
center, C.

Assume that a planet is a sphere
of uniform density (which the
earth is not). Compute the grav-
itational attraction at points
3/4, 1/2, 1/4 of the radius R
from the center. The volume of
a sphere is given by:
Volume = 471125/3.

The amount of force on A is, however, more difficult to

determine. Some points, like G, are relatively near to A,

while many more, like H and I are farther away. To sum up

all the small attractions Newton developed a new mathematical

procedure called the infinitesimal calculus. With it he con-

cluded that the the force on a particle at a point A depended

only upon the mass of material closer than A to the center.

The attractions of the material located further from the

center than point A canceled out.

A similar analysis shows that on an external spherical

object an apple on a branch, or the moon, or a planet--the

total gravitational attraction acts as if it originated at

the center of the attracting spherical body. Then the dis-

tance R in the Law of Universal Gravitation is the distance

between centers.

This is a very critical discovery. Now we can consider

the gravitational attraction from a rigid spherical body as

though its mass was concentrated at a point, called a mass-

point.

015 What diffielties do we have in testing

11

a universal law?

016 What is meant by the term "mass point"?

c17 How did Newton go about devising some
tests of his Theory of Universal Gravi-
tation even though he did not know the
value of G? (See next section.)

96

8.9 The moon and universal gravitation. Before we digressed to

discuss what measurements we should use for distance R, we

were considering how Newton's equation for universal gravi-

tational attraction could be tested experimentally. To use

Eq. (8.4) to find any masses the value of G must be known.

However, the value of G was not determined for more than a

hundred years after Newton proposed his equation.

Newton had to test Eq. (8.4) indirectly. Since he could

Kepler's laws, and therefore in agreement with Newton's

Law of Universal Gravitation. By the use of Eq. (8.11),

p. 102, astronomers have found the masses of these stars

range from about 0.1 to 50 times the sun's mass.

Q32 In what ways has the study of double Law of Universal Gravitation applies be-
stars led to the conclusion that Newton's tween stars?

1.17 Some influences on Newton's work. The scientific output of

Newton and his influence on the science of his time were

perhaps unequaled in the history of science. Hence, we

should look at Newton as a person and wonder what personal

attributes led to his remarkable scientific insight. He

was a complicated, quiet bachelor intensely involved with

his studies, curiously close to the usual stereotype of a

genius, which is so often completely wrong.

Newton was a man of his time and upbringing; some of his

work dealt with what we today regard as pseudosciences. He

had an early interest in astrology. He seems to have spent

much time in his "laboratory," cooking potions that smelled

more of alchemy than of chemistry. Yet in all his activities,

he seems to have been guided and motivated by a search for

simple underlying general principles and never for quick

practical gains.

Throughout the discussion above we have been mixing the

physics of terrestrial bodies with the motions of celestial

bodies, just as Newton did. Since the relationships could

be verified, we truly have a synthesis of terrestrial and

celestial physics of great power and generality. A brief

reconsideration of Eq. (8.4) can remind us of the inclusive-



Fig. 8.10 indicates, "fall" toward the earth at the rate of

9.80/3600 meters per second2, or 2.72 x 10-3 m/sec2. Does it

As starting information Newton knew that the orbital

period of the moon was very nearly 275 days. Also, he knew

that the moon's average distance from tne earth is nearly

240,000 miles. But most important was the equation [Eq.

(8.5)] for centripetal acceleration, ac, that you first

saw in Unit 1. That is, the acceleration, ac, toward the

center of attraction equals the square of the speed along

the orbit, v, divided by the distance between centers, R.

To find the average linear speed, v, we divide the total

circumference of the moon's orbit, 2nR, by the moon's period,

T. Then upon substitution for v2 in Eq. (8.5) we find

Eq. (8.6) for the centripetal acceleration in terms of the

radius of the moon's orbit and the orbital period of the

moon. When we substitute the known quantities and do the

arithmetic we find

a
c = 2.74 x 10-3 rn /sec2.

From Newton's values, which were about as close as these,

he concluded that he had

compared the force requisite to keep the moon in her
orbit with the force of gravity at the surface of

1

the
earth, and found them to answer pretty nearly.

Therefore
in its orbit
equal to the
bodies there.
1 and 2) the
its orbit is
.call gravity.

the force by which the moon is retained
becomes, at the very surface of the 'earth,
force of gravity which we observe in heavy
And therefore (by Rules [of Reasoning]

force by which the moon is retained in
that very same force which we commonly

By this one comparison Newton had not yet proved his law

of universal gravitational attraction. However, Newton was

motion and "fall" produce the
curved orbit.

Predicted value of the earth's
gravitational acceleration at
the distance of the moon:
2.72 x 10-3 m/sec2.

a
c

= v2 /R (8.5)

v = 2nR/T, and V 2 = 4v2R2/T 2

a
c
= 4n2R/T2 (8.6)

Observed rate of mcon's accelera-
tion toward the earth:
2.74 x 10-3m/sec2.
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4. that Kepler's three Laws of Planetary Motion hold,

and are interrelated;

5. that oceanic tides are the result of the net attrac-

tion of the sun and moon on the liquid waters.

Throughout Newton's work is his belief that celestial

phenomena are explainable by quantitative terrestrial laws.

He felt that his laws had a physical meaning and were not

just mathematical tricks or conveniences covering unknowable
true laws. Just the opposite; the natural physical laws

governing the universe were accessible to man, and the simple

mathematical forms of the laws were evidence of their reality.

Newton combined the skills and approaches of both the
experimental and theoretical scientist. He made ingenious

pieces of equipment, such as the first reflecting telescope,
and performed skillful experiments, especially in optics.

'Yet he also applied his great mathematical and logical

powers to the creation and analysis of theories to produce

explicit, testable statements.

Many of the concepts which Newton used came from his

scientific predecessors and contemporaries. For example,

Galileo and Descartes had contributeu the first step tc a

proper idea of inertia, which became Newton's First Law of

Motion, Kepler's planetary laws were central in Newton's

consideration of planetary motions. Huygens, Hooke and

others clarified the concepts of force and acceleration,
ideas which had been evolving for centuries.

In addition to his own experiments, he selected and used
data from a great variety of sources. Tycho Brahe was only

one of several astronomers whose observations of thc. moon's



approach suggested that all observations could be interpreted

in terms of mechanical theories. In economics, philosophy,

religion and the developing "science of man," the successful

approach of Newton and the Newtonians encouraged the rising

Age of Reason.

One consequence of the mechanistic attitude, lingering

on to the present day, was a widespread belief that with

Newton's laws (and later similar ones for electrodynamics)

the future of the whole universe and each of its parts

could be predicted. One need know only the several posi-

tions, velocities and accelerations of all particles at any

one instant. As Kepler had suggested, the universe seemed

to be a great clockwork. This was a veiled way of saying

that everything worth knowing was understandable in terms

of physics, and that all of physics had been discovered.

As you will see later in this course, in the last hundred

years scientists have been obliged to take a less certain

position about their knowledge of the world.

Today we honor Newtonian mechanics for less inclusive, but

more valid reasons. The content of the Principia historically

formed the basis for the development of much of our physics

and technology. Also the success of Newton's approach to his

problems provided a fruitful method which guided work in the

physical sciences for the subsequent two centuries.

We recognize now that Newton's mechanics holds only within

a well-defined region of our science. For example, although

the forces within each galaxy appear to be Newtonian, one can

speculate that non-Newtonian forces operate between galazies.

At the other end of the scale, among atoms and subatomic

particles, an entirely non-Newtonian set of concepts had

to be developed to account for the observations.

Even within the solar system, there are a few small resid-

ual discrepancies between predictions and observations. The

most famous is the too great angular motion of the perihelion

of Mercury's orbit: Newtonian calculations differ from the

observations by some 43 seconds of arc per century.

Such difficulties cannot be traced to a small inaccuracy

of the Law of Gravitation, which applies so well in thousands

of other cases. Instead, as in the case of the failure of

the Copernican system to account accurately for the details

of planetary motion, we must reconsider our assumptions. Out

of many studies has come the conclusion that Newtonian mechan-

ics cannot he modified to explain certain observations. New-

tonian science is joined at one end with relativity theory,

which is important for bodies moving at high speeds. At the
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other end, Newtonian science borders on quantum mechanics,

which gives us a physics of atoms, molecules and nuclear
particles. But for the vast middle ground, Newtonian mechan-

ics still describes the world of ordinary experience and of

classical physics as accurately as it always did.

Q34 What were some of the major consequences
of Newton's work on scientists' view of
the world?

8.19 What is a theory? The making of theories to account for

observations is a major purpose of scientific study. There-

fore some reflection upon the theories encountered thus far
in this course may be useful. In later parts of the course

you will recognize many of these aspects of theories, and

others too. Perhaps you will come to agree that "there is

nothing more practical than a good theory."

A theory is a general statement relating selected aspects

of many observations. A theory:

1. should summarize and not conflict with a body of

tested observations. Examples: Tycho's dissatisfaction

with the inaccuracy of the Ptolemaic system, Kepler's

unwillingness to explain away the difference of eight

minutes of arc between his predictions and Tycho's obser-

vations.

2. should permit predictions of new observations which

can be made naturally or arranged in the laboratory. Ex-

amples: Aristarchus' prediction of an annual parallax of

the stars, Galileo's predictions of projectile motions

and Halley's application of Newton's theory to the motions

of comets.

3. should be consistent with other theories. Example: New-

ton's unification of the earlier work of Galileo and of Kepler.

However, sometimes new theories are in conflict with others,

as for example, the geocentric and heliocentric theories of

the planetary system.

Every theory involves assumptions. The most basic are

those of Newton's Rules of Reasoning, which express a faith in

the stability of things and events we observe. Without such

an assumption the world is just a series of happenings which

have no common elements. In such a world the gods and god-

desses of Greek mythology, or fate, or luck prevent us from

finding any regularity and bases for predictions of what

will happen in similar circumstances,
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Specific assumptions also underlie every theory. In this

unit the major assumptions were those of a geocentric or a

heliocentric planetary system. The development and gradual

acceptance of the heliocentric theory provided a model which

Kepler used to interpret the observations of Tycho. Then

Newton combined the theories of Galileo and Kepler into one

grand theory. Such a vast theory as Universal Gravitation is

sometimes called a "grand conceptual scheme."

Making and Judging Theories

How theories are made and judged is perhaps as interesting

as a description of what a theory is. No list of operations

necessarily applies to the de7elopment of all theories.

Furthermore, different men proceed in different ways; each

has a personal style much like that of an artist. Even so,

a partial list of operations in theory making should help

you examine other theories which appear in later parts of

this course. Do not attempt to memorize this list.

Observations are focused only upon selected aspects of

the phenomena. Our interest centers upon the general ques-

tion: "In what way do the initial conditions result in this

reaction?" For example, Galileo asked, "How can I describe

the motion of a falling body?"

A theory relates many selected observations. A pile

of observations is not a theory. Tycho's observations

were not a theory, but were the raw material from which

one or more theories could be made.

Theories often involve abstract concepts derived from

observations. Velocity is difficult to observe directly,

but can be found by comparing observations of time and

position. Similarly, acceleration is difficult to measure

directly, but can be found from other observed quantities.

Such abstractions, sometimes called "constructs," are

created by scientists as useful ideas which simplify and

unite many observations.

Empirical laws organize many observations and reveal

how changes in one quantity vary with changes in another.

Examples are Kepler's three laws and Galileo's description

of the acceleration of falling bodies.

Theories never fit exactly with observations. The

factors in a theory are simplifications or idealizations;

conversely, a theory may neglect many known and perhaps

other unknown variables. Galileo's theory of projectile

motion neglected air resistance.



A bird in flight and two interpreta-
tions of flight: Constantin Brancusi's
"Bird in Space" (Museum of Modern Art,
New York, 1919) and the Wright Brothers'
"Kitty Hawk" flight (1903). Analogous-
ly, different theories may result from
the different intentions of their ori-
ginators.
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Predictions from theories may require new observations.

These often require improvements in the precision of appara-

tus, or the creation of new types of instruments. The annual

parallax of the stars predicted by Aristarchus could not be

observed until telescopes were invented and developed so that

very small angles could be measured reliably.

Theories that have later been discarded may have been

initially useful because they encouraged new observations.

The idea that comets were some local phenomenon led Tycho

to compare distant observations of the directions to a

comet.

Theories that permit quantitative nredictions are

Ireferred to qualitative theories. Aristotle's theories of

motion explained in a rough way how bodies moved, but Gali-

leo's theories were much more precise. The qualitative

planetary theory of Tycho and Descarte's vortex theory of

motion were interesting, but did not rely upon measurements.

An "unwritten text" lies behind most terms in the

seemingly simple statement of theories. For example,

"force equals mass times acceleration" is a simple sen-

tence. However, each word carries a specific meaning based

on observations and definitions and other abstractions.

Communication between scientists is essential. Sci-

entific societies and their journals, as well as numerous

international meetings, allow scientists to know of the

work of others. The meetings and journals also provide

for public presentations of criticisms and discussions.

Aristarchus' heliocentric theory had few supporters for

centuries, although later it influenced Copernicus who

read of it in the Almagest.

Some theories are so strange that they are accepted

very slowly. The heliocentric theory was so different

from our geocentric observations that many people were

reluctant to accept the theory. Strange theories often

involve novel assumptions which only a few men will at

first be willing or able to consider seriously. Novelty

or strangeness is, of course, no guarantee that a theory

is important; many strange theories prove to be quite

unuseful.

In the making of a theory, or in its later description

to others, models are often used as analogies. Physical

models are most easily understood. The chemists' ball-

models of atoms are an example. Similarly, a planetarium

projects images of heavenly bodies and their motions.

Thus models may reproduce some of the phenomena or suggest

behaviors predicted by the theory.
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However, models are man-made and are not the real phe-

nomena or the conceptions with which the theory deals in

detail. Although models are often quite useful, they can

also be misleading. They represent the theory only to the

degree that the maker includes some aspects of what he is

representing. Also, the maker may add other aspects which

do not relate to the original, e.g. chemists' atoms do not

have definite sizes like,the balls do that serve as visual

models.

Other models may be statistical or mathematical. It is

useful to consider all sci' tific theories as models which

attempt to describe the suspected interworkings of some

quantities abstracted from observations.

The power of theories comes from their generality.

Theories are distillates from many observations, empirical

laws and definitions. The more precise a theory is, the

better it will agree with specific observations. But most

important is the usefulness of a theory in describing a

wide range of observations and predicting quite new obser-

vations. An aesthetic feeling of beauty an4 niceness,

even of elegance is often stimulated by a concise yet

broadly inclusive theory.

-4411011Aftft61117..6"--11.16...
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In arers other than science, conciseness and theory are used to achieve
beauty and elegance. Even the gardens around this 17th-century French
chateau reflect a preference for order.
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See "An Appreciation of The
Earth" in Project Physics
Reader 2.
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Epilogue In this unit we have reached back to the begin-

nings of recorded history to follow the attempt of men to

explain the regular cyclic motions observed in the heavens.

Our purposes were double: to examine with some care the dif-

ficulties of changing from an earth-centered view of the

heavens to one in which the earth came to be seen as just

another planet moving around the sun. Also we wanted to put

into perspective Newton's synthesis of earthly and heavenly

motions. From time to time we have also suggested the im-

pact of these new world views upon the general culture, at

least of the educated people. We stressed that each con-

tributor was a creature of his times, limited in the degree

to which he could abandon the teachings on which he was

raised, or could create or accept bold new ideas. Gradually

through the successive work of many men over several genera-

tions, a new way of looking at heavenly motions arose. This

in turn opened new possibilities for even further new ideas,

and the end is not in sight.

Prominent in our study have been references to scientists

in Greece, Egypt, Poland, Denmark, Austria, Italy and Eng-

land. Each, as Newton said, stood on the shoulders of others.

For each major success there are many lesser advances or, in-

deed, failures. Thus we see science a3 a cumulative intel-

lectual activity, not restricted by national boundaries or

by time; nor is it inevitably and relentlessly successful,

but it grows more as a forest grows, with unexpected changes

in its different parts.

It must also be quite clear that the Newtonian synthesis

did not end the effort. In many ways it only opened whole

new lines of investigations, both theoretical and observa-

tional. In fact, much of our present science and also our

technology had its effective beginning with the work of

Newton. New models, new mathematical tools and new self-

confidencesometimes misplaced, as in the study of the

nature of light encouraged those who followed to attack the

new problems. A never-ending series of questions, answers

and more questions was well launched.

In the perspective of history it is intriguing to specu-

late why Newton turned to astronomy. Perhaps it was in part

because the motions of the planets had been a major and per-

sistent problem for centuries. But at least some of his

interestand reason for success lay in the fact that the

heavenly bodies do not move like those on the earth. In the

heavens there is no friction, or air resistance. Thus the

possibility that a few simple mathematical relationships be-

tween idealized factors could fit observations had its first



major application to conditions which were close to the

idealized, simplified schemes and it worked. Then scientists

could return to earthly phenomena with renewed confidence

that this line of attack could be profitable. We can wonder

how mechanics would have developed if we lived on a cloud-

bound planet from which the stars and planets were not

visible.

Among the many problems remaining after Newton's work was

the study of objects interacting not by gravitational forces

but by friction and collisions. Experiments were soon to

raise questions about what aspects of moving bodies were

really important. This led, as the next unit shows, to the

identification of momentum and of kinetic energy, and then

to a much broader view of the nature and importance of

energy. Eventually from this line of study emerged other

statements as grand as Newton's Universal Gravitation: the

conservation laws on which so much of modern physics and

technology is based, especially the part having to do with

many interacting bodies making up a system. That account

will be introduced in Unit 3.
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Study Guido

Development of Equations in Chapter 8. (8.5)
v2

ac = ,

F
gray m , initially an

R2 assumption but

(8.1) Fgrl, cc moms , a conclusion
from the defini-
tion of force

mPm
(8.2) Fgrav

S
a combines the two

R2 relations above

mPm
(8.3) Fgrav

S= G , relation (8.2)
R2 restated as an

equation by in-
clusion of con-
stant G

m1m2
(8.4) F

gray
= G , Law of Universal

R2 Gravitation for
any two masses:
M1, M2.

SG 8.14

SG 8.17

Faminsateramat4

(8.6)

(8.7)

v = 2uR/T ,

and

v2 = 4712R2/T2

SO

a
c

= 4112R/T2 .

However, because

F = ma ,

F
c
= ma

c

centripetal ac-
celeration, from
Unit 1

= M4112R/mI 2 thecentripe-
tal force

(8.8)

(8.10)

(8.11)

Equate (8.3)

Fgrav = F

T 2 =

Rearrange

m =
S

Compare two
for planet

m
sun

and (8.7),

c
,

Gm
S

[4.112]R3

(8.8)

4v2)( R3)
(

of (8.10)

(8.9)

(8.12)

= WeightF
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,

g

R2
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rnE =
G
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8.1 If the velocity of a planet is greater
at A than at B, where is the sun located?
In what direction does the vector dif-
ference of the velocities at A and B
point?

8.2 a) Compare the force on the earth
due to the sums gravitational attrac-
tion with the force on the sun due to
the earth's gravitational attraction.

b) If the mass of the sun is
3.3 x 105 x the mass of the earth, com-
pare the acceleration of the sun toward
the earth with the acceleration of the
earth toward the sun.

8.3 Draw a rough graph of the weight of
a 1-kilogram mass in terms of its dis-
tance from the center of the earth.
Take the radius of the earth as R and
go out to 5R. Points at 2R, 3R, 4R,
and 5R would be sufficient. Will the
weight be zero at 100R? At 1000R?

8.4 Two bodies, A and B, are observed to
be moving in circular crbits. The or-
bital radius and period of body A are
both twice those of body B. Could both
bodies be moving around the sun? Ex-
plain your conclusion.

8.5 If the radius of planet A's orbit is
twice that of planet B's, what is the
ratio of (a) their periods, (b) their
orbital speeds, (c) their accelerations
toward the sun?

8.6 Two satellites revolve around differ-
ent planets at the same distance, R.
One satellite has a period three times
that of the other.

a) Which planet has the larger mass?
b) What is the ratio of the masses

of the two planets?

8.7 At what altitude above the earth's
surface would the acceleration due to
gravity be

a) 3/4 g?
b) 1/2 g?
c) 1/4 g?

8.8 a) What is the acceleration due to
gravity on the moon's surface? [Hint:
Equate the weight of any :sass ml on the
moon with the force exerted on it ac-
co.lding to the Universal LaW of Gravita-
tior..] The moon's radius is 1738 km,
and its mass is 7.15 x 1022 kg.

b) How much would a 72-kg astronaut
weigh on the moon's surface? What would
be his mass there?

8.9 Mass of Jupiter: 1.90 x 1027 kg.
Average distance from Jupiter to sun:
7.78 x 108 km.

Study Guide

a) At what point on an imaginary
line connecting the sun's center
with the center of Jupiter would
a spacecraft have no net force
from these two bodies?

b) How does the distance between
this point and the center of
Jupiter compare with the mean
orbital radius of the orbit of
Jupiter's outermost satellite
(orbital radius = 2.37 x 107
km)?

c) From your results in parts (a)
and (b) what peculiarities, if
any, would you expect to observe
in the satellite's motion?

d) Would you expect to find a satel-
lite even farther from Jupiter?

8.10 If two planets in another solar sys-
tem have the same average density, but
the radius of one of them is twice that
of the other:

a) which one would have the greater
surface gravitational pull?

b) what is the ratio between the
surface gravitational strengths
of the two planets?

8.11 Mars has two satellites, Phobos and
Deimos Fear and Panic. The inner one,
Phobos, revolves at 5,800 miles from the
center of Mars with a period of 7 hrs
39 min.

a) Since the rotation period of Mars
is 24 hrs 37 min, what can you
conclude about the apparent mo-
tion of Phobos as seen from Mars?

b) What is the mass of Mars?

8.12 The shortest earth-Mars distance is
about 56 x 106 km; the shortest Mars-
Jupiter distance is about 490 x 106 km.
The masses of these planets are as fol-
lows:

Earth 5.96 x 1024 kg
Mars 6.58 x 1023 kg
Jupiter 1.91 x 1027 kg.

a) When (under what conditions) do
these "shortest" distances oc-
cur?

b) What is the gravitational force
between the earth and Mars when
they are closest together? Be-
tween Jupiter and Mars?

c) Do you expect the motion of Mars
to be influenced more by the at-
traction of the earth or of
Jupiter?

8.13 Callisto, the second largest satellite
of Jupiter, is observed to have a period
of revolution of 1.442 x 106 sec. Its
mean orbital radius is 1.87 x 106 km.
Using only these data and the value of

121

7,1



Study Guide

the Universal Gravitational Constant,
calculate the mass of Jupiter.

GM v28.14 Making use of the expression KT =

which follows directly from the Law of
Gravitation, show that the time taken
per revolution by a satellite at a dis-
tance R from the center of the earth is
given by:

T = 2n(0GM ) 1/2

Hint: make use of T = 2nR
v

8AS Two balls, each having a mass m, are
separated by a distance r. Find the
point which lies along the line joining
their centers where the gravitational
attractions cancel one another.

8.16

a) What will happen to this point
if both the balls are made twice
their size?

b) What will happen to this point if
one of the balls is made twice
as heavy as the other?

Mass of the moon: 7.18 X 1022 kg
Mass of the sun: 1.99 X 1038 kg
Mass of the earth: 5.96 x 1624 kg

Average distance
from sun to
earth: 1.495 X 108 km
Average distance
from moon to
earth: 3.84 X 105 km.

a) Derive the gravitational pull of
the moon, and of the sun on the
earth.

b) Does the sun or the moon have the
greatest effect on the earth's
tides? Can you explain this
quantitatively?

8.17 At the earth's surface, a 1-kg mass
standard weighs 9.81 newtons. The Midas
3 satellite launched July 27, 1964 or-
bits in a nearly circular orbit 3,430 km
above the earth's surface with a period
of 161.5 minutes. What is the centripetal
acceleration of the satellite? What is
the condition for a circular orbit?
(Remember, the radius of the satellite's
orbit is the height above the ground
plus the earth's radius.)
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Answers to End of Section Questions

Your self-c:kinj answers nd not as cl,;/,r,te

Chapter 5

Ql We conclude that the ancient peoples
watched the skies from: cave paintings
of star patterns, the orientation of the
pyramids in Egypt, Stonehenge and similar
structures in England, Scotland and
France; the alignment of observing win-
dows in buildings in Mexico and Peru.
Written records were made in Babylon,
Greece, Egypt, China since some centuries
B.C.

Q2 Calendars were needed for establishing
the proper times for agricultural activ-
ities and for religious rites.

Q3 During one year the sun shows three
motions: daily rising and setting, sea-
sonal drift eastward among the stars,
and seasonal north-south variation.

Q4 The difference between the Gregorian
calendar and the positions of the sun
will add up to one day during an interval
of 3,333 years.

Q5 During a month, which begins with new
moon, as the moon passes the sun, the
moon continually moves eastward but not
at an exactly even rate. The moon also
moves north and south so that it is al-
ways near the ecliptic.

Q6 Usually when the moon passes the sun,
or the direction opposite to the sun,
the moon is north or south of the eclip-
tic. Thus the moon's shadow misses the
earth at new moon. Similarly, the moon
moves above or below the earth's shadow
at full moon. However, twice a year
the moon is near the ecliptic at new and
full moon. These are the times when
eclipses of the sun and moon can occur.

Q7 Mercury and Venus are always observed
near the sun. They will be low in the
west after sunset, or low in the east
before sunrise.

Q8 When in opposition a planet is opposite
the sun. Therefore the planet would
rise at sunset and be on the north-south
line at midnight.

Q9 Mercury and Venus show retrograde,
that is, westward motion among the stars,
after they have been farthest east of
the sun and visible in the evening sky.
At this time they are brightest, and
nearest the earth. They are then moving
between the earth and sun.

010 Mars, Jupiter and Saturn show retro-
grade motion when they are near opposi-
tion.

011 The retrograde motion of Mars has the
largest angular displacement, but the
shortest period. Saturn has the longest
period of the planets visible to the
naked eye, but has the smallest angular
displacement. The retrograde motion of
Jupiter is intermediate in displacement
and duration.

Q12 Plato assumed that the motions of the
planets could be described by some com-
bination of uniform motions along cir-
cles. He also assumed that the earth
was atthe center of the largest circle
for each planet.

Q13 Our knowledge of Greek science, as
well as that of every other ancient
civilization, is incomplete because many
of their written records have been
destroyed by fire, weathering and decay.
Yet each year new records are being un-
earthed and deciphered.

Q14 The Greeks around the time of Plato
assumed that a theory should be based
on self-evident propositions. 'Quantita-
tive observations were rarely used as a
basis for judging the usefulness of a
theory.

Q15 A geocentric system is an earth-
centered system. It is also an observer-
centered system, because as observers we
are on the earth.

Q16 The first solution to Plato's problem
was made by Eudoxus. He described the
planetary motions by a system of trans-
parent crystalline spheres which turned
at various rates around various axes.

Q17 Aristarchus assumed that the earth
rotated daily which accounted for all
the daily motions obterved in the sky.
He also assumed that the earth revolved
around the sun which accounted for the
many annual changes observed in the sky.

Q18 If the earth were moving around the
sun, it would have a shorter period than
would Mars, Jupiter and Saturn. When
the earth moved between one of these
planets and the sun (with the planet be-
ing observed in opposition), the earth
would move faster than the planet. We
would see the planet moving westward in
the sky as retrograde motion.

Q19 The distance between the earth and
sun was known to be some millions of
miles. If the earth revolved around the
sun during a year, the direction to the
stars should show an annual shift the
annual parallax. This was not observed
until 1836 A.D.
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Q20 Aristarchus was considered to be im-
pious because he suggested that the earth,
the abode of human life, might not be at
the center of the universe.

Q21 Ptolemy assumed: 1) that the heaven
is spherical and rotates once each day
around the earth, 2) that the earth is
spherical, 3) that the earth is at the
center of the heavens, 4) that the size
of the earth is negligible in comparison
to the distance to the stars, 5) that
the earth has no motions, and 6) that
uniform motion along circles is the
proper behavior for celestial objects.

Q22 If the earth rotated, Ptolemy argued
that birds would be left behind and that
great winds would continually blow from
the east.

Q23 The radii of the epicycles of Mars,
Jupiter and Saturn must always be paral-
lel to the line. between the earth and
sun. This also meant that each of these
epicycles had a period of exactly one
year.

Q24 The Ptolemaic system was purely a
mathematical model and probably no one
believed it was a physical description.

Q25 Ptolemy displaced the earth from the
exact center of the universe with his
equants and eccentrics.

Q26 The Ptolemaic system survived because
it predicted the positions of sun, moon
and planets because it agreed with the
philosophical and theological doctrines
and because it made sense, and it was
not challenged by a better, simpler
model.

Chapter 6

Ql Copernicus rejected the use of
equants because a planet moving on an
equant did not move at a uniform angu-
lar velocity around either the center
of the equant or around the earth. This
was essentially an aesthetic judgment.

Q2 Apparently Copernicus meant that the
sun was not exactly at the center of
motion for any planet (he used eccen-
trics). Yet in general the sun was in
the center of all the various planetary
motions.
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Q3 Assumed by
Ptolemy Copernicus

a) The earth is Yes Yes
spherical

b) The earth is on- Yes Yes
ly a point com-
pared to the
distances to
the stars

c) The heavens ro- Yes No
tate daily

. around the
earth

d) The earth has No Yes
one or more
motions

e) Heavenly motions Yes Yes
are circular

f) The observed No Yes
retrograde
motion of the
planets results
from the earth's
motion around
the sun

Q4 Copernicus derived distances to the
planetary orbits in terms of the earth's
distance from the sun. He also derived
periods for the planetary motions a-
round the sun. So far as we know,
Aristarchus did not develop his helio-
centric theory to the point that he
reached similar results.

Q5 Copernicus argued that his heliocen-
tric system was inherently simpler than
the geocentric system of Ptolemy.
Also, his results agreed at least as
well as Ptolemy's with observations.
Furthermore, Copernicus argued that his
simple system reflected the mind of the
Divine Architect.

Q6 The predictions made by both Ptolemy
and Copernicus differ from observations
by as much as 2°, four diameters of the
moon.

Q7 Copernicus argued that the distance
to the stars must be very great because
they showed no annual shift (parallax).
But the distance required to make the
parallax unobservable was erirmously
greater than people wanted to accept.
That the predicted shift was not ob-
served was weak evidence. Negative
evidence is not very convincing even
when there seem to be only two possible
alternative conclusions.



Q8 Simple is a difficult word to inter-
pret. The actual computational scheme
required by the Copernican system was
not simple, even though the general
idea of a moving earth and a fixed sun
seemed simple.

Q9 As the quotation from Francis Bacon
indicates, the evidence did not permit
a clear choice between the two possible
explanations. To many people the argu-
ment seemed to be a tempest a tea
cup.

Q10 The major differerce betaeen the
Ptolemaic and the Copernican systems
was the assumption about the mobility
of the earth: daily rotatiol and annual
revolution about the sun. This was a
difference in the frame of reference.

Q11 Because the astronomical interpreta-
tions dealt with the structure of the
whole universe, they overlapped with
conclusions drawn from religious dis-
cussions. The synthesis by Thomas
Aquinas of Aristotelean science and
Christian theology increased the diffi-
culty of discussing one separately from
the other.

Q12 The Copernican system conflicted
with the accepted frame of reference in
which the earth was central and sta-
tionary. The distances which Coperni-
cus derived for the separation of the
planets from the sun implied that vast
volumes of space might be empty. This
conflicted with the old assumption that
"nature abhors a vacuum."

Q13 Some conflicts between scientific
theories and philosophical assumptions
are:

a) the earth appears to be very old
although strict interpretation
of Biblical statements lead to
ages of only a few thousand
years, less than those attribut-
ed to ancient cities;

b) the geological assumption of
uniformitarianism slow changes
throughout long times conflict-
ed with the assumption of abrupt
changes in the earth's history
from major floods, earthquakes,
etc.;

c) the idea of slow genetic evolu-
tion in biology clashed with the
idea of a unique and recent
creation of mankind;

d) the astronomical conclusion that
the earth was only one of sev-
eral planets clashed with the
assumption that the earth was
created uniquely as the abode
of human life.

Q14 Copernicus brought to general atten-
tion the possibility of a new explana-
tion of the astronomical observations.
This shift in assumptions permitted
others Kepler, Galileo and later
Newton to apply and expand the initial
propositions of Copernicus.

Q15 The Copernican system proposed that
the earth was just one of many planets
and was in no way uniquely created as
the abode of life. Therefore, there
might be life on other planets.

Currently astronomers conclude that
there might be some form of life on Mars
or Venus. The other planets in our so-
lar system seem to be too hot or too
cold, or to have other conditions op-
posed to life-as-we-know-it. There is
now general agreement that many other
stars probably have planets and that
life might well exist on some of them.
A clear distinction must be made be-
tween some form of life and what we call
intelligent life. Since the only means
by which we could learn of any intelli-
gent life on planets around other stars
would be through radio signals, intelli-
gent life means that the living orga-
nisms would transmit strong radio signals.
On earth this has been a possibility for
less than half a century. Thus we have,
in these terms, been "intelligent life"
for only a few years.

Q16 Tycho's observations of the new star
and then of the comet of 1577 directed
his attention to astronomical studies.

Q17 Tycho's conclusions about the comet
of 1577 were important because the com-
et was shown to be an astronomical
bodyfar beyond the moon. Also the
comet moved-erratically, unlike the
planets, and seemed to go through the
crystalline spheres of the Aristotelean
explanation.

Q18 Tycho's observatory was like a modern
research institute because he devised
new instruments and had craftsmen able
to make them, he had a long-term observ-
ing program, he included visitors from
other places, and he worked up and pub-
lished his results.

Q19 The Bayeaux tapestry shows the people
cowering below tne image of Halley's
comet. Other pictures may show similar
scenes. Many allusions to the dire ef-
fects of comets appear in Shakespeare and
other writers.

Q20 For several months during 1909-1910
Halley's comet moved westward in retro-
grade motion. Because it stayed near
the ecliptic, we might suspect that its
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orbital plane makes only a small angle
with the earth's orbital plane (the
ecliptic plane). Whether the comet is
moving in the direction of the planets
or in the opposite direction is not
clear. In Chapter 8 the motion of this
comet is mentioned. Also there is aa
Optional Activity which leads to an
explanation of the motion observed in
1909-1910.

Q21 Tycho made instruments larger and
stronger. Also he introduced the use
of finer scales so that fractions of
degrees could be determined more accu-
rately.

Q22 Tycho corrected his observations for
the effects of atmospheric refraction.
He established the amount of the cor-
rections by long series of observations
of objects at various angular distances
above the horizon.

Q23 The Tychonic system had some fea-
tures of both the Ptolemaic and the
Copernican systems. Tycho held the
earth stationary, but had the planets
revolving around the sun, which in turn
revolved around the earth.

Q24 Whether the Copernican system in its
entirety could be interpreted as a
"real" system of planetary paths in
space is doubtful. If the minor cycles
required to account for small observed
variations were neglected, the major
motions might be considered to repre-
sent "real" orbits. Copernicus did not
discuss this aspect of his system.

Chapter 7

Ql Tycho became interested in Kepler
through Kepler's book, in which he tried
to explain the spacing of the planetary
orbits by the use of geometrical solids.

Q2 After some 70 attempts with circles,
eccentrics and equants, Kepler still had
a difference of 8' between his best pre-
diction and Tycho's observed positions
for Mars. Kepler finally decided that
no combination of circular motions would
yield a solution. (He might have been
wrong.)

Q3 Kepler used the observations made by
Tycho Brahe. These were the most accu-
rate astronomical observations made up
to that time.
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Q4 First Kepler had to refine the orbit
of the earth. Then he could use the
earth's position to triangulate positions
of Mars in its orbit.

Kepler discovered that the planets
moved in planes which passed through
the sun. This eliminated the necessity
to consider the north-south motions of
each planet separately from its eastward
motion.

Q6 Kepler's Law of Areas: the line from
the sun to the moving planet. sweeps over
areas that are proportional to the time
intervals.

Q7 Kepler noted the direction of Mars
when it was in opposition. He knew that
after 687 days Mars was at the same
point in its orbit, but the earth was
at a different place. By reversing the
directions observed from the earth to
mars and to the sun, he could establish
positions on the earth's orbit.

Q8 The component of a planet's velocity
perpendicular to the line from the sun
to the planet changes inversely with
the distance of the planet from the sun.

Q9 When a circle is not viewed from
directly above its center, it has an el-
liptical shape.

Q10 Of the naked-eye planets which Tycho
could observe, Mars has an orbit with
the largest eccentricity. If the orbit
of Mars was considerably less eccentric,
Kepler would not have found that its
orbit was an ellipse. He could not have
found that any of the other orbits were
ellipses.

Q11 Kepler knew that after 687 days Mars
had returned to the same point in its
orbit. Observations from the earth at
intervals of 687 days provided sight-
lines which crossed at the position of
Mars on its orbit.

Q12 Kepler's Law of Periods: the squares
of the periods of the planets are pro-
po,-tional to the cubes of their mean dis-
tances from the sun. If the distance or
period of a planet is.known, the other
value can be computed.

Q13 Kepler compared the "celestial ma-
chine" to a gigantic clockwork.

Q14 Kepler's reference to a "clockwork"
is significant because it suggests a
"world machine." This idea was developed
as a result of Newton's studies.



Q15 According to the Ptolemaic theory
Venus was always between the earth and
the sun. Therefore, it should always
show a crescent shape. However, Galileo
observed -hat it showed all phases, like
the moon. Therefore, to show full-phase
Venus had to pass behind the sun. Such
positions for Venus were consistent with
either the heliocentric or the Tychonic
system.

Q16 With the telescope Galileo discovered
the phases of Venus which were contrary
to the Ptolemaic system. He also dis-
covered the system of satellites around
Jupiter--a miniature Copernican system,
but NOT around the earth or the sun.
Thus the earth was not the only possible
center of motion, as the Ptolemaeans had
contended. Galileo's telescopic obser-
vations of the moon, the sun, Saturn and
the stars were interesting, but not
critically related to the heliocentric
model.

Q17 Galileo's observation of the satel-
lites of Jupiter showed that there could
be motions around centers other than the
earth. This contradicted basic assump-
tions in the physics of Aristotle and
the astronomy of Ptolemy. Galileo was
encouraged to continue and sharpened his
attacks on those earlier theories.

Q18 Kepler and Galileo emphasized the im-
portance of observations as the raw ma-
terial which must be explained by
theories.

Q19 Galileo was said to be impious. Also
he was sharp in his criticisms of others
and often used ridicule. Officially he
was tried for breaking his agreement not
to support the Copernican system as really
correct.

Chapter 8

Ql Newton's isolation on the farm during
1665-66 provided time for him to con-
template a variety of scientific ques-
tions.

Q2 Scientific societies provided a forum
where ideas and experimental procedures
could be discussed. Publications from
the societies allowed scientists at a
distance to learn of the various studies
reported. Today the scientific societies
perform all these services. They also
sponsor international meetings and inter-
national cooperative activities.

Q3 Newton said that he was "contemplative"
when he saw the apple fall. He wondered
about what he saw and began to seek for
explanations.

Q4 You write your own answer to this one.

Q5 The Principia was originally written
in Latin. Even the translations are
difficult to read because Newton adopted
a very mathematical style with complicated
geometrical proofs.

Q6 a) Orbits are ellipses + Newtonian
inertia > there is a net force acting.

b) Step (a) + Kepler's Law of Areas
around sun + Newton's Law of Areas around
center of force --> sun must be at the
center of force.

c) For elliptical orbits (or any conic
section) around sun at one focus, F a
1/R2.

d) F a 1/R2 > ? Law of Periods.
Yes, only this force law will satisfy
Kepler's Law of Periods.

Q7 Kepler's Law of Areas is satisfied by
any central force when the areas are
measured from the center of force.

Q8 Only Kepler's Law of Periods provides
information about the behavior of planets
which have different mean distances from
the sun. Their motions allow us to study
how the gravitational force from the sun
changes with distance.

Q9 The derivation assumed that: a) Gali-
leo's law of acceleration applied to
planetary motions as well as to falling
ston,15; b) that the strength of the
gravitational force varies as 1/R2;
c) that the planets move in circular or-
bits. We also assumed that the strength
of the gravitational force does not de-
pend upon direction, time (date) or the
relative velocities of the bodies.

Q10 Newton's Law of Universal Gravitation
predicts accurately an enormous number
of observed changes.

Q11 Scientists could not imagine how one
object could influence another through
great distances in empty space. The
question of "action at a distance" comes
up again in Unit 4.

Q12 Newton did not publicly attempt to
explain gravitation because he could not
discover any causes from the observations.
Possible "causes" of gravitation are
still being discussed.

Q13 We do not observe the motion of the
earth toward a falling stone for two rea-
sons: 1) we are on the earth and would
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rise with it that is, we see only the
change in the stone's position; also 2)
the mass of the stone is so minute com-
pared to the mass of the earth that the
motion of the earth would be undetectable.

X14 The Constant of Universal Gravitation,
G, is a number by which we can equate
observed accelerations (and forces) with
the manses and distances supposedly re-
sponsible for those accelerations. So
far as we can tell, the value of G does
not change with position in the universe
or with the passage of time.

Q15 A universal law, like any other sci-
entific law, can be tested only in a
limited number of cases. The more varied
the cases are, the more confident we can
be about the usefulness of the law.

Q16 A mass point is a concept by which we
consider all the mass of a spherical
homogeneous body to be concentrated at
the center of the body.

Q17. Even though Newton did not know the
value of G, he could form ratios of
quantities with the result that the
value of G would cancel between the nu-
merator and the denominator. Thus Newton
could obtain relative masses of the plan-
ets and the sun.

Q18 Newton concluded that the moon was ac-
celerated toward the earth just as an
apple was. He compared the observed and
computed accelerations of the moon and
found that "they agreed tolerably well."

Q19 Newton, like other scientists, could
think up many possible explanations for
what is observed. Numerical results in-
dicate whether or not the ideas fit rea-
sonably well with observations.

Q20 Newton compared the centripetal force
on the moon, based on observations, with
the value he extrapolated from the ac-
celeration of falling apples and stones.

Q21 Newton concluded that the value of G
could be found from Eq. (8.9);

R
E

2

G = g,m
E

in which the size and mass of the earth,
RE and mE, were accepted as constant.
From numerous studies he concluded that,
for algiven place, g was constant. Then
G must be constant.

Q22 No. The value of g, the gravitational
acceleration at a particular place, is
expected to differ between places. As
Newton showed, because of the earth's
rotation g depends upon latitude on the
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earth. It also depends upon elevation,
or distance from the earth's center.
Local variations in the materials of the
rocks, the presence of nearby canyons or
peaks and other variations also affect
the value of g at a particular point.
But if g is constant at a point, then G
is also constant.

Q23 We consider the solid earth to be a
mass point responding all over to the
moon's attraction at the earth's center.
Although the solid earth bends a bit
under the differences in the moon's at-
tractions on the near and far sides,
this change is much less than the effects
of the moon's pull on the fluid waters,
which move readily under the moon's
changing attraction.

Q24 On the side of the earth away from
the moon, the attraction of the moon is
less than it is upon the center of the
solid earth. As a result, the earth is
pulled away from the fluid water on the
side away from the moon and there is a
net force away from the moon.

Q25 Newton had explained the motions of
the planets, which moved in nearly cir-
cular orbits. Halley then showed that
the same force laws would explain the
motions of comets, which previously had
'seen considered as unexplainable. Some
of the comets, moving in very elongated
ellipses, even had periods not much
greater than Saturn (30 years).

Q26 By forming ratios of two expressions
like Eq. (8.1077ffeTton could compare
the masses of the sun and each planet
which had a satellite of known period.
These planets were, in Newton's time,
the earth, Jupiter and Saturn.

Q27 We can compute the mass of Uranus
compared to the mass of the sun by using
Eq. (8.11) ,

m
sun ['sat] 2 RP 3

mP T R
sat]

d h 1.416 d
Tsat

1 10 = 365 d/y
3.88 x 10-3 y

T = 84.0 y

Rsat
81,000 mi = 8.71 x 10-4 A.U.

R = 19.19 A.U.

m
sun [3.88 x 10-' [ 19.19 A.U.
mp 84.0 y 8.71 x 10-4 A.U.

2



= [4.62 x 10-12 [2.20 x 1013

= 21.3 x 10-10 x 10.65 x 1012

= 22.700.

Since the mass of the sun is 332,000
times the mass of the earth,

m
Uranus 332,000

14.6.m
earth 22,700

Q28 The moon's orbit around the earth is
somewhat eccentric (e = 0.055). During
its cycles of the earth, the moon's
distance from the sun also changes. As
a result the accelerations on the moon
and therefore the orbit of the moon
change continuously. This is an example
of the "three-body" problem for which
no general solution has yet been devel-
oped.

Q29 Following Newton's work careful ob-
servations were needed to determine the
magnitude of many small variations which
his theory predicted. Also the general
problem of the interactions between the
planets had to be worked out.

Q:0 Cavendish used a torsion balance to
measure the gravitational attraction be-
tween metal spheres.

Q31 Geologists and astronomers were obliged
to explain how the mean density of the
earth could be 5.52, which is much greater
than the density of surface rocks. Ap-
parently the earth has a central core of
high density.

Q32 The motions of double stars can be ex-
plained quantitatively by Newton's
Theory of Gravitation. Apparently the
gravitational force between such stars
is identical to that between the sun and
planets.

Q33 Newton is honored today for his de-
velopment of the Theory of Universal
Gravitation, for his development of the
mathematics called the infinitesimal
calculus, for his work in optics, for
his creation of the first reflecting
telescope, and for his servir , to the
Royal Society and to his nata- .al govern-
ment.

034 After Newton the idea of a great
World Machine was widely accepted for
several hundred years. More emphasis
was put upon precise observations to de-
termine the rate at which various pre-
dicted changes occurred. How to account

for gravitation and other "actions at a
distance" became an important problem.
Scientists felt confident that their
observations were revealing a "real
world" which could be explained in terms
of mechanical systems.
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Brief Answers to Study Guide

Chapter 5

5.1 Discussion

5.2 Discussion

5.3 Discussion

5.4 Discussion

Chapter 6

6.1 (a) (b) Discussion

(c) 87.5 days

(d) Discussion

(e) 224 days

Chapter 7

7.1 89.5 years

7.2 (a) 18 A.U.

(b) 1.8 A.U.

(c) 0.053

7.3 4%

7.4 249 years

7.5 0.594

7.6 Discussion

Chapter 8

8.1 Upper focus

8.2 3 x 10-6

8.3 An activity

8.4 No

8.5 (a) 2.8

(b) 0.71

(c) 0.25
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8.6 (a) Shorter period

(b) 9:1

8.7 (a) 0.15

(b) 0.41

(c) 1.00

8.8 (a) 1.58 m/sec2

(b) 114 N

8.9 (a) 2.33 x 107 km

7.55 x 108 km

(b) About the same

(c) Discussion

(d) No

8.10 (a) Larger one

(b) 2:1

8.11 (a) Discussion

(b) 6.7 x 102 3 kg

8.12 (a) Discussion

(b) 8.3 x 1016 N

3.5 x 1017 N

(c) Discussion

8.13 1.86 x 1027 kg

8.14 Derivation

8.15 (a) The same point

(b) 1.41

8.16 (a) 1.93 xj1028 N

3.52 x 1022 N

(b) Discussion

8.17 (a) 4.2 m/sec2



Picture Credits

Cover photograph: the orrery on the cover
was made in 1830 by Newton of Chancery Lane,
London. The earth and moon are geared; the
rest of the planets have to be set by hand.
It is from the Collection of Historical Scien-
tific Instruments at Harvard University.
Photograph by Albert Gregory, Jr.

Prologue
P. 0 Aztec Calendar Stone in the Museo

National, Mexico City. Photo courtesy of the
American Museum of Natural History, New York.

P. 1 Collection of Historical Scientific
Instruments, Harvard University.

P. 2 (top) Stephen Perrin; (bottom) cour-
tesy of the Trustees of the British Museum,
London.

P. 4 Frontispiece from Recueil de plusieurs
traitez de Mathematioue de l'Academie Royale
des Sciences, 1676.

Chapter 5
Fig. 5.2 Emil Schulthess, Black Star Pub-

lishing Company, Inc.

Fig. 5.3 John Stofan.

Fig. 5.4 John Bufkin, Macon, Missouri,
Feb. 1964.

Pp. 9, 10 Mount Wilson and Palomar Obser-
vatories.

Fig. 5.9 DeGolyer Collection, University
of Oklahoma Libraries.

Chapter 6
P. 26 Deutsches Museum, Munich.

Fig. 6.1 Woodcut by Sabinus Kauffmann,
1617. Bartynowski Collection, Cracow.

P. 42 (top left) from Atlas Major, vol. I,
Jan Blaeu, 1664; (bottom left) The Mansell
Collection, London; Danish Information Office.

Fig. 6.9 Smithsonian Astrophysical Obser-
vatory, courtesy of Dr. Owen Gingerich.

Fig. 6.12 Photograph by John Bryson, re-
printed with permission from HOLIDAY, 1966,
The Curtis Publishing Company.

Chapter 7
P. 48 (portrait) The Bettmann Archive.

P. 49 Kepler, Johannes, Mysterium
cosmographicum, Linz, 1596.

P. 54 Archives, Academy of Sciences,
Leningrad, U.S.S.R. Photo courtesy of
Dr. Owen Gingerich.

Fig. 7.13 Instituto e Museo di Storia
della Scienza, Florence, Italy.

Fig. 7.14 DeGolyer Collection, University
of Oklahoma Libraries.

Fig. 7.17 Lowell Observatory Photograph.

P. 68 (telescope) Collection of Historical
Scientific Instruments, Harvard University.

P. 71 Alinari--Art Reference Bureau.

P. 73 Bill Bridges.

Chapter 8
P. 74 Yerkes Observatory.

P. 77 (drawing) from a manuscript by
Newton in the University Library, Cambridge;
(portrait) engraved by Bt. Reading from a
painting by Sir Peter Lely. Trinity College
Library, Cambridge.

Figs. 8.15, 8.16 Courtesy of Sproul Ob-
. servatory, Swarthmore College.

P. 115 Bird in Space by Constantin
Brancusi, courtesy of the Museum of Modern
Art, New York; Wright Brothers Collection,
Smithsonian Institution.

P. 117 Henrard - Air-Photo.

P. 119 Print Collection of the Federal
Institute of Technology, Zurich.

All photographs not credited above were
made by the staff of HarVard Project Physics.

131



PL
A

N
E

T
S 

A
N

D
 T

H
E

IR
 S

A
T

E
L

L
IT

E
S

T
H
E
 
P
L
A
N
E
T
S

N
am

e
Sy

m
-

bo
l

M
ea

n 
D

is
ta

nc
e

fr
om

 S
un

Pe
ri

m
', 

..:
R

ev
ol

ut
io

n
Fc

ce
n-

tr
ic

ity of
O

rb
it

In
cl

i-
na

tio
n

to
E

cl
ip

tic
A

st
ro

n.
U

ni
ts

M
ill

io
n

M
ile

s
Si

de
re

al
Sy

n-
od

ic

da
ys

da
ys

M
er

cu
ry

tf
0.

38
71

35
.9

6
87

.9
69

11
5.

88
0.

20
6

7°
 0

'
In

ne
r

V
en

us
9

0.
72

33
67

.2
0

22
4.

70
1

58
3.

92
0.

00
7

3 
24

E
ar

th
9

1.
00

00
92

.9
0

36
5.

25
6

0.
01

7
0

0
M

ar
s

cr
1.

52
37

14
1.

6
68

6.
98

0
77

9.
94

0.
09

3
1

51

ye
ar

s
C

er
es

0
2.

76
73

25
7.

1
4.

60
4

46
6.

60
0.

07
7

10
37

Ju
pi

te
r

Q
l

5.
20

28
48

3.
3

.1
1.

86
2

39
8.

88
0.

04
8

1
18

Sa
tu

rn
b

9.
53

88
88

6.
2

29
.4

58
37

8.
09

0.
05

6
2 

29
O

ut
er

U
ra

nu
s

6
19

.1
82

0
17

83
84

.0
15

36
9.

66
0.

04
7

0 
46

N
ep

tu
ne

W
30

.0
57

7
27

94
16

4.
78

8
36

7.
49

0.
00

9
1

46
Pl

ut
o

t
39

.5
17

7
36

70
24

7.
69

7
36

6.
74

0.
24

9
17

9

N
am

e
M

ea
n

D
ia

m
et

er
in

 M
ile

s

M
as

s
E

D
 =

 1

D
en

si
ty

W
at

er
=

 1

Pe
ri

od
of

R
ot

at
io

n

In
cl

in
a-

lio
n

. on
 o

f
E

qu
at

or
to

 O
rb

it

O
b-

la
te

-
:le

ss

St
el

la
r

M
ag

ni
-

tu
de

 a
t

G
re

at
es

t
B

ri
lli

an
cy

Su
n

0
86

4,
00

0
33

1,
95

0
1.

41
24

4.
65

7 
° 

10
'

0
-2

6.
8

M
oo

n 
C

2,
16

0
0.

01
2

3.
3?

,
27

 .3
2

6
41

0
-1

2.
6

M
er

cu
ry

2,
90

0
0.

05
6.

1
88

7?
0

-1
.9

V
en

us
7,

60
0

0.
81

5.
06

30
?

23
?

0
-4

.4
E

ar
th

7,
91

3
1.

00
5.

52
23

h 
56

m
23

 2
7

1/
29

6
M

ar
s

4,
20

0
0.

11
4.

12
24

 3
7

24
1/

19
2

-2
.8

Ju
pi

te
r

86
,8

00
31

8.
4

1.
35

9 
50

3
7

1/
15

-2
.5

Sa
tu

rn
71

,5
00

95
.3

0.
71

10
 0

2
26

 4
5

1/
9.

5
-0

.4
U

ra
nu

s
29

,4
00

14
.5

1.
56

10
 4

5
98

1/
14

+
5.

7
N

ep
tu

ne
28

,0
00

17
.2

2.
29

15
 4

8?
29

1/
40

+
7.

6

T
H
E
 
S
A
T
E
L
L
I
T
E
S

N
am

e
D

is
co

ve
ry

M
ea

n
D

is
ta

nc
e

in
 M

ile
s

Pe
ri

od
 o

f
R

ev
ol

ut
io

n
D

ia
m

-
.

et
er

 in
N

io
(

St
el

la
r

M
ag

ni
-

tu
de -

at
 M

ea
n

O
pp

os
i-

tio
n

M
oo

n
23

8,
85

7
27

d 
7h

 4
3m

21
60

-1
2

S
A
T
E
L
L
I
T
E
S
 
O
.
'
 
M
A
R
S

Ph
ob

os
H

al
l,

18
77

5,
80

0
0

7
39

10
?

+
12

D
ei

m
os

H
al

l,
18

77
14

,6
00

1
6

18
5?

13

S
A
T
E
'
 
L
I
1
 
E
S
 
O
F
 
J
U
P
I
T
E
R

Fi
ft

h
B

ar
na

rd
,

18
92

11
3,

00
0

0 
11

53
15

0?
13

I 
Io

G
al

ile
o,

16
10

26
2,

00
0

1
18

 2
8

20
00

5
II

 E
ur

op
a

G
al

ile
o,

16
10

41
7,

00
0

3 
13

 1
4

18
00

6
II

I 
G

an
ym

ed
e

G
al

ile
o,

16
10

66
6,

00
0

7
3 

43
31

00
5

IV
 C

al
lis

to
G

al
ile

o,
16

10
1,

17
0,

00
0

16
 1

6 
32

28
00

6
Si

xt
h

Pe
rr

in
c,

19
04

7,
12

0,
00

0
25

0 
14

10
0?

14
Se

ve
nt

h
Pe

rr
in

e,
19

05
7,

29
0,

00
0

25
9 

14
35

?
17

T
en

th
N

ic
ho

ls
on

, 1
93

8
7,

30
0,

00
0

26
0 

12
15

?
19

T
w

el
ft

h
N

ic
ho

ls
on

, 1
95

1
13

,0
00

,0
00

62
5

14
?

19
E

le
ve

nt
h

N
ic

ho
ls

on
, 1

93
8

14
,0

00
,0

00
70

0
19

?
18

E
ig

ht
h

M
el

ot
tc

,
19

08
14

,6
00

,0
00

73
9

35
?

17
N

in
th

N
ic

ho
ls

on
, 1

91
4

14
,7

00
,0

00
75

8
17

?
19

S
A
T
E
L
L
I
T
E
S
 
O
F
 
S
A
T
U
R
N

M
im

as
H

er
sc

he
l,

17
89

11
5,

00
0

0
22

37
30

0?
12

E
nc

el
ad

us
H

er
sc

he
l,

17
89

14
8,

00
0

1
8

53
35

0
12

T
et

hy
s

C
as

si
ni

,
16

84
18

3,
00

0
1

21
18

50
0

11
D

io
ne

C
as

si
ni

,
16

84
23

4,
00

0
2

17
41

50
0

11
R

he
a

C
as

si
ni

,
16

72
32

7,
00

0
4

12
25

10
00

10
T

ita
n

H
uy

ge
ns

,
16

55
75

9,
00

0
15

22
41

28
50

8
H

yp
er

io
n

B
on

d,
18

48
92

0,
00

0
21

6
38

30
0?

13
Ia

pe
tu

s
C

as
si

ni
,

16
71

2,
21

0,
00

0
79

7
56

80
0

11
Ph

oe
be

Pi
ck

er
in

g,
18

98
8,

03
4,

00
0

55
0

20
0?

14

S
A
T
E
L
L
I
T
E
S
 
O
F
 
U
R
A
N
U
S

M
ir

an
da

K
ui

pe
r,

19
48

81
,0

00
1

9
56

17
A

ri
el

L
as

se
ll,

18
51

11
9,

00
0

2
12

29
60

0?
15

U
m

br
ie

l
L

as
se

ll,
18

51
16

6,
00

0
4

3
28

40
0?

15
T

ita
ni

a
H

er
sc

he
l,

17
87

27
2,

00
0

8
16

56
10

00
?

14
O

be
ro

n
H

er
sc

he
l,

17
87

36
4,

00
0

13
11

7
90

0?
14

S
A
T
E
L
L
I
T
E
S
 
O
F
 
N
E
P
T
U
N
E

T
ri

to
n

N
er

ei
d

L
as

se
ll,

18
46

K
ui

pe
r,

19
49

22
0,

00
0

3,
44

0,
00

0
5

21
3

35
9 

10
23

50 20
0?

13 19



glossary

The following is a list of words that appear in the text, but which may not be familiar to the average
reader.

action at a distance. The process in which one
body exerts a force on another without any
direct or indirect physical contact between
the two.

angular altitude. The angle measured in degrees
that a star, planet, the sun or the moon
appears above the horizontal.

angular motion. The orbital motion of a planet,
satellite or star, measured in degrees per
unit time.

angular size. The angle subtended by an object.
For instance, the sun, the moon and your
thumbnail at arm's length have about the
same angular size.

aphelion. The point of an orbit that is furthest
from the sun.

arc length. The distance along an arc or orbit.

astrology. The study of the supposed influences
of the stars and planets on human affairs
(e.g., horoscopes).

Astronomical Unit (A.U.). The average distance
between the earth and the sun.

atmospheric refraction. The bending of light
rays that occurs when light enters the
atmosphere at an acute angle.

cause. An event or relationship that is always
followed by another particular event or re-
lationship; the absence of the first implies
the absence of the second, all other con-
ditions being equal.

celestial. Of the sky or the heavens.

celestial equator. The great circle formed by
the intersection of the plane of the earth's
equator with the celestial sphere.

celestial sphere. The imaginary spherical shell
containing the stars and having the earth
ar a center.

center of motion (or force). The point toward
which an orbiting body is accelerated by a
central force; the point toward which a
central force is everywhere directed.

central force. A force that is always directed
towards a particular point, called the
center of force.

centripetal acceleration. Acceleration of an
orbiting body toward the center of force.

comet. A luminous celestial body of irregular
shape having an elongated orbit about the
sun.

conic section. Any figure that is the total in-
tersection of a plane and a cone. The four
types are the circle, ellipse, parabola
and hyperbola.

Constant of Universal Gravitation (G). The con-
stant of proportionality between the
gravitational force between two masses, and
the product of the masses divided by the
square of the distance of separation. (See
also gravitation.)

constellation. One of eighty-eight regions of
the sky; the star pattern in such a region.

cyclic variation. A change or process of change
that occurs in cycles, i.e., that repeats
itself after a fixed period of time, such as
the phases of the moon.

deferent. The circle along which the center of
an epicycle moves.

density. Mass per unit volume.

double star. A pair of stars that are relatively
close together and in orbit about each other.

eccentric. A circular orbit with the earth dis-
placed from the center, but on which the .

orbiting body moves with constant velocity.

eclipse. The shadowing of one celestial body by
another: the moon by the earth, the sun by
the moon.

ecliptic. The yearly path of the sun against the
background of stars. It forms a great cir-
cle on the celestial sphere.

ellipse. A closed plane curve generated by a
point moving in such a way that the sums of
its distances from two fixed points is a
constant. The two points are called the
foci of the ellipse. If the two points are
the same, then the figure is a circle, and
the foci are its center.

empirical. Based on observation or sense experi-
ence.
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empirical law. A statement that concisely sum-
marizes a set of experimental data or ob-
servations. Example: Kepler's Law of
Areas.

epicycle. Part of the geometrical construction
formerly used to describe the motions of
celestial bodies; it is the small circle
whose center moves along the deferent.

equant. A circle on which the orbiting body
moves with constant angular velocity about
a point different from the center of the
circle, and such that the center of the
circle is midway between that point and
the earth.

equatorial bulge. The bulging of a planet or
star at its equator, due to the flattening
effect of the body's rotation.

equinox. A time when the sun's path crosses the
plane of the earth's equator. The vernal
equinox occurs on approximately March 21,
the autumnal equinox on approximately Sep-
tember 22.

essences. The four basic elements thought by
the Greeks to compose all materials found
on the earth. They are: earth, water,

air and fire.

experimental philosophy. The term formerly used
for experimental science; the systematic
study of the external world based on ob-
servation and experiment.

focus. (See ellipse.)

frame of reference. The coordinate system, or
pattern of objects, used to describe a
position or motion.

geocentric. Having the earth as a center.

geologist. One who studies the material com-
positlin of the earth and its changes, both
past and present.

gravitation. The attractive force that every
pair of masses exerts on each other. Its

magnitude is proportional to the product of
the two masses and inversely proportional
to the square of the distance between them.

gravity. The gravitational force exerted by the
earth on terrestrial bodies; gravitation in
general.

Halley's comet. A very bright comet, whose or-
bital period (about 75 years) was first
discovered by the astronomer Edmund Halley.

heliocentric. Having the sun (hellos) as a cen-
ter.
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hypothesis. An idea that is tentatively pro-
posed as a basis for a theory; a statement
that is not yet accepted as true, because
either it has not been proven for enough
cases, or it fails to explain all the ob-
served phenomena.

interaction. Action on each other, such as by
a mutual attractive force, or a collision.

inverse-square force. A central force whose
magnitude at any point is inversely pro-
portional to the square of the distance of
that point from the force center.

law. A prediction that under specified circum-
stances, a certain event will always occur,
or a certain relationship will be t 'e.

light year. The distance traveled by a ray of
light in one year (about 5.88 x 1012 mi.)

mass-point. The center of gravitational force
of an object with mass. (See center of
force.)

model. A combination of physical or mathematical
devices that represents and suggests an
explanation for the behavior of some actual
physical system. Sy-nnym: mechanism.

natural motion. The Aristotelian concept that
objects have a motion that is a property of
the object itself and therefore the natural
way in which the object moves. For example,
the Aristotelians thought that the sun's
natural motion was to revolve daily about
the earth, that the natural motion of fire
was to rise, of earth, to fall.

natural place. The concept in Aristotelian sci-
ence that every object has a particular
location where it belongs, and that if an
object is removed from this proper loca-
tion, it will tend to move back there. Thus
gravity was explained by saying that objects
fall to the surface of the earth because
this is their natural place.

Newtonian synthesis. Newton's system of mechan-
ics, which proposed that the same laws
govern both terrestrial and celestial mo-
tions.

North Celestial Pole. An imaginary point on the
celestial sphere about which the stars ap-
pear (to an observer in the northern hemi-

sphere) to rotate. This apparent rotation
is due to the rotation of the earth.

occult quality. A physical property or cause
that is hidden from view, mysterious or un-
discoverable, but whose existence is assumed
in order to explain certain observed ef-
fects.



opposition. The moment when a body is opposite
the sun in the sky, i.e., when the earth is
between that body and the sun, and lies on
the line joining them.

orb. A sphere; usually refers to the imaginary
crystalline spheres formerly thought to
move the planets. Synonym: spherical shell.

orbit. The path of a celestial body that is re-
volving about some other body.

pantheism. The belief that God is the same as
nature or the physical universe.

parallactic shift. The quantity of apparent
change in position of an object due to a
change in position of the observer. (See
parallax.)

parallax. The apparent dic,placement of an ob-
ject due to a change in position of the
observer.

perihelion. The point of an orbit that is
nearest the sun.

period. The time taken by a celestial object to
go once completely around its orbit.

perspective geometry. The study of how three-
dimensional objects in space appear when
projected onto a plane.

phases of the moon. The variations of the ob-
served shape of the sunlit portion of the
moon during one complete revolution of the
moon about the earth.

phenomenon. An observed, or observable event.

physical cause. An action of one body on another
by direct or indirect physical contact.

Principle of Parsimony. Newton's first "Rule of
Reasoning" for framing hypotheses, which
asserts that nature is essentially simple
in its processes, and therefore that the

hypothesis that explains the facts in the
simplest manner is the "truest" hypothesis.

Principles of Unity. Newton's second and third
"Rules of Reasoning," which assert that
similar effects have similar causes, and
that if every experiment confirms a certain
hypothesis, then it is reasonable to assume
that the hypothesis is true universally.

quadrant. A device for measuring the angular
separation between stars, as viewed from
the earth.

qualitative. Pertaining to descriptive qualities
of an object, texture, color, etc.

quantitative. Involving numbers, or properties
and relationships that can be measured pr
defined numerically. Weight is a quantita-
tive property of an object, but texture is
not.

quintessence, The fifth basic element or "es-
sence" in the Greek theory of materials,
supposed to be the material of which all
celestial objects are composed.

regular geometrical solid. A three-dimensional
closed figure whose surface is made up of
identical regular plane polygons.

retrpgrade motion. The apparent backward (i.e.,
westward) motion of a planet against the
background of stars that occurs periodical-
ly.

satellite. A small body that revolves around a
planet (such as the moon around the earth).

Scholastics. Persons who studied and taught a
very formal system of knowledge in the
Middle Ages, which based truth on authority
(the teachings of Aristotle and the Church
fathers), rather than on observation.

solar year. The interval of time between two
successive passages of the sun through the
vernal equinox.

statistics. The study dealing with the classifi-
cation and interpretation of numerical data.

sun-spots. Relatively dark spots that appear
periodically on the surface of the sun.
They are presumably caused by unusually
turbulent gases that erupt from the sun's
interior, and cowl rapidly as they reach
the surface, which causes them to appear
darker than the surrounding solar matter.

systematic error. Error introduced into a mea-
surement (e.g., by inaccuracies in the
construction or use of the measuring equip-
ment), whose effect is to make the measured
values consistently higher or lower than the
actual value.

terrestrial. Pertaining to the earth, or
earthly.

theory. A system of ideas that relates, or sug-
gests a causal connection between certain
phenomena in the external world. (See
cause.)

torsion balance. An instrument which measures
very small forces by determining the amount
of twisting they cause in a slender wire.
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Index

Acceleration, 82, 90, 98-10U
centripetal, 97

Action at a distance, 91
Age of Reason, 5
Alexandria, 3, 12
Alm4Rest, 18, 19, 20, 29, 41, 116
Aphelion distance, defined, 56
Aphelion point, 59, 60

defined, 56
Aristarchus, 16, 18,

arguments against,
19,

17

30, 35, 36, 113, 116

Aristotle, 3, 15, 16, 18, 19, 46, 63, 64, 69
Aquinas, Thomas, 3, 14, 25, 70
Astrology, 110
Astronomia Nova, 50ff, 60
Astronomical unit (A.U.), 32, 61
defined, 31

Babylonians, 2, 7
Bayeaux tapestry, 101
Bible, 37, 39, 71
Black Plague, 78
Brahe, Tycho, see Tycho

Calendar, 20
Babylonian, 7
Gregorian, 8
Julian, 8
of primitive tribes, 1

Causal explanations, 58
Cavendish, Henry, 105
Central force, 82, 88
Centripetal

acceleration, 97
force, 98

Chase problem, 31-32
"Clockwork," the universe seen as, 63
Comets, 43, 61, 101
Conic section, 58
Constant of Universal Gravitation (G), 95, 105
Constellations, 8, 9
Copernicus, Nicolas, 18, 27 ff., 40, 41, 49, 51,

60, 62, 68, 69, 113
arguments against his system, 35 ff.
arguments for his system, 34 ff., 36
finds distance of planets from sun, 31-32
finds periods of planets around sun, 31
finds sizes of planetary orbits, 34 ff.
his seven assumptions about the heavens, 29-30
philosophical implications of his theory, 37-

38

Daily motion, 7, 8, 12, 14, 15, 16
Dante, Divine Comedy, 16
Darwin, 72
Deferent, 23, 31
defined, 21

De Revolutionibus, 27, 30, 41
condemned by Jewish community, 38
condemned by Luther, 37
condemned by Papacy, 38
conflicts with Aristotelian science, 38
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Descartes, Rene, 89, 111, 116
Dialogue Concerning_the Two Chief World Systems,

68, 69, 71
Differential calculus, 78
Dioptrice, 62
Discourses Concerning Two New Sciences, 68
Double star

finding its mass, 106
KrUger 60, 106

Earth, see terrestrial motion, terrestrial me-
chanics

Eccentric, 23, 50
defined, 21

Eccentricity
defined, 56
of planetary orbits, 57

Eclipse

of moon, 10
of sun, 10

Ecliptic, 18
defined, 9
moon's relation to, 10

Egyptians, 2, 7
Elements, the four Greek, 14
Ellipses, 55, 56, 82
and conic sections, 58
eccentricity, 56
elliptical orbits, 83
focus, 56
mean distance, 56

Epicycle, 23, 24, 30, 31, 33, 37, 50
defined, 21

Equant, 50
defined, 23

Ethers, 37
Eudoxus, 15

"Fall" of planets toward sun, 87
Focus, 56
Frederick II of Denmark, 41

G, see Constant of Universal Gravitation
Galileo, 4, 14, 40, 49, 64, 65, 75, 79, 111,

113, 114, 116

and the Inquisition, 70-72
belittled by Scholastics, 70
builds telescopes, 65
his Dialogue Concerning the Two Chief World

Systems, 68, 69
his Discourses Concerning Two New Sciences,

68
his discovery of the phases of Venus, 67
his discovery of the satellites of Jupiter,

66-67
his discovery of sunspots, 67
his observation of the moon, 66
his observation of Saturn, 67
his observation of the stars, 66
his Sidereus Nuncius, 66

Geocentric view of universe, 14, 15, 16, 24, 25,
33, 108



Ptolemy's, 18, 20

Gravitation, 29, 63, 78, 86, 97, 198
Newton's Law of Universal Gravitation, 81,

83, 88, 112, 114, 119
Greeks, 2, 7, 9, 15

their explanation of motions in the sky, 3,
12

their five regular geometrical solids, 49
their notion of natural place, 83

their philosophical assumptions, 12, 13

Halley, Edmund, 79, 101
his comet, 61

Harmonic Law, see Law of Periods
Harmony of the World, 61

Heliocentric view of universe, 17, 18, 33, 40,
52, 62, 69

Aristarchus', 16

Copernicus' heliostatic system, 30
defined, 16
Kepler's, 49

Herschel, William, 109

Index Expurgatorius, 72
Inertia, see Laws of Motion
Inquisition, 70-72
Inverse-square law, 83, 86

Jupiter

gravitational force between it and sun, 93
its period, 31

its satellites, 67, 69

Kepler, Johannes, 4, 14, 40, 45, 46, 49 ff.,
75, 79, 113, 114

derives the earth's orbit, 52
derives the orbit of Mars, 52
his Dioptrice, 62

his first law, the Law of Elliptical Orbits,
55, 56, 58, 60, 86

his five perfect solids, 49
his Harmony of the World, 60

his heliocentric theory, 49
his notion of world as "clockwork", 63
his Rudolphine Tables, 62
his second law, the Law of Areas, 51, 53, 55,

58, 59, 60, 84, 85, 86
his third law, the Law of Periods, 60, 61, 69

86

his use of logarithms, 62

Law of Areas (Kepler's second), 51, 55, 58, 59,
60, 84, 85, 86

stated, 53

Law of Elliptical Orbits (Kepler's first), 55,
58, 60, 86

stated, 56

Law of Periods (Kepler's third), 60, 69, 86
stated, 61

Law of Universal Gravitation, 81, 83, 88, 114,
119

stated, 89

Laws of motion, 80, 82, 92, 93, 111

Laws of planetary motion, 61, 82, 83, 86
see Law of Areas

Law of Elliptical Orbits
Law of Periods

Logarithms, 62

Mars, 31

Tycho's investigating its orbit, 49-51
size and shape of its orbit, 53, 57

Mercury, 32
"Monkey Trial," 72
Month, 1
Moon
and month, 1

Galileo's observations of, 66
its relation to ecliptic, 10
motions of, 9, 15, 24, 103
phases of, 9

Motion under a central force, 84 ff.

Natural motion, 83
Net force, 82

"New Philosophy" of experimental science, 75
Newton, defined, 78

Newton, Sir Isaac, 2, 4, 5, 10, 14, 40, 58, 63,
77, 78 ff.

and gravitational force, 63
and natural motion, 83
and the apple, 78

his Constant of Universal Gravitation (G), 96
his great synthesis, 83, 90, 115
his Law of Inertia, 87
his Law of Universal Gravitation, 81, 83, 88,

89, 112, 114, 119
his Laws of Motion, 80, 111

his Principia, 72, 75, 83, 109, 112
his Rules of Reasoning, 80-81, 90, 113
his Theory of Light and Colors, 79

Opposition, defined, 10

Parallax, 17, 18, 24, 35, 37, 43
defined, 17

Pendulums, 103

Perihelion distance, defined, 56
Perihelion point, 59, 60
defined, 56

Planets

angular distance from sun, 10, 23, 31-32, 56
brightness of, 11, 17, 23
Kepler's model of their orbital planes, 51
motions of, 10-17, 23, 24, 27, 30-32, 63, 118
opposition to sun, 10, 11
periods of, 31
relative masses, 102

size and shape of their orbits, 34, 52, 56, 83
Plato, 9, 13, 14, 16, 21, 23, 27, 58, 63, 69
differences between his system and Ptolemy's,

23

his problem, 12

Principia, 72, 75, 79 ff., frp, 109, 112
General Scholium, 91

Principle of Parsimony, 80-81
Principles of Unity, 80-81
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Ptolemy, 18, 20, 21, 23, 25, 27, 29, 31, 32, 41,
45

acceptance of his theory, 24
differences between his system and Plato's, 23
difficulties with his system, 24
disagrees with Aristarchus, 19
his assumptions, 24
his system sketched, 22

Pythagoreans, 13

Quadrant, 44

Radial velocity, 106
Renaissance, 4
Refraction, 45
Retrograde motion, 11, 12, 16, 17, 21, 23, 30, 35
defined, 10

Rudolph.ne tables, 62
Rule of Absolute Motion, 27
Rules of Reasoning in Philosophy, 80-81, 90, 113
Rutherford, Lord Ernest, 77

Saturn, 31
Scholastics, 70
Scientific revolution of the 17th century, 75, 76
Scientific societies, 75
Sidereus Nuncius, 66, 67
Sizzi, Francesco, 70
Starry Messenger, see Sidereus Nuncius.
Stars
Galileo's observations of, 66

Stonehenge, 1, 2
Sun, also see heliocentric view of universe

as central force, 82
its motion, 9, 15, 20, 24

solar year, defined, 7
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Sunspots
discovered by Galileo, 67

Telescope, 70
adapted by Galileo, 65
Galileo discovers sunspots and phases of Venus,

67

Galileo observes moon, stars and Jupiter's
satellites, 66-67

Galileo observes Saturn, 67-68
invented, 65

Terrestrial mechanics, 39, 64
Terrestrial motion, 17, 20, 29, 30, 46
Kepler's derivation of the earth's orbit, 52

Theory

defined, 113
making and judging, 114-117

Theory of Universal Gravitation, see Law of
Universal Gravitation

Tides, 99
Time-keeping, 2
Triangle, area of, 84
Trinity College, Cambridge University, 77
Tycho Brahe, 40 ff., 61, 62, 64, 111, 114, 116
calibration of his instruments, 44
discovers a new star, 41
his compromise system, 45
observes comet, 43

Uniform circular motion, 13, 14, 27
abandoned, 49, 51

Uraniborg, 41 ff.
instruments there, 44 ff.

Venus, 31, 68
its phases discovered by Galileo, 67

Vernal equinox
defined, 9
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