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Welcome to the study of physics. This volume, more of a
student's guide than a text of the usual kind, is part of a
whole group of materials that includes a student handbook,

laboratory equipment, films, programmed instruction, readers,
transparencies, and so forth. Havrard Project Physics has

designed the materials to work together. They have all been
tested in classes that supplied results to the Project for
use in revisions of earlier versions.

The Project Physics course is the work of about 200 scien-
tists, scholars, and teachers from all parts of the country,
responding to a call by the National Science Foundation in
1963 to prepare a new introductory physics course for nation-
wide use. Harvard Project Physics was established in 1964,

on the basis of a two-year feasibility study supported by

the Carnegie Corporation. On the previous pages are the

names of our colleagues who helped during the last six years
in what became an extensive national curriculums, development
program. Some of them worked on a full-time basis for sev-

eral years; others were part-time or occasional consultants,

contributing to some aspect of the whole course; but all

were valued and dedicated collaborators who richly earned

the gratitude of everyone who cares about science and the

improvement of science teaching.

Harvard Project Physics has received financial support

from the Carnegie Corporation of New York, the Ford Founda-

tion, the National Science Foundation, the Alfred P. Sloan

Foundation, the United States Office of Education and Har-
vard University. In addition, the Project has had the es-

sential support of several hundred participating schools

throughout the United States and Canada, who used and tested
the course as it Went through several successive annual re-

visions.

The last and largest cycle of testing of all materials

is now completed; the final version of the Project Physics

course will be published in 1970 by Holt, Rinehart and

Winston, Inc., and will incorporate the final revisions and

improvements as necessary. To this end we invite our

Students and instructors to write to us if in practice they

:00 discern ways of improving the course materials.

The Directors
Harvard Project Physics
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Prologue It is January of 1934, a dreary month in the city

of Paris, and a husband and wife are bombarding a bit of

aluminum with what are called alpha particles. Does this

seem like a momentous event? Certainly not when stated so

baldly. But let us look at it more closely, for it is momen-

tous indeed.

Never mind the technical terms They will not get in the

way of the story. It begins as something of a family affair.

The husband and wife, French physicists, were Frdderic Joliot

and Irene Curie, and the alpha particles they used in their

experiment came shooting out of a radioactive metal, poloni-

um, discovered 36 years before by none other than Irene's

illustrious parents, Pierre and Marie Curie, who also dis-

covered radium. What Frederic and Irene found was this:

when bombarded by alpha particles, the commonplace bit of

aluminum became radioactive.

Nothing like this had ever been observed before: a famil-

iar, everyday substance becoming radioactive. The news was

exciting to scientists though it made few, if any newspaper

headlines. The news traveled rapidly: by cablegram and

letter. In Rome, Enrico Fermi, a young physicist on the

staff at the University of Rome, became intrigued by the

possibility of repeating the experiment of Frdderic and

Irene repeating it with one significant alteration. The

story is told in the book Atoms in the Family by Enrico

Fermi's wife, Laura. She writes:

...he decided he would try to produce artificial ra-
dioactivity with neutrons [instead of alpha particles].
Having no electric charge, neutrons are neither at-
tracted by electrons nor repelled by nuclei; their
path inside matter is much longer than that of alpha
particles; their speed and energy remain higher;
their chances of hitting a nucleus with full impact
are much greater. Against these unquestionable ad-
vantages, neutrons present a decidedly strong draw-
back. Unlike alpha particles, they are not emitted
spontaneously by radioactive substances, but they are
produced by bombarding certain elements with alpha
particles, a process yielding approximately one neu-
tron for every hundred thousand alpha particles.
This very low yield made the use of neutrons appear
questionable.

Only through actual experiment could one tell whether or

not neutrons were good projectiles for triggering artificial

radioactivity of the target nuclei. Therefore, Fermi, at

the age of 33 and already an outstanding theoretical physicist,

decided to design some experiments that could settle the

issue. His first task was to obtain suitable instruments for

detecting the particles emitted by radioactive materials. By

far the best such instruments were what are called Geiger

Reogim 1 zis Sentence !Jour
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counters, but in 1934, Geiger counters were still relatively

new and not readily available. Therefore, Fermi constructed
his own.

The counters were soon finished, and tests showed that

they could detect the radiation from radioactive materials.
But Fermi also needed a source of neutrons. This he made

by enclosing beryllium powder and the radioactive gas radon
in a glass tube; the alpha particles from radon, on striking

the beryllium, caused it to emit neutrons.

Erridie, 5.5re (and 0. Ciurriber-
tarn) cdae *e Weibel Prize in
19941 for to discoveri cc Ae
antipmt5n. tie es now at tie

of California. at
y. Rosen is professor

of F#16`tbs. t Tohns Hopkins
Oniverst.

Again, follow the story to get
a feeling for the atmosphere of
important experimentsdon't
worry about details now,
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Now Enrico was ready for the first experiments.
Being a man of method, he did not start by bombard-
ing substances at random, but proceeded in order,
starting from the lightest element, hydrogen, and
following the periodic table of elements. Hydrogen
gave no results: when he bombarded water with
neutrons, nothing happened. He tried lithium next,
but again without luck. He went on to beryllium,
then to boron, to carbon, to nitrogen. None were
activated. Enrico wavered, discouraged, and was
on the point of giving up his researches, but his
stubbornness made him refuse to yield. He wculd
try one more element. That oxygen woLld not become
radioactive he knew already, for his first bombard-
ment had been on water. So he irradiated flourine.
Hurrah! He was rewarded. Fluorine was strongly
activated, and so were other elements that came
after fluorine in the periodic table.

This field of investigation appeared so fruitful
that Enrico not only enlisted the help of Emilio
Segre and of Edoardo Amaldi but felt justified in
sending a cable to Rasetti [a colleague 10 had gone
to Morocco], to inform him of the exper5 .nts and to
advise him to come back at once. A . while later
a chemist, Oscar D'Agostino, joined the group, and
systematic investigation was carried on at a fast
pace.

With the help of his colleagues, Fermi's work at the

laboratory was pursued with high spirit, as Laura Fermi's
account shows:

..Irradiated substances were tested for radioactiv-
ity with Geiger counters. The radiation emitted by
the neutron source would have disturbed the measure-
ments had it reached the counters. Therefore, the
room where substances were irradiated and the room
with the counters were at the two ends of a long
corridor.

Sometimes the radioactivity produced in an element
was of short duration, and after less than a minute
it could no longer be detected. Then haste was es-
sential, and the time to cover the length of the
corridor had to be reduced by swift running. Amaldi
and Fermi prided themselves on being the fastest
runners, and theirs was the task of speeding short-
lived substances from one end of the corridor to the
other. They always raced, and Enrico claims that he
could run faster than Edoardo....



And then, on the morning of October 22, 1934, a fateful

discovery was made. Two of Fermi's co-workers were irradiat-

ing a hollow cylinder of silver with neutrons from a source

placed at the center of the cylinder, to make it artificially

radioactive. They found that the amount of radioactivity in-

duced in the silver depended on other objects in the room!

..The objects around the cylinder seemed to influence

its activity. If the cylinder had been on a wooden
table while being irradiated, its activity was greater
than if it had been on a piece of metal. By now the
whole group's interest had been aroused, and everybody
was participating in the work. They placed the neu-
tron source outside the cylinder and interposed objects

between them. A plate of lead made the activity in-
crease slightly. Lead is a heavy substance. "Let's
try a light one next," Fermi said, "for instance, paraf-

fin." [The most plentiful element in paraffin is hy-
drogen.] The experiment with paraffin was performed
on the morning of October 22.

They took a big block of paraffin, dug a cavity in
it, put the neutron source inside the cavity, irradi-

csh.vEt Cyl t4PEiz.
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ated the silver cylinder, and brought it to a Geiger .7,ARAFFito

counter to measure its activity. The counter clicked
madly. The halls of the physics building resounded
with loud exclamations: "Fantastic! Incredible!
Black Magic!" Paraffin increased the artificially in-
duced radioactivity of silver up to one hundred times.

By the time Fermi came back from lunch, he had already

formulated a theory to account for the strange action of

paraffin.

z7/
/ Avitz0P

Paraffin contains a great deal of hydrogen.
Hydrogen nuclei are protons, particles having the
same mass as neutrons. When the source is inclosed
in a paraffin block, the neutrons hit the protons
in the paraffin before reaching the silver nuclei.
In the collision with a proton, a neutron loses part
of its energy, in the same manner as a billiard ball
is slowed down when it hits a ball of its same size
[whereas it loses little speed if it is reflected
off a much heavier ball, or a solid wall]. Before
emerging from the paraffin, a neutron will have
collided with many protons in succession, and its
velocity will be greatly reduced. This slow neu-
tron will have a much better chance of beiNi cap-
tured by a silver nucleus than a fast one, much as
a slow golf ball has a better chance of making a
hole than one which zooms fast and may bypass it.

If Enrico's explanations were correct, any other
substance containing a large proportion of hydrogen
should have the same effect as paraffin. "Let's
try and see what a considerable quantity of water
does to the silver activity," Enrico said on the
same afternoon.

There was no better place to find a "considerable
quantity of water" than the goldfish fountain...in
the garden behind the laboratory....

C
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In that fountain the physicists had sailed certain
small toy boats that had suddenly invaded the Italian
market. Each little craft bore a tiny candle on its
deck. When the candles were lighted, the boats sped
and puffed on the water like real motor-boats. They
were delightful. And the young men, who had never
been able to resist the charm of a new toy, had spent
much time watching them run in the fountain.

It was natural that, when in need of a considerable
amount of water, Fermi and his friends should think
of that fountain. On that afternoon of October 22,
they rushed their source of neutrons and their
cylinder to that fountain, and they placed
water. The goldfish, I am sure, retained i a_
and dignity, despite the neutron shower, more ..an
did the crowd outside. The men's excitement was fed
on the results of this experiment. It confirmed
Fermi's theory. Water also increased the artificial
radioactivity of silver by many times.

This discovery that slowed-down neutrons can produce

much stronger effects in the transmutation of certain atoms

than fast neutrons turned out to be a crucial step toward

further discoveries that, years later, led Fermi and others

to the extraction of atomic energy from uranium.

The reason for presenting a description of Fermi's dis-

covery of slow neutrons here was not to instruct you on

the details of the nucleus. It was, instead, to present a

quick, almost impressionistic, view of scientists in action.

No other discovery in science was made or will be made in

just the way Fermi and his colleagues made this one. Never-

theless, the episode does illustrate some of the character-

istics and some of the drama of modern science.

Like religion, science probably began as

and wonder. In its highest form its motive

sheer curiosity the urge to explore and to

a sense of awe

power has been

know. This

urge is within us all. It is vividly seen in the intense

absorption of a child examining a strange sea shell tossed

up from the ocean or a piece of metal found in the gutter.

Who among us has resisted the temptation to explore the

slippery properties of the mud in a rain puddle? Alas,

everyday cares and the problems of growing up overtake us

all too soon, and many of us lose our early sense of curios-

ity or channel it into more practical paths. Fortunately,

a few preserve their childlike, wide-eyed wonderment and it

is among such people that one often finds the great scien-

tists and poets.

Science gives us no final answers. But it has come upon

wondrous things, and some of them may renew our childhood

delight in the miracle that is within us and around us.

Take, for example, so basic a thing as size...or time.

The same process by which neu-
trons were slowed down in the
fountain is used in today's
large nuclear reactors. An ex-

ample is the "pool" research
reactor pictured on the opposite
page.
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10 6 sec

10 1 S sec

10 2 3 sec

You care learn to do rapid rnenW calculators
asiruj order of' ',maim& de appnwirsic4oizfr.-rrrnt"
for example &lathing lire explas-ion
nuclear bomb in Newt Mexico' comp-Zd
me eier9.9 yield bj165siriA big or paper ik

trw air and measurin5 i otgriaric.e 7`4e.y went
1;7 Ike shock wave loom the bUst.

Fossilized trilobites

The history of the universe has been traced back as
far into the past as a hundred million times the length
of a man's life.

man's lae. X 100) 000 ,000

Particle tracks in a bubble chamber

Events have been recorded that last only a
millionth of a millionth of a millionth of a
millionth of a man's heartbeat.

rno.rs's 142a$46a.+ X 0. 000, 0

4.0

000
0,00 °

,00

a
00
JOoIt is hard to resist the temptation to say more about

these intriguing extremes; however, this is not where physics

started. Physics started with the man-sized world the world
of horse-drawn chariots, of falling rain, and of flying ar-

rows. It is with this man-sized world that we shall begin.
7



Chapter 1 The Language of Motion
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There is a very old maxim: "Tc

/ be ignorant of motion is to be
ChaktgeS" !flat occur in na&re "the Meg. COMprion and eaStui ignorant of Nature.

measumci, is a Change of rvsqlen Change of pthittort is inotc6n.
11 The motion of things. Man crawls, walks, runs, jumps, dances.

To move nimself faster, farther, higher, deeper, he invents

things like sleds, bicycles, submarines, rocket ships. As

human beings we are caught up in motion and fascinated by it.

Perhaps this is why so many artists try to portray movement.

It is one reason why scientists investigate motion. The

world is filled with things in motion: things as small as

dust, as large as stars, and as common as ourselves; motion

fast and slow, motion smooth, rhythmic, and erratic. We can-

not investigate all of these at once. So from this swirling,

whirling world of ours let us choose just one moving object

for attention, something interesting and typical, and, above

all, something manageable. Mk "th Cia55 qUeGUI.
But where shall we start? We might start our investiga-

tion by looking at a modern machine the Saturn rocket, say,

or a supercharged dragster, or an automatic washing machine.

But as you know, things such as these, though made and con-

trolled by man, move in very complicated ways. We really

ought to start with something easier. Then how about the

bird in flight? Or a leaf falling from a tree?

Surely in all of nature there is no motion more ordinary

than that of a leaf fluttering down from a branch. Can we

describe how it falls or explain why it falls? As we think

about it we quickly realize that, while the motion may be

natural, it is very complicated: the leaf twists, turns,

sails to the right and left, back and forth, as it floats

down. Even a motion as ordinary as this may turn out, on

closer examination, to be more complicated than that of ma-

chines. Although we might describe it in detail, what would

we gain? No two leaves fall in quite the same way; therefore,

each leaf would require its own detailed description. Indeed,

this individuality is typical of many naturally occurring

events on earth!

And so we are faced with a real dilemma. We want to

describe motion, but the motions that excite and interest us

appear to be hopelessly complex. What shall we do? We shall

find a very simple motion and attempt to describe it. Those

of us who have learned to play a musical instrument will

appreciate the wisdom of starting with simple tasks. If

our music teacher confronted us in lesson number one with

a Beethoven piano sonata, we would in all probability have

quickly forgone music in favor of a less taxing activity.

The place to start is in the laboratory, because there we

can find the simple ingredients that make up complex motions.

t : .P.ecocyitzer19 rnort6ns.

Study for "Dynamism of a Cyclist"
(1913) by Umberto Boccioni. Courtesy
Yale University Art Gallery.
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1E65 Secrian takes tie. .stiidepit fhrou9k -ne bojnivir9 srePs or lai:x7rvt6r "lett°d
ikatt will be used frr_querifi irr ikis course for die stud 9 of m2likin.

1.2 A motion experiment that does not quite work. A billiard

ball hit squarely in the center speeds across the table in

a straight line. Unfortunately, physics laboratories are

not usually equipped with billiard tables. But never mind.

Even better for our purposes is a disc of what is called dry

ice (really frozen carbon dioxide) moving on the floor. The

dry ice disc was placed on the floor and given a gentle push.

It floated slowly across the floor in front of the camera.

While the disc was moving, the shutter of the camera was kept

open. The resultant time exposure shows the path taken by

the dry ice disc.

See Study Guide 1.1 (page 32)

Students repeat 'this demonsinatibri,
caulwit -Awl about Vie real deviser
of Frozen -Misers.

Ti : Stroboscoptc, measurements
A : Making fiictuiniess pucks

Close-up of A : Eleerronic sti-oboscope
a dry ice disc A macrodie, triter

Laboratory setup

Time exposure of the disc in motion

Stornmmr9k2

What can we learn about the disc's motion by examining the I' A TIVne eqx56IAn6 014*9rark
photographic record? Was the path a straight line? Did the

disc slow down?

The question of path is easy enough to answer: as nearly

as we can judge by placing a ruler on the photograph, the

disc moved in a straight line. But did it slow down? From

the photograph we cannot tell. Let us improve our experi-

ment. Before we do so, however, we ought to be clear on

just how we might expect to measure speed.

Why not use something like an automobile speedometer?

All of us know how to read that most popular of all meters

even though we may not have a clear notion of how it works.

A speedometer tells us directly the speed at which the car

is moving at any time. Very convenient. Furthermore, such

or Ike rndtihn, OF a drm--(te
puck shows or49 direetion
of -the mdiort.

a. -The fOrvidtar Wits in which
Hat expless speed
wheat we must measure to
fo:td -tu speed or an object.

We are assuming here that you al-
ready know what speed is, namely
how fast an object moves from
one place to another. A more
formal way to say the same thing
is: Speed is the time rate of
change of position.

11



m- our car is moving 60 miles per hour. Translation: at the
instant the reading was taken, the car was traveling fastS- 1.3 enough to move a distance of 60 miles in a time interval ofummull

(. The Okas behind -ff Strobo- 1.0 hour, or 120 miles in 2.0 hours, or 6.0 miles in 1/10
scope are clevetored in a hour--or any distance and corresponding time interval for
sequevice Of steps. which the ratio of distance to time is 60 miles per hour.

To find speed we measure a distance moved, measure the timeg. Speed _s

t it took to move that distance, and then divide distance by
time.

readings are independent of the path of our car. A given
speedometer reading specifies the same speed, whether the
car is moving uphill or down, or is traveling along a straight
road or a curved one.

But, alas, there is at least one practical trouble with
having to rely on a speedometer to measure speed: it is not

easy to put a speedometer on a disc of dry ice, or on a bul-
let, or on many other objects whose speed you may wish to
measure. However, the speedometer provides us with a good
clue. Remember how we express speedometer readings? We say

3. We St-Int4tre itt Me, lob-
orator:9 aU.ows us
-to

With this reminder of how to measure speed (without a

speedometer), we can now return to the experiment with thea) setoff-avid dedd 1niitt sil* dry ice disc. Our task now is to redesign the experiment so
rancor /ran GOrldex plite-WWM- that we can find the speed of the disc as it moves along itsaria it etat irtereer us ; straight-line path.
b,) isokde -hew instances from
malt) (but not al() ext6rnoi infer-
ferenc2s arid

1.3 A better motion experiment. To find speed we need to be ableG) repeat eAPItS as oprom as
to measure both distance and time. So let's repeat the exper-we. wicsk.
iment with the dry ice disc after first placing a meter stick

on the table parallel to the expected path of the disc. This
is the photograph we obtain:

IMIIIIN11

streak fades twarrA
lie ricyrit.:C5 postidde to

canc4idoe .poni die Flinotb

Itiar lhe puck is speeaiincl

vp!' Acruallti 'it is di distance. However, even if we could measure both the distance
GornpamvAt and the time we would still have too little information about

the er loot-05.11w
12 licund side has reset'

1055 (4.407 in each case.

Now the total distance traveled by the disc during the
exposure can be measured. However, we still need to measure

the time required for the disc to move through a particular



the motion of the disc. Specifically, to find out whether

or not the disc is slowing down and, if so, by hcA much

we must be able to find its speed at different places. To

do this, we must somehow obtain distance and time information

for different places along the path. Knowing only the total

distance and total time is not enough.

So let's try another modification. Instead of leaving

the camera shutter open, we can open and close it rapidly.

The result will be the multiple-exposure photograph shown

ifie..m am several other' low
friatian Avice5-balloon puck,
ikrt puck, Oa-46 beads

below. ardi Ihe air Mack or air Able.
rot a. sTro:91-it trlis-Site

Although we now have a variety of distances to measure, we

still need to know the elapsed time between each exposure.

With such information we could analyze the motion in detail,

obtaining the distance-to-time ratio (speed) for various

segments of the trip. One final change in the apparatus

makes this possible.

LS : Anct(96is or a hurdle- ,ace
'Part I.

172 UniForni motion using
accelerometer and otna-

ic6 cart.
The camera shutter is again kept open and everything else

is the same as before, except that the only source of light

in a darkened room comes from a stroboscopic lamp. This

lamp flashes very brightly at a constant rate. Since each

pulse or flash of light lasts fox only about one-millionth

of a second, we get a series of separate sharp exposures

rather than a continuous, blurred one. The photograph below

was made using such a stroboscopic lamp flashing 10 times a

second.

Now we're finally getting somewhere. Our experiment en-

ables us to record accurately many positions of a moving ob-

ject. The meter stick measures th' distance the disc moved

between successive light flashes. The time elapsed between

images is determined by the stroboscopic lamp flashes.

13
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How much did the disc slow down? We can find out by de-

termining its speed at the two ends of its path. The front
edge of the first clear image of the disc at the left is
6.0 cm from the zero mark on the meter stick. The front
edge of the second image from the left is at the position
19.0 cm. The distance traveled during that interval of time
is the difference between those two positions, or 13.0 cm.

The corresponding time interval is 0.10 sec. Therefore, the
speed at the start must have been 13.0 cm/0.10 sec, or
130 cm/sec.

Turning now to the two images farthest to the right in the
photograph, we find that the distance traveled during 0.1 sec
was 13.0 cm. Thus, the speed at the end was 13.0 cm/0.1 sec,
or 130 cm/sec.

The disc uid not slow down at all! The disc's speed was

130 cm/sec at the beginning of the path and 130 cm/sec at
the end of the path. As nearly as we can tell from this

experiment, the speed was constant.

That result is hard to believe. Perhaps you are thinking
that t?-e disc might have changed speed several times as it
moved from left to right but just happened to have identical
speeds over the two intervals selected for measurement. That
would be a strange coincidence but certainly not an impossible
one. You can easily check this possibility for yourself.
Since the time intervals between images are equal in all

cases, the speeds will be equal only if the distance intervals
are equal to each other. Is the scale distance between im-
ages always 13.0 cm?

Or perhaps you are thinking, "It was rigged!" or, if you
are less skeptical you may think it was just a rare event
and it would not happen again. All right then, you try it.
Most school physics laboratories have cameras, strobe lamps

(or mechanical strobes, which work just as well), and low-

friction discs of one sort or another. Repeat the experiment
several times at different initial speeds, and then compare
your results with ours.

You may have even a more serious reservation about the ex-
periment. If you ask, "How do you know that the disc didn't
slow down an amount too small to be detected by your measure-
ments?", we can only answer that we don't. All measurements
are approxima,,Ions. If we had measured distances to the
nearest 0.001 cm (instead of to the nearest 0.1 cm) we might
have detected some slowing down. But'if we again found no
change in speed, you could still raise the same objection.

14



There is no way out of this. We must simply admit that no

physical measurements are ever exact or infinitely precise.

Thus it is fair to question any set of measurements and the

findings based on them. Not only fair, but expected.

Before proceeding further in our study of motion, let us

briefly review the results of our experiment. We devised a

way to measure the successive positions of a moving dry ice

disc at known time intervals. From this we calculate first

the distance intervals and then the speed between selected

positions. We discovered that the speed did not change.

Objects that move in such a manner are said to have uniform

speed. What about nonuniform speed? That is our next con-

cern.

1.4 Leslie's "50" and the meaning of average speed. Consider

the situation at a swimming meet. As a spectator, you want

to see who are the fastest swimmers in each event. At the

end of each race, the name of the winner is announced, and

his total time given. Speeds as such are usually not an-
.
nounced, but since in a given race say the 100-yard back-

stroke every swimmer goes the same distance, the swimmer

with the shortest time is necessarily the one having the

highest average speed. We can define average speed as fol-

lows:

average speed distance traveled
elapsed time

See the articles "Motion in
Words" and "Representation of
Movement" in Proiect Physics
Reader 1.

Some practice problems dealing
with constant speed are given in
Study Guide 1.2 (a,b,c and d).

Surrtynar L.
L A fi swim is
MI0111224 as on Cox0.1iipie.

Of 'real - ice moliort.

St. Ike, problem or _non-
uniform motor' and 'its
a .tc4sL s.

3. Average speed .(6 flee
on! klina of spa-ed !teat

be measured
&xperiMentalt.9.

What information does a knowledge of the average speed convey?

We shall answer this question by studying a real example.

Leslie is not the fastest girl freestyle swimmer in the

world, but Olympic speed is not necessary for our purposes.

One day after school, Leslie was timed over two lengths of

the Cambridge High School pool. The pool is 25 yards long,

and it took her 56.1 seconds to swim the two lengths. Thus

her average speed over the 50 yards was

50.0_/d
= 0.89 yd/sec.

56.1 sec

Did Leslie swim with uniform speed? If not, which length

did she cover more quickly? What was her greatest speed? Her

least? How fast was she moving when she passed the 10, or

18, or 45-yard mark? Because we do not have the answer to

any of these questions, we must admit that average speed

does not tell us much. All we know is that Leslie swam the

50 yards in 56.1 seconds. The number 0.89 yd/sec probably

comes closer than any other one number to describing the

L9: Analysis of a hurdle nice- Part-IL

So the speeds calculated on
page 14 are all average speeds.

This is the equivalent of 1.8
mph. Some speed: A sailfish
can do over 40 mph, and a fin-
back whale can do 20 mph. But

then man is a land animal. For
short distances he can rur, )etter

than 20 mph. But che( tab., tave

been clocked at 70 mph and
ostriches at 50 mph.

15
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whole event. Such a number is useful and there is no denying

that it is easy to compute.

But those questions about the details of Leslie's swim

still nag us. To answer them, more data are necessary. That

is why we arranged the event as shown on the oppos'te page.

Observers stationed at 5-yard intervals from the 0 mark

to the 25-yard mark started their stop watches when the

starting signal was given. Each observer had two watches,

one which he stopped as Leslie passed his mark going down

the pool, and the other which he stopped as she passed on

Details of the speed at differ-
ent parts of a race can help
athletes improve their over-all
showing.

her return trip.

Position

The data are tabulated below.

(yards) 0 5 10 15 20 25 30 35 40 45 50

Time
(seconds) 0.0 2.5 6.0 11.0 16.0 22.0 26.5 32.0 39.5 47.5 56.0

From these data we can determine Leslie's average speed for

the first 25 yards and for the last 25 yards.

1) Average speed for first 25 yards = distance traveled
elapsed time

25 yards
22 seconds

= 1.1 yds/sec.

2) Average speed for last 25 yards = elapsed time

25 yards
56 sec 22 sec

25 yds

distance traveled

34 sec = .74 yd/sec.

It is clear that Leslie did not swim with uniform speed.

She swam the first length much faster (1.1 yds/sec) than the

second length (0.74 yd/sec). Notice that the overall average

speed (0.89 yd/sec) does not describe either lap very well.

If we wish to describe Leslie's performance in more detail,

it will be advantageous to modify our data table.

Before we continue our analysis of Leslie's swim, however,

we shall introduce some shorthand notation. In this short-

hand notation the definition of average speed can be simpli-

fied from

average speed distance traveled

to the concise statement

(

elapsed time

Adv= -- .
av At

The same concepts we are here
developing to discuss this
everyday type of motion will be
needed to discuss the motion of
planets, atoms, and so forth.

17
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In this equation vav is the symbol for average speed, d

is the symbol for distance, and t is the symbol for time.

The symbol A is the fourth letter in the Greek alphabet. It

is called delta. When A precedes another symbol, it means

"the change in...." Thus, Ad does not mean that A multiplies

d, but rather "the change in d" or "distance interval." Like-

wise, At stands for "change in t" or "time interval."

We can now proceed with our analysis. Suppose as a next

step we calculate the average speed for each 5-yard interval.

This calculation is easily done; especially when our data are

organized as they are in the table below. The results of

this calculation for the first lap are entered in the right-
hand column.

Data Table for Leslie's 50-yard Swim

Distance
(yds)

Time
(sec)

Ad
(yds)

At
(sec)

Ad/At
(yd/sec)

0

5

10

15

20

25

30

35

40

45

50

0.0

2.5

6.0

11.0

16.0

22.0

26.5

32.0

39.5

47.5

56.1

5

5

5

5

5

5

5

5

5

5

2.5

3.5

5.0

5.0

6.0

4.5

5.5

2.0

1.4

1.0

1.0

.8

(The second-lap computations are left to you.)

Looking at the speed column, we discover that Leslie had

her greatest speed right at the beginning. During the middle

part of the first length she swam at a fairly steady rate,

and she slowed down coming into the turn. You can use your

own figures to see what happens after the turn.

Now we have described Leslie's 50-yard swim in greater

detail than when we gave a single, average speed for both

lengths. But one point must be clear: although we have de-

termined the speeds at various intervals along the path, we

are still dealing with average speeds. The intervals are

smaller the time required to swim 5 yards rather than the

entire 50but we do not know the details of what happened

within any of the intervals. Thus, Leslie's average ;peed

between the 15 and 20-yard marks was 1.0 yd/sec, but her



speed at the very instant she was 18 yards from the start is

still uncertain. Even so, the average speed computed over

the 15 to 20-yard interval is probably a better estimate of

her speed at the 18-yard mark than the average speed computed

over the whole 50 yards, or over either length. We shall

come back to this problem of the determination of speed at a

particular point in Sec. 1.7.

1.5 Graphing motion. What can we learn about motion by graphing

data rather than just tabulating them? Let us find out by

preparing a distance-versus-time graph using the data from

Leslie's 50-yard swim. It is shown below. (We assumed there

were no abrupt changes in her motion and so joined the data

points with a smooth curve.)

Now let us "read" the graph. If you will accept the idea

that the steepness of the graph in any region indicates some-

thing about the speed (the steeper the faster) you will have

no trouble seeing how Leslie's speed changed throughout the

trial. It will be proven to you a little later that the

speed can be calculated by measuring the steepness of the

graph. Notice that the graph is steepest at the start and

50 r-

45 t

40

35 -1-

30-

w
025--

Practice problems on average
speed can be found in Study
Guide 1.2 (e, f, g and h).
Study Guide 1.3, 1.4, 1.5 and
1.6 offer somewhat more chal-
lenging problems. Some sugges-
tions for average speeds to
measure are listed in Study
Guide 1.7 and 1.8. Questions
about the speedometer as a
measure of speed are raised in
Study Guide 1.9 and 1.10.
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-Ww- scale gm,' te solar
gaveeequesice i3 Provided

stt.

Multiply your measurements on
these photographs by 8 to get
actual plant sizes.

12n' 5
m

11m 7m

These photographs show a stormy outburst at the edge of the sun, a
river of ice, and a developing sunflower plant. From these pictures
and the included time intervals you can determine the average speeds
(1) of the solar flare with respect to the sun's surface (radius of
sun is about 432,000 mi.), (2) of the glacier with respect to the
"river's bank," and (3) of the sunflower plant with respect to the
flower pot.

decreases slightly up to the 10-yard mark. From 10 yards to
20 yards the graph appears to be a straight line becoming

neither more nor less steep. This means that her speed in
this stretch neither increased nor decreased but was uniform.
Reading the graph further, we see that she slowed down some-
what before she reached the 25-yard mark but gained some
speed at the turn. The steepness decreases gradually from
the 30-yard mark to the finish indicating that Leslie was
slowing down. (She could barely drag herself out of the pool
after the trial.)

Looked at in this way, a graph provides us with a picture
or visual representation of motion. But our interpretation
of it was merely qualitative. If we want to know just how
fast or slow Leslie was swimming at various times, we need
a quantitative method of expressing the steepness. The way
to indicate the steepness of a graph quantitatively is by
means of the "slope."

Slope a widely used mathematical concept, and can be
used to indicate the steepness in any graph. If, in accor-
dancl with custom, we call the vertical axis of any graph
the y-axis and the horizontal axis the x-axis, then by def-
inition,

slope = .
Ax
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In a distance-time graph, distance is usually plotted on the

vertical axis (d replaces y) and time on the horizontal axis

(t replaces x). Therefore, in such a graph,
t

Ad
slope = --

At

But this is just the definition of average speed. In other

words, the slope of any part of a graph of distance versus

time gives a measure of the average speed of the object

during that interval.

There is really nothing mysterious about slope or its

measurement. Highway engineers specify the steepness of a

road by the slope. They simply measure the rise in the road

and divide that rise by the horizontal distance one must go

in order to achieve that rise. If you have never encountered

the mathematical concept of slope before, or if you wish to

review it, you might find it helpful to turn to Study Guide

1.11 before continuing here.

We can now ask, "What was Leslie's speed at the 14 or

47-yard marks, or at 35 seconds after the start"? In fact,

by determining the slope, Leslie's speed can be estimated

A

fi
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Determine Leslie's speed at
these times using the graph.
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at any position or time by taking the slope of a small region
on the distance-time graph of her motion that includes the
particular instant or spot of interest. The answers to the
above question are worked out on the graph below.

15
,c1=- 4yds

Alt = 4sec
10

t-

5_

-TAle dlo4k GSM hem wove Wren
from the -Wort am pot9e I.

I-- 1
5 10 15 20

= 2.8yds

6 t 4sec

--- - -1

25 30 35

Time (sec)
40 45

A d = 2.5yds

6-t 4sec

50 55

The plausibility of the results can be checked by compar-
ing them with Leslie's average speeds near those regions.
For example, her average speed during the last 10 yards (from
d = 40 to d = 50) was

10 yards
.60 yards/sec.56.1 sec - 39.5 sec

Similarly from the graph we determined that Leslie's speed

was .62 yards/sec at the 47-yard mark.

CO Find the speeds at different points for a moving
object from the following distance-time graph:

=What was the average speed for the
first 6 seconds?

4

3

2

($)

0
2 3 4

Time (sec)
6

(The end-of-section questions are to help you check
y.ur understanding of the section. If your answers
don't agree reasonably well with those given on
pp. 127-128, you should -cad the section again.)
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Summary .6
I. Estimairri values between ( (46-polohri5) and beyond (exl-MpoilArit3 ) 16 C4lAtct

41 a 9n is risk , and tb be undertaken v,ifttn. care,
1.6 Time out for a warning. Graphs are useful but they can also

be misleading. You must always be aware of the limitations

of any graph you use. The only certain pieces of informa-

tion in a graph are the data points, and even they are cer-

tain only to within the accuracy limits of the measurements.

Furthermore, we often lessen the accuracy when we place the

points on a graph.

The line drawn through the points depends on personal

judgment and interpretation. The process of estimating

values between data points is called interpolation. That is

essentially what you are doing when you draw a line between

data points. Even more risky than interpolation is extrapo-

lation, where the graph line is extended to estimate values

beyond the known data.

An example of a high-altitude balloon experiment carried

out in Lexington, Massachusetts, will nicely illustrate the

danger of extrapolation. A cluster of gas-filled balloons

carried some cosmic ray detectors high above the earth's

surface, and from time to time a measurement was made of

the height of the cluster. The adjoining graph shows the

results for the first hour and a half. As the straight line

drawn through the points suggests, the assumption is that

the balloons are rising with uniform speed. Thus the speed

can be calculated from the slope:

speed of ascent =
Ah
At

27,000 ft
30 min

= 900 ft/min.

If you were asked how high the balloons would be at the end

of the experiment (500 min), you might extrapolate, obtain-

ing the result 500 min x 900 ft/min = 450,000 ft, which is

over 90 miles high! Would you be right? Turn to Study Guide

1.13 to see for yourself.

Turn back to p. 13 and in the
margin draw a distance-time
graph for the motion of the
dry ice disc.

90

80

70

60

50

40

10

20

10

0

Time (min)

Q3 What is the difference between extrapola-
tion and interpolation?

100

1.7 Instantaneous speed. Now back to Leslie. In Sec. 1.5 we

saw that distance-time graphs could be extremely helpful in

describing motion. When we reached the end of the section,

we were speaking of specific speeds at particular points

along the path (e.g., "the 14-yard mark") and at particular

instants of time (e.g., "the 35-second instant"). You might

have been bothered by this, for earlier we had gone out of

R. Ti a c6 -tone q-ark is made of ihe entitiOn W object
speed at On poirit Wilt be- 9A/esi k;11 dope. or Vie tan
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1 Paris street scene, 1839

Photography 1839 to the Present

Photography has an important role
in our analysis of motion These
pages illustrate some or the sig-
nificant advances in technique
over the last century.

y-

3 Boys on skateboards

2 American street scene, 1859

1 Note the lone figure in the otherwise empty street. He was
getting his shoes shined. The other pedestrians did not
remain in one place long enough to have their images recorded.
With exposure times several minutes long the outlook for the
possibility of portraiture was gloomy,

2 However, by 1859, due to improvements in photographic emul-

sions, illumination and lenses, it was not only possible to
photograph a person at rest, but one could capture a bustling ,

crowd of people, horses and carriages. Note the slight blur
of the jaywalker's legs.

3 Today, even with an ordinary camera one can "stop" action.

4 A new medium--the motion picture. In 1873 a groun of Cali-
fornia sportsmen called in the photographer Eadweard Muybridge
to settle the question, "Does a trottin!! horse ever have all
four feet off the ground at once?" Five years later he
answered the question with these photos. The six pictures
were taken with six cameras lined up along the track, each
camera being triggered when the horse broke a string which
tripped the shutter. The motion of the horse can be recon-
stituted by making a flip pad of the pictures.

With the perfection of flexible film, only one camera was
needed to take many pictures in rapid succession. By 1895,
there were motion picture parlors throughout the 17nited
States. Twenty-four frames each second were sufficient to
give the viewer the illusion of motion.
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6 Stroboscopic photo of golfer's swing, Harold Edgerton

(See the article "The Dynamics of a Golf Club" in
Project Physics P.-mder 1.)

5 Bullet cutting jack of hearts,
Harold Edgerton

5 It took another ninety years after the time the crowded
street was photographed before a bullet in flight could be
"stopped." This remarkable picture was made by Professor
Harold Edgerton of MIT, using a brilliant electric spark
which lasted for about one millionth of a second.

6 A light can be flashed successfully at a controlled rate and
a multiple exposure (similar to the strobe photos in the
book) can be made. In this photo of the golfer, the light
flashed 100 times each second.

7 One does not need to have a flashing light to take multiple
exposures. You can take them accidentally by forgetting to
advance your film after each shot or you can do it purposely
by snapping the camera shutter rapidly in succession.

8 An interesting offshoot of motion pictures is the high-speed
motion picture. In the frames of the milk drop shown below,
1,000 pictures were taken each second. The film was whipped
past the open camera shutter while the milk was illuminated
with a flashing light (similar to the one used in photograph-
ing the golfer) synchronized with the film. When the film
is projected at 24 frames each second, action which took
place in 1 second is spread out over 42 seconds.

It is clear that the eye alone could not have seen the
elegant details of this somewhat mundane event.

f

8 Action shown in high speed film of milk drop. Harold Edgerton

7 Girl rising

,1



T3 rostultaneous SOW
ListowOneous rate of
change our way to assert that the only kind of speed we can measure

423 Tristantamous speed is average speed. To find average speed we need a ratio of
ustr9 eilobe phals or

distance and time intervals; a particular point along themass on spring
path does not define an interval. Nevertheless, there are

grounds for stating the speed at a point. We will see what

they are.

50 -

45

O 40

35

30

30 35 40

Time (sec)

You remember that our answer to the question, "How fast
was Leslie swimming at time t = 35 sec?" was "0.70 yd/sec."
That answer was obtained by finding the slope of a small
portion of the curve encompassing the point t = 35 sec.
That section of the curve has been reproduced in the margin
here. Notice that the part of the curve we used is seeming-
ly a straight line. Thus, as the table under the graph

shows, the value of the slope does not change as we decrease
the time interval lit. Now imagine that we closed in on the
point where t = 35 sec until the amount of curve remaining
became vanishingly small. Could we not safely assume that
the slope of that infinitesimal part of the curve would be
the same as that on the straight line of which it seems to
be a part? We think so. That is why we took the slope of
the straight line lying along the graph from t = 33.0 sec
to t = 37.0 and called it the speed at t = 35.0 sec.

Time

interval

(sec)

Distance
interval
(yds)

lid

at
(yds /sec)

We hope you noticed that in estimating a value for Les-

lie's instantaneous speed at a particular time, we actually

measured the average speed over a 4.0-sec interval. Con -

ceptually, we have made a leap here. We have decided that

the instantaneous speed at a particular time can be equated
to an average speed ad/at provided: 1) that the particular
time is encompassed by the time interval, lit, used to com-

pute pd/at and 2) that the ratio ad/at does not change ap-
preciably as we compute it over smaller and smaller time
intervals.

33

37 37

36

38.8

34
36

36.7

38.1 .70

34.5
35.5

37.05
37.75 .70

34.75

35.25
37.225

37.575 .70

IYiGi speed at a roirit,or
imtZwitameou.s npeeck, Was at
plalde IllaikebfraleCartS for From the graph we can compute the boy's average growth rate
CentE4.14345' ciffe"ritia(over the entire 18-year interval or over any other time
calculus prolasof a vioryous

interval. Suppose, however, we wanted to know how fast the.1.z4vtichn.

boy was growing on his fifteenth birthday. The answer

A concrete example will help here. In the oldest known
study of its kind, the French scientist de Montbeillard

periodically recorded the height of his son during the period
1759-1777. A graph of height versus age is shown on the
next page.
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190

becomes evident if we enlarge the

graph in the vicinity of the

fifteenth year. His height at 170

age 15 is indicated as point P,

and the other letters designate

time intervals on either side of
150

P. The boy's average growth rate

over a two-year interval is given 7 130

by the slope AB. Over a one-year

interval this average growth rate c

is given in the slope DC. The s 110

slope of EF gives the average

growth rate over six months,etc.

The three lines are not quite
90

parallel to each other and so

their slopes will be different.
70

In the enlarged sections below,

lines have been drawn joining

the end points of time intervals 50

of 4 mo, 2 mo and 1 mo around

the point t = 15 years.

0 2 4 6 8 10

age (yrs)

190
Notice that for intervals less than t = 1 yr, the lines

appear to be parallel to each other and gradually to merge

into the curve, becoming nearly indistinguishable from it.

You can approximate the tangent to this curve by placing a

ruler along the line GH and extending it on both sides.

The values of the slopes have been computed for the

several time intervals and are tabulated below.

a
w170

12 14 16 18

At Ad
14 15 16 17 18

age (yrs)

The graph above is an enlarge-
8 yr 49.0 cm 6.1 cm/yr ment of the corner of the graph

2 yr 19.0 cm 9.5 cm/yr at the top. The graph below
is a further enlargement of the

1 yr 8.0 cm 8.0 cm/yr middle of the enlargement.

6 mo 3.5 cm 7.0 cm/yr

4 mo 2.0 cm 6.0 cm/yr

2 mo 1.0 cm 6.0 cm/yr

180

We note that the values of vav
calculated for shorter and

shorter time intervals approach closer and closer to

6.0 cm/yr. In fact, for any time interval less than

2 months, the average speed vav
will be 6.0 cm/yr within the 11

limits of accuracy of the measurement of d and t. Thus, we

can say that on young de Montbeillard's fifteenth birthday, 170

he was growing at a rate of 6.0 cm/yr.
14 15

age (yrs)

16
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'lie- idea or v 4se) Average speed, we have said, is the ratio of distance
Z1t4'0\iit/ traveled to elapsed time, or, in symbols,
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in Dernovieration 3. We now define instantaneous speed at a point in time as the

limiting value approached by the average speeds in time-
intervals including that point, as At is made smaller and
smaller. In almost all physical situations such a limiting
value can be accurately estimated by the method described
on the previous page. From now on we will use the letter

v, without any subscript, to mean the instantaneous speed
defined in this way. (For further discussion, see the
article "Speed" in Project Physics Reader 1.)

Why this definition of instantaneous speed? We can, of
co'irse, define it any way we please, whether the definition
is a wise one is a matter of how useful it turns out to be
in analyzing motion. In chapter 3 we will find that change
of instantaneous speed, defined in this way, is related in a
beautifully simple way to force.

You may be wondering why we have used the letter "v" in-
stead of "s" for speed. The word "velocity" is often used
to mean the same thing as speed. In physics it is useful to

reserve "velocity" for the concept of speed in a specified
direction, and denote it by the symbol 4. When the direc-
tion is not specified, we remove the arrow and just use the
letter v, calling it speed. This distinction between v and
V will be discussed in more detail in Section 3.2.

Q4 Explain the difference between average
speed and instantaneous speed.

05 The baseball shown in the figure below
is presented here for your analysis.
You might tabulate your measurements
and construct a distance-time graph.
From the distance-time graph, you can
determine the instantaneous speed at
several times and construct a speed-
time graph. The time interval between
successive flashes is 0.5 sec. You
can check your results by referring to
the answer page at the back of this
unit.



1.13Acceleration--by comparison The baseball in the problem

above was changing speed accelerating. You could tell that

its speed was changing without having to take measurements

and plot graphs. But how would you describe how fast the

ball was changing speed?

To answer this question you have really only one new thing

to learn the definition of acceleration. Actually, the defi-

nition is simple, so the problem is not so much for you to

learn it as it is to learn how to use it in situations like

the one above. For the time being we will define the time-

rate of change of speed as acceleration. Later, this defini-

tion will have to be modified somewhat when we encounter

motion in which change in direction'becomes an important

factor. But for now, as long as we are dealing only with
development of acceIerdtetstraight line motion, we can equate the time-rate of change

is parallel -the detrelopmerit
of speed with acceleration.

OfSpectil and can serve as
Many of the effects of acceleration are well known to us. VIVAeW or Itie charter.

It is acceleration, not speed, that we feel when an elevator

starts up or slows down. The sudden flutter in our stomachs

comes only during the speeding up and slowing down portions

of the trip, and not during most of the ride when the ele-

vator is moving at a steady speed. Likewise, much of the

excitement of the roller coaster and other rides at amuse-

ment parks is directly related to their unexpected accelera-

tions. How do you know it is really not speed that causes

these sensations? Simply stated, you always detect speed by

reference to objects outside yourself. You can only tell

you are moving at a high speed in an automobile by watching

the scenery as it whizzes past you, or by listening to the

sounds of air rushing against the car or the whine of the

tires on the pavement. In contrast, you "feel" accelerations

and do not need to look out your car window to realize the

driver has stepped on the accelerator or slammed on the

brakes.

Now let us compare acceleration and speed:

Sun-wall I.8
I Tie rate of chortoje of
speed is acceleration.

(2. For uniform acceleraTtok,
a -= Avfat.

3. Avera9e. acceleration and
instantaneous acceleration
can be defined in
entv'elm analosous e
derkitrons of average speed
and (instantaneous speed.

The rate of change of The rate of change of
position is speed. speed is acceleration.

This similarity of form will enable us to use our previous

work on the concept of speed as a guide for making use of

the concept of acceleration. The techniques which you have

already learned for analyzing motion in terms of speed can

be used to study motion in terms of acceleration. For

example you have learned that the slope of a distance-time

graph at a point is the instantaneous speed. What would the

slope (i.e., tv /tt) of a speed-time graph indicate?

lEmpl-basfze direct-0k is
imporant but is not con-
sidered yet in order -0
sire 1I3 tine development
of fie ideas.

tirtiform accelertztiOn use
(14(Ad accelerometer

: Strthosttok, rneasurernerk
1'2 qru if various ',flattens

: erraiyfit ((nu kiken-tatos

This sratement 15 incomplete)
but corned' to -Pis coorext.
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Accelertiiiioi , of (ounpa, -the
The remainder of this section is made up of a list ofrare of charily of vetoes-tip-The

statements about motion along a straight line. The list hassttrriartt keve is valid ortil
Vie vevt (itited corAkut ocrwl.c. two purposes: 1) to help you review some of the main ideas
Linear ntOrian TYlitie next about speed presented in this chapter, and 2) to present
ChaKer 567171004 002 V; the corresponding ideas about acceleration so you may take
extZrided wzras, advantage of your knowledge of speed. For this reason,

each statement about speed is immediately followed by a
parallel statement about acceleration.

For example, if speed changes 1. Speed is the rate of change of position. Acceleration
from 4 m/sec to 5 al/sec during is the rate of change of speed.'
an interval of 1 second, average
acceleration is 1 (m/sec)/sec. 2. Speed is expressed in the units distance/time. Accel-
This is usually written more
briefly as 1m/sea, eration is expressed in the units speed/time.

3. Average speed over any interval is the ratio of the

corresponding distance and time intervals:

An airplane changes its speed
from 350 mi/hr to 470 mi/hr in
6.0 min. Its average accelera-
tion is 20 (mi/hr)/minwhether
or not the acceleration is uni-
form.

Adi

30

Adv =av At

Average acceleration over any interval is the ratio of the

corresponding speed and time intervals:

tv
a =av At

4. Instantaneous speed is the value approached by the

average speed as At is made smaller and smaller. Instanta-

neous acceleration is the value approached by the average
acceleration as At is made smaller and smaller.

5. If a distance-time graph is made of t motion of an
object, the instantaneous speed at any position will be given
by the slope of the tangent to the curve at the point of
interest. If a speed-time graph is made of the motion of an

object, the instantaneous acceleration at any position will
be given by the slope of the tangent to the curve at the
point of interest.

In this listing of statements about speed and acceleration,

the concepts of average and instantaneous acceleration have

been included for the sake of completeness. However, it

will be helpful to remember that when the acceleration is

uniform, it can be found by using the relationship

6v
=a - TT

for any interval whatever. That is, instantaneous and aver-
age acceleration have the same numerical value for constant
acceleration which will be the most usual case of motion we
shall encounter.



Until the work of Galileo in the seventeenth century,

acceleration proved to be a particularly difficult concept.

In the next chapter, we will examine Galileo's contribution

to our understanding of the nature of accelerated motion.

His work provides a good example of how scientific theory

and actual measurements are combined to develop physical

concepts.

Q6 What is the average acceleration of a
sports car which goes from 0 to 60 mph
in 5 seconds?

Q7 What is your average acceleration if you
change your speed from 4 miles per hour
to 2 miles per hour in an interval of
15 minutes?

t
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Study Guide

1.1 This book is probably different in
many ways from textbooks you have had
in other courses. Therefore we feel it
might help to make a few suggestions
concerning how to use it.

1. Unless you are told otherwise by
your teacher you should feel free to
write in the book. Indeed we encourage
you to do so. You will note that there
are wide margins. One of the purposes
of leaving that much space is to enable
you to write down questions or state-
ments as they occur to you as you are
studying the material. Mark passages
that you do not understand so that you
can seek help from your teacher. You
also notice that from time to time tables
are left incomplete or problems appear
in the text or margin. Complete such
tables and write your answers to problems
right in the text at the point where they
are raised.

32

2. You will find answers to all of
the end-of-section review questions on
page 127, and brief answers to some of
the Study Guide Questions on page 129.
Always try to do the problems yourself
first and then check your answers. If
your answer agrees with the one in the
book, then it is a good sign that you
understand the material (although it is
true, of course, that you can sometimes
get the right answer for the wrong
reason).

3. There are many different kinds of
items in the Study Guide at the end of
each chapter. It is not intended that
you should do everything there. Some-
times we put into the Study Guide
material which we think will interest
some students but not enough students
to merit putting into the main part of
the text. Notice also that there are
several kinds of problems. Some are
intended to give practice and help the
student in learning a particular concept
whereas others are designed to help you
bring together several related concepts.
Still other problems are intended to
challenge those students who like numeri-
cal problems.

4. Activities and experiments which
you can carry out at home or outside the
laboratory are described. We do not
suppose that you want to do all of these
but we do want you to take them serious-
ly. If you do you will find that you
are able to do quite a bit of science
without having to have an elaborate
laboratory.

5. The Project Physics course includes
many other materials in addition to this
book, such as film loops, programmed in-
struction booklets, and transparencies.
Be sure to familiarize yourself with the
Student Handbook, which describes further
outside activities as well as laboratory
experiments, and the Reader, which con-
tains interesting articles related to
physics.

1.2 Some practice problems:
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1,3 If you traveled one mile at a speed
of 1000 miles per hour and another rile
at a speed of 1 mile per hour your aver-
age speed would not be 1000 + 1

mphor 500.5 mph. 2
What would be your average speed?

7= 1.998 ylii(hr



1.4 A tsunami (incorrectly called "tidal
wave") caused by an earthquake occurring
near Alaska in 1946 consisted of several
sea waves which traveled at the average
speed of 490 miles/hour. The first of
the waves reached Hawaii four hours and
34 minutes after the earthquake occurred.
From these data, calculate how far the
origin of the tsunami was from Hawaii.

103 rni

1.5 Light and radio waves travel through
a vacuum in a straight line at a speed
of neprly 3 x 108 m/sec. The nearest
star, Alpha Centauri, is 4.06 x 1016 m
distant from us. If this star possesses
planets on which highly intelligent
beings live, how soon could we expect to
receive a reply after sending them a
radio or light signal strong enough to
be received there? t,.5

.

1.6 What is your average speed in the
following cases:

a) You run 100 m at a speed of 5.0
m/sec and then you walk 100 m
at a speed of 1.0 m/sec.C;=I.7m1sec

b) You run for 100 sec at a speed
of 5.0 m/sec and then you walk
for 100 sec at a speed of 1.0
m/sec? 7= 3.o vv/sec

1.7 Design some experiments which will
enable you to make estimates of the
average speeds for some of the following
:bjects in motion.

a) Baseball heaved from outfield to
home plate

b) The wind
c) A cloud
d) A raindrop (do all drops have

different speeds?)
e) Hand moving back and forth as

fast as possible
f) The tip of a baseball bat
g) Walking on level ground, up

stais, down stairs
h) A bird flying
i) An ant walking
j) A camera shutter opening and

closing 12154,4951.mi

1.8 What problems arise when you attempt
to measure the speed of light? Can you
design an experiment to measure the
speed of light? Discussici

1.9 Sometime when you are a passenger in
an automobile compare the speed as read
from the speedometer to the spe calcu-
lated from As/At. Explain any ffer-
ences. Discussion

1.10 An automobile speedometer is a small
current generator driven by a flexible
cable run off the drive shaft. The cur-
rent produced increases with the rate at
which the generator is turned by the

Study Guide

rear axle. The speedometer needle indi-
cates the current. Until the speedometer
is calibrated it can only indicate
changes in speed, but not actual speeds
in miles per hour. How would you cali-
brate the speedometer in your car if the
company had forgotten to do the job? If
you replaced your 24" diameter rear wheels
with 28" diameter wheels, what would your
actual speed be if your speedometer read
50 mph? Would your speedometer read too
high or too low if you loaded down the
rear end of your car and had the tire
pressure too low? What effect does the
speedometer have oa the speed of the car?
Can you invent a speedometer that has no
effect on the motion of the car?Dscussion

1.11 Take a look at the graph of y versus
x shown below:

2 3 4 6

Notice that in this graph the steepness
increases as x increases. One way to
indicate the steepness of the graph at
a point is by means of the "slope." The
numerical value of the slope at a point
P is obtained by the following procedure,
which is diagramed above. Move a short
distance along the graph from point A to
point B, which are on the curve and lie
on either side of point P. Measure the
change in y, (ay) in going from A to B.
In this example Ay = .6. Measure the
corresponding change in x, (Ax) in going
from A to B. Ax here is .3. The slope
is defined as the ratio of Ay to Ax.

Slope = .

In the example

slope AZ = '6 2.
Ax .3



Study Guide

Now there are three important ques-
tions concerned with slopes that we must
answer.

Q. What are the dimensionz or units
for the slope?

A. The dimensions are just those of
y/x. For example, if y represents a
distance in meters and x represents a
time in seconds then the units for slope
will be meters/seconds or meters per
second.

Q. In practice how close do A and B
have to be to point P? (Close is not a
very precise adjective. New York is
close to Philadelphia if you are travel-
ing by jet. If you are walking it is
not close.)

A. Choose A and B near enough 4-o
point P so that the line connect:: A
and B lies along the curve at point P.
For example:

7

6

5

4

y

3

2

0

1 2 3

x

4 5 6

Q. Suppose A and B are so close to-
gether that you cannot read Ax or Ay
from your graph. What does one do to
calculate the slope?

y

7

2 3

x

AY

4 5 6

A. Extend line AB as it is shown in
the figure and compute its slope. Notice
that the small triangle is similar to
the large triangle and that AY

AX Ax

Determine the slopes of this graph of
distance versus time at t = 1, 2, 3 and

34
4 seconds. 0,5 1 0 14 P.0

1.12 The electron beam in a TV set sweeps
out a complete picture in 1/30th of a
second and each picture is composed of
525 lines. If the width of the screen
is 20 inches, what is the speed of that
beam over the surface of the

0
sorepn?

vz: 315,00 10115e0
1.13 (Answer to question in text, page 23.)

Indeed the prediction based upon the first
lk hour was vastly wrong. Such a predic-
tion, based on a drastic extrapolation from
the first 11/2 hour's observation, neglects
all the factors which limit the-maximum
height obtainable by such a cluster of
balloons, such as the bursting of some of
the balloons, the change in air pressure
and density with height, etc. In fact,
at the end of 500 minutes, the cluster was
not 450,000 feet high, but had come down
again, as the distance-time graph for the
entire experiment shows. For another
extrapolation problem, see Study Guide
1.14.

90
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0
, 60
0

E 50

O 40
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120
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0

0 100 200 300 400 500

time (sec)

The altitude of a cosmic ray detector
carried aloft by a cluster of balloons.

1.14 World's 400-meter swimming records
for men and women. Ages are in paren-
theses:

1926 4:57.0
5:53.2

1936 4:46.4
5:28.5

1946 4:46.4
5:00.1

1956 4:33.3

4:47.2

1966 4:11.1
4:38.0

Weissmuller (18)
Gertrude Ederle (17)

Syozo Makino (17)
Helene Madison (18)

Makino (17)
Hveger (18)

Hironoshin
Furuhashi (23)

Crapp (18)

Frank Weigand (23)
Martha Randall (18)

By about how many meters would Martha
Randall have beaten Johnny Weissmuller
if they had raced each other? Could
you predict the 1976 world's record for
the 400-meter race by extrapolating the
graph of world records vs. dates up to
the year 1976? c6,25.6m
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Detailed analysis of a stroboscopic
photograph of a rolling ball yielded
information which was plotted on the
graph above. By placing your ruler
tangent to the curve at appropriate
points estimate the following:

a)

b)

c)

d)

e)

1.17

1.18

At what moment or interval was
the speed greatest? What was the
value of the speed at that time?---Prom
At what moment or interval was the II)

speed least? What was it at that 4.5

time? PI" 6 to toIC sec

What was the speed at time 5.0
sec? "°*-74-

What was the speed at time 0.5
sec? v O'711 "1(5436

How far did the ball move from
time 7.0 sec to 9.5 sec? a= a +am

116 Suppose you must measure the instanta-
neous speed of a bullet as it leaves the
barrel of a rifle. Explain how you
would do this. n5aussion

10 miles

Study Guide

Car A and car B leave point 1 simul-
taneously and both travel at the same
speed. Car A moves from 1 to 2 to 3
while car B moves from 1 to 3 directly.
If B arrives at point 3 six minutes
before A arrives, what was the speed of
either car? yr.. .4,0erel/kr

The data below show the instantaneous
speed in a test run of a Corvette car,
starting from rest. Plot the speed-
versus-time graph, and derive and plot
the acceleration-time graph.

a) What is the speed at t = 2.5
sec?

b) What is the maximum acceleration?

Time (sec) Speed (m/sec)

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0 Di6cus616j1

0.0
6.3

11.6
16.5
20.5
24.1
27.3
29.5
31.3
33.1
34.9

1.19 Discuss the motion of the cat in the
following photographs. Discussion

The numbers on each photograph indicate the number of inches measured
from the line marked "0"
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Chapter 2 Free Fall-Galileo Describes Motion

6unin-larm
1. lvteoltivat physical science was based
or< ti=le wrairtss of Aristotle.

-1-rt tote Aristot-elian scheme) Mere t,f0S
skarp diOdinci like between 1rie, ob.

on ear ik and tle Gk.,: ear. (u)
obp..a- moved orztui rlAtArn to tleir
"natural places"; c4es-ticil objec,ts, On ike
other' Inand( , moved in endless cAirAes.

3. Areaids iheoro of rnolfein survived
Per centrArteds in s'pit'e of ceeati-t known
weaknesses because 'it was part of
larser aocei:Qd conceptual. scheme ,

beccuAse 't was consistent r.itlk cornmoh-
sense ideas) because KO Grit 1S atter--
notaie -ft wories were available, and
because -tPle rnatkernatic,a1 and quariti-
ralikie methods wlite.,M were -to prove so
st.icri-R-ant had not been 61.4 cliantill
olevelopv-01..

Portrait of Galileo in crayon
by Ottavio Leoni, a contempo-
rary of Galileo.
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take a look at an important piece of research: Galileo's

study of freely falling bodies. While the physical problem

of free fall is fascinating in itself, our emphasis will be

on Galileo as one of the first modern scientists. Thus

Galileo's view of the world, his way of thinking, his use of

mathematics and his reliance upon experimental tests are as

important to us as the actual results of his investigation.

To understand the nature of Galileo's work and to ap-

preciate its significance, we must first examine the dif-

ferences between Galileo's new science of physics and the

medieval system of physical thought that it eventually re-

placed. By comparing the new with the old, we can see how

Galileo helped change our way of thinking about the world.

In medieval physical science, as Galileo learned it at

the University of Pisa, there was a sharp distinction be-

tween the objects on the earth and those in the sky. All

terrestrial matter, the matter within our physical reach,

was believed to be a mixture of four "elements"--Earth, Water,

Air and Fire. Each of these four elements was thought to

have a natural place in the terrestrial region. The highest

place was allotted to Fire. Beneath Fire was Air, then

Water and, finally, in the lowest position, Earth. Each

was thought to seek its own place. Thus, Fire would tend to

rise through Air, and Air through Water, whereas Earth would

tend to fall through both Air and Water. The actual move-

ment of any real object depended on the particular mixture

of these four elements making it up and where it was in re-

lation to its natural place.

The medieval thinkers also believed that the stars,

planets and other celestial bodies moved in a far simpler

manner than those objects on, or near, the earth. The

celestial bodies were believed to contain none of the four A
ordinary elements, but instead consisted solely of a fifth

element, the quintessence. The natural motion of objects

composed of this element was neither rising nor falling, but

endless revolution in circles around the center of the uni-

verse. The center of the universe was considered to be

identical with the center of the Earth. Heavenly bodies,.

Diagram of medieval concept of

the world structure.

A good deal of commonsense ex-
perience supports this view.
For example, Water bubbles up
through Earth at springs. When
sufficient Fire is added to
ordinary Water, by heating it,
the resulting mixture of ele-
ments (what we call steam)
rises through the air. Can you
think of other examples?

ComnporutiAgi PaU rAm of
(e914. and heave okbeett
When is air rwsist5Letatt

Importbwifr?
From ouinta essentia meaning
fifth essence. In earlier
Greek writings the term for it
was ether.

4E:91 O. ris=k freely t5
although moving, were thus at all times in their natural m- earn% is

places. They were thus set apart from terrestrial objects,pne&en bec4u4se be p.m* it

which displayed natural motion only as they returned to rnoinn9 toward ig. rtarusfol

their natural places from which they were displaced plaze .

This theory, so widely held in Galileo's time, originated

in the fourth century B.C.; we find it mainly in the writings
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of the Greek philosopher Aristotle. A physical science of

order, rank and place, it fits well many facts of everyday

observation. Moreover, these conceptions of matter and mo-

tion were part of an all-embracing scheme or "cosmology" by

which Aristotle sought to relate ideas which are nowadays

discussed separately under the headings of science, poetry,

politics, ethics and theology.

Aristotle was born in 384 B.C. in Stageira, a city in the

Greek province of Macedonia. His father was the physician

to Amyntas II, the king of Macedonia, and so Aristotle's

early childhood was spent in an environment of court life.

At the age of 17 he was sent to Athens to complete his educa-

tion. He spent 20 years there, first as a student and then

as a colleague of Plato. When Plato died, Aristotle left

Athens ana later returned to Macedonia to become the private

tutor of Alexander the Great (356-323 B.C.). In 335 B.C.,

Aristotle came back to Athens and founded the Lyceum, a

school and center of research. Little is known of his

physical appearance and little biographical information has

surviied. Fortunately, 50 volumes of his writings (out of

perhaps 400 in all) did sur- II

vive. These works of Aristotle %

remained unknown in Western

Europe for 1500 years after the

decline of the ancient Greek

civilization, until they were

rediscovered in the thirteenth

century A.D. and incorporated

into Christian theology. Aris-

totle became such a dominant

influence in the late Middle

Ages that he was referred to

simply as "The Philosopher."

Because of his habit of lecturing
in the walking place (peripatos,
in Greek) of the Lyceum, Aris-
totle's company of philosophers
came to be known as the "Peri-
patetics."

(111 IIMEMAIL

1A11....2=1.41 srni/ l1,.. ,.. t

The works of Aristotle constitute an encyclopedia of

ancient Greek thought some of it summarized from the work

of others, but much of it created by Aristotle himself. To-

day it seems incredible that one man could have written so

intelligently and knowledgeably on such different subjects as

logic, philosophy, theology, physics, astronomy, biology,

psychology, politics and literature. Some scholars doubt it

was all the work of one man.

Unfortunately, Aristotle's physical theories had limita-

tions which became evident much later, and we will devote

part of this chapter to showing where these limitations lie

in some specific cases. But this should not detract from

Aristotle's great achievements in other fields.

This painting titled "School of
Athens" was done by Raphael in
the beginning of the sixteenth
century. The painting clearly
reflects one aspect of the Ren-
aissance, a rebirth of interest
in classical Greek culture. The
central figures are Plato (on
left) and Aristotle. Raphael
used Leonardo da Vinci as his
model for Plato.

17e4+Nos 41 35e- AD EikeithS
views mat) ezem a little nave.
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Aristotle: rate of fall is
proportional to weight divided
by resistance.

See Study Guide 2.13.

John Philoponus: rate of fall
is proportional to weight minus
resistance.

40

According to Aristotle, the fall of a heavy object toward
the center of the earth is a natural motion. What factors
determine the rate of fall? A rock falls faster than a leaf;

therefore, he reasoned, weight must be a factor. An object
falls faster in air than in water, so the resistance of the
medium must also be a factor. Other factors, such as the

color and temperatire of the object, could conceivably af-
fect the rate of fall, but to Aristotle these were evidently
of little importance. He assumed that the rate of fall must
therefore increase in proportion to the weight of the object,
and decrease in proportion to the resisting force of the
medium. The actual rate of fall in any particular case would
be determined by dividing the weight by the resistance. In
his book On the Heavens, Aristotle makes the following state-
ment about natural motion (such as falling):

A given weight moves a given distance in a given
time; a weight which is heavier moves the same dis-
tance in less time, the time"being inversely propor-
tional to the weights. For instance, if one weight
is twice another, it will take half as long over a
given distance.

Aristotle also discussed "violent" motionthat is, motion
of an object which is not toward its natural place. Such
motion, he argued, must always be caused by a force, and the
speed of the motion will increase as the force increases.

When the force is removed, the motion must stop. This theory
agrees with our common experience in pushing desks or tables
across the floor. It doesn't seem to work quite so well for
objects thrown through the air, since they keep moving for a
while even after we have stopped exerting a force on them.
To account for this kind of motion, Aristotle assumed that
the air itself somehow exerts a force that continues to pro-
pel an object moving through it.

Later scientists proposed some modifications in Aristotle's
theory of motion. For example, John Philoponus of Alexandria,

in the fifth century A.D., argued that the speed of an object
in natural motion should be found by subtracting the re-
sistance of the medium from the weight of the object, rather
than dividing by the resistance. Philoponus claimed that he
had actually done experiments to support his theory, though
he did not report all the details; he simply said that he
dropped two weights, one of which was twice as heavy as the
other, and observed that the heavy one did not reach the
ground in half the time taken by the light one.

There were still other difficulties with Aristotle's
theory of motion. However, the realization that his teachings



concerning motion had their limitations did little to modify

the important position given to them in the universities of

France and Italy during the fifteenth and sixteenth

centuries. In any case, the study of motion through space

was of major interest to only a few scholars and, indeed, it

had been only a very small part of Aristotle's own work.

Nevertheless, Aristotle's theory of motion fitted much of

human experience in a general if qualitative way.

Two further influences stood in the way of radical
.CW..43k6 did not know algebra -

changes in the theory of motion. First, Aristotle had be- Ihey knew only geometry (and
lieved that mathematics was of little value in describing avVii -Mot Wilikoat numbers).

change? Second, he had put great emphasis upon qualitative Since seorridtr.ic proofs of
observation as the basis for all theorizing. Simple quanta- °Vert It.e' s(mplestacy-lorafc

propositions are vet' oorrtrfi-tive observation was very successful in Aristotle's bio-
catiNi we should not be Sur -

logical studies. But progress in physics began only when prized tat Aristotle's prejucke
acjain st yid ti erna t oscareful measurements were made under controlled conditions.

hove
It would not be at all rash to suggest that when, over

malhernalieS tbt Would
made 'ft passible meat

19 centuries after Aristotle, Galileo turned his eyes away With quantitalVe thservattOns
from all the complicated motions of things in the outside was not developed- wit( the

A.D.-terith ceritcries-world and fixed them on the curiously artificial motion of
e5U4a119 useda polished brass ball rolling down an inclined plane, his net a

tre
eyes made one of the most important turns in history. And

enSiV44 in sdleOce urea

when he succeeded in describing the motion of that ball

mathematically he not only paved the way for other men to tnw

describe andexplain the motions of everything from planets w et L2Jrr, ,C1.

to pebbles but did in fact begin the intellectual revolution
,4.244;0 //:-it(tiy

which led to what we now call modern science.

2.2 Galileo and his times. The new developments in both phys-

ics and astronomy came to focus in the writings of Galileo

Galilei. This great scientist was born at Pisa in 1564 the

year of Michelangelo's death and Shakespeare's birth.

Galileo was the son of a nobleman from Florence and he ac-

quired his father's active interest in poetry, music, and

the classics. His scientific inventiveness also began to

show itself early. For example, as a young medical student

at the University of Pisa, he constructed a simple pendulum-

type timing device for the accurate measurement of pulse

rates.

Lured from medicine to physical science by reading Euclid

and Archimedes, Galileo quickly became known for his un-

usual ability. At the age of 26, he was appointed Professor

of Mathematics at Pisa. There he showed an independence of

spirit unmellowed by tact or patience. Soon after his ap-

pointment, he began to challenge the opinions of his older

SUrnrvbaN Galileo Wed. a lortql-thogoihtf'u( and productitie fife. a. His ervat overall
contriburicin scierece adenicii -V his direct" 5cierTOftb discoveries 1 was in estabBiiii9
wiatkeenctlithd arid quargitiative prwecture as a vatic( part OF science. 41
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colleagues, many of whom became his enemies. Indeed, he

left Pisa before his term was completed, apparently forced

out by financial difficulties and by his enraged opponents.

Later, at Padua in the Republic of Venice, he began his work

in astronomy. His support of the sun-centered theory of the

universe eventually brought him additional enemies, but it

also brought him immortal fame. You will read more about

this in Unit 2.

Drawn back to his native province of Tuscany in 1610 by a

generous offer of the Grand Duke, Galileo became the Court

Mathematician and Philosopher, a title which he chose him-

self. From then until his death at 78 in 1642, he pro-

duced much of his excellent work. Despite illness, family

troubles, occasional brushes with poverty, and quarrels with

his enemies, he continued his research, teaching and writing.

Galileo gave us a new mathematical orientation toward the

natural world. His philosophy of science had its roots in

the ancient Greek tradition of Pythagoras, Plato and Ar-

chimedes, but it was in conflict with the qualitative ap-

proach characteristic of Aristotle. Unlike most of his

predecessors, however, Galileo respected the test of truth

provided by quantitative observation and experiment.

2.3 Galileo's "Two New Sciences." Galileo's early writings on

mechanics (the study of the behavior of matter under the in-

fluence of forces)were in the tradition of the standard

medieval theories of physics. Although he was keenly aware

of the short-comings of those theories, his chief interest

during his mature years was in astronomy. However, when his

important astronomical work, Dialogue on the Two Great World

Szstems (1632), was condemned by the Roman Catholic Inquisi-

tion and he was forbidden to teach the "new" astronomy,

Galileo decided to concentrate on mechanics. This work led

to his book, Discourses and Mathematical Demonstrations Con-

cerning Two New Sciences Pertaining to Mechanics and Local

Motion, usually referred to as the Two New Sciences. The new

approach to the science of motion described in the Two New

Sciences signaled the beginning of the end not only of the

medieval theory of mechanics, but also of the entire Aris-

totelian cosmology.

Galileo was old, sick and nearly blind at the time he

wrote Two New Sciences, yet his style in it is spritely and

delightful. He used the dialogue form to allow a lively

conversation between three "speakers": Simplicio, who rep-

Title page of Dialogue on Two
Great World Systems (1632).
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Title page of Discourses and
Mathematical Demonstrations
Concerning Two New Sciences Per-
taining to Mechanics and Local
Motion (1638)
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resents the Aristotelian view; Salviati, who presents the

new views of Galileo; and Sagredo, the uncommitted man of

good will and open mind, eager to learn. To no one's sur-

prise, Salviati leads his companions to Galileo's views.

Let us listen to Galileo's three speakers as they discuss

the problem of free fall:

Salviati: I greatly doubt that Aristotle ever
tested by experiment whether it is true that two
stones, one weighing ten times as much as the other,
if allowed to fall at the same instant, from a height
of, say, 100 cubits, would so differ in speed that
when the heavier had reached the ground, the other
would not have fallen more than 10 cubits. [A "cubit"
is equivalent to about 20 inches.]

Simplicio: His language would seem to indicate
that he had tried the experiment, because he says:
We see the heavier; now the word see shows that he
had made the experiment.

Sagredo: But, I, Simplicio, who have made the
test can assure you that a cannon ball weighing one
or two hundred pounds, or even more, will not reach
the ground by as much as a span ahead of a musket
ball weighing only half a pound, provided both are
dropped from a height of 200 cubits.

Here, perhaps, one might have expected to find a detailed

report on an experiment done by Galileo or one of his col-

leagues. Instead, Galileo presents us with a "thought ex-

periment"an analysis of what would happen in an imaginary

experiment, in which Galileo ironically uses Aristotle's own

method of logical reasoning to attack Aristotle's theory of

motion:

Salviati: But, even without further experiment,
it is possible to prove clearly, by means of a short
and conclusive argument, that a heavier body does
not move more rapidly than a lighter one provided
both bodies are of the same material and in short
such as those mentioned by Aristotle. But tell me,
Simplicio, whether you admit that each falling body
acquires a definite speed fixed by nature, a velocity
which cannot be increased or diminished except by
the use of violence or resistance?

Simplicio: There can be no doubt but that one
and the same body moving in a single medium has a
fixed velocity which is determined by nature and
which cannot be increased except by the addition of
impetus or diminished except by some resistance which
retards it.

Salviati: If then we take two bodies whose natural
speeds are different, it is clear that on uniting
the two, the more rapid one will be partly retarded
by the slower, and the slower will be somewhat1,eg. on the hastened by the swifter. Do you not agree with me

Ike e. in this opinion?

Simplicio: You are unquestionably right.



Salviati: But if this is true, and if a large
stone moves with a speed of,.say, eight while a
smaller moves with a speed of four, then when they
are united, the system will move with a speed less
than eight; but the two stones when tied together
make a stone larger than that which before moved
with a speed of eight. Hence the heavier body moves
with less speed than the lighter; an effect which
is contrary to your supposition. Thus you see how,
from your assumption that the heavier body moves
more rapidly than the lighter one, I infer that the
heavier body moves more slowly.

Qataeds av3urrieri-, voiced
here. by Sa(voati.,(ss spienclicC
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Simplicio: I am all at sea....This is, indeed,
quite beyond my comprehension....

As Simplicio retreats in confusion, Salviati presses

forward with the argument, showing that it is self-

contradictory to assume that an cbject would fall faster

if its weight were increased by a small amount. Simplicio

cannot refute Galileo's logic, but on the other hand his

own eyes tell him that a heavy object does fall faster

than a light object:

Simplicio: Your discussion is really admirable;
yet I do not find it easy to believe that a bird-shot
falls as swiftly as a cannon ball.

Salviati: Why not say a grain of sand as rapidly
as a grindstone? But, Simplicio, I trust you will
not follow the example of many others who divert the
discussion from its main intent and fasten upon some
statement of mine that lacks a hairsbreadth of the
truth, and under this hair hide the fault of another
that is as big as a ship's cable. Aristotle says
that "an iron ball of one hundred pounds falling from
a height of 100 cubits reaches the ground before a
one-pound ball has fallen a single cubit." I say
that they arrive at the same time. You find, on mak-
ing the experiment, that the larger outstrips the
smaller by two fingerbreadths....Now you would
not hide behind these two fingers the 99 cubits of
Aristotle, nor would you mention my small error and
at the same time pass over in silence his very large
one.

This is a clear statement of an important principle: in

careful observation of a common natural event the observer's

attention may be distracted from a fundamental regularity

unless he considers the possibility that small, separately

explainable, variations will be associated with the event.

Different bodies falling in air from the same height do not

reach the ground at exactly the same time. However, the im-

portant point is not that the times of arrival are slightly

different, but that they are very nearly the same! The

failure of the bodies to arrive at exactly the same time is

seen to be a minor matter which can be explained by a deeper

understanding of motion in free fall. Galileo himself attri-

buted the observed results to the resistance of the air. A

few years after Galileo's death, the invention of the air pump

See Study Guide 2.5 and 2.14.

A stroboscopic photograph of
two freely falling balls of un-
equal weight. The balls were
released simultaneously. The
time interval between images is
1/30 sec.
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allowed others to show that Galileo was right. When a
feather and a heavy gold coin are dropped from the same

knlert.r.art -Sow-nal of fh3sios
height at the same time inside an evacuated container, theyTwze "'Fa of baties near tte

earqW(equoiabin -For 'dnx.9 on a fall at the same rate and strike the bottom of the container
sphore). at the same 4.nstant.

Another argument against the
possibility of a vacuum could
be deduced from Aristotle's
theory: if the rate of fall is
equal to the weight divided by
the resistance and the resist-
ance of a vacuum is zero, then
the rate of fall of all bodies
must be infinite in a vacuum.
But that is absurd. Hence, a
vacuum is impossible:

By Aristotelian cosmology is
meant the whole interlocking set
of ideas about the structure of
the physical universe and the
behavior of all the objects in
it. This was briefly and in-
completely outlined in Sec. 2.1.
Other aspects of it will be
presented in Unit 2.

We might say that learning what to ignore has been almost
as important in the growth of science as learning what to
take into account. In this particular case, Galileo's ex-

planation depended on his being able to imagine how an ob-

ject would fall if there were no air resistance. This may
be easy for us who know of vacuum pumps. But in Galileo's
time it was an explanation unlikely to be accepted because

of the basic beliefs held by most educated people. For them,

as for Aristotle, common sense said that air resistance is
always present in nature. Thus, a feather and a coin could
never fall at the same rate. Why should one talk about

hypothetical motions in a vacuum, when a vacuum does not
exist? Physics, said Aristotle and his followers, should
describe the real world as we observe it, not some imaginary

world which can never be found. Aristotle's physics had
dominated Europe since the thirteenth century, not merely be-
cause of the authority of the Catholic Church, as is some-
times said, but also because many intelligent scientists

were convinced that it offered the most rational method for
describing natural phenomena. To overthrow such a firmly

established doctrine required much more than writing reason-

able arguments or simply dropping heavy and light objects

from a tall building, as Galileo is supposed to have done in
his legendary experiment on the Leaning Tower of Pisa. It

demanded Galileo's unusual combination of mathematical

talent, experimental skill, literary style, and tireless

campaigning to defeat Aristotle's theories and to get on
the path to modern physics.

2.4 Why study the motion of freely falling bodies? To attack the

Aristotelian cosmology, Galileo gathered concepts, methods
of calculation, and techniques of measurement in order to

describe the motion of objects in a rigorous, mathematical
form. Few details of his work were actually new, but to-
gether his findings provided the first coherent presentation
of the science of motion. He realized that free-fall motion,

now seemingly so trite, was the key to the understanding of
all motions of all bodies.

Galileo also provides an example of a superb scientist.
He was an investigator whose skill in discovery and eloquence

in argument produced a deep and lasting impression on his
Sminnmnarui 2.4 listeners. His approach to the problems of motion will
GicldetiS )1044.1 .OF 4;114: faii is wort carecua !cause t lartmer& a ccuPz study
of an auteaKidirt9 eatt Scartc6t using what was to develop 'Iviro fie rnaterrt. mode or
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provide us with an opportunity for discussion of strategies

of inquiry that are used in science. We shall see a new

mode of scientific reasoning emerge, to become, eventually,

an accepted pattern for scientific thought.

These are the reasons why we study in detail Galileo's

att;,ck on the problem of free fall. But perhaps Galileo

himself should tell us why he studied motion:

My purpose is to set forth a very ne: science deal-
ing with a very ancient subject. There is, in nature,
perhaps nothing older than motion, concerning which
the books written by philosophers are neither few nor
small; nevertheless, I have discovered some properties
of it that are worth knowing and that have not hitherto
been either observed or demonstrated. Some superficial
observations have been made, as, for instance, that the
natural motion of a heavy falling body is continuously
accelerated; but to just what extent this acceleration
occurs has not yet been announced....

Other facts, not few in number or less worth knowing I
have succeeded in proving, and, what I consider more
important, there have been opened up to this vast and
most excellent science, of which my work is merely the
beginning, ways and means by which other minds more
acute than mine will explore its remote corners.

2.5Galileo chooses a definition of uniform acceleration. In

studying the following excerpts from the Two New Sciences,

which deal directly with the motion of freely falling bodies,

we must be alert to his overall plan. First, Galileo dis-

cusses the mathematics of a possible, simple type of motion,

namely, motion with uniform acceleration. Then assumes

that this is the type of motion that a heavy body undergoes

during free fall. This assumption is nis main hypothesis

about free M11. Third, he deduces from this hypothesis

some predictions that can be tested experimentally. Finally,

he shows that these tests do indeed bear out the predictions.

In the first part of Galileo's presentation there is a

thorough discussion of motion with uniform speed similar to

the one in our Chapter 1. The second part concerns "uni-

formly accelerated motion"

We pass now to...naturally accelerated motion,
such as that generally experienced by heavy falling
bodies....

And first of all it seems desirable to find and
explain a definition best fitting natural phenomena.
For anyone tay invent an arbitrary type of motion
and discuss its properties...we have decided to
consider the phenomena of bodies falling with an

R. 4 Olert oiairined thatacceleration such as actually occurs in nr.ture and
to make this definition of accelerated motion exhibit Mfg firs nArai
the essential features of observed accelerated plietUrthena tat irt fact

He was wrong in this: more

than mere "superficial observa-
tions" had been made long be-
fore Galileo set to work. For
example, Nicolas Oresme and
others at the University of
Paris had by 1330 discovered
the same distance-time relation-
ship for falling bodies that
Galileo was to announce with a
flourish in the Two New Sci-
ences.

is scuji2tat
defaitiot show corresemIciti

what is aserveat in newt,.
It will help you to have this
plan clearly in mind as you pro-
gress through the rest of this
chapter. As you study each suc-
ceeding section, ask yourself
whether Galileo is
- presenting a definition
- stating an assumption
- deducing predictions from his
hypothesis

- experimentally testing the
vedictions.
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This is sometimes known as the
rule of parsimony: unless you
know otherwise, assume the sim-
plest possible hypothesis to
explain natural events.

Galileo is saying that just as
we have defined uniform speed
so that (to use our symbols,
not his):

Ad
v = ,

A t

let us also define uniform ac-
celeration so that:

Lv
a =

This is the same definition we
used in Chapter 1. Since Galileo
always deals with the case of
objects falling from rest, this
can be written in the form

v
a - .

Quoted cd-
bet)trvelir5 o f Chart r 3.

Here Salviati refers to Aris-
totle's assumption that air pro-
pels an object moving through
it (Sec. 2.1).
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Finally, in the investigation of naturally accel-
erated motion we were led, by hand as it were, in
following the habit and custom of nature herself,
in all her various other processes, to employ only
those means which are most common, simple and easy...

When, therefore, I observe a stone initially at
rest falling from an elevated position and contin-
ually acquiring new increments of speed, why should
I not believe that such increases take place in a
manner which is exceedingly simple and rather obvious
to everybody? If now we examine the matter carefully
we find no addition or increment more simple than
that which repeats itself always in the same manner.
This we readily understand when we consider the
intimate relationship between time and motion; for
just as uniformity of motion is defined by and
conceived through equal times and equal spaces
(thus we call a motion uniform when equal distances
are traversed during equal time-intervals), so also
we may, in a similar manner, through equal time-
intervals, conceive additions of speed as taking
place without complication....

Hence the definition of motion which we are
about to discuss may be stated as follows:

A motion is said to be uniformly accelerated,
when starting from rest, it acquires during equal
time-intervals, equal increments of speed.

Sagredo: Although I can offer no rational objec-
tion to this or indeed to any other definition devised
by any author whosoever, since all definitions are ar-
bitrary, I may nevertheless without defense be allowed
to doubt whether such a definition as the foregoing,
established in an abstract manner, corresponds to and
describes that kind of accelerated motion which we meet
in nature in the case of freely falling bodies....

Here Sagredo, the challenger, questions whether Galileo's
arbitrary definition of acceleration actually corresponds to
the way real objects fall. Is acceleration, as defined, use-
ful in describing their change of motion? Sagredo tries to
divert the conversation:

From these considerations perhaps we can obtain an
answer to a question that has been argued by philoso-
phers, namely, what is the cause of the acceleration
of the natural motion of heavy bodies....

Salviati, the spokesman of Galileo, sternly turns away
from this ancient concern for causes. It is premature, he
dee...xes, to ask about the cause of any motion until an ac-

curate description of it exists:

Salviati: The present does not seem to be the proper
time to :.nvestigate the cause of the acceleration of
natural motion concerning which various opinions have
been expressed by philosophers, some explaining it by
attraction to the center, others by repulsion between
the very small parts of the body, while still others
attribute it to a certain stress in the surrounding me-
dium which closes in behind the falling body and drives
it from one of its positions to another. Now, all these
fantasies, and others, too, ought to be examined; but



it is not really worth while. At present it is the
purpose of our Author merely to investigate and to demon-
strate some of the properties of accelerated motion,
whatever the cause of this acceleration may be.

Galileo has now introduced two distinct suggestions,

which we must take up in turn. 1) "Uniform acceleration"

means equal increases in speed Ay in equal times At; and

2) things actually fall that way. Let us fist look more

closely at Galileo's proposed definition.

Is this the only possible way of defining acceleration?

Is it obviously right? Not at all! As Galileo goes on to

admit, he once believed that in uniform acceleration the

speed increased in proportion to the distance traveled, Ad,

rather than to the time At. In fact, both definitions had

been discussed since early in the fourteenth century, and

both met Galileo's first command: assume a simple relation-

ship among the physical quantities concerned. Furthermore,

both definitions seem to match our commonsense idea of ac- 4r1LAbe 9pu Yritc#It covrw

celeratiot For example, when we say that a body is "ac- l'his and, ask lobir stAiletts to

celerating," we seem to imply "the farther it goes, the aiSe::2455 GOnsequecres of

faster it goes," as well as "the longer it keeps moving, the a c447Yritio,n hiee acceleration

faster it goes." And what, you might ask, is there to choose i6

between these two ways of putting it?

i'Lc('ileo himself

: Uniform velocity) vs.
uriform acceleratiOn.

A

Acceleration could be defined either way. But which de-

finition can be found useful in a description of nature?

This is where experimentation is important. Galileo defined

uniform acceleration so that change of speed is proportional 41613eFone !jou proceed-I0 Gac,a6,

to elapsed time and this definition led to fruitful conse- 4-6( our stektults {ice
tes -aiFiriCV Ortquences. Other scientists chose to define acceleration so

WONT t e cle
Acceleratial as adopti,4

that speed is proportional to distance traversed. Galileo's clatiNio.
definition turned out to be the most useful so it was brought

into the language of physics.

2.13Galileo cannot test his hypothesis directly. Galileo de-

fined uniform acceleration so that it would match the way

he bel 'red freely falling objects behaved. The next task

for Gali_eo was to show that the definition for uniform

acceleration (a = v/t = constant) was useful for describing

observed facts.

This was not as easy as it seems. Suppose we drop a

heavy object from several different heights say, from win-

dows on different floors of a building. In each case we

observe the time of fall t and the speed v just before the

object strikes the ground. Unfortunately, it would be very

difficult to make direct measurements of the speed v just

before striking the ground. Furthermore, the times of fall

Summaril 2.6
SecaLese'veloirci and treite
could vlet toe Kleasumd
accurotteicii leo. could
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are smaller (less than 3 sec even from the top of a 10- -story

building) than Galiieo could have measured accurately with
the clocks available.

7-6:DerWeton oF
votti cat 2

A Measurinci our
yew-Cron Tree

He wanted to answer the question:
for an object moving with uni-

form acceleration what is the
relationship between the dis-
tance traveled and the tine
elapsed?

As before,

v
initial

initial speed

v
final

. final speed

v
av average speed.

See Study Guide 2.6.

Does this equation hold for
cases of uniform acceleration
only?
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2.7Looking for logical consequences of Galileo's hypothesis.
The inability to make direct measurements to test his hypoth-
esis that v/t is constant did not stop Galileo. He turned
to mathematics to derive some other relationship that could
be measured with the equipment available to him.

Distance, of course, is easily determined, so Galileo set
out to derive an equation for acceleration expressed in terms
of distance an' time rather than speed and time. We shall
derive such an equation by using relationships familiar to
us, rather than by following Galileo's derivation exactly.
First, we recall the definition of average speed as the

distance traversed divided by the elapsed time. In symbols
we write

d
v = -
av t

This is a general definition and can be used to compute the

average speed for any moving object.

For the special case of an object moving with uniform ac-
celeration, we can express the average speed in another
way in terms of initial and final speed:

vinitial + v finalnitialv
av 2

If this uniformly accelerating object starts from rest, that

is vinitial 0, we can write

v
vfinal

vav 2 2 final

In words we would say the average speed of any object start-
ing from rest and accelerating uniformly is one-half the
final speed.

We now have two equations which can be applied to the
special case of uniformly accelerated motion. Since the

average speed is given by both of these equations, we can
eliminate v

av
. Thus,

v
av = - or d = v

av
t.t

So, substituting -vfinal for vav we have

d 1/2vfinal t'

* Emphasize 14at al( Mere equations one. for th DiCt( 0510eof utiowrr axeleraticin also, aft except lie fo:st are Pir-tie, special case of v O.
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We now have to take a final step. Somehow we need to

get acceleration into the equation and speed out of it.

Our starting place was:

a
vfinal

t

which, when we solve for
vfinal'

becomes

*
vfinal

at.

If we now combine this with

d 1/2vfinal t

we get * c = 1/2(at)t

Or d = xiat2.

it was graphic ratAe.r. iran af9elvraic,

Gillileo's own derivation was somewhat different from

this. However, he reached the same conclusion: in uniform-

ly accelerated motion the distance traveled in any time by

an object startin,i from rest is equal to one-half the ac-

celeration times the square of the time. Since we are deal-

ing only with the special case in which acceleration is uni-

form and 30 is constant, we can state the conclusion as a

proportion: in uniform acceleration the distance traveled

is proportional to the square of the time elapsed. For ex-

ample, 'f a uniformly accelerating cart moves 3 m in 2 sec,

it would move 12 m in 4 sec.

Now let us see where we are with reference to Galileo's

problem. Using the three expressions a vfinal
,

v
final

v
av

=
2

and d = v
av t, we found that d = liat2. This

simple relation, derived from Galileo's definition of ac-

celeration, is the key to an experimental test which he pro-

posed. The relation can be put into a form of more direct

interest if we divide it by t2:

d
-- = 1/2a .

t2

Thus a logical result of the original definition of uniform

acceleration is: whenever a is constant, the ratio, d/t2,

is constant. Therefore, any motion in which this ratio is

constant for different distances and times must be a case

of uniform acceleration as defined by Galileo. Of course,

it was his hypothesis that freely falling bodies exhibited

just such motion.

The derived relationship d/t2 = 12.a has one big advantage

over the definition of uniform acceleration: it does not

What is the unwritten text be-
hind this equation?

-/Fie unwritren text cnc(udesihe
tilip6e4t assumptions that t.ilere
`made in iAe derivation on p. So.
i) a is constant

a) vow O)
o3) d 0a -

Galileo's hypothesis restated:
for freely falling bodies the
ratio d/t2 is constant. How
else could this be worded?

d, CG t2
or ot ,-, kt2
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See Study Guide questions 2,16
and 2.17.

contain the speed v which Galileo had no reliable way of

measuring. Instead, it contains the distance d, which he

could measure directly and easily. However, th measurement

of the time of fall t remains as difficult as before.

Hence, a direct test of his hypothesis still eluded Galileo.

Q1 Why did Galileo use the equation d =
1 V

i-at 2 rather than a = T in testing his
2

hypothesis?

f12 If you simply combined the two equations

d = vt and a = T you might expect to get

the result d = at2. Why is this wrong?

Amman) 2.8

1. Galileo used the inc(tneol
plane as an instrument- for
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Note the careful description of
the experimental apparatus. To-
day an experimenter would add
to his verbal description any
detailed drawings, schematic
layouts, or photographs needed
to make it possible for any
other competent scientist to
duplicate the experiment.

Galileo turns to an indirect test. Realizing that it was

still impossible to carry out direct quantitative tests with

freely falling bodies, Galileo next proposed a related hy-

pothesis which could be tested much more easily. According

to Galileo, the truth of his new hypothesis would be estab-

lished when we find that the inferences from it correspond

and agree exactly with experiment.

The new hypothesis is this: if a freely falling body has

an acceleration that is constant, then a perfectly round

ball rolling down a perfectly smooth inclined plane will
also have a constant, though smaller, acceleration. Thus,

5tCarle Galileo claims that if a2 is constant for a body falling
hccs.

freely from rest, this ratio will also be constant, although0011-
rotow smaller, for a ball released from rest and rolling different
fed( distances down an inclined plane.

Here is how Salviati described Galileo's own experimental

test:

3. Experiment showed 'hot for al(
angles tested, sit2 15 constant.

Do you think measurements can
actually be made to 1/10-pulse
beat? Try it.
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A piece of wooden moulding or scantling, about
12 cubits long, half a cubit wide, and three
finger-breadths thick, was taken; on its edge was
cut a channel a little more than one finger in
breadth; having made this groove very straight,
smooth, and polished, and having lined it with
parchment, also as smooth and polished as possible,
we rolled along it a hard, smooth, and very round
bronze ball. Having placed this board in a sloping
position, by lifting one end some one or two cubits
above the other, we rolled the ball, as I was just
saying, along the channel, noting, in a manner
presently to be described, the time required to
make the descent. We repeated this experiment
more than once in order to measure the time with
an accuracy such that the deviation between two
observations never exceeded one-tenth of a pulse-
beat. Having performed this operation and having
assured ourselves of its reliability, we now rolled
the ball only one-quarter of the length of the
channel; and having measured the time of its
descent, we found it precisely one-half of the former.
Next we tried other distances, comparing the time
for the whole length with that for the half, or
with that for two-thirds, or three-fourths, or
indeed for any fraction; in such experiments,



repeated a full hundred times, we always found
that the spaces traversed were to each other as
the squares of the times, and this was true for
all inclinations of the...channel along which we
rolled the ball....

\\IP`""

Galileo has packed a great deal of information into these

lines. He describes his procedures and apparatus clearly

enough .0 allow other investigators to repeat the experiment

for themselves if they wish; he gives an indication that

consistent measurements can be made; and he restates the two

experimental results which he believes support his free-fall

hypothesis. Let us examine the r':sults carefully.

First, he found that when a ball rolled down an incline

at a fixed angle to the horizontal, the ratio of the distance

covered to the square of the corresponding time was always

the same. For example, if dl, d2, and d3 represent distances

from the starting point on the inclined plane, and tl, t2,

and t3 the corresponding times, then

d1 d2 d3

(tl) 2 ( t2) 2 (t3) 2

and in general (for a given angle of incline),

This picture, painted in 1841
by G. Bezzuoli, reconstructs
for us an experiment Galileo
is alleged to have made during
his time as lecturer at Pisa.
To the left and right are men
of the blase Prince
Giovanni de Medici (Galileo
had shown a dredging-machine
invented by the prince to be
unusable), and Galileo's sci-
entific opponents. These were
leading men of the universities,
who are bending over a sacro-
sanct book of Aristotle, where
it is written in black and white
that, according to the rules of
gravity, bodies of unequal weight
fall with different speeds.
Galileo, the tallest figure left
of center in the picture, is
surrounded by a group of students.
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Starting point

Angle of incline

d
= constant.

t2

Galileo did not present his experimental data in detail,

for that had ..pt yet become the custom. However, his ex-

periment has been repeated by others, and they have obtained

results which paralleled his. For example, one experimenter

obtained the results shown in Table 2.1. But this is an ex-

periment which you can perform yourself with the help of one

or two other students. The students seen conducting this

experiment recorded the findings in their notebook shown on

the next page.

Galileo's second experimental finding relates to what

happens when the angle of inclination of the plane is
d

2

changed. He found when the angle changed, the ratio --
t

also changed, although it was constant for any one angle.

Table 2.1. Results from an ex-
periment of Thomas Settle in
which the angle of inclination
was 3° 44' (See Science, 133,
19-23, June 6, 1961).

Distance Time (ml of d/t2
water)

15 ft 90 .00185

13 84 .00183

10 72 .00192

7 62 .00182

5 52 .00185

3 40 .00187

1 23.5 .00182
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ofThis was confirmed by repeating the experiment "a full hun- and Ste dam9ers

dred times" for each of many different angles. After finding

that the ratio -- was constant for each angle of inclination
t'

for which measurements of t could be carried out convenient-

ly, Galileo was willing to extrapolate.

d .He reasoned that the ratio 7 is a constant even for Tar-
t 4

ger angles where the motion of the ball is too fast for ac-

curate measurements of t to be made. Further, he reasoned

that if the ratio 1 is constant when the angle of incline-
t2

tion is 90°, then is also a constant for a falling object.
t2

Thus, by combining experimentation and reason, Galileo was

able to make a convincing argument that for a failing object

d
ithe ratio -- is a constant.

t2

Now let us review the steps we have taken. By mathematics

we showed that
t-- 2

= constant is a logical consequence of

T = constant. In other words, if the statement

is true: then the statement

is also true.

Section I.6
roloolatiOn ,

For each angle, the acceleration
is found to be a constant.

= constant Spheres rolling down planes of
t increasingly steep inclination.

At 90° the inclined plane
situation matches free fall.

= constant (Actually, the ball will start

t2 slipping long before the angle
has become that large.)

Next, Galileo proceeded to prove that
t-- 2

is a constant

for a falling object, By reversing the previous mathematics

you can show that if the statement

-T = constant

is true, then the statement

= constant
t

must also be true.

But = constant matches Galileo's definition of uniform

accelerattion namely
v

a = .

Therefore, his hypothesis that falling objects move downward

with uniform acceleration appears to be correct. See Study Guide questions 2.1,
2.2, 2.3, 2.4.

Q3 Galileo's verification of his hypothesis inclination can be extrapolated to large
that free fall is uniformly accelerated angles.
motion depends on the assumption that

(d) the speed of the ball is constant
(a) d/t2 is constant. as it rolls.

(b) the angle of inclination of the
plane does not change.

(c) the results for small angles of

(e) the acceleration of the rolling
ball is the same as the acceleration in
free fall.

55



Early Water Clocks.

56

Summar ti a R
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2.9 How valid was Galileo's procedure? Some doubts arise con-

cerning this whole process of reasoning and experimentation.

First, was Galileo's measurement of time accurate enough to

establish the constancy of -- even for the earlier case of
t2

a slowly rolling object? Galileo tries to reassure possible

critics by providing a detailed description of his experi-
mental arrangement (thereby inviting any skeptics to try it
for themselves!):

For the measurement of time, we employed a large
vessel of water placed in an elevated position; to
the bottom of this vessel was soldered a pipe of
small diameter giving a thin jet of water, which we
collected in a small cup during the time of each
descent, whether for the whole length of the chan-
nel or for a part of its length; the water thus col-
lected was weighed on a very accurate balance; the
differences and ratios of these weights gave us the
differences and ratios of the time intervals, and
this with such accuracy that, although the operation
was repeated many, many times, there was no appre-
ciable discrepancy in the results.

The water clock described by Galileo was not invented by
him. Indeed, there are references to water clocks in China
as early as the sixth century B.C., and they were probably
used in Babylonia and India even earlier. In Galileo's
time, the water clock was the most accurate of the world's
time measuring instruments, and it remained so until shortly

after his death when the work of Christian Huygens and others
resulted in the pendulum clock. Although Galileo's own water
clock was not the most precise available at the time, it was,
nevertheless, good enough for a convincing verification that

-- is constant.
t2

Another reason for questioning Galileo's results is re-
lated to the large extrapolation involved. Galileo does
not report what angles he used in his experiment. However,
as you may have found out from doing a similar experiment,
the angles must be kept rather small. Naturally, as the
angle increases, the speed of the ball soon becomes so great
that it is difficult to measure the times involved. The
largest angle reported by Settle in his modern repetition of
Galileo's experiment was only 6°. It is unlikely that Gali-
leo worked with much larger angles. This means that Gali-
leo's extrapolation was a large one, perhaps much too large
for a cautious person--or for one not already convinced of
the truth of Galileo's hypothesis.

Still another reason for questioning Galileo's results is
the observation that, as the angle of incline is increased,

there comes a point where the ball starts to slide as well
as roll. This change in behavior could mean that the same

g. Cialiteo's extPapolaticirt from rolfikot at small alisles to free fall IS
Vert) dubious. Not 0115 is -fAe eKtrapotc4ore , but rollfri9
c h c i n 9 e s 510615. ( tioneWeless, ditz Ls c -Par free fag)
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general law does not apply to both cases. Galileo does not

answer this objection. It is surprising that he never re-

peated the experiment with blocks which would slide, rather

than roll, down a smooth incline. If he had, he would have

found that for both sliding and rolling the ratio TT is a

constant although it is a different constant for the two cases.
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Q.4 The main reason why we might doubt the
validity of Galileo's procedure is

(a) his measurement of time was not
sufficiently accurate.

(b) he used too large an angle of
inclination.

(c) it is not clear that his results

apply to the case when the ball can slide
as well as roll.

(d) in Galileo's experiment the ball
was actually sliding rather than rolling,
and therefore his results cannot be ex-
trapolated to the case of free fall.

(e) d/t2 would not be constant for a
sUding object.

2.10The consequences of Galileo's work on motion. As was

pointed out at the end of the previous section, one can not

get the correct value for the acceleration of a body in free

fall simply by extrapolating the results for larger and

larger angles of inclination. In fact Galileo did not even

attempt to calculate a numerical value for the acceleration

of freely falling bodies. Galileo's purpose could be well

served without knowing the value of the acceleration for

free fall; it was enough that he showed the acceleration to

be constant. This is the first consequence of Galileo's

work.

Second, if spheres of different weights are allowed to

roll down an inclined plane, they have the same acceleration.

We do not know how much experimental evidence Galileo him-

self had for this conclusion. At any rate, later work con-

firmed his "thought experiment" on the rate of fall of

bodies of different weights (Sec. 2.3). The fact that

bodies of different weights all fall at the same rate (aside

from the understandable effects of air resistance) is a de-

cisive refutation of Aristotle's theory of motion.

Third, Galileo developed a mathematical theory of ac-

celerated motion from which other predictions about motion

could be derived. We will mention just one example here,

which will turn out to be very useful in Unit 3. Recall

that Galileo chose to define acceleration not as the rate

of change of speed in a given space, but rather as the rate

of change of speed in a given time. He then found by ex-

periment that accelerated bodies in nature actually do ex-

perience equal changes of speed in equal times. But one

might also ask: if speed does not change by equal amounts

in equal distances, is there anything else that does change

by equal amounts in equal distances, for a uniformly ac-

celerated motion? The answer is yes: the square of the

We now know by measurement that
the magnitude of the accelera-
tion of gravity, symbol ag or
simply g, is about 9.8 misec2
or 32 ft /sect at the earth's
surface (see Study Guide 3.17).
The Student Handbook contains
five experiments for getting
as.
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Can you derive this equation?
(Hint: start from equations
for d and v and eliminate t.)

v =at 01= tat2

t -:. Y.
et

See Study GuidAj2.21 and 2.23.
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speed changes by equal amounts in equal distances. There is
a mathematical equation which expresses this result:

v2 = 2ad

In words: if an object starts from rest and moves with uni-

form acceleration a through a distance d, then the square

of its speed will be equal to twice the product of its

acceleration and the distance it has moved. We shall see

the importance of v2 = 2ad in Unit 3.

These consequences of Galileo's work, important as they

are to modern physics, would scarcely have been enough to

bring about a revolution in science by themselves. No sen-
sible person in the seventeenth century would have given up

his belief in the Aristotelian cosmology simply because its

predictions had been refuted in the case of falling bodies.

The significance of Galileo's work is that it prepared the

way for the development of a new kind of physics, and indeed
a new cosmology.

The more vexing scientific problem during Galileo's life-
time was not the motion of accelerated bodies, but the
structure of the universe. For example, is the earth or the
sun the center of the universe? Gainer, supported the
theory that the earth and other planets revolve around the
sun. To accept such a theory meant, ultimately, to reject

the Aristotelian cosmology; but in order to do this a phys-

ical theory of the mJtion of the earth would have to be de-
veloped. Galileo's theory of motion turned out to be just

what was needed for this purpose, but only after it had been
combined with further assumptions about the relation between
forces and motion by the English scientist Isaac Newton. We
shall return to the story of this revolution in science in
Unit 2.

There is another significant aspect of Galileo's work on
motion: it led to a new way of doing scientific research.
The heart of this approach is the cycle, repeated as often as
necessary: general observation + hypothesis + mathematical

analysis + experimental test + modification of hypothesis as

necessary in light of test, and so forth. But while the

steps in the mathematical analysis are determined by "cold

locic," this is not the case for the other elements. Thus a

variety of paths can lead to the hypothesis in the first
place: an inspired hunch based on general knowledge of the

experimental facts, a desire for simple and pleasing founda-

tions, a change of a previous hypothesis that failed. More-

over, there are no general rules about how well the experi-

mental data have to agree with the theoretical predictions.

In some areas of science, a theory is expected to be



accurate to better than one 1/1000th of a percent; in

other areas, scientists would be delighted to find a theory

that could make predictions with as little as 50 percent

error.

The process of proposing and testing hypotheses, so skill-

fully demonstrated by Galileo in the seventeenth century, is

widely used by scientists today. It is perhaps the most

significant thing that distinguishes modern science from

ancient and medieval science. The method is used not out of

respect for Galileo as a towering figure in the history of

science, but because it works so well so much of the time.

Galileo himself was aware of the value of both the results

and the methods of his pioneering work. He concluded his

treatment of accelerated motion by putting the following

words into the mouths of the commentators on his book:

Sagredo: I think we may concede to our Academi-
cian, without flattery, his claim that in the prin-
ciple laid down in this treatise he has established
a new science dealing with a very old subject. Ob-
serving with what ease and clearness he deduces from
a single principle the proofs of so many theorems,,
I wonder not a little how such a question escaped
the attention of Archimedes, Appolonius, Euclid and
so many other mathematicians and illustrious philo-
sophers, especially since so many ponderous tomes
have been devoted to the subject of motion.

Salviati: ...we may say the door is now opened,
for the first time, to a new method fraught with
numerous and wonderful results which in future years
will command the attention of other minds.

Sagredo: I really believe that...the principles
which are set forth in this little treatise will,
when taken up by speculative minds, lead to
another more remarkable result; and it is to be
believed that it will be so on account of the
nobility of the subject, which is superior to
any other in nature.

During this long and laborious day, I have en-
joyed these simple theorems more than their proofs,
many of which, for their complete comprehension,
,'ould require more than an hour each; this study,
if you will be good enough to leave the book in my
hands, is one which I mean to take up at my leisure
after we have read the remaining portion which deals
with the motion of projectiles; and this if agree-
able to you we shall take up tomorrow.

Salviati: I shall not fail to be with you.

The "Academician" is the author
of the treatise being discussed
in the dialogues that is, Gali-
leo himself.

Projectile motion will be taken
up in Chapter 4.

OliWhich of the following was not a conse-
quence of Galileo's work on motion?

(a) The correct numerical value of
the acceleration in free fall was ob-
tained by extrapolating the results for
larger and larger angles of inclination.

(b) If an object starts from rest

and moves with uniform acceleration a
through a distance d, then the square
of its speed will be proportional to a
and also proportional to d.

(c) Bodies moving on a smooth inclined
plane are uniformly accelerated (ac-
cording to Galileo's definition of ac-
celeration).
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Study Guide

2.1 List the steps by which Galileo pro-
gressed from his first definition of
uniformly accelerated motion to his
final confirmation that this definition
is useful in describing the motion of a
freely falling body. Identify each step
as a hypothesis, deduction, observation,
or computation, et.!. What limitations
and idealizations appear in the argument?Tiscusswri

2.2 Which of the following statements
best summarizes the work of Galileo on
free fall? (Be prepared to defend your
choice.) Galileo: Viseusstovi

a) proved that all objects fall at
exactly the same speed regard-
less of their weight.

b) proved that for any one freely
falling object, the ratio: d
is constant for any t2

distance.
c) demonstrated conclusively that

an object rolling down a smooth
incline accelerates in the same
way as (although more slowly
than) the same object falling
freely.

d) used logic and experimentation to
verify indirectly his assertion
that the speed of a freely fall-
ing object at any point depends
only upon, and is proportional
to, the time elapsed.

e) made it clear that until a vacuum
could be produced, it would not
be possible to settle the free-
fall question once and for all.

2.3 Write a short statement (not more
than two or three sentences) summarizing
Galileo's work on free fall better than
any of those in 2.2 above. 2Nrussovi

2.4 As Director of Research in your class,
you receive the following research pro-
posals from physics students wishing to
improve upon Galileo's free-fall experi-
ment. Would you recommend support for
any of them? If you reject a proposal,
you should make it clear why you do so.

a) Historians believe that Galileo
never dropped objects from the
Leaning Tower of Pisa. Too bad:
Such an experiment is more di-
rect and more fun than inclined
plane experiments, and of course,
now that accurate stopwatches
are available, it can be carried
out much better than in Galileo's
time. The experiment involves
dropping, one by one, different
size spheres made of copper,
steel, and glass from the top
of the Leaning Tower and finding
how long it takes each one to
reach the ground. Knowing d

60

b)

c)

(the height of the tower) and
time of fall t, I will substitute
in the equation d = 1/2at2 to see
if the acceleration a has the
same value for each sphere.

A shotput will be dropped from
the roof of a 4-story building.
As the shotput falls, it passes
a window at each story. At each
window there will be a student
who starts his stopwatch upon
hearing a signal that the shot
has been released, and stops the
watch as the shot passes his
window. Also, each student re-
cords the speed of the shot.
From his own data, each student
will compute the ratio v/t. All
four students shOuld obtain the
same numerical value of the
ratio.

Galileo's inclined planes "dilute"
motion all right, but the trouble
is that there is no reason to
suppose that a ball rolling down
a board is behaving like a ball
falling straight downward. A
better way to accomplish this
is to use light, fluffy, cotton
balls. These will not drop as
rapidly as metal spheres, and
therefore it would be possible
to measure the time of the fall
t for different distances d.
The ratio d/t2 could be deter-
mined for different distances
to see if it remained constant.
The compactness of the cotton
ball could then be changed to
see if a different value was
obtained for the ratio. Discus5iori

2.5 Consider Aristotle's statement "A
given weight moves (falls] a given dis-
tance in a given time; a weight which is
as great and more moves the same dis-
tance in less time, the times being in
inverse proportion to the weights. For
instance, if one weight is twice another,
it will take half as long over a given
movement." We Caelo]

1,456ion
Indicate what Simplicio and Salviati

each would predict for the rest of the
falling motion in these cases:

a) A two-pound rock falls from a
cliff and, while dropping,
breaks into two equal pieces.

b) A hundred-pound rock is dropped
at the same time as one hundred
one-pound pieces of the same
type of rock.

c) A hundred one-pound pieces of
rock, falling from a height,
drop into a loosely held sack
which pulls loose and falls.



All the rocks are in the sack
and continue falling while con-
tained by the sack.

2.6 A good deal of work preceded tnat of
Galileo on the topic of motion. In the
period (1280-1340) mathematicians at
Merton College, Oxford, carefully con-
side-ed quantities that change with the
passtge of time. One result that had
profound influence was a general theo-
rem known as the "Merton Theorem" or
"Mean Speed Rule."

This theorem might be restated in our
language and applied to uniform accel-
eration as follows: the distance an ob-
ject goes during some time while its
speed is changing uniformly is the same
distance it would go if it went at the
average speed the whole time.

Using a graph, and techniques of
algebra and geometry, construct a proof
of the "Merton Rule."

2.7 In the Two New Sciences Galileo
states, "...for so far as I know, no
one has yet pointed out that the dis-
tances traversed, during equal interval
of time, by a body falling from rest,
stand to one another in the same ratio
as the odd numbers beginning with unity
(namely 1:3:5:7...)...."

The area beneath a speed-time graph
represents the distance traveled during
some time interval. Using that idea,
give a proof that the distances an ob-
ject falls in successive equal time in-
tervals will be in such a ratio.

Proof

2.3 Indicate whether the following
statements are true or false when ap-
plied to the strobe photo at the right:

Study Guide

2.10 These last two questions raise the
issue of direction. The photograph
in the figure below is of a ball
thrown upward, yet its acceleration
is downward. The acceleration due to
gravity may appear as the slowing down
of an upward moving object, or as the
speeding up of a downward moving one.
To keep these matters straight, a plus
and mines sign convention is adopted.
Such a convention is merely an arbi-
trary but consistent set of rules.

th4e a) The speed of the ball is greater
at the bottom than at the top.

tiue b) The direction of the acceleration
is vertically downward.

fake c) This could be a freely falling
object.

.false d) This could be a ball thrown
straight upward.

2.9 Apply the same statements to the
photo at the right, once again indi-
cating whether each statement is true
or false.

a) five
b)
C) 'Prue
d) due

ti

0
a,

The main rule we adopt is: LIE is the
positive direction. It follows that the
acceleration due to free fall g always
takes the negative sign; distances above
the point of release are positive, those
below it negative; and the speed of an
object moving upward is positive, down-
ward negative.

The figure below is a photo of the
path that a ball might take if you
it up and then let it fall to the
rather than catching it when it reach._
your hand again. To assure yourself
that you understand the sign convention
stated above, complete the table below.

1:315.5ics Teacher
Aril '63.

*DetronOatein of
freely faltirtotbooties'
October

bodies"

C

B

Kate sneaky A
.introoluctibil or
inte9naticin

S

D

E

Stroboscopic photograph of a
ball thrown into the air.

osition
A
B

C

D

E

d v a

+
+
o
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Study Guide

2.11 Draw a set of points (as in a strobe
photo) to show the successive positions
of an object that had a positive accel-
eration upward. Can you think of any
way to produce such an event physically?

iN6cussiori

2.12 The instrument shown below on a cart
is called a liquid surface accelerometer.
Whenever the accelerometer experiences
an acceleration in a direction parallel
to its long dimension, the surface of
the liquid tilts in the direction of the
acceleration. Design a demonstration in
which acceleration remains constant but
speed and direction change.

Dt6cussiori

2.13 Drop sheets of paper with various de-
grees of "crumpling." Can you crumple a
sheet of paper tight enough that it will
fall at the same rate as A.tennis ball?

JASCIASS(Oh

2.14 Tie two objects (of greatly different
weight) together with a piece of string.
Drop the combination with different
orientations of objects. Watch the
string. In a few sentences summarize
your results. DISCUSS(oh

a) State each of the three equations
in words.

b) Which of the equations can be
applied only to objects starting
from rest?

c) Make up a simple problem to demon-
strate the use of each eqtation.
For example: How long will it
take a jet plane to travel 3200
miles if it averages 400 mi/hr?
Also work out the solution just
to be sure the problem can !,e
solved. Discussiom

2.16 Memorizing equations will not save
you from having to think your way through
a problem. You must decide if, when
and how to use equations. This means
analyzing the problem to make certain
you understand what information is given
and what is to be found. Test yourself
on the following problem. Assume that the
acceleration due to gravity is 10 m/sec2.

Problem: A stone is dropped from
rest from the top of a high cliff.

a) How far has it fallen after 1
second? d= -5.°P"

b) What is the stone's speed after
1 second of fall? V= -10 v"15ec

c) How far does the stone fall during
the second second? (That is,
from the end of the first second
to the end of the second second.)a - rel

2.17 Think you have it now? Test yourself
once more. If yt.t have no trouble with
this, you may wish to try problem 2.18,
2.19, or 2.20.

Problem: An object is thrown straight
upward with an initial velocity of
20 m/sec.

a) What is its speed after 1.0 sec? V=
b) How far did it go in this first lOrn(Sec

second? Cf =15rri
c) How long did the object take to

reach its maximum height? t----"P sec,
d) How high is this maximum height?S=gom
e) What is its final speed just

before impact? V= -020 )1156c.

2.15 In these first two chapters we have
been concern4.d motion in a straight 2,18 A batter hits a pop fly that travelsline. We have dealt with distance,
time, speed and acceleration, and with
the relationships between thew. Sur-
prisingly, most of the results of our
discusion can be summarized it the
three equations listed below.

Ad :,vv = a = d = 'gatav At av At

The last of these equations applies
only to those cases where the accelera-
tion is constant. Because these three
equations are so useful, they are worth
remembering.

62

straight upwards. The ball leaves his
bat with an initial speed of 40 m/sec.

a) What is the speed of the bail at
the end of 2 seconds? 'If ".°1°P1116ec.

b) What is its speed at the end of
6 seconds? of -9° "1(5"

c) When does the ball reach its
highest point? t'dilksec.

d) How high is this highest point? G=SOrn
e) What is the speed of the ball at

the end of 10 seconds? (Graph,
this series of speeds . ) vt '40 en[Sec

f) What is its speed when caught by
the catcher? of = -4=0"/Isec



2.19 A ball starts up an incliAed plane
with a speed of 4 m/sec, and comes to a
halt after 2 seconds.

a) What acceleration does the ball
experience? ay. -a plitsec2

b) What is the average speed of the
ball during this interval?C!=c9a-Vsec

c) What is the ball's speed after 1
second? of = a ny'sec

d) How far up the slope will the
ball travel? et 4,mq

e) What will be the speed of the
ball 3 seconds after starting
up the slope? of r--Pm(satc

f) What is the total time for a
round trip to the top and back
to the start?t,....,/, sec

2.20 Lt. Col. John L. Stapp achieved a
speed of 632 mph (284 m/sec) in an ex-
perimental rocket sled at the Holloman
Air Base Development Center, Alamogordo,
New Mexico, on March 19, 1954. Running
on rails and propelled by nine rockets,
the sled reached its top speed within 5
seconds. Stapp survived a maximum
acceleration of 22 g's in slowing to
rest during a time interval of 11/2

seconds. (22 g's means 22 x a .)

a) Find the average acceleration in
reaching maximum speed. ii = Sim*?

b) How far did the sled travel be-
fore attaining maximum speed?5=710m

c) Find the average acceleration
while stopping.W= -190yr(/sec2

Study Guide

2.23 A student on the planet Arret in
another solar system dropped an object
in order to determine the acceleration
due to gravity. The following data are
recorded (in local units):

2.21 Sometimes it is helpful to have a
special equation relating certain vari-
ables. For example, initial and final
speed, distance, and acceleration are
related by the equation

vf2=v.2+ 2ad.

Try to derive this equation from some
others you are familiar with. eRvotr,

2.22 Use the graph below, and the idea that
the area under a curve in a speed-time
graph gives a value for the distance
traveled, to derive the equation

d = vlt + ;ate.
'Proof'

time

a)

b)

Time
(in surgs)

0.J
0.5
1.0
1.5
2.0
2.2
2.4
2.6
2.8
3.0

Distance
(in welfs)

0.00
0.54
2.15
4.84
8.60

10.41
12.39
14.54
16.86
19.33

What is the acceleration due to
gravity on the planet Arret,
expressed in welfs /surge?

A visitor from Earth finds that
one welf is equal to about 6.33
cm and that one surg is equiva-
lent to 0.167 sec. What wodld
this tell us about Arret?

a) a.
SfAr92

b) a= II m/Sec-z
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Chapter 3 The Birth of Dynamics-Newton Explains Motion

64

Section Page

3.1 The concepts of mass 65
and force

3.2 About vectors 66

3.3 Explanation and the 67
laws of motion

3.4 The Aristotelian explana- 68
tion of motion

3.5 Forces in equilibrium 70

3.6 Newton's first law of 71
motion

3.7 Newton's second law of 74
of motion

3.8 Mass, weight, and grave- 78
tation

3.9 Newton's third law of 80
motion

3.10 Using Newton's laws of 82
motion

3.11 Nature's basic forces 84

7
4st

-4

or'



3.1 The concepts of mass and force. Galileo investigated many

topics in mechanics with insight, ingenuity and gusto.

The most valuable part of that work dealt with special types

of motion, such as free fall. In a clear and consistent

way, he developed useful schemes for describing how objects

move. Kinematics is the study of how objects move.

When Isaac Newton began his studies of motion in the

second half of the seventeenth century, Galileo's earlier

insistence that "the present does not seem to be the proper

time to investigate the cause of the acceleration of natural

motion...." was no longer valid. Indeed, largely because

Galileo had been so effective in describing motion, Newton

could turn his attention to dynamics; that is, to the

question of why objects move the way they do.

Surnmarii 3.1

I. Inihitekikernaties deals wtt$
fAe descriptieirt of motion,
otnarritc.,s is itiat brandi oF
mechanics w1-ten at(`empts
to e4<pla,n

"--srte and( MOSS Are
dynamic C.A0vteep Whose
import:trice, was first" yec05_
vtized

How does dynamics differ from kinematics? As we have

seen in the two earlier chapters, kinematics deals with

the description of motion. Dynamics goes beyond kinematics

by taking into account the cause of the motion. For exam-

ple, in describing the motion of a stone cropped from a
lFie*16 of' drictritios i6 irithodced

cliff, we might include the height from which the stone is

dropped and the time the stone remains in its fall. With oveirofn nuetioked in
this information we could compute the stone's average speed Chapter A (p.47), whert SalyON
and its acceleration. But, when we have completed our de- ( CVW40)&24.1-5 111011t Me 'tine

scription of the stone's motion, we are still not satisfied.** la& 44004 rn64441 4941r

Why, we might ask, does the stone accelerate rather than
CbaSC4iptrtSIS OICkOt.

fall with a constant speed? Why does it accelerate uniform-

ly? To answer these questions, we must add to our arsenal

of concepts those of force and mass; and in answering, we

are doing dynamics.

Fortunately, the concepts of force and mass are not

exactly new. Our common sense idea of force is closely

linked with our own muscular activity. We know a sustained

effort is required to lift and support a heavy stone. When

we push a lawnmower, row a boat, draw a bow, or pull a sled,

our muscles let us know we are exerting a force. Perhaps

you notice how naturally force and motion and muscular ac-

tivity are united in our minds. In fact, when you think of

moving or changing the motion of an object (e.g., hitting

a baseball), you naturally think of the muscular sensation

of exerting a force.

coetrablir it wdk knematiCs.
is

The idea of mass is a little more subtle. You have

used the word mass, but common sense alone does not lead

to a useful definition. Certainly it does not have to

do only with size--a brick is more massive than a beach-

ball. Think of a grapefruit and a shot put. Which has

Kinematic Concepts

position
time
speed
acceleration

Dynamic Concepts

mass
force
momentum (Ch. 9)
kinetic energy (Ch. 10)
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SummarA 3.9
1. quantities tatikvolve direction

(and at add ocean:fins fo ate
paral(elocruri law)are called
vectors; non eitiectidnal
quantities- are called scalars.

2. ThSplocernent d, Velocity
and acceleratik b7 art
meotor quantities.

3. Arrows are used to repre-
sent tie dinvotion and rnasni-
tUcte cc vectors. An arrow
losricr& in Vie Same direction
as 'the vector t represerts,
and A terwp proportteinal
10 Ie- wvoiutole. of Vie vector.

AccelenAtian is rnore
erciset9 derrnect as ant, =
AV(At aker Mayzi -

tide or torte c rectta rt of
chanoje,ikere is acceierrthOrt.

a greater mass? The shot put, you say. But why? Because
it is heavier? Iq mass merely a synonym for weight? No,

because if an astronaut smuggled the shot put and the
grapefruit aboard his space capsule, then once the vehicle
is in a region where the gravitational pull is no longer
felt, it will still be much more difficult to accelerate
the shot put in throwing it forward (as on p. 64) than
would be a grapefruit. Even in the absence of weight,

mass remains, and one is felt to be more massive than the
other. Probably we can agree that mass is a measure of
the quantity of matter in any object; but even this toes
not solve our difficulty. The question still remaining
is, "What is meant by 'quantity of matter'?"

Newton did not "discover" the concepts of force and mass.
What he did was this: first, he recognized that these con-
cepts were basic for an understanding of motion and second,
he clarified these concepts and defined them in a way that
made them extremely useful. In the mind of Newton, the con-
cepts of force and mass became more than fuzzy, qualitative

Acid&o oF vectom notions he found a way to attach numbers to them. This mays) 6: Directieirz of anal ci not sound like much. But, by the end of this chapter, per-
141Uoltoin OF 1 and 67(0a4oci0 haps you will agree that Newton's contribution was indeed

J2I°: 44/11-00""(4.4413 (MT01(inS) extraordinary. L.3 Vector addition, veloCd9 of a boot
3.2 About vectors. Force is a vector. If you are asked to push

a piece of furniture from one part of a room to another,
you size up the situation as follows. First, your experi-
ence suggests to you the magnitude of the force required. A
force of greater magnitude is required to move a piano than
to move a foot stool. Second, you determine the direction

in which the force must be applied to make the desired move.
Obviously, both the magnitude and the direction of the force
are important.

tit

PULL

EESUCT-Ar,Sr

FOROV.-.

A vector is represented by an
arrow-headed line segment whose
length is drawn proportional to
the magnitude of the vector and
whose direction is the same as
the vector.

66

We cannot define a vector until we understand how two
vectors are added together. If two forces of equal magni-
tude, one directed due east and the other directed due
north, are applied to a resting object free to move, it
will take off in the northeast direction the direction of
the resultant force. The resultant force is the sum of the
individual forces. The resultant force is found by appli-
cation of the rule for vector addition the parallelogram
law. The parallelogram law is illustrated below.

F.

4 ;F



'16 vectors programs deve(op a "hio GitiarmeA04 of veeraes.

-Who adaion Ian/ IS) ndolerthehN5) a parallelogram kw."

Now we can define a vector. Something which has both A vector is labeled by a letter

magnitude and direction, and which adds by the parallelo- with an arrow over it; for ex-
ample, t, aa, or v.

gram law, is a vector. A surprising variety of things have

both magnitude and direction and add together according to

the parallelogram law. For example, displacement, velocity

and acceleration are vector quantities. Concepts such as

volume, distance, or speed do not require specifying a

direction in space, and are called scalar quantities.

In Sec. 1.8 we hedged a bit on our definition of acceler-

ation. There we defined acceleration as the rate of change

in speed. That is correct, but it is incomplete. Now we

want to consider the direction of motion as well. We shall

define acceleration as the rate of change of velocity where

velocity is a vector having both magnitud,. and direction.

In symbols,
a;

a = --
av At

where Av is the change in velocity. Velocity can change in

two ways: by changing its magnitude (speed) and by changing

its direction. In other words, an object is accelerating

when it speeds up, slows down, or changes direction.

We will use vectors frequently. To learn more about them,

ask your teacher for the Project Phys.:.cs program Vectors.

Q1 What is the difference between speed and
velocity?

Q2 An object is moving with a velocity of
10 m/sec due north. Five seconds later,
it is moving with a velocity of 10 m/sec

VCtors

Waors
ftnta

due east.

(a) What is the change in the veloci-
ty Ai.P

(t) What is the average acceleration
Av/At?

3.3 Explanation and the laws of motion. So far in our study of

kinematics, we have encountered four situations: an object

might

a) remain at rest

b) move uniformly in a straight line

c) speed up, and

d) slow down.

Because the last two of these are examples of acceleration

the list could really be reduced to 1) rest, 2) uniform

rectilinear motion, and 3) acceleration. These are the

phenomena that we shall first try to explain.

The words "explain" or "cause" have to be used with

care. To the physicist, an event is "explained" when he

can demonstrate that the event is a logical consequence of

stam441, bressumes to be true. In other words, a physicist,

Newtert:s laws of rnotion e)qolain almost all obeervatOns of 0/0041
ikt -the sense ihat lie observations are cone'stent v:Ark Ike
d.escriptions siven 69 -Az laws ( when hie- cortairains arekrtown).

I
ill.11111111
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with faith in a law, "explains" an observation by showing

that it is consistent with the law. In a sense, the

physicist's job is to show that the infinity of separate,

different-looking occurrences are merely different mani-

festations of a few general rules on which the world is
built.

To explain rest, uniform motion and acceleration, we

must be able to answer such questions as: why does a vase
placed on a table remain stationary? If a dry ice puck

resting on a smooth, level surface is given a brief push,

why does it move with uniform speed in a straight line,

rather than slow down noticeably or curve to the right or
left?

Answers to these (and almost all) specific questions

about motion are contained either directly or indirectly in
the three general laws of motion formulated by Newton.

These laws appear in his famous book, Philosophiae Naturalis

Principia Mathematica, which is usually referred to simply
as The Principia. We shall examine Newton's three laws of
motion one by one. If you are curious about these laws

and if your Latin is fairly goodyou might try translating
them from the original (shown in the margin). A modernized
version of Newton's laws, in English, is in Study Guide 3.1.

Before looking at Newton's contribution let us first

find out how some other scientists of Newton's time might

have responded to some of these questions.
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r.

played a central role in the dynamics of Aristotle, twenty
centuries before Newton. You will recall from Chapter 2
that there were two types of motion--"natural" motion and
"violent" motion. For example, a falling stone is in
natural motion. A stone being steadily lifted is in vio-
lent motion. To maintain this uniform violent motic

, a
force must be continuously applied. A person lifting a
large ctone is keenly aware that a continual force is re-
quired as he strains to hoist the stone higher.

Let us explore the idea of violent or unnatural motion
a little further, for as we shall see, there were difficul-
ties. To understand these difficulties, let us takq a
specific example an arrow flying through the air. Aris-
totle had generalized the common-sense notion that an ob-
ject cannot undergo violent motion without a mover, or
something pushing on it. Thus, an arrow flying through the
air must be continually propelled by a force. Further, if

I. Ac n9 to Newton's first law , nadAer wrist' or uniform proton reclaims e,cp/orlatroh; by6 8 contrast) 11 to ArisWelickri system all motion or eartly objects requires explanation.
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the propelling force is removed, the arrow should immediate-

ly stop its flight and fall directly to the ground. But

how can this be? Does the arrow fall to the ground as soon

as it loses direct contact with the bow string? The archer

and certainly the victim are aware that it does not.

What then is the force that propels the arrow? This

force was accounted for by an ingenious suggestion: the

motion of the arrow was maintained by the air itself! A

commotion is set up in the air by the initial movement of

the arrow; that is, as the arrow starts to move the air is

compressed and pushed aside. The rush of air to fill the

space being vacated by the arrow (remember that according

to Aristotle a vacuum is impossible) maintains it in its

flight.

To an Aristotelian, a force is necessary to sustain uni-

form motion. The explanation of uniform motion is reduced

to identifying the origin of the force. And that is not

always easy.

Of course, Aristotle's followers had other problems. For

example, a falling acorn does not move with uniform speed

it accelerates. How is acceleration explained? Aristoteli-

ans thought the speeding up of a falling object was associ

ated with its approaching arrival at its natural place, or

home, the earth. In other words, a falling object is like

the tired old horse that perks up and starts to gallop as it

approaches the barn. Galileo's Aristotelian contemporaries

offered a more scientific-sounding but equally false expla-

nation for the acceleration of falling bodies. They claimed

that when an object falls, the weight of the air above it

increases while the colun of air below it decreases, thus

offering less resistance to its fall.

When a falling acorn finally reaches the ground, as

close to the center of the earth as it can get, it stops.

And there, in its natural place, it remains. Rest, the

natural state of the acorn, requires no explanation. You

see, the three phenomena rest, uniform motion, and acceler-

ation could be explained by an Aristotelian. Now, let us

examine the alternative explanation that our present under-

standing offers.

4.

Keeping an object in motion at
uniform (constant) velocity.

Study Guide 3.2

Q3 According to Aristotle, a
necessary to maintain motion.

is Q4 Can you come up with an Aristotelian ex-
planation of a dry-ice puck's uniform
motion across a table top?
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In which cases are
the forces balanced?

For reasons explained in the
next section, we shall have to
make a correction, and add or
in uniform rectilinear motion"
wherever the word "rest"
appears in this section.

3.5 Forces in equilibrium, Forces make things movethey also
hold things still. The barrel supporting a circus elephant

and the cable supporting the main span of the Golden gate
Bridge are both under the influence of mighty forces, yet
they remain at rest. Apparently, more is required to ini-
tiate motion than the mere application of a force.

Of course, this may not be surprising to you. We have

all seen children quarrelling over the same toy. If each

child pulls determinedly in his own direction, the toy goes

nowhere. On the other hand, if two of the children cooper-

ate and pull together against the third, then the tide of

battle shifts.

Surnrnar2 3.5
TT -the um of all fates
actin on on object at

70 r iS 2.e.xiol 'fie object
will Yrxnain at me.

Likewise, in a tug-of-war between two teams, there are

large forces exerted at each end, but the rope may not
budge an inch. You might say it is all a matter of balance.

If the team pulling in one direction exerts a force equal

to that of the team pulling in the other direction, the

forces acting on the rope are balanced and the rope does
not move. The physicist would say that the rope is in

equilibrium under the forces acting on it.

The vector nature of force suggests a graphical repre-

sentation of the tug-of-war or the toy-pulling episode.

When we draw the lengths of the vectors representing the

forces acting on the rope or toy proportional to the mag-

nitudes of the forces, we discover a surprising result.

We can predict whether or not the rope or the toy will re-
main at rest! In fact, if we know the forces acting on

any object, we can generally predict whether an object at

rest will remain at rest.

It is as simple as this: if the vectors representing

the forces acting on an object at rest add up to zero, the

object is in equilibrium under these forces and will re-

main at rest. To return to our tug-of-war, let us assume

the forces are known and are accurately represented by the

vectors drawn below. They are balanced; that is, the net
force is zero.

force q force .f.,

feasi 2 +Rom. 1

:

-(-----
it-a

F. -* 7g. = 0



This same procedure can be applied to the toy. Again, the

known forces are represented by vectors and are drawn be-

low. Is the toy in equilibrium under the forces? Yes, if

the vectors add up to zero. Let's see.

Yes, indeed, the truck is in equilibrium. To obtain the

answer, we merely apply the rule of vector addition. A

ruler and protractor are, of course, handy tools of the trade.

We can now summarize our understanding of the state of

rest as follows: if the sum of all forces acting on an ob-

ject at rest is zero, the object will remain at rest. We

regard rest as a condition or state in which forces are

balanced.

We are defining equilibrium
without worrying whether the
object will rotate. For ex-

ample

17 144 0
The sum of the forces on the
plank in the diagram is zero,
but it is obvious that the
plank will rotate.

Study Guide 3.3

CIS Which arrow (a,b,c, or d)
indicates the direction
and magnitude of the force
needed to balance the two
10-pound forces indicated
in the diagram?

3.15Newton's first law of motion. Were you surprised when you
L 0 06.

first pushed a dry-ice puck or some other frictionless de- prommi

vice? Remember how it glided along after just the slightestila a ..lithx

SUrnrnarril 3.

nudge? Remember how it showed no signs of slowing down?

Or speeding up? We were surprised, probably because tae

puck failed to live up to our everyday Aristotelian

expectations.

Yet the puck was behaving quite naturally indeed. If

the retarding forces of friction were absent, a gentle

push would cause tables and chairs to glide across the

floor just like a dry-ice puck. Newton's first law brings 3. arritealibric Cc ate
the eerie motion of the puck from the realm of the unnatural law:

a) inertia. is a basic inherant
prorte" of al( objects.
b) no

0$54rvieS

is at red" or
urtifOrrm mgetiOn
kne tter One
/kenms are. no

unbalanced forces actin 9 on
it; atti otccelenAart
an ukbalanced -forc.e,

9. Newtons firms taw is Some-
Miles referred 'Co as Vie taw
or .

to that of the natural. The first law can be stated as

follows:

Every object continues in its state of rest or of
uniform rectilinear motion unless acted upon by
an unbalanced force.

One must think of all the forces acting on an object.

If all forces, including friction, balance, the body will

be moving at constant ; ("rest" being a special case,

namely ; = 0). Straight-line motion is assured if all

forces on the object balance or cancel.

coky4WMGOL(

bervAsfen an object at
Yee and an object in motran,
o)-ro aiescnloe ortok, a
Yrcevence fnarne, must be
Srthfiec(
ci) Mere- ro dista-tekin Ue-
t1 time ti and celestio1
p cs- . Same- taw applies
iov to objects on earn. and

p(alleU an.oi S. 71



/dental' 3-ournai offiq sks
Apra/64{, "lIfelor9 or iEie
dfr suprorIbot puck '

Do: NeuitS. ffist Ut4
A : hiewl;ort's Fist taw

! A matter re latVe rrao n This thought experiment started with an actual observa-
tion, If a pendulum bob on the end of a string is pulled
back and released from rest, it will swing through an arc
rising to very nearly its starting height. Indeed, as
Galileo showed, the pendulum bob will rise almost to its
starting height even if a peg is used to change the path

rdthough Newton was the first to express this law in
general terms, it was clearly anticipated by Galileo. Of
course, neither Galileo nor Newton had dry ice pucks, so
they could not experimentally observe motion for which
friction had been so significantly reduced. Instead, Gali-
leo did a thought experiment in which he imagined the
friction to be zero.

Another thought experiment.
(a) A ball rolls down a smooth
inclined plane; it gathers speed,
i.e., v increases. (b) If it is
made to roll up an incline, v
decreases. (c) If the surface
slants neither up nor down, i.e.,
is perfectly level, the ball,
once started, will neither speed
up nor slow down, i.e., 4' will
remain constant.

b)

V V-im
c)

From this observation he generates his thought experiment.

A ball released from a height, h, on a frictionless incline,

will roll up an adjoining incline, also frictionless, to

the same height. Further, he reasons, this result is in-

dependent of the path length.

L

0

ck

The implications of the thought experiment illustrated
in the above diagram are these: as the incline on the
right is lowered from positions (a) to (b) and to (c), the
ball must roll further in each case to reach its original
height. In the final position (d) the ball can never
reach its original height; therefore, Galileo believed the
ball would roll in a straight line and at a uniform speed
forever.

This tendency of objects to maintain their state of
rest, or of uniform motion, is called "the principle of
inertia." In fact, Newton's first law is sometimes referred
to as the law of inertia. Inertia is an inherent property



quarrel over the toy. Suppose the quarrelling children

were sitting on the deck of a barge that was slowly drift-

ing, with uniform velocity, down a lazy river. Two observ-

ers one on the barge and one on the shore will give

reports on the incident as viewed from their frames of

reference. The observer on the barge will observe that

the forces on the toy are balanced and will report that with

respect to him it is at rest. The observer on the shore will

report that the forces on the toy are balanced and that with

respect to him the toy is in uniform motion. Which observer

is right? They are both right. Rest or uniform motion

depends on one's point of view.

You may have found Galileo's thought experiment to be

convincing, but remember that neither Galileo nor Newton

proved the principle of inertia. Think of how you might

try to verify that principle experimentally. You could

start an object moving (perhaps a dry ice disc) in a situa-

tion in which there is no unbalanced force ,^ting on it.

Then you could observe whether or not the object continued

to move uniformly in a straight line, as the first law

claims it should. But there are at least two drawbacks to

this experiment:

1. How do you know that there is no unbalancea force

acting on the object? The only answer we have is: because

the object continues to move uniformly in a straight line.

But that reason j_s merely a restatement of the first law

which we wanted to prove by experiment. Surely we cannot

use the first law to verify the first law!
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The intuition that all of nature's phenomena are interlinked



Newton's idea of a straight
line.

Study Guide 3.5 and 3.6

1. It presents inertia, the tendency of an object to
maintain its state of rest or uniform motion, as a basic
inherent property of all objects.

2. It makes no dynamical distinction between an object
at rest and an object in uniform motion. Both states are
characterized by the absence of unbalanced forces.

3. It raises the whole issue of reference frames. An
object stationary for one observer might he in motion for
another observer; therefore, if the ideas of rest or uni-
form motion are to have any significance, a reference
frame must be stipulated.

4. It is a general law. It emphasizes right from the
start that a single scheme is being formulated to deal with
motion anywhere in the universe. For the first time no
distinction is made between terrestrial and celestial
domains. The same law applies to objects on earth as foL
planets and stars.

5. The first law informs us of the behavior of objects
when no force acts on them. Thus, it sets the stage for
the question: what happens when a force does act on an
object?

Q6 Can you give a Newtonian explanation of
a dry-ice puck's uniform motion across
the table top?

t27 How does Newton's concept of inertia
differ from Galileo's?

Dia

A
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7 Newton's second law of motion. So far we have met two of
our three objectives: the explanation of rest and of
uniform motion. In terms of the first law, the states
of rest and uniform motion are equivalent; they are the
states that result when no unbalanced force acts on an
object. I? 9 "8peect"

TZ f0 " MotiOre

Study Guide

3.1 Newton's First Law: Every object
continues in its state of rest or of
uniform rectilinear motion unless acted
upon by an unbalanced force.

Newton's Second Law: The.. accelera-
tion of an object is directlj propor-
tional to, and in the same direction as,
the unbalanced force acting on it, and
inversely proportional to the mass of
the object.

Newton's Third Law: To every action
there is always opposed an equal reac-
tion: or, mutual actions of two bodies
upon each other are always equal and
directed to contrary parts.

3.2 The Aristotelian explanation of mo-
tion should not be dismissed lightly.
Great intellects the Renaissance
period such as Leonardo da Vinci, who,
among other things, designed artillery
for launching projectiles, apparently
did not challenge the Aristotelian
explanation. One reason for the longev-
ity of Aristotle's ideas is that they
are so closely aligned with our common-
sense ideas. In what ways do your com-
mon-sense notions of motion agree with
Aristotle's? -7-1J,A*SC'4591011

3.3 Three children, Karen, Keith and
Sarah are each pulling on the same toy.

Karen pulls toward the east with a
force of 8 units.

Sarah pulls toward the north with a
force of 6 units.

Keith pulls in a direction 30° south
of west with a force of 12 units.

a) Is there a net (i.e., unbalanced)
force on the toy? yes

h) Tf there i' A net fnr,n, wh,* is

3.5 In terms of Newton's first law,
explain:

3.6

3.7

a)

b)

c)

a)

b)

why people in a moving car lurch
forward when the car suddenly
decelerates;

what happens to the passengers of
a car that makes a sharp and
quick turn;
why, when a coin is put on a
phonograph turntable and the
motor is started, the coin flies
off when the turntable reaches
a certain .peed. Why doesn't
it fly off before?

3.7101,1
You exert a force on a box, but
it does not move. How would
you explain this? How might an
Ari:...otelian explain it?

Suppose now that you exert a
greater force, and the box
moves. Explain this from your
point of view and from an
Aristotelian point of view.pScusswil

Assume that the floor of a laboratory
could be made perfectly horizontal and
perfectly smooth. A block of wood is
placed on the floor and given a small
push. Predict the way in which the
block will move. How would this motion
differ if the whole laboratory were
moving with constant velocity during
the experiment. How would it differ if
the whole laboratory were accelerating
along a straight line? if the block
were seen to move in a curved path along
the floor, how would you explain this?

pcsaussc.oil3.8 A body is being dccelerated by an
unbalanced force. If the magnitude of
the net force is doubled and the mass
of the body is reduced to one-third of
the original value, what will be the



The last section was concluded by a list of insights

provided by the first law. Perhaps you noticed that there

was no quantitative relationship established between force

and inertia, Newton's second law of motion enables us to

reach our third objectivethe explanation of acceleration

--and also provides a quantitative relationship between

force and inertia. We shall study these two aspects of

the second law, force and inertia, individually. First

we consider the situation in which different forces act on

the same object, and then the situation in which the same

force acts on different objects.

To emphasize the force aspect, the second law can be

stated as follows:

The net unbalanced force acting on an object
is directly proportional to, and in the same
direction as, the acceleration of the object.

More briefly, this can be written as.

1WE4RT

Apple falling - negligible
friction

Feather falling at nearly
constant speed

acceleration is proportional to net force.

for acceleration, we can rewrite this as:

To say that one quantity is proportional to another is to

make a precise mathematical statement- Here it means that

if a given force causes an object to move with a certain

acceleration, then twice the force will cause the same

object to nave twice the acceleratior :;tree times the

force will cause three times the acceleration, and so on.

Using symbols, this becomes:

if F causes a

then 2F w ill cause 2a
2P will cause

hP w ill cause

5.5P w ill cause 5.5a

Kite, held suspended by wind

Man run against wind

and sc on. So much for tne effect of different forces on

a single object. Now we can :',resider the inertia aspect of

the second law, the effect of tne same force acting on dif-

ferent objects. In discussing the ''irst law, we defined

inertia as the resistance of an object to having its veloc-

ity changed. We know from experience and observation that

some objects have greater inertia than others. For in-

stance, if you were to throw a baseball and a shot put with

your full force, you know very well that the baseball would

be accelerated to a greater speed than the shot put. The

acceleration given to a body thus depends as much on an

inherent characteristic as it does on the force applied.

3.4mrriartl 3.7
I. Acc eavition ts prove"' Cecina!

AccelerutiOn is inversely
prvportional tb Yictss.

3. tiet

4.. in --2, mks styratts, Ike. Atari-
dorol to:4 of forte , I kg..nt I soc2,
'le Called z ritivevfM.



What does it mean to say that
mass is a scalar quantity?

ZF is a simple number tzith

uriirs, but- kfilhout akrectian .

Complete this table of the re-
lationships letween mass and
acceleration for a fixed force:

mass acceleration

m
2m

3m

1/5m
0.4m
45m
Woo
Narmn

30 m/sec
2

2

15 m/sec
tO 0

IV47
75 so

2/3 0
2

3 m/sec
2

75 m/sec
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(Remember: the force referred to is always the unbalanced

or resultant force.)

Inertia seems to be associated with the massiveness the

amount of matter in an object. These vague ideas of "mas-

siveness" and "amount of matter" have been replaced in

physics by the quantitative concept of mass. Mass is a

measure of the inertia of any object.

If you have several objects, and if you apply the same

force to each, the various accelerations will not be the
same. Newton's claim is that the resulting acceleration

of each object is inversely proportional to its mass.

Using m as a symbol for mass (a scalar quantity), and a as

a symbol for the magnitude of the vector acceleration a, we
can write

a is inversely proportional to m,

or, what is mathematically the same thing,

1a is proportional to IT .

This means that if a certain force causes a given object

to have a certain acceleration, then the same force will
cause: an object having twice the mass to undergo one-half

the acceleration; an object having three times the mass,

one-third the acceleration; an object of one-fifth the mass,

five times the acceleration; and so on. Using symbols, we

can express this as:

if for a given force P

m will experience

then 2m will experience

3m will experience

1/5 m will experience

2.5m will experience

etc.

a,

1/2 a,

1/3 a,

5a,

0.4a,

Now we can combine the roles played by force and mass

in the second law into a single statei.ent:

The acceleration of an object is directly propor-
tional to, and in the same direction as, the un-
balanced force acting on it, and inversely rropor-
tional to the mass of the object.

rlrtunately, the idea
vls WA/ VS mom. =cur-

expressed,,iebou'n this 19ng statement can

b:, summarized by the equation w
04164 ,24,1440 as am pAt.

f
net jectualifLi here depends

a = won Chc a pr arias.
which can be taken as a statement of Newton's second law.

In this expression the unbalanced or net force is symbol-

ized by fnet . The second law may of course equally well be

written in the form-
4

fnet = ma.



This is probably the most fundamental single equation in

all of Newtonian mechanics. We must not let the simplicity

of the law fool us; behind tnat equation there is a lengthy

"text."

If the law is to be useful, however, we must find a

way to express force and mass numerically. But how? By

measuring the acceleration which an unknown force gives a

body of known mass, we could compute a numerical value

for the force .° Or, by measuring the acceleration which a .' lb nut dairn that Newton
later

known force gives a body of unknown mass, we could compute
seco law Is d
force- 'Remember' Sod

of
edds

a numerical value for the mass. But we seem to be going comment ( p 4,g) tat 'al(

in a circle in trying to find values for force and mass definittens are arbfrrar9P
to find one we apparently need to know the other in advance. One oxioiti-arnj depriftein we

wil( Ilmake is gr my NeH1l'on's
One straightforward solution to this dilemma is to choose second law, on lt-te other nand,

some convenient stable object, perhaps a certain piece of is not ari3d-rarm. :a describes an
polished rock or metal, as the universal standard of mass. experirneettl,'relatibrzshito

cict et ities Which camhWearbitrarily assign it a mass of one unit. Such a stan-
between cut
be defined operatenoal:

dard object has, in fact, been agreed on by the scientific See Sec .3.1t and poWticiA-
community. Once this unit has been selected we can pro- (arhl **It tqo paragraphs
ceed to develop a measure of force. on palp, 85.

Although we are free to choose any object as a standard

of mass, ideally it should be exceedingly stable, easily

reproducible, and of reasonably convenient magnitude.

By international agreement, the primary standard of mass

is a cylinder of platinum-iridium alloy, kept near Paris at.

the International Bureau of Weights and Measures. The

mass of this platinum cylinder is defined as 1 kilogram.

Accurate copies of this international primary standard

of mass have been deposited at the various standards labor-

atories throughout the world. From these, in turn, other

copies are made for distribution to manufacturers and

laboratories.

Now we can decide on an answer to the question of how

much "push or pull" should be regarded as one unit of force.

We will simply define 1 unit force as a force which when

acting alone causes a mass of 1 kilogram to accelerate at

the rate of 1 meter/second2.

Imagine an experiment in which the standard 1-kilogram

mass is pulled in a horizontal direction across a level,

frictionless surface with a light cord, and the pull is

regulated so that the 1-kilogram mass accelerates at exactly

1 m/sec2. The force will be one unit in magnitude.

What shall we call this unit of force? According :o the

second law (using only magnitudes):

77



1 unit of acceleration = 1 m/cec-.

1 unit of force = 1 kg , m/sec.

Study Guide 3.10 and 3.11

F = ma

1 unit of force = 1 unit of mass ,

1 unit of acceleration

1 meter
= 1 kilogram

second:

kilogram meter
second.

ka m=
sec-

kg m
Thus, 1 of force is that quantity of force whichsec,,

causes a mass of 1 kg to accelerate 1 m/sec2.

The unit kg < m/sec2 has ben given a shorter name: it

is called the newton (abbreviated as N). The newton is,

therefore, a derived unit which is defined in terms of a

particular relationship between the meter, the kilogram
and the second, These three are taken as the fundamental

units of the mks system of units.

CUBA net force of 10 N gives an object a 0.10A 2 kg object is shoved across the floorconstant acceleration of 4 m/sec2. The with an initial speed of 10 m/sec. Itobject's mass is comes to rest in 5 sec.

a9 Newton's second law holds only when fric-
tional forces are absent. (True or
false.)

(a) What was the average acceleration?

(b) What was the magnitude of the
force producing this acceleration?

(c) What do we call this force?

St Amman) act
rrt free foU do- drop Wit

wiforrn accete 1A6refore
fie second law intioliits 'Mat an
object. ill free fall must be
experieviiin.9 co/levet faze.

a. -Me axelemliein or 9raieiptiz-
varies SI' itti

ort-'and

.8 Mass, weight and gravitation. Objects may be acted upon

by all kinds of forces by a push of the hand, by a pull on

3 Wel9h-t. iS masiff-We
of tie "roifilatii7nol force lhat
oda object' experienoes.

4. The voi9lit or an objee
direet propoetiOnat lb*

t111206.

214.: PebnonernxtiokstAhtti mite%
3,115: Mokino) an tnemiliiii koamme

: Acceikerometer 1. the earth is not exactly spherical and
T.hertick and cyra,;(ratthnai ;toss. 2. there are irregularities in the composition of the

earth's crust. These two factors cause slight variations in

the gravitational force as we go from place to place. (Ge-

a string, or by a blow from a hammer. These forces don't

have to be "mechanical" or exerted by contact only, they

can be due to gravitational, electric, magnetic or other

actions. The laws of Newton are valid for all of them.

The force of gravity, which we take so much for granted,

is of the kind that acts without direct contact, not only

on a stone or ball that is falling near the earth, but also

across empty space, for example on one of the artificial

satellites around it.

We shall give the gravitational force which pulls all ob-

jects towards the

the gravitational

roughly speaking,

earth the symbol . The magnitude of

pull, it , on any particular object is,

the same anywhere on the surface of the

earth. When we choose to be more precise, we can take into

account the following facts:
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As Galileo sand, (see CAialorer .9, page 4,7) every Perm COulbe defined etc ime please, but should

seinte. looett Olescilbe rottlyTa phenornerux. The is Some dteareerriertt oolong pi-pics

educators abo how term weight is best us4d. We have &led 16 use 17-1.1 a waIA tat
+eocheys have 470mruA to make serzsle srudest. niftier iihm, foltol,i0119 one
ologists make 'use of these variations in locating oil and'

mineral deposits.)

The term weight is used frequently in every day conver-

sation as if it is the same as bulk or mass. In physics,

we define the weight of an object as equal to the gravi-

tational force that the body exper3ences. Hence weight

(symbol 0) is a vector, as are all forces, and i;,*/ = P
gray'

by definition. When you stand on a bathroom scale to

"weigh" yourself, your weight is the downward force the

planet exerts on you. The bathroom scale is only register-

ing the force with which it is pushing up on your feet and

to keep you in balance, and this will be equal in magnitude

to your weight if the scale is fixed and is not acceler-

ating. If, on the other hand, the gravitational force on

you is the only force you experience, and there is no other

force on you that balances it, then you must be in free

fall motion!

This is what would happen if the bathroom floor suddenly

gave way as you stand on the scale (forgive the absurd

"thought experiment ":). You and the scale would both fall

down at equal rates, as all bodies do, pulled down by their

weight. Your feet would now barely touch the scale, if at

all; and if you looked down you would see that the scale

registers zero since it is no lchlger pushing up on you.

This does not mean you have lost your weight that could

only happen if the earth suddenly disappeared, or if you

are taken to interstellar space. No, P
jrav

acts as before,

and keeps you in free fall; it just means a bathroom scale

does not measure your weight if it is accelerating.

We are now in a position to deepen our insight into

Galileo's experiment on falling objects. Galileo's experi-

ments indicated that every object (at a given locality)

falls with uniform acceleration. And what causes a uniform

acceleration? A constant net force in this case, in free

fall, just P
g

or O. Newton's second law gives us the rela-

tionship between this force and the resulting acceleration

and we can write

P = ma
g g

where m is the mass of the falling object and 'A
g

is the ac-

celeration resulting from the gravitational force F Thus

we would conclude from Newton's second law that as long as

the gravitational force is constant, the resulting accelera-

tion is constant.

Galileo, however, did more than just show that all ob-

jects fall with uniform acceleration: he showed that all

or-Ce sevgval rigorous derintioits.

Study Guide 3.15
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What does it measure--mass or
weight?

objects fall with the same uniform acceleration. Regardless
of an object's weight, it falls with the same accelera-

tion a . Is this consistent with the above relation,

P = ma ? It is only consistent provided there is a direct

proportionality between weight and mass: if m is doubled,

must doliole, if m triples, Fg must triple. This is a

nrofound result indeed: weight and mass are entirely dif-

ferent concepts--

weight is the gravitational force on an object

(hence weight is a vector)

mass is a measure of the resistance of an object to

changes in motion, a measure of inertia (mass is a scalar)

--yet the magnitudes of these two quite different quantities

are proportional in a given locality.

As a specific example, let us compare the magnitude of

the weight and the mass of a 1-kg object and a 2-kg object.

The respective weights W1 and W2, can be computed as follows

(at the surface of the earth):

WI = Ps = mils (1 kg)(9.8 m/sec2) = 9.8 N

02 = P = m2A = (2 kg)(9.8 m/sec2) = 19.6 N

Tt" nr-asure. moss k.9We see again that the ratio of the magnitudes of the weights
corriparim3the woodlit of an
unknown do --the

(19.6:9.8 = 2:1) is the same as the mass ratio. These

of a set cf Standard ob.
Witt known mass. (StPi
speaking, tken, 'it is (42
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sm:itatonal mass and ndrike
inertial moms vilifai tS rheaRmluOdoes not.

ratios will only be the same, however, if both objects are

at the same location. For example, if the 1-kg object is

placed at a higher altitude, its weight will be diminished

but its mass will not; and so the weight ratio between it

and the 2-kg object will change while the mass ratio remains

2:1. In other words, weight depends on position, but mass

1111 An astronaut is orbiting the earth in a
space capsule. The acceleration of grav-
ity is half its value on the surface of
the earth. Which of the following state-
ments is true?
(a) His weight is zero.
(b) His mass is zero.
(c) His weight is half its original value.

(d) His mass is half its original value.
(e) His weight is th.. same.
(f) His mass is the same.

c12 A boy jumps from a table top. Halfway
between the table top and the floor,
whic of these statements (for Q11) is
true:

3.9Newton's third law of motion. Newton's first law describes

motion of objects when they are in a state of equilibrium,

that is, when the resultant force acting on them is zero.

The second law tells how their motion changes when the result-

ant force is not zero. Neither of these laws indicates what

the origin of the force is.

For example, in the 100-meter dash, an Olympic track star

will go from rest to nearly his top sreed in a very short

time. With high speed photogranhy his initial acceleration

803)16: Acton reactivit (ropl:r ActiOn-reactiir modal
9 (7: Adien reacii6n ( rope 3L -rt : Traotaf-19 paradox915: feactiOn form: oF a wet



anywnarv, 3.9
I. WiloneVer liAio bodies inGairixot,lhe forces the) exert on each
an -' oppoSite. in cin'ection. a. -The fortes always ex.61- in pairs .

as a resutt of itt*eaotioins between
could be measured. Also, we could me-asure his mass. With

mass and acceleration known, we could use 1 = ma to find

the force acting on him. But where does the force come

from? It must have something to do with the runner himself,

but can he exert a force on himself as a whole? Can you

gift yourself by your own bootstraps?

Newton's third law of motion helps us to explain just such

puzzling situations. First, let us examine the third law to

see what it claims. In Newton's words,

To every action there is always opposed an equal reac-
tion: or, mutual a-tions of two bodies upon each other
are always equal and directed to contrary parts.

This is a rather literal translation. It is generally

agreed, however, that the word force may be substituted for

both the word action and the word reaction in Newton's

statement.

The most startling idea to come cut of this statement is

that forces always exist in pairs. Indeed, any thought of

a single unaccompanied force is without any meaning whatso-

ever. On this point Newton write:

Whatever draws or presses another is as much drawn or
pressed by that other. If you press a stone with your
finger, the finger is also pressed by the stone.

This suggests that forces always arise as a result of

interactions between objects: object A pushes or pulls In

B while at the same time object B pushes or pulls with pre-

cisely equal amount on A. These paired pulls and pushes

are always equal in magnitude and opposite in direction.

The terms action and reaction are arbitrary, as is the

order of their naming. The action does not cause the re-

action. The two coexist. And most important, they are not

acting on the same body. In a way, they are like debt and

credit: one is impossible without the other; they are

equally large but of opposite sign, and they happen to two

different objects.

We can describe t e situation where A exerts a force on

B and at the same t: B exerts on A an equal and opposite

force. In the efficient shorthand of algebra we may write

FAB 4BA
This is the equivalent of Newton's statement that,

Whenever two bodies interact, the forces they exert
on each other are equal in magnitude and opposite
in direction.

Note, now, what the third law does not say for this,

too, is of importance. It does not speak of how the push or

pull is applied, whether it is through contact (if we could

atrier arse equal m rnaTtittole
3 The forces always arise

Acticin and reaction begin
and enol at peecisely -the sametie and act on dipFererit
objects.*

third law is untiersal9
appticable.

41:(

One of -the halves cc an actin-
reaction pair can be a field
rawer than an "object ".)

The PrIncipia was written in
Latin, although in Newton's day
scholars were beginning to use
their native language more and
more in their writings. The
English language itself has
always been changing, and so
what constitutes the most ac-
curate translation of seventeenth-
century Latin into twentieth-
century English is not beyond
dispute.

In the collision between tie
ball and the club, the force
the ball exerts on the club is
equal and opposite to the force
the club exerts on the ball.
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define that word) or by

magnetic action or elec-

trical action. Nor does

the law require that the

force be either an attrac-

tion or repulsion. The

third law really does not

depend on any particular

kind of force. Indeed,

what makes the third law

extremely valuable, is its

universal nature.

013 A piece of fishing line will break if
the force exerted on it is greater than
500 N. Will the line break if two

DI/ Nev./1-011S Ard law
PAo Acticirt-reactkin car)
DA ACtiOli Tbarikert nail 3.10
Dag: ActTon read-toil (itorio413)

O

The force on the moon due to
the earth is equal and opposite
to the force on the earth due

t=;Wn.79 3.10

`The 1,2,, is perfect(9 TA-
am( and is intended to apply
t planets and stars no MASS
than -0 objects or the eartk.

people at opposite ends of the line
pull on it, each with a force of 300 N?

Using Newton's laws of motion. We have discussed Newton's

three laws of motion in some detail. In doing so, we saw

that each law is important in its own right. The first

law emphasizes the modern point of view for the study of

motion: what requires explanation is not uniform motion, but
change of motion. The first law stresses that what one must

account for is why an object speeds up or slows down or

changes direction. The second law asserts that the rate of

change of velocity of an object is related to both the mass

of an object and the net force applied to it. In fact, the

very meanings of force and mass are bound up in the second

law. The third law is a statement of the force relationship

between interacting objects.

Despite their individual importance, Newton's three laws

are most powerful when used together to explain complex

phenomena. Let us examine a few specific examples that il-

lustrate the use of these laws.

Example 1. On Monday, September 12, 1966, a dramatic ex-

periment based on Newton's second law was carried out high

over the earth. In this experiment, the mass of an orbiting

Agena rocket was determined by accelerating it with a push

from a Gemini spacecraft. After the Gemini spacecraft made

contact with the Agena rocket, the aft thrustcrc on the

Gemini, calibrated to give a thrusting force of 890 N, were
fired for 7 sec. The change in velocity of the spacecraft

and rocket was 0.93 m/sec. The mass of the Gemini space-

craft was 3360 kg. What was the mass of the Agena?
a. Newron second law aliov,s us 16 give quantitative answers tr, quecticins about niottoi-t. Such82

Answers lead tb new quattOns and new inetses. 3. *Mc -*tiro( low applies unii'ersollt)) 16 allinTeradir9 object whetker or not there .6 04'1 obvious phiyiaal carrrAchi berweee lAern.



A force of magnitude 890 N acts on a total mass M where

M m
Gemini + MAgena or M = 3360 kg MAgena

The magnitude of the acceleration is given as follows:

a = Ay
/It

.93 m/sec
7 sec

= 0.13 m/sec2.

Newton's second law gives us the relation

40T = Ma

or

T = (M
Lgena + 3360 kg) a

where T is the thrust. Solving for MAgena gives

N
MAgena g - 3360 kg =

.13
890
m/sec

3360 kg

MAgena = 6850 kg - 3360 kg = 3490 kg.

The mass of the Agena was known to be approximately

3660 kg which means there was a 5% error in the measurement.

(This experiment was performed to determine the feasibility

of this technique as a means for finding the mass of a foreign

satellite while it is in orbit.)

In this equation, T is used for
force since it is a thrusting
force.

esbAdm4G dislike using different
Symbols to rlepresenr fie same
quanfitci, or urin9 the same
aymbor k no dipcereni-

are Idea Harnpti4 ,whe
quaystif(42s. euert,wrpAsicish

or..,e said," IJAert T use a
word means exacH9 Jud-
i' choose 'it- tii niacin nitiker
'twee Pier (ess if-3 a]
quesrOrt oc whet.' is fo be
master, tkiat's WC'
C7Ftreecjet lac looking g(o.as)

Lewis Carroll.

83



Example 2. A case of books whose mass is 8.0 kg rests

--1
on a table. What constant horizontal force is required to
give it a velocity of 6 m/sec in 2 sec, starting from rest,

"7"'W3p/ollsftwo-
--;74"". if the friction force t between the moving case and the

7 table is constant and is equal to 6 newtons? (Assume all
forces act at the center of the case.)

What is your interpretation of
this equation?

Summary- 3. fl
1. AU mofien and hence Newtons

of niatieni must be speci,
Pi edvi tift re5crot -b some frame
of reference.

a. All Vie forr-es of nacre
are maritf'estaoks of four
bast6 iv&v-aadns.

Study Guide 3.13, 3.14, 3.16,
3.18

84

In solving problems such as this, it is always helpful to
make a sketch showing the forces acting. The forces acting
on the case are the frictional force 1, the force the
force of gravity P (the case's weight), and the force of
the table on the case The case pushes down on the table
with a force P and the table pushes back on the case with
a force -P (Newton's third law). Therefore

P
g

or P +P= o.

For the forces parallel to the surface we can write

unbalanced force = - = - 6N

From the second law we have

Pnet = ma

- 6N = mA

= ma. + 6N

The magnitude of the acceleration is

Av 6 m/seca = = 3 m/sec2At 2 sec .

Thus we can now determine the magnitude of the horizontal
force.

T = ma + 6.0 N = (8.0 kg) (3 m/s,2c2) + 6.0 N

T = 24 N 6 N = 30 N.

3.11Nature's basic forces. Our study of Newton's laws of mo-
tion has increased our understanding of objects at rest, in
uniform motion, and accelerating. However, we have accom-
plished much more in the process. Newton's first law alerted
us to the importance of reference frames. What you observe
depends upon your point of view your frame of reference. A
critical analysis of the relationship between descriptions
from different frames of reference was a forerunner of the
theory of relativity.



Newton's second law alerted us to the importance of for-

ces. In fact, it presents us with a mandate: when we ob-

serve acceleration, find the force! For example, when we

recognize that an orbiting satellite is accelerating, we

look for a force. We might begin this search by giving the

force a name, for example, gravitational force.

But a name alone adds nothing to our basic understanding.

We really want to know what determines the force acting on

a satellite. Does the force depend on the earth? Obviously

it does. Does the force depend on the satellite's position?

On its velocity? On the time? Answers to questions such as

these can be summarized in a force law which describes the

force in terms of those factors it depends on. A force law

provides a basis for understanding the way in which the

earth and a satellite interact with each other. Knowing the

force law, the physicist claims to "understand" the nature

of the interaction.

Gravitational attraction is just one of the basic ways in

which objects interact. It is exciting to realize that

there appear to be very few of these basic interactions. In

fact, physicists now believe there are just four. Does it

surprise you to think there are so few? Imagine all we ob-

serve in nature is the consequence of just four basic inter-

actions. In terms of our present understanding, all the

forces of nature--subnuclear and nuclear, atomic and molec-

War, terrestrial and solar, galactic and extragalactic are

the manifestations of these four basic interactions.

There is. of course, nothing sacred about the number

four. The number might be reduced or enlarged due to new

discoveries. In fact, physicists hope that as they gain

further insight into these basic interactions, two (or more)

of them might be seen as the consequence of somet g even

more basic.

Here we aaivi insight= Into
the seoand row, whiot, ecouggs

propovVes (mass) and
be,ha,viene ctccoietratuin ) of on
ol6er-t; /AM. preverUizs oP the
okfectv enucraniertent ( rove).

The first interaction, the gravitational, becomes impor-

tant only on a very large scale, when the:e are tremendous

amounts of matter invD1ved. It literally holds the universe

together. The second interaction concerns electric and mag-

netic processes. These processes are most important on a

small scale the atomic and mclecular scale. We know the

force laws governing gravitational and electromagnetic inter-

actions; therefore they are fairly well "understood." The

situatiol changes completely when we consider the remaining

basic interactions. They are still the subject of vigorous

research today. The third interaction (the so-called

"strong" interaction) somehow holds the nucleus toy_ther.

Einstetii spent' rnarly years
tfiyin CO Pond a ((ilk 6ettaeevt
snxInly and Qtecrromancititim.
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"The Starry Night", 1889, by Vincent van Gogh.
Collection, The Museum of Modern Art, New York.

The fourth interaction (the so-called "weak" interaction)

governs certain reactions among subnuclear particles.

We do, of course, have other names for forces. One of
the most common, yet one of the least understood, is the
frictional force. This subtle force fooled people for cen-
turies into thinking that an object required a "pusher" or
"puller" if it was to remain in motion. Yet, the frictional

force is undoubtedly an electrical type of force; that is,
the atoms on the surfaces of the objects sliding or rubbing
against each other interact electrically. In this case,
too, we seem to be able to understand all our observations
of nature in terms of just a few basic interactions.

We shall be encountering some of these ideas again. We
shall meet the gravitational force in Unit 2, the electrical
and magnetic forces in Unit 4 and the nuclear force in
Unit 6. In all these cases remember that a force plays the
same role regardless of its origin; that is, an object sensi-
tive to the force will be accelerated.

The knowledge that there are so few basic interactions is

both surprising and encouraging. It is surprising because at
first glance the world seems so complicated; it is en7:our-

aging because our elusive goal an understanding of nature
seems nearer.

-"N



Hooke's experiment is described .n his
own words in W. F. Magie, A Source Book
in Physics, McGraw -Hill, 1935.

3.10 If you have dynamics carts available,
here is one way of doing an experiment
to test the inverse proportionality be-
tween acceleration and mass:

a) Add load blocks to one or the
other of two carts until the
carts balance when placed on
opposite platforms of a labora-
tory balance. Balance a third
cart with one of the first pair.
Each cart now has mass m. (State
two main assumptions involved
here.)

b) Accelerate one cart on a level
surface using the rubber-band
technique; that is, pull the car
with the rubber band keeping it
stretched a constant amount.
Any other method can also be
used that will assure you that,
within reason, the same force
is being applied each time.
Record the position of the cart
at equal time intervals by means
of stroboscopic photography.

c) Repeat the last step in all de-
tails, but use two carts hooked a.2.0
together. Repeat again using x 102m /sect
all three carts hooked together. b)
In all three cases it is crucial vnice<=7.8

that the applied force be essen- ,102n(secz
tially the same.

d) Determine the value of accelera-
tion for masses of m (1 car'),
2m (2 carts), and 3m (3 carts).

e) Prepare a graph of a vs. m, of
a vs.2, and of 1 vs. m.

m a
Comment on your results. Disaision

Study Guide

3.13 A certain block is dragged with
constant velocity along a rough horizon-
tal table top, by means of a spring
balance horizontally attached to it which
reads 0.40 N, no matter what the velocity
happens to be. This means that the
retarding frictional force between block
and table is 0.40 N and not dependent on
the speed. When the block is given a
constant acceleration of 0.85 m/sec2,
the balance is found to read 2.1 N.
Compute the mass of the block. niv,901<9

3.14 A sled has a mass of 4440 kg and is
propelled by a solid propellant rocket
motor of 890,000 N thrust which b... 1

for 3.9 seconds.

3.11 Complete this table:

a) 1.0 N 1.0 kg 1.0 m/sec2
b) 24.0 N 2.0 kg 12.0 m/sec2
c) N 3.0 kg 8.0 m/sec2
d) N 74.0 kg 0.2 m/sec2
e) N 0.0066 kg 130.0 m/sec2
f) 72.0 N kg 8.0 m/sec2
g) 3.6 N kg 12.0 m/sec2
h) 1.3 N kg 6.4 m/sec2
i) 30.0 N 10.0 kg m/sec2
j) 0.5 N 0.20 kg m/sec2
k) 120.0 N 48.0 kg m/sec2

Table

3.12 Recount in detail what steps you must
take (in idealized experimentation) to
determine the unknown mass m (in kilo-
grams) of a certain object if you are
given nothing but a frictionless hori-
zontal plane, a 1-kg standard, an un-
calibrated spring balance, a meter stick,
and a stopwatch.

Discussion

119.

What is the sled's average
acceleration and maximum speed?
The data source states that this
sled has a maximum acceleration
of 30g (=30xag). How can that
be, considering the data given Varied.

c) If the sled travels a distance of
1530 m while attaining a top
speed of 860 m/sec (how did it
attain that high a speed?!),
what is its average acceleration?

a....4.4..x 102nm/see

3.15 Discuss the statement that while the
mass of an object is the same everywhere,
its weight may vary from place to place.

3.16 A 75 kg man stands in an elevator.
What force does the floor exert on him
when the elevator

360 N a)

750N b)

Fr. - b4D N., c)

d)

Sarno values
at (a),(b),(c).

e)

Discussion

starts moving upward with an
acceleration of 1.5 m/sec2?

When the elevator moves upward
with a constant speed of
2.0 m/sec?

When the elevator starts accel-
erating downward at 1.5 m/sec2?

If the man were standing on a
bathroom (spring) scale during
his ride, what readings would
the scale have in parts a, b,
and c?

It is sometimes said that the
"apparent weight" changes when
the elevator accelerates. What
could this mean? Does the
weight really change?
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3.17 A replica of the standard kilogram is
constructed in Paris and then sent to
the National Bureau of Standards in
Washington. Assuming that this secondary
standard is not damaged in transit, what
is (a) -the same nuun

(b) v (Paris) = ei.soc) ts1
(c). 1 ( Wasfrinairort=cf..8o1

a) its mass 141 ashington,
b) its weight in Paris and in

Washington. (In Paris,
ag=9.81 m/sec2; in Wash-
ington, ag=9.80 m/sec2.)

3.18 Consider the system consisting of a
1.0 kg ball and the earth. The ball is
dropped from a short distance above the
ground and falls freely. We can take
the mass of the earth to be approximately
6.0 . 1024 kg.

a) Make a vector diagram illustrating
the important forces acting on
the members of the system.

b) Calculate the acceleration of the
earth in this interaction. 1.7x10-2+Prifsecli

c) Find the ratio of the magnitude
of the ball's acceleration to abfaa -.4x10 2+

.

that of the earth's acceleration
(ab/ae).

3.20 Consider a tractor pulling a heavy log
in a straight line. On the basis of New-
ton's third law, one might argue that the
log pulls back on the tractor just as
strongly as the tractor pulls the log. But
why, then, does the tractor move?

.T

IN;
0,pr

dlia9narn

3.19 In terms of Newton's third law assess
the following statements:

a) You are standing perfectly still
on the ground; therefore you
and the earth do not exert equal
and opposite forces on each other.

b) The reason that a jet airplane
cannot fly above the atmosphere
is that there is no air to push
against, as required by the third
law.

-.1) The mass of object A is 100 times
greater than that of object B,
but even so the foree it (A)
exerts on B is no grpater than
the force of B on it.

d) C, D, and E age three objects
having equal masses; if C and
both pull against E at the same
time, th n E exerts only one-
half as m h force on C as C
does on E.

90
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Chapter 4 Understanding Motion
Summary 4,i
1. A rnotif5n twat appears complex often can

broken down 1.16 con partuirs which am
each relatvely simple fo analyze and
cle6oribe.

A. Concerts aboutt reetilinecur rnortort can be
usefull applied to study or complex
rnatiOns.

3. `Frojecite motion arid owt(form cicm[ar
motion ar simple but repmseritatiVe ibpes
of curviiiitear

Section Page

4.1 A trip to the moon 93

4.2 What is the path of a
projectile?

99

4-3 Galilean relativity 102

4.4 Circular motion 103

4.5 Centripetal acceleration 106

4.6 The motion of earth
satellites

111

Simple harmonic motion 114
(a special topic)

4.7 What about other motions? 116

/ stfinufai thecussani : a bultet is shot korizotikAlty
and ancAer kutlet dropped at -Pe same insTant,
whirl, bullet visit strike -tie 9rotowl iii 7.-Iffis example
is dmCussed at Ike- becjirvit-13 of Sec. 4.P.

..a stone that is pro-
jected is by the pressure
of its own weight forced
out of the rectilinear
path, which by the initial
projection alone it should
have pursued, and made to
describe a curved line in
the air; and through that
crooked, way is at last
brought down to the ground;
and the greater the veloc-
ity is with which it is
projected, the farther it
goes before it falls to
the earth. We may there-
fore suppose the velocity
to be so increased, that
it would describe an arc
of 1, 2, 5, 10, 100, 1000
miles before it arrived at
the earth, till at last,
exceeding the limits of
the earth, it shoula pass
into space without touch-
ing it." (Newton's
Principia]

92
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4.1 A trip to the moon. Imagine a Saturn missile taking off in

the early morning hours from its launching pad at Cape Ken-

nedy. It climbs in a curved path above the earth, passing

through the atmosphere and beyond. Successive stages of the

missile burn out leaving finally an instrument capsule hur-

tling through the near vacuum of space toward its destination

240,000 miles away. Approximately 65 hours after take-off,

the capsule circles the moon and plummets to its target the

center of the lunar crater Copernicus.

As you first think about it, you are likely to be struck

by the complexity of such a voyage. The atmospheric drag at

the beginning of the flight depends upon the missile's speed

and altitude; the rocket's thrust changes with time. You

must consider the changing gravitational pulls of the sun,

the earth, and the moon as the capsule changes its position

relative to them. Besides the forces, you must consider the

facts that the rocket's mass is changing and that it is

launched from a spinning earth, which in turn is circling

the sun. Furthermore, the target the moon is moving around

the earth at a speed cf about 2,300 miles per hour.

The complexities of a rocket flight from earth to moon

are indeed great and the amount of computation enormous

:7W which is why NASA,

the National Aero-

4, nautics and Space

Administration, uses

high speed electron-

ic computers to help

tk537, analyze and control

the flight path.

Though complicated

in its totality, this

flight can be broken

down into small por-
r

tions which are each

relatively simple to

analyze and describe.

What we have learned

in earlier chapters

//
will be useful in

this task.

The world's first view of the
earth taken by a spacecraft
from the vicinity of the moon.

"The
moon

Over 100 years ago, the French
author Jules Verne (1828-1905)
portrayed how technology might
be employed to place a man on
the moon. In two prophetic
novels, Verne launched three
intrepid spacemen to the moon
by means of a gigantic charge
fixed in a steel pipe deep in
the earth.

1hQ
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Earth's Orbit

94

The earth-moon trip shown in the figure above can be di-
vided into these six parts.

Part 1. The rocket accelerates vertically upward
from the surface of the earth. The force
acting on the rocket is essentially con-
stant. The mass of the rocket, however,
is decreasing. The value of the accelera-
tion at any instant can be computed using

Newton's second law.

Part 2. The rocket, still accelerating, follows a

curved path as it enters into an orbit
about the earth.

Part 3. In an orbit 115 miles above the earth's

surface, the rocket circles at a constant

speed of 17,380 miles/hr. The minimum

escape velocity is 24,670 miles/hr; there-

font, by accelerating in the direction of

its path when it has reached the bottom of

the semi-circular arc, the rocket can now

thrust into distant space.



Part 4. In flight between earth and moon, only oc-

casional bursts from the capsule's thrust-

ers are required to keep it on course.

Between these correction thrusts, the cap-

sule moves under the influence of the

gravitational forces of earth, moon, and

sun. We know from Newton's first law that

the capsule would move with constant ve-

locity if it were not for these forces.

Part 5. The capsule is moving with constant speed

of 1 mile/sec in a circular path 50 miles

above the moon's surface.

Part 6. The capsule is accelerating toward the sur-

face of the moon. It follows an arching

path before landing in the crater Coperni-

cus.

Let us analyze in greater detail the last two parts of this

trip the capsule circling the moon and then falling to the

moon's surface since they are examples of circular motion

and projectile motion, two important classes of motion. How "4414:444:414T
4 41g!,,,,

shall we go about this? Must we travel to the moon, set up
't"

our cameras on the edge of the crater Copernicus, and make

a stroboscopic record of the path of the capsule as it

streaks through the lunar vacuum and crashes into the moon's

surface? Not at all! We now realize, thanks to Galileo and

Newton, that we can learn aoout the behavior of moving objects

beyond our reach by studying the motion of objects near at

hand. 1?orrernbor Ike last- parw3raph op Sec. 2 .1
4aliteo did not- clock object -

Studied a bail rolteru3 down 4Wt irwOhe To ie0011.

about- projgctikas we otk-t- observe a ball rottin3 off
die ease of a table.
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5urrunaro
I. A preefile Is on object ft-tat coasts free(9,yroVing iridependehtt
or Y1 indepencieral of the ynartai,if an, At "re encounters.

4.2 Projectile motion. Imagine a rifle mounted on a tower with

a. A projectile 'Mot is launched its barrel parallel to the ground. Imagine also that the
ground over which the bullet will travel is level for a very
great distance. Suppose further that at the instant a bullet
leaves the rifle, a second, identical bullet is dropped from
the same height as the muzzle of the rifle. The second bul-
let has no horizontal motion relative to the ground. Which
bullet will reach the ground first? Do we need to know some-
thing about the muzzle velocity of the bullet and the height
of the tower befor' we can answer this question?

hoitzorrtak falls Iowa rd
earlk Hi 1Ne same acce(er-
atibil as an object that is
droppeol, the yeti-IC-al mortals
of bath objects are d.escrlibed
over rectsonab j arioll Ai-lances)

lot) iVle, equation a9Z:.27a.

To avoid confusion in notation,
we let the displacement in the

horizontal direction be x and
the displacement in the vertical
direction be y. This leads to
the set of axes.

X

3 The downward AcceAerdtekt
cf a projedite does NA"
affect' its horizontal rnoliOn,
which is uniForm and is
described by 1ti¢ equalithi
Xc vltt.

k.

In

4

Consider first the motion of the bullet that is dropped.

As a freely falling object, it accelerates toward the ground
with uniform acceleration. Hence, in a time t it will fall
a distance, y, given by

y = ha t2

where ag is the acceleration due to gravity.

The bullet that is fired horizontally from the rifle is
an example of a projectile. Any object that is given an
initial velocity and whose subsequent path iL; determined

solely by the gravitational force and by the resistance of
the air is a projectile. The path followed by a projectile
is its trajectory. As tie gunpowder explodes, the bullet is
driven by the force of expanding gases and accelerated very
rapidly until it reaches the muzzle of the rifle. On reach-

ing the muzzle these gases escape and no longer push the
bullet. At this moment, howevr,- the bullet has a very
large horizontal speed, vx. ar will slow the bullet
slightly, but we shall ignore that fact in our tievelopment

lke SuperroOkirt ionrrAPe 61-44S ttot' 1 isneon of a projectile Can be considered as96
cc combined mertion of hcracvZit and
veekl'al bons, Whisk are inofeperident ofeach ot,er.

.4



and imagine an ideal case with no

air friction is ignored, there is

horizontal direction. Hence, the

air friction. As long as

no net force acting in the

horizontal speed will re-

main constant. From the instant the bullet leaves the muzzle,

we would expect its horizontal motion to be described by the

equation

x = V t.
x

As soon as the bullet leaves the gun, however, it be-

comes an unsupported body and falls toward the earth as it

moves forward. Can we use the same equation to describe its

fall that we used to describe the fall of the dropped bullet?
1

That is, can we use y = f agt2 to describe the fall of the

high speed bullet? We believe, of course, that the bullet

will fall to the ground, for any other answer would be con-

trary to our experience. But, whether it will fall at the

same rate as the bullet with no horizontal motion is not

clear. Nor, for that matter, can we be sure how falling

will affect the bullet's horizontal motion. These doubts

raise a more fundamental question that goes beyond just the

behavior of bullets; namely, is the vertical motion of an

object affected by its horizontal motion? Or vice Inrsa?

To answer these questions, we can carry out a real ex-

periment similar to our thought experiment. We can use a

special laboratory device designed to fire a ball in a hori-

zontal direction at the moment that a second bal2 is released

to fall freely from the same height. We set up our appara-

tus so that both balls are the same height above a level

floor. The experiment is started. Although the motions of

the balls may be too rapid for us to follow with the eye,

we hear only a single sound as they strike the floor. This

result suggests that the vertical motion of the projected

ball is unaffected by its horizontal velocity.

Let us examine a stroboscopic photograph of this experi-

ment. Equally spaced lines in the background aid our ex-

amination. Look first at the ball which was released

without any horizontal motion. You see that it is accel-

erated becaase as it moves it travels a greater distance be-

tween successive flashes. Careful measurement of the

photograph shows that the acceleration is uniform to within

the precision of our measurements.

Now compare the vertical positions of the ball fired to

the right with the vertical positions of the ball which is

falling freely. The horizontal lines show that the dis-

If fte V1145:05 Teacher
Ootobee, 'bb

Water Parabola. "

The two balls in this strob-
scopic photograph were released
simultaneously. The one on the
left was simply dropped from
rest position; the one on the
right was given an initial ve-
locity in the horizontal direc-
tion.

Tcf: frd)ectile ynoon
A Speed or water strew: , suparpc*adri principal r;idares projedtte) 97
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A projectile has a constant
horizOntal velocity vx.

y

The displacement a of an object
is a vector giving the straight-
line distance from beginning to
end of an actual path; a can be
thought of as made up of a hori-
zontal (x) and vertical (y)

componencofdisplacement, that
is, a = x y (added vectorial-
1Y).

vx

See Study Guide 4.3.

tances of fall are the same for corresponding times. The
two balls obey the same law for motion in a vertical direc-
tion. That is, at every instant they both have the same
corstant acceleration, a , the same downward velocity, and
the same vertical displacement.

We can use the strobe photo to see if the downward ac-
celeration of the projectile affects its horizontal velocity
by measuring the horizontal distance between successive
images. We see that the horizontal distances are essentially
equal. Since the time intervals between images are equal,
we can conclude that the horizontal velocity vx is constant.

We now have definite answers to our questions. The hori-
zontal motion of the ball does not interfere with the vertical
motion, and vice versa. The two motions are completely in-
dependent of each other. This experiment can be repeated
from different heights, and with different muzzle velocities,
but the results will always show that the horizontal motion
is independent of the vertical motion.

The independence of motions at right angles has interest-
ing consequences. For example, it is easy to predict the
displacement and the velocity of a projectile at any time
during its flight. We need merely to consider the horizon
and vertical aspects of the motion separately and then
the results--vectorially. We can predict the positions x
and y and the speeds v

x and v
y at any instant by application

of the appropriate equations. For the horizontal component
of motion

vx = constant

x = vxt

and for the vertical component of motion,

v = a t
y g

y = gt2.

Because x, y, and d and vx, v
y and v are the sides of right

triangles, the magnitude d of the total vector displacement
a can be written as

d = x2 + y2

and the magnitude v of the velocity v can be written as

V = P/V 2 + V 2

0.1 A projectile is launched horizontally
with a muzzle velocity of 1,000 m/sec
from a point 20 m above the ground. How

long will it be in flight? How far,
horizontally, will the projectile travel?
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4.3 What is the path of a projectile? It is easy to see that a

thrown object, such as a rock, follows a curved path. But

there are many kinds of curves, and it is not so easy to

see which kind of curve a projectile traces. For example,

arcs of circles, ellipses, parabolas, hyperbolas and cy-

cloids (to name only a few geometric figures) all provide

likely looking curved paths.

Ufano, a contemporary of Galileo, held a common belief

about prpjectile trajectories. He thought that a projectile

rises along a rather flat path, and then drops suddenly.

Ufano was wrong, but more important is the fact that by

direct observation of the moving object itself one could not

determine the details of the trajectory.

New knowledge about the path

The path taken by a
cannon ball accord-
ing to a drawing by
Ufano (1621). He
shows that the same
horizontal distance
can be obtained by
two different fir-
ing angles. Gun-
ners had previously
found this by ex-
perience. What
angles give the

maximum range?

of a projectile was gained

when the power of mathematics was applied to the problem.

This was done by setting out to derive an equation that

would express the shape of the path. Only a few steps are

involved. First let us list equations we already know for

a projectile launched horizontally.

x = vxt

ar d

y = gt2.

We would know the shape of the trajectory if we knew the

height of the projectile above the ground for any horizontal

distance from the launch point; that is, if we knew y for

any value of x. We can find the height, y, for any hori-

zontal distance, x, by combining our two equations in a way

that eliminates the time variable. Solving the horizontal

distance equation for t, we get

t =
v

Surnma 4..3
J. 89 arf aorclurnent based on
Known eaudrions and 'The
6uperpoeten principle ;rt can
Jae deduced fhat(as tori9 as
act can be corisiofervol confront)
'We citsrte a hoilzoritallt.i
prtored object' falls is
proportional squara cf
the dunce Iriat 'it moves
hort7orret11.9,

A. 11-te mattierrialiaat curve
represented by this- elcaditship,

y cr X2,
16 a 'parabola; hence tie con-
clusion (Oar brought* out by
e-Aperirvierits , itiot die ti'ajec-

or a prtjectlie is a
ola.

3. Because t. e can evmss
rkujskal relattonships in terms
of mathematcb.1 equattans, we
are able -to manipulate Itle
equalici s and main unexpec-
-fed physical,
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Specialized equations such as
these are not to be memorized.

Because t means the same in both equations we can substitute

for t in the vertical distance equation to obtain

y = (g
v

) .

x

2X

In this last equation there are two variables of interest,
x and y, and three constant quantities: the number h, the

uniform acceleration of free fall a , and the horizontal

speed vx Ighich is constant for any one flignt. Bringing

these constants together, we can write the equation as

.'Point out re atudianrs 161
V- is not- unuct4o1 ro lump
humber oP constaintl Gino( orasstgh k 3 k. or c as the
eon stews t.

The parabolic path of a projec-
tile fired horizontally to the
?eft as deduced by Galileo on
theoretical grounds in his

Dialogues Concerning Two New
Sciences. Whit is the rela-
tion between distances bo, og,
and gl; and why?

MC4.3 Owls approkirmaraiy in
the rail"

: 3 : s 7. , .
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where

a

Y 2v
x
2

x2

y = ekx2

a
k =

2v
x

2

This equation relates x and y for the trajectory. We can
translate it as: the distance a projectile falls (vertically)
is proportional to the square of how far it moves sideways
(horizontally).

The mathematical curve represented by this relationship

between x and y is called a parabola. Galileo deduced the

parabolic nature of the trajectory (by an argument similar



to the one we used). With this discovery, the study of pro-

jectile motion became much simpler, because the geometric

properties of the parabola had been established centuries

earlier by Greek mathematicians.

Here we find a clue to one of the important strategies in

modern science. When we express the features of a phenome-

non quantitatively and cast the relations between them into

equation form, we can use the rules of mathematics to ma

late the equations, and open the way to unexpected insights.

Galileo insisted that the proper language of nature is

mathematics, and that an understanding of natural phenomena

is aided by translating our qualitative experiences into

quantitative terms. If, for example, we find that trajec-

tories have a parabolic shape, we can apply all we know about

the mathematics of parabolas to describe--and predict

trajectories. There is always a need for well-developed

systems of pure mathematics which the physicist may use to

express in precise form his conceptions of natural phenomena.

Moreover, the physical scientist often tries to use

methods from another branch of science, or from mathematics,

to find a solution for his particular problem. For example,

just as Galileo applied the already known mathematics of

parabolas to estimate actual projectile motions, so the

modern sound engineer solves problems in acoustics using

mathematical schemes developed independently by electrical

engineers. Whatever the methods of science may be, many

ideas and concepts can often be extended from one specialty

to another with fruitful results.

We can now apply our theory of projectile motion to the

descent of a space capsule onto the moon's surface. The

retro rockets of the orbiting capsule are fired to decrease

its speed. After the retro rockets are turned off, the

capsule's horizontal velocity (the velocity component par-

allel to the moon's surface) remains constant and the cap-

sule falls freely under the influence of the moon's gravity.

The path followed by the capsule with respect to the moon's

surface is a parabola. Space-flight engineers are able to

apply these ideas to land a space capsule on a desired moon

target.

"Philosophy is written in this
grand book, the universe, which
stands continually open to our
gaze. But the book cannot be
understood unless one first
learns to comprehend the lan-
guage and re-.d the letters in
which it is composed. It is
written in the language of
mathematics, and its characters
are triangles, circles, and
other geometric figures without
which it is humanly impossible
to understand a single word of
it." (Discoveries and Opinions
of Galileo, translated by
Stillman Drake, Anchor Books,
pp. 237-238.)

See Study Guide 4.4.

Q2 In the derivation of the path followed
by a projectile, what assumptions have
been made?

a projectile launched horizontally on
the moon.

Q4 What is the constant in your equation in
Write an equation for the trajectory of Q3?
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4.4 Galilean relativity. Galileo's work on projectiles illus-

trates the importance of reference frames. As you will see
in Unit 2, Galileo ardently supported the idea that the ref-
erence frame for discussing motions in our planetary system
be the one fixed to the sun, not the earth, and that there-
fore the earth both rotates on its own axis and moves in a
path around the sun. For many scientists of Galileo's time,
this was not an easy idea to accept. If the earth moved,
they said, a stone dropped from a tower would not land di-
rectly at its base. As earth moves through space, they

argued, the stone would be left behind while falling through
the air, and consequently would land far behind the base of
the tower. But this is not what happens, so many of

Galileo's critics believed that the tower an': the earth can-

not be considered to be in motion.

I

noving
earth

The critics of Galileo claimed
that if the earth moved, a

dropped ball would land beyond
the foot of the tower.

1

stationary
earth

moving

earth

Galileo argued that as the ball
also shared the motion of the
earth, an observer on earth
could not tell whether or not
the earth moved.

To answer these critics, Galileo first assumed that dur-
ing the time of fall, the tower and the ground supporting it

were moving forward equally with some uniform horizontal

velocity vx. He then claimed that the stone being held at

the top of the tower also had the same horizontal velocity

vx, and that this velocity was not affected by the fact that
the stone moves vertically upon being released. In other
words, the falling stone behaves like any other projectile:

the horizontal and vertical components of its motion are in-
dependent of each other. Since the stone and tower have the
same v

x
, the stone will not be left behind as it falls.

Therefore, whether the speed of the earth is zero or not,

the stone should land at the foot of the tower. So, the

fact that falling stones are not "left behind" does not
mean the earth is standing still.

Similarly, Galileo said, an object released from a crow's

nest at the top of a ship's straight mast will'land at the

foot of the mast whether the boat is standing still in the

harbor or moving with constant velocity through quiet water.

To a sailor standing on the ship, the trajectory will appear
to be a straight vertical line in either case. To a person

standing on shore, however, the trajectory appears to be a

straight vertical line when the ship is stationary, and a
curved line when the ship is moving. Obviously, the frame

of reference of the observer must be taken into account when
analyzing the motion of objects. Galileo's explanation of
the differing descriptions of the falling object was that
the sailor on the deck of the moving ship is sharing the

horizontal velocity of both the ship and the falling object.

Sailor, ship, mast and object are all moving horizontally,
so he cannot notice this component of the motion. By con-

Summary 4 .4
I. -The nforton cc the observer must be taken into
account when analyzing l to knatort of object.
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trast, the observer on shore does not have the horizontal

velocity vx of the ship and object, and so he can see both

the horizontal and vertical velocities of the falling ob-

ject. These velocities, as we know, add vectorially to

give a parabola.

The same ideas apply not only to falling bodies but also

to projectiles in general. For example, if an object is

projected vertically upward from a cart, it will fall back

into the cart whether the cart is continuously moving at

constant velocity or is standing still. From this, and

equivalent observations, has come a most valuable generaliza-

tion, usually called the Galilean relativity principle:

any mechanical experiment will give the same result for any

observer moving with constant velocity no matter what the

magnitude and direction of the velocity. In other words, it

is impossible to tell by any kind of mechanical experiment

whether or not one's laboratory (reference frame) is really

at rest or is moving with some constant velocity.

From the Galilean relativity principle, it follows that

the laws which describe mechanical experiments are the same

in a reference frame at rest or in a reference frame moving

with a constant velocity. Therefore, tne laws for the

description of the motion of projectiles would be found to

be the same whether these laws are obtained by experiments

inside a ship moving with constant velocity or at the dock;

whether on a stationary earth or on an earth which, during

any mechanical experiment on projectiles, is moving with vir-

tually a constant velocity. In all these cases, we are in

inertial frames of reference and we would arrive at a set of

equations identical to the ones we have encourtered in this

and the earlier chapters.

\ I

,

Two special clocks are attached
to a cart. While the cart is
moving at a constant speed, one
of the clocks is sprung straight
upwards from it and the subse-
quent motion of the two clocks
is photographed under a strobo-
scopic light source. How do the
horizontal positions of the two
clocks compare in successive
images?

The questions in Study Guide 4.5
and 4.6 deal with Galilean rela-
tivity.

Before turning to circular mo-
tion, consider the famous "mon-
key in the tree" problem. It

is described in Study Guide 4.7.

CLISCompare the results of Galileo's inclined
plane experiment performed in an eleva-
tor under the following circumstances:

d) elevator accelerating uniformly
upward.

e) elevator accelerating uniformly
downward.

a) elevator at rest.
b) elevator moving uniformly upward. Q6 For which experiment in Q5 would a ap-
c) elevator moving uniformly down- pear to be the largest?

ward.

4.5Circular motion. A projectile launched horizontally from a fivIcs liocker)

tall tower stri.kes the earth at a point determined by the Apri, '63

speed of the projectile, the height of the tower and the ac- 1-444d1415 tte dijnanliG6 cfuriOrm
ciroutar nvitake

celeration due to the force of gravity. As the projectile's

launch speed is increased, it strikes the earth at points D46: UpuCorm ctiecukce roliOn
farther and farther from the tower's base. (The assumptions ik: Vs-rm.-non due to rbtairis

we made in the analysis of projectile motion such as a "flat" YlefOrlence frame
Dererminirm Ike speed of
Q Pettet Tixt retie 103El( : Ctivular won .r or

Ciccdar moticinIr
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In discussing circular motion
it is useful to keep clearly in
mind a distinction between rev-
olution and rotation. We de-
fine these terms differently:
revolution is the act of travel-
ing along a circular path; ro-
tation is the act of spinning
without traveling at all. A
point on the rim of a phono-

graph turntable travels a long
way; it is revolving about the
axis of the turntable. But the
turntable as a unit does not
move from place to place: it

merely rotates. In some situ-
ations both processes occur at
once; for example, the earth
rotates about its own axis
while it also revolves (in a
nearly circular path) around
the sun.

Wort a ckular pc4 appears 10 a& 01ele,,rwe
relative paiirtort and virotidn of tied dioserovr.9 aion9 i dovuloir pal% 5 rotation 'Is. Ile act of spinning.

earth which in turn implies a fixed direction of the gravita-
tional force are no longer valid.) If we suppose the launch

speed to be increased even more, the projectile would strike
the earth at points ever farther from the tower, till at

last it would rush around the earth in a near circular
orbit. At this orbiting speed, the "projectile" is traveling
so fast that its vertical fall just keeps pace with the re-
ceding surface of the curved earth.

What horizontal launch speed is required to put an object
into a circular orbit about the earth? We shall be able to

answer this question quite easily when we learn more about
circular motion. We will also then be able to consider our
problem of the capsule circling the moon.

The simplest kind of circular motion is uniform circular
motion, that is, motion in a circle at constant speed. If

you drive a car around a perfectly circular track so that at

every instant the speedometer reeling is forty miles per

hour, you are executing uniform circular motion. 3ut you
will not be doing so if the track is any shape other than

circular, or if your speed changes at any point.

How does one find whether an object in circular motion is
movina at constant speed? The answer, surely, is to apply
the test we use in deciding whether or not an object
traveling in a straight line does so with constant speed.

We measure the instantaneous speed at many different moments
and see whether the values are the same. If the speed is

constant, we can describe the circular motion of an object

by means of two numbers:

the radius R of the cir-

cle and the speed v along

the path. Instead of the ,c-

speed, however, we shall 0

r

The circular motion of a double
ferris wheel.
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use a quantity easier to measure: either (1) the time re-

quired by an object to make one complete revolution, or

(2) the number of revolutions the object completes in a

stated interval of time. These latter two concepts have

have been given names. The time required for an object to

complete one revolution in a circular path is called the

period of the motion. The period is denoted by the letter T.

The number of revolutions completed by the same object in a

specified time is called the frequency of the motion. Fre-

quency will be denoted by the letter f.

6. The Irmo numbers whiCh
describe uriteorrvi circular
motion can be arty rwo of
these frwee Yaziius, ve/0619)
frequenc or period).

In these terms we can describe a car moving with uniform

speed on a circular track. Let us suppose the car takes

20 seconds to make one lap around the track. Thus, T =

20 seconds. AlternatiAely, we might say that the car makes

3 laps per minute, that is, 3/60 = 1/20 laps per second.

Therefore, f = 1/20 revolutions/sec or more briefly f =

1/20 sec-1. In this last expression the symbol sec-1

stands for 1/sec, or "per second." When the same time unit

is used, the relationship between frequency and period is

f =

Any convenient units may be used. Radius may be expressed

in terms of centimeters, kilometers, miles, or any other

distance unit. Period may be expressed in seconds, minutes,

or years. Correspondingly, the frequency may be expressed

as "per second," "per minute," or "per year." The most

widely used units of radius, period and frequency in scien-

tific work are meter, second and per second.

Table 4.1

A comparison is shown below of the frequency and period for

various kinds of circular motion. NotetHe-changes in _units:

Can you put all the values in the table in seconds and-per'

sec?

Phenomena Period Frequency

Electron in atom 10-16 sec

Ultra-centrifuge 0.00033 sec

Hoover Dam turbine 0.33 sec

Rotation of earth 24 hours

Moon around the earth 30 days

Earth about the sun 365 days

1016 per sec

3000 per sea

3 per sec

0.0007 per-min

0.001375 Per.hour

0.0027 per day

If an object is in uniform circular motion, a person who

knows the frequency of revolution f and the radius R of the

path can compute the speed v of the object without difficulty.

Many commercial record turn-
tables are designed to rotate
at frequencies of 16 2/3 rpm
(called transcription speed),
33 1/3 rpm (for LP's), 45 rpm
(pop records), and 78 rpm (old-
fashioned). What is the period
corresponding to each of these
frequencies?

An exercise- in conversion
-Fadars. Lof<s 4? s-
invofve wrists
(;ec and sec.-1).

105

;



See Study Guide 4.9 and 4.11.

The distance traveled in one revolution is simply the

perimeter of the circular path, that is, 2nR. Tne time for
one revolution is just the period T. Thus since

speed distance traveled
time elapsed

by substitution we can get

v = 2nR
T

To reformulate this circular motion equation in terms of

frequency f we rewrite it as

v = (2nR) 1
.

Now since by definition

we find that

f = 1

v = (2nR) (f) = 2n.q.

If the body is in uniform circular motion, the speed com-

puted with the aid of this equation is both the ir.stantaneous

speed and the average speed. If the motion is nonuniform,

the formula gives only the average speed. The instantaneous
speed can be determined only if we are able somehow to find

Ad/At from measurements of very small segments of the path.

Let us now see how this equation can be used. We can
calculate the speed of the tip of a helicopter rotor blade
as the helicopter sits on the gr'.und. On one model, the
main rotor has a diameter of 7.6 m and a frequency of

450 revolutions/minute under standard conditions. Thus f =
450 per minute and R = 3.8 m, so

or about 400 mph.

v = 2nRf

v = 2n(3.8)(450) meters/minute

v = 10,700 meters/minute,

ca A phonograph turntable makes 90 revolu-
tions in 120 seconds.

a) What is its period in seconds)?
b) What is its period in minutes)?
c) What is its frequency in cycles

per second?

Q8 What is the period of the minute hand
of an ordinary clock? If the hand is
6.0 cm long, what is the linear speed
of the tip of the minute hand?

Summar9 4.6
106 /. Trt uniform cfraAlar rnOrtdn, veloatt5 is constant iv; Mcv5iiitAde

and "rari9evit i frie pAtti at' anti tkearit.
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4.6 Centripetal acceleration. Let us assume that a stone,

whirling on a string, is moving with uniform circular mo-

tion. The speed of the stone is constant. The velocity,

however, is continuously changing because the directi,,n of

motion is continuously changing. At any instant, the direc-

tion of the velocity is tangent to the circular path. Since

the velocity is changing, the stone is accelerating.

To keep the stone moving in a circular path, that is, to

produce an acceleration, a force is needed. In the case of

the whirling stone, a force is exerted on the stone by the

string. If the string were suddenly cut, the stone would go

flying off with the velocity it had at the instant the string

was cut. As long as the string holds together, the stone is

forced into a circular path.

The direction of the force acting on the stone is along

the string. Thus the force is always pointing toward the

center of rotation. This kind of force always directed

toward the center of rotation is called a centripetal

force. (The adjective centripetal literally means "tending

toward the center.") We shall give centripetal force the

symbol Pc. In uniform circular motion, the centripetal

force always makes a right angle with the instantaneous *or <xwitiir seekirhi

velocity. As long as the force and the instantaneous veloc-

ity are at right angles, the magnitude of the velocity (that

is the speed) does not change.

From Newton's second law we know that force and accelera-

tion are in the same direction. Thus, the acceleration of

the stone moving with constant speed along a circular path

must, like the force, be directed toward the center of rota-

tion. Furthermore, like the force, the acceleration always

makes a right angle with the instantaneous velocity. We

shall call this acceleration centripetal acceleration and

give it the symbol AnyAny object moving along a circular

path has a centripetal acceleration.
4. r rectGriear rnolairt,

We know the direction of centripetal acceleration. What and TZ ore olvievis or

is its magnitude? We can determine the magnitude of the aritiparalel.

centripetal acceleration by an analysis of the figures on the
e

next page. Assume the stone is moving in a circle of radius
l rinotion,t4e

anode and 0. 15
R. At any instant, the stone has a velocity, it has an ac-

qv

.,* 0 at lAie 14 of Ste

celeration, and it has a force exerted on it by the string. /fa:

In order to keep the stone moving with constant speed in a

circular path, a definite relationship between the magnitudes 6. 111 lo'nForm circu6r

of the velocity, v, and the centripetal acceleration ac,

must exist. We can find what this relationship is by treat-

ing a small part of the circular path as the combination of

Ti!: Coefitilipegi acceleratok- o04441(01 Vantmit
"TIP : Centhi9etixt acceleralibn denotation 107

T-15 PSsc fWn,1 - Ved'r kinetriaties
A Centripetal -Forte- cork - bedt accelerormair
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a tangential motion and an acceleration toward the center.

To follow the circular path, the stone must accelerate to-

ward the center through a distance h in the same time that
it would move a tangential distance d. The stone, with

speed v, would travel a horizontal distance d given by

d = vt. In the same time t, the stone, with acceleration ac,

would travel toward the r.cnter.a distance h given by h =

c
t2. (We can use this last equation because at t = 0, the

stone's velocity toward the center is zero.)

We can now apply the Pythagorean Theorem to the triangle

in the figure above.

R2 d2 = (R + h) 2 = R2 + 2Rh + h2.

When we cancel the like terms on each side of the equation,

we are left with

d2 = 2Rh + h2.

We can simplify this expression by making an approximation:

since h is very small compared to R, h2 will be very small

compared to Rh. So we shall neglect h2 and write

v as h Approaches o,
the 4nt n ,becomes

However, we know d = vt and h = 1/2act2 so we can substitute

for d2 and for h. Thus

d2 = 2Rh?

or

(vt) 2 = 2R (' lact2)

v2t2 = Ra t2

v2 =

V2
a
c R

= .

This is the magnitude of the centripetal acceleration for an

object moving with a speed v on a circular path of radius R.

dik blikk is .56709 a 17160(bOX Let us verify this relationship. A photograph has been
%WM a neon EnAllo or110 OWC made of a blinky which was placed on a rotating phonograph
-Pasties penooGia119.

turntable. The photograph and the actual setup are shown
below. The blinky travels in a circular path with constant

speed. The centripetal force in this case is the frictional

force acting between the blinky and the surface of the

phonograph turntable.



(a) The laboratory equipment for
the rotating blinky experiment. Aoettier

(b) A photographic record of one WCU.1

revolution by the blinky. The eXpreigs
blinky had a frequency of 9.4 per SeC IS
sec and its path has a radius see,
of 10.6 cm.

We shall determine the acceleration of the blinky by two

methods. The first method makes use of the basic definition
AtTof acceleration, a = TT. The second makes use of the equa-

v2
tion ac =

As the blinky travels around its circular path, it may be

at position P1 at some instant and at position P2 a short

time later. At each such position its velocity can be re-

presented by a vector. Since the circular motion is uni-

form, the arrows representing vl and ;2 must be equal in

length. However, the vectors and ;2 differ in direction.

What is the difference between the vectors? The figure be-

low shows the two vectors (arranged with the tails at the

8)

same point, to make the comparison easier) and makes clear

that they differ by the vector labeled A;. That is, A; has

a direction and a magnitude such that

vl + Av = v2.

In words, this equation means that in the short time in-

terval At in which the blinky travels from P1 to P2, it must

acquire a new component of velocity--a component having the

direction and magnitude of A. The direction of A; is

toward the center of the circle.

From measurements on the revolving blinky, we have deter-

mined the speed v. Using an appropriate scale factor (in

this case 1.0 cm stands for 45 cm/sec) we plotted the veloc-

ity at points P1 and P2 and determined Av by a direct length

measurement. The magnitude of the change in velocity was

found to be 20 cm/sec. The rest is straight calculation.

The time interval At between flashes was .11 sec, and there-

fore:

For 511M2R apuiter,lAe
frw9(4p wl sides- 14, v21.5%,

is afpnAmrt 14e 1 iantile v:4t,

sides R, R, As;
Ay = As.
v R

liat,41r such a small angle,
As .= vat So

and Ay = v2
??

By rearrangement, this becomes

4
AV = ;2 - VI ,

which is the definition of
"change in velocity."

Can you determine the speed of
the blinky from the data given?
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How is 't = .11 sec obtain J

from the information that f = 9.4
flashes/sec?

There were 9.4 blinks/sec and a
total of 14 blinks; therefore the
period T must be

or

14 blinks

9.4 blinks/sec '

T = 1.5 sec.

For this and most other problems
on uniform circular motion, it
is only necessary to remember
and understand

2nR
v = ,

1

'
f =

T
- and

V2
a =
c R

110

the magnitude the magnitude of the change in velocity
of the acceleration the change in time

20 cm/sec
.11 sec

= 190 cm/sec2.

Thus, by a combination of graphical and algebraic steps, we
found the magnitude of the acceleration the blinky underwent
as it revolved on the turntable.

vzLet us now use the equation, a
c R

= , to find the cen-

tripetal acceleration of the blinky and compare it to the
results obtained by the graphical method. The information
we have is R = 10.6 cm and T = 1.5 sec. The speed of the
blinky is given by

V = 27R
T

Substituting in numerical values we yet

v 2(3.14)(10.6) cm
1.5 sec

= 44 cm/sec.

We can substitute this value for speed into the expression
we derived for the acceleration.

V2
a = --
C R

(44.4 cm/sec) 2
10.6 cm

1971 cm2/sec2
10.6 cm

= 190 cm/sec2.

The answers obtained by the two methods agree.

If v2/R is the magnitude of the centripetal acceleration,
then from Newton's second law we can conclude that mv2/R is
the magnitude of the centripetal force. The hammer thrower
in the ph'.tograph is exerting a tremendous centripetal force

to keep the hammer moving in a circle as he speeds it up.

From the distance the hammer travels, we can estimate its
speed at release. To keep the 16-pound hammer in a circle

at the release speed requires over 500 pounds of force!

Let us return to our space flight. The space capsule in

Part 5 of our earth-moon flight is orbiting the moon in a
circle at a constant speed. From the radius of the orbit

and the capsule's speed, we can compute the centripetal ac-

celeration and, if we know the capsule's mass, the centripetal



Eithrmanl
'Rdreitiot4cti YrtdOOK has be one of irMee/Dal and fracArCal concerns of man.

force. What is the origin of the centripetal force? If you

do not already know, you will find out in Unit 2. By knowing

what the centripetal force is, space engineers can work the

problem backwards to determine the speed the capsule must

have for a particular lunar orbit.

See Study Guide 4.12, 4.14, and
4.15 for further thoughts on
centripetal acceleration.

Q9 In the last section we calculated
that the tip of a helicopter rotor
blade (f = 450 min-1 and R = 3.8 m)

was moving about 10,700 m/sec. Find
centripetal acceleration of the tip.

4.7 The motion of earth satellites. Nature and technology pro-

vide many examples of the type of motion where an object is

in uniform circular motion. The wheel has been a main

characteristic of our civilization, first as it appeared on

crude carts and then later as an essential part of complex

machines. The historical importance of rotary motion in the

development of modern technology has been described by the

historian V. Gordon Childe:

Rotating machines for performing repetitive
operations, driven by water, by thermal power, or
by electrical energy, were the most decisive factors
of the industrial revolution, and, from the first
steamship till the invention of the jet plane, it
is the application of rotary motion to transport
that has revolutionized communications. The rise of
rotary machines, as of any other human tools, has
been cumulative and progressive. The inventors of
the eighteenth and nineteenth centuries were merely
extending the applications of rotary motion that had
been devised in previous generations, reaching back
thousands of years into the prehistoric past....
[V. Gordon Childe "Rotary Motion" in The History
of Technology, ed. Charles Singer, E. J. Holmyard,
and A. R. Hall, Vol. I (New York: Oxford University
Press, 1953) p. 187.)

We shall see in Unit 2 that another rotati .al motion, that

Chariot. Alberto Giacometti,

1950. Courtesy Museum of Modern

Art.

of the orbiting planets around the sun, has also been one of a.bet earth safeilite in a orilcular
°riot does net ofprtti)the central concerns of man throughout recorded history.
outer space because it is con-

Since the kinematics and dynamics of all uniform circular sc't"Qojtu belt, acceloviAted
"!OW eaeX4.motion are the same, we can apply what we have learned to

the motion of artificial earth satellites in circular (or

nearly circular) paths. The satellite selected for study

here is Alouette, Canada's first satellite, which was

launched into a nearly circular orbit by a Thor-Agena B

rocket on September 29, 1962.

Alouette is orbiting at au average distance of 4,593 miles

from the center of the earth. Its closest approach to the

earth is 620 miles, and its farthest distance from the earth

3. On tie hancl,t does not ca./( back -0 the eaelk because
tew)evitial vela& is not biii-z9 reduced 129 Ihe perpendicular

accelerattort Ot is ohl9 chansin3 airedLOA.

1111.11,P 0 so-vs,...psocs.t6Gici

Alouette I still
provides useful
data upon command.
Alouette II was
placed in orbit
in late 1965.
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is 640 miles. Since this path is so nearly circular, we will

treat it as a circle in our analysis of the satellite's mo-

tion. The speed of Alouette can be taken to be constant for

our purposes, since it varies less than one mile per minute

above or below the average speed of 275 miles per minute.

Now let us compute the orbital speed and centripetal ac-

celeration of Alouette. The relationship v = 2tR /T allows

us to find the speed of any object moving uniformly in a

circle if R and T are known. To determine a satellite's

speed, we need to know its distance R from the center of the

earth and its period T.

Tracking stations located in many places around the world

maintain a recotj of any satellite's position in space. From

the position data, the satellite's distance above the eartn

at any time a,.(1 its period of revolution are found. By means

of such tracking, we know that Alouette moves at an average

height of 630 miles above sea level, and takes 105.4 min to

complete one circular orbit. Adding 630 miles to the earth's

radius, 3,963 miles, we obtain R = 4,593 miles, and

2IR 2n(4,590) mi 28,800 mi
-T 105 min 105 min

This is equivalent to 16,500 mi/hr, or 7,150 m/sec.

The last equation can be used to find the speed of any

satellite, for example, that of our moon. The average dis-

tance from the center of the earth to the center of the moon

is approximately 2.39 x 105 mi, and the moon takes an average

of 27 days, 7 hrs, 43 min to complete one revolution around

the earth with respect to the fixed stars. Thus

21(2.39 x 105) mi
v = 38.1 mi/min,

3.93 x 104 min

or roughly 2,280 mi/hr.

If we wish to calculate the centripetal acceleration of

Alouette, we can use the value of v found above along with
v2

the relationship a = 17- . Thus

(275 mi/min)2a = 16.5 mi/min2
4,590 mi

This is the equivalent of 7.42 m/sec2. What force gives

rise to this acceleration? (Hint: the acceleration of a

falling stone at the surface of the earth is 9.80 m/sec2.)

Earlier we asked the question, "What horizontal launch

speed is required to put an object into a circular orbit

about the earth?" Can you answer this question now? If not,

turn to Study Guide 4.23 for help.

In Chapter 2 we found that the
acceleration due to gravity at

the earth's surface was about
9.8 m/sec2. Here we have just
calculated the acceleration of
Alouette toward the center of
the earth to be about 7.4 m/sec2.
Calculate the moon's centripetal

acceleration.
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Summar-Li I. Sii-aple harmonic. rnoliokt (Si 41) is an example of a more complex irotiort. 9 It can
be desceibed in 'gyms or circular rnotio.n. 3. Examples of SHm are tidpra-tin ci tunin3 forks,
pendulums , object- suspended -0,7ert springs ,etc. 4- 'Forces -that doe5 'raw soie rise to SHM

A vibrating string

114 equilibrium

Swinging children D Sample harmonic motion
3 )R7 Simple haravricc, moton atrtrack)

Simple Harmonic Motion

Back-and-forth motions similar to the
swinging child and the vibrating guitar
string are common. There are rocking
boats, swaying trees, and vibrating
tuning forks. There are clock pendula and
quivering diving boards. What are the
details of such oscillatory motions?
What kind of force is acting on an os-
cillating object? No new concepts are
needed to answer these questions, so let
us proceed.

The mass on the spring pictured be-
low is in equilibrium. If we displace
the mass vertically from its equilibrium
position, a force is exerted on the mass
by the spring. This force, Fs, tends to
restore the mass to its equilibrium
position. Let us displace the mass, re-
lease it and observe its motion. We
observe that the mass oscillates back

A mass in

0

0

0

t.

A mass displaced
from equilibrium

and forth through its equilibrium posi-
tion. If we start a timer at the in-
stant of release, we could represent the
displacement of the mass at any time on
a graph. The displacement of the mass
ranges from a maximum in one direction
to a maximum in the other direction;
that is, from + d to -d.

t



As the mass approaches its maximum
displacement, it slows down, stops and
then speeds up in the opposite direction.
The speed of the mass is the greatest
as it passes through the equilibrium
position. This information can also be
represented graphically. The displace-
ment-time, velocity-time and acceleration-
time graphs are shown below.
These graphs give us the kinematic de-
tails of the motion. From the graphs
we see that the velocity is a maximum
when the displacement is a minimum.
Further, we see that when the displace-
ment is a maximum in one direction, the
acceleration is a maximum in the other
direction.

What about the force exerted on the
mass by the spring? By combining the
information in the acceleration-time
graph with Newton's second law, we know
that the force is varying in both magni-
tude and direction. We can determine
how the force varies by an experiment
shown in the photographs below. In this
experiment forces of known magnitudes -
0.5 N and 1.0 N--were applied to the
mass. From the photographs we can mea-
sure the displacements of the mass

-5

0

0

O

F
s
=0.5 N F

s
=1.0 N

d=3.7 cm d=7.5 cm

resulting from the known forces. This
measurement tells us the force that the
spring is exerting on the mass at these
two displacements.

That is, when

d = 3.7 cm

and when

d 7.5 cm

then F
s

= 0.5 N

then F
s

= 1.0 N.

A close look at these results seems to
indicate that Fs d or Fs = kd where
k is a constant of proportionality.
(Verify for yourself that Fs is propor-
tional to d. Remember Study Guide 3.9.)

One additional piece of information
is needed before we fully understand the
spring force Fs. What is the relation
between the directions of Fs and d?
When the displacement is in the downward
direction, the spring force is in the
upward direction and vice versa. In

other words, the force F is in the op-
posite direction of a. V'e can now write
the force law which expresses the nature
of the force exerted by the spring on
the mass. This force law is

s
= -kd.

The minus sign indicates the opposite
directions of 14

s
and a.

The back-and-forth motion resulting
from the force -Ps = -ka is called
simple harmonic motion. Are the swing-
ing child and the vibrating guitar
string examples of simple harmonic mo-
tion? Are they examples of motion for
which the motivating force is propor-
tional to the displacement? The answer
to both of these questions is "only
approximately." There are other forces
which tend to slow down and bring to
rest the swinging child and the guitar
string. In other words, the back-and-
forth motion is damped. If the damping
forces are not large, these motions and
many others besides closely approximate
simple harmonic motion.

SUGGESTED ACTIVITY

The stroboscopic photo-
graph at the right shows
the position of a light
attached to the mass at
time intervals of 1/30
second. The mass is 0.52
kg.

1. What is the equilib-
rium position?

2. Construct a displace-
ment-time graph.

3. Measure the slope of
the displacement-time
graph at several different
times and construct a ve-
locity-time graph.

4. Determine the ac-
celeration of the mass
when it is positioned
half-way between the maxi-
mum displacement and the

4eqpilibrium position.
5. What is the force ex-

erted on the mass by the
spring at the same point
chosen in (4) above?

6. Does Newton's second
law hold?

7. For additional sug-
gested activities see
Study Guide 4.22.
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4.8 What about other motions? So far we have described recti-

linear motion, both uniform and accelerated, projectile

motion, uniform circular motion, and simple harmonic motion.
Taken together, these descriptions are useful in clarifying

much of interest in the world of motion. Even so, it is

clear that we still have avoided maw complicated kinds of
Sarrtrnarbi

motion that may interest us. For instance, consider these:All .molifiKs can be arialyed
USwl5 Ile corn ep-M. op po((oll a) the motion in a pattern of water ripples;

Onl acaiqeratidn) b) the motion of the Empire State Building;
evisvi tot* -Wiese concepts

c) the motion of a small dust particle as it zig-zagsweriz devalopeci fl-orn a
Stuc

veteitikort

j of refatnie simple IN:PS through still air;

d) a person running.

Even if we have not treated these motions directly, what

we have done so far is of real value. The methods for

dealing with motion which we have developed in this and the
preceding chapters are important because they give us means
for dealing with any kind of motion whatsoever. All motion
can be analyzed in terms of position, velocity, and accelera-
tion.

When we considered the forces needed to produce motion,

Newton's laws stpplied us with concise yet very general an-
swers. Later, when we discuss the elliptical motion of

planets, and the hyperbolic motion of an alpha particle

passing near a nucleus, we shall be able to infer the magni-

tude and direction of the forces acting in each case.
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On the other hand, when we know the magnitude and direc-

tion of the force acting on an object, we can determine

what its change in motion will be. If in addition to this,

we know the position and velocity of an object, we can re-

construct how it moved in the past and we can predict how it

will move in the future. Thus, Newton's laws provide a com-

prehensive view of forces and motion. It is not surprising

that Newton's work was greeted with astonished wonder. Such

wonder is aptly expressed in Alexander Pope's oft-quoted

couplet:

Nature and Natire's laws lay hid in night,

God said, "Let Newton be!" and all was light.
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Study Guide

4.1 Using symbols other than words, give
.n example of each of these:

a) a scalar.
b) a vector.
c) the addition of two scalars.
d) the addition of two vectors.
e) the addition of three vectors.
f) the subtraction of one scalar

from another.
g) the subtraction of one vector

from another.Dicussion

4.2 For a given moving object the veloc-
ity and acceleration can be represented
by these vect.ors:

and
a

The sum of these two vectors is:

(a) %.7 (b)

(c)

a

V

e) They cannot be added.
Answer (e.)

4.3 A sphere is launched horizontally,
as shown below. Suppose the initial
speed v is 3.0 m/sec. Where is the
projectile (displacement), and what is
its speed and direction (velocity)
0.5 sec after launching?

4.4 If a raindrop accelerated at a con-
stant rate of 9.8 m/sec2 from a cloud
1 mile up what would be its speed just
before striking the ground. Does a
raindrop accelerate at a constant rate
over a 1 mile fall? v= 177 pri/sec.., No.

4.5 An airplane has a gun that fires bul-
lets at the speed of 600 mph when tested
on the ground with the plane stationary.
The plane takes off and flies due east
at 600 mph. Which of the following
claims are correct, if any? In defend-
ing your answers, refer to Galilean
relativity.

75-ve a) When fired directly ahead the bul-
lets move eastward at a speed
of 1200 mph.

irm.:-.b) When fired in the opposite direc-
tion, the bullets drop vertically
downward.

Trove- c) If fired vertically downward, the
bullets move eastward at 600 mph.
Discussion

4.6 Two persons watch the same object
move. One says it accelerates straight
downward, but the other claims it falls
along a curved path. Invent a situation
in which they both could be right. DiScassioh

4.7 A hunter points his gun barrel di-
rectly at a monkey in a distant palm
tree. Where will the bullet go? If the
animal, startled by the flash, drops out
of the branches at the very instant of
firing, will it then be hit by the bul-
let? Explain. 17)1c/Asm4;41

4.8 If a broad jumper takes off with a
speed of 10 m/sec at an angle of 45°
with respect to the earth's surface, how
far would he leap? If he took off from
the moon's surface with that same speed
and angle, what would be the length of
his leap. The gravitational acceleration
of a body at the moon's surface is

6th of that at the earth's surface.
(a) 10.c2 rridrarg 6i .a rnerers

4.9 Contrast rectilinear motion, projec-
tile motion, and uniform circular motion
by:

a) defining each.
b) giving examples.
c) comparing the velocity-acceleration

relationships. INk.aseton

4.10 You are inside a uniformly accelerating
moving van. If when the van is traveling
at 10 mph (and still accelerating) you
dropped a ball from the roof of the van
onto the floor, what would be the ball's
path relative to the van? What would
be its path relative to a person driving
past the van in the opposite direction

Q) x = L5 m 1.25 rn) eke. I.9 to bt of the van at a uniform speed? What
an9fe +o° below hoyiz.byfroa. would be its path relative to a person

standing on road? Dioussion
118 b) v Iv 6.7 ilm(sec. at arlle 69° below horizontal.



4.11 An object in uniform circular motion
makes 20 revolutions in 4.0 sec.

a) What is its period T? seo
b) What-is its frequency f? 50(25
c) If the radius of rotation is

2 meters, what is its speed? 6,2.5misec

4.12 Two blinkies were placed on a rotating
turntable and photographed from directly
overhead. The result is shown in the
figure below. The outer blinky has a
frequency of 9.4 flashes/sec and is lo-
cated 15.0 cm from the center. For the
inner blinky, the values are 9.1
flashes/sec and 10.6 cm.

a)

b)

c)

d)

e)

f)

g)

h)

What is the period of the turn-
table?

What is the frequency of rotation
of the turntable? Is this a
standard phonograph speed? f.3grrlo

What is the linear speed of the
turntable at the position of
the outer blinky? v=50crnisec

What is the linear speed of the
turntable at the position of
the inner blinky? v=35 cwq5ec

What is the linear speed of the
turntable at the center? vvOcnikec

What is the angular speed of each
blinky in degrees/sec? Are they
equal? (4,= 5ec-I INV am equal

What is the centripetal accelera-
tion experienced by the inner
blinky? ac= 1.9ocm /sect

What is the centripetal accelera-
tion experienced by the outer
blinky? ac I6o cnifsec2

4.13 These questions are asked with refer-
ence to Table 4.2 on page 112.

a) Are the distances to apogee and
perigee given as height above
the surface of the earth or
distance from the center of
the earth? AbovelKIFTWPkoe

b) Which satellite has the most
nearly circular orbit? slicori oZ

Study Guide

c) Which are the most eccentric?
How did you arrive at your
answer? LAArisk 3 discussion

d) Which satellite in the table has
the longest period? Luna¢

e) What is the period of Syncom 2
in hours. z4. 34_ hr

f) How does the position of Syncom
relative to a point on the ylemoCin
earth change over one day. overhead

Which satellite has the greater
centripetal acceleration,
Midas 3 or Syncom 2? Midas 3

h) What is the magnitude of the
centripetal acceleration of
Vostok 6. Express answer in
m/sec2. q. 36 wifsecz

g)

4.14 The following table shows the period
and the mean distance from the sun for
the three planets that most nearly go
in a circular orbit.

Planet Mean distance (r) Period (T)
from sun (in A.U.) in years

Venus

Earth

Neptune

0.72

1.00

30.06

0.62

1.00

164.8

(A.U. = astronomical unit = the mean
distance of the earth from the sun;
1 A.U. = 92.9 x 106 miles.)

a) What is the average orbital speed
for each planet (in A.U./year)?

b) Calculate the centripetal ac-
celeration for each planet in
A.U./yr2.

c) Can you see any relationship be-
tween the mean distance and the
centripetal acceleration ac?

(Hint: Does it appear to be

(1) a
c

a r, or (2) a
c

a l/r; or

(3) ac a r2; or (4) ac a 1/r2?

How can a graph help you to de-
cide?)

Gl) v(Venus):: 7.3 A. 1.4.(9r

V( EartA). b.ae A.U./yr

V( Neptune) 1.14. A.U.ir

loo) at (vows) A.11/2

eke. (6'400 = 39. 5 A.m./Jr-4

//eptune)= 4. 37 >4 10-2 #4.1119r2

Ac is proportional to 11:1
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4.15 Explain why it is Impossible to have
an earth satellite orbit the earth in
80 minutes. Does this mean that it is
impossible for an object to circle the
earth in less than 80 minutes? ,piscuscia.. N

4.16 The intention of the first four
chapters has been to describe "simple"
motions and to progress to the descrip-
tion of "complex" motions. Organize
the following examples into a list from
the simplest to the most complex, making
whatever idealizing assumptions you
wish. Be prepared to say why you placed
any one example ahead of those below it,
and to state any assumptions you made.

4.20 Compare the centripetal acceleration
of the tire tread of a motor scooter
wheel (diameter 1 ft) with that of a
motorcycle wheel (diameter 2 ft) if both
vehicles are moving at the same speed.

ailat = 01/
4.21 Our sun is located at a point in our

galaxy about 30,000 light years (1 light
year = 9.46 x 1012 km) from the galactic
center. It is thought to be revolving
around the center at a linear speed of
approximately 250 km/sec. a) What is
the sun's centripetal acceleration with
respect to the center of our galaxy?
b) If the sun's mass is taken to be
1.98 x 103° kg, what centripetal force
is required to keep it moving in a cir-
cular orbit about the galactic center?
c) Compare the centripetal force in b)
with that necessary to keep the earth in
orbit about the sun. (The earth's mass
is 5.98 Y 1024 kg and its average dis-
tance from the sun is 1.495 x 108 km.
What is its linear speed in orbit?)

ac = a x 10-tom yse.G2

172s) ;e: 4375:2x 2a I1

A "human cannon ball" in flight
A car going from 40 mph to a complete
stop

A redwood tree
A child riding a ferris wheel
A rock dropped 3 m
A woman standing on an escalator
A climber ascending Mt. Everest 2,secussiovl

4.17 Could you rank the above examples if
you were not permitted to idealize? If
yes, how would you then rank them? If
no, why not? Disowsen

4.18 Using a full sheet of paper, make and complete a table like the one below. --1-;*(e,

Concept Symbol_ Definition =,,cample _

Length'-of a- path-'bettizeen_ --

any two Points'es-Measilred
alono:the_path _.' '-_

_
.

-Straight"-line- distance and di.,
14****Detibitto Chicago

speed _
'--. - -,-(--;-

Aii,itiiiAiiie'=1)44.#4.7-'weit",:::40o
mpiiYna

-

Time- rate'bf.chan d,o
-

velocity-

Centripetal
acceleratiOn

,....

,
700444#.0,1440C,00m9-41#016='
'bileif'turne:'00'xiiii!in-=lolit gear

The time' it- take ter to -ma e
-one completere164440-

4.19 The diameter of the main wheel tires
on a Boeing 727 fan jet is 1.26 m. The
nose wheel tire has a diameter of
0.81 m. The speed of the plane just be-
fore it clears the runway is 86.1 m/sec.
At this instant, find the centripetal
acceleration of the tire tread, for each
tire. ac (maim) .1.- L IS x.104- mise4

ac (nose0 = 1.s x k74- mg/sec 2
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4.22 Here are a list of some possible In-
vestigations into simple harmonic motion.

1. How does the period of a pendulum de-
pend upon

Study Guide

4.24 The thrust of a Saturn Apollo launch
vehicle is 7,370,000 newtons (approxi-
mately 1,650,000 lbs) and its mass is
540,000 kg. What would be the accel-
eration of the vehicle relative to the
earth's surface at lift off? How long

a) the mass of the pendulum bob? XnaePonetext would it take for the vehicle to rise
b) the length of the pendulum? 7-kaams 50 meters? The acceleration of the
c) the amplitude of the swing (for IAA 6 vehicle increases greatly with time

a fixed length and fixed mass)? (it is 47 m/sec2 at first stage burn-
MidePePiderit out), even though the thrust force does

2. How does the period of an object on not increase appreciably. Explain why
the end of a spring depend upon the acceleration increases.13.6misecZ;

42-71 Sec 1 discussion
a) the mass of the object? l'immwc 4.25 Write a short essay on one of the
b) the spring constant, k, where wArricess following pictures. Disiusscon

the spring constant k is defined
as the slope of the graph of
force versus spring extension?
Its units are newtons/meter. 7-deaNwases

sWer
4.23 The centripetal acceleration experi-

enced by a satellite orbiting at the
earth's surface (air resistance conven-
iently neglected) is the acceleration
due to gravity of an object at the
earth's surface (9.8 m/sec2). There-
fore, the speed required to maintain
the satellite in a circular orbit must
be such that the centripetal accelera-
tion of the satellite is 9.8 m/sec2.
This condition can be expressed as fol-
lows. 651,4ni 17650 nipir

V2
a
c R

= = a = 9.8 m/sec2

R, the radius of the earth, is
6.38 x 10b meters

ag = 9.8 m/sec2

V2 = 9.8 m/sec2 x 6.38 x 10b m

= 62.5 x 10b m2/sec2

V = 7.85 x 103 m/sec

What is the period T of this orbit?

What is the satellite's speed ex-
pressed in miles per hour? (Hint:
1,000 meters = .61 miles.)
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Epilogue The purpose of this Unit was to deal with the
fundamental concepts of motion. We decided to start by

analyzing particularly simple kinds of motion in the expecta-
tion that we might discover the "ABC's" of physics. With
these basic ideas it was hoped we could turn our attention
back to some of the more complex (and more interesting) fea-
tures of the world. To what extent were these expectations
fulfilled?

We did find that a relatively few basic Concepts allowed
us to gain a considerable understanding of motion. First
of all, we found that useful descriptions of the motion of
objects can be given using the concepts of distance, dis-

placement, time, speed, velocity and acceleration. If to
these we add force and mass and the relationships expressed
in Newton's three laws of motion, it becomes possible to ac-
count for observed motion in an effective way. The surpris-
ing thing is that these concepts of motion, which were

developed in extraordinarily restricted circumstances, can
in fact be so widely applied. For example, our work in the

laboratory centered around the use of sliding dry ice pucks

and steel balls rolling down inclined planes. These are not
objects to be found in the everyday "natural" world. Even so
we found that the ideas obtained from those experiments could
be used to deepen our understanding of objects falling near
the earth's surface, of projectiles, and of objects moving
in circular paths. We started by analyzing the motion of a

piece of dry ice moving across a smooth surface and ended up
analyzing the motion of a space capsule as it circles the
moon and crashes to its surface.

In other words, we really have made substantial progress.
On the other hand, we cannot be satisfied that we have all of
the intellectual tools necessary to understand all of the
phenomena that interest us. We will find this to be especial-
ly true as we turn our attention away from interactions in-

volving a relatively few objects of easily discernable size,
and to interactions involving countless numbers of submicro-

scopic objects, i.e., molecules and atoms. Thus in Unit 3
we shall add to our stock of fundamental concepts a few ad-
ditional ones, particularly those of momentum, work and
energy.

In this Unit we have dealt primarily with concepts that
owe their greatest debts to Galileo, Newton and their fol-
lowers. If space had permitted, we should also have included
the contributions of Rene Descartes and the Dutch scientist,
Christian Huyghens. The mathematician and philosopher,

1



A. N. Whitehead has summarized the role of these four men

and the significance of the concepts we have been dealing

with in this Unit in the following words:

This subject of the formation of the three laws
of motion and of the law of gravitation [which we
shall take up in Unit 2] deserves critical attention.
The whole development of thought occupied exactly two
generations. It commenced with Galileo and ended
with Newton's Principia; and Newton was born in the
year that Galileo died. Also the lives of Descartes
and Huyghens fall within the period occupied by these
great terminal figures. The issue of the combined
labours of these four men has some right to be con-
sidered as the greatest single intellectual success
which mankind has achieved. [Science and the Modern
World]

The revolution Whitehead speaks of, and the subject of

this Unit, was important for many reasons, but most of all

because it led to a deeper understanding of celestial motion.

For at least 25 centuries man has been trying to reduce the

complex motions of the stars, sun, moon, and planets to an

orderly system. The genius of Galileo and Newton was in

studying the nature of motion as it occurs on earth and then

assuming that the same laws would apply to objects in the

heavens beyond man's reach. Unit 2 is an account of the im-

mense success of this idea. We shall trace the line of

thought, starting with the formulation of the planetary

problems by the ancient Greeks, through the work over a

100-year span of Copernicus, Tycho Brahe, Kepler, and Gali-

leo, that provided a planetary model and several general laws

for planetary motion, to Newton's magnificent synthesis of

terrestrial and celestial physics in his Law of Universal

Gravitation.

7.

ler-/

4'4)

.,>"7":
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Index

Acceleration, 30
alternate definition, 49
average, 30
centripetal, 106, 108

defined, 29, 67
.refined by Galileo, 49

explained by Newton's second law, 75
instantaneous, 30
magnitude of, 83
vector definition of, 67

Accelerometer, 62
Air pump, 45
Air resistance, 45
Alpha particles, 1
Archimedes, 41
Aristotle, 38
his On the Heavens, 40
his theory of motion, 40, 68, £8
his theory of motion attacked, 44
his theory of motion refuted, 57

Aristotelian cosmology, 46
Average speed, equation for uniform accelera-

tion, 50

Boccioni, Umberto, 9

Centripetal acceleration, 106
equation for uniform circular motion, 108

Centripetal force, 107
Circular motion, 95, 103
Cosmology
Aristotelian, 46
medieval, 37

Curie, Irkle, 1
Curie, Pierre and Marie, 1

Delta (A), defined, 18
Displacement, 67, 98
Distance

equation for, with uniform acceleration, 51, 96
equation for, with uniform speed, 97

Dry ice, 11
Dynamics

concepts, 65
defined, 65

of uniform circular motion, 111

Elements, Aristotle's four, 37
Equations

acceleration defined, 49

centripetal acceleration, uniform circular mo-
tion, 108

distance, with uniform acceleration, 51, 96
distance, with uniform speed, 97
for restoring force, simple harmonic motion,

115

Newton's second law, 76
speed as function of distance for uniform ac-

celeration, 58

trajectory with constant acceleration, 100
uniform acceleration, 50
vector definition, 67

Equilibrium, 70
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Euclid, 41
Extrapolation, defined, 23

Fast neutrons, 3
Fermi, Enrico, 1
Fermi, Laura, 1

her Atoms in the Family, 1-5
First law of motion, Newton's, 71, 88, 95
Force, 40, 65

as a vector, 66
direction, 66
in equilibrium, 70
magnitude, 66
nature's basic, 84
restoring, simple harmonic motion, 115
resultant, 76
to an Aristotelian, 69
unbalanced, 73, 76

Force of gravity, 78
Free fall, problem of, 47
Frequency of the motion, 105
Frictionless, 71
Frozen carbon dioxide, 11

Galilean relativity, 102
principle, 103

Galileo, 30, 41
his Dialogue on Two Great World Systems, 43
his inclined plane experiment, 54
his Two New Sciences, 43
straight line, 74

Galileo's hypothesis, 49, 51
direct test, 52
indirect test, 52
proven, 56

Geiger counter, 2
Graphs

distance-versus-time, 19
slope in, 20
speed-time, 29

Gravitation, 78

Harmonic motion, simple, 114
Hooke's Law, 88
Huygens, Christian, 56
Hypothesis

direct test of, 52
explanations, 67
indirect test of, 52
of Galileo, 49, 51, 52
proven, 56

Inclined plane experiment of Galileo, 54
Inertia

and Newton's second law, 75
law of, 72

measured, 80
principle of, 72

Instantaneous speed, 23
Interaction, gravitational, 85
Interpolation, defined, 23
Interval
distance, 18, 26
time, 18, 26



Joliot, Frederic, 1

Kinematics
concepts of, 65
defined, 65
of uniform circular motion, 111

Lew of inertia, 72
Leoni, Ottavio, 36

Magnitude, 67
of acceleration, 83

Mass, 65, 78
defined, 80
standard of, 77

Mean Speed Rule, 61
Mechanics, 43
Medieval cosmology, 37
Merton Theorem, 61
de Montbeillard, 26
Motion
Aristotelian theory of, 37, 40, 68
Aristotelian theory refuted, 56
circular, 95, 103
component of, 98

frequency of, 105
Galileo on, 47
natural, 68

other, 116
period of, 105
projectile, 95, 101
rotational, 111
simple harmonic, 114
uniformly accelerated, 47
violent, 68

Neutrons, 1
fast and slow, 3

Newton, Isaac, 58, 68
his first law of motion, 71, 88, 95
his second law of motion, 74, 76, 88, 94
his straight line, 74
his The Principia, 68, 81
his third law, 80, 88

Newton, unit, defined, 78

Orbit, 94
Oresme, Nicolas, 47

Parabola, 100
Parallelogram law, 66
Period of the motion, 105
Philoponus, John, 40

Photography
development of, 24
high-speed motion, 25
multiple-exposure, 13
stroboscopic, 35

Principle of inertia, 72
proven, 73

Projectile, 96
path of, 99
trajectories, 99

Projectile motion, 95, 96, 101
Pythagorean theorem, 108

Quintessence, 37

Reference frames, 74, 102
inertial, 103

Relativity, Galilean, 102
principle, 103

Rest, state of, 70
Revolution, 104
Rotation, 10/
Rotational motion, 111
Rule of parsimony, 48

Sagredo, 44
Salviati, 44
Second law of motion, Newton's, 74, 88, 94, 110

as an equation, 76
stated, 75

Settle, Thomas, 53
Sign convention, 61
Simple harmonic motion, 114
Simplicio, 44
Slope

defined, 20, 33
tangent, 27

Slow neutrons, 3
Speed

average, 15, 28, 106
defined, 11
equation as function of distance for uniform

acceleration, 58
equation for uniform acceleration, 50
instantaneous, 23, 28, 106
nonuniform, 15
uniform, 15

Speedometer, 11, 33
Straight line
Galileo's, 74
Newton's, 74

Stroboscopic lamp, 13

Tangent, 27
Third law of motion, Newton's, 80, 88
Thought experiment, 44, 72
Trajectory, 96
equation for, with constant acceleration, 100
projectile, 99

Unbalanced force, 73
Ufano, 99
Uniformly accelerated motion, 47
defined, 48

Unwritten text, 28

Vacuum, 46
Vector, 66
defined, 67

Velocity, as a vector, 67
Verne, Jules, 9q

Water clock, 56
Weight, 78
defined, 80
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Answers to End of Section Questions

Chapter 1

Ql .5 cm/sec from 0 to 2 seconds; .33 cm/sec
from 2 to 5 seconds; 2 cm/sec from 5 to
6 seconds.

Q2 .66 cm/sec.

Q3 Interpolation means estimating value
between data points; extrapolation means
estimating values beyond data points.

Q4 The average speed over an interval of
time At is Ad/At; instantaneous speed
means in principle the speed at a point,
and in practice is defined as the
average speed for an interval so small
that the average speed wouldn't change
if the interval were made smaller.

Q5 The following table summarizes the data
in the photo on page 28. The two ac-
companying graphs are based on the same
data.

position

50.

% 40.

30

a. 20 20

10 .

0
.5 1.0 1.5 2.0 2.5

time (sec)

Why doesn't the speed-time graph pass through
the origin?

Q6 40,000 miles/hour2 or 12 mph/sec.

0 0 cm 0 sec
19 cm/sec

Q7 -8 miles/hour2.

1 9.5 0.5 Chapter 2
28

2 23.5 1.0 Q1 He could not measure v.
35

3 41 1.5 Q2 d = vt can only be used if v is constant.
42 In acceleration motion v is not constant

4 62 2.0 and the two equations cannot be com-
51 bined.

5 87.5 2.5

100

80

chi- 60

40 -
co

20 -

.5 1.0 1.5 2.0 2:5

time (sec)

Q3 c

Q4 c (a case can also be made for (a) or (b))

Q5 a

Chapter 3

Ql Speed is a scalar quantity having only
a magnitude while velocity is a vector
quantity having both a magnitude and a
direction.

Q2 a) Dv = 14.1 m/sec southeast
b) a = 2.8 m/sec2 southeast

Q3 Force

Q4 According to Aristotelian physics a
force is needed to maintain a motion.
One possible (but slightly unbelievable)
explanation would be "air currents cir-
culate around the puck and push it along."
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Q6 The net force acting on the puck is
zero. Therefore the velocity does not
change.

Q7 Galileo's "straight" lines were actually
great circles about the earth. Newton's
straight lines were straight.

Q8 2.5 kg

Q9 False

Q10 a) 2 m/sec2
b) 4 N
c) Friction

Q11 c and f

Q12 e and f

Q13 No. The force "pulling the string apart"
is still only 300 N.

Chapter 4

Ql a) 2 seconds
b) 2,000 meters

Q2 a) No air resistance
b) The motion in the horizontal direction

has no effect on the motion in the
vertical direction.

a

Q3 y = Tri-TT x x2 where ag is the accelera-

tion due to gravity at the moon's sur-
face.

a
Q4 2(v

x
2

Q5 In cases a, b and c the results would be
identical. In cases d and e the accelera-
tion of the ball would be constant but
the acceleration would be greater in
case d than in case e.

Q6 Case d

Q7 a) 1.33 seconds/cycle
b) .022 minutes
c) .75 cycles/sec

Q8 3.1 m/sec2

Q9 .77 m/sec2
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Brief Answers to Study Guide

Chapter 1

1.2 a) 6 cm/sec
b) 15 miles
c) 15 sec
d) 3 m/sez
e) 40 miles/hr
f) 40 miles/hr
g) 5.5 sec
h) 8.8 m

1.3 1.99 miles/hr

1.5 2.7 x 108 seconds

1.6 a) 1.65 m/sec
b) 3 m/sec

1.12 3.15 x 105 cm/sec

1.14 a) Approximately 25 meters
b) No

1.17 40 mph

Chapter 2

2.8 a) True
b) True
c) False
d) True (if air resistance is present)

2.15 c) b hours

2.16 a) 4.9 m
b) 9.8 m/sec
c) 14.7 m

2.17 a)'10.2 m/sec
b) 15.1 m
c) 2.04 sec
d) 20.4 m
e) 20 m/sec

2.18 a) 20.4 m/sec
b) 18.8 m/sec
c) 4.08 sec
d) 81.6 m
e) 0 (It is on the ground.)
f) 40 m/sec

2.19 a) 2 m/sec2
b) 2 m/sec
c) 2 m/sec
d) 4 m
e) 2 m/sec
f) 4 sec

2.20 a) 56.8 m/sec2
b) 710 m (approximately)
c) 189 m/sec2 (about 19.5 g's)

2.23 a) 4,30 welfs/surgs2
b) as = 980 cm /sect or 9.8 m/sec2.

The planet Arret could be similar to
the planet earth.

Chapter 3

3.3 a) Yes
b) 4.2 units 20° south of west

3.8 6:1

3.13 2 kg

3.14 a) a = 201 m/sec2 v = 790 m/sec
b) The mass of the rocket decreases as

propellent leaves the rocket.
c) 220 m/sec2 (The acceleration is not

uniform.)

3.16 a) 850 N
b) 735 N
c) 622 N
d) 850 N, 735 N, 622 N
e) The bathroom scale indicates a weight

change.

3.17 a) 1 kg
b) 9.81 N, 9.80 N

3.18 b) 1.6 x 10-24 m/sec
c) 6.0 x 1024:1

Chapter 4

4.2 e

4.3 a) x = 1.5 m, y= 1.25 m, a- 1.9 m at
angle 40° below horizontal

b) v = 5.7 m/sec at angle 59° below
horizontal

4.8 a) 10.2 meters
b) 61.2 meters

4.11 a) 0.2 seconds
b) 5 cps
c) 62.8 m/sec
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4.13 a) Height above surface
b) Syncom 2
c) Lunik 3 and Luna 4
d) Luna 4
e) 24.3 hours
f) Remains almost directly above that

spot
g) Midas 3
h) 9.4 m/sec2

4.19 For the nose wheels, a
c

= 1.8 x 104
m/sec2.

4.20 The centripetal acceleration of the
scooter wheel would be twice that of the
motor cycle wheel.

4.21 a) a = 2.2 x 10-10 m/sec2
b) FC= 4 x 1020 N
c) F = 3.55 x 1022 N
d) v = 2.98 x 104 m/sec
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Introduction to Project Physics

Project Physics has as one of its ma-
jor goals the development of course ma-
terials that will help to bring a larger
proportion of high-school students to
the study of physics, and to make this
study more meaningful and enjoyable to
students and instructors.

With the aid of experienced physicists
and teachers, materials for a physics
course have been developed that will be
instructive and appealing to a wide vari-
ety of students, including those already
intent on scientific careers, those who
may not go to college and those who in
college will concentrate in the humanities
or social studies. For a detailed expla-
nation of the background, aims, contents
and teaching procedures, refer to the
May ]967 issue of The Physics Teacher.

For the last group in particular, it
is necessary to show that physics is
neither an isolated body of facts and
theories with merely vocational useful-
ness nor a glorious entertainment re-
strictee to an elite group of specialists.
Rather, it should be seen as an always
unfinished creation at the forefront of
human ingenuity. Moreover, what has been
achieved in physics has always influenced,
sooner or later, man's whole cultural
life. To be ignorant of physics may
therefore leave such students unprepared
for their time.

The course being developed by Harvard
Project Physics treats physics as a live-
ly and fundamental science in its own
right. But it also shows physics as an
activity which is closely related to the
achievements both in other sciences and
outside science itself. This is not a
minor or negligible aspect of the course;
on the contrary, it reflects what physics
truly is. By presenting physic. in this
way it may be possible to catch the in-
terest of that large untapped group of
students who now do not enroll in a phys-
ics course at all because their inclina-
tions and talents lead them away from what
they perceive as narrowly pre-professional
physics courses.

This approach has the endorsement of
outstanding and thoughtful physicists
today. For example, the American Nobel
Prize physicist, I. I. Rabi--who is also
a member of the Advisory Committee of
Harvard Project Physics has stated:

...I believe, basically, we have
not been cautious enough of the
meaning of science in our genera-
tion, to teach it in a way which
would be understood and appreciated
and felt by the students. We have
very little of the positive values
of science outside of the applica-
tions which are obvious to anybody
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living in this age. In other words,
my claim is, and this is something
we should discuss, that we have not
been teaching our science in a hu-
man'stic way. We have been teaching
science at every level, in a certain
sense, as a certain bag of tricks
which the bright boy or girl could
learn and show off with, or at least
get a great deal of pleasure out
of the same kind of pleasure, but
not quite as sharp, as he would get
out of plane geometry.

Now, science is a very different
thing...it is an adventure of the
whole human race to learn to live
in and perhaps to love the universe
in which they are. To be a part of
it is to understand, to understand
oneself, to begin to feel that there
is a capacity within man far beyond
what he felt he had, of an infinite
extension of human possibilities--
not just on the material side (what-
ever that may mean, because the more
we study the material side, the
more and more it recedes)....

So what I propose as a suggestion
for you is that science be taught
at whatever level, from the lowest
to the highest, in the humanistic
way. By which I mean, it should be
taught with a certain historical
understanding, with a certain philo-
sophical understanding, with a so-
cial understanding and a human
understanding in the sense of the
biography, the nature of the people
who made this construction, the
triumphs, the trials, the tribula-
tions.*

The new Project Physics course has
six general divisions: concepts of mo-
tion, motion in the heavens, energy,
electromagnetism, models of the atom,
and the nucleus. Each of the six sepa-
rately bound units of the basic text has
its own conceptual structure which holds
its four chapters together as an integral
unit. Each unit makes some connection to
its neighbor by means of its prologue or
epilogue one outlining the important
considerations that will be encountered
in the chapters ahead, the other leading
into the next unit while consolidating
the work just studied. It also follows
from the goals of the course that there
are specific features which give it a
different form from most existing phys-
ics courses. As the occasion arises,
the text or the supplementary book of
readings stresses the humanistic back-
ground of the sciences: how modern

*From the address at AAAS meeting of
Educational Policies Commission, 27
December 1966, Washington, D.C., The
Physics Teacher, May 1967, p. 197.
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Introduction

physical ideas have developed and who
the men and women were who made key con-
tributions;, the effect which physics has
had on other sciences, especially chemis-
try and astronomy; and the fact that the
progress of physics contributes to con-
temporary technology and in turn is stimu-
lated by it. The course will also touch
on scientific methodology as illustrated
by specific developments in physics.

Introduction to Project Physics
Learning Materials

Like all high school science courses
that intend to attract substantial num-
bers of students, Harvard Project Physics
has developed a wide range of learning
raterials. These include texts, student
handbooks of laboratory and other activ-
ities, laboratory equipment, programmed
instruction, tests, film loops (and some
longer films), overhead transparencies
and books of selected readings. These
varied learning materials make possible
a more effective use of your capacities
as a teacher to make allowances for in-
dividual differences and environmental
contingencies. In a word, they permit
you to shape the course to fit the diverse
needs and interests of your students.

In the next several sections you will
find comments regarding each of the vari-
ous Project Physics learning materials.
Each of the materials has been designed
to perform special and sometimes multiple
functions in the course. You should
develop a clear notion of what roles
these materials can play in your classes
and for your students, as such an under-
standing is essential for their effective
use

Text

One of the important learning materi-
als in the Project Physics course is the
"textbook." It is, however, only one
and should not be thought of as anything
more than one component of the course.
It shares with the laboratory, the films,
the handbook, and the rest the task of
helping the student learn some signifi-
cant amount of physics.

If the text has any unique function
to serve, it is as a systematic guide
for the student. It presents the main
concepts to be dealt with in the course
and establishes the logical and develop-
mental relationships among those concepts.
For this reason the text is frequently
referred to by the Project Physics staff
as "the student guide." A road map may
be enormously helpful in establishing
direction and perspective, but reading a
map is not an adequate substitute for an
actual drive through the mountains, or
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even for a good motion picture of such a
drive; so it is that the physics text
alone is not able to supply the rich
variety of insights and experiences needed
to fill out the course and make it intel-
lectually and emotionally enriching.
Thus it would be a mistake to assume that
students can master topics just because
they are introduced or used in the text.
rrom time to time,, indeed, the text treat-
ment of a topic (e.g., vectors), is de-
liberately shallow or incomplete lust
because there exist in the course other
instructional materials which can deal
with that topic more effectively. The
overprinted student text pages in this
guide, as well as the chapter organiza-
tional charts and the interleaved pages,
attempt to clarify for you the relation-
ships between the text and the other
course materials.

The Physics Reader

There are six sets of collections of
articles from periodicals and text books,
bound in paperback Readers, one for each
of the six units of the text. Descrip-
tions of reader articles will be found
in the Aid Summaries section of each
Teacher Guide. Also, there is a very
brief summary of the content of each
reader article right under the title in
the reader itself. Biographical infor-
mation on the authors is contained in
the back of the readers.

We suggest that the readers be made
available to students at all times. If
some signout system is necessary, it
should be the responsibility of the stu-
dents and require a minimum amount of
paperwork on your part. This does not
mean, however, that the readers can be
put on a shelf and just left there for
the students to read when they "get in-
terested." An important element in mak-
ing the reader attractive to students is
the manner in which you make reference
to specific articles. For example, you
might try, now and then, reading short
quotations from articles during class
time without, however, letting this take
much time from other class activities.
But most of all, you should become as
familiar as possible with the reader,
so that you can refer students to speci-
fic articles when their interest in a
certain topic is revealed during class
discussion.

The reader is not a textbook. It is
not even a supplementary textbook. You
need not require that every student read
a certain article. You should assign
reader articles only occasionally, but
guide students to these articles in such
a way that they discover by themselves,
how interesting many of them are.



The very nature of the reader--a col-
lection of many different types of arti-
cles by authors living at different times
and working in different fields makes
some part of the reader potentially ap-
pealing to every student. This potential
can be distorted if the student gets the
feeling that the reader is just one more
piece of the package which must be stu-
died and "learned" by exam time.

Your attitude toward t.,:e reader, and
the manner in which you present it to
your class, will determine how the reader
is accepted by the student.

Laboratory and the Student Handbook

The students' experiences with nature
in the Project Physics course are pro-
vided primarily through student experi-
ments, teacher-group experiments and
teacher demonstrations and only second-
arily by means of film loops, sound films,
transparencies and programmed instruction
materials. In addition, many opportuni-
ties are suggested in the Student Hand-
book for interested students to carry
out investigations or activities on
their own in school or at home. From
this collection of activities every stu-
dent should find something appealing.

Teacher demonstrations present phe-
nomena with the student cast in the role
of spectator although hopefully not as an
entirely passive one!

In teacher-group experiments students
are encouraged to make observations and
collect data, participate in the analy-
sis and interpretation of the experiment
and enter into a dialogue with the teacher
concerning the meaning and interpretation
of the data. This technique can furnish
precise data or opportunities for you to
make persuasive observations in response
to student arguments or questions.

Student experiments are exercises per-
formed by the student himself in the lab-
oratory. Here the individual student,
or a small group of students, constructs
and manipulates the apparatus, carries
through the required steps, answers
questions as they arise, and each student
draws his own conclusions. Individual
results vary, of course, and thus at
times only the pooling of results from
all of the students (or student groups)
will lead to useful conclusions from
which generalizations can be made.
Throughout the course, the purpose of
the experiment and plan of investigation
should comprise the majority of your
pre-lab discussions, while the analysis
should always be a part of post-lab dis-
cussions.

Description and comments on each of
these exercises can be found in this
guide.

Introduction

Whatever form the experimental work
at a given pcint in the course takes
teacher demonstrations, teacher-group
experiments or student experiments you
should decide ahead of time what the
main purposes of the activity are. In
the Project Physics course, any given
experiment may serve one or more of the
following student purposes:

1. to become familiar with some of
the phenomena with which the course
deals. Thus, even before they "under-
stand" them, students should encounter
cases of uniform acceleration, wave re-
fraction, spectra and the like.

2. to provide one of several ap-
proaches to the understanding of an im-
portant physical concept. Some students
seem to learn best through laboratory
activity, whereas others can learn by
reading, or viewing films, or discussion,
or even listening to lectures. In this
sense, laboratory is simply one of the
learning media.

3. to learn something about the na-
ture of experimental inquiry and. the
role of the laboratory in the advance-
ment of scientific knowledge.

4. to learn some things about the
physical world other than by written or
oral assertion, i.e., in a sense to
"discover" something.

5. to have a pleasant experience.
One of the advantages of science (and
art and drama) courses over many others
is that there are active, non-bookish
ways for the student to become involved.
With help and reassurance it is likely
that even the most apparatus-shy young-
ster can learn to operate effectively
in the laboratory and to enjoy doing so.
It is probably important for students'
long-run achievement in the course that
the laboratory activity be a pleasant
experience even for those who do not
become terribly good at it.

The Student Handbook is a somewhat
unique kind of document. It is much
more than a laboratory guide. You should
look through it carefully to berome
familiar with the details of its content
and format and particularly with the in-
structions given to the student for its
use. The handbook should serve to guide
your students into interesting investiga-
tions beyond the usual classroom labora-
tory activities. Ic lists a variety of
materials to assist him in learning more
effectively the conceptual material
treated in the text itself. Also, the
handbook should help you to tailor the
Project Physics course to the interests
and strengths of individual students.

3
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Overhead Projector Transparencies

Experimental versions of transparen-
cies for overhead projectors are avail-
able. Some are standard diagrams; others
present items too complex or time-consum-
ing to put on the blackboard.

The colored overlays are attached to
a standard mount with a 9" x 7k" open-
ing. These can be used on overhead pro-
jectors with a 10" x 10" stage or larger.
In many cases you will want to write on
the plastic sheet to add information,
fill in data, or to complete graphs.
For this purpose we suggest Pentel
fiber pens or some other type easily
erased with a moist cloth.

Most transparencies refer specifically
to test material. They are numbered
consecutively, but may, however, be used
with several sections or chapters. (For
suggestions see the organization page
preceding each chapter.) You are en-
couraged to use these transparencies in
other ways than those suggested. De-
scriptions of individual transparencies
may be found on the interleaved sheets of
this guide in the sections where their
use is suggested. Also, the descriptions
are collected together in the resource
section for each unit.

Programmed Instruction

Programmed instruction presents a
carefully graded sequence of tasks to the
student, a sequence which assures a high
degree of success and then provides him
with information about the correctness
of his response or answer. This enables
the student to learn by himself and in-
creases the probability that he will stay
on the right track.

Sample questions for each program
booklet appear at the beginning of the
booklet. Students are instructed to try
the sample questions and, if they have
difficulty, to complete the appropriate
booklet. Programs can be used either in
class or as homework. After taking a
program, and sometimes during it also,
the student may still have questions;
however, his need for help from you in
solving problems at the end of the
chapter or in learning certain diffi-
cult concepts from the text will de-
crease. No less than with other learning
materials, you are urged to go through
the programs yourself if you intend to
use them; this will alert you to the
student questions which are likely to
arise.

It is important that students refrain
from spending too much time on programmed
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instruction at first, since the degree
of concentration required results .n a
negative reaction if the student has not
become accustomed to it. Sessions of
fifteen minutes or less are best at first.
This is one of the reasons why the project
programs are brief. Another reason is
that each program deals only with a re-
stricted set of concepts or skills.
Still another reason for short programs
is that any given program is not meant to
stand alone, being rather but one of an
array of learning materials dealing with
a topic.

Sound Films (16mm)

Project Physics has not become deeply
engaged in the production of 16 mm sound
films. One reason is that several good
films already exist that are appropriate
for the course. The ones that we know
about have been keyed into the course and
noted in several places in this guide.
You should, of curse, use (and add to
the guide list) ocher films that you find
relevant and effective.

The project has now completed one film,
"People and Particles." This film is
suitable for general viewing very early
in the course, and again very late in the
course. (Some notes for students will
be sent to you before you receive the
film. A copy of these notes accompanies
this guide; see page 72. More extensive
notes for teachers will be included .111
the Unit 6 Guide.) In production are two
additional films. One is, in effect, a
tour of the Cambridge Electron Acceler-
ator; the other is a biographical film on
Enrico Fermi. If they are ready for try-
out before the end of this school year,
you will be notified.

The Multi-Media System Schedules

The materials and media described above
provide the teacher with many options
so many that their use can become a prob-
lem. To assist the teacher and to explore
the effects of media on teaching and
learning physics, an integrated multi-
media system has been developed for each
of the various units. ', systems approach
for Unit 1 was tested in nine trial
classes last fall (1967) with some suc-
cess; trial versions of the multi-media
systems approach for all six units will
be tried out this year on a somewhat en-
larged but still limited basis. These
schedules represent one of many ways of
incorporating available media and materi-
als into the course, a.nd also suggest
different approaches to teaching and
learning which these media make possible.



One objective of the multi-media ap-
proach is to encourage and make possible
individualized instruction and a variety
of experience in the classroom;, it also
emphasizes the need to introduce physical
phenomena before generalizing and abstract-
ing physical laws from them. The systems
make use of such techniques as "laboratory
stations" for qualitative experience with
phenomena, "small group discussions" to
encourage a high level of individual par-
ticipation, and various classroom activities
designed to reinforce attention to histori-
cal, philosophical and sociological aspects
of physics.

Film Loops

Approximately fifty 8 mm single-concept
film loops have been made so far by Proj-
ect Physics. These loops are closely
integrated with our other course materi-
als, and are intended both to complement
and to supplement them. The loops, pack-
aged in plastic cartridges, are of 3 to 4
minutes running time.

Some of the loops are purely qualita-
tive demonstrations in physics, but the
majority are quantitative. For the best
results, the student should not just
passively view these films, but rather
he should take data from the projected
images and then analyze them hi-self.

Instructions for the specific uses of
the loops are found in the annotated
Student Handbook section at the end of
this guide. In addition, the contents of
the loops are summarized in the Aid Sum-
maries section of the Guide.

Evaluation and Testing

The flexibility of Project Physics re-
quires that each student have the oppor-
tunity to demonstrate achievement in the
areas of his interests and in ways ap-
propriate to those interests. A variety
of techniques can and should be used to
supplement information obtained from
written tests.

Project Physics has developed different
types of tests for use with your students.
There are six test booklets, one for each
unit, each of which contains four different
achievement tests. Two of the tests in
each booklet are part multiple choice,
part essay-and-problem. One of the tests
is entirely essay-and-problem, and the
other is entirely multiple choice. The
four tests for each unit are independent
of each other and easy to locate in the
test booklet.

Introduction

Suggestions for evaluation and testing
are developed further in a separate book-
let, Evaluation Guide. This booklet con-
tains information to help you use and
score the Project Physics tests, and sug-
gestions for supporting the flexibility
of the course through an equally flexible
evaluation scheme. Part I, Concerning
Evaluation, discusses this scheme.
Part II has suggestee answers to the
Project Physics tests with some informa-
tion regarding the nature of the test
items. The tests are grouped by units,
and addi;ional questions are given as
suggestions for teachers who wish to
construct their own tests.

How to use the Teacher Guide

The Teacher Guide is intended to be a
versatile and flexible document. It is
not meant to restrict you in any way.
Use the guide material selectively, add-
ing to or subtracting from it as you go
along, thereby essentially designing
your own unique guide.

The guide is in loose-leaf format to
increase its flexibility. You should
arrange the various pages for your own
most efficient use. You may find it
helpful to attach tabs to the edges of
some pages for quick reference. The
yellow organizational pages suggest the
pacina of topics and list the materials
available for each section of the text;
they may be interleaved with the
corresponding charters of the over-
printed version of the text.

The organizational pages suggest the
racing of topics and lists the materials
available for the treatment of each sec-
tion of the text, The annotated student
materials contain many cross-references
to experiments, activities, film loops,
reader articles, etc. The commentary
sheets give more detailed suggestions
for the development of each section and
summaries of the associated materials.

Choose the particular learning materi-
als appropriate to your supply of equip-
ment, your time allotment and your
evaluation of their worth to individual
members of your class; there is much more
material in the course than any teacher
can use in one year. Experiment with
this guide, use it and enjoy it and do
not be alarmed if a year or two go by
before you feel really "at home" with it.
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Overview of Unit 1

How do things move? Why do things move?
The principal task of Unit 1 is to provide
answers to these questions. A secondary
task is to provide Insight into the way
scientists go about their work.

The first question, how do things move,
is the basic question of kinematics. This
question is answered gradually, starting
with a very simple motion and proceeding
to more complex motions.

Most of Chapter 1 is spent developing
the tools to describe straight-line mo-
tion. The key concepts are average speed
and Instantaneous speed. The chapter
concludes by making an analogy between
the change in position with time (speed)
and the change in speed with time (an ex-
ample of acceleration).

Chapter 2 extends our description of
motion to accelerating objectsan object
in free fall. We follow Galileo through
his own analysis as he seeks to confirm
that the speed of a freely falling object
is proportional to the elapsed time of
its fall. By using Galileo as an example,

Unit Overview

Chapter 2 also serves to provide the stu-
dent with some understanding of the sci-
entist as a person carrying on his work
within a social milieu.

The second question, why do things
move, is the fundamental question of
dynamics. Newton provided the answer to
this question with his three laws of mo-
tion. These three laws are developed in
Chapter 3. Vector concepts are intro-
duced and are used throughout the remain-
der of the unit.

The final chapter in Unit 1 brings to-
gether the concepts learned in the first
three chapters and applies them to pro-
jectile motion and uniform circular mo-
tion. Simple harmonic motion is intro-
duced as a special topic.

Chapter 1 begins by citing an old max-
im: "to be ignorant of motion is to be
ignorant of nature." Indeed, kinematics
and dynamics are to physics what grammar
is to language or what scales are to
music. The techniques learned in Unit 1
will be used throughout the course.

7
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Details of the Multi-Media Schedule Day 7

Day 1

This day is to be used to explain the
multi-media system, and to charge stu-
dents with the responsibility of self-
directed instruction.

Day 2

Show the first 13 minutes of the film
"Frames of Reference." Divide class at
random into small groups, pass out 3 or
4 open-ended questions related to film,
and use the rest of the period for dis-
cussion.

Day 3

Lab Stations: Uniform Motion

Students are to make qualitative obser-
vations of objects undergoing uniform
motion. Students spend 8 to 10 minutes
at each station. Brief instruction of
what to look for at each station will be
helpful.

1. balloon pucks on glass tray
2. pucks on dylite beads
3. dynamics carts with with accel-

erometer (D2)
4. polaroid photograph of tractor,

blinky
5. film loops, e.g. L8 and L9.

Day 4

Teacher presentation on time, distance
and speed.

Various demonstrations, transparencies
and examples may be used to clarify the
concepts and their measurements.

Day 5

Lab ,,tations: Accelerated Motion

1. dynamics cart with accelero-
meter (D4)

2. strobe photo of free-fall
3. transparency T5
4. analysis of strobe photo (D3)
5. analysis of hurdle race (L9)

Day 6

Teacher presentation: Velocity and
Acceleration

A synthesizing discussion to tie together
all the loose ends generated by the pre-
vious few days' activities.

Multi-Media

PSSC Film: Straight-Line Kinematics

Show first 17 minutes of film. (Stop
film when Haefner returns to his lab.)
Provide students with some open-ended
questions and break into small groups
for discussion.

Day 8

Organization for Experiment 1

The naked-eye astronomy lab (El) requires
taking of data systematically over a pe-
riod of several weeks. Assign students
specific objects on which to gather data,
e.g., sun, moon, specific stars, planets,
etc.

Day 9

Seventeen-Century Experiment (E5)

Day 10

Problem-solving session in small groups

Select problems from end of Chapter 1,
and assign some to each of the small
groups. As groups work, circulate and
observe to see which students are in
need of additional help.

Day 11

Small-group discussion of reader selec-
tions according to different topics;
students choose which group they wish to
3oin, each on a different article. Dis-
cussion may need priming, teacher should
be familiar with all reader articles.

Day 12

Teacher presentation: Galileo

This lecture should touch upon the life
and times of Galileo, but also on the
need to verify theories by performing
controlled experiments.

Day 13

Lab Stations: Force, Mass and Acceleration

1. inertia (D11)
2. the dependence of acceleration

upon force and mass PSSC #111-2
3. changes in velocity with a con-

stant force PSSC #III-1
4. Newton's laws (airtrack) (D12)

5. tractor-log paradox (T8)

9



Multi-Media

10

Day 14

Teacher-led discussion: Newton's Laws

Clarify points still unclear about
Newton's three laws of motion.

Day 15

Small-group problem solving

Selected problems from Chapters 2 and 3
are given. Have better students help
poorer students.

Day 20

Lab stations, continued

Sam,: stations as Day 19, but students
are to pick one experiment and do it
quantitatively.

Day 21

Students report to rest of class on
results of experiments on Day 20. Urge
that presentations be very short to
allow plenty of discussion time.

Day 16
Day 22

Film: PSSC #0302, Inertia
Class review for Unit 1 Exam

Follow with small-group discussion of
film. Challenging guide questions for
discussion are essential.

Day 17

Day 23

Unit 1 Exam

Day 24
Demonstration: Measuring Acceleration of
Gravity

Discuss Unit 1 Exam

This demonstration (E7) can be done by
student or teacher, with common data
shareduy whole class. Alternate: Use
photos from Day 5, station #2.

Day .1.8

PSSC Film #0307, Frames of Reference
(28 min)

Show the whole film, in post-film dis-
cussion bring out concept of inertial
frames.

Day 19

Lab Stations Complex Motion
1. traject,ry apparatus (E8-1)
2. strobe photo of body on spring

(D3)
3. '...rajectories (E8-2)
4. circular motion (E11-1)
5. circular motion (E11-2)

Students are to try apparatus at each
station, making qualitative observations
as usual.



Chapter 1 Schedule Blocks

lest

Each block represents one day of classroom activity and implies a 50-minute period.
The words in each block indicate only the basic material under consideration.
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Resource Charts
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Chapter 1 Resource Charts

1?7. Motion in Words

Re. RepresenWricin oF Maori
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L i' Anal#K of a hurdle race Fart I

Lcf : Artalrs of' a hurdle. race 'Part r
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Resource Charts

At Elect tic stroboscope
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Experiment Summaries Chapter 1 Experiment Summaries

Before or
during Chap-
ter 1; con-
tinue
through
Unit 2.

Equipment

Early in
course.
Before
or during
Chapter 1.

Equipment

Early in
course,
before or
during
Chapter 1.

Equipment

El Naked-Eye Astronomy

Suggestions are made
for simple observations
of the (apparent) motions
of the sun, moon, stars
and planets through the
sky.

In poor viewing areas
a planetarium visit may
be substituted. A sug-
gested program is given
elsewhere in the Teacher
Guide.

Optional:
Shadow theodolite*
SC.1 Constellation
chart*

Star & Satellite path
finder*

Celestial calendar*

E2 Regularity and Time

Students are asked
to compare various
repetitive events with
one that they chose as
a standard. E.g.,
blinky, pendulum, drip-
ping tap, heartbeat,
etc., are all compared
with metronome. No
clocks allowed. Raises
the questions "What is
regular?" and "How is
time defined?"

Dragstrip (chart record-
er) *

blinky
pendulum
metronome etc.

E3 Variations in Data

Introduces students
to the fact that varia-
tions in experimental
data exist and suggests
some of the courses.

A wide variety of ob-
jects to count, measure,
weigh, etc. See Teacher
Guide notes on this ex-
periment for detailed
suggestions

*Equipment supplied to experimental
schools by Harvard Project Physics
during 1967-1968.

14

E4 Uniform Motion

The students photograph and measure
the motion of a puck sliding on plastid
beads at constant speed. Alternatively
they can use an air track glider, an air
puck, a tractor-pushed blinky, a film
loop or even the photograph in the text-
book.

Sections 1.2 and 1.3 are necessary
background. If the optional s,!ction at
the end on graphing is done, read also
Secs. 1.4 and 1.5.

The decision as to whether the data
prows uniform motion or not raises an
important question on the handling of
experimental uncertainties.

Major equipment for version described:

Flat smooth surface (ripple tank)
Plastic beads*
Puck or other smooth-bottomed disc*
Polaroid camera*
Rotating disc strobe*
Light source*
Millimeter ruler for measuring pic-

ture*
Blinky*
Baby bulldozer*



Chapter 2 Schedule Blocks

Each block represents one day of classroom activity and implies a 50-minute period.
The words in each block indicate only the basic material under consideration.
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Resource Charts
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Chapter 2 Resource Charts
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Chapter 2 Resource Charts
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Experiment Summaries Chapter 2 Experiment Summaries

E5' A Seventeenth-century Experiment
or

E6' A Twentieth-century version of

Galileo's Experiment

E7 Measuring Acceleration of Gravity

A series of five alternative experi-
ments. The first two, involving motion
down an inclined plane, simulate Galileo's
experiment and are starred. The remain-
ing three are measurements of a if
one of these cannot be done in g the
laboratory it may be done as a teacher-
group experiment.

For all five experiments text Secs.
2.5 to 2.9 are necessary background. The
modern equivalent of Galileo's experiment
uses an air track as an inclined plane
and a strobed Polaroid photograph for
data.

a from a film loop requires the use
of agclock with a sweep second hand to
measure the motion of a falling ball in
the film loop Acceleration Due to Gravity.

ag from a pendulum requires a metal
ball (or other symmetrical mass with an
easily located center) suspended by a
thread. Its back-and-forth motion (timed
with a clock with a sweep second hand),
and the length of the pendulum (meter
stick needed) lead to a value of ag when
substituted into a simple formula.

ag from direct fall requires the use
of a tuning fork, which is used to ink
a wavy line onto a strip of ticker tape
dragged past it by a falling weight.
From the increasing length of each "wave"
on the tape a can be calculated. This
experiment is

g
direct but more difficult

than the others both in procedure and in
computation.

Major equipment for seventeenth-century
experiment:

Grooved incline about 6 feet long
Supporting ringstands
Ball to roll in groove
Water clock*

Major equipment for twentieth-century
version:

Air track and glider*
Polaroid camera*
Rotating disc strobe*
Light source*
Blower for air track*

18



Chapter 3 Schedule Blocks

Each block represents one day of classroom activity and implies a 50-minute period.
The words in each block indicate only the basic material under consideration.

Chaprer 3 he Birth of Dynamics - Newton Explains Motion.

Read 31,39,33,34-

"Force and MA55

Arstotles "why'
of Motion

Read as, 3 b

Forces rn
equddormon and

Read 3 7

Newton it
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Read 5<permerit

Newton's Second
kw

7 S /3 14-
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ao at a7 96 30

CklatoTer 3 Chapter
19



Resource Charts
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Chapter 3 Resource Charts

Easy
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4- 6
5 7

Hard
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Chapter 3 Resource Charts

L3: Veeor acatiOri I Velooti or a boat
P+ Vectors

124 Vectors

L4: A Matf-er of' relatie. motion (ctuatitialitie)
RtP: 1.1einifisr- Laws of Dyiarnicos

The Laws of frtotcOrz and Propcsitton One (Rio in Reader .2)
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1 . he Tractor 1_09 'Paradox
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A6: New'ron first Caw

A7: WeWtat'S secorio( tom/

A 8 : Accelerometers
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Experiment Summaries Chapter 3 Experiment Summaries

E8 Nemiton'sSecondUMN
A dynamics cart of known mass is ac-

celerated by means of a falling weight.
The acceleration is measured from a
stroboscope photograph or accelerometer.
Th. accelerating force F compared with
the resulting ma.

A discussion of experimental errors
is a very important part of this experi-
ment that is assumed in future work.

Students should have studied text
Sec. 3.7 before the experiment.

Major equipment:

Dynamics cart*
Slinky*
Spring scale taped to cart
Table-corner palley
(Hooked) weights and string

(Polaroid camera*
either (Rotating disc stroboscope*

(Light source*
or Accelerometer*

E9 Inertial Gravitational Mass

The experiment uses a simple inertial
balance-and ordinary weighing to show the
proportionality of inertial and gravita-
tional mass. The operation of the iner-
tial balance is shown to be independent
of gravity.

22



Chapter 4 Schedule Blocks

Each block represents one day of classroom activity and implies a 50-minute period.
The words in each block indicate only the basic material under consideration.

Chapter 4 Understandirn Motion

Read 41, 4 2) 4- 3

Expoldin5 our
Basses op motion

'3orctile molion

Read 4 4- 4, 5

Galilean refativti:9

and circular motion

'oad Experiment

Ciralar motion

Analyze Lab

'Roe -Lab
tinaic,r problem
Cemnate

'Read 4, 6, 4-7

Centripetal
=cetera/ion and
.74,41,-k satellites

Read 4 S and Review

-rest
Chap-rev- 4

Unit review

Wilt test

Go test

Read SHl-1 and 4. g

Simple harmonic
aria Aer motions

7 ff 13 14.. Ro a( o?7 28

P., _._.., _ ..., ,
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Resource Charts

Chapter 4 Resource Charts

Easy Hard

A lier tb a moon

4,g 'Projedife nicitt6h 3

f

4'.3 What is Vie patA 8 Do- Tr-ctject5ries
or a projectile 9

alilean ref atiiir3 5 J>c93: Frames of reperence6
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(See also Tcl Unit 3. atapter (2)
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Chapter 4 Resource Charts
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Experiment Summaries Chapter 4 Experiment Summaries

E10 Trajectories
In Trajectories-I a launching ramp and

impact board provide a means for obtain-
ing a direct record of the trajectory of
a steel ball. Analysis of the record il-
lustrates the independence of the hori-
zontal and vertical motion.

In Trajectories-II a ball rolling at
measured speed rolls off the table and
hits the floor. The student's task is to
use the equations for trajectory motion
to predict the impact point. Successful
prediction verifies the equations and the
assumptions governing their use.

Major equipment: Trajectories-I

Trajectory plotting equipment*
Onion skin paper
Carbon paper
Steel ball*
Graph paper

Major equipment: Trajectories-II

Steel ball
Meter stick
Clock with sweep second hand

(preferably stopwatch)

Ell, E12 Circular Motion

Done as a laboratory exercise or as a
teacher-group experiment, either version
of Circular motion builds on earlier un-
derstanding of Newton's second law and
leads into the subsequent study of sat-
ellite motion in Unit 2.

Circular motion I assumes an acquaint-
ance with text Secs. 4.5 and 4.6. A
weight is put at increasing distances
from the center of a rotating turntable
until it slips. From its position when
it slips F = mv2/R can be verified.

Circular motion II assumes no ac-
quaintance with Secs. 4.5 and 4.6. The
relationship F = mv2/R is deduced from
tension and length of a string constrain-
ing a known weight in a circular path
when whirled around the experimenter's
head.

Major equipment: Circular motion I

Turntable with large masonite top*
Weights
Spring scale and string

Major equipment: Circular motion II

2 or 3 medium-sized rubber stoppers,
preferably with holes

Spring scale
Meter stick
String
Medicine dropper (for bearing)
Clock with sweep second hand
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1.2 (a) v = 6.0 cm/sec
(b) s = 15 mi
(c) t = 0.25 min
(d) v = 3 m/sec
(e) v = 40 mi/hr
(f) v = 40 mi/hr

s = 120 mi
(g) At = 5.5 sec
(h) As = 8.8 m

1.3 ii = 1.998 mi/hr

1.4 s = 2.2 x 103 mi

1.5 t = 8.5 yr

1.6 (a) 17 = 1.7 m/sec
(b) v = 3.0 m/sec

1.7 discussion

1.8 discussion

1.9 discussion

1.10 discussion

1.11 Ay/Ax = 0.5
Ay/Ax = 1.0
Ay/6x = 1.5
6y/Ax = 2.0

1.12 v = 315,000 in/sec

1.14 s = 25.6 m

1.15 (a) from 1 to 4.5 sec
v = 1.3 m/sec

(b) from 6 to 10 sec
(c) v = 0.17 m/sec
(c) v = 0.74 m/sec
(d) v = 0.79 m/sec
(e) s = 0.42 m

1.16 discussion

1.17 v = 40 mi/hr

1.18 (a) 14.05 m/sec
(b) 6.3 m/sec2

1.19 discussion

Study Guide
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STUDY GUIDE SOLUTIONS

1.2 Some practice problems:

Problem Situation Find

a

b

c

d

e

f

g

h

Speed uniform,
distance = 72 cm,
time = 12 sec

Speed uniform at
45 mph

Speed uniform
at 36 ft/min

s1 = 0, s2 = 15 m,
s3 = 30 m

ti = 0, t2 = 5.0
sec, t3 = 10 sec

You drive 240 mi
in 6.0 hr

Same

Average speed =
76 cm/sec computed
over a distance of
418 cm

Average speed =
44 m/sec computed
over time interval
of 0.20 sec

Speed

Distance
traveled
in 20 min

Time to
move 9.0
ft

Speed and
position
at 8.0 sec

Average
speed

Speed and
position
after 3.0
hr

Time taken

Distance
moved

(a) v = E

28

72 cm
v

s = 72 cm

t = 12 sec

v = 6.0 cm
sec

(b) s = vt

imv = 45
h--r

t = 20 min

t = 0.33 hr

ims = 45 h-- x .33 hrr

(c) s = vt

t = v

20 min

60 min
hr

s = 15 m

s = 9.0 ft

ftv = 36

t
9.0 ft

f
36

t

min

min

t = 0.25 min

(d) In this problem, we need to inter-
polate between data points. At 8
seconds.

V =
t

v 24 m
8 sec

(e) v = As
nt

/0
7/ME (S6 C7)

s = 24 m

t = 8 sec

v = 3
sec

As = 240 mi

At = 6.0 hr



- 240 mi
6.0 hr

V = 40 Ti
hr

(f) Here, we must assume uniform speed.

From problem (e), V = 40 HT
ml

s = 7t

t = 3.0 hr

s = 40
mi x 3.0 hr
hr

-
(g) v =

As
At

s = 120 mi

As = 418 cm

7 = 76 cm
sec

At
418 cm

c
76

cm
sec

(h) V = AI
At

As = VAt

At = 5.5 sec

7 = 44 m
sec

At = 0.20 sec

As = 44 --- x 0.20 sec
sec

As = 8.8 m

1.3 If you traveled one mile at a speed
of 1000 miles per hour and another mile
at a speed of 1 mile per hour your aver-
age speed would not be 1000'4 1 mph
or 500.5 mph.

What would be your average speed?

As
v

At

Study Guide
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As = 1 mi + 1 mi = 2 mi

At = time for first mile,
ti, plus time for
second mile, t2.

ti 1 mi
m = 0.001 hr

v
hi

1000 --
r

t2 -
1

1 hr

hr

At = ti + t2 = 1.001 hr

7 2 mi mi
1.9981.001 hr hr
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1.4 A tsunami (Incorrectly called
"tidal wave") caused by an earthquake
occurring near Alaska in 1946 consisted
of several sea waves which traveled at
the average speed of 490 miles/hour.
The first of the waves reached Hawaii
four hours and 34 minutes after the
earthquake occurred. From these data,
calculate how far the origin of the
tsunami was from Hawaii.

s = 7t

7 = 490 ai
hr

t = 4 hr 34 min - 4.57 hr

mis = 490 x 4.57 hrFT

s = 2.2 x 103 mi

1.5 Light and radio waves travel
through a vacuum in a straight line at
a speed of nearly 3 x 108 m/sec. The
nearest star, Alpha Centauri, is 4.06 x
1016 m distant from us. If this star
possesses planets on which highly in-
telligent beings live, how soon could we
expect to receive a reply after sending
them a radio or light signal strong
enough to be received there?

Assuming an instant reply to mar
message, the wave would have 'e travel
twice the distance to Alpha Centauri.

s = vt

t = s-
v

s= 2 x 4.06 x 1016 m=
8.12 x 1016 m

v = 3 x 108 m
sec

To make this figure more meaningful we
should convert it into years.

ila min
60 sec365 x 24 LIE_ x 60 --- x 6v

yr day hr min
sec= 3.18 x 107
yr

2.7 x 108 sec
8.5 yearssec3.18 x 107

yr
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t6 What is your average speed in the
following cases?

(a) You run 100 m at a speed of
5.0 m/sec and then you walk 100 m at
a speed of 1.0 m/sec.

(b) You run for 100 sec at a speed
of 5.0 m/sec and then you walk for 100
sec at a speed of 1.0 m/sec.

(a) First we reed to find the total
time taken.

sv = T

t = 1;

t = ti + t2

t = LL + a
vl v2

100 m 100 m
t + 120 sec

5.0
sec sec

Lc

The average speed for the total trip is

- As
v = TT

- 2 x 100 m
v 120 sec

7 = 1.7 /
m
--sec

(b) 7 = Qs
At

but As = AS1 + As2
As = viAti + v2Qt2

m mAs = 5.0
sec x 100 sec + 1.0

sec
Y

100 sec
As = 600 m

- 600 m
v

200 sec

7 = 3.0 ---m
sec

Note that in one case the average speed
is the average of the individual speeds;
in another it is not. Why?



1.7 Design some experiments which will
enable you to make estimates of the
average speeds for some of the following
objects in motion.

(a) baseball heaved from outfield to
home plate

(b) the wind
(c) a cloud
(d) a raindrop (Do all drops have

different speeds?)
(e) hand moving back and forth as

fast as possible
(f) the tip of a baseball bat
(g walking on level ground, up

stairs, down stairs
(h) a bird flying
(i) an ant walking
(3) a camera shutter opening and

closing

(a) Compare speed of ball with speed
of runner from third base. Times about
the same. A runner does 100 yards in
10 seconds or 30 feet per second. Dis-
tance to outfield 300 feet. Speed of
ball 100 feet per second.

(b) Make a cup anemometer. Time
speed with strobe.

(c) Sight on edge of cloud. Get
time to go certain angle. Assume dis-
tance of cloud two or three miles.

(d) Get trace on car window. Slope
gives comparative speed of car and drop.
Large drops off a roof follow falling
body laws. Drops in fine mist depend
on viscosity of air. Compare with
Millikan's oil drop experiment.

(e) Use fingers as a strobe to stop
light flashing at known rate.

(f) Speed of bat same as ball. Get
speed to give range to center field
bleachers.

(g) Time with stop watch. Repeat
several times.

(h) Scare a pigeon from a roof to
a neighboring tree.

(i) Confine ant to a definite path.

(j) Note length of trace of fast
moving bright light as photographed.

Study Guide
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1.8 What problems arise when you attempt
to measure the speed of light? Can you
design an experiment to measure the
speed of light?

Short time intervals on account of
high speeds. Receive a light pulse re-
flected from a known distance to excite
a photocell. Amplify output of cell to
excite the lamp giving light pulse.
Measure high frequency of pulses. The
light beam couples the lamp to the cell.
If the action of lamp and cell takes
appreciable time, note change in fre-
quency as reflecting mirror is moved a
known distance.
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1.9 Sometime when you are a passen-
ger in an automobile compare the speed
as read from the speedffeter to the
speed calculated from ET. Explain any
differences.

Large differences will probably he
due to long periods in slow moving traf-
fic, or intervals of zero speed suc:1 as
when waiting for red lights. Some
speedometers tend to read high. Also
faulty calibration between odometer
and speedometer might be a factor.
Where the highway department has marked
"measured miles" these last two possi-
bilities can be checked.

1.10 An automobile speedometer is a
small current generator driven by a
flexible cable run off the drive shaft.
The current produced increases with the
rate at which the generator is turned
by the rear axle. The speedometer needle
indicates the current. Until the speed-
ometer is calibrated it can only indi-
cate changes in speed, but not actual
speeds in miles per hour. How would
you calibrate the speedometer in your
car if the company had forgotten to do
the job? If you replaced your 24" diam-
eter rear wheels with 28" diameter
wheels, what would your actual speed be
if your speedometer read 50 mph? Would
your speedometer read too high or too
low if you loaded down the rear end of
your car and had the tire pressure too
low? What effect does the speedometer
have on the speed of the car? Can you
invent a speedometer that has no effect
on the motion of the car?

Time your car over measured mile at
various constant speeds. Try to hold
the speedometer at one spot on dial
during a run. Compute speed and mark

28 7dial. You go TT or more per turn.

Therefore your speed is 58.3 mph. With
reduced radius of wheel the speedometer
reads too high. Practically no effect
on the speed. It takes little power.
You might design one acting on wind
pressure which the car must overcome
anyway. It would have a streamlined
intake.
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1.11 Take a look at the graph of y
versus x shown below:

Notice that in this graph the steepness
increases as x increases. One way to
indicate the steepness of the graph at
a point is by means of the "slope." The
numerical value of the slope at a point
P is obtained by the following procedure,
which is diagramed above. Move a short
distance along the graph from point A to
point B, which are on the curve and lie
on either side of point P. Measure the
change in y, (Ay) in going from A to B.
In this example Ay = .6. Measure the
corresponding change in x, (Ax) in going
from A to B. Ax here is .3. The slope
is defined as the ratio of Ay to Ax.

Slope = .

Ax

In the example
a .6slope = =

.3
= 2.Ax

Now there are three important ques-
tions concerned with slopes that we must
answer.

Q. What are the dimensions or units
for the slope?

A. The dimensions are just those of
y/x. For example, if y represents a
distance in meters and x represents a
time in seconds then the units for slope
will be meters/seconds or meters per
second.

Q. In practice how close do A and B
have to be to point P? (Close is not a
very precise adjective. New York is
close to Philadelphia if you are travel-
ing by jet. If you are walking it is
not close.)

A. Choose A and B near enough to
point P so that the line connecting A
and B lies along the curve at point P.
For example:



a

1

0 I _t ,-...___i_...--1
A.7 4 , (...

x

Q. Suppose A and B are so close
gether that you cannot read Ax or
from your graph. What does one do
calculate the slope?

A 3 4 & 4
Y.

A. Extend line AB as it is shown in
the figure and compute its slope. Notice
that the small triangle is similar to
the large triangle and that AY a

AX Ax

Determine the slopes of this graph of
y versus x at x = 1, 2, 3 and 4.

at x = 1 a = 0.5
Ax

at x = 2 a = 1.0
Ax

at x = 3 a = 1.5
Ax

at x = 4 a = 2.0
Ax

Expect answers to vary due to error in-
volved in individual estimation.
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s 525 x 20 inv = = = 315,000t 1/30 sec

approximately 8 kilometer/sec or 5 miles/
sec.

1.14 World's 400-meter swimming records
for men and women. Ages are in paren-
theses:

1926 4:57.0 Weissmuller (18)
5:53.2 Gertrude Ederle (17)

1936 4:46.4 Syozo Makino (17)
5:28.5 Helene Madison (18)

1946 4:46.4 Makino (17)
to- 5:00.1 Hveger (18)

Ay
to

1956 4:33.3 Hironoshin
Furuhashi (23:

4:47.2 Crapp (18)

1966 4:11.1 Frank Weigand (23)
4:38.0 Martha Randall (18)

1.12 The electron beam in a TV set sweeps
out a complete picture in 1/30th of a
second and each picture is composed of
525 linc:s. If the width of the screen
is 20 inches, what is the speed of that
beam over the surface of the screen?

By about how many meters would Martha
Randall have beaten Johnny Weissmuller
if they had raced each other? Could
you predict the 1976 world's record for
the 400-meter race by extrapolating the
graph of world records vs. dates up to
the year 1976?

By extrapolation quite uncertain.

For men 4:00
in 1976.For women 4:30

In making graph use as ordinates for
women, seconds above 4:30, for men,
seconds above 4:00.

Martha wins over Weissmuller by 19
sec. Weissmuller's speed is 400 meters

297 sec
400 x 19s = vt = ----m-- - 25.6 meters.
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1.15 Detailed analysis of a strobo-
scopic photograph of a rolling ball
yielded information which was plotted
on this graph (Fig. 1.35). By placing
your ruler tangent to the curve at ap-
propriate points estimate the following:

(a) At what moment or interval was
the speed greatest? What was the value
of the speed at that time?

(b) At what moment or interval was
the speed least? What was it at that
time?

(c) What was the speed at time 5.0
sec?

(d) What was the speed at time 0.5
sec?

(e) How far did the ball move from
time 7.0 sec to 9.5 sec?

H
Vote (sec)

(a) The speed is greatest in the
interval from 1 to 4.5 seconds.

-
As
of

As = 5.2 m - 0.8 m = 4.4 m
At = 4.5 sec - 1 sec = 3.5 sec

4.4 m
3.5 sec

v = 1.3 m
sec

(b) Speed is least in the interval
from 6 to 10 seconds.

As- TE

As = 6.7 m - 5.0 m = 1.7 m
At = 10 sec - 0 sec = 10 sec
1.7 m
10 sec

v = 0.17
sec
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(c) v = As

v 6.1 m
8.2 sec

s
(d) v = 7.7 m

t 9.7 sec

v = 0.74
sec

v = 0.79
sec

(e) During this interval the veloci-
ty was constant at about 0.17 m/sec [from
part (a)[

s = vt
s = 0.17

sec
X 1.5 sec

s = 0.25 m

This can be checked by noting on the
graph that the ball moved from about
6.3 to 6.7 meters, a distance of ap-
proximately 0.4 m. Whic method would
you think is more precise?

1.16 Suppose you must measure the instan-
taneous speed of a bullet as it leaves
the barrel of a rifle. Explain how you
would do this.

Fire bullet through two rotating thin
paper discs spaced a short known distance
apart and rotating at a high known speed.
The bullet hole in the second disc will
be displaced a certain angle relative
to that in the first. The fraction this
angle is of a whole revolution times the
period of orv-: revolution gives the time
for the bullet to travel between discs,
from which the speed may be computed by

v= - .

An optional method is to use a ballis-
tic pendulum using the law of conserva-
tion of momentum.



Car A and car B leave point 1 simul-
taneously and both travel at the same
speed. Car A moves from 1 to 2 to 3
while car B moves from 2 to 3 directly.
If B arrives at point 3 six minutes
before A arrives, what was the speed of
either car?

Speed does not take into account di-
rection. Let tA and t

B
be the times of

the two cars and v their common speed.

Then v
s 6 + 8 10
t tA t

B

But tA = tB + 6

Substituting

6 + 8 10
tB + 6 tB

or 14tB = 10tB + 60

tB = 15 minutes

10 2
v = = 3 miles per minute or 40 mph.
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1.18 The data below show the instantaneous
speed in a test run of a Corvette car,
starting from rest. Plot the speed-versus-
time graph, and derive and plot the
acceleration-time graph.

a) What is the speed at t = 2.5 sec?
b) What is the maximum acceleration?

Time (sec)

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

Speed (m/sec)

0.0
6.3

11.6
16.5
20.5
24.1
27.3
29.5
31.3
33.1
34.9

(a) The speed at t = 2.5 sec is
v = (11.6+16.5)/2 = 14.05 m/sec

(b) From the data given, the
maximum acceleration would appear to
be (6.3-0.0)/1.0 = 6.3 m/sec2 for the
first time interval. Graphical in-
terpolation might give a slightly
different result.

1.19 Discuss the motion of the animals
in the following photographs.

The student may be interested in
studying the constancy of the velo-
city in the various sequences: For

example: does the vertical and hor-
izontal velocity of the bird vary with
its wingbeat? Draw a velocity vs time
graph for the leopard. Estimate what
percentage of the time the horse is
completely off the ground.
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Brief Answers to Chapter 2 Study Guide

2.1 discussion

2.2 discussion

2.3 discussion

2.4 discussion

2.5 discussion

2.6 proof

2.7 proof

2.8 (a) true
(b) true
(c) false
(d) true

2.9 (a) true
(b) true
(c) true
(d) true

2.10 table

2.11 discussion

2.12 discussion

2.13 discussion

2.14 discussion

2.15 discussion

2.16 (a) s = -5.0 m
(b) v = -10 m/sec
(c) 's = -15 m

2.17 (a) v = 10 m/sec
(b) s = 15 m
(c) t = 2 sec
(d) s = 20 m
(e) v ,. -20 m/sec
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2.18 (a)

(b)

(c)

(d)

(e)

(f)

2.19 (a)
(b)

(c)

(d)
(e)

(1)

of = 20 m/sec

of = -20 m/sec

t = 4 sec
s = 80 m
of = 0 m/sec

of = -40 m/sec

2 = -2 m/sec2
v = 2 m/sec
of = 2 m/sec

s = 9 Ja
of = -2 m/sec

t = 4 sec

2.20 (a) a .- 57 m/sec2
(b) s = 710 m
(c) 3 = -190 m/sec2

2.21 proof

2.22 proof

2.23 (a) a = 4.8 welfs/surg2
(b) a = 11 m/sec2



Solutions to Chapter 2 Study Guide

2.1 List the steps by which Galileo pro-
gressed from his first definition of
uniformly accelerated motion to his
final confirmation that this definition
is useful in describing the motion of a
freely falling body. Identify each step
as a hypothesis, deduction, observation,
or computation, etc. What limitations
and idealizations appear in the argument?

The steps in Calileo's investigation
may be identified as follows:

a) Definition: Define uniform ac-
celeration as constant increase in
velocity with time.

b) Hypothesis: Freely falling
bodies are uniformly accelerated, as
defined above.

c) Deduction: ir = a = constant

for bodies falling from rest.

d) Deduction: 42= a = constant
t 2

for bodies falling from rest.
a

e) Deduction: E2 = y = constant

for balls rolling down an inclined
plane.

f) Observation: (e) is verified
by experiment.

:) Conclusion: (b) is verified
by the above process.

The argur.ent was limited by Galileo's
ability to measure time intervals ac-
curately and by his idealization that
rolling motion was a slowed-down fall-
ing motion, thus ignoring the rotational
motion of the ball about its center.

2.2 Which of the following statements
best summarizes the work of Galileo on
free fall? (Be prepared to defend your
choice.) Galileo:

a) proved that all objects fall at
exactly the sar. speed regardless of
their weight.

b) proved that tor any one freely
falling object, the ratio: d/t2 is
constant for any distance.

c) demonstrated conclusively that
an object rolling down a smooth incline
accelerates in the same way as (although
more slowly than) the same object fall-
ing freely.

d) used logic and experimentation
to verify indirectly his assertion that
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that the speed of a freely falling ob-
ject at any pointdepends only upon, and
is proportional to, the time elapsed.

e) made it clear that until a vacuum
could be produced, it would not oe pos-
sible to settle the free-fall question
once and for all.

Answer (d) is the best. Galileo did
nct prove (a). He concluded it, using
as a basis his experimental results on
rolling balls. (b) is incorrect be-
cause Galileo did not prove this for a
freely falling object. (c) Galileo's
connection between rolling and freely
falling bodies was logical rather than
empirical. Although Galileo suspected
that air resistance played a part in
his experiments, it had a relatively
small effect and the problem could still
be attacked with mathematics, logic,
and expei;mentation.

2.3 Write a short statement (not more
than two or three sentences) summarizing
Galileo's work on free fall better than
any of those in 2.2 above.

By assuming that the speed of a body
increases uniformly with time, Galileo
was able to show mathematically that
d/t2 should be constant. He found ex-
perimentally that this was the case
for a rolling ball. Since d/t2 contin-
ued to be aconstant for steeper angles,
Galileo concluded that it would also be
constant in the case of -ertical free
fall.

2.4 As Director of Research in your
class, you receive the following research
proposals from physics students wishing
to improve upon Galileo's free-fall ex-
periment. Would you recommend support
for any of them? If you reject a pro-
posal, you should make it clear why
you do so.

a) Historians believe that Galileo
never dropped objects from the Leaning
Tower of Pisa. Too bad! Such an ex-
periment is more direct and more fun
than inclined plane experiments, and
of course, now that accurate stopwatches
are available, it can be carried out much
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better than in Galileo's time. The ex-
periment involves dropping, one by one,
different size spheres made of copper,
steel, and glass from the top of the
Leaning Tower and finding how long it
takes each one to reach the ground.
Knowing d (the height of the tower) and
time of fall t, I will substitute in
the equation d = 1/2.at2 to see if the
acceleration a has the same value for
each sphere.

b) A shotput will be dropped from
the roof of a 4-story building. As the
shotput falls, it passes a window at
each story. At each window there will
be a student who starts his stopwatch
upon hearing a signal that the shot
has been released, and stops the watch
as the shot passes his window. Also,
each student records the speed of the
shot. From his own data, each student
will compute the ratio v/t. All four
students should obtain the same numer-
ical value of the ratio,

c) Galileo's inclined planet "dilute"
motion all right, but t,. trouble is
that there is no reasor. to suppose that
a ball rolling down a board is behaving
like a ball falling straight downward.
A better way to accomplish this is to
use light, fluffy, cotton oalls. These
will not drop as rapidly as metal spheres,
and therefore it would be possible to
measure the time of the fall t for dif-
ferent distances d. The ratio d/t2 could
be determined for different distances to
see if it remained constant. The com-
pactness of the cotton ball could then
be changed to see if a different value
was obtained for the ratio.

a) The proposal is to determine whether
different masses fall with the same ac-
celeration. This experiment involves
a direct measurement of the ratio d/t2.
However, variations in t for the same
event will probably be relatively large.
A "null method" would be more sensitive
by revealing whicn of two bodies mass
reaches the ground at very nearly the
same time.

b) This project looks interesting
and will allow us to determine whether
d/t2 is constant for different values
of d. However, the proposal states
that each student will obtain instan-
taneous speed of the ball as it passes
his window. The procedure is not out-
lined and may prove difficult or im-
possible to do.

c) The effect of air resistance on
the cotton balls is going to be appre-
ciable. If this is the case, we cannot
expect the balls to have a constant
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acceleration. The experiment might pro-
vide interesting information, but it
would not be pertinent to Galileo's
problem. However, a student might justi-
fy accepting the proposal on the basis
that the effect of air resistance might
not be known until someone had performed
this experiment,

2.5 Consider Aristotle's statement "A
given weight moves (falls) a given dis-
tance in a given time; a weight which is
as great and more moves the same distance
in less time, the times being in inverse
proportion to t`- weights. For instance,
if one weight i. twice another, it will
take half as long over a given movement."
(De Caelo)

Indicate how Simplicio and Salviati
would probably have interpreted each of
the following:

a) A two -round rock fLils from a
cliff and, while dropping, breaks into
two equal pieces.

b) A hundred-pound rock is dropped
at the same time 43 one hundred one-
pound pieces of the same type of rock.

c) A hundred one-pound pieces of
rock, falling from a height, drop into
a loosely held sack which pulls loose
and falls. All the rocks are in the
sack and continue falling while contained
by the sack.

a) Simp.: Both pieces slow down to
1/2 speed and fall together, taking
twice the time that the 2 lb. rock would
have taken to fall the remaining distance.

Salv: Both pieces continue to
fall at same rate as before fracture
and strike the ground at the same time
as the 2 lb. rock would have.

b) Simp: The single rock would reach
bottom in 1/100 the time as the 100 one-
pound pieces.

Salv: They would fall at the same
rate.

c) Simp: The sack containing the 100
rocks would speed up to fall the remain-
ing distance in 1/100 the time required
by uncaptured rocks.

Salv: The sack would reach tne
bottom in the same time as that taken
by the separate rocks.



2.6 A good deal of work preceded that
of Galileo on the topic of motion. In
the period (1280-1340) mathematicians
at Merton College, Oxford, carefully
considered quantities that change with
the passage of time. One result that
had profound influence was ageneral
theorem known as the "Merton Theorem"
or "Mean Speed Rule."

This theorem might be restated in
our language and applied to uniform
acceleration as follows: the distance
an object goes during some time while
Its speed is changing uniformly is the
same distance it would go if it went
at the average speed the whole time.

Using a graph, and techniques of
algebra and geometry, construct a proof
of the "Merton Rule."

'Moe

A quick geometrical proof results from
our knowledge that distance is measured
by the area under the v-t curve. Since
vl - vm = vm v2 and t1 - tm = tm - t

2'

the shaded areas of the graph are equal
in area and the upper can be inserted in
place of the lower. This forms a rec-
tangle A B T2 T1 of area = area of the

original trapezoid. This rectangle is
of height vm, equivalent to saying

As = vm
At, our definition of average

velocity.

2.7 In the Two New Sciences Galileo
states, "...for so far as I know, no
one has yet pointed out that the dis-
tances traversed, during equal intervals
of time, by a body falling from rest,
stand to one another in the same ratio
as the odd numbers beginning with unity
(namely 1:3:5:7...)...."

The area beneath a speed-time graph
represents the distance traveled during
some time interval. Using that idea,
give a proof that the distances an ob-
ject falls in successive equal time in-
tervals will be in such a ratio.

Study Guide
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Students may see that each successive
trapezoid may be broken up into a num-
ber of congruent triangles which may be
then added up as 1:3:5:7. They may also
notice that the total area is in the
ratio 1:4:9:16, or is proportional to
T2.

This problem may also be done by com-
puting the area of each trapezoid as
B(111 + h

2
) using arbitrary units, but

2

the purely geometric approach seems
preferable.

2.8 Indicate whether the following
statements are true or false when ap-
plied to the strobe photo at the right:

a) The speed of the ball is greate.
at the bottom than at the top.

b) The direction of the acceleration
is vertically downward.

c) This could be a freely falling
object.

d) This could be a ball thrown
straight upward.

a) true
b) true
c) false
c) true (if air resistance is present)

2.9 Apply the same statements to the
photo at the right, once again indi-
cating whether each statement is true
or false.

a) true
b) true
c) true
d) true

39



Study Guide
Chapter 2

2.10 These last two questions raise the
issue of direction. The photograph in
the figure below is of a ball thrown
upward, yet its acceleration is down-
ward. The acceleration due to gravity
may appear as the slowing down of an
upward moving object, or as the speed-
ing up of a downward moving one. To
keep these matters straight, a plus and
minus sign convention is adopted. Such
a convention is merely an arbitrary but
consistent set of rules.

The main rule we adopt is: RE is the
positive direction. It follows that the
acceleration due to free fall g always
takes the negative sign; distances above
the point of release are positive, those
below it negative; and the speed of an
object moving upward is positive, down-
ward negative.

The figuro below is a photo of the
path that a ball might take if you threw
it up and then let it fall to the ground
rather than catching it when it reached
your hand again. To assure yourself
that you understand the sign convention
stated above, complete the table below.

B

A

0

Position

D

v a

A
B
C
D
E

0

If there are any or no arguments a-
bout -s in part E, it will provide a
good oportunity to discuss frames of
reference again.
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2.11 Draw a set of points (as in a
strobe photo) to show the successive
positions of an object that had a posi-
tive acceleration upward. Can you
think of any way to produce such an
event physically?

The spacing between
successive points, As,
must differ by a con-
stant amount for con-
stant acceleration.

A53: 4570,,,,

as,:/p.

45, :3-

AS4 - AS3 = AS3 AS2

AS2 - AS'

This might be accom-
plished by pulling the
object upwards with a
constant pull.

2.12 The instrument shown is called
a liquid surface accelerometer. Whenever
the accelerometer experiences an accel-
eration in a direction parallel to its
long dimension, the surface of the liq-
uid does not remain level. If your
laboratory has one of these instruments
and an air track, design an experiment
in which acceleration remains constant
but speed changes.

Such an experiment might consist of
attaching a weight over a pulley so
that it pulls on the a cart carrying
the accelerometer.

Photographs can be
taken and the slope of the surface
compared for different times during a
"run", and for runs with different
weights attached.

2.13 Drop sheets of paper with various
degrees of "crumpling." Can you crumple
a sheet of paper tight enough that it
will fall at the same rate as a tennis
ball?

If dropped from over your head, you
will probably be able to distinguish
between times of arrival at the floor
of a tennis ball and a tightly crumpled
ball of newspaper having the same size.



2.14 Tie two objects (of greatly dif-
ferent weight) together with a piece
of string. Drop the combination with
different orientations of objects. Watch
the string. In a few sentences summarize
your results.

If the objects are of comparable density,
they will fall with the same accelera-
tion and the string will hang limp be-
tween them. It will be similar to the
limp umbilical cord which attached
Astronaut White to his space capsule
for the same reason: again, both have
the same acceleration. In an extended
situation where there is appreciable
air resistance, an object with a greater
cross sectional area per unit mass will
be retarded more, accelerate more slowly,
and cause the string to become taut.

2.15 In these first two chapters we
have been concerned with motion in a
straight line. We have dealt with dis-
tance, time, speed and acceleration,
and "ith the relationships between them.
Surprisingly, most of the results of our
discussion can be summarized in the
three equations listed below.

Ad AV
v
av = TE a

av
= TE d = liat2

The last of these equations applies
only to those cases where the accelera-
tion is constant Because these three
equations are so useful, they are worth
remembering.

a) State each of the three equations
in words.

b) Which of the equations can be
applied only to objects ,starting from
rest?

c) Make up a simple problem to demon-
strate the use of each equation. For
example: How long will it take a jet
plare to travel 3200 miles if it aver-
ages 400 mi/hr? Also work out the solu-
tion just to be sure the problem can be
solved.

a) The average speed is equal to the
distance interval traveled divided by
the time interval over which the dis-
tance was measured.

The average acceleration is equal
to a change in velocity divided by
the time interval over which the
velocity change was measured.
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The distance traveled by a uniformly
accelerating object is equal to one-half
the acceleration measured from the start
multiplied by the square of the time
since the start.

b) s = 3lat2 must be used only with
objects starting from rest.

c) 8 hours

2.16 Memorizing equations will not save
you from having to think your way through
a problem. You must decide if, when
and how to use equations. This means
analyzing the problem to make certain
you understand what information is given
and wha: is to be found. Test yourself
on the following problem. Assume that
the acceleration due to gravity is
10 m/sec2.

Problem: A stone is dropped from
rest from the top of a high cliff.

a) How far has it fallen after 1
second?

b) What is the stone's speed after
1 second of fall?

c) How far does the stone fall during
the second second? (That is, from the
end of the first second to the end of
the second second.)

a) s = liat2

a = -10 m
sect

t = 1.0 sec

s = 1/2 x -10 a.2 (1.0 sec)2

s = -5.0 m

b) v = at

a = 10 m
sect

t = 1.0 sec

v = -10 sect x 1.0 sec

v = -10
sec

c) s = - ,at12

s = lia(t22 - t12)

sect
a = -10 ---

t2 = 2.0 sec

ti = 1.0 sec

s = 1/2 x -10
sec
-1L-2 (4.0 sect - 1.0 sect;

s = -15 m
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2.17 Think you have it now? Test your-
self once more. If you have no trouble
wit} this, you may wish to try problem
2.18 2.19, or 2.20.

v = 0
f sec

v = 20
sec

Problem: An object is thrown straight a = -10 m
upward with an initial velocity of sec?

20 m/sec. -20 ---
, m

sec
a) What is its speed after 1.0 sec? t

n
-1'

m
sectb) How far did it go in this first

second?

c) Hou long did the object take to
reach its maximum height?

d) tiow high is this maximum height?

e) What is its final speed just be-
fore impact?

a) vf = v. + at

t = 2 sec

d) s = vt
vi)

2

m
of 0
f sec

v. = 20
m

i sec

t = 2 sec

m

v = 20 m s = (
sec

0 --- + 20 ---

2

i

sec
x 2 sec

sec
s = 20 m

a = -10
sect

e) Since the object falls the same
t = 1.0 sec distance it rose and undergoes the same

acceleration, we can immediately say
v = 20

sec
that the downwa-d trip will be similar--- 10 sect x 1 sec
to the upward one. Then it will take

v = 10 the same time and /v will be the same.
sec We can also show mathematically:

b)s = vt
v. + of

2

s =
+ vc

2
x t

v. = 20
i sec

of = 10
sec v = at = a(-2-11/2 = (2as) h

a

t = 1 sec a = -10 F7,6-2

s = 1/2at2

The time to fall a distance s is

d2s11/2
k a]

The velocity to which the object
will accelerate in this time is

s -
(20

sec
m + 10 m )

sec
-ec

2

s = 15 m

s = -20 m (s is negative because
the object is going n a negative
direction)

v = (2 x -10
sec
---2 x -20 m)1/2

c) vf = vi + at
v = + 20 m

sec
at = vf vi

t =
vf

-
vi v = -20

sic
a
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(The negative root is the one with
meaning in this situation.)



2.18 A batter hits a pop fly that
travels straight upwards. The ball
leaves his bat with an initial speed
of 40 m/sec.

a) What is the speed of the ball
at the end of 2 seconds?

b) What is its speed at the end
of 6 seconds?

c) When does the ball reach its
highest point?

d) How high is this highest point?

e) What is the speed of the ball
at the end of 10 seconds? (Graph
this series of speeds.)

f) What is its speed when caught by
the catcher?

a) vf = vi + at

vi = 40
sec

a = -10
sect

t = 2 sec

m mvf = 40 - lv
sec sect

x 2 sec

vf = -20
sec

b) vf = vi + at

t = 6 sec

vf = 40 -
sec ---10 2 x 6 sec

tee

v
f

= -20
sec

c) The ball reaches it- highest point
when v

f
= 0.

vf = v. + at

vf - vi

a

v = 0
f sec

v. = 40
1 sec

a = -10 ---
sect

A m m
v - 4v

sec
t

sec

-10 m
sect

t = 4 sec
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d) From problem (c) the highest point
occurs at 4 sec. Although the problem
is most rigorously solved by using the
relationship

s = v.t + 1/2at2,

it is more easily approached by real-
izing that the ball will travel the
same distance in going straight up
for four seconds, while it goes from

40 --- to 0 --- as it will in fall-
sec sec

ing down for four seconds from the
top of its rise. This means

s = 1/2at2
m

a = -I° ---

t = 4 sec

s = x -10 sect
x

(4 sec)2

s = -80 m

e) The speed is zero, since by
symmetry the ball must reach the
ground (and hence come to a stop)
in just 8 sec.

f) We can say immediately from the sym-
metry of the problem that the speed will
be the same magnitude when it gets back
to the ground as it was when it left.
This may be proved in the following
manner:

vf = Vi + a%

The time t is the time it takes the
distance, s, to return to zero.

s = v.t + Xiat2

letting s = 0 and solving for t,

t(v. + fat) = 0

v. + fat = 0

-2v.
t =

a

(The root t = 0
describes the
initial condi-
tions)

Substituting

(al

-2v.-2v.

Since v. = 40 m
sec,

v
f

= -40
sec

43



Study Guide
Chapter 2

2.19 A ball starts up an inclined plane
with a speed of 4 m/sec, and comes to
a half after 2 seconds.

a) What acceleration does the ball
experience?

b) What is the average speed of the
bail during this interval?

c) What is the ball's speed after 1
second?

d) How far up the slope will the
ball travel?

e) What will be the speed of the ball
3 secc is after starting up the slope?

f) What is the total time for a round
trip to the top and back to the start?

d) s = v.t + 1/2at2

v. = 4
i sec

a= -2
sec 2

t u 2 sec

ms = 4
sec x 2 sec - 2

sect
(2 sec)

s = 4 m

Note: This could also be calculated
by using average velocity and time.

e) v
f
= v. + at

t = 3 sec
Av

a) a = m m
of 4 - 2 x 3 secm

4 m
f sec secAv = vf - vi = 0 sec- sec m

m of = -2
gecAv = -4

sec

6t = 2 sec

-4
sec

a
2 sec

V. + vf
b) V 1

2

4
m in

sec sec

c) v
f
= v. + at

v
i

= 4
sec

a = -2
sec 2

f) The total time for a round trip
up the slope is twice the time for
a one way trip. (See problem 2.18
(f.) for the proof.)

a = -2
sec2 t2 = 2t1 = 2 x 2 sec

= 2 al-
sec

of = 4 - 2 x 1 sec
sec sec

t2 = 4 sec

2.20 Lt. Col. John L. Stapp achieved
a speed of 632 mph (284 m/sec) in an
experimental rocket sled at the Holloman
Air Base Development Center, Alamogordo,
New Mexico, on March 19, 1954. Running
on rails and propelled by nine rockets,
the sled reached its top speed within
5 seconds. Stapp survived a maximum
acceleration of 22 g's in slowing to
rest during a time interval of 11/2
seconds.

a) Find the average acceleration in
reaching maximum speed.

b) How far did the sled travel be-
fore attaining maximum speed?

m c) Find the average acceleration
of

2
f sec while stopping.
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a) a- = ev
At

Av = 284 m
sec

Lt = 5.0 sec

284 m
g sec

5 sec

a = 57 m
sec2



a = 57
sect

t = 5.0 sec

s = h x 57 sect (5.0 sec)2

s = 710 m

c) E = AX
At

Av = of - vi = 0 284 m
sec sec

At = 1.5 sec

284
sec

1.5 sec
a = -190 m

sect

Since 10 m/sec is approximately the
acceleration of gravity, this means
col. Stapp was subject to an average ac-
celeration 19 times gravitational accel-
eration. (The fact that he was subjected
to 22 g's indicates that the actual ac-
celeration was not constant.)

2.21 Sometimes it is helpful to have a
special equation relating certain vari-
ables. For example, initial and final
speed, distance, and acceleration are
related by the equation

v 2 = 2 + 2ad.

Try to derive this equation from some
others you are familiar with.

We know that

s = ;it or

s

+

2
x t.

We also know that

vf=v.1 +at or

1
- V.of

t
a

Substitute the expression for t into
the equation (1),

s
2 a 2a

+ - vf2 - vi2

v
f
2 - V.1 2 = 2as

v 2 = 2 + 2as
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2.22 Use the graph below, and the idea
that the area under a curve in a speed-
time graph gives a value for the distance
traveled, to derive the equation

d=v.1 t+ hat2

%
u.

L

area = s = 11(101 + b2)h

b1 = vi

b2 = of = vi + at

h = t

s
1 1
+ v. + at)t

s=hx2v.3 t+ hat2

s=v.t+

2.23 A student on the planet Arret in
alother solar system dropped an object
in order to determine the acceleration
due to gravity. The following data are
recorded (in local units):

Time Distance
(in surgs) (in welfs)

0.0 0.00
0.5 0.54
1.0 2.15
1.5 4.84
2.0 8.60
2.2 10.41
2.4 12.39
2.6 14.54
2.8 16.86
3.0 19.33

a) What is the acceleration due to
gravity on the planetArret, expressed
in welfs /surge?

b) A visitor from Earth finds that
one welf is equal to about 6.33 cm and
that one surer is equivalent to 0.167
sec. What would this tell us abort
Arret?

a) We can find the acceleration due
to gravity on Arret by constructing a
graph of speed vs time for the freely
falling body and finding its slope.
To do this we could first construct a
distance vs time graph and measure .the
slope of the curve at various points,
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or we can approximate the velocity at
different points by finding the average
velocity between two points on either
side of the desired points. This can
be done with a table. Note that the
average velocity between points A and
B approximates the instantaneous speed
at the time

A B
0.25 sec.2

b) 1 welf = 0.0633 m

1 surg = 0.167 sec

welf 1 well (0.0633 m
welfsurg2
sec 21 surg2 (0.167
surf

2.27 -11-,Also note that the time interval in sec-
the given data changes from 0.5 sec
to 0.2 sec. welf m mx 2.27

= 9.8

Posi-
tion

Time
(surgs)

s

(welfs)

0.00

Inter-
val

As

AB
0.54

BC
2.15

CD
4.84

DE
8.60

EF
10.41

FG
12.39

GH
14.54

HI
16.86

IJ
19.33

A 0.0

B 0.5

C 1.0

D 1.5

E 2.0

F 2.2

2.4

H 2.6

I 2.8

3.0

surge sec2 ,
sec'

welf
V surge

welfs
surg The acceleration due to gravity on

0.54 1.0

1.61 3.2

2.69 5.4

3.76 7.5

1.81 9.0

1.98 10.0

2.15 11.0

2.32 12.0

2.47 12.0

3

70401r.: oitcy )

welfs
Av surg
At 2.8 surg

a = 4.3 pig;

Arret is 9.8 m/sec2, slightly greater
than on earth.



Brief Answers to Chapter 3 Study Guide

3.2 discussion

3.3 (a) yes
(b) 4.4 units West

3.4 (a) discussion
(b) discussion

3.5 discussion

3.6 discussion

3.7 discussion

3.8 6/1

3.9 discussion

3.10 dicussion

3.11 tabil

3.12 discussion

3.13 m = 2.0 kg

3.14 (a) a = 2.0 x 102 m/sec2
vmax

= 7.8 x 102 m/sec

(b) a varied
(c) a = 2.4 x 102 m/sec2

3.15 discussion

3.16 (a) F = 860 N
(b) F = 750 N
(c) F = 640 N
(d) The same values as

(a), (b), and (c).
(e) aiscussion

3.17 (a) the same mass
(b) F(Paris) = 9.809 N
(c) F(Washington) = 9.801 N

3.18 (a) diagram
(b) 1.7 x 10-24 m/sec2
(c) a

b
/a

c
= 6 x 1024

3.19 discussion

Study Guide
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Solutions to Chapter 3 Study Guide

3.2 The Aristotelian explanation of mo-
tion should not be dismissed lightly.
Great intellects of the Renaissance
period such as Leonardo da Vinci, who,
among other things, designed artillery
for launching projectiles, apparently
did not callenge the Aristotelian
explanation. Or reason for the longev-
ity of Aristotlk. s ideas is that they
are so closely aligned with our common-
sense ideas. In what ways do your com-
mon-sense notions of motion agree with
Aristrtle's?

The four elements fire, air, water,
earth seem to seek their natural places.
The heavier body the more earthlike
should naturally fall faster than a
lighter one. All bodies slow down and
stop in time, why should one agree with
Newton's first law of motion.

3.3 Three children, Karen, Keith and
Sarah are each pulling on the same toy.

Karen pulls toward the east with a
force of 8 units.

Sarah pulls toward the north with a
force of 6 units.

Keith pulls in a direction 300 south
of west with a force of 12 units.

a) Is there a net (i.e., unbalanced)
force on the toy?

b) If there is a net force, what is
its magnitude and direction?

_.,

Ajr

ace
-:--ii 2:

II127:

Vector III has two components, one
west and one south (in red), of magni-
tude 12 cos 30 = 63 and 6 respectively.

There is no unbalanced force in the
North-South directioh. In the East-
West direction there is a force 63 - 6
units West.

63 - 6 = 6(3 - 1)
= 6(.732)
= 4.392 units West
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3.4 A 2 kg mass is suspended by a
string. A second string is
tied to the bottom of the
mass.

a) If the bottom string
is pulled with a sudden jerk,
the bottom string breaks.

b) If the bottom string
is pulled with a steady
pull, the top string breaks.

Explain,

(Try this experiment for yourself.
You might tie thread to a brick, or a
hammer, or a pipe wrench.)

a) The sudden jerk is enough to break
the string, but before the string above
the mass can break the mass must descend
enough to stretch this string to its
breaking point. Although the force of
the jerk accelerates the mass downward
it does last long enough for the mass to
move the critical distance. This is a
problem in dynamics.

b) A steady pull produces no accel-
erations. The stress on the string above
the mass equals this pull plus the
weight of the mass. Therefore it breaks
first. This is a problem in statics.



3.5 In terms of Newton's first law,
explain:

(a) why people in a moving car lurch
forward when the car suddenly decele-
rates;

(b) what happens to the passengers of
a car that makes a sharp and quick turn;

(c) why, when a coin is put on a
phonograph turntable and the motor is
started, the coin flies off when the
turntable reaches a certain speed. Why
doesn't it fly off before?

(a) The brakes slow the car but not
the passenger, since he is not rigidly
attached to the car. His inertia cause..,
his forward motion to continue unchanged
momentarily while that of the car is re-
duced.

(b) The explanation is similar to
that in part (a). Velocity is a vector
quantity. When the force of the tires
against the road chang_s the direction
of the car, it fails to change immedi-
ately the direction of the passenger.
He continues in the original direction
until the force of the seat on his body
changes his direction of motion.

(c) The centripetal force needed to
hold the coin in "orbit" increases as
Cle rotation rate of the turntable in-
creases. The frictional force which
links the coin to the turntable remains
constant. When the frequency of the
turntable rotation has increased to the
point where the centripetal force equals
the frictional force, a furtuer increase
in the centripetal force required to
keep the coin in its "orbit" cannot be
provided by friction. The coin will then
slip toward the rim of the turntable.

3.6 (a) You exert a force on a box, but
it does not move. How would you explain
this? How might an Aristotelian explain
it?

(b) Suppose now that you exert a
greater force, and the box moves. Ex-
plain this from your point of view and
from an Aristotelian point of view.

(a) We would say that the force is
not large enough to overcome the force
of starting friction. An Aristotelian
would say that rest is a natural state
and that any force of motion requires a
force. He would probably say tl,at the
force is not enough to change s.ae box
from its natural state.
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(b) We would say that the applied
force is now greater than the force of
friction, resulting in an unbalanced
force. Consequently, the box acceler-
ates according to Newton's Second Law,
An Aristotelian probably would have
maintained that the force producing the
motion was now great enough to displace
the box from its natural stare. How-

ever, the Aristotelians hay clear
concept of acceleration.

3.7 Assume that the ,.loor of a labora-
tory could be made perfectly horizontal
and perfectly smooth. A block of wood
is placed on the floor and given a small
push. Predict the way in which the
block will move. How would this motion
differ if the whole laboratory were mov-
ing with constant velocity during the
experiment. How would it differ it the
whole laboratory were accelerating along
a straight line? If the block were seen
to move in a curved path along the floor,
how would you explain this?

If there is no friction, a block given
a brief push will move with uniform ve-
locity. If the laboratory is itself in
uniform motion, the block will still move
with a constant velocity VB (relative to
the laboratory). If the laboratory is
moving relative to the earth with a
constant velocity VL, the block's motion
relative to the earth, VR, is the vector

(VB + q). Since neither of these
vectors change, their sum is also con-
stant.

3.8 A body is being accelerated by an
unbalanced force. If the magnitude of
the net force is doubled and the mass
of the body is reduced to one-third of
the original value, what will be the
ratio of the second acceleration to the
first?

F = ma

a =
m

= F2

21 = M2 = F2 x m1

al Fl m2 x F1
m1

a2 (2) x (1)

al (3) x (1)

6

al 1
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3.9 Hooke's Law says that the force
exerted by a stretched or compressed
spring is directly proportional to the
amount of the compression or extension.
As Robert Hooke put it in announcing
his discovery:

...the power of any spring is in the
same proportion with the tension
thereof: that is, if one power
stretch or bend it one space, two
will bend it two, three will bend it
three, and so forward. Now as the
theory is very short, so the way of
trying it is very easie.

If Hooke saysit's "easie," then it
might well be so. You can probably think
immediately of how to test this law using
springs and weights. Try designing such
an experiment; then after checking with
your teacher, carry it out.

Hooke's experiment is described in his
own words in W. F. Magie, A Source Book
in Physics, McGraw-Hill, 1935.

A simple experiment could be set up
by taking a spring, hanging different
masses from it, and noting the exten-
sion of the spring for each mass. Since
the force of gravity on each weight can
be calculated, we can plot force vs.
extension. If Hooke is correct, the
points will lie along a straight line.

Modern usage requires the substitu-
tion of the word force where Hooke used
power. Today, power has a different
meaning.
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3.10 If you have dynamics carts avail-
able, here is one way of doing an ex-
periment to test the inverse proportion-
ality between acceleration and mass:

(a) Add load blocks to one or the
other of two carts until the carts
balance when placed on opposite plat-
forms of a laboratory balance. Balance
a third cart with one of the first pair.
Each cart now has mass m. (State two
main assumptions involved here.)

(a) Accelerate one cart on - 'evel
surface using the rubber-band -unique;
that is, pull the car with the . ,ber
band keeping it stretched a constant
amount. Any other method can also be
used that will assure you that, within
reason, the same force is being applied
each time. Record the position of the
cart at equal time intervals by means of
stroboscopic photography.

(c) Repeat the last step in all de-
tails, but use two carts hooked to-
gether. Repeat again using all three
carts hooked together. In all three
cases it is crucial that the applied
force be essentially the same.

(d) Determine the value of accelera-
tion for masses of m (1 cart), 2m (2
carts), and 3m (3 carts).

(e) Prepare a graph of a vs. m, of
1 1a vs. , and of vs. m. Comment onm a

your results.

This problem concerns a suggested
experiment to test the relation between
acceleration and mass.

Two of the assumptions involved are:
(1) if two carts, placed on an equal-
arm balance, exert the same force, than
the masses of the carts are equal;
(2) if one of these carts balances a
third cart, then all three carts have
the same mass. Another, more funda-
mental, assumption is hidden here. By
using an equal-arm balance, we have
equated the gravitationa' masses of the
objects; from this we have assumed that
their inertial masses are also equal.
It would be advisable not to delve into
the latter assumption unless you are
prepared to spend quite a lot of time.

If the experiment is performed care-
fully, the graph of a vs m will be a
curve, while the graphs of a vs 1/m and
1/a vs m will be straight lines. This
means that a is proportional to 1/m.

A more detailed experiment using
dynamics carts pulled by rubber bands
is described in PSSC labs 111-2 and
111-3.



3.11 Complete this table:

(a) 1.0 N 1.0 kg 1.0 m/sec2
(b) 24.0 N 2.0 kg 12.0 m/sec2

(c) N 3.0 kg 8.0 m/sec2

(d) N 74.0 kg 0.2 m/sec2
(e) N 0.0066 kg 130.0 m/sec2
(f) 72.0 N kg 8.0 m/sec2
(g) 3.6 N kg 12.0 m/sec2

(h) 1.3 N kg 6.4 m/sec2

(i) 30.0 N 10.0 kg m/sec2

(j) 0.5 N 0.20 kg m/sec2
(k) 120.0 N 48.0 kg m/sec2

Complete this table:

Force Mass Acceleration

(a) 1.0 N 1.0 kg 1.0 m/sec2
(b) 24.0 N 2.0 kg 12.0 m/sec2
(c) 24.0 N 3.0 kg 8.0 m/sec2
(d) 14.8 N 74.0 kg 0.2 m/sec2
(e) 0.86N 0.0066 kg 130.0 m/sec2
(f) 72.0 N 9.0 kg 8.0 m/sec2
(g) 3.6 N 0.30 kg 12.0 m/sec2
(h) 1.3 N 0.20 kg 6.4 m/sec2

(i) 30.0 N 10.0 kg 3.00m /sect

(j) 0.5 N 0.20 kg 2.5 m/sec2
(k) 120.0 N 48.0 kg 2.50m /sect

Note: The number of significant
digits in the answers above are limited
to the maximum present in the least of
the other factors, (e.g. (d) and (g)).
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3.12 Recount in detail what steps you
must take (in idealized experimentation)
to determine the unknown mass m (in kilo-
grams) of a certain object if you are
given nothing but a frictionless hori-
zontal plane, a 1-kg standard, an un-
calibrated spring balance, a meter stick,
and a stopwatch.

To determine the unknown mass we must
first calibrate the spring balance. This
may be done by accelerating the 1 kg
standard with a constant force indicated
on the spring balance. The time to cover
a measured distance from rest can be de-
termined and the acceleration calculated:

s = 1/2at2, a = ?s,
t2

From the krown values of m and a, r can
be calculated using Newton's second law;
F = ma.

The unknown mass can then be accele-
rated with this same force and its ac-
celeration neasured. If values for F
.and a are substituted into F = ma, the
unknown mass can be calculated.

As the same force is used each time,
it is not necessary to compute the value
of the force to find the mass:

F1 = F2

m1a1 = m2a2, and

m2 = mial
a2
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3.13 A cerrain block is dragged with
a

F-constant velocity along a rough horizon- m
tal table top, by means of a spring
balance horizontally attached to it which F = 8.9 x 105 N
-reads 0.40 N, no matter what the veloc- m = 4.44 x 103 kg
ity happens to be. This means that the
retarding frictional force between block 8.9 x 105 kg-m
and table is 0.40 N and not dependent on 'a- = sec2
the speed. When the block is given a
constant acceleration of 0.85 m/sec2,
the balance is found to read 2.1 N.
Compute the mass of the block.

Since the balance reading is 0.40 N
when the block is dragged at constant
velocity, this must be the frictional
force. The net force is the applied
force less the frictional force.

F
net = ma

ra =

F
net
a

Fnet Fapplied friction

2.1 N - 0.40 N = 1.7 NFnet

a = 0.85 a--
sec 2

1.7 ILL
sec2m

0.85 -11--
sec2

m = 2.0 kg

3.14 A sled has a mass of 4440 kg and is
propelled by a solid propellant rocket
motor of 890,000 N thrust which burns
for 3.9 seconds.

(a) What is this sled's average ac-
celeration and maximum speed?

(b) The data source states that this
sled has a maximum acceleration of 30 a.
How can that be, considering the data
given?

(c) If the sled travels a distance of
1530 m while attaining a top speed of
860 m/sec (how did it attain that high
a speed?!), what is its average accele-
ration?
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4.44 x 103 kg

a = 2.0 x 102 _2_
sec2

v zz at

t = 3.9 sec

v = 2.0 x 102 -2-- x
sec2

3.9 sec

v = 7.8 x 102 -12-sec

m4
(b) 200 ---

sec is about 20 g. Since the

maximum acceleration is 30 g, the accele-
ration varied with 20 g being the aver-
age.

(c) v2 = 2as

v2
a =

m4v = 860
sec

s = 1530 m

a = sec
(860 n-1-)2

2 x 1530 m

a = 2.4 x 102 I" 2sec

The average acceleration and the
maximum speed turn out to be higher than
that obtained by using Newton's equation
of motion as in (a) above. The dis-
crepancy explained by the fact that the
rocket mass is constantly decreasing,
and hence it is incorrect to use the
initial mass for the whole run.

A good student might like to try to
calculate the mass lost during the 3.9
run.



3.15 Discuss the statement that while
the mass of an object is the same every-
where, its weight may vary from place
to place.

Mass is a measure of the inertia of
a body. A certain mass will be accel-
erated at the same rate by a given force
no matter where the mass is located.
The mass of a body is therefore the
same everywhere. Its weight, however,
depends on the force of gravity, which
differs from place to place. Force and
mass are related by F = maq where ag is
the acceleration of a freely falling
body.

3.16 A 75 kg man stands in an elevator.
What force does the floor exert on him
when the elevator

(a) starts moving upward with an ac-
celeration of 1.5 m/sec2?

(b) When the elevator moves upward
with a constant speed of 2.0 m/sec?

(c) When the elevator starts accel-
erating downward at 1.5 m/sec2?

(d) If the man were standing on a
bathroom (spring) scale during his ride,
what readings would be scale have in
parts a, b, and c?

te) Why may one say that his apparent
"weight" changes when the elevator ac-
celerates this person?

(a) To accelerate a 75-kc man at 1.5
m/sec2 requires an unbalanced get force
which has a magnitude equal to the pro-
duct of his mass and acceleration.

F
net

= ma

m = 75 kg

a = 1.5 sect

F
net

= (75 kg)(1.5
sec
---2) = 110 N

Gravity exerts a constant downward force
on the man, his weight Fw. In order that
the man experience an upward accelera-
tion, the elevator floor must exert an
upward force FE that is greater than his
weight. The net force dill equal the
excess of FE over Fw.

F
net

= FE - F
w

F
E

= F
net

+ F
w

Fnet
= 110 N

F
w

= ma
g

= 75 kg x 10 sec
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= 750 N

F
E
= 110 N + 750 N

FE = 860 N, upward

(b) The net force on any body is
zero if it moves with constant velocity.
Therefore, the elevator floor must exert
an upward force FE equal in magnitude to
the man's weight Fw.

FE =Fw =mag

= 75 kg x 10 m/sec2_

F = 750 N, upward

(c) When the man accelerates down-
ward, he must-experience a net force
downward. In this case, the man's
weight Fw must be greater than the up-
ward force FE exerted by the elevator
floor. A-,ain, the net force will equal
their difr:xence of FE and Fw

F
net

= Fw - FE

FE = Fw - F
net

Fnet
110 N (from part a)

Fw - 750 N (from part a)

FL = 750 N - 110 N

FE = 640 N

(d) According to Newton's third law,
for every force there is an equal and
opposite force. When the elevator floor
exerts a certain force on the man, he
will in turn exert an equal force (in
the opposite direction) cn the floor or
scale. The bathroom scale would read
the values calculated in (a), (b) and
(c).

(e) As a result of the different
forces in the conditions examined above,
it does appear that the man's weight
changes, since we are accustomed to as-
sociating weight with the force we exert
against the floor (or vice versa aczord-
ing to Newton's third law). We should
remember, however, that since we defined
weight as Fw = man, his actual weight
does not change. 'The apparent change
was due to his being in an accelerated
frame of reference.
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3.17 A r rlica of the standard kilogram
is cons4..ucted in Paris and then sent to
the Eational Bureau of Standards in
Washington. Assuming that this secon-
dary standard is not damaged in transit,
what is

(a) its mass in Washington,

(b) its weight in Paris and in Wash-
ington. (In Paris, ag = 9.81 m/sec2;
in Washington, ag = 9.80 m/sec2.)

(a) The mass will be identical in
both places; 1 kg.

(b) F = ma
g

m = 1.000 kg

a (Paris) = 9.81 m
----

g sec2

F = 1.000 kg x 9.81 m
sec2

F(Paris) = 9.81 N

a (Washington) = 9.80 m
----

g
sec2

F = 1.000 kg 9.80 12---
sec2

F(Washington) = 9.80 N
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3.18 Consider the system consisting of a
1.0 kg ball and the earth. The ball is
dropped from a short distance above the
ground and falls freely. We can take
the mass of the earth to be approximately
6.0 x 1024 kg.

(a) Make a vector diagram illustrating
the important forces acting on the mem-
bers of the system.

(b) Calculate the acceleration of
the earth in this interaction.

(c) Find the ratio of the magnitude
of the ball's acceleration to that of
the earth's acceleration (ab/ae).

Since the force exerted on the ball
is

F = ma = 1.0 kg 10
9 sect = 10 N,

the force exerted on the earth by the
ball is equal and opposite, according
to Newton's third law.

(b) a=m
F = 10 N

m = 6 x 1024 kg

10 Na

6 x 1024 kg

a = 1.7 x 1024 m
sec2

(c) a
b

= 10
sec2

a
e
= 1.7 x 1024 2--

sec2

lo M--a
b sect

a
e 1.7 x 10-24 m

sec2

a
b
= 6 x 1024a

e



3.19 In terms of Newton's third law
assess the following statements:

(a) You are standing perfectly still
on the ground; therefore you and the
earth do not exert equal and opposite
forces on each other.

(b) The reason that a jet airplane
cannot fly above the atmosphere is that
there is no air to push against, as re-
quired by the third law.

(c) The mass of object A is 100 times
greater than that of object B, but even
so the force it (A) exerts on B is no
greater than the force of B on it.

(d) C, D, and E are three objects
having equal masses; if C and D both
push against E at the same time, then E
exerts cnlv one-half as much force on
C as C does on E.

(a) False. According to Newton's
third law, the forces are equal.

(b) False. No air is required for
the jat to push against. A backwards
force on the burning gases produces a
force on the plane's engines in the op-
posite direction. However, a jet air-
plane does require an atmosphere to
provide the necessary lift on its wings,
and oxygen to combine with its fuel.

(c) True. This is an example of
Newton's third law.

(d) False. The force exerted by C
on E (more properly, the pair ED) is

equal to the force exerted by E (actu-
ally, the pair ED) on C.
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3.20 Consider a tractor pulling a heavy
log in a straight line. On the basis of
Newton's third law, one might argue that
the log pulls back on the tractor just
as strongly as the tractor pulls the log.

But why, then, does the tractor move?

Think what the tractor must do to bring
about its motion. As power is applied,
the tracks push backward against the sur-
face of the earth. Some loose earth may
be pushed away. The locomotion of objects
commonly involves pushing backward, oppo-
site to the direction of motion. But
according to the third law, if the treads
of tne tractor push backward on the surface
of thc. earth, the earth must simultaneously
push forward on the treads. Whether or not
the tractor 'loves depends solely on the
balance of 1 rces impinging on the tractor:
the tractor will accelerate if, and only
if, there is an unbalanced force on it.
The force of the log on the tractor opposes
the motion of the tractor, as does the
friction in the moving parts of the trac-
tor and between the tractor and the ground.
It is only when the force of the earth on
the tractor becomes greater than those re-
tarding forces that it will begin to move.
Another way of answering the question about
why the tractor moves, is to say that the
force it exerts on the ground is greater
than it exerts on the log; therefore, the
accelerating force of the earth is greater
than the retarding force of the log.
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Brief Aoswers to Chapter 4 Study guide

4.1 discussion

4.2 Answer (e)

4.3 (a) x = 1.5 T, y = 1.25 m, d =
1.9 m at angle 40° below hori-
zontal

(b) v = 5.7 m/sec at angle 59°
below horizontal.

4.4 v = 177 mizec
no

4.5 (1) True
(2) True
(3) True. Discussion

4.c, discussion

4.7 discussion

4.8 (a) 10.2 meters
(b) 61.2 meters

4.9 discussion

4.10 discussion

4.11 (a) 0.2 sec
(b) 5 cps
(c) 62.8 m/sec

4.12 (a) T = 1.9 sec
(b) f = 32 min-I
(c) v = 50 cm/sec
(d) v = 35 cm/sec
(e) v =.0 cm/sec
(f) a = 110° sec -1 They are equal
(g) ac = 120 cm /sect

(h) ac = 160 cm /sect

4.13 (a) Above the surface
(b) Syncom 2
(c) Lunik 3 discussion
(d) Luna 4
(e) 24.34 hr
(f) remain overhead
(g) Midas 3
(h) 9.36 m/sec2
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4.14 (a) v(Venus) = 7.3 A.U./yr
v(Earth) = 6.28 A.U./yr
v(Neptune) = 1.14 A.U./vr

(b) a
c
(Venus) = 74 A.U./yr2-

a
c
(Earth) = 39.5 A.U./yr2

a
c
(Neptune) = 4.37 x 10-2A.U./yr2

(c) a
c

is proportional to 1-
r2

4.15 discussion. no

4.16 discussion

4.17 discussion

4.18 Table

4.19 a
c (main) = 1.18 x 104 m/sec2

a
c
(nose) = 1.8 x 104 m/sec2

4.20 al/a2 = 2/1

4.21 (a) ac = 2 x 10-10 m/sec2

(b) F
s
= 4 x 1020 N

(c) F
e
= 3.55 x 1022 N

4.22 1 (a) independent
(b) T 1
(c) independent

2 (a) T m
(b) T 1/ k

4.23 85 min; 17650 mi/hr

4.24 13.6 m/sec2; 2.71 sec;
discussion

4.25 discussion



Solutions to Chapter 4 Study Guide

4.1 Using symbols other than words,
give an example of each of these:

(a)

(b)

(c)

(d)

(e)

(f)

(g)

a scalar.
a vector.
the addition of
the addition of
the addition of
the subtraction
from another.
the subtraction
from another.

two scalars.
two vectors.
three vectors.
of one scalar

of one vector

(a) Students will give examples of
quantities that exhibit only magnitude
and not direction, e.g. 59°C, 25 cycles/
sec.

fb) ft
75 sec 10 lbs

(

(at 90 °)
(at 450)

(c) $1.55 + $.75 = $2.30

(d)

(e)

a
Se<

112.

m.
sliat

3 ---
sec

(a1 0°) + 4
sec--- (at 90°) =

314C

5 ---
sec

(at 53 °)

11A"QC

2 m (at 0°) + 3 m (at 90°) +
sec sec

4 m
sec

(at 180 °) = 3.6
sec
M (at 124°)

(f) 79 °C - 16°C = 63 °C

(g)
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4 lb (at 90°) - 3 lb (at 0°) =

5 lb (at 127 °)
Note that the 3-lb vector has been re-
versed in direction and then added in
order to perform the subtraction.

4.2 For a given moving object the ve-
locity and acceleration can be repre-
sented by these vectors:

v and
a

The sum of these two vectors is:

(a)

e) They cannot be added.

The answer is (e). They cannot be added
because they are different physical
quantities.

4.3 A sphere is launched horizontally,
as shown below. Suppose the initial
speed vIc is 3.0 m/sec. Where is the
projectile (displacement), and what is
its speed and direction (velocity) 0.5
sec after launching?
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4.3 a) x= 1.5 m, y= 1.25 m, d = 1.9 m
t angle 400 below horizontal

b) v = 5.7 m/sec at angle 590 below
horizontal.

x = vx t = 3 x .5 = 1.5 m

1 2 1y = y at = I x 10 x .25 = 1.25 m

a = 10 m/sec

displacement = x2 + y2 =

2.25 + 1.56 = 1.95 m

tan 1.25/1.5 = tan 40°

vx = 3 m/s

v = at = 10 x .5 = 5 m/s

v = ./57477g= 5.84 m/s

tan = tan 59°

4.4 If a raindrop accelerated at a con-
stant rate of 9.8 m/sec2 from a cloud
1 mile up what would be its speed just
before striking the ground? Does a
raindrop accelerate at a constant rate
over a 1 mile fall?

v2 = 2 as

= 2 x 9.8 x 1600 m2/f,ec2

v = 177 m/sec.

No. The drop fractionates and the
small droplets are slowed up by air
viscosity.

4.5 An airplane has a gun that fires
bullets at the speed of 600 mph when
tested on the ground with the plane
stationary. The plane takes off and
flies due east at 600 mph. Which of
the following claims are correct, if
any? In defending your answers, refer
to the superposition principle and to
Galilean relativity.

a) With respect to the ground, the
bullet do begin moving east with a
speed of 1200 mph. Superposition holds
and the result is obtained by adding the
two vectors.

b) When fired in the opposite direc-
tion, the bullets drop vertically down-
ward.

c) If fired vertically downward, the
bullets move eastward at 600 mph.

a) When fired directly ahead the
bullets move eastward at a speed of
1200 mph.

b) Again vectors are added, this
time giving the sum of zero, so that
the bullets will have this speed rela-
tive to the ground and will fall straight
down.
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c) If fired vertically downward,
the bullets have a component of their
motion 600 mph eastward due to the
plane's eastward motion. The initial
velocity relative to the ground is ob-
tained by superposition of the two vec-
tors, which are at right angles to each
other. This resultant velocity is
800 mph at 45° to the horizontal an
in an eastward direction. (Notice that
it takes more information to fix the
direction of a vector in three dimen-
sions.)

4.6 Two persons watch the same object
move. One says it accelerates straight
downward, but the other claims it falls
along a curved path. Invent a situation
in which they both could be right.

The condition described could take
place if one person were in a train and
let an object drop to the floor. To
him, the path would be a straight line.
An observer on the ground watching the
train go by would see the object fall
along a path which, in his frame of
reference, was a parabola.

4.7 A hunter points his gun barrel
directly at a monkey in a distant palm
tree. Where will the bullet go? If
the animal, startled by the flash, drops
out of the branches at the very instant
of firing, will it then be hit by the
bullet? Explain.

Assume for a moment that gravity does
not affect the problem. In that case,
the bullet would travel along the
straight line in the diagram and strike
the monkey. If the distance were dB,

the the time required to travel the dis-
tance d

B
is TB = dB /v

B.

Using the principle of superposition,
we know that any vertical motion due to
gravity can be considered separately and
will merely add vectorially to the motion
considered in the absence of gravity.



Therefore, we can calculate the posi-
tion of the bullet after T

B
seconds by

adding to the displacement vector. GM a
vertical one due to gravity:

dy = hagTB2.

Since the monkey has also been fall-
ing vertically for TB seconds, he will

be at a position directly below his
position at M. Thus,

dM = 1/2ag
T
B
2.

The two distances are the same which
means that the monkey and the bullet
will be arriving simultaneously at point
x. Note that this event does not depend
on the angle of fire or the speed of the
bullet as long as the monkey is within
range.

4.8 If a broad jumper takes off with
a speed of 10 m/sec at an angle of 45°
with respect to the earth's surface,
how far would he leap? If he took off
from the moon's surface with that same
speed and angle, what would be the length
of his leap? The gravitational accelera-
tion of a body at the moon's surface is
1
-th of that at the earth's surface.
6

a) 10.2 meters
b) 61.2 meters

vx = vy = 7.07 m/s

x = v`t

y = vyt - 1/2at2 = 0

t =

x =

27 2 x 7.07 1.445

10.2 mx 1.445 =7.07

on moon 6 times less or

x = 6 x 10.2 = 61.2 m.

4.9 Contrast rectilinear motion, projec-
tile motion and uniform circular motion
by:

a) defining each.
b) giving examples
c) comparing the velocity-acceleratior

relationships.

(1) Rectilinear motion is motion in
a straight line. Any acceleration is
along the line of motion. Example: car
moving along a straight road.

(2) Projectile motion is the motion
of a body which is free to move in a
force field but which does not supply
its own propulsion. In this chapter a
special case of projectile motion is

considered in which the horizontal com-
ponent of velocity is constant and the
vertical component undergoes constant
acceleration downward due to the force
of gravity. Example: a rock thrown
into the air.

(3) Uniform circular motion is rtotion
at a constant speed along a circular
path. In uniform circular motion the
acceleration is at right angles to the
velocity direction, that is directed
toward the center of the circle and is
constant in magnitude. Example: a
point on a rotating turntable.

4.10 You are inside a uniformly accel-
erating moving van. If when the van is
traveling at 10 mph (and still accel-
erating) you dropped a ball from the
roof of the van onto the floor, what .

would be the ball's path relative to
the van? What would be its path rela-
tive to a person driving past the van
in the opposite direction of the van
at a uniform speed? What would be its
path relative to a person standing on
road?

In every case the ball has an initial
speed relative to the ground in the d'-
rection the van is moving of 10 mph.
It also accelerates lownward due t^
gravity. Relative to van a curvet
toward the back of the van. Concave
forward unless the van has terrific ac-
celeration. To the man in passing car,
a parabola, concave to back of van if
speed less than 10 mph. Concave to
front if greater than 10 mph. To man
on road, parabola.

4.11 An object in uniform circular mo-
tion makes 20 revolutions in 4.0 sec.

a) What is its period T?

b) What is its frequency f?

c) If 4-he radius of rotation is
2 meters, what is its speed?

a) 71(1). = 0.2 seconds

1
b) f =

J
= 71 = 5 per sec

c) d = 2nr

v =
t

2 x 3.14 x 2

.2
62.8 m/sec
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4.12 Two blinkies were placed on a
rotating turntable and photographed
from directly overhead. The result is
shown in the figure below. The outer
blinky has a frequency of 9.4 flashes/
sec and is located 15.0 cm from the
center. For the inner blinky, the
values are 9.1 flashes/sec and 10.6 cm.

a) What is the period of the turn-
table?

b) What is the frequency of rotation
of the turntable? Is this a standard
phonograph speed?

c) What is the linear speed of the
turntable at the position of the outer
blinky?

d) What is the linear speed of the
turntable at the position of the inner
blinky?

e) What is the linear speed of the
turntable at the center?

f) What is the angular speed of each
blinky in degrees/see? Are they equal?

g) What is the centripetal accelera-
tion experienced by the inner blinky?

h) What is the centripetal accelera-
tion experienced by the outer blinky?

a) As measured on the photograph,
the outer blinky flashes 17.6 times at
a rate of 9.4 flashes/sec. The inner
blinky flashes 17.0 times at 9.1 flashes/
sec,

T = 17.6 flashes
1 sec

9.4 flashes
= 1.9 sec

f
1

1.9 sec

1 e, sec
f x ,

1.9 sec min

f = 32 min -1

This is quite close to the standard rate
of 33 1/3 min-I.

c) v =
2nR

R = 15.0 cm

T = 1.9 sec

2n x 15.0 cm
v

1.9 cm

d) v =
2nR
T

R = 10.6 cm

T = 1.9 sec

v = 2n x 10.6 cm
1.9 cm

e) v =
2nR
T

R = 0 cm

T = 1.9 sec

2n x 0 cm
1.9 sec

v = 50
cm
sec

v = 35 cm
sec

v = 0
cm
sec

f) a = angular speed
3600

T = ].9 sec

360°
a 1.9 sec

a = 190° sec-1

is true for both blinkies since their
periods are equal.

g) ac
4n2R

For the inner blinky, T2
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T = 17.0 flashes
1 sec

9.1 flashes
= 1.9 sec

T = 1.9 sec

R = 10.6 cm

T = 1.9 sec

4n2 x 10.6 cm
a
c (1.9 sec)2

c
= 120 cm

b) f = f sect

T = 1.9 sec



472R
h) a

c T2

R = 15.0 cm

T = 1.9 sec

472 x 15.0 cm
a
c (1.9 sec)4

a
c

= 160 TI-
sec2

This can be checked by using the rela-
tionship ac = V2/R.

V = 50 Pm
sec

R = 15.0 cm

cm
(50

sec
) 2

ac 15.0 cm

a
c

= 170
c 2

4.13 These questions are asked with
reference to Table 4.2 on page 112.

a) Are the distances to apogee and
perigee given as height above the sur-
face of the earth or distance from the
center of the earth?

b) Which satellite has the most
nearly circular orbit?

c) Which are the most eccentric? How
did you arrive at your answer?

d) Which satellite in the table has
tne longest period?

e) What is the period of Syncom 2
in hours?

f) How does the position of Syncom
relative to a point on the earth change
over one day?

g) Which satellite has the greater
centripetal acceleration, Midas 3 or
Syncom 2?

h) What is the magnitude of the cen-
tripetal acceleration of Vostok 6? Ex-
press answer in m/sec2.

a) They are given in miles above the
earth's surface.

b) Syncom 2 is the most circular with
the distance from the surface (also from
the earth's center varying by only 5
miles). If 4000 miles is taken as the
radius of the earth, this is a difference
of only about 0.02%. (5 mi/22,200 mi
x 100% = 0.02%.)
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c) Without actually calculating the
eccentricity (which is defined in
Chapter 7), it would be reasonable to
estimate which satellite has the great-
est percentage variation in its greatest
and least distance from the center of
the earth. This is Lunik 3.

d) Luna 4 has a period of 42,000 min
(27 days).

e) Period in minutes given as T =
1,460.4. To express in hours

T = 1460.4 min x
1 hours
60 min

1460.4
60

hours = 24.34 hours

f) If headed westward at equator
would remain nearly overhead.

472R
g) ac T2

For Midas 3:

R = 6140 mi (using 4000
miles as the radius
of the earth)

T = 161 min

472 x 6143 mi
c (161 min)2

Midas 3 a
c
= 9.3 mi 3min

For Syncom 2:

R = 2.62 x 104 mi

T = 1.46 x 103 min

412 x 2.62 104 mi
a
c (1.46 x 10i mi)2

Syncom 2 ac = 4.8 x 10-1 141-72

Midas 3 has the greater centripetal
acceleration.

h) For Vostok 6

R = 4120 miles assuming 4000 miles
as the earth's radius

= 4120 miles
meters

1610 mile

= 6,633,200 meters = 6.63 x 106 m

T = 88.34 min

= 88.34 min x 60 _s
min

= 5300.40 sec = 5.3 x 103 sec

472R 4 9.4 6.63 x 106
a T2 28.1 x 106

9.36 m/sec2
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4.14 Tne following table shows the peri-
od and the mean distance from the sun for
the three planets that most nearly go
in a circular orbit.

Planet Mean distance (r) Period (T)
from sun (in A.U.) in years

Venus 0.72 0.62
Earth 1.00 1.00
Neptune 30.06 164.8

(A.U. = astronomical unit = the mean
distance of the earth from the sun;
1 A.U. = 92.9 a106 miles.)

a) What is the average orbital speed
for each planet (in A.U./year)?

b) Calculate the centripetal ac-
celeration for each planet in A.U./yr2.

c) Can you see any relationship be-
tween the mean distance and the centri-
petal acceleration ac?

(Hint: Does it appear to be

(1) a
c . r; or (2) a

c
. 1/r; or

(3) ac . r2; or (4) ac a 1/r2?

How can a graph help you to de-
cide?)

a) v =
T
2nR

For Venus:

R = 0.72 A.U.

T = 0.62 yr

2v x 0.72 A.U.
v

0.62 yr

v (Venus) = 7.3 A.U.
yr

For Earth:

R = 1.00 A.U.

T = 0.62 yr

v
2n x 1.00 A.U.

1.00 yr

v (Earth) = 6.28 A.U.
yr

For Neptune:

R = 30.06 A.U.

T = 164.8 yr

V 2v x 30.1 A.U.
165 yr

v (Neptune) = 1.14 A.U.

62

yr

v2_ 4v2Rb) a = - -
c R T2

We will use the latter relationship
because it is generally better to use
original data rather than derived quan-
tities such as v which represents an
intermediate calculation.

For Ve

h - 3.72 A.U.

T = 0.62 yr

4-2 x 0.72 A.U.a
c (0.62 yr)2

.U.a
c (Venus) = 74 A-7FT

For Earth:

R = 1.00 A.U.

T = 1.00 yr

4n2 x 1.00 A.U.a
c (1.00 yr)2

A.U.ac(Earth) = 39.5 Ayr2

For Neptune:

R = 30.06 A.U.

T = 164.8 yr

a 4v2 x 30.1 A.U.
c (165 yr) 2

a
c (Neptune) = 4.37 x 10-2 A.U.

c)

Planet a
c

r l/r 1/r2

Venus 74 0.72 1.4 1.9

Earth 39.4 1.00 1.00 1.00

Neptune 0.0437 30.06 0.0333 0.00111

The relationship is an inverse one.
It may be possible to determine what the
relationship is by graphing a

c
vs. 1/r

and 1/r2.
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Since the points on the graph of ac
vs 1/r2 fall along a straight line,
it appears that ac a 1/r2 is the correct
relation.

4.15 Explain why it is impossible to
have an earth satellite orbit the earth
in 80 minutes. Does this mean that it
is impossible fcr an object to circle
the earth in less than 80 minutes?

A satellite is held in its orbit only
by the pull of gravity. This speed calls
for a centripetal acceleration greater
than that gravity.

No. Put the rails of an elevated
train underneath the trestle and run
the train upside down.
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4.16 The intention of the first four
chapters has been to 0.escribe "simple'
motions and to progress to the descrip-
tion of "complex" motions. Organize
the following examples into a list from
the simplest to the most complex, making
whatever idealizing assumptions you wish.
Be prepared to say why you placed any
one example ahead of those below it, and
to state any assumptions you made.

A "human cannon ball" in flight
A car going from 40 mph to a complete
stop
A redwood tree
A child riding a ferris wheel
A rock dropped 3 m
A woman standing on an escalator
A climber ascending Mt. Everest

The organization of this list will
certainly vary with the assumptions
made. Here is one possible arrangement.

1. Woman on escalator. She moves
with constant velocity.

2. Falling rock. It moves along a
straight line with constant accelera-
tion, if we neglect air resistance.

3. Car coming to a stop. This also
moves along a straight line. It is not
clear, however, that acceleration is
constant. We will assume that it is.

4. Child on ferris wheel. We assume
that the child travels in a circle with
constant speed. The magnitude of the
acceleration is constant, while its
direction changes uniformly.

5. Human cannon ball. This is an
example of projectile motion. Ideally,
the path is a parabola and the velocity
changes in magnitude and direction.
Acceleration, however, is constant.

6. Climber on Mt. Everest. The
displacement and velocity of the climber
will undergo many complicated changes.

7. A redwood tree. Either the
growth of the tree of its motion in a
breeze constitutes a very complicated
combination of velocities and accelera-
tions.

4.17 Could you rank the above examples
if you were not permitted to idealize?
If yes, how would you then rank them?
If no, why not?

It would be difficult to rank some
of the examples. Irregularities in
velocity and acceleration caused by air
resistance, nonuniform circular motion,
irregular braking are difficult to com-
pare in their "complexity."
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4.18 Using a full sheet of paper, make and complete a table like the one below.

Concept Symbol Definition Example

Length of a path between
any two points as measured
along the path

Straight line distance and di-
rection from Detroit to Chicago

speed

An airplane flying west at 400
mph at constant altitude

Time rate of change of
velocity

centripetal
acceleration

The drive shaft of some automo-
biles turns 600 rpm in low gear

The time it takes to make
one complete revolution

Concept Symbol Definition Example

total
distance

d Length of a path between
any two points as mea-
sured along the path

The speedometer mileage recorded
on a trip from Los Angeles to
San Diego and back again

displacement
.

The straight-line
distance and direction Straight line distance and

direction from Detroit to
Chicago

speed v Time rate of change of
distance

A car travels at 40 mph

average
speed

v Time rate of change of
total distance

A car drives 5 miles through
traffic in 20 minutes.
V = 15 mph

velocity v Time rate of change of
displacement

An airplane flying west at
400 mph at constant altitude

acceleration
.

.
a Time rate of change of

velocity
A car accelerates at 3

sec2toward the north

acceleration
pf gravity

a
g

The acceleration of a
freely falling body

The acceleration of gravity in

San Francisco is 9.800 ---2
sec

toward the center of the earth.

centripetal
acceleration

.
a
c Time rate of change of

velocity (toward the
center of the circle)

A child on a merry-go-round

frequency f The number of complete
cycles per unit of time

The drive shaft of some automo-
biles turns 600 rpm in low gear

kriod T The time it takes to make
one complete revolution

The period of a drive shaft turn
ing 600 rpm is 0.1 sec.



4.19 The diameter of the main wheel
tires on a Boeing 727 far jet is 1.26
m. The nose wheel tire has a diameter
of 0.81 m. The speed of the plane just
before it clears the runway is 86.1 m/
sec. At this instant, find the centrip-
etal acceleration of the tire tread,
for each tire.

Assuming the speed of the tire tread
to be the same as the speed of the plane:

v2ac = K- .

For the main wheels:

v = 86.1 m/sec

R = 0.630 m

(86.1 ---
s:c)2

a
c 0.405

nose tire a
c
= 1.8 x 104 m

sect

mmain whee.i. a
c

= 1.2 x n4
sec

4.20 Compare the centripetal accelera-
tion of the tire tread of a motor scooter
wheel (diameter 1 ft) with that of a
motorcycle wheel (diameter 2 ft) if both
vehicles are moving at the same speed.

al = centripetal acceleration of
motor scooter

a2 = centripetal acceleration of
motorcycle

v 2 V2a1 - a2 =

a1 R2 D2 2

a2

4.21 Our sun is lolated at a point in
our galaxy about 30,000 light years (1
light year = 9.46 x 1012 km) from the
galactic center. It is thought to be
revolving around the center at a linear
speed of approximately 250 km/sec.

a) What is the sun's centripetal ac-
celeration with respect to the center of
our galaxy?
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b) If the sun's mass is taken to be
1.98 x 1050 kg, what centripetal force
is required to keep it moving in a cir-
cular orbit about the galactic center?

c) Compare the centripetal force in
b) with that necessary to keep the earth
in orbit about the sun. (The earth's
mass is 5.98 x 1024 kg and its average
distance from the sun is 1.495 x 108 km.
What is its linear speed in orbit?)

a) ac
c

v = 2.5 x 105 m4
sec

R= 3 x 1041y x 9.46 x

1015 4 = 2.84 x 1020 mxy

(2.5 x 105 211_)2
sec

ac 2.84 x 1020 m

a
c
= 2.2 x 10-10

sect

v2

b) F
s

= ma
c

m = 1.98 x 1030 kg

a
c

= 2 x 10-10 m-'2
sec

F
s

= 1.98 x 1030 kg x 2 x
10-10 m

sec

F
s

= 4 x 1020 N

mv2c) Fe = K-

m = 5.98 x 1024 kg

R = 1.495 x 1024 m

2
v = nR

2n x 1.495 x 1011 mv
1 yr x 365 1 x 24 1417 x 3600 V

v = 2.98 x 104 m
sec

5.98 x 1024 kg (2.98 x 104 m4.

F sec2
1.495 x 1011 m

F
e

= 3.55 x 1022 h

F
e is about 100 times greater than

F.
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4.22 Here are a list of some possible
investigations into simple harmonic mo-
tion.

1. How does the period of a pendulum
depend upon

a) the mass of the pendulum bob?
b) the length of the pendulum?
c) the amplitude of the swing (for

a fixed length and fixed mass)?

2. How does the period of an object on
the end of a spring depend upon

a) the mass of the object?
b) the spring constant, k, where

the spring constant k is defined
as the slope of the graph of
force versus spring extension?
Its units are newtons/meter.

1. a) independent%'f mass
b) T x ir
c) assuming small oscillation, inde-

pendent of amplitude

2. a) T
b) T x 1/1/

66

4.23 The centripetal acceleration ex-
perienced by a satellite orbiting at
the earth's surface (air resistance con-
veniently neglected) is the accelera-
tion due to gravity of an object at
the earth's surface (9.8 m/sec2). There-
fore, the speed required to maintain the
satellite in a circular orbit must be
such that tls centripetal acceleration
of the satellite is 9.8 m/sec2. This
condition can be expressed as follows.

a
c R

= 11-
2
= ag = 9.8 m/sec2

R, the radius of the earth, is
6.38 x 106 meters

ag = 9.8 m/sec2

V2 = 9.8 m/sec2 x 6.38 x 106 m

= 62.5 x 106 m2/sec2

V = 7.85 x 103 m/sec

What is the period T of this orbit?

What is the satellite's speed expressed
in miles per hour? (Hint: 1,000 meters =
.61 miles.)

21TR 2TrRV = T =T ' V

T= 2 x 3.14 x 6.38 x 106
7.85 x 103

= 5.11 x 103

= 5110 sec

= 85 min

1 miles

V = 7.85

= 7.85

7.85

x

x

x

103 m/sec

103 m x
sec

103sec
-FF

1.6 x 103 min

x 103103 x 3.6
1.6 x 103

= 17.65 x 103

= 17650 mi/hr



4.24 The thrust of a Saturn Apollo launcY
vehicle is 7,370,000 newtons (approxi-
mately 1,650,000 lbs) and its mass is
540,000 kg. What would be the accel-
eration of the vehicle relative to the
earth's surface at lift off? How long
would it take for the vehicle to rise
50 meters? The acceleration of the
vehicle increases greatly with time
(it is 47 m/sec2 at first stage burn-
out), even though the thrust force does
not increase appreciably. Explain why
the acceleration increases.

F 7. 1
F = ma, a = m 5.4

37
x

x

105
06

1.36 x 101

= 13.6 m/sec2

s = hat2, t = a!

2 x 50 _ = 2.71 sec
13.6

As fuel burns, mass of vehicle de-
creases.

= m, F(thrust force) is a constant

while m becomes smaller. The quantity
F/m (=a) increases.
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4.25 Write a short essay on one of the
following pictures.

Essay might touch on relative speeds,
rotary motion or relation between linear
and angular speeds.

Essay might touch on centripetal
forces or projectile motion of acrobat.
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Transparencies

TO Using Stroboscopic Photographs

Ti Stroboscopic Measurements

Stroboscopic facsimiles of uniform
speed and uniform acceleration are
shown. Measurements may be taken
directly, data recorded on tables
and graphs plotted on grids.

T2 Graphs of Various Motion

Multiple examples of distance-time,
speed-time and acceleration-time
graphs. Useful for slope concept,
area-under-the-curve concept, review
and quizzes.

T3 Instantaneous Speed

Stroboscopic facsimile of body-on-
spring oscillation, data table and
grid. Find approximate instantaneous
speed by approaching the limit and
graphical estimation.

T4 Instantaneous Rate of Change

Determines vav from enlarged portion

of a distance-time curve as time in-
tervals are decreased. Shows slope
of chords must approach the slope of
the tangent as a limit when At ap-
proaches zero.

T5 not available

T6Derivationofd=v.t+ hat2
Colored overlays illustrate graphical
procedures using area-under-the-curve
technique. Space is provided for
teacher-directed derivation.

T7 not available

T8 Tractor-Log Pa::c..Cox

Classic third law horse-and-wagon
paradox is updated with this tractor-
log version.

T9 Projectile Motion

Stroboscopic facsimile of objects
projected horizontally and falling
freely are analyzed graphically.
Space is provided for derivation of
equation of the trajectory.

T10 Path of a Projectile

"Demonstration Transparency" suggests
that students approximate portion of
circles, hyperbolas, parabolas and
ellipses by throwing objects. Leads
to determination of actual path of
projectile. Use with T9.
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Tll Centripetal Acceleration--Graphical
Treatment

Stroboscopic facsimiles allow deriva-
tion cf v2/R and graphical measure-
ment of a

c
.

T12 not available

Film Loops

(L) = lab-loop; quantitative measurements
can be made, but these loops can
also be used qualitatively.

Ll Acceleration Due to Gravity Method I

Slow-motion photography in one con-
tinuous sequence allows measurement
of average speed of a falling bowling
ball during two 50-cm intervals
separated by 1.5 m. (Sec. 2.8)(L)

L2 Acceleration Due to Gravity Method
II

Slow-motion photography allows mea-
surement of average speed of falling
bowling ball as it passes through
four 20-cm intervals spaced 1 m
apart. (Sec. 2.8)(L)

L3 Vector Addition I--Velocity of a Boat

A motorboat is viewed from above as
it moves upstream, downstream, as it
heads across stream and as it heads
at an angle upstream. Vector tri-
angles can be drawn for the various
velocities. (Sec. 3.2)(L)

L4 A Matter of Relative Motion

A collision between two equally mas-
s:lie carts is viewed from various
stationary and moving frames of ref-
erence. (Sec. 4.3)

L5 Galilean Relativity I--Ball Dropped
from Mast of Ship

A realization of the experiment
gested in Galileo's Dialogue on the
Great World Systems; the ball lands
at the base of the mast of the moving
ship. (Sec.*4.4)



L6 Galilean Relativity II--Object Dropped
from Aircraft

A flare is dropped from an aircraft
which is flying horizontally. The
parabolic path of the flare is shown,
and freeze frames are provided for
measurement of the position at ten
equally spaced intervals. (Sec. 4.4)
(L)

L7 Galilean Relativity III--Projectile
Fired Vertically

A flare is fired vertically from a
Ski-doo which moves along a snow-
covered path. Events are shown in
which the Ski-doo's speed remains
constant, and also when the speed
changes after firing.

Due to a printing error, the direc-
tions are reversed, left to right,
beginning at a point near the end
of the "preliminary run." This does
not affect the physics of the motions

of the flare and the Ski-doo. In
order to make the film available at
a useful time early in the course,
the error was not corrected in the
preliminary version, although next
year's final version will, of course,
be corrected. (Sec. 4.4)

L8 Analysis of a Hurdle Race Part I

Slow-motion photography allows mea-
surement of speed variations during
a hurdle race. (Sec. 1.5)(L)

L9 Analysis of a Hurdle Race Part II

A continuation of the preceding loop.
(Sec. 1.5)(L)

Reader

1. The Value of Science

by Richard P. Feynman

The value of science remains unsung
by singers, so you are reduced to hear-
ing not a song or a poem but an even-
ing lecture about it. This is not yet a
scientific age." So Feynman begins in a
conversational and readable style. In
his view, knowing the great value of a
satisfactory philosophy of ignorance is
the vital aspect of science.

2. Close Reasoning

by Fred Hoyle

In this section of Hoyle's fine sci-
ence fiction book The Black Cloud,
Kingsley and his colleagues discuss the
nature of the cloud and how to communi-
cate with it. Kingsley alone has come
to the conclusion that the cloud is a
living entity and he tries to draw the

Aid Summaries
Film Loops
Reader

others to his point of view. Their ex-
changes are a good approximation of an
analytic conversation between scientists.
This chapter will probably be popular
with students. Guide students to the full
book if they like a part of it! ($.50
paperback)

3. On "Scientific Method"

by P. W. Bridgman

Bridgman argues that scientific method
is what working scientists do, not what
other people or even the scientists them-
selves say about it. This will probably
come as a great relief to your students
who may have had to memorize tedious
(and, for a working scientist, laughable)
definitions of "the scientific method"
at previous points in their school ca-
reer.

4. How to Solve It

by G. Polya

This is Polya's one-page summary of
his book in which he discusses strate-
gies and techniques for solving problems.
Polya's examples are from mathematics,
but his ideas are useful in solving phys-
ics problems also.

5. Four Pieces of Advice to Young
People

by Warren W. Weaver

In this short article Weaver urges
students to concentrate on the funda-
mentals of science, not to worry early
about fields of specialty; he advocates
the balance of teaching/research and of
scientist/citizen. His final advice is
that science isn't the whole answer or
the only answer.

6. On Being the Right Size

by J. B. S. Haldane

A careful and exciting explanation of
the importance of scaling in the struc-
ture of living organisms. Why can an in-
sect fall without hurting itself? Why
aren't very small animals usually found
in cold climates? If a flea were as
large as a man, how high would it jump?
Few students will have difficulty read-
ing this.

7. Motion in Words

by J. B. Gerhart and R. H. Nussbaum

Not only the scientist is interested
in motion. This article comments briefly
on references to motion in poetry.
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8. The Representation of lotion

by Gyorgy Kepes

Kepes emphasize:. t motion is of
interest to the artist as well as to the
physicist. He sees a similarity in Ein-
stein's statement that relativity inter-
prets events existing in space-time and
Marinetti's manifesto:

In painting a figure on a bal-
cony, seen from within doors, we
shall not confine the view to what
can be seen through the frame of
the windows, we shall give the sum
total of the visual sensation of
the street, the double row of houses
extending right and left, the flow-
ered balconies, etc....

9. Speed

by W. W. Sawyer

These two essays in an SMSG mono-
graph. Students having difficulty under-
standing velocity and acceleration will
probably find the essays helpful. The
first section, "The Study of Speed," fits
in nicely with Sec. 1.6 and Study Guide
1.2. If you want to give your classes
additional material on velocity, the
second section, "The Simplest Case of
Varying Speed," can be correlated with
Sec. 3.2, and is useful background for
the difficult Feynman article later in
the reader.

10. Motion

by William Kingdon Clifford

Most of Clifford's presentation is
geometrical, and complements the Project
Physics text. "Hence, any motion of a
point, or any motion of translation,
whatever, can be specified by a properly
drawn curve of positions, and the prob-
lem of comparing and classifying differ-
ent motions is therefore reduced to the
problem of comparing and classifying
curves."

11. Galileo's Discussion of Projectile
Motion

by G. Holton and D. H. D. Roller

Galileo's discussion of the independ-
ence of the horizontal and v,rtical com-
ponents of motion, presented in Sec. 3.4
in the text. Students will have read
Galileo's dialogue with Sagredo, Salviati,
and Simplicio in Sec. 2.3 and will be
familiar with Galileo's style.

12. Newton's Laws of Dynamics

by R. P. Feynman, R. B. Leighton
and M. Sands
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Feynman treats the differential equa-
tions of motion as difference equations
and solves them numerically. Students
who have little difficulty with Chapter 4
will find this material exciting.

13. The Dynamics of a Golf Club

by C. L. Stong

This article tells the student how he
can, with the aid of a slow motion movie
camera and a cooperative friend, explore
the dynamics of a golf club during the
split second of the drive. Actual data
are analyzed. The technical cinematic
techniques are so carefully explained by
Stong that some students may want to try
for themselves.

14. Bad Physics in Athletic Measurements

by P. Kirkpatrick

Athletic events involve measurements
of distance and time, and so bring in
the same error considerations that one
also meets in the laboratory.

15. The Scientific Revolution

by Herbert Butterfield

This is an article you should urge
your students to read, if they respond
to the historical orientation of the
text. Butterfield's view is wide and
his article brief, but he does manage to
pull together many of the factors, po-
litical, economic, sociological, that
contributed to an atmosphere conducive
to drastic change. Students may be sur-
prised that scientific developments are
not created in a vacuum and are not iso-
lated events, but are intrinsically
rooted in and reflect their times.

16. How the Scientific Revolution of
the Seventeenth Century Affected
other Branches of Thought

17. Rigid Body (Sings)
Report on Tait's .ecture on Force:-
B.A. 1876

by James Clerk Maxwell

Maxwell, the developer of electromag-
netic theory (Unit 4), wrote light verse.
The reference in the first line of the
second poem is to the members of the
British Association for the Advancement
of Science.

18. The Vision of Our Age

by J. Bronowski

In tracing the relation of science to



other parts of modern life, Jacob Bronow-
ski interviews an artist, Eduardo Paolozzi,
an architect, Eero Saarinen, a physicist,
Abdus Salam, and a writer, Lawrence
Durrell.

19. Chart of the Future

by Arthur C. Clarke

An interesting attempt to try to pro-
ject the future. Clarke starts at about
1800, goes up to the present time, and
then tries to predict what is going to
happen in various fields in the future,
e.g., 2030, space mining and contact
with extra-terrestrials. The article
should not be taken too seriously or (in
view of Clarke's past success, in predict-
ing) too lightly.

Programmed Instruction

Vectors - Part I. The Nature of Vectors.
(A map of Washington, D. C. is
provided with the booklet.)

Vectors Part II. Adding Vectors.
(A diagram page is provided
with the booklet.)

Vectors - Part III. Components of Vectors.

Films

Fl PSSC film - Straight-line kinematics.

F2 PSSC film - Inertia

F3 PSSC film - Free-fall and projectile
motion.

F4 PSSC film - Frames of reference.

F5 PSSC film - Vector kinematics.

Sources: PSSC films are available from

Modern Learning Aids
1212 Avenue of the Americas
New York, New York 10036

A list of District Offices of MLA, and
addresses for N.A.S.A. and other film
sources, is included in the Unit 2 Teacher
Guide.

Notes for the new Project Physics film,
"People and Particles," are on the follow-
ing page. Extra copies of a leaflet, in-
corporating these notes with stills from
the film, will be available for distribu-
tion to students.

Aid Summaries
Programmed Instruction
16mm Films
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Aid Summarits
People and Particles

Notes on People and Particles

In planning this course and preparing all the necessary
texts, laboratory equipment, film loops, teacher guides
and so forth, we felt that we should also make a film of
what it is like to be working on a real physics problem
at the research frontier. We did not want to film a set-
up interview or a prepared lecture; we wanted to show
people who are working in science.

Of course, we could choose only one out of the great
variety of physics research problems of interest today.
Our preference was to film a group of moderate size, to
show the variety of people involved in experimental
work. Also, we had to select a problem which was not
too difficult to understand, since the first showing of
the film will be near the beginning of the course.

We decided to focus the camera on a group of Harvard
University physicistsstudents and professors--strug-
gling with their work at the Cambridge Electron Accel-
erator (CEA). For over two years everything was filmed
as it happened, using only a hand-held camera and
portable tape recorder. The group being filmed soon
forgot about our film crew. Over 50,000 feet of film
was taken, from which was selected less than one-
fiftieth (i.e., 900 feet) to fit into a twenty-eight
minute movie.

The film traces the work of the participants in the ex-
periment as they design, construct and assemble the
equipment to a point where the physicists are prepared
to take actual data. The experiment itself will take
several more months. As this course is particularly con-
cerned with the human element in the making of science,
it is appropriate that the film should not emphasize
advanced physical theory. Instead, it concentrates
more on the style of work in a lab, on the men and
women who are working together, on some of the joys
and pains of doing original scientific work. It raises a
number of themesfrom the international character of
science to the fact that work on this scale requires a
great range of skilled people, including shop mach'' ts,
scientists, engineers, secretaries and so forth.

Most people have no way of being directly involved in
any scientific work and cannot look over the shoulders
of scientists. If they could, even through such a film,
there might be fewer strange and false notions about
work in a laboratoryfalse notions of exaggerated
glamor just as much as of dark doings. We hope our
film shows that work on a real research problem, wheth-
er in physics or in other sciences, or in any field, can
be a truly human enterprise.

An extensive guide to the themes and physics of the
film is being prepared, which can be studied in connec-
tion with a second showing of the film late in the course.
Even before the first showing, however, the following
brief notes will be helpful.
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The term "pair production" refers to the production of a
pair of elementary particles, an electron and an anti-
electron (a positron). Under the right conditions such a
pair of particles may be produced when a very energetic
packet of light, a photon (which may also be considered
an elementary particle) passes near a massive object,
such as an atomic nucleus. The electron beam from the
Cambridge Electron Accelerator is used to produce the
particle pairs, by a several-step process. The motion
of the particles is detected with spark chambers, in
which electric sparks jump along the paths of the par-
ticles.

The Strauch Walker group (named for the two physicists
who head the group, Professors Karl Strauch and James
Walker) is using the electron-positron pairs to look into
a newly suspected flaw in one of the most solidly estab-
lished theories of physics. They are trying to establish
whether the present theory on the influence of electrical
charges on one another is correct.

Some physicists think the present theory is bound to show
its limitations when it becomes possible to experiment
with charges that are extremely near each other.

This procedure has often occurred in science: by testing
the limits of a theory, by looking into the contradictions
between the experimental result and the theoretical pre-
dictions, scientists are led to new theoretical structures.
Of the several themes that run through the filmthe
relation of research to education, the international
character of science, communication among scientists,
the relation of science to technologythe last is par-
ticularly evident on the first showing. Pure physics of
the last 100 years or so has made passible the development
of such practical devices as the oscilloscope, the elec-
tronic computer, the ,cintillation detector, the high-
voltage generator, the Electron Accelerator itself. These
devices are being put to use in this experiment to produce
more advances in pure physics; without these technolog-
ical devices the performance of this experiment wouiu
be impassible. Conversely, without the development of
physics itself, these devices might never have been in-
vented. It is a never-ending interplay.

Most of the equipment that is seen in the film are tech-
nological devices which are not based on the physical
laws being tested. Such equipment is often referred to
as "hardware." It is the construction of the hardware
which is so costly, and yet it would be quite impossible
to do experiments like this without it.

In a sense, the film does not and cannot show new phys-
ics "being done." It shows construction of new equip-
ment, on the basis of known laws. From the operation
of this equipment the "new physics" will be fashioned
in the minds of the experimenters, where no film can
enter.



Chapter 1 The Language of Motion

1.1 The motion of things.

The most significant case of motion in
the development of science is not men-
tioned in this section, although it forms
the main topic of Unit 2. The first, and
perhaps philosophically most urgent, sci-
entific problem facing man dealt with
motion in the heavens. From earliest times,
men questioned the nature and causes of
the motions of the various astronomical
bodies. As it finally turned out, Gal-
ileo's study of the motion of objects at
the earth's surface (terrestrial motion)
led to an understanding of the motions
cf the inaccessible heavenly bodies.

Thus, an understanding of the basic
concepts of motion as formulated in
seventeenth-century physics is taken up
at the beginning of this course. These
concepts are still useful in explaining
and understanding much of the physical
world that surrounds us. Moreover, the
concepts have historical importance.

Do not devote much class time to the
justification of starting the course with
the study of motion. The students will
not yet know enough physics to know what
alternatives there are. It is more cru-
cial to get the course going quickly;
raise interesting questions and encourage
student, participation. (Some teachers,
after having taught the course one year,
have preferred to start with Chapters 5
and 6 and part of Chapter 7 to establish
motivation for study of motion.)

Motion goes on about us all the time.
Sometimes it is complex and confusing,
or it may have regularities that make it
simpler to understand and classify. To
make students begin to think about the
motions around them, ask them to classify
several motions into those which are
regular and those which are irregular.
For example: a pendulum, a sewing ma-
chine, a leaf blowing on a tree, a bird
in flight. Some motions may contain both
regular and irregular features.

Just at an intuitive level, students
will certainly recognize that while
events may be commonplacesuch as falling
leaves or flying birds they are not
necessarily simple. As a first approxi-
mation, the motion of one object is more
complicated than that of another if it
is undergoing more erratic changes of
direction and/or speed. In the long run,
however, the distinction depends upon
experience and our ability to find func-
tional relationships with which to describe
events or statements. Generally, when
we undertake investigations in a rela-
tively new field, we look around for
what appear tc be simple, straight-
forward examples of the phenomenon being
investigated. The simplicity may later
on turn out to be deceptive, but at least
we have made a start. We can correct our-
selves later.
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The Greeks took uniform circular mo-
tion, rather than uniform straight-line
motion, as the simplest. Both their
physics and their metaphysics helped to
direct attention to circular motion as
primary. It is pointless to debate
which is really simpler--but progress in
physics was greatly helped by adoption
of the latter view in the early and
middle part of the seventeenth century.

1.2 A motion experiment that does not
quite work.

Section 1.1 ends with a suggestion
that we can learn from experiment. Sec-
tion 1.3 suggests an experimental means
for establishing regular time intervals,
measuring distance as a function of time,
leading to the definition of speed.

Section 1.2 is a bridge to help the
student bring his intuitive feelings
about motion and speed into an experi-
mental environment.

1.3 A better motion experiment.

The main burden of teaching the stu-
dent how to interpret and use strobe
photographs rests on the laboratory and
audio-visual aids under the direction of
the teacher. The treatment in the book
is not sufficient by itself.

Quickly get the students started on
an analysis of motion and on laboratory
work associated with it. Don't start
the course with protracted philosophical
discussions about the role of experiment
or the nature of simplicity. After they
understand more physics, there is time
enough to come back to some of these
questions.

Experiments are done so that events
can be manipulated and made "simple."
Furthermore, they can be reproduced and
done over and over again while measure-
ments and observations are made.

It is in the laboratory that'students
should learn about the role of laboratory
in science. Laboratory experiments,
which sometimes may seem very artificial
and almost trivial, do lead to under-
standings which better explain the com-
plex and interesting events seen in the
world outside of a lab. If, however, we
begin with the study of complex motions,
such as falling leaves, we may never find
the regularities for which we search.

If you tize the student activity "Elec-
tronic stroboscope" (p. 19 in Student
Handbook), develop the idea of "freezing"
motion. However, this need not be done
rigorously; the idea that regular motion
viewed at regular intervals can cause
the motion to seem to stop or move slowly
will be enough.
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1.4 Leslie's "50" and the meaning of
average speed.

This section introduces the crucial
definitions of average speed and interval
and applies them quantitatively to a real
motion of a kind that may have interested
the student before.

The preceding section dropped rather
casually the profound and essential no-
tion that all measurements are approxi-
mations. This statement is incomplete,
of course, until it specifies what mea-
surements are approximations to. In this
section, there is a clear example of one
measurement (the overall average speed)
which is an approximation to each of
several other measurements (the average
speeds over the 25-yard Intervals).
Likewise, each of these average speeds
is presented as an approximation to "what
(really) happened" at every moment of the
motion. This may well be the student's
first exposure to the idea of an experi-
mentally unreachable concept that can
nevertheless be approached, one step at
a time, as nearly as one wishes, until
one's measuring instruments are no longer
-good enough to improve the picture further.

1.5 Graphing motion.

This section presents no more than a
bare outline of constructing and inter-
preting graphs related to speed. For a
good many students this will be extremely
elementary, and for them this section
may be enough.

In addition to helping students to
use graphs correctly, an effort should
be made to get them into the habit of
trying to interpret them physically.
For example, you would like students to
be able to look at a graph such as the
one on page 23 and to describe in words
the physical behavior of the balloon:
its relative rate of ascent at various
altitudes, the highest point reached,
nniformity of rate of ascent, descent,
etc.

PSSC Lab 1-4 is an excellent exercise
in graphing which can be done either un-
der classroom supervision or as a home-
work assignment.

Below are some general rules which
should be observed in plotting a graph.
This format is far from complete and is
used as a minimum standard. The following
four ideas should be stressed with your
.tudents.

1. Proper graph format. Each graph
prepared should include a title, experi-
ment name or number, student name and
date, presented in block form near the
top of the graph.
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Each axis should be labeled clearly
with the quantity plotted and the unit
of measure used. The scale values should
also be clearly given. All of this in-
formation should be easily read from the
lower right-hand corner of the graph
sheet without rotating the page.

2. Size. All graph presentations
should be large enough to show clearly
the behavior of the quantities being
plotted. The number of points included
in the graph should also affect the
choice of size. Poor choices include
numerous points shown on too small a
graph as well as very few points presented
on too large a graph.

3. Scales. The choice of scale on
any graph is arbitrary but should be made
to maximize clarity. The range of values
to be plotted should determine the place-
ment of the origin and the maximum scale
value for each axis. Whenever possible
the scale should be chosen such that
decimal multiples (such as 100, 10, 1 or
0.1) of the units being graphed can be
located easily along the axis.

4. Plotting techniques. Experimental
points should be plotted with small sharp
dots. To avoid "losing" a data point
a small circle should be drawn around
each point.

The uncertainty in the values on the
coordinate axes can be indicated by the
size of the circle used, or perhaps by
the length of horizontal and vertical
bars drawn through the point as a cross.

Seldom will data points fall on a
really smooth curve. Whenever there is
some reason to believe that whatever is
being graphed actually does change
smoothly a smooth curve should be drawn
as close as possiole to the data points
plotted. Encourage students to consider
what is implied in a broken line graph
connecting data points in contrast to
the implications of the smooth curve.

When two or more curves are plotted
on the same graph students should use
eifferent colors for each curve, or
dotted or broken lines may be used. In
either of these cases a ksy or legend
should appear on the graph defining the
use of each line.

It may be very helpful to collect
poorly prepared graphs during the year
for display and file. Well-prepared
and informative graphs might also be
collected for these reasons but may be
of greater value when returned to the
student for his own reference. A poor
graph is likely to be of little use to
him.



1.6 Time out for a warning.

The process of estimating values be-
tween data points is called interpolation.

3 f 6 6 7 n
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From the graph, we can see that at time

.25 seconds the distance traversed is about
2.8 centimeters.

The process of predicting values that
extend beyond the range of data points is
called extrapolation.
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From the graph we can see that the plane will
be about 60 miles from San Francisco at 9:00 p.m.
if it does not change speed and direction.

A discussion of the uncertainties in-
volved in interpolation and extrapolation
might be warranted. Stress the fact that
interpolation is usually more reliable than
extrapo af1-617. Both are risky and should
be undertaken with care and the values
should not be ascribed greater certainty
than is warranted.

The danger of extrapolation can be
illustrated with a rubber band (about
3 inches) and a set of weights. Suspend
the rubber band and load it successively
with heavier and heavier weights, record-
ing and graphing the amount of extension
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for each weight. After suspending 500
grams ask the students to predict by ex-
trapolation the extension of the rubber
band when the 1000-gram weight is sus-
pended. The actual extension will turn
out to be much less than the extrapolated
value because the elastic characteristics
of the rubber band change. This will
appeal to your students, and it makes the
point that not all graphs are linear.
(You will find a graph like this in the
Student Handbook on page 1.)

Note: the particular selection of
weights will depend on the size of the
rubber band available.

1.7 Instantaneous speed.

The concepts of instantaneous speed
and limit are introduced here, although
the latter concept is not given its cus-
toxary name. The now-familiar notion of
average speed is associated with its
graphical representation as the slope of
a chord joining the end-points of an in-
terval on a distance-time curve. The
student should already know about tangents
from geometry, and this section should
guide him to identify the slope of a tan-
gent ,As a graphical representation of an
instantaneous speed.

It may be puzzling to some students
(and even disturbing to others) to learn
that their common-sense notion of instan-
taneous speed corresponds to nothing that
can be specified exactly in the "exact"
science of physics. They may even resist
the idea and thus miss the conceptual
leap mentioned in lines 25-6 of page 26.
Instantaneous speed is a conceptual "in-
vention." It is justified in physics by
its usefulness in describing and explain-
ing motion and its consistency with other
physics concepts. The point is not that
there really is or isn't such a thing,
but that the idea is fruitful.

Although the idea of speed is intro-
duced with a car speedometer, a car speed-
ometer does not give instantaneous speed
any more accurately than our method. It
also averages over a time interval. (Note
the lag of a speedometer in registering
as you begin with large acceleration.)

1.8 Acceleration by comparison.

The scalar definitions of average and
instantaneous acceleration are presented
by analogy with the speed definitions.
The common-sense basis of Galilean rela-
tivity also appears, but only casually.

Since Galilean relativity is going to
play a major role in later chapters, it
would be well to pause here and make a
point of the fact that there is a real
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qualitative difference between speed and
acceleration that the equatiols do not
show (at least at this level). Every
student's experience with carnival rides
and automobiles is wide enough so that
he can recall incidents that will make
the distinction real to him, if he is
stimulated to search his memory for them.
If he comes out of this section convinced
that "you ,an't tell when you're moving
uniformly, but you can tell when you're
accelerating," he will be better ready
to tackle the physics of Galileo and
Newton when the time comes.

Beginning physics students are some-
times confused by the units for accelera-
tions, e.g., m/sec2. It may be helpful
to show that the units come from the
definition of acceleration, Av/At, and

/change in velocity per unit time, cm
sec

sec
'

is just written for convenience as
cm /sect. If your students can't get com-
fortable with the "squared time," stick
with the more obvious expression--e.g.,
m/sec/sec. Conventions of notation are
the least important aspects of physics
you can teach, and ought not to be pur-
chased at the cost of understanding the
ideas.

Chapter 2 Free Fall Galileo Describes

scholarly work done by the Muslims. Work-
ing in Damascus, in Baghdad, in Cairo and
ultimately in several centers in Spain,
the Muslims modified the work of Aris-
totle (and other Greeks) in many ways.
Furthermore, the Muslims were influenced
by the studies of the Persians, Hindus,
Chinese and others in the East, and by
certain Christians from the West.

Muslim science flourished in Toledo,
Cordoba and other Spanish cities. As
these cities were gradually reconquered
by the Christians during the eleventh to
fifteenth centuries, Muslim and ancient
Greek knowledge filtered into Europe.

Before the time of Galileo, Aristotelian
science had been blended with Christian
philosophy, particularly by Thomas Aqui-
nas. There were, however, various criti-
cisms and interpretations made during
the later Middle Ages, at Oxford, Paris,
Padua and other centers of intellectual
activity. You should be aware of the-,e
point- not in order to bring them up in
class for discussion but rather so you
will not overemphasize the conflict be-
tween Pr'istotle and Galileo and thus seem
to imply that nothing happened during
the 2000 years separating these two great
men.

For a more complete (but still not ex-
tensive) treatment of Aristotle's physics
the student may be referred to any of
the following:

1. C. B. Boyer, "Aristotle's Physics,"
Scientific American, May 1950.

2. M. R. Cohen and I. E. Drabkin, A
Sourcebook in Greek Science, McGraw -Hill,

Motion 1948. See pp. 200-203 on natural and
unnatural motions, and especially pp. 207-
212 on falling bodies.

3. Alexandre Koyre, "Galileo," pp. 147-
175, in Philip P. Weiner and Aaron Noland
(editors), Roots of Scientific Thought,
(Basic Books, New York, 1957). Pp. 153-
158 clearly describe the Aristotelian
theory of motion.

There are other papers in this anthol-
ogy of Weiner and Noland that will help
you. We recommend the book for your li-
brary and probably the school library also.

4. 0. L. O'Leary, How Greek Science
Passed to the Arabs, London, 1948.

5. S. F. Mason, Main Currents of Sci-
entific Thought, Henry Sctolman, 1953.

The influence of China, India and the
craft tradition in medieval Europe, as
well as the influence of the Arabic
world, is outlined in Chapters 7 through
11 (pp. 53-98).

6. A. C. Crombie, Medieval and Early
Modern Science, (Doubleday-Anchor, 1959).
Volume I deals with the fifth through
the thirteenth centuries; volume II treats
the thirteenth to the seventeenth cen-
turies.

SEC. 2.1: THE ARISTOTELIAN THEORY OF
MOTION

Background for Chapter 2

Many discussions of Galilee and his
study of mechanics are quite c:'L,Lcal of
Aristotle. It is, perhaps, as unfair to
condemn Aristotle for not accepting what
the vacuum pump would prove as it would
be unfair to criticize Galileo for not
discovering radio astronomy or radio-
activity.

It should be pointed out that the phr-s-
ics inherited by Galileo is really a very
different and advanced kind of physics
compared to the original work of Aristotle.

A frequently overlooked contribution
to Aristotelian physics was made by the
Arabs. After the decline of the Alexan-
drian period of Greek science (about
200 A.D.), the knowledge of the Greeks
was not lost to the West. During the
so-called Dark Ages in Europe, there was
great activity in the Arab world. From
the eighth century through the twelfth,
there was considerable scientific and
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2.1 The Aristotelian' theory of motion.

The Aristotelian scheme is a complex
and highly successful one. For approxi-
mately 2000 years the ideas in this scheme
dominated the thinking of intelligent
men.

He was, perhaps, the first to realize
that an explanation of the universe must
be based on careful descriptions and
classifications of what was in it. He
was primarily an encyclopedist, and his
writings were authoritative accounts of
what was known at the time in such widely
diverse fields as logic, mechanics, phys-
ics, astronomy, meteorology, botany, zo-
ology, psychology, ethics, economics,
geography, politics, metaphysics, music,
literature and mathematics. He was among
the first to understand and to discuss
such things as the principle of the lever,
the concept of the center of gravity and
the concept of density.

Aristotle's notion that the motion of
an object moving with constant speed re-
quires a force proportional to the speed
is not true for an object falling in a
vacuum. It is true, however, for an ob-
ject moving in a viscous medium, and
most terrestrial motion is in the air, a
viscous medium. Remember that vacuum
pumps were invented nearly 2000 years
later.

Students certainly should not be re-
quired to learn the details of the Aris-
totelian or medieval physics of motion.
There are, however, some general points
that might well,be emphasized. These
are:

1. The ideas on motion appear as
logical parts of a larger theory about
the nature and structure of the universe.
In a sense, the "grand structure" existed
first and various aspects of it could
be learned by deduction from this grand
structure. This is in contrast to the
modern approach in which individual topics
and disciplines are studied and only grad-
ually merge into a larger, more compre-
hensive structure.

2. The rules governing the motion of
bodies on or near the earth were different
from the rules governing the motion of
non-terrestrial objects. Thus it was the
nature of objects near the earth to be
stationary once they reached their "nat-
ural place." There was no conflict in
saying at the same time that for stars
and planets to move continuously in cir-
cles is their natural behavior.

3. The Aristotelian scheme was essen-
tially qualitative and non-experimental.

The main Aristotelian ideas about mo-
tion survived for a long time for many
reasons. One of the reasons waL. that they
did not seem to violate "common sense."

Background and Developer a
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Even today the instinctive physics of
most people is probably Aristotelian. For
example, recall how hard it is to con-
vince students and laymen that a 10-lb
weight and a 1-lb weight will fall at es-
sentially the same speed. Recall also
the difficulties c: teaching Newton's
first and third laws, not to mention
special relativity theory or quantum me-
chanics.

2.2 Galileo and his time.

The roots of Galileo's thinking extend
far back to the Greek tradition. He was
able to apply the traditions of Pythagor.a.
and Plato in a new context and to give
them new vitality. Galileo contribi2ted
greatly to shaping the new science, but
he did not do it alone and, indeed, he
never entirely escaped from the past.

A thumbnail biography of Galileo can-
not do justice to his colorful life and
career. Students who would like to know
more about Galileo should be referred to
one of the following:

1. Laura Fermi and G. Bernadini,
Galileo and the Scientific Revolution,
Basic Books, Inc., New York, 1961. Short
and readable.

2. I. B. Cohen, "Galileo," Scientific
American, August 1949.

3. E. J. Greene, One Hundred Great
Scientists, Washington Press, 1964.

The time-line chart on page 42 is the
first of a series of similar charts which
will appear throughout the text. These
charts are to help students place the man
and the events into the larger context
of history. Most students know something
about Shakespeare and Rembrandt and
Galileo but frequently they are not aware
that these men were contemporaries. We
hope that the students will get more
perspective by being able roughly to te-
late Galileo to his contemporaries: to
Henry VIII, Luther, Calvin, and to the
founding of Jamestown, the first American
settlement.

Under no circumstances should students
be required to memorize the names or
dates appearing on these charts. The
names and events here represent only a
sampling. Students might wish to add
additional names to the chart.

2.3 Galileo's "Two New Sciences."

The mention of the Inquisition and
Galileo's confinement may stimulate stu-
dents to raise questions about this whole
affair. Most of the controversy had to
do with the concept of the solar system,
that is, with Galileo's astronomy. More
about this will be encountered in Unit 2.
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Since the focus in this chapter is on
one aspect of Galileo's study of motion
at the earth's surface, it may be well to
put off the more dramatic aspects of
Galileo's career until Unit 2. However,
for the student who might like to prepare
himself on the issue, you can recommend:

1. Georgio de Santillana, The Cri-.:
of Galileo, The University of Chicago
Press, 1955.

2. F. Sherwood Taylor, Galileo and
the Freedom of Thought, London, 1938.

The dialogue of Sagredo, Simplicio
and Salviati is a discussion of a new
book on mechanics by an unnamed author
who is a friend of theirs. The "eminent
academician" who wrote the book is, of
course, Galileo, whose views are presented
through Salviati.

Several copies of the Dover pa'perback
edition of the Crew and de Salvio trans-
lation of Two New Sciences (see biblio-
graphy under Galileo) should be on hand
for students who wish to locate these
quotations and follow them in greater
length.

A technique used in present-day ex-
periments can be mentioned in discussing
the argument between Simplicio and Sal-
viati. It is easier to determine the
difference between the outcome of two
simultaneous events than it is to com-
pare them individually. For example, it
is easy to tell which runner has won a
mile race, even when one leads the other
by only a foot. It would be more diffi-
cult to make this determination by timing
two runners in separate races.

2.4 Why study the motion of freely
falling bodies?

This brief section emphasizes that our
main interest is in studying the approach
used by Galileo. The quotations from
Two New Sciences show that Galileo him-
self realized that his work was of sig-
nificance and that it would lead to a new
science of physics.

2.5 Galileo chooses a definition of
uniform acceleration.

This section and the three sections
that follow it deal with Galileo's free
fall experiment. There is some danger
that the student will get lost before
he has reached the end. For this reason,
the opening paragraph of Sec. 2.5 sum-
marizes the over-all plan of attack.
Point out, especially to students who
are not accustomed to involved derivations
or proofs, that it is important to con-
sider the plan of attack before beginning
to study such a logical argument.
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The summary and the marginal commen-
tary accompanying it should prove useful,
yet it is potentially misleading. This,
like all summaries, makes the events
sound more organized and systematic than
they were. Galileo is, after all, giving
an ex post facto description of work
which he did over a period of years.
Furthermore, he invented that description
in a controversial document that has
wider aims than merely presenting some
research findings. Take care, therefore,
to see that the student does not accept
these activities as a model for all sci-
entific endeavor.

2.6 Galileo cannot test his hypothesis
directly.

Frequently a direct test of a particu-
lar hypothesis cannot be made. One or
more of the quantities involved cannot
be measured accurately because the means
for making the measurement has not yet
been established.

Suppose that, in an attempt to test
directly the hypothesis that v/t is a
constant, Galileo had permission to use
a 20-story building 65 meters high.
Suppose that he put marks on the building
at 1, 4, 9, 16, 25, 36, 49 and 64 meters
from the top. An object dropped from
the top of the building should pass these
marks at equal time intervals of a little
less than 0.6 sec.

But observing that the marks are
passed at equal time intervals is not
really a direct test that v/t is constant.
For this, he would have to determine the
instantaneous speed as the object passed
each mark. (The distance used for these
speed measurements should be very small.)
Suppose instead that he considered a
rather large distance, one meter. The
time to cover the first space interval,
from 0.5 to 1.5 meter, would be about
0.23 sec. If we assume that Galileo
could measure to within 0.1 sec, his
probable error for the first distance
would be about half the quantity he was
trying to measure. The time elapsed while
the object moved through the last inter-
val, from 63.5 to 64.5 meters, would be
less than 0.03 sec. To measure this time
interval to 5 percent accuracy would re-
quire a clock which one could read to
about 0.001 sec, at least 10 and probably
100 times better than anything Galileo
had available. No wonder he resorted
to an indirect test.

Now there are many methods available
to us, such as stroboscopic pictures or
electrically driven timers, which allow
us to test directly wheCier or not v/t
is constant for a freely falling body.
But all of these methods depend on our
ability to measure small time intervals
(0.001 sec) with precision. Such methods
were simply not available to Galileo.



2.7 Looking for logical consequences of
Galileo's hypothesis.

Part of the reason for the scientific
breakthrough begun in the 16th and 17th
centuries was use of a mathematical ap-
proach to the study of motion.

The text derives d = at2/2 but you
should repeat the derivation carefully
in class. The main point of this sec-
tion is not to teach the derivation; it
is to emphasize the value of mathematics
in science. Simple algebra allows us
to arrive at a relationship that is self-
evident at the beginning. While the final
equation contains no new information, it
presents the information in a different
and useful way. For instance, it allows
us to make predictions concerning dis-
tances traveled by accelerating bodies
that are not evident in the parent equa-
tions.

The word "constant" is used in several
ways in physics. In the context of this
section, constant means: in uniform ac-
celeration, the numerical value of the
ration d/t2 is the same (i.e., is con-
stant) for each and every interval for
which distance and time measurements are
made, provided other parameters are fixed.
The numerical value of that constant ratio
will depend on the value of acceleration
in a particular case.

2.8 Galileo turns to an indirect test.

This section contains what is probably
the largest conceptual leap in Galileo's
argument. He assumed that the inclined
plane was primarily a levice for diluting-
free fall without changing its fundamen-
tal nature, and he was able to proceed
to experimental tests of his hypothesis.
If the students can be made to see that
this is a reasonable assumption, although
not necessarily true, the inclined-plane
experiment should not be difficult.

One of the reasons for including the
photographs of students doing this ex-
periment is to encourage all students to
carry it out. With reasonable effort
the students will find that for any dis-
tance along the incline, the ratio d/t2
will be constant for a given angle of
incline. As a practical matter the ex-
periment is limited to relatively small
angles.

In summary, the main purpose of this
section is to make the association be-
tween the inclined plane experiment and
the overall problem of free fall. An
under-standing of the actual experiment
itself should com-.- from the laboratory.
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2.9 How valid was Galileo's procedure?

Healthy scepticism is one of the
characteristics of scientists. Students
from the beginning should be encouraged
to be critical of scientific claims and
experiments. In a text book it is dif-
ficult not to sound authoritarian from
time to time. A section such as this is
intended to counteract that tendency.

2.10 The consequences of Galileo's work
on motion.
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Chapter 3 The Birth of Dynamics Newton Explains Motion
3.1 The concepts of mass and force.

Dynamics is introduced by contrasting
it to kinematics. The distinction be-
tween these was mentioned earlier in
Chapter 2 (p. 48) when Salviati (i.e.,
Galileo) said that the time to talk about
causes cf motion was after accurate de-
scriptions existed.

One of the preoccupations of science
is to provide systematic explanation of
observable phenomena. Newtonian mechanics
(Newton's laws of motion, the law of
universal gravitation, and various force
functions) represent ona such explanatory
system. As the students progress through
this chapter, studying the three laws in-
dividually, they should be reminded from
time to time of this overall theme of ex-
planation.

3.2 About vectors.

The concept of a vector is developed
briefly in this section. The text states
but does not show that acceleration can
be treated as a vector. Actually the
section will not stand alone as a way
for teaching vectors. Previous experi-
ence has shown that the text is not a
particularly good device for teaching
vector concepts. For this reason, most
students will need to study the programmed
instruction booklet on vectors.

As a minimum it is necessary that all
students understand what vector quanti-
ties are and why they are important.
They should also be able to do vector
addition and subtraction graphically.

3.3 Explanation and the laws of motion.

The purpose here is to place the kinds
of motion we studied in kinematics into
perspective. These are motions which
Newton's laws will attempt to explain.

3.4 The Aristotelian explanation of
motion.

Aristotelian ideas concerning motion
should be presented so as to appreciate
better the Newtonian development. Con-
trast between the two will and should
be made. Aristotelian and so-called
commonsense-everyday observations should
be connected.

3.5 Forces in equilibrium.

Develop the ideas of unbalanced force
and equilibrium for the condition of
"rest." This will set the stage for the
equilibrium condition of constant veloci-
ty with no unbalanced forces in Sec. 3.6.
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3.6 Newton's first law of motion.
The significance of the first law of

motion cannot be overstated. Most phys-
ics textbooks point out that the first
law is really a special case of the
second one, since by the second law the
acceleration is zero if the force is zero.
While this is true, it misses the point.

The law of inertia is fundamental to
modern mechanics, for it states what is
to be the starting place of the entire
theory of motion. The first law makes
it perfectly clear from the beginning
what is to be basic, what requires fur-
ther explanation and what does not. In
so doing, the law of inertia dramatically
exposes the difference between the New-
tonian system and the Aristotelian sys-
tem.

The main points to be emphasized about
the first law of motion are these:

1. Fundamentally, the law is a def-
inition. It states the convention to be
followed in studying forces. Forces are
not to be considered as the causes of mo-
tion but rather as whatever creates ac-
celeration.

2. The law of inertia cannot be prov-
en by observation or experiment. One
reason mentioned later in Sec. , is
that the ordinary method for deciding
whether or not there are unbalanced forc-
es operating is to observe whether or
not there is acceleration.

Many teachers demonstrate the plausi-
bility of the first law by showing that
as the retarding friction on a moving
body is reduced, the object appears to
behave more and more in accordance with
the first law. The teacher should be
extremely careful not to pass off a
classroom demonstration as proof of the
first law: definitions are not to be
proven.

3.7 Newton's second law of motion.

Force and mass are very difficult con-
cepts to master. This section postpones
a definition of those terms and avoids
consideration of the empirical content
of the second law. The section does not
explain the equation

P
net

= ma.

The student should understand that for
a single object, a is proportional to
F. For different objects acted on by a
constant force, a is inversely propor-
tional to m. We want the student to
realize that if the second law is true,
then certain mathematical relationships
must exist between force and acceleration
and between mass and acceleration.

The newton is the only force unit
mentioned in this chapter. Perhaps the
student should know that there are other
force units depending upon the system of



units being employed. However, there is
little to be gained from comparing them
or being able to convert from one to the
other.

Perhaps it is worth noting that impli-
cit in the equation F = ma is a propor-
tionality constant that does not appear
because it was set equal to 1 (i.e.,
F = Kma and K = 1). An alternative ap-
proach would have been to define a stan-
dard unit of force as well as standard
units of mass and acceleration, and then
do experiments measuring force, mass
and acceleration from which the value of
the constant could be computed. Examples
where this approach is used include G
in the universal gravitation equation,
and the spring constant in Hooke's law
equations.

3.8 Mass, weight and gravitation.

Why do all objects in free fall at a
given location fall with the same accel-
eration a ' The answer is in the pro-
portionality between weight Fg and mass
m. It is imperative, therefore, that
students understand the distinction be-
tween weight and mass. The only thing
that really makes this difficult is that
they are accustomed to using the terms
interchangeably and usually think of
weight as a measure of mass. (There is
some dispute among physics educators
about how weight ought to be defined.
Here we are using weight as synonymous
with gravitational force.) Perhaps the
relationship between mass and weight is
easier to understand if the second law
equation is put in the form

F
a = a .
g m

Then it is clear that the force is pro-
portional to the mass; no matter what
the value of the mass, the acceleration
will remain constant.

Why in a given location do objects
fall with uniform rather than nonuniform
acceleration? That the acceleration is
constant is an experimental fact and not
dependent upon the second law.

3.9 Newton's third law of motion.

The purpose of this section is to
enable the students to understand what
the third law says.
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Once students grasp the notion that
forces always appear or disappear in
pairs due to the interaction of real ob-
jects and that the two forces act on dif-
ferent objects, then the rest is not
difficult. However, these ideas are con-
trary to everyday experience and are not
easily accepted. The tremendous inertia
of the earth, the ever-present forces of
friction and the imperceptible distortion
of rigid objects (like floors and walls)
all help conceal action-reaction.

3.10 Using Newton's laws of motion.

The first law of motion is mathemati-
cally a necessary consequence of the
second law, while the reverse is not
true. One can conceive that the second
law of motion might have been very much
more difficult to formulate.

The first law does not really take
on meaning and is not at all useful in
the real world of physics until certain
additional operational definitions have
been given for such terms as rectilinear
motion, equal time intervals and constant
speed. Also, a frame of reference must
be established for all the measurements.

The main point to be emphasized is
that while the first law provides a
general explanation of an event, the
second law provides a quantitative and
therefore more useful explanation. For
example, when we can say that an object
slows down because there is a retarding
force of 4.0 newtons acting on it, we
know a great deal more than when we
merely say that it slows down because
there is a retarding force.

It may be difficult to persuade some
students that numerical answers are ac-
tually useful. The text illustrates the
usefulness of quantitative results by
pointing out that once numbers are ob-
tained, a large variety of comparisons
can be made between actual events. It
may be helpful to give specific examples
in class.

The third law allows one to examine
a small part of a complex chain of events.
The hammer example should cause no real
trouble. Students find it hard to be-
lieve that the earth can exert a force
on a runner. One way of demonstrating
the value of the third law at this point
is to ask students to invent an explana-
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tion for the acceleration of a runner
that is not like the third law in form.

If forces are equal and opposite,
how can an object accelerate? The point
to be emphasized in going over this ex-
ample is that the opposite forces act
on different objects. In discussing the
forces between two objects in a system,
the third law is needed. It describes
the location and magnitude of various
force pairs. On the other hand, when one
becomes interested in the motion of a
particular object, then he must ask about
the net unbalanced force acting on that
object and apply the second law to deter-
mine its acceleration. Distinguishing
which law to use is not easy and students
should be furnished with other examples.

3.11 Nature's basic forces.

Treat as a reading assignment. The
section generalizes and extends the laws
of motion and helps introduce Chapter 4.
The four basic interactions in nature
are mentioned to reduce the complexity
the world so far seems to present and to
point to what lies ahead in our study of
physics.
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Chapter 4 Understanding Motion

4.1 A trip to the moon.

What is simple and what is complex is
not altogether easy to decide. Certainly
one's purposes for making such distinc-
tions will have something to do with the
criteria. In general, there are three
criteria being used in this unit: two
are uniformity and symmetry. If the pa-
rameters that describe the motion are
uniform or constant in value, or if the
path of motion is symmetrical, the motion
is regarded as "simple."

The third criterion has to do with
dimensionality. Motion becomes more
complex as you go from one or two to
three dimensions. By this, projectile
motion and uniform circular motion can
be considered as being more complex than
rectilinear motion and less complex than,
say, helical motion.

4.2 Projectile motion.

Not much is gained by emphasizing the
definition of projectile motion. Stu-
dents should understand that a projectile
is an object moving through space without
the aid of any self-contained motive
power.

The historical significance of the
problem of projectile motion does not
receive as much emphasis as it could in
this section or in the chapter as a
whole. Many historians of science feel
that it was one of the key issues in the
whole controversy over the nature of
motion. Aristotle's theory was least
able to explain projectile motion.

The concept of independent horizontal
and vertical motion may be a difficult
concept for students to accept because
it conflicts with their commonsense no-
tion that horizontal speed affects the
rate of fall. The student should carry
through the analysis argument. Demon-
strate the apparatus that projects one
sphere and drops another at the same in-
stant (see Student Handbook). Also,
students should make their own measure-
ments, or at least see measurements made
on photographs or transparencies similar
to the one on page 97.

Two major and quite separate points
need to be made.

1. It is an undeniable experimental
fact that a short-range projectile launched
horizontally will reach the ground at the
same time as a similar object dropped at
the same instant from the same height.
This fact, that the gravitational accel-
eration of a projectile is exactly the
same as the gravitational acceleration of
an object falling freely from rest, comes
from observation, not from deduction from
first principles.

2. This experimental fact can be ex-
plained rationalized by assuming that
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the observed motion of a projectile is
the vector sum of two other motions which
are completely independent of each other:
uniform horizontal motion and accelerated
vertical motion.

Students who are interested in projec-
tile motion and who understand some trig-
onometry ought to be encouraged to analyze
the general case of projectile motion,
i.e., the case in which the projectile
is launched at any angle. Once they have
derived what they believe to be general
equations, they should show that the equa-
tions used in this and the next section
can be deduced from the general equations.

4.3 What is the path of a projectile?

The purpose of this section is to es-
tablish and demonstrate the power of
mathematics in science and to justify
the need for continued scholarly work in
pure mathematics. In order to do this
effectively, it is important that prior
to the dexivation of the equation of the
parabola, two other points be made.

1. There is no a priori reason to
favor one curve over another. In fact,
there is no reason even to suppose that
the trajectory of a projectile will al-
ways have the same mathematical shape.

2. The question cannot be settled
simply by observing the path of projec-
tiles with the unaided eye. For one
thing, the angle of observation and prob-
lems of perspective make observation dif-
ficult. Secondly, many mathematical
curves look very much alike and can be
distinguished only by analysis. Finally,
many objects that are thrown do not follow
a parabolic path because of the large and
changing air resistance they encounter
along the flight path.

The difficulties in determining the
shape of the projectile's trajectories
can be easily demonstrated by throwing
objects inside the classroom, or, even
better, out on the playing field.

The support that experiment gives to
the purely mathematical combination of
motion can provide the student with evi-
dence he may need more than we think:
evidence that mathematical manipulation
of symbols which express known principles
can lead to new relations among the sym-
bols relations which are also true.

With a particularly able class, the
teacher might wish to develop the rela-
tionship between range of a projectile
and its velocity and angle of fire. This
problem could also be assigned as a proj-
ect for better students who are familiar
with trigonometry. See "Projectile Mo-
tion" in Foundations of Modern Physical
Science by Holton and Roller.
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4.4 Galilean relativity.

For the first time in the course the
frame of reference becomes important
and even here the term is not used.
Make certain the student realizes that
any motion he sees and analyzes does de-
pend on the relative motion of the viewer.
The laws of motion, however, are the same
for all reference frames moving uniformly
with respect to each other.

The Perception of Motion," by H. Wal-
lach, in the July 1959 Scientific American
may be of interest. It concerns the fact
that people view relative motion as if it
were absolute. (For student or teacher.)

4.5 Circular motion.

This is an introduction to the study
of circular motion and does not deserve
great emphasis. However, it is probably
worth demonstrating the difficulty of de-
ciding whether or not an object is in
circular motion when observing it from a
frame of reference which is moving with
respect to the object.

For some interesting results of being
located on the earth in a non-inertial
frame of reference, see the article by
J. McDonald, "The Coriolis Effect," in
the May 1952 Scientific American.

4.6 Centripetal acceleration.

The difficulty in this section is to
show that the acceleration of an object
moving uniformly in a circle is truly
centripetal. The text gives only a
plausibility argument and while it will
convince some students, there may well
be skeptics. In most classes it may be
worthwhile for you to go through the
derivation on the blackboard, or use
transparency Tll.

Material is included to provide the
students with practice in thinking in
terms of vectors. Also it provides an
opportunity to review and compare the
three kinds of motion dealt with: rec-
tilinear, projectile and circular.

This might also be an appropriate
time to suggest that circular motion is
really a special case of projectile mo-
tion. This can be done in one of two
ways. One way is to compare the vector
relationship of an object moving with
uniform circular motion to the relation-
ship of a projectile at the top of itc
trajectory. The second way is to approach
it through the use of a diagram such as
Newton used (the figure on page 92).
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The relationship a = v2/R is used to
carry out an arithmetic solution to the
same uniform circular motion problem
solved graphically in the text. The der-
ivation was omitted in order to provide
some of the brighter students with an
opportunity to work it out for themselves.
One or more students can be assigned to
do this and present the results to the
class the next day.

If a sample problem is worked in class,
an interesting example might be to find
the acceleration of a point on the earth's
equator due to the rotation of the earth
(r = 6400 km, t = 24 hr = 8.64 x 104 sec).
The value of this calculation can be
compared with the value of the accelera-
tion of gravity. The question can then
be asked: what would happen if the eartn
were rotating at a speed such that the
centripetal acceleration were equal to
the acceleration of gravity? This idea
will be taken up again in Chapter 4.

This would also be a good place to
review the facts concerning projectile
motion.

1. The acceleration is always con-
stant and always directed downward. This
is true when the velocity of a thrown ob-
ject is directed upwards, directed down-
wards or is at the point at the top of
the trajectory when the vertical velocity
is zero.

2. The horizontal component of the
velocity is always constant.

3. The horizontal displacement is
given by the relationship d = vt.

4. The vertical velocity is given
by the relationship vi + at.

5. The vertical displacement is
given by the relationship d = vi + ate.

4.7 The motion of earth satellites.

There is no new physics in this sec-
tion. What the student has learned about
circular motion up to this point is almost
entirely theoretical or, at least, deals
with cases (e.g., a b'inky on a turntable)
about which most students care very little.

The satellite Alouette is used because
it has a nearly circular orbit and because
it has some historical significance.

The trouble with a list such as the
one in Table 4.2 is that it becomes ob-
solete almost as fast as it is printed.
An effort was made to select satellites
of continuing interest. However, the lat-
est entry is over four years old. Perhaps
some students should be assigned the task



of finding the additional three or four
entries needed to bring the list up to
date. See Sky and Telescope magazine for
frequent articles on satellites.

The important questions that will
really show whether the student has
learned what has been covered up to this
point are: "Why does the satellite not
fall back to earth?" and "Why does a
satellite not fly off into outer Space?"

After most of the students in the class
have been able to answer this successfully
in terms of the kinematics of circular
motion, they may be impressed by the
progress they have made by asking them to
respond to those questions as the Aris-
totelians probably would have.

The section ends by suggesting that the
relationship between speed, distance above
the earth and period of rotation are not
independent variables. This is probably
not the time to take up questions about
how satellites get from one orbit to an-
other, and what effect this has on their
speed. However, it may not be possible
to avoid the issue altogether, especially
if some dramatic event has recently hap-
pened.

Although satellite orbits (i.e., plan-
etary orbits) will be taken up in greater
detail in Unit 2, the statement is made
in this section that at a particular
height a satellite must have a certain
velocity in order to maintain a circular
orbit. The question: "Why have all of
the satellite launchings to date been in
an easterly direction?" is useful. The
answer involves having the students think
about vector addition of velocities and
at the same time think in terms of a
frame of reference connected to the cen-
ter of the earth rather than the more
familiar one, that of the individual on
the surface of the earth.

4.8 What about other motions?

This section should be treated merely
as a reading assignment. Its only pur-
poses are to remind the student that there
are many interesting kinds of motion that
we have not dealt with.
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Demonstrations

D1 Recognizing Simple Motions

The following demonstration can aid
in introducing the material in this
section. Perform the events listed below.
Ask the students to select the event which
would be the best starting point for a
study of motion. Ask them to give reasons
for their selection.

a) roll a football

b) roll a marble

c) drop a sheet of paper

d) bounce a ball

e) swing an object around in a circle

D2 Uniform Motion, Using Accelerometer

and Dynamics Cart

Tape a large liquid surface accelerom-
eter to a dynamics cart and show the stu-
dents that the water surface is horizontal
when the cart moves with uniform motion
(as when pushed by a toy tractor). Do
the same with the cork-in-bottle acceler-
ometer (see Student Handbook page 40),
stressing the fact that the cork remains
vertical when the motion is uniform.
Contrast uniform motion with the rest
condition.

D3 Instantaneous Speed, Using Strobe

Photos of Body on Spring

In this demonstration-activity the
class analyzes a complex motion that of
a body on a spring which is definitely
non-uniform. Simple equipment is used
to develop step by step the quite so-
phisticated concept of instantaneous
speed, introduced in Sec. 1.7 of the
text. A stroboscopic record is made of
one-half oscillation of the body-spring
assembly and this record is used to es-
timate the instantaneous speed of the
mass at one point of the observed oscil-
lation.

Equipment

Body-and-spring assembly, hung so as
to oscillate freely, with a light source
taped to the oscillating body and a slid-
ing pointer arranged so as to indicate
the point of interest. (See Fig. 1.)

Polaroid camera
Motor strobe and disc

or xenon strobe
Overhead projector, for projection

of print. You may find transparency
T3 useful for recording and analyz-
ing the data.

Demonstrations

D1, D2, D3

Procedure

The body-spring assembly is shown to
the class, extended, released and allowed
to oscillate briefly. A problem is posed
orally to the students: "How fast was the
body moving?" Stated in the terminology
of Sec. 1.7, this question is: "What is
the instantaneous speed v of the body?";
the students will recognize that the
body had different speeds at different
instants and that they can't even begin
to answer your question until you make
it more specific. Now choose a point
fairly near (but not at) the end of the
oscillation and ask for the speed at
that point. Attach the pointer to mark
the point of interest. If we could tie
a speedometer to the body, we could
watch and record its reading as it passes
the pointer. Since we cannot do this,
we have to estimate the value of v from
distance and time measurements. Two pos-
sible approaches are suggested in the
text.

1. Measure the average speed v
av

=
Ad/At over some interval that in- av

cludes the point of interest. Begin
with long time intervals and then pro-
gressively shorten the interval until
there is no longer any trend in the
values of v

av
as the interval is reduced

still further. This final value of v
av

is, within the experimental uncertainty,
equal to the value of the instartaneous
speed v. (Note that as the dis:ances
and time intervals measured become
smaller, the percentage uncertainty in
v
av

increases. Therefore, for small

enough At, the calculated values of vav

will have random variations due to ex-
perimental uncertainties in Ad and at.)

2. Make a graph of displacement
against time. Draw a tangent to the
curve through the chosen point P and
compute its slope, which is approximately
the instantaneous speed at P.

Method (2) is a straightforward exer-
cise in graphical analysis of a complex
straight-line motion. Since the drawing
of tangents to curves is not a very pre-
cise operation, many students will get
more satisfying results from method (1).
Method (1) also has the advantage of
emphasizing the concept of approaching
a limit.

1) Approaching the limit

Set up the body-spring assembly and
camera as shown in Fig. 1. The best
strobe rate to use will depend on the
characteristics of your spring, and the
mass of the body used; try a rate of 30
per second (6-slot disc, 300-rpm motor).
You will want at least fifteen or twenty
intervals to measure.
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Alternatively, if you have a polished
steel ball that can be attached to the
spring, a xenon strobe light gives good
results.

With the apparatus aligned and the
lights out, extend the spring by pulling
straight down on the body. Open the
camera shutter just before releasing the
body, and then close the shutter again
just as the body reaches its highest
point and starts down again (to avoid
the confusion of overlapping traces).

Hints on photography and technique-,
for making the information on a single
photograph quickly available to the
whole class are discussed in the notes
on photography in the Equipment Notes
part of the Teacher Guide following
Unit 1.

Calculate v
av = Ad/At for several in-

tervals containing point P and having
one end point in common (see Fig. 2,
asymmetric intervals). Start with a At
of 20 or so time intervals and work down
to two intervals. Have some of your
faster students repeat the process for
a different interval; others might try
symmetric intervals (see Fig. 2).

Sample results are shown in Table 1,
as measured from a stroboscopic photo as
shown in Fig. 2. Precision of this order
is obtained by using the 0.1 mm scale and
magnifier. (One millimeter in Fig. 2

represents one centimeter in real space.)
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TABLE 1

t
(in intervals)

d
(mm on photo)

0 0.0
1 0.5
2 1.6
3 3.1
4 4.8
5 7.0
6 9.5
7 12.2
8 15.0
9 17.8

10 20.7
11 23.6
12 26.3
13 28.9
14 31.1
15 33.0
16 34.5
17 35.6
18 36.5

Fig. 2 A facsimile of a typical strobe photo-
graph of the motion of a mass on a spring, show-
ing two possible ways of choosing a set of
decreasing time intervals.

TABLE 2

AdAt Ad v
av= At v

av
one interval
is 1/30 sec mm

(on

1
mm /6U
photo)

sec cm/sec
(real spact.)

18 intervals 36.5 2.03 60.9
16 intervals 35.1 2.19 65.7
14 intervals 32.9 2.35 70.5
12 intervals 29.9 2.49 74.7
10 intervals 26.3 2.63 78.9
8 intervals 21.9 2.74 82.2
6 intervals 16.8 2.80 84.0
4 intervals 11.4 2.85 85.5
2 intervals 5.7 2.85 85.5



We see in this example that the value
of vav does not change as At is decreased

below six intervals. This value of v
av

...3 equal, within the precision of this
experiment, to the value of the instan-
taneous speed v at the point P at the
center of each of the intervals tabulated
above.

Have students graph the results tabu-
lated in Table 2: average speed vs. size
of time interval (Fig. 3). Ask students:

CI \

Fig. 3

3t

"What would we find if we could make mea-
surements over even smaller time inter-
vals?" Is there a point on the curve
whose value represents the instantaneous
speed? You may be able to suggest that
it is reasonable (since the body doesn't
suddenly speed up or slow down at P)
that v is the point where the curve
would cut the v

av axis, and that in this

case (the case of a limiting process) it
is legitimate to extend the curve (ex-
trapolate) to that axis. The important
idea of extrapolation must be introduced
with some care and a variety of examples.

2) Estimating v araphically

Graph d vs. t directly from Table 1.
Draw chords centered on a chosen point P
(corresponding to the intervals of Method
(1) above) and compute their slopes,
which are the various values of v

av
.

Construct a tangent to the curve at point
P, and compute its slope as the value of
v at P. The slope of the tangent at any
point gives the value of v at that point.

Estimate the slope of the tangent at
each of the data points, and plot a
graph of v vs. t. Repeat the process,
estimating the slopes of the v-t curve
at the data points, and plotting accel-
eration vs. time. (See Fig. 4.)

(

V

A

a
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Fig. 4 Typical plots of d, v and a against t.
The lowest point of the body's motion is taken
as d = 0, t = 0.

Ask students, "At what point was the
mass moving fastest? Was it at one of
the data points? How accurately do you
know where and when the maximum speed
occurred?" Ask similar questions about
the time (and position) of zero acceler-
aticn.

D3 Instantaneous Speed (Alternative)

As an alternative to the body-and-
spring demonstration, a pendulum swing
can be analyzed. In E4 (Uniform Motion)
students measured the average speed of
a bulldozer over long and short time in-
tervals, and probably concluded that the
bulldozer was moving with nearly constant
speed. In this demonstration-experiment
the class looks at and analyzes a more
complex motion the swing of a pendulum
which is definitely non-uniform. Simple
equipment is used to develop step-by-
step the quite sophisticated concept of
instantaneous speed, introduced in Sec.
1.8 of the text. A value for the in-
stantaneous speed of the pendulum bob
at the bottom (center) of its swing is
estimated experimentally.
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Equipment

Pendulum, about 50 cm long, hung
from rigid support

Polaroid camera
Motor strobe disc and light source

taped to pendulum bob,
or ac blinky,
or xenon strobe

Overhead projector, for projection of
print

Flexible scale, for measuring projec-
tion of print

Procedure

A pendulum is shown to the class,
drawn back, released and allowed to
describe a full arc. A problem is posed
for the students: "How fast was the
pendulum bob moving at the very bottom
of its swing?" Stated in the terminology
of Sec. 1.8, this question is: "What is
the instantaneous speed v of the bob
at the lowest point P?" This is the
reading we might get from a speedometer
at the moment of passing through the
bottom position if we could possibly
attach one to the pendulum. Since we
cannot do this, we have to estimate the
value of v from distance and time mea-
surements. Two possible approaches are
suggested in the text.

Ad
1. Measure the average speed, v

av At
over some interval centered on the point
P. The pendulum clearly moves more slowly
the farther away it is from the bottom
point. Therefore the longer the inter-
val over which v

av is measured the lower

v
av will be. All values of v

av will be

less than the speed right at the bottom.
To get an estimate of the instantaneous
speed we must progressively shorten the
time interval until there is no trend
in the values of v

av as the time interval

is further reduced. This value of v
av

is,

within the experimental uncertainty, equal
to the value of the instantaneous speed v
at P. (Note that as the distances and
time intervals measured become smaller
the percentage uncertainty in vav increases.

Therefore for small enough At, the calcu-
lated values of v

av will have random vari-

ations due to experimental uncertainties
in Ad and At.)

2. Make a graph of displacement
against time, and draw a tangent to the
curve through the points for the highest
observed velocities. The slope of the
tangent is approximately the instantan-
eous speed at P.

The drawing of tangents to curves is
not a very precise operation. For this
reason, and because it empl Asizes the
idea of the approach towards s limit the
first method is recommended.
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Approaching the limit

There are several alternative experi-
mental procedures here. The one described
first is the simplest experimentally.

1 c.

Tr: 1-0
7& 1-3 TCPI ="1

'Jaya rJitJ HI

It

Fig. 1

Set up the pendulum, light source and
camera as shown in Fig. 1. Use a strobe
rate of 60 per second (12-slot disc, 300 -
rpm motor). Alternatively you may use
the ac blinky, with some added mass, as
the pendulum (in which case of course
you do not need the strobe disc in front
of the camera). It is important to set
up a marker to indicate the bottom point
of the swing, and to have a rigid stop
so that the bob can be drawn back to the
same position for each release. (Obvious-
ly the instantaneous speed at the bottom
point depends on the amplitude of the
swing.) Be careful not to pull down on
the string prior to release the stretch
will disturb the motion of the bob.
Photograph as much of the swing as pos-
sible. Be sure to close the camera shut-
ter before the bob begins the return
swing, and thus avoid the confusion of
overlapping traces.

Hints on photography and techniques
for making the information on a single
photograph quickly available to the whole
class are discussed in the notes on
photography.

Calculate v
av A

Ad
= -- for several inter-

valsvals centered on the bottom-most point
or the bottom-most interval, depending
on the particular photograph (Fig. 2).
Start with a At of between 30 and 40
time intervals and work down to three
or two intervals. The distance inter-
vals Ad are measured along the arc,
which requires using a flexible scale.
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Fig. 2 (a) Trace is symmetrical about bottom-
most point. (b) Trace is symmetrical about
bottom-most interval.

Sample results are shown in the table.
(One millimeter on the photograph repre-
sents one centimeter in real space.)

TABLE

at

one interval
is 1/60 sec

adad vav = Lt
v
av

1
mm (mm/ --sec) cm/sec

60

on photograph real space
26 intervals 84.0 3.23 194
22 intervals 76.0 3.46 208
18 intervals 66.0 3.66 220
14 intervals 53.5 3.82 229
10 intervals 39.5 3.95 237
6 intervals 24.0 4.0 240
2 intervals 8.0 4.0 240

We see in this example that the value
of v

av does not 'change as at is decreased

below six intervals. This value of v
av

is within the precision of this experi-
ment equal to the value of the instantan-
eous speed v at the point P.

Alternative Procedure

A slight variation perhaps emphasizes
more clearly that what we are doing here
is measuring vav over successively shorter

time intervals. A series of strobe photo-
graphs are taken, each cne at a higher
strobe rate (smaller time interval be-
tween images) than the previous one.
This is most conveniently done with the
light source and disc strobe method by
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progressively opening up more slots. In
this method one measures v

av
over the

lowest interval only on each trace. At
the lowest strobe rate(s) it may be im-
possible to find an interval that is
adequately centered on the bottom point.
The change between the value of vav over

the longest at and its value over the
shortest at will be less in this method,
because the range of time intervals over
which the measurement is made is less.

A calibrated xenon strobe and steel
ball pendulum bob could be used for this
method. Yec another possibility is to
feed the ac blinky with various known
frequencies from a (calibrated) audio
oscillator via an amplifier and trans-
former. (Remember that the neon lamp
does not glow below about 70 volts peak
voltage.)

Possible extensions

1. Procedure (2) above: plot d
against t, draw chords centered on P to
find various values of v , and draw 4..he
tangent at P to find theaalue of v at
P. The slope of the tangent at any point
gives the value of v at that point (see
Fig. 1.25 in text).

2. Plot a graph of the results ob-
tained above average speed against time
interval (Fig. 3).

v;

Fig. 3 (t
Ask students: "What

would we find if we could make measure-
ments over even smaller time intervals?"
Can they find a point on the curve whose
value represents the instantaneous speed?
You may be able to suggest that it is rea-
sonable (since the bob doesn't suddenly
speed up or s'ow down at P) that v is the
point where the curve would cut the vav

axis, and that in this case it legiti-
mate to extend the curve (extrapolate) to
that axis. The important idea of extra-
polation must be introduced with some
care and a variety of examples.
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3. There are many other measurements
that can be made with this simple ex-
perimental setup. It could be instruc-
tive for students to make graphs of d
against t, v

av
(measurea over one inter-

val) against t, and if possible of accel-
eration, a, against t. (Measure t and d
from the point P, Fig. 4.)

a

t

Fig. 4 Plots of s, vav, a against t. The bottom-
most point of the pendulum swing is taken as
s = 0, t = 0.

4. The concept of instantaneous speed
will come up again in Unit 3. The kinetic
energy of a body at a given instant de-
pends upoh its speed at that instant.
The interchange of potential and kinetic
energy in a pendulum will be referred to
specifically. It is worthwhile to make
photographs that encompass both the top-
most point, the bottom point P, and some
scale to give absolute measures of dis-
tance. The photographs should be kept
for use later in Unit 3.

Questions for discussion

1. Could one ever measure v experi-
mentally? How?

2. A car speedometer appears to mea-
sure instantaneous speed. Does any stu-
dent know how it works? How is it cali-
brated? (This is done at constant speed,
i.e. by measuring At for a known Ad while
the speedometer reading is unchanging.
So really all that we know is that the
speedometer tells us instantaneous speed
for the special case of uniform motion,
that is when v = v

av at every point.)
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D4 Uniform Acceleration, Using Liquid
Accelerometer

This demonstration allows you to show
that when a cart moves with constant
acceleration a, the surface of the liquid
is a straight line tilted tn the direction
of the acceleration.

Give the cart a uniform acceleration
by suspending an object over a pulley as
in Fig. 1.

Fig. 1 Arrangement to demonstrate uniform ac-
celeration.

It is best to use objects
whose masses range from 100 to 400 grams.
It is important to keep the string as
long as possible, so that you use the
entire length of the table. By changing
the mass of the suspended object, you
can vary the acceleration of the cart.
Notice that the slope of the liquid in-
creases with greater acceleration. The
slope is thus a measure of the accelera-
tion. It can be shown that tan 8 = a/g
so that a = g tan 8. You will find de-
tailed comments on Quantitative Work
with the Liquid Surface Accelerometer in
the Equipment Notes for Unit I.

D5 Comparative Fall Rates of Light
and Heavy Objects

Drop several pairs of objects, such
as a marble and a lead shot, simultaneous-
ly from the same height. Decide whether
the theory of Aristotle or that of Galileo
agrees best with the observations. Ac-
count for any discrepancies.

On a large book place several objects
such as a small piece of paper, a marble
and a paper clip. Drop the book. Do
the objects fall at the same rate and
stay on the book?

D6 Coin and Feather

If the equipment is available, do the
coin and feather experiment.



D7 Two Ways to Demonstrate the Addition
of Vectors

Method I

Apparatus:

20" x 20" board
Two dynamics carts
Two "baby bulldozers" (noisemaker
springs removed)

Two sheets of clear plastic (Kodak
Safety 3, for overhead transparen-
cies, 9 3/4" by 11 3/4"

Three Pentel marking pens of different
colors

Clamps, stands, etc., to support Pen-
tels

Stopwatch
Three people to operate bulldozers

and stopwatch

BattDD26'

mot-own/0,4w sweerg mm.o
ButtAVER -Weer g 1727AWn4A,

Fig. 1 The rolling platform and the arrangement

of the plastic sheets.

Fasten the two carts underneath the
board to form a rolling platform, as
shown in Fig. 1. Hook up one bulldozer
to pull the platform along the table;
this is Sheet A.

Fig. 2 The apparatus as seen from above.

Attach the other plastic sheet (Sheet
B) to the other bulldozer (Bulldozer B)
as shown, so that the bulldozer tows the
sheet along smoothly behind it. Adjust
the tow-rope so that vb (the velocity
Bulldozer B) is parallel to the long
edges of Sheet B.

Demonstrations
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Choose a direction for vb, and aim
Bulldozer B in that direction, laying
Sheet B zu.:ross Sheet A as shown. Draw
a guide line on Sheet A, using the edge
of Sheet B as a ruler (this.,,is your only
record of the direction of vb).

Attach one Pentel marker (Pen A) by
means of a ringstand and stiff wires so
that it makes a line on Sheet A as the
platform rolls along. From the length
and direction of this line, you will be
able to figure out the magnitude and
direction of va, assuming that va is
constant (how ?).

Pen B is attached to the rolling plat-
form. It makes a line on Sheet B that
indic tes the motion of Bulldozer B rela-
tive to the platform.

Pen AB also marks on Sheet B, but it
is fastened to the stationary ringstand
on the table. The motion of Sheet B
with respect to the table is made up of
the two simple motions added together
(vectorially, of course). From the line
that Pen+AB makes, you can deduce the
vector (v

a
+ v

b
).

Adjust Pen B and Pen AB so that they
begin at the same point on Sheet B (call
this point P).

With the pens in place, set the bull-
dozers in motion at the same time (this
will take a little practice). Shut them
off, again simultaneously, when the long-
est line that has been drawn is four to
six inches long. Use the stopwatch to
time the motion.

You now have three lines of different
lengths, colors and directions. If you
make certain assumptions (what assump-
tions?), you can treat they lined as
dirept representations of va, of vb and
of (va + vb). Add an arrowhead to each
line to indicate the actual direction
of the velocity that it represents (care-
ful!). Remove both plastic sheets from
the apparatus and slide Sheet B over
Sheet A until the head of va is at Point
P. Be sure to keep the edge of Sheet B
parallel to the guide line.
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Does.(va + ib) seem to be the vector
sum of va and vb, using the parallelogram
rule? Convince yourself that if these
velocities have added as vectors, the
three vectors should form a triangle.
Is this the case (see Fig. 3)?

Try the sa9 pr9cedure_ for a few other
(irections of vb (va and vb parallel, op-
,osite, at right angles, etc.) .

Method II

Apparatus:

DC blinky, set to about 1 flash per
second

The same rolling platform as in
Method I, painted black

Two "baby bulldozers"
Polaroid camera mounted on tripod

(for 3000 speed film, the lens set-
ting is about EV 16)

Bench stand and pointer to indicate
the starting point of the blinky

Three people, to operate bulldozers
and camera

Fig. 1 Arrangement of apparatus when vl and
v2 parallel.
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Set up the rolling platform, towed by
Bulldozer A as in Methoi I; the velocity
of the platform as it moves past the
camera is again va. Place Bulldozer B
on the platform;, its velo.O.ty with re-
spect to the platform is vb. Point the
camera downward, so that it takes a
picture of the apparatus from directly
overhead. Mount the blinky on Bulldozer
B and position the pointer so that you
will be able to put the blinky back in
its original position after taking the
first picture.

Turn out the lights, open the camera
shutter and set Bulldozer A in motion.
Let it tow the platform across a good
part of the camera's field of view.
Which velocity can you obtain from the
strobe record of this motion?

Replace the platform so that every-
thing is back the way it was before the
last step. Repeat the process (without
advancing the film--when you are through,
you will have a triple exposure), but
this time have only Bulldozer B in mo-
tion. Which velocity can you figure
out from this strobe record?

Return to the starting point again,
and take a third picture (on the same
film) of the motion of the blinky, this
time with both bulldozers moving.

Develop the print and calculate the
h ea velocities speeds and directions)
va, vb and (va + vb). Skip the first
ihterval in each strobe record: it takes
the bulldozers a little time to get up
to speed. Draw arrows representing the
three velocities, and check as in Method
I to see if the parallelogram law of
vector addition holds for the motion you
have oLserved. Do the three vectors
form a triangle? Should they?...

4Again, try the cases where va and vb
are parallel, anti-parallel, at right
angles and at several other angles of
your choosing.

D8 Direction of Acceleration and
Velocity
Using the same arrangement shown in

Fig. 1, demonstrate that acceleration
and velocity can have different direc-
tions. Hang an object of 100 or 200 gm
mass over the pulley; give the cart a
push to the left so that it goes nearly
to the end of the table before it stops
and reverses direction. You should try
to give a short smooth push so that the
liquid reaches its steady state quickly.

Once the water has reached its steady
state, the surface is a straight line
whose slope does not change, even when
the velocity reverses direction. The
explanation, of course, is that the ac-
celeration is constant and independent
of the velocity. 0..iy the weight of the
object over the pulley determines the
acceleration of the cart.



D9 Direction of Velodity and Acceleration
An Air Track Demonstration

Mount the small accelerometer on an
air track cart. When the track is hori-
zontal and the cart is at rest or moving
with uniform speed, the surface of the
liquid is also horizontal. Only when a
horizontal force causes the cart to ac-
celerate for example, when the cart
starts or stops or collides with some-
thing else is the slope of the surface
not horizontal.

Next, place the track at a slight in-
cline. When the cart slides freely on
the air track, however, the surface is
parallel to the track. These interesting
facts are explained in the theory section.

Again, you can show that velocity
and acceleration can have different di-
rections. Give the cart a push up the
incline. If friction is negligible, the
slope of the liquid remains the same
while the cart slows down, reverses di-
rection and moves down the incline. If
frictional forces are increased by adding
mass to the cart, the slope will decrease
when the cart begins to move downhill.

D1O Non - Commutativity of Rotations

One of the points frequently made
about vector addition is that it is com-
mutative, i.e., the order of addition
does not affect the sum. Students are
frequently convinced from their experience
with arithmetic that this is true of all
operations. It is useful to be able to
show them an example of an operation that
is not commutative.

If a closed book is placed on the
desk in front of a student and he ro-
tates the book up 90° about an axis along
the spine of the book, and then rotates
it up another 90° about an axis parallel
to the near edge of his desk, the final
orientation of the book is different
than if the opposite order of the two
operations is followed.

D11 Newton's First Law

There is 'an aesthetic appreciation in
science for simple statements that de-
scribe very complex phenomena. E = mc2
is a recent example of such a statement.
Newton's first two laws and the equation
F = ma, which follows from them, are an
early example. For the teacher, these
simple statements often create difficul-
ties because the students fail to realize
their importance. There is a tendency
to feel that what is not complex and
filled with mathematical symbols cannot
be very important. Nothing could be
farther from the truth. Many men con-
tributed to the eventual development of
the three laws, and Newton's own work
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was a perplexing amalgam of intuition,
definition and experiment. While one
cannot say precisely how Newton came to
his conclusions, he was deeply familiar
with the related phenomena. Therefore
we suspect that the students' introduc-
tion to the laws of motion should avoid
the didactic and favor direct experience
and an intuitive approach.

The demonstration described below may
seem trivial, but first-hand experience
with very low-friction motion is valuable
for understanding Newtonian physics.
While this is listed as a demonstration,
it should be conducted as an informal
experiment. This has always been a very
enjoyable experiment for the students,
who frequently mention it as their
favorite.

Equipment

Several pucks with balloons or plas-
tic beads

Puck table
Large rubber band
Air track (optional)

Procedure

Student lab groups are given single
pucks without the balloons or plastic
beads, with the instructions that they
are to play with them for several min-
utes so as to be able to describe how
the pucks move. Then a brief discussion
is held to establish what happens to
the pucks' motion under various circum-
stances--e.g., just sitting on the
table, being pushed briefly, being
pushed steadily, tilting the table,
blowing, etc. Friction may be mentioned,
and hopefully someone will suggest what
the motion would be like without fric-
tion.

Immediately demonstrate the low-fric-
tion capability of the pucks, and supply
students with balloons and/or plastic
beads for another short period of in-
vestigation. (Half the class could use
balloons, half use plastic beads, to
make the results more general.) The in-
structions are, as before, to be able to
describe the motion of the pucks. (Fen-
ces made from the large rubber bands are
invaluable as reflectors because they
allow long runs.)

The leveling of the surface may be a
problem, especially with the balloon
pucks. The concluding discussion might
become heated on the how-do-you-know-
when-there's-no-force paradox, but that's
fine if students argue about these
things, they are aware of the issue.

The disc magnets or air track can be
used for a further extension of friction-
less motion.
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D12 Newton's Law Experiment (Air Track)
With the calibrated accelerometer we

could perform experiments on Newton's
laws which enable us to define forces in
terms of the accelerations of objects
whose masses are known. The accelerometer
would enable us to determine the accel-
erations directly.

013 Effect of Friction on Acceleration
The above demonstration works only if

friction is negligible. Since the direc-
tion of the frictional force F

frict is
always opposite to the velocity, you can
show the effect of friction on accelera-
tion by attaching tape with adhesive on
both sides to the wheels of the cart.

When the cart moves to the right, the
horizontal forces acting on it are il-
lustrated as in Fig. 2. The acceleration
is then

T - F
fricta

where M is the mass of the cart plus the
accelerometer. When the cart moves to
the left, however, the forces act as in
Fig. 3. The acceleration is now

T F
fricta

The tension T is simply the weight of the
object hanging over the pulley and is
independent of the velocity.

Fig. 2 Force diagram when cart is moving to
right.

Since the acceleration is less when
the cart moves to the right than when it
moves to the left, the slope of the water
when the cart moves to the right will
also be less. This difference in slopes
is slight, but noticeable.
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Fig. 3 Force diagram when cart is moving to
left. The change in theta is exaggerated.

D14 Demonstrations with Rockets

Introduction

The demonstration experiments sug-
gested in this note can accomplish two
things. They are exciting, which makes
them ideal as motivating experiments at
the beginning of the course. Rockets
and space flight are matters of great
public interest today, and experiments
like these could do much to arouse in-
terest (and perhaps increase enrollment)
in a physics course. The experiments can
also be used to teach quite a lot of
physics: free fall, force, impulse, con-
servation of energy, application of trig-
onometry, etc.

We cannot stress too highly the need
for strict supervision by the teacher at
all times. Get permission and support
from local officials and school adminis-
trators before starting model rocketry.

Small solid-fuel rocket engines, light-
weight rockets and a considerable body
of supplementary information can be pur-
chased from Estes Industries, Inc.,
Box 227, Penrose, Colorado 81240. Their
catalog is available on request from the
address given. Prices for rocket en-
gines range from $0.21 to $0.33 each, in
lots of 12; rockets come in kit form and
range from $0.50 to $4.00. We have
tested the "Scout" which costs $0.70, the
"Corporal" which qts $1.50, and the
"V-2" which costs $i.75. Assembly
for these models ranges from one to two
hours and could be done by students.



When used with some care under strict
supervision of the teacher, these rockets
are probably considerably safer than a
good number of other experiments that
are performed in the classroom. However,
students should not be permitted to take
home rockets from the school's supply or
to use the school's rockets during school
hours without careful supervision. Al-
though quantitative experiments of real
precision are probably mathematically
too involved, students can learn much
from a series of demonstrations that
permit some student participation.

Rocket engines come in a variety of
sizes with maximum thrusts of either 21
ounces or 9 pounds and thrust durations
from 1.7 sec to 2 sec. In addition, a
special purpose engine (B.8-0(P)) for
use in static tests is available.

Experiments with rockets in free flight

If a large, open space is accessible
to the class, a number of experiments
can be performed with free flight
rockets. For example, one may use
successively more powerful engines in
several otherwise identical rockets.
Another set of experiments would make
use of rockets of identical exterior de-
sign but of different mass; in fact, one
might make one of the rockets so heavy
that it will not lift off. We all get
a thrill from firing the small rocket
and seeing it rise rapidly several hun-
dred feet. Students should stand at
known distances, at least 100 feet from
the launching pad, each with a simple
altimeter, consisting of a protractor
with a small plumbline and a viewing tube,
made, for example, from a large soda
straw.
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Fig. 1
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Each student should try to measure
the angle of elevation of the rocket
at the same moment, preferably when the
rocket has reached its maximum height.
The teacher can call out the time for
this measurement. Using simple trigo-
nometry, each student can calculate the
height of the rocket. If there is lit-
tle wind and the rocket rises vertically,
he can calculate the height knowing the
distance and elevation angle. Each stu-
dent will find a value for H. A com-
parison of the results will provide an
opportunity to discuss errors of measure-
ment.

0

Fig. 2

Po/4/74e4,4,,iii,o44z7

Fig. 3

In most cases, the rocket will not
rise vertically. The computations will
become fairly involved unless students
can measure both the angle of elevation
at points of maximum H as well as the
angle through which they must turn from
a fixed line when measuring H. For
example, if two students, A and B, stand
at a fixed distance D, and each has to
turn from the line connecting their
position by angles of 0 and (1), respec-
tively, we can then at once find the
point above which the rocket was at its
highest-TT:Ent and determine the distances
x and y. Knowing x and y, each student
can calculate H (see Fig. 3). Write to
Estes Industries for copies of their
Technical Report TR3 "Altitude Tracking"
which gives detailed instructions. This
exercise and excursion into trigonometry,
although not directly part of a physics
course, is useful in showing the need
for mathematics as a tool.

When firing rockets, all possible
safety precautions should be followed.
Estes Industries will supply an out-
line (Attachment #3) of how to handle the
rockets and what methods to employ to
prevent accidents. In fact, the safety
code as supplied by Estes has an educa-
tional value in showing students how to
handle potentially dangerous situations.
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Experiments with test stands

The design of a simple test stand for
rocket engines requires knowledge of
fundamental physics principles. Basical-
ly, one wants to measure as accurately
as possible the force (thrust) a rocket
exerts as a function of time Since the
burning times of these rockets are short
(from a minimum of 0.17 sec to a maximum
of 1.4 sec), one needs to use a recording
device. In order to measure thrust cor-
rectly, the apparatus should be truly
static, i.e., there should be as little
motion as possible while the engine
fires. If a spring is used to provide
the balancing force, precautions must be
taken to avoid oscillations; in fact the
damping should be critical and further-
more should be velocity-dependent so
that the recording pen will always return
to the same zero position.

Test stands can be designed in a
variety of ways. Two designs have been
tested:

A. The first test stand consists of
an engine holder (Figs. 4 and 5), made
from a rocket body tube (Estes Cat.
#651-BT-40, 0.765" I.D., 0.028" wall
thickness) connected to an aluminum rod
R free to move in two bearing blocks B.
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Fig. 4

Fig. 5
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Attached to the far end of the rod R is
a tube P into which a Pentel pen or some
similar easy and light writing device
can be inserted. The rod R carries a
pin which serves two purposes: it com-
presses a spring as the engine is fired
and it prevents the rod from turning
about its axis by riding in a key slot
attached to one of the bearing blocks.
The spring constant should be chosen so
that a steady (static) force of 20 new-
tons will give a compression of approxi-
mately 3 inches. Friction in the bearings
may just provide the necessary damping
force; otherwise, one can add some damp-
ing by pressing a cloth strip against
the rod. The test stand is set up radi-
ally near a turntable so that when no
force is applied to the spring, the pen
will leave a circular trace near the
edge of a circular sheet of paper attached
to the rotating turntable. When the
rocket engine is fired, the pen is pushed
toward the center of the turntable and
plots a graph that can be analyzed for a
measure of the force applied to the spring.
With the turntable rotating at 33 rpm,
a "firing" of an Estes A8-0 (P) rocket
engine will leave a polar coordinate rec-
ord that covers almost a complete revolu-
tion, indicating that the force was
applied for approximately 1/33 min, i.e.,
just under 2 sec (Fig. 6). If a linear
chart drive is available which will move
the paper at a high enough speed so that
the graph is spread out over a reason-
able distance (i.e., at least 10 inches
per second), you can substitute this for
the turntable. However, there is merit
in using a polar graph, if only to show
students a different method of recording
and analyzing data.

/%/f// 1/6

Fig. 6

To translate the curve drawn by the
recording device during the firing into
a force vs. time plot one needs to cali-
brate the test stand. This can be done
by applying known forces (e.g., weights
applied via a pulley) to the spring and



turning the turntable by hand through
sections for each applied force. A
calibration curve, relating displacement
to (static) force can then be drawn.

Note that the spring used was non-
linear. The reason for this is that the
Initial large force acts for a short
time only and thus the impulse due to
this force is fairly small. To measure
accurately the much smaller sustained
force a spring is needed which will
give reasonably large deflections for
the small force acting over the longest
part of the firing. Again, there is ad-
ditional educational benefit to be de-
rived from the fact that another illusion
is shattered for most students (and many
teachers), namely that springs by nature
are linear and that Hooke's law can be
applied without thought.

It might be worthwhile to point out
that there is another problem involved
in this analysis, namely that the force
applied by the rocket engine is an "im-
pulsive" force, acting for a short time
only, whereas the calibration of the
test stand is done statically.

co ''
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Fig. 7(a)

Students would benefit from transfer-
ring the polar-coordinate graph to a
cartesian-coordinate graph. They can
then compute the total impulse of the
engine (fFdt) by finding the area under
the curve. If this impulse is assumed
to occur in a short time compared with
the total flight, a first approximation
gives fFdt = (mv) final - (mv) initial,
when m is the mass of the rocket plus
engine and v is the speed of the rocket
after the impulse has been applied. If
we neglect all external forces except
gravity, we can find the maximum height
to which it would rise from simple
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kinematic considerations (vf2 - vo = 2gh).
The actual height to which the rocket
will rise is much less than the computed
one.

Fig. 7(b)

B. A second type of test stand (Figs.
8 and 9) can be assembled easily in most
schools from odds and ends. It involves
a 15" wooden ruler in which a vertical
shaft has been placed at the 3" mark;
the ruler can turn freely about this
shaft in a horizontal plane. (Inexpen-
sive steel shafts with bearings are
available from radio supply houses, e.g.,
Allied #44Z094, panel bearing assembly
with 3" shaft, costs 33C complete.) At
the 1" mark a rocket motor holder is
fastened securely by gluing it with a
good contact cement, then tying it with
string (Fig. 10). Finally, paint the
string and motor holder with glue, coil
dope, shellac or some other material
which will bind to the ruler, string and
rocket motor holder.
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Fig. 9

Fig. 10
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At the 13" mark a spring is fastened
which will extend not more than 3" when
a force of 4 newtons is applied to it.
Again a non-linear spring would have the
same advantages explained earlier.

NOTE: There are various ways to make
non-linear springs. In this particular
case one could, for example, have two
springs attached (Fig. 11) such that for
small forces spring 1 will Stretch, but
spring 2 will not be under any tension.
As spring 1 stretches, eventually the
string that connects spring 2 to the ruler
will become tight and the force constant
of the combination will become the sum
of the force constants of both springs.

--------
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Fig. 11
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A second method to obtain a non-linear
spring uses one single spring and a thin
string loosely tied between some of the
coils of the spring (Fig. 12). As the
spring is stretched, all coils will open
_up at first, until the string becomes
taut. From then on, only those coils
can extend which are outside the tied-
down section of the spring. It is easy
to adjust the relative spring constants
simply by shifting the position of the
string, holding back more or fewer of the
coils.

Fig. 12
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A light tube is attached to the far
end of the ruler, near the 14" mark,
which can hold a Pentel marker. We again
use a turntable so that the pen can trace
a graph of its excursion as a function
of time on a paper disc fastened to the
turntable.

The reason for using the unequal lever
arms in this design is to have the rocket
engine move through as small a distance
as feasible, thus approaching a true
static test, and also to have the moving
parts of the device be as light as fea-
sible while still giving a reasonably
large trace on the graph paper.

Figure 13 shows the result of a firing
using a linear spring and no damping
force. A number (at least four) of os-
cillations following the initial excur-
sion of the pen can be seen.

Fig. 13

Damping can be applied in a variety
of ways and will provide a very inter-
esting exercise in applied physics. The
most obvious way to decrease oscillations
is to apply a frictional force. A bot-
tle brush held perpendicular to the ruler
near the 12" mark and pushed against the
flat side of the ruler (Fig. 14) will
help dampen out the vibrations (Fig. 15),
but the damping is not critical, and in

Fig. 14



addition the friction will introduce
sizeable shifts in the zero position.
Ideally the damping force should be ve-
locity-dependent. We have tested a vis-
cous device, consisting of a metal vane
being pushed through oil and find that
it is also non-critical (Fig. 16) but
does not have a zero correction. Another
method would be to use a metal plate
moving in a strong magnetic field (eddy-
brake).
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can also be justified as a motivating ex-
periment which is interesting and excit-
ing. Rockets and space flight hold today
a unique position in the public eye, and
the interest with which millions follow
each firing of a major rocket from Cape
Kennedy is without precedent. It seems
reasonable to make use of this interest
in attempting to attract students to the
physics course. There is no question
that the news of such firings in a course
will spread rapidly through a school. As
a consequence, students who otherwise
might not have found out about the excite-
ment and challenges of physics may become
interested.
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Fig. 16

This part of the project is completely
open-ended. Students can undertake a
systematic experimental study of damping
forces and begin to appreciate the prob-
lems of the scientist or the engineer.
They will also begin to realize that
through systematic study of a problem
one will slowly be able to approach bet-
ter and better solutions.

Postscript

This demonstration can teach a good
deal about free fall, propelled flight,
the operational meaning of force, mo-
mentum, conservation of energy, the use
of trigonometry, experimental uncertain-
ty, the scattering of data, etc., but it

015 Making an Inertial Balance

An inertial balance may be an aid to
help the students distinguish between
mass and weight. One end of a hacksaw
blade is clamped to a bench so that it
can vibrate in a horizontal plane. Vari-
ous masses are attached to it, but their
weight is supported by suspending the
masses from a string. The hacksaw blade
is pulled to one side and then released
so that it swings.

D16 Action- Reaction Forces in Pulling

a Rope

Attach a heavy spring balance to a
wall and find two students whose maximum
pull is about the same. Then place the
spring balance between the two students
and have them pull against each other
with their maximum force. The balance
will read the same in each case. This
should help bring home the point that
a "pushed or pulled" object sv-h as a
wall will exert an opposing force when-
ever a force is applied to it.
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D17 Action-Reaction Forces in Pulling
a Rope

Place a student on each of two carts
and pass a rope between them. First
have one student pull alone, then the
other, and finally both. Start the carts
from the same position each time and note
the place where they meet. Ask the
class whether an observer, watching the
carts alone, could tell which student was
actively pulling in each case.

D18 Reaction Force of a Wall

When you lean on a wall does it exert
a force on you? Stand on a cart or rol-
ler skates and lean against the wall.

D19 Newton's Third Law

The following simple demonstrations
dramatically illustrate Newton's third
law. Their simplicity, moreover, gives
some indication of the elegance and
profundity of this remarkable law.

To show that forces exist in pairs on
different objects, and that the paired
forces act in opposite directions, set
up a linear equal-mass explosion between
two dynamics carts. Propel the carts
apart with a steel hoop, magnets, streams
of water, or any other forces you can
think of. See Fig. 1 for some sugges-
tions. Stress that this concept of
force-opposite-force is valid for all
types of forces.

(fD

Fig. 1
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The experiment on conservation of
momentum (E22) gives detailed in-
structions about the explosion using the
steel hoop. You can take a strobe photo-
graph of the explosion, and show that if
the carts have equal masses, they move
apart at equal speeds. If the carts have
equal speeds, the accelerations they re-
ceived during the expl^sion were equal
in magnitude. Since the carts have equal
masses and since the duration of the
interaction is the same for each cart,
Newton's second law implies that they
experienced equal forces during the ex-
niosion.

A more direct method to show that the
forces are equal in magnitude is to modi-
fy the demonstration by propelling the
two dynamics carts with large magnetron
magnets. Move the magnets back about an
inch on the carts. Place a pencil or
dowel in the hole at the front of each
cart and loop a three-inch rubber band
around the pencils. When you release
the carts, they will separate, stretch
the rubber band, oscillate, and finally
come to rest.

When the carts are at rest, the forc-
es acting on each cart are those shown
in Fig. 2. The tension in a rubber band
is uniform, so T = T'. Since each cart
is at rest, then T = F and T' = F'.
Thus F = F': the magnetic forces on the
carts are equal. Note that in this
demonstration the carts can have differ-
ent masses.

Fig. 2

Another exciting way to illustrate
Newton's third law is to mount a sail
on the fan cart that was used to illus-
trate uniform acceleration (D4), and let
the propeller blow against the sail.
Since the sail bends forward, clearly
there is a force on it. But the cart
does not move because when the propeller
pushes against the air, the air exerts



A reaction force against the propeller.
Thus the net force on the glider is
zero. (If the sail does not catch
all the air from the propeller, the
cart may move slightly.) If you remove
the sail, the only force on the glider
is the reaction force exerted by the
air on the propeller. This force causes
the glider to move backwards.

Fig. 4

The fan cart rigged for uniform ac-
celeration is sketched in Fig. 3. The
placement of the sail to show action
and reaction is sketched in Fig. 4.
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D20 Action-Reaction Forces between
Car and Road

Demonstrate the coupling of forces
between a car and the road. Obtain a
motorized toy car, Place a piece of
cardboard on top of some plastic beads
or an upside-down skate-wheel cart.
Then place the wound-up car on the
cardboard roadway;, the opposing forces
will cause the roadway to move backward.

D21 Action-Reaction Forces in Hammering
a Nail

Hammer a nail into a plank. First
place the plank on a bench, then place
the plank on a soft pillow. The force
exerted on the nail depends not only on
the hammer but also on the opposing
force of the plank.

D22 Action-Reaction Forces in Jumping
Upward

When you jump off the floor does the
floor push harder on you in order to
cause the upward acceleration? Jump
up from a bathroom scale and watch the
scale.
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D23 Frames of Reference

The following demonstration illustrates
the idea that different motions can appear
the same when observed from different ref-
erence frames.

One familiar example is the situation
of two trains in a station on parallel
tracks. An observer in one train cannot
tell which train is moving, or whether
both trains are moving, unless he watches
the station.

In the following demonstration, a
camera photographs a blinky, with either
the camera or the blinky moving at con-
stant velocity. From the photograph, one
cannot tell which object was moving. The
photos in the two cases are identical,
unless part of the laboratory also appears
in them.

This idea that an observer's view of
a motion will depend on his frame of ref-
erence will be a major theme in Unit 2.
To an observer on the earth, the sun seems
to move daily around the earth. But he
would see the same apparent motions if
the sun were stationary and the earth ro-
tated on an axis. The impossibility of
distinguishing between the two motions
caused much intellectual controversy in
the sixteenth and seventeenth centuries.

Equipment

Polaroid camera, cable release and
tripod. With 3000-speed film,
use the EV 15 setting.

Two dynamics carts
Two baby buldozers
DC blinky
Black screen
Turntable

Procedure

Mount the blinky on one cart and the
camera on the other. Use the toy bull-
dozer to push the carts. It may be nec-
essary to increase the mass of the cart
with the blinky, so that both carts are
driven at the same speed. Arrange the
apparatus as shown in Fig. 1.

Take two photographs, one with the
blinky moving and the camera stationary,
and the other with the cart moving and
the blinky stationary. Use the cable
release and be careful not to jar the
camera when you open the shutter.
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Fig. 1 Apparatus for linear motion.

Circular motion

Mount the camera on the tripod and
attach the blinky to a turntable. Aim
the camera straight down. Figure 2 shows
this arrangement.
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Fig. 2 Apparatus for circular motion:

Take a time exposure with the camera
at rest and the blinky moving one revo-
lution in a circle. If you do not use
the turntable, move the blinky by hand
around a circle drawn faintly on the
background. Then take a second print,
with the blinky at rest and the camera
moved steadily by hand about the axes of
the tripod. Try to have the camera at
the same rotational speed as the blinky
moved in the first photo.



Extension

The observer in tha train cannot tell
which train is moving if there is a rela-
tive velocity between the trains. If
there were a relative acceleration, how-
ever, he could tell which train was ac-
celerating. He could detect the accelera-
tion of his train, for example, with a
liquid-surface accelerometer. If the
acceleration were great enough, he would
also feel himself being pushed back or
thrown forward. An object cannot accel-
erate unless a force acts on it.

Strictly speaking, our observer could
not be sure he is accelerating. According
to Einstein's principle of equivalence,
the effects of a uniform acceleration A
are indistinguishable from those of a
uniform gravitational field -a. In the
train, however, the observer can be rea-
sonably confident that his accelerometer
detects an acceleration, not some bizarre
gravitational field.

D24 inertial vs. Non-Inertial Reference
Frames

Have a student toss a ball straight up-
wards and catch it again while walking at
a constant speed. Ask for uesoriptions
of the path of the ball as seen by the
ball tosser and by a seated student.
How do the accelerations compare as mea-
sured by the walker and by the seated
students? (They are the same.) How
would the path appear if the ball tosser
had stood still and the students had
moved sideways with the original speed
of the walker? (It would appear to be
the same as before to both viewers.)

Now toss the ball as you accelerate,
walking faster and faster, and again as
you slow down. ...Also toss the ball as
you walk in a circle. Show that, in
these cases, the two frames of reference
give two different accelerations.

You might want to discuss this idea
again in Chapter 4 where the idea is
developed that acceleration is caused by
an unbalanced force. An accelerated
frame of reference requires apparent (or
fictitious) forces to explain accelera-
tions which are not present when viewed
from a fixed frame of referent,.

D25 Uniform Circular Motiuri

To demonstrate the acceleration in
uniform circular motion, place the accel-
erometer along the diameter of a phonograph
turntable. When the turntable rotates,
the liquid surface is parabolic. Figure
3 shows this situation. The acceleration
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increases with the distance from the cen-
ter and is always directed inward. By
changing the speed of the turntable, you
can show that the acceleration is greater
for higher speeds of rotation. This is
also discussed in the Theory section.

Fig. 3 Accelerometer on rotating turntable.
The surface of the liquid is parabolic.

For a further discussion of this pro-
found idea that an observer rotating
uniformly with respect to an inertial
frame can tell that he is rotating, see
the articles in A Physics Reader on
Newton's bucket experiment.

D26 Simple Harmonic Motion

Harmonic motion can be demonstrated as
an example of a more complex motion. To
show that 11%-rpnic motion can be discussed
in terms of .ircular motion, set an object
r,ving in uniform circular motion, such as
a peg on a phonograph turntable. Then
illuminate this motion from the side and
project its shadow onto a screen so that
all that can be seen is a back-and-forth
motion. Harmonic motion can be developed
further, but it is probably enough just
to give several examples of objects that
have this motion, such as a vibrating
tuning fork, a pendulum, an object sus-
pended on a spring, etc. When Hooke's
law is discussed in Chapter 4, students
can be reminded that forces which obey
that law give rise to harmonic motion.

D27 Simple Harmonic MotionAir Track
(Optional)

By attaching a long rubber band or
string to each end of the cart and pull-
ing back and forth, you can make the cart
move in approximately simple harmonic
motion. The class can see qualitatively
that the acceleration is directed opposite
to the velocity and is at maximum when
the cart is farthest away from the equi-
librium position.
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Notes: Polaroid Photography

Cameras

Almost any Polaroid Land camera can be
used in classroom demonstrations and ex-
periments in physics. The notes refer in
detail to (a) the experimental model 002
cameras supplied by Project Physics, and
(b) the older models 95, 150, 800 that
can be bought relatively inexpensively
and are already being used in many class-
rooms. A third section of these notes
on photographic techniques refers to all
models.

A. Experimental model 002 Polaroid Land
Camera

This camera is a modified version of
the model 210 camera, in which exposure
time is controlled automatically by the
electric eye. The manufacturer's in-
struction booklet describes the normal
use of the model 210--loading the film
pack, processing, etc.

The modifications consist of:

1. a cover for the electric eye that
makes it possible to take bulb exposures.
When the eye is covered the camera shut-
ter remains open as long as the shutter
release (or cable) is held depressed.
There are very few, if any, experiments
for which you will use the eye to control
exposure time automatically. Always keep
the eye covered when the camera is not
in use to prevent rapid rundown of the
internal battery.

2. a cable release clamped semi-
permanently on the shutter release button

3. a base plate with locking thumb
screw. For most classroom work the cam-
era is used as a fixed-focus camera. It
is convenient to use the camera at dis-
tance that gives a 10:1 photographic
reduction. The locking screw is used to
fix the camera bellows at the correct
extensior. The base plate also has a
screw hole which takes a standard 1/4"-20
screw for mounting it on a camera tripod
or motor strobe disc unit.

.. a close-up accessory lens, which
clips onto the camera lens to give an ap-
proximately 1:1 reduction for photograph-
ing traces on oscilloscope screen, etc.

5. a clip-on slit, to be used in con-
junction with the motor strobe unit (see
notes on strobe photography).

Focussing

The camera has a range finder (non-
automatic). Look through the finder
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window: the position of the arrow on the
scale at the left of the window indicates
the focal distance, in feet. Focus is
adjusted by pushing the buttons marked
"1" back and forth.

For most classroom use, it is conven-
ient to work at a standard distance from
the event being recorded. A distance of
about 1.2 meters (47 inches) gives a 10:1
photographic reduction. We recommend
that one of the first things students do
with the camera is to establish precisely
what the 10:1 distance is.

A focussing screen can be made very
simply as follows. Take a discarded film
pack apart into its three component
pieces. One of these pieces is a frame
which encloses an area the size of the
picture. Fix a piece of ground glass
(about 41/2" x 31/4") in the frame, so that

the ground surface faces toward the lens
when the grame is put into the camera.
If ground glass is not zvailable, a
satisfactory screen can be improvised by
sticking scotch tape (not the clear vari-
ety) on a piece of flat glass, or using
tracing paper.

Insert the frame in the camera, just
as if it were a film pack, ground glass
surfacr towards lens. Leave the camera
back open. Set up a meter stick about
1.2 meters in front of the camera; the
stick should be well illuminated. Cover
the electric eye, set the speed selector
to 75. Open the shutter and keep it
open, by keeping the no. 2 button or the
cable release depressed. (The cable re-
lease can be locked by tightening the
set screw.) Look at the image on the
focussing screen and adjust the range
finder until the image is sharply
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focussed. Measure the image of the meter
stick on the screen. Adjust the camera-
stick distance and focus until the sharp-
ly focussed image of the meter stick is
10 cm long.*

Once the 10:1 distance has been found
and the camera focussed, use the thumb
screw provided to lock the camera bellows
in this position. Measure the lens-to-
object distance. It will now be easy to
set up and photograph an object or event
at 10:1 reduction. Do not refocus the
camera or loosen the locking thumb screw
unnecessarily.

This preliminary exercise can be ex-
tended to establish two important points
about using the camera to record events
at the 10:1 distance:

a) what is the field of view at this
distance? (It should be just under
1 meter.)

b) is the photographic reduction
uniform over the print; i.e., is
it the same near the edge as at
the center, or is there some dis-
tortion? (There is in fact very
little distortion the 10:1 factor
can be used on all parts of the
print.)

Exposure

a) Aperture. Students' attention may
also be directed at this time to the ef-
fect of the "Film Selector" (manufactur-
er's instruction booklet, pages 16, 18).
Remove the screen, open the camera shut-
ter and look through the lens with cam-
era back open. At thF. 3000 setting the
lens aperture is small; at 7.: the aper-
ture is 3000 times larger (in area).

For most strobe photography, use the 75
setting, even though the camera is loaded
with 3000-speed film. A slight decrease
in the 75 apes' ire can be effected by plac
ing the clip-c slot over the camera lens.
(The numbers re. r to the ASA "speeds" of
the two types of film. For normal outdoor
use the selector is set to 3000 for 3000 -
speed black-and-white film and to 75 for
75-speed color film. But this does not
apply to our special classroom use of the
camera. Although 3000-speed film will be
used in our experiments, in many instances
the 75 setting is needed. The lighten/
darken control see page 16 of the manu-
facturer's instruction booklet is effec-
tive only when the electric eye is open.)

*Unfortunately, the screen is just less
than 10 cm long. Therefore the meter
stick must be set up obliquely. Or al-
ternatively, adjust until a 90 cm long
part of the meter stick gives an image
9 cm long.
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b) Time. If the electric eye is open,
the exposure time is controlled automat-
ically. If the electric eye is closed,
the shutter will remain open as long as
the cable release (or shutter release)
is held depressed. For strobe work,
cover the electric eye and control the
exposure time manually. Try to keep the
shutter open for the minimum time neces-
sary to record the event. The longer the
camera is open the poorer will be the con-
trast in the picture.

Lighting

The strobe photography experiments
and demonstrations that are described in
detail in the Teacher Guide and Student
Handbook do not require a darkroom. In
many cases it is not even necessary to
turn off the room lights, unless there
is a light directly over the lab table.

But a dark background is essential in
strobe photography use the black cloth
screen provided by Project Physics (see
Fig. 1).

Fig. 1 Blinky photograph taken with model 002
Polaroid Camera. Note 1, room lights were on;
2, use of black cloth screen.

It is often useful to record both the
strobe event and a scale (meter stick) in
the same picture. Table 1 summarizes
conditions for the various strobe tech-
niques.



Table '. Suggested exposure conditions
using experimental camera model
002.

Film
Strobe Selector

Technique Lighting (aperture) Procedure

light normal
source but not

and disc directly
strobe overhead

xenon normal--
strobe but not

directly
overhead

blinky darkened
r oom
but not
dark room

75 single
bulb ex-
posure
records
both
event and
scale

3000 single
bulb ex-

posure
records
both

event and
scale

75 single bulb
exposure

records
both event
and scale

When working at 75 aperture, a small
decrease in exposure can be effected by
adding the clip-on slit over the camera
lens.

Close-up accessory lens

With the accessory lens clipped in
place over the regular camera lens the
camera can be used for close-up work.
Focussing with this lens is quite criti-
cal and must be done with a focussing
screen. The object should be between 12
and 14 cm from the front surface of the
accessory lens, depending on the magnif-
ication you want. With the camera bellows
fully collapsed-i.e., camera focus set
to infinity the ratio of image size to
object size is about 0.85, and with the
bellows fully extended the ratio is about
1.2.

For most classroom work the camera is
used at a bellows extension that gives a
10:1 reduction (without the clip-on lens),
and it is convenient to keep the bellows
fixed in this position. You can use the
camera for close-up work without changing
the bellows extension: add the accessory
lens, insert a focussing screen in the
camera back and focus on the object by
moving the whole camera towards or away
from it. The magnification will be
approximately unity.
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Photography of traces on the oscilloscope
screen

Remove any colored plastic window that
may be in front of the screen. Clip on
the close-up lens and focus the camera as
described above. For stationary patterns
set the film selector to 3000 and give a
bulb exposure of about 1 second duration.
It is not necessary to darken the room.
For single-trace work it nay be necessary
to set to 75 and darken the room or add
a light shield around the oscilloscope
face, long enough to reach to the camera.
Keep the shutter open for the minimum
time nec,..-iary to record the trace.

B. Models 95, 150, 160, 800 Polaroid
Land Camera

These cameras all use roll film and
give a picture size just under 3 Y 4

inches. Models 150, 160 and 800 have a
range finder; model 95 does not. On
these cameras one adjustment determines
both the lens opening and the time the
shutter stays open. Speed and aperture
combinations corresponding to the EV num-
bers of the various cameras are given
in the table.

Notice that to convert EV numbers
given for a model 95B, 150 or 800 to
values for a model 95 or 95A, one must
subtract 9; and vice versa. A setting
of 15 on one series gives the same expo-
sure as a setting of 6 on the other
series. In this note and others in this
Teacher Guide, we will give both settings
for example, EV 15(6).

A decrease of one unit in EV number
means that twice as much light reaches
the film. This is true for "instantan-
eous" photographs, but not necessarily
so for time exposures. Note from the
table that at all settings below EV 13(4)
the camera lens is wide open. For time
exposures any further decrease in EV
will not affect the amount of light
reaching the film.

All these cameras have a little knob
on the camera face close to the lens.
This can be set to either I--for "instan-
taneous"--exposures (exposure times as
given in Table 2), or to B--for "bulb"
exposures (shutter remains open as long
as the shutter release or cable release
is held depressed). This knob returns
to the I position automatically after
every bulb exposure, and must be reset
to B for each time exposure. Failure to
reset it is the most common cause of un-
successful exposures. (Possibly the
second commonest cause is forgetting to
check that there is film in the camera.)
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Table 2

Models 95A, 958, The 700, 150, 160,
and 800 Cameras

Model 95 Camera

Shutter No.
Models 95A,
The 700

Shutter No.
(EV Scale)
Models 958,
150, 800

Lens

Opening
Shutter
Speed

Shutter
I No.

Lens

Opening
Shutter
Speed

1 10 f/ 8.8 1/12 sec 1 f/11 1/8 sec
2 11 8/ 8.8 1/25 sec 2 all 1/15 sec
3 12 f/ 8.8 1/50 sec 3 011 1/30 sec
4 13 f/ 8.8 1/100 sec 4 f/11 1/60 sec
5 14 f/12.5 1/100 sec 5 f/16 1/60 sec
6 15 8/17.5 1/100 sec 6 8/22 1/60 sec
7 16 1/25 1/100 sec 7 8/32 1/60 sec
8 17 8/35 1/100 sec 8 8/45 1/60 sec

Reprinted from "Polaroid Pointers"

with permission of Polaroid Cor-
poration.

Film

The most useful type of film for class-
room use is the 3000-speed, type 47. It
is the most sensitive and has the shortest
development time-10 seconds. The two
transparency films are useful occasionally
but are less sensitive. One of them
(46-L) also needs longer development time.

Table 3
ASA Development

Film Speed Value Time

47 3000 10 seconds prints

46-L 800 2 minutes half-tone
transparency,
for slides

Polaline
146-L 120 10 seconds black-and-

white trans-
parency
(high con-

trast for
line draw-
ings)

If prints are to be kept more than a
few days, they should be coated soon after
exposure with the squeegee supplied with
each roll of film. Prints are normally
somewhat curled;, flatten prints by pulling
over a straight edge, picture side up,
before coating them. Transparencies are
preserved by immersion in "Dippit" liquid
for at least 20 seconds, and can then be
mounted in easily assembled frames for
projection. Read the instructions sup-
plied with film, with "Dippit" and with
slide frames for more details.

Exposure

It is impossible to give hard-and-fast
rules about exposures, as these will vary
according to local conditions. Exposure
values given in the notes on particular
experiments and demonstrations must be
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regarded as suggestions only. In all
kinds of multiple-exposure photography
(blinky, strobe), it is important to in-
crease contrast as much as possible. It
is not necessary to have a completely
blacked-out room. Regular opaque shades
are quite adequate; some venetian blinds
are satisfactory. A black background
(such as the cloth screen provided by
Project Physics) will improve the con-
trast enormously. In the particular
conditions of our laboratory at Harvard,
we have found the following values useful
starting points. (One must always be
prepared to move up or down one or two
EV units after taking the first picture.)

Photography of moving blinky: EV
15(6).

Photography of moving light source
(pen-light cell and bulb) with 300 rpm
disc strobe: EV 14(5).

Xenon strobe photography falling
steel ball: EV 16(7).

Xenon strobe photography white mast
on dynamic cart: EV 15(6).

C. Photographic techniques (refers to
all models)

All blinky or strobe photographs could
be called multiple-exposure. By multiple-
trace we mean the recording of more than
one motion (of the same or different
bodies) on one photograph. An example is
the Unit 1 demonstration, "Vector Addi-
tion of Velocities." Usually it is nec-
essary to move either the object or the
camera slightly between each trace, or
to tilt the camera a bit, to prevent suc-
cessive traces overlapping. The shutter
must be recocked (model 002) or the knob
returned to B (model 95, etc.) each time.
The background light level is more im-
portant in this sort of work, but up to
20 blinky traces have been recorded on a
single print.

Fig. 2. "A multiple trace" blinky photograph.
Shutter setting for 3000-pound film was EV 16 (7).
On model 002 experimental camera set selector
to 75.



How to use the pictures

Ideally, each student team will be
able to make and analyze its own photo-
graphs.

Students can probably best make mea-
surements using a magnifier, made of a
10X set of magnifying lenses and a trans-
parent scale. Even quite dark prints
can be measured with the magnifier in
good light. (Hold the print aoainst a
window pane or put It on the stage of an
overhead projector, or use a reading
lamp close to the print.) The scale is
made much more visible by backing it
with 1/16" wide white sticky tape (ACS
tape).

Also satisfactory is a technique using
dividers and millimeter scale.

Because the protective coating takes
several minute:- to dry, it will save
time to measure before coating; however,
the uncoated emulsion is soft and easily
scratched.

Students can also use the "negative"
to take measurements; this halves the
number of exposures needed. To preserve
the "negative" wash it with a damp sponge
and coat it in the usual way.

If it is impossible for each team to
produce its own print, the information
on one print can quickly be passed on to
the class by projection. Carefully make
a pin prick at each dot on the print and
use the overhead projector to project
onto a sheet or pad of paper pinned to
the wall. You may need a sheet of glass
or corner weights to keep the print flat.
A trial may be needed to find the best
hole size for your projector. Each stu-
dent makes his own copy of the print by
making a mark at each point of light on
the projected image; he then takes down
or tears off his sheet, and the next
student in turn makes his enlarged copy
of the print. These enlarged copies can
be measured with rulers.

It is possible to make projection
transparencies from black and white prints
on a thermofax copying machine. no not
coat the print before making a copy. A
RigT-contrast print and careful adjustment
of the lighter/darker knob on the copier
are important.

For demonstrations it may be useful
to project at high projection magnifica-
tion directly onto a meter stick and
simply read off the positions of the
dots.

When using projection techniques, make
sure that the projected image is not dis-
torted--i.e., that the projector is set
perpendicular to the wall so that no
"keystoning" exists. A quick way to
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check your projector for keystoning is
to place a transparent ruler in the posi-
tion later to be occupied by the photo-
graph and to see if the scale in the
projected image remains similar to the
original one. Measure distances between
equivalent points, e.g., cm marks. Most
projectors introduce some distortion
near the edge of the picture area.

Opaque projection of prints is only
marginally successful. Most opaque pro-
jectors do not have a lamp that is bright
enough.

Polaroid transparency film (types 46-L
and 146-L) can be projected, using either
an overhead or 3" x 4" slide projector.
This is more successful than opaque pro-
jection of prints, but in general has been
found less useful than the projection of
pricked-through prints. Transparency
film is not available in pack form and
so you cannot use tha technique with ex-
perimental model 002 camera.

Scale

For many experiments and demonstra-
tions, distance measurements can be made
in arbitrary units: millimeters on the
film is most convenient. Similarly, time
intervals can often be expressed in mul-
tiples of an arbitrary unit flashes of
the blinky or the strobe. But there are
instances in which it is necessary to
know actual distance and time values in
conventional units. In the determination
of the acceleration of a freely falling
body, for example, you must convert dis-
tances and times into some familiar units
to compare your result with known values.

Fig. 3 Single exposure, 3000 film, model 002

camera. Falling light source, disc strobe.
Selector at 75, room lights on, electric eye
covered.
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It is quite easy to take a picture
that shows both a moving object and a
scale (e.g., a meter stick). For the
scale image to be useful, the scale must
be in the same plane as the motion being
photographed.

With the experimental camera (model
002), both the moving object and the
scale can be photographed in a single
exposure (Fig. 3). See Table 1 for
recommended exposures and lighting con-
ditions. If you are using one of the
older cameras (95, 150, etc.) a double
exposure may be necessary (Fig. 4).

Fig. 4 Double exposure photo-
graph, 3000 speed film.
(a) To photograph scale:
EV 13(4), instantaneous ex-
posure, with room lights on.
This type of s..?*e, with one
centimeter wide bars is easi-
er to photograph than a scale
with millimeter divisions.
(b) To photograph falling
light: EV 13(4), bulb ex-
posure, darkened room. Disc
strobe with 18 slots, 300 rpm.
For explanation of the elonga-
tion of the images see article
on stroboscopic photography.

It may be worth bearing in mind that
if the 10X magnifier is used to measure
photographs taken at 10:1 reduction, each
millimeter on the print is one centimeter
in real space.

If two points in real space are known
to be a certain distance apart when photo-
graphed, it is possible to reestablish
the real scale by projection. Move the
projector to or from the screen until
the images of the two points are the same
distance apart as the objects were.

Checklists of the actual operations
involved in using the two types of cam-
era appear in the Student Handbook.

Illuminated scale for Polaroid photography

Often you want to include a scale
(meter stick) in a strobe photograph so
that you can convert measurements taken
on the photo into real units. Although
you can do this by double exposing a
re.?1 meter stick, the special illuminated
scale described here makes this sort of
photography easier and produces very im-
pressive pictures.

Take a piece of 1/4-inch thick lucite,
about 1 1/2 inches wide and one meter
long. Use an engraving tool to inscribe
lines at exactly one centimeter intervals.
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The lines should be about 1 mm deep.
Make every tenth line the full width of
the rule. Number the 10, 20, 30...cm
marks IN REVERSE, scribing the numbers
carefully and being careful not to scratch
adjoining surfaces of the lucite. The
scale (engraved side up) should now look
like this:

a..1.1 /au.. .. a -- rala {, ...... a ....

To use the scale, shine light into the
stick from the two ENDS. One way of
doing this is shown.

74.

C:=3:204
1111,,P

Light is scattered in all directions
wherever there is a scribed line on the
stick, causing the numbers and lines to
show up bright against a dark background.
Set up the stick so that you view it from
the UNSCRATCHED face. You will then see
the numbers in proper position. (If the
numbers were on the front of the stick,
some light would be scattered from them
back into the ruler, and be reflected
from the back, causing a double image.)



Notes: Stroboscopic Photography

Introduction

Many of the experiments and demonstra-
tions described in the Teacher Guide re-
quire stroboscopic photographs. There
are several reasons why we use this tech-
nique so often.

a) The strobe photograph can some-
times give at a glance a qualitative
idea of the time-displacement relation-
ship in a particular motion (for in-
stance, uniform circular motion, free
fall and trajectories).

b) The strobe photograph is a per-
manent record. Measurements made on
a permanent record can be more precise
and unambiguous than those made during
the fleeting moment while the event is
occurring. The measurements can be
checked several times if necessary.
(Strobe photographs are by no means
the only permanent records that will
be used in this course. See, for
example, the experiment on uniform
motion, the photography of spectra
and the use of a strip chart recorder.
This corresponds to a very modern ten-
dency in the research lab namely, to
let the event "record itself"---on an
xy plotter, or on-line computer, etc.)

c) Measurements can be made over
rather short time intervals, so that
rapidly moving objects and short-
duration events can be analyzed.

Someone familiar with strobe tech-
niques can often very quickly take a
photograph to illustrate a point dis-
cussed in class. The more familiar one
is with the camera and stroboscope equip-
ment and their use in the particular local
conditions of background illumination,
etc., the more easily these demonstrations
can be performed and the more effective
they become. Of course this familiarity
comes from experience. These notes may
be useful to those who are unfamiliar
with the various strobe techniques.

Techniques

It is convenient to classify three
kinds of stroboscopic photography. Most
of the experiments and demonstrations
described in this Teacher Guide can be
done by any of the three methods.

a) The moving object is illuminated
intermittently by an intense light
e.g., by a xenon strobe.

b) The moving object carries a
flashing light source e.g., a blinky
(relaxation oscillator with neon
bulb).
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c) The moving object carries a steady
light source, and light from this source
to tht camera is interrupted by a chop-
per in front of the camera lens, e.g.,
by a motor-driven disc strobe.

Xenon strobe

Xenon strobe photography has the ad-
vantage that often nothing needs to be
added to the moving object. But xenon
stroboscopes are expensive: prices
range from $58 (Stansi model 1812W, Stansi
Scientific Co., 1231 N. Honore Street,
Chicago 22, Illinois) to about $275
(Strobotac by General Radio Co., West
Concord, Massachusetts), or more. The
Strobotac is calibrated and can be set
to flash rates between 110 and 25,000
per minute. The Stansi strobe gives
much more light, but is uncalibrated (see
notes on "Calibration of Stroboscopes").
Of course, once a xenon stroboscope is
available, much more can be done with it
than simple strobe photography: for
example, the measurements of rates of
rotation and some very effective visual
demonstrations which depend upon the
"freezing" of various motions.

As in all strobe photography, a suit-
able background is very important: black
cloth or a surface painted flat black are
good. A clean blackboard or cheap paper
used in roofing and flooring can be used.
But even these surfaces will give a sur-
prisingly bright and troublesome reflec-
tion if the stroboscope is not carefully
placed. It should light the background
at a glancing angle, if at all.

-0,

Fig. 1 Xenon strobe light reflected from black
cloth background.

The moving object is illuminated from the
side (or occasionally from above or be-
low). The background should, if possible,
be some distance behind the event. Small
screens can be used to make sure that the
background is in shadow while the object
remains well lighted. The stroboscope
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must not be in front of the object near
to the camera. Make sure that the object
is illuminated by strobe light throughout
the motion that you want to photograph.
Sometimes it is helpful to have a student
hold the stroboscope and follow the mov-
ing object. Figures 2 and 3 show typical
arrangements.

4.

Fig. 2 In this set-up for a free fall demonstra-
tion, the xenon strobe on the floor illuminates
the falling steel ball, but not the background.

Objects to be photographed using xenon
stroboscope:

a) A golf ball will look more like
a ball than any other object due to
its surface texture.

b) A ping pong ball, if clean, will
give a white disc.

c) A steel ball provides a sharp,
bright point of light due to the
convex mirror effect of the spherical
surface. These points are ideal for
taking measurements from a photograph,
but the focussing effect may introduce
a small error. (The camera "sees" the
virtual image of the light source re-
flected in the polished surface of the
sphere. As the relative positions of
light source and ball change, the
virtual image will shift. The maximum
possible error that can be introduced
in this way is one ball radius; for
most setups it is less, and for any
ball less than 1-inch diameter the
error can usually be ignored. The
size of the virtual image also depends
on the radius of the ball. For very
small balls the image may be so small
that it is hard to photograph.)

d) Dynamics carts can be strobed. It
is important, however, to have some
bright object to serve as a reflector.
A pencil painted black, except for the
sharpened end which is painted white,
can be fixed to the cart in a vertical
position. Reflective tape (Scotchlite
silver), knitting needles and metal-
lized drinking straws are good also.
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Fig. 3 Xenon strobe photography of dynamics
carts. Note position of strobe and cloth screen,
which is not immediately behind event to be
photographed.

As always, optimum camera setting
will depend upon local conditions. The
photographs shown here (Figs. 4 and 5)
were taken using a Stansi strobe, with
a black cloth background behind the
moving object.

Fig. 4 Xenon strobe photo of dynamics carts.
In the particular conditions of our laboratory
a setting of EV/5 on model 800 camera was used.
For model 002, set film selector to 3000. Strobe
rate about 60 per second.

Fig. 5 Xenon strobe photograph of trajectory of
steel ball. Strobe rate about 20 per second.
Aperture setting of EV/16 on models 800 and 150.
EV/7 on model 95. Film selector to 3000 on
model 002.



Slinky

The blinky supplied by Project Physics
can be made to flash at rates between
about 20 and 200 per minute. It is rather
expensive (largely because of the three
thirty-volt batteries it contains), and
it is fairly massive (300 g). But the
principle of strobe photography is prob-
ably most easily explained using the
blinky. The so-called "ac blinky" is
certainly lightweight; it flashes at a
known frequency (line frequency), but is
not self-contained: it must always be
attached to an ac outlet of at least 90
volts. Because of its higher flash rate
the ac blinky is suitable for faster mov-
ing objects such as pendulums. It is
possible to make a simple variable fre-
quency blinky (20-2000 per second) using
an audio-oscillator, amplifier, trans-
former and neon bulb.

Although the blinky is not always the
most convenient of the three strobe me-
thods discussed here, students will prob-
ably find a photograph taken with the
blinky technique the easiest to under-
stand. The blinky is the first choice
for demonstrations early in the course
(uniform motion, vector addition of veloc-
ities, etc.). Because the light output
of the blinky ib rather low, it is im-
portant to keep the background illumina-
tion low so that fairly wide apertures
(low EV numbers) can be used without los-
ing contrast. The data given in Fig. 6

should be regarded as only a starting
point from which to establish optimum
conditions for your own local situation.

Fig. 6 Slinky photograph: three traces. Model
150 camera was set to EV/17 (model 95 setting
would be 8). With model 002 set film selector
to 75.

Strobe-disc photography

The small light sources supplied by
Project Physics have a mass of about 25 g,
and so their mass can often be ignored if
they are used on the 1 kg dynamics carts.
But their mass can very definitely not be
ignored if they are added to air traFW
gliders, the smallest of which has a mass
of about 30 g.
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The heart of the motor strobe kit is a
300 rpm synchronous motor. The disc sup-
plied by Harvard Project Physics has 12
equally spaced slots. This gives a maxi-
mum strobe rate of 3,600 per minute or
60 per second. By taping over some of
the slots (so that the open slots are
equally spaced), the rate can be reduced
to 300 per minute (5 per second) when only
one slot is open. (The requirement that
the open slots be equally spaced limits
the possible rates to submultiples of
the maximum frequency.)

Of course, by changing the motor or
the disc, the range can be extended.
Synchronous motors of various speeds are
available from most radio-supply houses
(Lafayette, Allied, Radio Shack, etc.).
Extra discs can easily be made of paper.

Table 1. Strobe rates for 300 rpm motor

Number of
Slots Open

Time between
Succes.ive

Rate Images

1
12 3,600/min 0 sec

6 1,800/min

4 1,200/min

3 900/min

2 600/min

1 300/min

1
To- sec

7-6 sec

1
T.§ sec

'5 sec

1
sec

Fig. 7 Disc strobe photograph of dynamics carts:
1.5 v light source on each cart. Six slots,

300 rpm (30 per second). Shutter setting EV/14(5),
on old cameras; film selector to 75 on experi-
mental model 002.

Fig. 8 Disc strobe photograph of D 2.5--uniform
acceleration. One-slot disc, 300 rpm (5 per
second), 1.5 v light source; EV/14(5), or film

selector to 75.

115



Equipment Notes
Stroboscopic Photography

A variation on the disc-strobe can be
used if it is impossible or undesirable
to attach a light source to the moving
object. Illuminate the event strongly
(two 100-watt bulbs with reflectors) and
photograph the object by the light it
reflects. Of course a highly reflecting
object, like a steel ball, is needed.

An important point to remember when
using the disc strobe technique is illus-
trated by the pair of prints shown in
Figs. 9 and 10. A slot 0.5 cm wile in a
disc of 10 cm radius rotating at J00 rpm
takes about 0.005 seconds to pass in
front of the camera lens (diameter about
1.5 cm). The camera lens will be "open'
for this time. In 0.005 sec a body mov-
ing at 4 m/sec (the speed of a freely
falling body 80 cm below release) will
move about 2 cm. This explains the elon-
gation of the images--which increases
with the speed of the object in Fig. 9.
This elongation is reduced, but not com-
pletely eliminated, by taping a fixed
slit (supplied with the kit) to the cam-
era lens (Fig. 10). This slit should be
parallel to the slot in the rotating disc
as it passes in front of the lens. The
length of the streak could be further re-
duced by using a narrower slit on the
lens, but image brightness will be reduced
by lens slots narrower than the disc slot.

The duration of a blinky flash is
about 0.010 seconds, but since the blinky
is unlikely to be used for fast-moving
objects, the problem of image elongation
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Fig. 9 Free fall, disc Fig. 10 Free fall, disc
strobe technique, show- strobe technique. Slit
ing elongation of im- on camera lens reduces
ages. elongation of images.,

is unlikely to occur. The duration of a
xenon stroboscope flash can be several
orders of magnitude less, ranging from
about 5 microseconds in more expensive
strobes to around 10 or more microseconds
in others. In all experiments that one
is likely to do in the classroom, the ob-
ject will be effectively "frozen" by
stroboscopic illumination.



Calibration of Stroboscopes

Inexpensive stroboscopes are usually
uncalibrated; that is, the numbers on the
frequency-control dials don't correspond
to actual frequencies. Below are several
methods for finding the dial readings that
correspond to a set of known frequencies.
A calibration graph is constructed by
plotting the dial values against the
known frequencies, and drawing a smooth
curve through the plotted points. Dial
readings can then be converted to fre-
quencies by interpolating the calibration
curve.

1. Oscilloscope method

a) "Linear trace" on oscilloscope.

Connect a phototube (such as the IP39
tube which is part of the phototube mod-
ule supplied by Project Physics) to the
vertical input terminals of the oscillo-
scope. Notice that no voltage source is
needed in this circuit.

Figs 1

Set the horizontal sweep rate to about
10 per second. Adjust the vertical gain
until you see a 60-cycle trace on the
oscilloscope (the phototube has a very
high impedance, and the wires to it act
as an antenna picking up 60-cycle noise).
Adjust "sync" control of oscilloscope
until this 60-cycle pattern is stable.

Position stroboscope so that light
from it falls on the phototube. Each
flash will produce a sharp vertical line
on the trace. Adjust the flash rate
until there is one flash per cycle of
the 60-cycle pattern (about 80 on the
high range of Stansi stroboscope 1812W).

Fig. 2
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With the flash rate f slightly above
60 per second the lines will be slightly
less than one "wavelength" apart, and
will move to the left. And vice-versa:
if f < 60 per second the lines will be
more than one wavelength apart and will
move to the right. Only when the strobe
rate is exactly 60 per second ill the
vertical lines be stationary on the 60-
cycle trace.

Now reduce the strobe rate. The next
simple frequencies to recognize are 30 per
second (about 35 on the Stansi strobe,
high range), and 20 per second (0 on
Stansi, high range).

Fig. 3

ig. 4

Patterns for other fractional fre-
quencies of 60 per second can also be
recognized and interpreted.

Fig. 5
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In Fig. 5 there are two flashes for
every three 60-cycle periods. The time

between flashes is therefore 1 x 3 x
2 60

=
1
17T sec. So the frequency is 40 per

second.

On the low range of the Stansi strobe
the following stationary patterns were
observed:

f = 1/2 x 60 = 30 per second

f = 1/3 x 60 = 20 per second

f = 1/4 x 60 = 15 per second

f = 1/6 x 60 = 10 per second

Fig. 6
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b) "Circular" trace on strobe.

Conucet the phototube to the vertical
input as above.

Establish a circular or elliptical
trace on the oscilloscope face either by
(a) setting the horizontal frequency
selector to line sweep; or by (b) setting
to external input and connecting the hor-
izontal input terminal to the 60 vibra-
tions per sctond calibration signal avail-
able on the scope (or simply attaching
a short wire to the horizontal input
which will act as an antenna to pick up
60-cycle noise). Adjust horizontal and
vertical gain as necessary to obtain an
open figure.

The electron beam is now tracing out
one revolution of this figure in 1/60 of
a second. Turn on the stroboscope.
Every flash will cause a sharp vertical
peak. Adjust the flash rate until this
peak is stationary. The simplest figure
to interpret is one flash per cycle:

I

Fig. 7

As the flash rate is reduced other
stationary patterns will be produced and
can be interpreted. For instance, 30
flashes per second will produce a peak
every second revolution of the spot.

Fig. 8

Notice the subtle difference between
this pattern and the previous one. Here
the vertical spike is superimposed on a
closed ellipse.



As the flash rate is reduced further

this pattern will recur at f = --
r610

per

second where n is an integer, i.e.,
60

f = =

60
T- = 10;

30;

60
7-

60f- =

= 8.6;

60
20; T- = 15,

60
= 12;

60 - , 60
-- 1.5; T- - 6.7;...

Other series of stationary patterns
can be produced.

Fig. 9 Two spikes in 1/60th sec indicate a fre-
quency of 120 per sec (but few strobes can flash
at this rate the Stansi strobe ..annot).

The pattern below will occur if the strobe
flashes twice in every 3, 5, 7, etc.
cycles, corresponding to flash rates of
60 60 60

= 20; -- = 12; -- = 8.6, etc. per
3 5 7

second.

Fig. 10

Patterns containing 3 and more spikes
per cycle can also be obtained.

Linear versus circular trace method

Clearly the circular technique needs
more careful interpretation than the
"linear trace" method described above.
However, it is particularly useful at
low flash rates. It may not be possible
to get more than 6 cycles of 60 cycle
signal on the oscilloscope face and this
puts a lower limit on the frequency at
which the "linear trace" method can be
used: one spike in 6 cycles means
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f =
60

= 10 per second. The circular

trace method can be used down to the low-
est frequencies.

The circular trace method has the ad-
vantage that it is easier to obtain a
stationary pattern on the circular trace
than on the linear trace. On the other
hand the linear trace is much easier to
interpret. A combination of the two
methods is useful. Use the circular
trace to establish a stationary pattern.
Then at the same flash rate switch to
linear trace for interpretation.

2. Rotating disc method

Any rotating object with a known rate
of rotation can be used. A synchronous
motor with a suitable disc is the most
reliable; some electric fans and other
rotating machines have speed ratings
given and could be used. Rotation rates
of less than about 300 per minute are
not very satisfactory see below.

The method will be described here in
terms of a specific example. Be quite
careful about generalizing to other
situations (i.e., other discs rotating
at different rates).

Mount a disc with 12 equally spaced
marks on the shaft of a 300-rpm synchro-
nous motor (e.g., the motor strobe kit
supplied by Project Physics). Add another
single mark, such as a white star or a
piece of masking tape, between two of the

slots (Fig. 11). Start the motor, darken
the room and turn on the strobe. As the
strobe rate is changed, different station-
ary patterns will appear.

Fig. 11
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The simplest pattern to interpret is
one that shows twelve slots and twelve
stars; the strobe is flashing twelve
times for each revolution of the disc and
the strobe rate is twelve times the rota-
tion rate of the disc: 12 x 300 = 3,600
rpm.

Fig: 12

Reduce the strobe rate slowly until a
stationary pattern showing 12 slots and
6 stars is observed. The strobe rate is
now six flashes per revolution:

Fig. 13

Other patterns that are easy to interpret
are:

Figu s 14

Flash rate = 4 per revolution
(= 1,200 per minute)

Figure 15
Flash rate = 3 per revolution

(= 900 per minute)

Figure 16
Flash rate = 2 per revolution

(= 600 per minute)



Figure 17

Flash rate = 1 per revolution
(= 300 per minute)

The last two figures, those obtained
at flash rates of 10 per second and 5
per second respectively, bring us down
to rates slow enough to be counted
ditJctly.

This really completes the simple cali-
bration of a stroboscope by this method.
However, it is probably worthwhile men-
tioning some of the otner stationary
patterns that can be observed, and their
interpretation.

Figure 17 (above) is the pattern ob-
served if the lamp flashes once per rev-
olution. The same pattern would also be
seen if the lamp flashed once for every
two revolutions of the disc, and once
for every three revolutions and so on.
But in fact there need be no confusion,
for two reasons: first, if one works
from high to low flash rates in this cali-
bration the first time that Fig. 18 is
observed it will correspond to one flash
per revolution, the next time to one
flash per two revolutions, and so on;
and second, in the particular cast of a
300-rpm motor the flash rates concerned
are low enough (5, 2 1/2, 1 1/4...fla..:Ies
per second) to be identified by direct
counting.

The same sort o1 thing will happen at
other flash rates too. Consider for in-
stance Fig. 15. The strobe flashes 3
times for each revolution of the disc.
Suppose it fle.-hed once for every 1 1/3
(=4/3) revolutions of the disc: the
same pattern would be obtained. Similarly
Fig. 14 would be obtained with one flash
for 1 1/2 (= 5/4) revolutions of the disc
as well as at four flashes per revolu-
tion. And in general a figure with n
stars (which is obtained at a flash rate
of n flashes/revolution) is also ob-
tained when the rate is one :lash for

1
every

n+
--- revolutions.
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Other stationary patterns can be ob-
served in which more than 12 slots are
seen. For instance, a flash rate of 8
per revolution (2,400 per minute with
300-rpm motor) will give a pattern show-
ing 24 slots and 8 stars (Fig. 18).

Fig. 18

Flash rates of more than 12 per revo-
lution will give more than 12 slots, of
course. At a flash rate of 16 per revo-
lution, 16 stars, 48 slots are seen
(Fig. 19).

4

Fig. 19

Discs that rotate at 78 rpm (called
phonograph turntables) are easy to obtain,
but their usefulness for strobe calibra-
tion is limited. They can only be used
for slow flash rates.

With a turntable rotating at 78 rpm
carrying a disc with 6 symmetrical radii,
a stationary image of the disc is ob-
served for flash rates of 156 (= 2 x 78);
234 (= 3 x 78); 468 (= 6 x 78) per minute
(Fig. 20). At 936 flashes per minute a
disc with 12 radii is seen (Fig. 21).
At higher flash rates the number of radii
grows and counting them gets difficult.
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Fig. 20

Fig. 21

Sample results

Figures A and B are calibration curves
obtained for a Stansi strobe obtained by
method 1 (oscilloscope). The vernier
adjustment was kept at its upper limit.,
The plot of flash rate against scale
reading is quite non-linear.

1It turns out that a plot of y (the

period, or time interval between flashes)
against scale reading is linear. (This
is because the period is dc,termined by
the time constant of an RC circuit in
the stroboscope, and turning the knob ad-
justs the resistance, evidently in a

1linear manner.) The plot of T against

scale reading makes interpolation and
particularly extrapolation easier, and
fewer points are needed to complete the
graph.

(Note that a plot of f against
1

is not linear: this is be-scale reading
cause there is a fixed resistor in he
circuit as well as the variable one con-
trolled by the knob.

1
f a so f is not pro-R

variable
+ rfixed

1

,

portional to .)
variable
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The Blinky

A simplified circuit diagram of the
blinky is shown in Fig. 1.

/A1/ 6 4.97)/5

Fig. 1 The blinky

1 /FS/

Since it goes through a certain sequence
of actions periodically, on its own ini-
tiative, the blinky is an oscillator.
It is one of a class known as relaxation
oscillators.

The three 30-volt batteries E charge
the capacitor C through the resistance
R.

The neon lamp remains non-conducting
as long as the potential difference
across it remains below the "breakdown"
voltage which is about 70 volts. The
voltage across the neon lamp is of course,
equal to the voltage across the capacitor.
The capacitor continues to charge up un-
til the neon lamp becomes conducting at
70 volts.

Once the neon lamp becomes conducting,
the capacitor begins to discharge through
it. The neon lamp continues to discharge
even when the potential difference across
it has fallen below the breakdown voltage.
In fact, it continues to conduct and the
capacitor continues to discharge through
it until the potential difference across
them reaches about 53 volts. This all
happens very quickly; the whole process
just described takes on the order of 10
milliseconds (0.01 seconds).

The capacitor now begins to charge up
again from the batteries, and the neon
remains non-conducting until the "break-
down" voltage is reached again. Then
the neon bulb glows briefly as the volt-
age drops down to about 53 volts.

The knob on top of the blinky box ad-
justs the variable resistance which con-
trols the rate at which the capacitor
charges between discharges.

There is no switch. The only way to
stop the blinky from blinking is to re-
move the bulb.

Do not worry about the batteries
running down. The current drawn from
them is very small. It is the "shelf

/ e,,, life" of the batteries that determines

P7.,1 A-A rt.
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how long they will last. This can be
extended by keeping the blinky cool (as
in the refrigerator) during the summer.

The most likely reason for a blinky
not to blink is poor contact between one
of the 30-volt batteries and its holder.

ac blinky

(This is not supplied by Project Phys-
ics, but is easy to make and is a useful
piece of equipment for motion studies and
photographs.)

An ac blinky is a neon glow lamp cir-
cuit that operates directly from the 110-
120 volt ac line. The intensity and
duration of the flashes can be varied,
but the flash rate (frequency) cannot:
it is fixed at 60 per second.

Two factors make the ac blinky espe-
cially useful:

a) The flash rate is accurately
known (line frequency is usually
maintained very precisely at 60
per second).

b) The flash rate is high, making
it useful for rapidly moving objects.

But, unlike the regular (dc) blinky
the ac blinky is not a self-contained
unit: it must always be plugged into
the line.

r- If( rrifi.:11:,`

5 5 kV A,

11.,t;/ -17".o,,

tt 2-

77:,96--ti
I 7

(a) Schematic of ac blinky circuit

(b) Physical layout of ac blinky
ac blinky
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Air Tracks

The linear air track supplied by
Project Physics is an inexpensive model.
Although it is quite adequate for many
demonstrations and experiments, it is
not a high precision device.

Little needs to be said about the
operation of the track. Any medium-to-
large household vacuum cleaner which can
be used as a blower should be adequate.
The air flow will be increased if you re-
move the dust-bag from the cleaner. If
you use a large industrial-type cleaner
(e.g., one borrowed from the school shop
or from the janitor), you may find that
it helps to plug t into a variac; too
strong an air flow will cause the gliders
to float too high and to "hunt" along
the track. We have found that the com-
pressed air supply sometimes available
in laboratories is generally not enough
to operate the air track.

To test the track, raise one end a few
inches and release a glider from the top.
The glider 's running satisfactorily if
it rebounds from the rubber band at the
lower end of the track to within ten
inches of its starting point.

Use the leveling screws to adjust
the track so that a glider, released
from rest, has no tendency to move towards
one end or the other. Because of the
slight drop in air pressure along the
track, this balance will not necessarily
be achieved when the track is perfectly
horizontal.

The two small gliders supplied by the
manufacturer have equal masses. The one
large glider has twice the mass of either
small one (± 2 %i. The three gliders
allow you to perform equal-mass elastic
collisions, uneaual-mass elastic colli-
sions and unequal-mass inelastic colli-
sions. Note that if the gliders are
carrying light sources for strobe photog-
raphy, the mass ratios will not be 1:1
or 2:1.

The range of mass ratios can be ex-
tended by taping extra mass to the
gliders. Be sure that the added mass is
distributed symmetrically. It is impor-
tant to keep the center of mass low and
therefore it is better to add mass
(equally) to the two sides of the cart
than to the top. Check the glider for
free running after you have added extra
mass, by doing the rebound test described
above. Me large cart should support an
extra load of at least 40 grams.

The se,. up sketched in Fig. 1 can be
used to impart the same initial velocity
to a glider on consecutive trials. At-
tach a small block to the glider. Draw
the pendulum bob back and let it strike
the block. If the pendulum is always



Fig. 1 Air track

released from the same point and the
glider is in the same position(so that the
bob hits it at the bottom of its swing),
the glider will always acquire the same
initial velocity.

Quantitative Work with Liquid Surface
Accelerometer

Theory predicts that the slope of the
liquid surface is given by

tan 0 = a/g

Figure 1 shows an accelerometer moving
horizontally with constant acceleration
a.

Fig. 1

If the cell has length 22 and the li-
quid rises to a height h above its rest
position at the end of the cell, then
the angle 0 that the surface makes with
the horizontal is given by

So

and

Equipment Notes
Liquid Surface Accelerometer

tan 6 = .

h a
g

h
a = r g.

I.e., the ratio of the two lengths h
to it gives the acceleration in gs.

The matter can be simplified further.
Since g is almost 10 m/sec2, if we make
the length 2 = 10 cm, then

h cm
x 10 m/sec2 = h m/sec2;

10 cm

the height h, in centimeters, is equal
to the acceleration in meters /sect.

To read h it is convenient to stick
some centimeter tape to the front sur-
face of the cell, with the scale verti-
cal, and exactly 10 cm from the center
of the cell. The zero-mark of the scale
should be at the height of the undis-
turbed horizontal level of the liquid,
usually about half way up the cell. It
also helps to stick a slightly wider
piece of white paper or tape on the back
of the cell, opposite the scale. This
gives a definite background against which
to observe the liquid level (Fig. 2).

ce471/1/6/764

or 2,

PAfiefi

Fig. 2

Calibration of the accelerometer

The theoretical derivation described
above can be confirmed experimentally by
the following procedure. Use a conven-
tionals,string, pulley and mass set up to
produce uniform acceleration of a dynam-
ics cart carrying the accelerometer.
The actual acceleration can be measured
from a strobe photograph. (The st -robe
rate and photographic reduction must be
known, of course. The calculation is
much simplified if the strobe rate is
10 per second, and the reduction is 10:1.)
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From the same photograph the height h
can be measured on successive images and

the average value of - calculated. (A

variation of less than 10% was found.)

This is repeated with several differ-
ent falling weights (or masses on the
carts) to produce a range of values of a.

The average value of - is plotted against

the average value of a for each photo-
graph. A typical result is shown in
Fig. 3.

As an alternative (which is less pre-
cise, but involves more students) have
several students stationed along the
cart's path and let each one observe the
value of h as the cart passes him.

For further details and theoretical
derivation of the formula mentioned
above, see J. Harris and A. Ahlgren,
Physics Teacher, vol. 4, p. 314-315
(October 1966).

9.01-

/0C

.3 D H.
Acc6-LEP,q7/01)

nqsex.2)

Fig. 3

A Versatile "Cannon"
A very versatile and inexpensive rub-

ber band-powered "cannon" can be built,
either as an individual activity, or as
a mass-production class activity. Four
of the immediate uses we have tried are:

1. a launcher for range of projectile
demonstrations;

2. a launcher for the "Monkey in the
Tree" demonstration;

3. a device for reproducible forces
for accelerating carts, air track gliders,
etc;

4. a sighting tube for astronomy
(made more accurate by taping a plastic
soda straw along the top of the barrel
paper gets soggy and bends in damp night
air).
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Our model (see Fig. 1) consisted of
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Fig. 1

a 20 cm length of 8 mm bore brass tubing,
with a piece of solid brass brazed to the
middle. An alternative to avoid brazing
would be a length of aluminum tubing with
a wooden dowel fastened to it with epoxy
cement and a small metal strap around the
aluminum tube (see Fig. 2). The plunger

a/004611

5/4/9G0 70
F/7" 7743///6

Fig. 2

/44W 1 I /Y
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consists of a wooden dowel with a larger
piece of wood screwed to the end. A
slot cut across the end of the wooden
piece keeps the rubber band from slipping
off the end of the plunger. A plastic
protractor is glued to the side of the
tube. A short pin is glued in the refer-
ence hole in the protractor, and a thread
and washer is attached to it for deter-
mining a plumb line. For use as a sight-
ing instrument, the handle can be put
through a hole in a piece of wood which
is pivoted on a flat board marked off in
degrees.

Range prediction experiment

1. Determine the muzzle velocity by
firing the cannon vertical11,_measuring
h and substituting in v = 2gh .



2. Estimate the horizontal range,
knowing v from above, and h, height above
the floor, from the relations:

=
2h

, and range = vt.

Mark the expected range on the floor and
try to hit the mark.

3. For the more advanced student,
develop (or have him derive) the general

n 2ei
range formula, R =

v2s9
-------- , and then

try the experiment.

4. In Unit 3 the energy concept can
be used for the same situation:

a) Make a graph of force vs.
length for the rubber band.

b) From the graph, find maximum F
and minimum F when the rubber band
is used for a particular shot.

c) Find the mass of the plunger
and cannon ball.

d) Find the estimated velocity,
using

r
avg

x d = kinetic energy (1/2 mv2) .

Sample results

Using method 3, a measured value of
4.34 meters was obtained for an estimate
of 4.20 meters.

The discrepancy was slightly larger
for method 4. The predicted muzzle ve-
locity (from force-extension curve) was
6.9 m/sec; the measured velocity (from
the height to which the ball rises when
fired vertically) was 6.4 m/sec. A
direct check with a strobe photo or two
photocells and an oscilloscope would be
excellent.

Note that the force vs. extension
curve for method 4 (Fig. 3) does not

Force

Work Done =J F cis

EXtenVon

Fig. 3

pass :through the origin because the rub-
ber band is already stretched before the
plunger is pulled back at all. There is
a finite force for a zero extension (on
our scale). The energy given to ball
and plunger is the total "area" under
the graph.
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Cathode-Ray Oscilloscope

The cathode ray oscilloscope (CR0) is
one of the most versatile laboratory
instruments. This note can only summa-
rize its different capabilities and
functions in the lab and some of its
uses as a teaching aid. The approximate
numerical values given in this note refer
to a typical inexpensive 'scope such as
the Heathkit Model 10-12 ($126.95, wired
from Heath, Benton Harbor, Michigan).

Functions of the oscilloscope

The CR0 is a voltmeter. It can mea-
sure voltages down to about 10-2 volts
(depending on the amplifier). It can
measure short voltage pulses (down to
about 10-6 sec). Because it has a high
input impedance, it draws little current
from the voltage source being measured.

As well as being used to measure volt-
ages, the CR0 is useful as a null detec-
tor. Examples are:

a) a phototube (illuminated by a
pulsed light source) is connected through
an amplifier to a CR0 and the reverse
voltage across the phototube is increased
until the pulses on the CR0 trace disap-
pear, indicating that the "stopping
voltage" for the photoelectrons has been
reached,

b) an ultrasound detector or micro-
phone is connected to the CR0 and moved
through an interference or standing-wave
pattern until the signal falls to zero,
indicating that the detector is at a
node (point of zero intensity).

The CR0 can be used to show the wave
form of a voltage signal (sinusoidal,
square, saw-tooth, etc.) and to measure
the phase difference between two signals.
It can be used to measure time intervals
(10-1 to 10-6 sec) and frequency (10 to
106 cycles per second).

These and other functions make the
CR0 a valuable tool for "trouble shoot-
ing" in the lab, in the repair of radio
and TV sets and in electronics work
generally.

The oscilloscope as a teaching aid

The CR0 also has very many applica-
tions in the teaching of physics, some
of which are listed here.

Electricity: demonstration of the
effect of capacitance and induc-
tance in a circuit; phase relation-
ships between voltages across
different elements in an LCR cir-
cuit; oscillations in tuned cir-
cuits.

Sound: demonstrations of the wave
forms of pure and impure tones,
beats.
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Simple harmonic motion: addition of
two sine curves to slow amplitude
modulation (beats) and Lissajous
figures; measurement of phase and
frequency; Fourier synthesis.

Electronics: display of the function
and characteristics of devices
such as diodes, transistors, va-
cuum tubes, etc.

Time measurements: time-of-flight
measurement of projectiles, pulse
of sound, etc.; display of pulses
from Geiger counter.

Detailed notes on some of these demon-
strations appear in the section "Examples
of the Use of a CRO in Teaching Project
Physics," and in the appropriate sections
of the Teacher Guide.

The CRO can also be used to set up
some very effective attention-getting
displays, corridor demonstrations, sci-
ence fair projects and so on. Examples
of interesting traces are given in Figs.
1, 2 and 3.
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Fig. 1

Fig. 3

Operation

These notes are necessarily of a very
general nature. Refer to the manufac-
turer's instruction manual for detailed
notes on the operation of a particular
oscilloscope.

The ON/OFF switch is often combined
with the INTENSITY control. Wait a
minute or two after turning on before
trying to get a trace on the screen.
Adjust intensity and the FOCUS knob un-
til a bright sharp spot or line is ob-
tained. Its position on the screen can
be varied by means of the VERT(ICAL)
POS(ITION) and HOR(IZONTAL) POS(ITION)
controls. It is bad practice to leave
the 'scope turned on with a high inten-
sity stationary spot it may burn a hole
in the phosphor coating of the screen.

Vertical deflection: voltage measurement

The cathode-ray tube itsexf is sensi-
tive to both de and ac voltages, but its
sensitivity (displacement of the spot
per volt of potential difference between
the deflecting plates) is low typically
of the order of 0.2 mm per volt. Ampli-
fiers are therefore added to increase
the sensitivity. In most simple oscillo-
scopes these are ac amplifiers, and so
these oscilloscopes cannot be used for
dc signals.* A dc oscilloscope has a
dc/ac switch which must be set to the
appropriate position.

*In ac 'scopes it is sometimes possible
to bypass the amplifier and apply a sig-
nal directly to the tube, thus getting
a deflection for a dc input. This usu-
ally involves removing a panel at the
back or side of the instrument to expose
the appropriate terminals. PROCEED WITH
GREAT CAUTION: THESE TERMINALS MAY BE
AT VOLTAGES AS HIGH AS 1500 V. Be sure
to unplug the instrument before you ex-
pose the terminals. Because of the low
sensitivity of the cathode-ray tube it-
self, the deflection will probably beFig. 2
small.



A voltage signal to be measured is ap-
plied between the VERT INPUT terminal
and GROUND terminal. (Make sure that
the connection to ground is consistent
with the circuit or device providing the
signal: i.e., beware of "crossed
grounds.") Voltages applied here deflect
the beam up and down on the screen. This
terminal is sometimes referred to as the
Y INPUT, and the deflection as Y DEFLEC-
TION. The amplification of this signal
is controlled by two knobs which may be
called VERT INPUT, VERT GAIN, VERT AT-
TENUATOR, VER- AMPLIFIER, etc. Usually,
one knob prov-les coarse control in
three or more steps (e.g., 1X, 10X, 100X)
and the other gives fine control. In
more expensive oscilloscopes these con-
trols are calibrated in volts per centi-
meter deflection of the spot on the
screen, With simpler 'scopes it is neces-
sary to calibrate the sensitivity at a
given setting by applying a signal of
known voltage and measuring the deflec-
tion. Such a cal_brating signal may be
provided at one of the terminals on the
'scope itself; on the Heath 10-12, for
example, the 1 volt P-P terminal provides
a 60-cycle signal with a peak-to-peak
amplitude of 1 volt. (Note that the
legends 100X, 10X, 1X may refer to how
much the input signal is attenuated rather
than to how much it is amplified, so
the 1X is the range of highest sensi-
tivity.)

Pickup

Sometimes you may find that a signal
is seen on the oscilloscope face even if
no obvious voltage is applied to the
oscilloscope input. To see some of the
characteristics of this "pickup", try
the following procedure. Set the FREQ
SELECTOR to about 10/sec, and turn up
the VERT GAIN to the maximum setting.
Attach one end of a short length of wire
to the VERT INPUT leaving the other end
unconnected. An approximately 60-cycle
sinusoidal trace will appear on the
oscilloscope. Its amplitude increases
if you touch the end of the wire, or use
a longer piece of wire.

The wire is acting as an antenna and
is picking up the 60-cycle electromag-
netic field that exists, to a greater or
lesser extent, in the vicinity of any
60-cycle current, and is particularly
strong near, transformers fluorescent
lamps, etc. Although the ac voltage due
to the varying field is small, the large
amplification and high input impedance
of the oscilloscope can result in an
appreciable trace amplitude.

Connect a resistor (R11 megohm) between
the "antenna" and the ground terminal of
the CRO. The amplitude of the signal de-
creases, but is still appreciable. If
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the value of R is decreased the pick-up
becomes smaller.

Because of this spurious "pick-up" sig-
nal, shielded cable must be used to con-
nect the CRO to high impedance, low volt-
age sources. The same considerations
apply to all high-gain amplifiers.
(Note that the phototube supplied by
Project Physics R%5 megohms is mounted
in a grounded metal box, and shielded
cable is used to connect it to the am-
plifier.

Horizontal deflection: measurement of
time, frequency, etc.

With the HORIZ/FREQ SELECTOR (or SWEEP
SELECTOR) set to EXT(ERNAL), a signal
applied to the HORIZ INPUT (X input) ter-
minals causes the beam to move left or
right across the tube face (horizontal
or X deflection). As with the VERT INPUT
the signal is amplified and except on dc
oscilloscopes a steady (dc) voltage does
not produce a deflection. The amplifica-
tion is controlled by the HOR(IZONTAL)
GAIN or HOR(IZONTAL) AMP(LITUDE) knob.

When the FREQ SELECTOR or SWEEP SELEC-
TOR is in the LINE SWEEP position, a 60
cycle-per-second sinusoidal voltage is
applied to the horizontal deflection
plates; if there is no vertical deflec-
tion, the spot will move back and forth
across the screen in simple harmonic mo-
tion. Note that the deflection is not
linear with time in this setting. If an-
other sinusoidal voltage is applied to the
vertical deflection plates, the resultant
motion of the spot will be the combination
of two perpendicular SHM's--i.e., straight
line, circle, ellipse, Lissajous figure,
depending on the relative amplitude,
phase and frequency of the two signals.
With the SWEEP SELECTOR at LINE SWEEP,
the PHASE knob is used to shift the phase
of the sweep voltage with respect to the
input signal. The traces shown in
Figs.4 and 5 were both made with the
selector on LINE SWEEP and 60 cps signal
on the vertical plate: the phase is
shifted 90° between Fig. 4 and Fig. 5.

Fig. 4

129



Equipment Notes
Cathode-Ray Oscilloscope

Fig. S

For other settings of the HOR/FREQ
SELECTOR or SWEEP SELECTOR control, an
internal circuit applies a varying volt-
age to the plates that control the hori-
zontal position of the spot. This volt-
age has a saw-tooth wave form:A/W.
The spot moves across the screen from
left to right at a uniform rate while the
voltage is increasing, and very rapidly
flies back to its starting position when
the voltage drops to its minimum value.
In this setting deflection is linear with
time. (Automatic "retrace Flanking" re-
duces the intensity of the spot so that
it is not seen as it flies back to the
left of the screen.) The sweep frequency
is controlled by two knobs. The HOR/FREQ
SELECTOR, or SWEEP SELECTOR, provides
coarse control in steps. Typically, one
setting will cover a "decade" of fre-
quencies, e.g., 10 - 100, 100 - 1000, etc
cycles per second. The FREQ VERNIER or
SWEEP VERNIER gives fine control within
these ranges. On expensive oscilloscopes
these controls may already be calibrated.
Otherwise, they can be calibrated by the
following procedure. A signal of known
frequency is applied to the VERT INPUT.
By counting the number of cycles of the
known-frequency signal on the trace one
can establish the sweep frequency. (E.g.
if there are exactly n cycles of a 60
cycle-per-second signal on the trace,

then the sweep frequency is 1- x 60 per

second; see Fig. 6.) For low sweep rates
a 60-cycle signal can be used. On the
Heath oscilloscope 10-12, changing the
FREQ SELECTOR one step will change the
sweep rate by approximately a factor of
ten, e.g., from 20 per second to 200 per
second. For more accurate calibration at
higher sweep rates, use a calibrated au-
dio oscillator (signal generator) to pro-
vide a signal of known frequency. Some
expensive oscilloscopes have a built-in
oscillator that can be used to apply
known frequency signals to the vertical
deflection plates. Others have an out-
put terminal which gives a 1-volt 60-
cycle signal.
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The length of the trace is controlled
by the HOR GAIN knob: this does riot af-
fect the sweep frequency (number of sweeps
per second)--one full sweep still repre-
sents the same time interval but it
does, of course, change the sweep rate
(centimeters per second), and one centi-
meter will represent a different time
interval.

Synchronization of the horizontal
sweep frequency with the signal applied
to the vertical input is important. If
the two are synchronized, then the same
pattern will be repeated for successive
sweeps, and what appears to be a station-
ary trace will be obtained on the screen
(as in Fig. 6).

Fig. 6

But if the signal and sweep frequencies
are not synchronized, then the traces
obtained for successive sweeps of the
screen will not coincide (Fig. 7):

4i4

Fig. 7

Synchronization is achieved by fine
adjustment of the FREQ VERNIER CON-
trol until the sweep frequency is an
exact fraction of the signal frequency.
By setting the SYNC SELECTOR to INT+ or
INT- the start of the sweep can be syn-
chronized with either the positive or
negative slope of the input signal (Figs.
8a, b).



Fig. 8a

Fig. 8b

The sweep can also be synchronized
with a signal applied to the EXT(ERNAL)
SYNC terminal, by setting the SYNC SELEC-
TOR knob to EXT SYNC. Adjust the EXT
SYNC AMPLITUDE control until the sweep is
synchronized with the signal. The EXT
SYNC amplitude setting has no effect unless
the SYNC SELECTOR is set to EXT SYNC.

There may also be a "LINE" setting of
the SYNC SELECTOR. In this position, the
horizontal sweep is synchronized with
the (60-cycle) line frequency.

A useful feature present on some os-
cilloscopes is a "trigger." (The Heath
10-12 does not have this feature.) The
horizontal sweep can be triggered by a
signal applied from an external circuit
to the trigger input. Until the trig .
gering signal is applied, the spot re-
mains stationary. This is particularly
useful, for example, in time-of-flight
measurements. If one wants to measure
the time interval between two signals
(e.g., the interruption of two beams
of light to two photocells), it is desir-
able (though not essential) that the two
signal pulses occur on the same horizon-
tal sweep. This can be achieved by trig-
gering the sweep on the rise of the first
signal pulse. If the CR0 has no trigger
facility, then it may happen that the
first signal will occur towards the end
of one sweep and the second signal will
occur on the next sweep. This makes
measurement of the time interval between
the two signals more difficult.
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Some, but by no means all, oscillo-
scopes hate a two-beam display: there
are two Y inputs and it is possible to
apply different signals to the two beams.
This makes it very easy to compare the
amplitudes and frequencies of two differ-
ent signals. In reality, there is only
one electron beam which is switched up
and down so rapidly that two apparently
continuouF beams are seen (Fig. 9). The
sweep rate for the two beams must be the
same, but the amplifications of the two
signals can be adjusted independently.

Fig. 9

On a "two-beam oscilloscope" the
switching is done internally. External
switching circuits are available that
enable one to make a two-beam display of
two independent signals on a regular
oscilloscope (e.g., Heathkit Electronic
Switch ID-22, $23.95 unassembled).

Intensity modulation (Z modulation)

Some oscilloscopes have an input ter-
minal that is connected (through a capac-
itor) to the intensity-control grid of
the cathode-ray tube. This terminal is
commonly marked Z-AXIS. On some oscillo-
scopes it is necessary to remove the back
panel to uncover this terminal. Always
unplug the oscilloscope before removing
the panel.

The potential of the grid (with re-
spect to the cathode) controls the in-
tensity of the electron beam, and hence
the brightness of the spot or trace on
the screen. It is this grid potential
which is adjusted by the INT(ENSITY) con-
trol knob. (If the grid is made more
positive, the spot becomes brighter.)
If a varying voltage is applied to the
grid, the beam intensity will be modu-
13ted at the frequency of the applied
signal. Typically, about 10 volts is
required for complete blanking of the
trace.

Intensity modulation may be used to
provide accurate time markers on the
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trace. (And it is the same intensity
modulation, by the way, that creates the
light and dark areas in the picture on
a TV screen.)

Photography of CRO traces

The use of fast (3000-speed) Polaroid
film makes it possible to photograph the
trace. A close-up auxiliary lens to
give an approximately 1:1 object-to-
image ratio is necessary. If possible,
remove the camera back and insert a
ground glass or other focussing screen
in the plane of the film: with the shut-
ter open, adjust the camera position to
sharp focus. A rigid support for the
camera is needed, of course. Turn up
the oscilloscope intensity control until
a bright trace is obtained. However, if
the intensity is increased too far on
some oscilloscopes, the whole screen may
begin to glow faintly and there will be
a loss of contrast. If there is a col-
ored screen or filter mounted in front
of the oscilloscope face, it may help
to remove it. Background illumination
should be low, but it is certainly not
necessary to work in a darkroom.

The appropriate aperture and time set-
tings can quickly be found by trial and
error. Don't forget that if the shutter
speed is faster than the sweep rate only
part of the trace will be photographed;
(e.g., at 1/50 sec exposure, you cannot
photograph a complete 1/30-second trace).

The photographs used to illustrate
this note were taken with the experimen-
tal model 002 Polaroid Land Camera, using
the clip-on auxiliary lens.

Examples of the Use of a CRO in Teaching
Project Physics

a) The ultrasound transducers used
in the wave experiments in Unit 3 have
a very sharp resonance at 40 kilocycles;
before attempting anv experiment with
them, the oscillator driving the source
transducer must be carefully tuned to the
resonant frequency. Set up the equipment
as shown in Fig. 10 with the receiver
transducer a few centimeters in front of
the source. Set the CRO to a sweep rate
of about 10 kilocycles per second. Slow-
ly adjust the frequency control on the
audio oscillator until the trace on the
oscilloscope screen "peaks" to a maximum
signal.

In the experiments themselves, the
amplitude of the trace on the oscillo-
scope screen is used to estimate the
effectiveness of various materials as
reflectors and absorbers of ultrasound,
and to locate the positions of nodes
(zero amplitude) and antinodes (maximum
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Fig. 10

amplitude) in various interference and
standing wave patterns.

b) The oscilloscope is used as a cur-
rent meter--or, more accurately, as a
null detector in the investigation of the
photoelectric effect (one of the Unit 5
experiments). The output of the photo-
tube is fed (via an external amplifier)
to the oscilloscope. As the counterpo-
tential across the phototube is increased,
the photocurrent, and thus the amplitude
of the trace on the CRO, decreases. The
experiment consists of finding what
"stopping voltage" is needed to reduce
the photocurrent to zero for light of
different frequencies.

c) (Not especially relevant to Project
Physics) The CRO can be used to make
quantitative measurements of ac voltages
and currents, and to compare the peak-to-
peak vcl.tage with the reading given by an
ac voltmter, which is the root-mean-

square voltage (11Vp_p =

To measure ac current, connect the
oscilloscope across a known resistance
(non-inductive) and use I = V/R to cal-
culate current.

Wave form display

The CRO can be used to show the differ-
ence between sinusoidal and square waves;
to show half- and full-wave rectification
of ac and the effect of a smoothing ca-
pacitor. It can also be used to show
the wave forms of the sounds produced by
various musical instruments, by students'
voices, etc.; use microphone as detector.
(A small speaker can also be used as a
microphone amplification may be necessary.)
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Fig. 11 Recorder plays a high C

1

Fig. 12 Harmonica plays a high C

Two or more audio oscillators can be
set to fundamental and harmonic frequencies
to synthesize tones approaching those of
various musical instruments. The higher
frequencies must t.rt set to exact mul-
tiples of the fundamental to get a stable
trace.

Fig. 13
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To demonstrate the formation of beats,
set the two oscillators to frequencies
that are only slightly different.

Specific examples of wave-f rm display
in Project Physics wL

a) In E/D 14.13 (electron-beam tube)
the oscilloscope can be used to s:Iow
that the electron-beam tube, like a
vacuum diode, is a rectifier. Even if
an ac voltage is applied between fila-
ment and plate, the current is dc (half-
wave rectified), corresponding to elec-
trons moving from filament to plate.
(A two-beam display would be useful here.)

b) To show the action of the tran-
sistor switch used in various standing-
wave demonstrations in Units 4 and 5.

c) To show the damped oscillations
in an LCR circuit (Demonstration on In-
duction, Resonance Unit 4).

d) To "see" the signal broadcast by
a radio station (Demonstration on Induc-
tion, Resonance Unit 4).

Time Measurements

a) Timing moving objects

Use two photocells in series and two
light beams. The phototube units (PV100)
and light sources from the Milliken equip-
ment supplied by Project Physics can be
used. Notice that no voltage supply is
needed for the phototubes. This arr. ge-
ment can be used to time falling objects,
bullets, etc. Sweep rate must be known,
of course. A rough idea of the speed of
the object will make it easier to choose
a suitable sweep rate (and distance be-
tween photocells).

Fig. 14

In some situations, the photocell can
be replaced by a simple switch that is
momentarily closed by the object as it
moves past. (For instance, a steel ball
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making contact between two pieces of alu-
minum foil as it passes.)

Some care is needed in interpreting
the trace. The signals from the tao
phototubes (or switches) will have
slightly different shapes due to differ-
ences in illumination, etc. Establish
which signal is from which tube by inter-
cepting first one light beam, then the
other. Now examine carefully the trace
record obtained when the moving object
crosses both light beams or switches.
If the first signal (i.e., signal due to
interruption of first light bean.) occurs
towards the beginning of the sweep and
is followed by the second signal, then
there is no special problem: the distance
between the two signals represents the
time between the two events. But it can
happen that the first signal occurs
towards the end of one sweep and the
second signal occurs on the next trace:
in this case the sum of the distance
from the first signal to the end of the
trace plus the distance from the begin-
ning of the trace to the second signal
represents the time interval between
the events.

Fig. 15(a)

*--

Fig. 15(b)
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If a triggered sweep circuit is
available, this complication need not
occur. The triggering circuit can be
used to start the sweep just as the ob-
ject crosses the first beam, or closes
the first switch,

b) Stroboscope calibration

A 60-cycle signal is used as a refer-
ence. See the notes on calibration of
xenon stroboscope in the Teacher Guide.

Frequency measurement

The precision of a frequency measure-
ment depends upon the accuracy of the
reference source available. If the un-
known frequency is a simple multiple or
sub-multiple of 60 cycles, then 60-cycle
line frequency, which is usually very
closely controlled, can be used.

Set the HORIZ SELECTOR to LINE SW(EEP)
and the SYNC SELECTOR to LINE, or apply
a 60-cycle signal from a stepdown trans-
former to the HORIZ INPUT.

Apply the signal whose frequercy is
to he measured to the VERT INPUT. Adjust
the HORIZ and VERT gains if neces-ary.
Figures 16 through 19 are typical of the
patterns that can be obtained.

Fig. 16

Fig. 17



Fig. 18

Fig. 19

Only if there _s a simple whole number
ratio between f

vert
and fhoriz will sta-

tionary figures of thi, type be obtained.

The pattern observed depends on the
relative phase of the two signals as
well as their frequency ratio. The
circle snown in Fig. 16 is obtained from
two perpendicular sinusoidal signals 90°
(r/2) out of phase. If the phase dif-
ference between the two signals is 0° or
180° (r radians), the resultant trace
will be a straight line. Intermediate
values of phase difference will give
ellipses. The PHASE knob can be used to
vary the phase difference between the
signal applied to the Y plates and the
line frequency sweep.

If the two frequencies are not equal,
then the phase difference will vary con-
tinuously. The trace will change from
straight line (0°) to ellipse ,45°) to
circle (90°) to ellipse (135°) to a
straight line perpendicular to the orig-
inal one (180°) and through ellipse,
circle, ellipse, back to the original
straight line. The frequency at which
this change occurs is equal to the fre-
quency difference between the two signals;
e.g., if the two signals are 60 and 61
cycles, the trace pattern will go through
one complete cycle of transformations in
one second.
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This technique can be used to calibrate
an oscillator against a 60-cycle signal,
at frequencies that are, or are very
close to, multiples or submultiples of
60/sec. But if the problem is to mea-
sure a frequency which does not happen
to be equal or close to a multiple or
submultiple of 60 cycles, then this me-
thod ca-not be used. Instead, it is
necessary to use a variable-frequency
oscillator whose calibration is accurately
known as a reference.

Demonstrations of complex motions

In the previous section on frequency
measurement by means of Lissajous figures,
two independent signals were applied
one to the Y and one to the X input.

It is also possible to produce circular
and elliptical traces using only one ac
voltage by making use of tine fact that
in an RC circuit there is z. 90° phase
difference between -Ole voltage across
the resistor and the voltage across the
capacitor (Fig. 20).

C.)

0 0

r.

(.;

Fig. 20 The HORT?. SELECTOR is set to EXT.

Note that the mid-point of the RC
circuit is connected to the ground ter-
minal of the oscilloscope; it is impor-
tant that neither output terminal of the
oscillator be grounded. If both the
oscilloscope and the oscillator are con-
nected to the line by a three-wire cable
and three-pin plug, you may have to use
a three-to-two adapter plug to isolate
the oscillator from ground.

The trace will be a circle or an
ellipse, depending on the two voltages
and the horizontal and vertical gains.

Suitable values of R and C for 1000
cycles per second are 1000 ohms and 0.1
microfarads. (Note that as the frequency
is increased the impedance of the capac-
itor drops, the voltage drop across it
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drops, and what was a circle becomes
elliptical.)

More complex patterns can be made if
two oscillators are available. For ex- .

ample, the trace shown in Fig. 3 at the
beginning of this article was produced
by the circuit shown in Fig. 21 (the
HORIZ SELECTOR is set to EXT).

1

Fig. 21

Set up a circular or elliptical trace
as described above, at say 60 cycles.
Then apply a higher frequency, say 1200
cycles, sine- or square-wave voltage to
the VERT INPUT.

Fig. 22

Fig. 23

Intensity modulation

J. Time markers. Set up circular,
elliptical and epicycle traces as de-
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scribed in the section "Demonstrations
of complex motions." Apply a sinusoidal
signal to the Z-axis to provide intensity
modulation at a frequency that is at
least ten times higher than the fre-
quencies applied to the X- and Y-inputs
to provide at least ten time markers per
cycle. This modulation frequency must
be adjusted carefully: only when it is
an exact multiple of the trace frequency
will a stationary pattern be obtained.
These time markers show that the spot
moves around the circle with constant
speed. In the ellipse it moves most
quickly when it is close to the center;
but note that this motion, unlike plan-
etary motion, is symmetrical about the
center of the ellipse. (So in this case
the "equal areas" 1 can be applied to
the motion about the center, not to mo-
tion relative to a focus. The same is
true for the motion of a conical pendu-
lum.)

2. "Television." Set the HORIZ FREQ
to about 15 kilocycles. Apply a 60-cycle
sinusoidal signal of a few volts peak to
peak to the Y input (this can be from an
audio oscillator, a step-down trans-
former, or the 60-cycle calibration sig-
nal provided by the oscilloscope itself).
Adjust the horizontal And vertical gain
to obtain a square or rectangular area
that fills most of the tube face.

Apply an ac voltage of about 10 volts
peak to peak (e.g., from the Project
Physics oscillator unit) to the Z axis.
If the frequency of this signal is a
few times greater than the sweep fre-
quency, a sweep pattern of vertical bars
will be formed as the trace is blanked
out several times in each sweep. If the
modulation frequency is several times
less than the sweep frequency, then a
pattern of horizontal stripes is formed.
Stabilize the pattern by setting the
SYNC SELECTOR to EXT, connecting the
EXT SYNC terminal to the Z-axis oscil-
lator, and turning up the EXT SYNC AMP
control until the pattern "freezes."

With two oscillators at different
frequencies it is possible to combine
the vertical bars and the horizontal
stripes to form a checkerboard pattern.
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Experiments

Commentary

Experiment Notes (Commentary on the Student Handbook)

In the following section, we have reprinted a column
from the Student Handbook on the inner column of each
page. In the outer column next to it you will find sug-
gestions about how to run the experiments, answers to
questions, and other information.

The film loop notes are collected in a section at the
end.

Teachers are encouraged to add their own notes to ex-
periments and loops.
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Pages from a student's lab notebook. The table is used to record both observed quantities
(mass, scale position) and calculated quantities (force, extension). The graph shows at
a glance that the extension of the rubber band changes as the force is increased in a
non-linear way (that is, a different rate 0 to 5 cm and above 5 cm).

137



Experiments
El

Although most of the salient facts
about the motion of the sun, stars,
moon and planets are given in Chap-
ter 5 of the text, it would be a
great loss if students' knowledge
of them remained purely theoretical.
There is no substitute for the stu-
dents' own experience in making this
sort of observation for themselves.
For some students this may well be
the first time that their attention
has been guided to the beauty of the
night sky; or that they have under-
stood the change in position of the
sun during the year and the moon
during the month At the least they
will come to appreciate the skill
and patience of early astronomers
working with the same sort of prim-
itive instruments. And some stu-
dents will hopefully be excited
enough to continue their observa-
tions beyond the outlines sugges-
ted.

The activity is unusual in that
it continues over several weeks; on
the other hand, the time required
for each observation can be quite
short. Start early in the year.

Encourage all students to make
these elementary observations.
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Experiment 1 Naked Eye Astronomy

Preliminary

Do you know how the sun and the stars,

the moon and the planets appear to move

through the sky? Do you know how to tell

a planet from a star? Do you know when

you can expect to see the moon durinc

the day?

The Babylonians and Egyptians knew the

answers to these questions over 5,000

years ago. They found them simply by

watching the ever-changing sky. Thus

astronomy began with simple observations

of the sort you can make with your un-

aided eye.

Although astronomy is one of the oldest

branches of science, it is one of the

most active today. These naked-eye ob-

servations are the basis for the work

done by the giant telescopes and space

probes of today.

You know that the earth appears to be

at rest while the sun, stars, moon and

planets are seen to move in various

paths through the sky. The problem is

to describe, in quite general terms,

what these paths are, and how they change

from day to day, from week to week and

from season to season.

Because some of these changes occur

slowly, you will need to watch carefully

and keep a careful record of your obser-

vations over a period of at least four

to six weeks.

Observing the Sun

(,,AUTION: NES/ER look directly dt_ the

sun; it can cause permanent eye damage.

Do not depend upon sunglasses or fogged

photographic film for protection. It is

safest to make sun observations on shad-

ows.)
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1. In what direction does the sun set?

Always make your observation from the

same observing position. If you don't

have an unobstructed view of the horizon,,

note where the sun disappears behind the

buildings or trees in the evening.

2. At what time does the sun set, or

disappear below your artificial horizon?

3. Try to make these observations about

once a week. Draw a simple sketch show-

ing the prominent.objects on the horizon

and the position of the setting sun.

4. Repeat the observation a week later.

Have the position or time of sunset

changed? Does it change in a month?

Try to continue these observations for

at least two months.

5. If you are up at sunrise, you can

record its time and position, too.

(Check the weather forecast the night

before to be reasonably sure tha'. the sky

will be clear!)

6. How does the length of the day, from

sunrise to sunset, cnange during a week?

A month?

Observations

Below there are more detailed sug-

gestions for observations to be made

on the sun, the moon, the stars and the

planets. Choose at least one of these

objects and later compare notes with

classmates who concentrated on others.

Choosing references

Before you can locate the positions

of objects with respect to each other

you must choose some fixed lines or

planes to which all measurements may he

referred. For example, establish a

north-south sine, ana then with a pro-

tractor measure positions of all objects

in the sk; around the horizon with ref-

erence to this line. Such angles around

Experiments
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Suggest that one student (or
pair) concentrate on making ob-
servations of either the sun, or
the stars, or the moon, or the
planets. Different groups can
later share their observations.
No student should feel he must at-
tempt all the suggested observa-
tions (although he ma. do so).

Of course, observing conditions
vary gre.tly and in smoggy urban
areas thy are distinctly bad. Even
in good areas there will be bad
nights.

A planetarium visit can be used
as a supplement to (or in poor
ing areas as a substitute for) per-
sonal observations. Contact the
nearest planetarium and explain
briefly what the course is about.
Most planetarium directors will be
very willing to put on a special
show for your class that emphasizes
the celestial motions important in
Unit 2. A suggested program is giv-
en at the end of these notes.
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the horizon are called azimuths and are

measured from the north point througl!

east (90°) to 3outh (180°) and west

(270°) around to north (360', or 0°1.

A horizontal plane is the second ref-

erence. This plane can be used even when

the true horizon is hidden by trees,

buildings, hills or other obstructions.

The angle between the line to a star and

the horizontal plane is called the alti-

tude.

The north-south line can be established

in several different ways. A compass is

used to establish magnetic north, which

may not be the same as true north. The

magnetic north pole toward which your

compass points, is more than 1000 miles

from the geographic north pole, so in

most localities the compass does not point

true north. The angle between magnetic

north and true north is called the angle

of magnetic declination. At some places

'0,4.1,,,,,,Imeo ,1,,,,,,,,,w,f1.



nalgnetic declination is zero and t:.e

compass points toward true north. Th

map of the U.S.A. these points lie along

a wiggly line which runs throu-4h western

Xicnigan, Indiana, eastern Fentucky, Ten-

nessee, across Alabama and along toe

eastern side of Florida. At places east

of this line, the compass points west of

true north; at places west of the line,

tne compass points east of true north.

In the far northwestern or northeastern

United States (e.g., Portland, Oregon or

Portland, Maine) the difference between

magnetic north and true north is nearly

20°. You can find the angle of declina-

tion for your area from the map (Fig. 1).

Tne North Star (Polaris) is also used

to establish the north-south line. It is

the one star in the sky that does not

move much from hour to hour or with the

seasons, and it is almost due north of

an observer anywhere in the northern

hemisphere.
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An observing night early in the
school year at which the teacher,
or if possible a local (amateur) as-
tronomer, is present will help get
the students started. It is much

easier to pick out a constellation,
or planet, when someone is pointing
to it in the sky, than to recognize
it for oneself from a map.
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You may use a or-w-nent constellation
(star group) to loc:Ite Pwaris. First,
find the "Big Lipp..?r" which.on a Septem-
ber evening is low in tne sky anc a lit-
tle west of north. Tne two stars forming
the side of the oipp,:r opposite the handle
are known as the 'pointers," because they

point to the North Star. A line passing

through them and extended upward passes

very close to a 5cight star the last

star in the handle; of the "Little Dip-
per." This briqht star is the Pole Star,
Polaris. On St.ptember 15 at 8:30 p.m.

these constellations are arranged about
as shown in the diagram:

Imagine a line from Polaris st-aight

down to the horizon. The point where

this line meets the horizon is due north
of you.

Now that you have established a north-

south line, either with a compass or from

the North Star, note its position with

respect to fixed landmarks, so that you

can use it day or night.
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A. Sun

You can use the "shadow theodolite"

to make observations of the altitude of

the sun (height of sun above horizon)

and its azimuth (angle between your north

point and a line to the sun). Follow

the assembly instructions packed with the

shadow theodolite parts; work carefully

the accuracy of your instrument depends

upon the precision with which you assem-

ble it.

Set the theodolite so that the zero

line on the horizontal table points north-

south. When the plumb line passes through

the hole without touching it, the table

is horizontal. This will be easier to

do if you support the instrument on the

top of a post or wall.

Look for the shadow of the plumb line

on the table. Read off its position in

degrees: this the sun's direction east

orwest of the south point. To find the

true azimuth add 180° to the reading.

Example: a reading of -30° means that

the sun is 30° east of south at the time

of observation. Azimuth = -30° + 180° =

150°.
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Azimuth changes steadily (15°/
hour).

Noon (sun due south, and highest
in the sky) is NOT likely to be ex-
actly 12 o'clock. You may be on
daylight saving (or summer time),
in which case noon is at about 1
p.m. But even on standard time you
are not likely to be located on the
central meridian of your time zone.
Places near those central meridians
are given in Table 1. If you are
east of the central meridian for
your time zone, the sun will cross
your local meridian 4 minutes early
for each 1° eastward. Similarly,
if you are west of your time zone
central meridian, the sun will tran-
sit 4 minutes later for each 1° of
longitude westward.

TABLE 1

Some Places Near the

Experiments

Now rotate the theodolite unti: the

tnread's shadol, is :.)r1 the zero line.

Look for a bright rectangle on the ver-

tical plate caused by sunlight passing

through one of the windows in the top

plate. Make sure the plate is still

horizontal; read off the position of the

bright area on the scale. This is the

sun's altitude.

Some things to observe:

Record the date and time of all your

observations.

Observations to be made during one day

(1) Sun's azimuth at various times

during the day. Keep a record of azi-

muth and time of observation. Does the

azimuth angle change steadily during the

day, or is the sun's apparent motion

more rapid at some times than at others?

How fast does the sun move, in degree

per hour?

(2) When is the sun due south?

(3) How does the sun's angular alti-

tude change during the day? When is it

greatest?

Observations to be made over an extended
period

Try to make `here observations about

once a week fo . period of at least a

month or cwo. contihue for longer if

you can. Don't worry if you miss some

observations because of poor weather.

(1) Altitude of sun at noon--or some

other convenient hour. On what date is

the noon altitude of the sun a minimum?

Central Meridians of Time Zones

Places Near
Mid.' Mid-longi-

What is the altitude angle on that date?

(2) Try to use your theodolite to

make similar obserVations of the moonZone longitude tude
(at full moon) too.

Eastern 0
W Philadelphia

Central 90° W Memphis, St. B. Moon
Louis, New
Orleans 1. Observe and r :ord the position and

Mountain 105° W Denver shape of the moon on successive evenings
Pacific 120° W Lake Tahoe through as much of its cycle as possible.

144

10



If yol. miss a night, Just record the ex-

istence of the gap in the data. Make

sketches showing the relative positions

of moon and sun. Show the moon's phase.

If the sun is below the horizon when you

can see the moon, you will ha,,e to esti-

mate the sun's position.

2. Can you locate the position of the

mcon against the background of fixed stars

and plot its position on a sky map?

Sketch the phase of the moon on the Con-

stellation Chart (SC-1) supplied by your

teacher.

3. What is the full moon's maximum alti-

tude? How does this compare with the

sun's maximum altitude on the same day?

How does it vary from month to month?

4. At full moon you may be able to use

the shadow theodolite, described in

section A, on sun observations, to de-

termine the moon':, altitude and azimuth.

Try it.

5. There will be a total eclipse of the

moot on October 18, 1967. Consult

Table II of the Unit 2 Handbook Appendix

for the dates of lunar e'lipses in other

years.

Experiments
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This should show that the moon
moves about 360° in a month. By
plotting the position and shape of
the moon on the constellation chart
SC-1 they may be able to confirm how
the moon's phase depends on its po-
sition relative to the sun. (Sun's

position at ten-day intervals is
given along ,2cliptic on SC-1.)

Students could also use the
sighting device described in the
equipment notes on p. 112 to
measure the moon's elevation.
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In spring and autumn the full
moon follows a path close to the
sun's across the sky. But in win-
ter the full moon is far north while
the sun is far south. (Fig. 2.) In
summer their relative positions are
reversed. These relations can be
shown with the sky c- a flask, with
an armillary sphere, or our approxi-
mation to it, or in a planetarium.

Try to arrange an observation
night. Enlist the help of a local
(amateur) astronomer if you can.

Figure 4 of the student's notes
shows the stars near Polaris. Not
all will be visible above the hori-
zon throughout the year. The "Star
and Satellite Path Finder" (supplied
by Project Physics, extras obtain-
able from Edmund Scientific, Bar-
rington, New Jersey for 50 cents
each) shows which stars are above
the horizon at latitude 40° N at
a particular date and time.

The Constellation Chart SC-1
shows the stars in a band 60° N
and S around the celestial equa-
tor. This includes all the stars
high in the sky. The curved line
across the middle of the chart is
the ecliptic the sun's path
throughout the year and its posi-
tion at 10-day intervals is marked
on the ecliptic.

Relative to the sun, the stars
move about 30° westward per month.
Different stars appear in the south-
ern sky as the seasons change (e.g.,
Orion is prominent in winter but is
not seen in summer because the sun
is in that part of the sky) See the
"Star and Satellite Path Finder."
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This multiple ,xposure picture of the moon 1.1s
taken with a Polaroid Land Camera by Rick Pearce,
a twelfth-grader in Wheat Ridge, Colorado. The
time intervals between successive exposures
were 15 min, 30 min, 30 min, and 30 min. Each
exposure was for 30 sec using 2000-speed film.

C. Star

1. On the first evening of observation

loCate some bright stars that will be

easy to find on successive nights. Look

for star groups that will ne easy to re-

locate. Later you will identify some

of these groups with constellations that

are named on your star map (Fig. 2).

Record how much the stars have changed

their positions after an hour; after two

hours.

2. Take a photograph (several minutes'

exposure) of the night sky to show this

motion. Try to work well away from

bright street light., and on a moonless

night. Include in the picture some of

the horizon for reference. Prop up your

camera so it won't move during your time

exposures. Use a small iris opening

(large f-number) to reduce fogging of

your film.

3. When viewed at the same time each

night, are the positions of the star

groups constant in the sky from month

to month? Do any new constellations ap-

pear after one math? After 3 or 6

months?

A time exposure photograph of Ursa Major ( "Thy
Big Dipper") taken with Polaroid Land Camera on
an autumn evening in Cambridge, Massachusetts.
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D Planet and Meteor

In r;atoiIr and Novv,Iber of Venus

w1)1 De br:th-_. ar s%::uld be aay to see

in tne C.4'.'tfr% ,Ky he.or- Ju-

rite' ls 11-0 in the 't.or,Iln;

sky; Yer, 1: the et.enin4 :Ay 4n 'AC

1,tumn 9Y :=at-rh will be above

nor.-n all tillnt, but IS not as

hright is 'J... cth.,r three Pi :Lets men-

See TDIe II of the Unit Handbook

Apponai:, 'a: the positions of planets

in oth.r `.Ears.

1. It can identify a planet, check

its pc:, :ion in the sky relative to the

stars t two-week intervals. The plan-

ets ars located within a rather narrow

bandlong which the moon and sun move.

In writ direction does the planet move

agar :t :he star background?

2. ConE,.:lt the Celestial Calendar and

HandU,ck and the monthly magazine Sky and

Telescope for more details on the posi-

tions :f planets, when they are close to

the etc.

3. L:',ok for meteor showers each year

arould Ncvember 5 and November 16, be-

ginlng around midnight. The dates of

meteor showers in other months are

given in Table II of the Unit 2 Handbook

Appendix. Moonlight interferes with

meteor observations whenever the moon is

between first and third quarter.
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Because sun, moon, planets stay
in the same narrow band, we can con-
clude that they all move in nearly
the same plane; that is, the plan-
etary system is essentially "flat."

In "normal" motion planets move
eastward against the stars; in ret-
rograde motion they move westward.
Consult the Celestial Calendar to
find out when the different planets
are in retrograde motion.

Post the month's Celestial Calen-
dar with events of note eclipses,

conjunctions, etc. marked.

ADDENDUM TO NAKED EYE ASTRONOMY

Although coordinate systems for
locating objects in the sky are not
an important aspect of this study,
teachers may wish an explanation of
the various systems used.

Celestial Coordinate Systems

On Earth: The latitude-longitude
system is used to locate objects on
the earth's surface. The equator
of the earth is established as a
great circle along the earth's sur-
face hallway between the north and
south poles and perpendicular to the
earth's polar axis. Meridians are
a set of great circles passing
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through the poles and are perpen-
dicular to the equator. The local
meridian (your north-south Line)
establishes your east-west loca-
tion. The meridian passing through
Greenwich, England, is called the
prime meridian and has an assigned
longitude of 00 . Places west of
the prime meridian up to halfway a-
round the earth (to the internation-
al date line) have longitudes west.
Places east from Greenwich around

to the international date line have
have longitudes east. Maximum
longitudes are therefore 180° E and
180° W.

Latitudes are distances measured
north and south from the equator to
the poles (90° away). Latitudes are
also the angular distance between a
place and the equator as one might
see it from the earth's center (see
Fig. 3).

In the sky: One convenient way
to establish a position of a star
or other heavenly object is to use
the altitude-azimuth system (see
Fig. 4). The coordinates in this
system are:

(1) Altitude: the angle of the ob-
ject above the observer's local
horizon.

(2) Azimuth: the direction in the
horizontal plane measured east-
ward from true north.

Experiments
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Such a system is local. No two
observers (even a few miles apart)
have at the same moment the same co-
ordinates for the same star. Also,

as the earth turns, a star's posi
tion on this system constantly
changes.

For this reason, astronomers long
ago devised a coordinate system at-
tached to the celestial sphere.
This is sometimes referred to as
the equatorial system and the ele-
ments measured ate called right as-
cension and declination.
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Imagine that we extended the
earth's axis to the so-called ce-
lestial sphere. Also, extend the
plane of the equator until it in-
tersects the celestial sphere.
Great circles passing through the
North Celestial Pole and crossing
the celestial equator at right an-
gles are called hour circles. These
are similar to meridians on the
earth's surface.

One hour circle passes through
the Vernal Equinox (see text Unit
2, p. 9) and is the reference from
which right ascension is measured.
The right ascension of a star is
the time interval between the hour
circle of the Vernal Equinox being
overhead and the hour circle of the
star. Since it takes 24 hours for
the celestial sphere to rotate
through 360° one hour is equivalent
to 15°.

Declination establishes the dis-
tance of a star along an hour circle
north or south of the celestial e-
quator. Declinations are like lati-
tudes on the earth's surface. A
star having a declination of 40° N
passes overhead at places having a
latitude of 40°N.

Stars remain relatively fixed
with respect to their coordinates
in the right ascension-declination
system.

REFERENCES

1. A Star Atlas, A.P. Norton, 15th
ed., Sky Publishing Corp., 50 Bay
State Road, Cambridge, Mass., 02138.

2. New Handbook of the Heavens,
Bernhard, Bennett, Rice, Signet
Science Library, McGraw-Hill Book
Co., Inc., 501 Madison Ave., New
York, New York, 60 cents.

3. Elementary Astronomy (Streve,
Lynd and Pillans, Oxford University
Press, New York, has a good descrip-
tion of the various coordinate sys-
tems.
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Even if you were exactly on the
central meridian for your time zone,
only rarely would noon occur at 12
o'clock. Each day the sun moves
east among the stars, but not at an
exactly even rate because the
earth's orbit is elliptical, not
circular. Your students will under-
stand this when Kepler's Second Law
is discussed in Chapter 7. Even a
uniform motion of the sun along the
ecliptic would result in uneven days
because the sun's annual path also
has a north-south component. So,
our clocks run on a fictitious av-
erage day (Mean Solar Time) based
or the length of a year. The real
sun (the one you see) gains and
loses on Mean Solar Time. The dif-
ference is called the Equation of
Time and may amount to over 16 min-
utes.*

See Unit 2 text, Figure 5.16 (on
page 7) for an example.

For many more experiments that can
be done with the Shadow Theodolite

get "Experiments in Astronomy" $2.00
from G. Wootan, Inc., 36 Brighton
Road, Worcester, New York.

The new moon is close to the sun;
full moon is 180° from the sun;

quarter moon is 90° from the sun
(Figure 1, page 140).

Students cannot make observa-
tions at the same time every night.
New moon to first quarter moon can
only be seen in the late afternoon
and evening; and third quarter to
new moon can only be seen in morn-
ing. (Yes, the moon can often be
seen while the sun is up.)

*New Handbook of the Heavens, page
176.



PROJECT PHYSICS PLANETARIUM PROGRAM

(MORRISON PLANETARIUM, SAN FRANCISCO,
15 NOVEMBER 1966) OUTLINE PREPARED

FOR

This is an outline of the major phenomena
which would be most useful and appropriate
to Harvard Project Physics students for
observation in the planetarium.

1 THE CURRENT NIGHT SKY
a. both as of about 9 p.m. and as of

just before dawn (many of our stu-
dents are on their way to school
before dawn and do observations
then).

b. major constellations and bright
stars (first as they are seen
under excellent viewing condi-
tions, then as they appear in the
typical hazy, lighted sky at night
in the metropolitan area, as from
a park or other reasonably dark
place.)

c. how to find Polaris by using the
Big Dipper and by using Casseopeia,
or any other ways.

d. planets visible now and how to
locate and identify them; for
example, by their proximity to
the moon on certain nights and
times.

e. location of the sun anti the moon
against the starry field (and how
the location of the sun with re-
spect to the stars can be deter-
mined).

2. MOTIONS IN THE HEAVENS
a. motion of the circumpolar stars;

of the southern stars; of the
celestial sphere as a whole.

b. motion (change in position) of
the sun: (1) along the horizon
over a period of about six weeks
or more; (2) higher and lower in
the sky at its highest point; (3)
how these are really two manifes-
tations of the same shift in
orientation of its path across
the sky; (4) across the sky
(celestial sphere) as seen
against the pattern of the stars
(and how this position of sun
against stars can be determined,
when the sun blots out the stars,
and they cannot both be seen at
the same time except in t1-..t

planetarium).

Experiments
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c. motion of the moon: (1) through
a full month, slowly, one day
at a time, showing only the moon
at, say, moonrise, so the shift
in position with respect to the
stars is very clearly visible,
and point it out; (2) through a
month quickly, just running the
moon projector, and if possible
pointing out some of the irregu-
larity cf its motion.

d. planetary motion, emphasizing (1)
retrograde motion of some planets,
and (2; the maximum angular dis-
placement from the sun, of Mercury
and Venus.

3. CELESTIAL COORDINATE SYSTEMS
a. celestial longitude and latitude

(or right ascension and declina-
tion) with particular attention
to the reference points in the
sky, such ac where the 0° posi-
tion is (the vernal equinox)
and how this is located and used
for other measurements.

b. azimuth and altitude (local)
measurements, with the drawbacks
of this type of system as com-
pared to the coordinate system
fixed in the sky and not depend-
ing on the local position of the
earthly observer.
using the constellations to lo-
cate the positions of planets,
so that when a student reads
that Mars is in Leo, he knows
what this means.

c.
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PART I

Students will compare a variety
of recurrent phenomena with a
"standard clock" such as class
blinky, metronome, etc. Recurrent
phenomena that might be used in-
c4ude another blinky, pendulum,
mass on spring, dripping burette,
the human pulse, or crickets (tape
recorded?)....

The mention of "time" should be
avoided in 6:is port, because the
students' not'on of absolute time
will confuse the issue of relative
regularity. The exclusion of ac-
tual clocks needn't seem forced
the point is to investigate first
the regularity found naturally in
the world, and then to investigate
contrived measurement standards.

When students have completed the
measurements on their own tapes,
the information can be pooled on
a master graph. It might look
something like this:

Tacks

_

--10
- - - f

else wf

ipnity 1* 2

ewciahaw

314 41h St9) gLINWY T/CA'S00 So so so so

If light from outdOors is al-
lowed to fall on the blinky bulb,
the rate will change by 4% or mote
(even if the light comes through
the window). It might be a good
idea to intentionally cause the rate
to change during the run. The rela-
tivity of regularity would be empha-
sized, since the "good clocks" would
show common curved records on the
graph. (However, since we want the
students tc accept the blinky as a
reasonably good clock, the disturb-
ance should be accounted for after-
wards. If one or to blinkies are
used as test phenomena, the explana-
tion will be more convincing.)

152

Experiment 2 Regularity and Time

The idea of regularity Is very Impor-

tant in science. But how many natural

phenomena occur regularly? Clocks will

be left out of the first part cf this

lab because you know that ::locks are

built for the purpose of being regular.

Part

Students and teacher will agree on a

number of phenomena to check for regu-
larity. One of these phenomena sill be

chosen as a "standard clock" and all the

others will be compared to it by using

the strip chart recorder.

One lab partner marks each "tick" of

the standard clock on one side of the

strip chart, recorder tape while the other

lab partner marks each "tick" of some

other phenomenon. After a long run has

been taken, you can inspect the tape to

see how the regularities of the two phe-

nomena compare. Run for about 300 ticks

of the standard. For each 50 ticks of

the standard, find on the tape the num-

ber of ticks of the other phenomenon,

estimating to 1/10 of a tick. Record

your results in a table something like

this:

STANDARD CLOCK YOUR CLOCK
First 50 ticks ticks

Second 50 ticks ticks

Third 50 ticks ticks

Fourth 50 ticks ticks

The results for the different periods

are almost certain to be different; but

is the difference a real difference in

regularity, or could it come from your

recording or measuring being a little

off? If you think that the difference

is larger than you would expect from hu-

man error, then which of the two phenom-

ena is not regular?
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In this part of the lab, you will

compare the regularity of some devices

specifically designed to be regular.

The standard this time will be the time

recording provided by the telephone com-

pany. To get two periods of tine, you

will have to make three calls to the

telephone time station, for example, 7

p.m., 7 a.m,, and 7 p.m. again, Agree-

ment should be reached in class the day

before on who will check wall clocks,

who wristwatches, etc. Wait for the re-

cording to announce the exact hour and

watch your clock. Tabulate your results

something like this:

TELEPHONE TIME STATION

"7 p.m. exactly"}

"7 p.m. exactly"
12:00:00 hr

ELECTRIC WALL CLOCK

a.m. exactly 12:00:00 hr
"7 "

7:

7:

7:

Experiments

E2

PART II

With some concrete experience
with relative regularity, students
can more profitably consider the
regularity of clocks. If a tele-
phone or short-wave receiver is
available in class, then all watches
and wall clocks can be brought to
the class and the experiment per-
formed over two 24-hour periods.
If not, then students will have to
call the telephone time station
from their homes. Two 12-hour pe-
riods might be more appropriate for
students at home--7 a.m. - 7 p.m. -
7 a.m. or 8 a.m., etc., depending
on school hours and local custom.
(Since the power company tries to
keep the total number of cycles for
a 24-hour period constant and may
suffer considerable variation in
rate during that period, two 12-
hour periods should be more reveal-
ing than two 24-hour periods for
synchronous electric clocks.) Some
students should be given the respon-
sibility of finding out from the
telephone company where they get
their time.

Notice that there are really two
problems: (1) Is your clock regu-
lar compared to the telephone com-
pany's clock? (2) If so, does your
clock run at the same rate as the
telephone clock? (Since the rate

of most watches can be adjusted, it
is the first question which is most
important for watches. For electric
clocks, on the other hand, the sec-
ond question is more of a problem
because the electric company forces
a 24-hour match.) It should be em-
phasized to students that in phys-
ics the point is not so much wheth-
er their clocks are fast or slow,
but whether they run at a constant
rate.
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The student should become famil-
iar with kinds of variation in mea-
surement. .While it would be possi-
ble formally to introduce signifi-
cant figures, estimates of average
deviations, etc., it is the inten-
tion here only to make students com-
fortable with variation in its sim-
plest terms refinements can be in-
troduced as the need arises in the
laboratory exercise which will be
done later.

The steps outlined below have
been planned to start the student
on familiar ground where he firmly

believes the variations to be in
the things measured, through situ-
ations where the variation is in
the measuring process, to situations
where the source of variation is un-
certain.

You may wish to give these classi-
fications of variation to the stu-
dents after they have finished mak-
ing the measurements but before the
discussion; or you may feel it will
be more valuable if these or simi-
lar categories are discovered
through discussion. A few examples
follow.

A. Situations where the variation
is unequivocally due to differ-
ences in the things being mea-
sured:

Students' heights or weights
Family size

Number of pieces of candy,
raisins, etc. in different
boxes.

B. Variation unequivocally due to
changes in the thing being mea-
sured:

Temperature of a beaker of
warm water

Weight of a chunk of dry ice
Weight or length of a burning
candle
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Experiment 3 Variations in Data

The success which physics has had in
contributing to scientific knowled,le is
due in no small part to man's ability
to measure. Yet every measurement is
to some extent uncertain. The numbers
resulting from measurements are not

simply the same as the numbers used for
counting. That is, numbers read from
measuring instruments are not exact in
the sense that one or two is exact when
one counts objects. If the number of

chairs or people in a room is counted at

a certain time, an exact value is ob-
tained; but if the Width of this sheet
of paper is measured, the value found is
known only within a margin of uncertain-
ty.

The uncertainty in measurement of

length mentioned above is just one of
the causes of variation in data. This

experiment should point out how some of
the variations in data arise.

Various stations have been set up a-
round the room. At eacn station there

is some measurement to be made. Each of

you will write your results on the board
in order to compare and discuss them.

Some interesting patterns should emerge.

To see these patterns it is important
that your measurements are not influenced
by anyone else's therefore, you shouldn't

talk about how you measured or what re-
sults you obtained until everyone is
through.

II;



Eeep a record of your observations.

This tabulation form is convenient:,

Type of
Measurement Remarks Measurement

Experiments
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C. Variations unequivocally due to
the process of measuring:

Separation of blinky dots on
a photograph using ruler

Separation of blinky dots on
photograph using magnifier

Diameter of a piece of wire
measured with a ruler

Diameter of wire using micro-
meter or magnifier

Diameter of a puck

D. Sources of variation uncertain:

Rotation rates of students'
phonograph turntables

Height as measured in the
morning compared to height
at night

These classifications are not the
only ones possible. One important
class of variation not really cov-
ered in them is the statistical var-
iation of random events, e.g., back-
ground radiation count. This will
be considered in more detail in Unit
6. For the lab work in this course,
Class C - Variations due to the
process of measurement - is the most
important, and is emphasized in some
of the experiments.

The purpose of this laboratory is
not to achieve unanimous agreement
on the sources of variation in the
measurements, but to make students
aware of the issue and of how crit-
ical the issue can be in experiments.
It is important for students to real-
ize that variation problems are not
confined to school laboratories; the
best of scientists with the most ex-
pensive equipment are often faced
with having to interpret variation.

Preparation in advance

The stations around the room must
be set up before the class starts.
Suggestions for stations are listed
below. About ten or twelve stations
will be needed if students are to
gain a variety of experiences.
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If each student makes every mea-
surement, one period (50 min) will
be needed. From one-half to a full
period will be needed to write the
results on the board and for discus-
sion.

Station suggestions

More ideas are listed than can
probably be used and you may have
other ideas which you wish to sub-
stitute. Variety is the keynote.
of course.

Diameter of a marble with vernier
caliper
Large, steel ball with vernier
caliper

Temperature of a beaker of water
colder than room temperature

Same, at room temperature
Same, warmer than room temperature
Empty beaker mounted as in the
case of the above beakers with
thermometer

Note: Students may realize that
all thermometers do not read ex-
actly alike under like circum-
stances. Teacher should antici-
pate this and have carefully
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selected the thermometers to re-
duce or eliminate this.

Length of metal cylinder with rul-
er

Diameter of puck with common cal-
ipers and ruler

Separation of blinky dots on photo-
graph with magnifier, and with
ruler

Diameter of a piece of wire af-
fixed to a 3" x 5" card with
ruler

Time of fall of object from in-
dicated height with stopwatch

Fill a small bottle with water
and mdasure volume with g7adu-
ated cylinder

Weight of a chunk of dry ice
Rotation rate of a slowly turn-
ing wheel with stopwatch

Length or weight of a burning
candle

Select one plastic sphere from
a lot, measure diameter with
magnifier and discard sphere

Measure line voltage
Measure voltage of dry cell

All students should visit every
station but they do not have to start
at the same point. in the cycle.
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One can study uniform motion in
a variety of ways. For example, two
students working together can

a) photograph a puck sliding on
beadle- covered ripple tank.

b) photograph a glider coasting
on a level air track.

c) photograph a toy tractor push-
ing a blinky.

d) measure motion of an object in
a film loop projected on the
blackboard, or

one student alone can measure

e) a transparency showing what is
asserted to be uniform motion.

f) a strobe photograph such as the
momentum - conservation colli-
sion photos or the photo on
page 13 of the text.

If not enough apparatus is avail-
able for the whole class to do the
same experiment perhaps the class
can be broken up into small groups,
each group using a different method.

Instructions for operating the
Polaroid camera and for using the
rotatiag disc stroboscope are found
elsewhere in this book.

In the student guide we describe
the experiment as done by method (a)
above. Other methods differ only
slightly and in obvious ways. The
procedure for measuring the data from
any of the methods is identical.
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Experiment 4 Uniform Motion

In this experiment, just as in Sec.

1.3, you will record the successive

positions of a moving c1.3ect. You do
this in order to find its velocity at

several points during its motion. Then

you will try to decide if the velocity

remained constant.

This decision may be harder than you
expect, since your experimental measure-
ments can never be exact; therefore there
will always be ups and downs in your
final results. Your problem will be to

decide whether the ups and downs are due
partly to real changes in velocity or

due entirely to uncertainty in measure-
ment.

If the velocity turns out to be con-

stant, we have an example of uniform

motion. Such motion is described in

Sec. 1.3 in the text, which you should

read carefully before doing this experi-
ment.

Doing the experiment

The set-up is shown in Fig. 1.

You will see that it- takes two people.

You can get similar results by your-

self if you gather data by one of the

other methods mentioned in the next sec-
tion below.

Fig. 1.

c
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The set-up Fig. 1 uses f. :r th,

roving object a disc like the one illus-

trated in Sec. 1.3 of the text. It is

made of metal or plastic instead of dry

ice and it slides with almost no friction

at ,f the surface it slidtJs on is

smooth and free of grit or dust. Make

sure the surface is quite level, too,

so that the Oisc will not start to move

once it is at rest.

Set up the Polaroid camera and the

stroboscope equipment according to your

teacher's instructions. Unlike the pic-

ture in the book, no ruler is necessary.

Instead you will use a ruler of your own

to measure the photograph.

Either your teacher or a few trials

w :ll give you an idea of the camera set-

tings and of the speed at which to launch

the disc, so that the images of your disc

are clear and well-spaced in the photo-

graph. One student operates the camera

while his companion launches the disc.

A "dry run" or two without taking a pic-

ture will probably be needed for practice

before vou get a good picture. A good

picture -s one in which there are at

least five sharp and clear images of your

disc far enough apart for easy measuring

on the photograph.

Other ways of getting data

Instead of discs sliding on a table,

you can photograph other objects, such

as a glider on a level air track or a

blinky (steadily flashing light) pushed

by a toy tractor. Your teacher will ex-

plain their use. Excellent photographs

can be made of either one.

If you do not use a camera at all or

if you work alone, then you may measure

a transpar-ncy or a movie film projected

on the hlao,'.,:oard. Or you may simply

work from i previously prepared photograph

such as the one in Sec. 1.3.

Experiments
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Whether an air puck is used or a
puck sliding on beadies it should have
a large white X or a white-painted
rubber stopper for easy reference in
the photograph. Since the puck will
probably rotate it must be at the
center, not on the edge, of the puck.

We assume students have studiea
the text through Sec. 1.4, in which
case they will end their write-ups
after the section, If we measured
more precisely.

If they have studied graphs (Sec.
1.5), however, it may be desirable
to have them go on to subsequent
sections in which they graph their
data.

In either case they can answer
Questions 8-10.
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Drawing Conclusions

Whatever method you have used, the

next step is to measure the spaces be-

tween successive images of your moving
object. For this, use a ruler with milli-

meter divisions and estimate the distances

to the nearest tenth of a millimeter.

List each measurement in a table like
Table 1.

As your time unit, use the time needed

for the moving object to go from one

position to the next. Of course it is

the same time interval in all cases.

Therefore if the velocity is constant

the distances of travel will all be the

same, and the motion is uniform.

41 How will you recognize motion that

is not uniform?

Q2 Why is it unnecessary to find the

time interval in seconds?

Table 1

Distance 0.48 cm 0.48 0.48 0.48 0.48 0.48
traveled
in each
time in-
terval

Here in Table 1 we have data that in-

dicate uniform motion. Since the object

traveled 0.48 cm during each time inter-

val, the velocity is 0.48 cm per unit
time.

It is more likely that your measure-

ments go up and dawn as in Table 2.

Table 2

Distance 0.48 cm 0.46 0.49 0.50 0.47 0.48
traveled
in each
time in-
terval

16



Q3 Is the velocity constant in this

case?

Since the distances are not all the

same you might well say, "No, it isn't."

Or perhaps you looked again and said,

"The ups and downs are because it is

difficult to measure to 0.01 cm with the

ruler. The velocity really is constant

as nearly as I can tell."

Which statement is right?

Look carefully at your ruler. Can

you read your ruler accurately to the

nearest 0.01 cm? If you are like most

people you read it to the nearest 0.1 cm

(the nearest whole millimeter) and es-

timated the next digit.

In the same way, whenever you read

the scale of any measuring device you

qhould read accurately to the nearest

mark and then estimate the next digit in

the measurement. This means that your

value is the estimated reading plus or

minus no more than half a scale division.

Suppose you assume that the motion

really is uniform, and that the slight

differences between distance measurements

are due only to the uncertainty in reading

the scale. What is then the best esti-

mate of the constant distance the object

traveled between flashes?

To find the "best" value of distance

you must average the values. The aver-

age for Table 2 is 0.48 cm, but the 8 is

doubtful.

If the motion recorded in Table 2

really is uniform, the distance traveled

in each time interval is 0.48 cm plus

or minus 0.05 cm, written as 0.48 10.05

cm. The 0.05 is called the uncertainty

of your measurement. It is commonly

half a scale division for a single mea-

surement.

Experiments
E4
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It is worth emphasizing that any
statement in science is valid only
dowi to the limits of the uncertainty
of the measpr:. -,nts on which the

statement i. -..:.,' Hence more pre-
cise measurol%at_ may possibly dis-
prove it. In this sense physics is
not an exact science.

The velocity evidently is not con-
stant in Table 3 since the displace-
ments vary by more then the precision
of the measurements.
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Now we can return to our big question:

is the velocity constaAt or not? Be-

cause the numbers go up and down you

might suppose that the velocity is con-

stantly changing. Notice though that

the changes of data above and below our

average value of 0.48 cm are always smal-

ler than the uncertainty, 0.05 cm.

Therefore, the ups and downs may all be

due to your difficulty in reading the

ruler to better than 0.05 cm--and the

velocity may, in fact, be constant.

Our conclusion is that the velocity

is constant to within the uncertainty

of measurement, which is 0.05 cm per

unit time. If the velocity goes up or

down by less than this amount we simply

cannot reliably detect it with our ruler.

If we measured more precisely

A more precise ruler might show that

the velocity in our example was not
constant. For example if we used a mea-

suring microscope whose divisions are

accurate to 0.001 cm to measure the same

picture again more precisely, we might

arrive at the data in Table 3.

Table 3

Dis- 0.4826 cm 0.4593 0.4911 0.5032 0.4684 0.4779
tance
traveled

in each
time in-

terval

Q4 Is the velocity constant when we mea-

sure to such high precision as this?

The average of these numbers is 0.4804.

and they are all presumably correct to

half a division, which is 0.0005 cm.

Thus our best value is 0.4804 10.0005

CM.

Drawing a graph

If you have read Sec. 1.5 in the text

you have learned that your data can be

graphed. If you have never drawn graphs
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before, your data provide an easy ex:-

ample to start with.

Just as in the text example on page 19,

lay off time intervals along the hori-

zontal axis. Your units are probably

not seconds; they are "blinks" if you

used a stroboscope, or simply "arbitrary

units," which means here the equal time

intervals between positions of the moving

object.

Likewise the total distances traveled

should be laid off on the vertical axis.

The beginning of each scale is in the

lower left-hand corner of the graph.

Choose the spacing of your scale divi-

sions so that your data will, if pos-

sible, spread across the entire page.

The data of Table 2 are plotted here

as an example (Fig. 2).

Q5 In what way does the graph of Table

2 show uniform motion? Does your graph

show uniform motion too?

If the motion of your object is uni-

form, find the value of the uniform ve-

locity from your graph. Describe how

you found it.

Q6 What does a graph look like if the

motion is not uniform?

If your motion is not uniform, re-

view Sec. 1.7 of the text and then from

your graph find the average speed of

your object over the whole trip.

Q7 Is the average speed for the whole

trip the same as the average speeds be-

tween successive measurements?

Additional Questions

Q8 Could you use the same methods to

measure the speed of a bicycle? A car?

A person running? (Assume they are

moving uniformly.)

17
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If the results are to be graphed
it may be worth taking two runs at
different speeds in order to show how
the two resulting graph lines differ
in slope.
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a) 1 mi/hr
b) as small as 1 mi/hr

164
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Q9 The speedometer scale on many cars

is divided into units 5 mi/hr in size.

You can estimate the reading to the

nearest 1 mi/hr.

a) What is the uncertainty in a

speed measurement?

b) Could you measure reliably

velocity changes as small as 2 mi/hr?

1 mi/hr? 0.5 mi/hr? 0.3 mi/hr?

Q10 Sketch the shape of a distance-time

graph of

a) an object that is slowly gaining

speed.

b) a bullet during the second before

and the second after it hits a brick

wall.
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Only one phase of Galileo's in-
vestigation has been selected for
this laboratory. A full description
can be found in Dialogues Concerning

Two New Sciences, the "Third Day."
See also the references to the Crew-
de Salvio translation reproduced in
part in Chapter 2 of Unit 1. There
is a Dover Publishing Company reprint
of this enjoyable book. A careful
modern repetition of this ex'eriment
is described by Settle, Thomas B.,
An Experiment in the History of Sci-
ence, in Science, Vol. 133, January
6, 1961. Historians and philosophers
of science are still hotly debating
whether or not Galileo took actual

experimentation very seriously, and
whether he actually did some of the
experiments be described in such
graphic detail.
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Accelerated Motion

In Chapter 2 you have been reading

about Galileo's interest in accelerated
motion. Scientists are still interested

in accelerated motion today. In the

following experiments you learn to mea-

sure acceleration in a variety of ways,

both old and new.

If you do either of the first two ex-

periments you will try to find, as Gali-

leo did; whether d/t2 is a constant for

motion down an inclined plane.

The remaining experiments are mea-

surements of the value of the accelera-

tion of gravity, a
g
--the value that

2d/t would approach as an inclined plane

is made more and more nearly vertical.

Perhaps you would like to try one of
them.

Experiment 5 A Seventeenth-Century Experiment

This experiment is similar to the one

discussed in the Two New Sciences by Gal-
ileo. It will give you first-hand exper-

ience in working with tools similar to

those of a seventeenth-century scientist.

You will make quantitative measurements

of the motion of a ball rolling down an

incline, as described by Galileo. From

these measurements you should arrive at

a suitable definition of acceleration

the major purpose of the exercise. It

is also possible to calculate the value
of a

g
(acceleration due to gravity),

which you should try to do.

The reasoning behind the Experiment

You have read in Sec. 2.6 how Galileo

discussed his belief that the speed of

,
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free-falling objects increases in pro-

portion to the time of fall--that is,

that they have uniform acceleration.

But since free fall was much too rapid

to measure, he assumed that the speed

of a ball rolling down an incline in-

creases in the same way as an object in

free fall does, only more slowly.. Its

average speed could now be measured.

But to see if the accelerations of

the ball were the same from point to

point required a knowledge not of average

speed but of instantaneous speed at each

point, and even a ball rolling down a

low incline still moved too fast to

measure the speed at a point at all ac-

curately. So he worked out the relation-

ship f
d

ship = an expression for accelera-

tion in which speed has been replaced by

the total time and total distance rolled

by the ball. Both these quantities can

be measured. Be sure to study Sec. 2.7

in which this derivation is described.

If Galileo's original assumptions were

true, this relationship would hold for

both freely falling objects and rolling

balls. Since total distance and total

time are not difficult to measure,

seventeenth-century scientists now had

a secondary hypothesis they could test

by experiment. And so have you. Sect.on

2.8 of the text discusses much of this.

Apparatus

The apparatus which you will use is

shown in Fig. 1. It is similar to that

discussed by Galileo.

Ie lit"&
yolpt
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Fig. I.
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At least two students are needed
for each set-up: one to handle the
rolling ball and the other to operate
the water clock and to record data.
By splitting the jobs further as many
as four can be usefully employed.

An inclined plane about six feet
long is needed. It should have a
groove or channel down one edge in
which a ball runs very snoothly.

If only one inclined ?lane is
available it can be operated by one
or two students while the rest of the
class is arranged in ones or twos
nearby operating water clocks.

If a good wooden incline is not
available, perhaps a piece of metal
channel iron or two metal rods
clamped together can be made to
serve--although this violates the
seventeenth century spirit of the

experiment!

Distances marked on the incline
should be arbitrary, but be chosen
to work well with the rate of flow
of the water clock. (We find that

12 marks 6 inches apart serve well.)
Students should not convert to pres-
ent-day standards of length, but mere-
ly record them as 1, 2, 3, etc.,

units of length.

The right size of tub.. and of col-
lecting vessel for the water clock
has to be found by trial and error.
The flow should last at least three
or four seconds without overflowing
the collector. The clock does not
work as well if it started and stopped
with a pinchcock on a rubber exit tube
below the funnel.

and mos.va
,7.4 04 4re t(ti'c 2l
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It is recommended that the stu-
dents record a minimum of four trials
for each distance and that the aver-
age value for the time be used in the

calculations. For longer distances
fewer trials may be used, if the
times seem to be in close agreement.
Four different distances (e.g. 3, 6,
9, 12) should be sufficient for each
angle of the ramp. It is probably
not practical for any one group to
attempt to take measurements at more
than two different angles of inclina-
tion. An exact adjustment of the
height of the channel is not critical.
The results for heights over 30 centi-
meters may show considerable scatter;
this depends upon the skill of the
students and quirks of the equipment.
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You will let a ball roll various dis-

tances down a channel about six feet

long and time the motion with a water
clock.

Some early water clocks are illus-

trated on page 56 of your textbook. The

way yours works is very simple.

Since the volume of water flowing into
the cylinder is proportional to the time
of flow you can measure time in milli-
liters of water. Start and stop the

flow with your finger over the upper end

of the tube inside the funnel. Be sure

to refill the "clock" to about the same

point for each trial, for its rate of

flow changes slightly with the level of
the water. Whenever you refill it let

a little water run through the tube to

clear out the bubbles.

It is impossible to release the ball

with your fingers without giving it a

slight push or a pull. Dam it up, there-
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In graphing the results plot
( time )2 along the horizontal
axis. Not only is this conven-
tional but also when d is plotted
along the vertical axis the re-
sulting slope is equal to twice
the acceleration.

It is useful to plot d vs. t
first to show that one does not get
a straight line. Point out that
there is no way of recognizing with
the unaided eye any curve except a
circle and a straight line. Only by
plotting in such a way as to generate
one of these shapes can we identify
the relationship between d and t.

If a student suggests that the d-t
curve does look like a parabola and
is therefore a d-t2 relationship,
challenge him to show that it isn't
a d-t3 relationship, both of which
may have the same general form as he
can verify by trial.

It may be useful to have a pair
of students do the following, twen-
tieth-century version of Galileo's
experiment photographing a glider
sliding down a tilted air track.
This yields more precise data, which
may be reassuring when the final con-
clusion of the experiment is being
discussed.

Possible extensions

After each group has completed
its investigation, one of two pos-
sible procedures is recommended:

1) Each group may report its find-
ings orally, and comparisons
may be made during a discussion
period.

2) Composite findings may be tal-
lied on the board, and all
students, using these combined
results, could plot the entire,
family of curves for the dif-
ferent inclinations.

The point to make when comparing
results is that the linear relation
between d and t2 appears to hold
(within the variation expected) for
the rolling ball, at least for small
angles of inclination of the channel.
As an aside, for any given angle of
inclination the distance intervals
rolled down the incline, in succes-
sive units of time, will go as 1:3:
5:7...
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an hour or two of chasing around :he;:kino

in books and with friends to see if you

did things rignt.

Some operating suggestions

You should measure times cf descent

for several different distances, keeping

the inclination of the plane constant

and using the same ball. Repeat each

descent four times, and average your re-

sults. Best results are found for very

small angles of inclination (the high

end of the channel raised less than about

30 cm). At greater inclinations the

ball tends to slide as well as to roll.

With these data you can check the con-

stancy of d/t2.

Then if you have time, go on to see

if Galileo or Aristotle was right about

the acceleration of objects of various

sizes. Measure d/t2 for several dif-

ferent sizes of balls, all rolling the

same distance down a plane of the same

inclination.

If you try to find the acceleration

of an object in free fall, a , you

should me sure the time a ball takes to

descend the full length of the plane at

various carefully measured angles. Use

angles up to the steepest for which you

can measure the times of descent. From

these data you can extrapolate to free

fall (900). You might want to use a

stopwatch here instead of a water clock.

From data to calculations

Galileo's definition of uniform ac-

celeration (text, page 49) was "equal in-

creases in speed in equal times." Galileo

expected that if an object actually moved

in this way the total distance of travel

should be directly proportional to the

square of the total times of fall.

Q1 Why does this follow from his defini-

tion? (See Sec. 2.7 in the text if you

cannot answer this.)
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When you have collected enough data,

plot a graph of the distances iclleu

(vertical axis) against the squared times

for each inclination.

02 What must your graph lock like if it

is to support Galileo's hypothesis?

Q3 Does your graph support the hypothe-

sis?

You nave been using a water clock to

time this experiment because that was the

best timing device available in Galileo's

time. HuA accurate is it? Check it

against a stopwatch or, better yet, re-

peat several trails of your experiment

using a stopwatch for timing.

Q4 How many seconds is one

of time?

Extension

Review Sec. 2.7. There you learned

that a = 2d/t'.

Use this relation to calculate the

actual acceleration of the bail in one

of your runs.

If you nave time you might try

to calculate ag from your results. This

is a real challenge. Your teacher may

need to give you some help on this.

Additional Questions

Q5 Does the acceleration depend upon

the size of the ball? In what way does

your answer refute or support Aristotle's

ideas on falling bodies?

Q6 Galileo claimed his results were ac-

curate to 1/10 of a pulse beat. Do you

believe his results were that good? Did

you do that well?

Q7 Galileo argues that in free fall, an

object tends to accelerate for as lon:; as

it falls. Does this mean that the speed

of an object in free fall would keep in-

creasing to infinity?
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The value of ag found by extra-
polating data from this experiment
will be too low because the ball's
increasing kinetic energy as it de-
scends is only partially in the form
of energy of motion along the plane.
The rest is in the form of energy of
rotation. Second, friction is a very
large factor in reducing the acceler-
ation. Both these important effects
are reduced or eliminated by photo-
graphing a rider descending an air
track.

The analysis for a rolling ball is
as follows:

Some of the better students should
use their data to calculate the value
of ag, the acceleration of gravity.
But this is not simple. The accel-
eration of a rolling object has two
components: 1) the rather straight-
forward linear acceleration a, which
can be approximated using a = 2d/t2

(this takes into account friction),
and 2) the rotational acceleration
which is both more complicated and
harder to visualize.

Neglecting friction, the linear
acceleration can be found by break-
ing the gravitational acceleration
up into two vectors, one along the
surface of the track and one perpen-
dicular to it. This will give a
value of

=
height of channel

a
channel length

x a
g

.

The rotational acceleration can
be derived in a number of ways. We

shall derive it kinematically here.
At a height h the ball has a Poten-
tial Energy P.E. = magh. This will
be convertqd into linear kinetic en-
ergy 1/2mv4 and rotational kinetic
energy 1/2Iw2 . Here w is the angular
rotation defined by w = 2 c6 (where

a is
radius

and 6 is
radius

which

a

gives w 2 = 2
radius radius

I = 2/5m radius2

We also define I as the rotational
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inertia of a sphere of mass, m. Up-
on substituting these quantities in-
to the rotational kinetic energy
component, we get

a d
1/2Iw

2
= 1/2.2/5m radius

2
x 2

radius 2

= 2/5 mat d

for the rotational kinetic energy in
linear terms. Since the total kinet-
ic energy, rotational plus linear,
must equal the potential energy,

P.E. = K.E. rot. + K.E. lin.

we get

oagh = 2/501aed + 1/201172.

If we substitute v
2
= 2ad into this

equation we get agh = 7/5a d, the ac-
celeration due to gravity Is

channel length
a
g
= 7/5a

. height of channel'

The above equation can be given
to the students in order to calcu-
late the acceleration of gravity.
If they do not see the need for in-
cluding rotational kinetic energy,
the equation may be made plausible
by indicating that while a sliding
block can use all of the energy from
the earth's field to slide down, a
rotating ball absorbs some energy in
spinning. The students can then com-
pare the value of ag found here with
that found in the uniform accelera-
tion and free fall demonstrations.

The acceleration does not depend
on the size of the ball, which re-
futes Aristotle's assertion (text
p. 40) that it does.

Galileo was right if (a) one can
neglect air resistance, (b) the
force of gravity continues to be
signlificant throughout an enormous
distance of fall, and (c) there is
no ultimate speed limit at which
an object can travel. Galileo,
who lived in the 17th century, was
not aware of limitations on any of
these three conditions except per-
haps the first one. In fact none
of the statements, (a), (b) and (c),
are correct in the light of subse-
quent knowledge.
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d /t2 should be constant for an air
track glider to a high degree of pre-
cision, illustrating that the glider's
acceleration is practically constant
on an inclined plane.
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Experiment 6 A Twentieth-Century Version of

Ga!ileo's Experiment

In Sec. 2.9 of the text you read about

some of the limitations of Galilee's ex-
periment.

In the modern version with improved

clocks and planes you can get more pre

cise results, but remember that the idea

behind the imrroved experiment is still

Galileo's idea. More precise measure-

ments do not always lead to more signifi-

cant conclusions.

The apparatus and its use

For an inclined plane use the air

track. For timing the air track glider

use a stopwatch instead of the water

clock.

Otherwise the procedure is the same

as that used in the first version above.

As you go to higher inclinations you

should stop the glider by hand before it

hits the stopping block and is damaged.

Instead of a stopwatch your teacher

may have you use the Polaroid camera to

make a strobe photo of the glider as it

descends. A piece of white tape on the

glider will show up well in the photo-

graph. Or you can attach a small light

source to the glider. You can use a

magnifier with a scale attached to mea-

sure the glider's motion recorded on the

photograph. Here the values of d will

be millimeters on the photograph and t

will be measured in an arbitrary unit,

the "blink" of the stroboscope.

Plot your data as before on a graph

of t2 vs. d.

Compare your plotted lines with graphs

of the preceding cruder seventeenth-

century experiment, if they are available.

Explain the differences between them.

Ql Is d/t2 constant for an air-track

glider?
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Q2 What is the significance of your an-

swer to the above question?

As a further challenge you should, if

time permits, predict the value of as

which the glider approaches as the air

track becomes vertical. To do this of

course, you must express d and t in

familiar units such as meters or feet,

and seconds. The accepted value of a
g

is 9.8 m/sec2 or 32 ft /sec'.

Q3 What is the percentage error in your

measurement? That is, what percent is

your error of the accepted value?

Percentage error =

accepted value - measured value 100
accepted value

so that if your value of ag is 30 ft/sec:

percentage error =

32 ft/sec2 - 30 ft/sec2
x 100

32 ft/sec2

= 2 100 = 6%.
32

Notice that you cannot carry this out

to 6.25% because you only know the 2 in

the fraction 2/32 to one digit. You can-

not know the second digit in the answer

(6%) until you know the digit following

the 2. This would require a third digit

in the measurements of 30 and 32.

Q4 What are some of the sources of your

error?

Experiments
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Students who are going to predict
ag may have had enough trigonometry
to appreciate that the acceleration
is a = a

g
sin 0 where 0 is the angle

between the plane and the level table
top. Since sin 6 = height of plane/
length of plane, a = ag x height of
plane, h/length of plane, t. Or

a
g

= at/h.

Students who have not learned
about sines can be given the formula
for ag.

The quantities on the right are
all easy to measure.

The major sources of error are
the slight amount of air friction
on the glider as it descends the air
track and the small errors in stop-
watch timing or photograph measur-

ing. With care the results should
agree with the accepted value to
within 5%.
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In any direct measurement of ag
a falling object has to be timed ac-
curately as it falls through several
precisely measured distances. Ordi-
narily the distance of fall must be
kept small in order to avoid the ap-
preciable air resistance encountered
at high speeds. But a short fall is
usually too brief to time accurately
without elaborate equipment. In this
experiment with very simple equipment
these two limitations cause an error
of less than 2%.

If a recording timer is available
it may be more convenient than a

tuning fork for marking the moving
tape. The experiment is otherwise
the same.

Clamp the timer at the edge of a
table in such a way that the paper
passes freely through it vertically
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Experiment 7 Measuring the Acceleration of Gravity

a) a, by direct fall'

In this expo ...en' you mea..0,re tho

,IctIleration of a fallin4 weight %.:1,n

you drop it. Since th, .fistunc, tall

is too small for air resist,:nce to

important, and since ether sources of

friction are very small, the acceleration

of the falling weight is very nearly au.

How to do the experiment

The falling object is an ordinary

laboratory hooked weight of at least

200 gm. (Friction has too great an ef-

fect on the fall of lighter weights.)

The weight is suspended from a few feet

of ticker tape as shown above. Rein-

force the tape by doubling a strip of

m...sking tape over one end and p.:ich a
hole in the reinforcement one centimeter

from the end. With careful handling you

can support at least a kilogram weight.

When the suspended weight is allowed

to fall, the tape dragged behind it is

to have equal time intervals marked on

it by a vibrating tuning fork.

wAdapted from Brinckerhoff and Taft,
Modern Laboratory Experiments in Physics,
by permission of Science Electronics,
Inc.
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The tuning fork must nave a frequency

between about 100 vibrations/sec an

about. 409 vibrations/sec. In order to

mark the tape the ion; mist nave a tiny

felt cone (cut from a marking pen tip)

glut, to the side of one of its prongs

close the end. Such a small mass af-

fects tl,e fork frequency by much less

than 1 vibration/sec. Saturate this

felt Lip with a drop or two of marking

pen ink, set the fork In vibration and

hold the tip very gently against the

tape.

The falling tape is most conveniently

guided in its fall by two thumbtacks in

the edge of the table. The easiest

procedure is to have an assistant hold

tne weighted tape straight up until you

have touched the vibrating tip against it

and said "go." After a few practice runs

you will become expert enough to mark

several feet of tape with a wavy line

as the tape is accelerated past the sta-

tionary vibrating fork.

Analyzing your tapes

Mark with an A one of the first wave

crests that is clearly formed near the

beginning of the pattern. Count 10 in-

tervals between wave crests, and mark

the end of the tenth space with a B.

Continue, marking every tenth wave with

a letter throughout the length of the

record, which must be at least 40 waves

long.

At A the tape already had a velocity

of vo. From this point to B the tape

moved in a time t a distance we shall

call di. The distance di is described

by the equation of free fail:

a t2
di = vct + .

In covering the distance from A to C the

tape took a time exactly twice as long,

2t, and fell a distance d2 described (on

25
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and clears the edge of the table.
Since it is difficult to measure the
frequency of the clapper accurately
when operated by 1.5 volts d.c. you
must short-circuit the breaker gap
inside the timer (using a short
length of wire with a small battery
clip on each end) and operate the
timer on 60 cycles a.c. Be careful

that your short circuit connections
do not interfere in any way with the
free motion of the clapper. You can

provide the necessary low-voltage
from a bell-ringing transformer (or
in some models from the 6 volt a.r.
tap of your power supply). Use in
series with it a small rheostat such
as the one used to control a ripple
tank wave generator.

It is important that the current
be adjusted until the vibrator ac-
tion is loud and firm and regular.
A skipped beat or two can completely
spoil your results--and occasionally
does. Since you are overloading the
coils of the timer you should leave
the current on as briefly as possible.

The clapper is now vibrating at
either 60 or 120 cycles per second.
To discover which, you need merely
pull a few feet of tape through the
timer by hand at a speed sufficient
to resolve the dots being made by
the clapper, and count the number of
dots made in approximately one second.
The choice between 60 and 120 cycles
will be obvious; and no other fre-

quencies are possible.

To measure ag hold the weighted
tape in the timer, start the timer,
and release the tape. The series of
carbon-paper dots on the tape can
then be analyzed in the same way as
the waves formed by the tuning fork.
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substituting 2t for t) by the equation:

4a t-
d, = 2vrt +

In the same way the distances AB, AE,

etc., are described by the equations

9a t'
d4 = 3vjt +

16a t.
d, = 4v)t +

and so on.

All of these distances are measured

from A, the arbitrary starting point.

To find the distances fallen in each

10-wave interval we must subtract each

equation from its successor, getting:

a t2
AB = vet +

3a t2
BC = v0t + g

2

5a t
CD = v0t +

7a t2
DE = v0t + ?

From these equations you can see that

the weight falls farther during each time

interval. Moreover, when we subtract

each of these distances, AB, BC, CD,...

from the subsequent distance we find

that the increase in distance fallen is

a constant. That is, each subtraction

BC - AB = CD - BC = DE - CD = a t2. This
g

quantity is the increase in the distance

fallen in each successive 10-wave inter-

val and hence is an acceleration. Our

formula agrees kith our knowledge that a

body falls with a constant acceleration.

From your measurements of AB, AC, AD,

etc., tabulate AB, BC, CD, DE, etc., and

in an adjoining column, the resulting

values of a t2. The values of a t2

should all be equal (within thn accuracy

of your measurements). Why? Make all

your measurements to as many significant

figures as are possible with the equip-

ment neither more nor less.
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Flnd the average of all your values

, tne acceleration in centimeters/

(10-wave interval)`. We want to find

the acceleration in cm/sec2. If we call

the frequency of the tuning fork n per

second, then the length of the time in-

terval t is 10/n seconds. Replacing t

of 10 waves by 10/n seconds then gives

as the acceleration, ag, incm/sec2.

The ideal value of a is close to
g

9.8 m/sec2, but a force of friction of

about 15 gms impeding a falling kilogram

is sufficient to reduce the observed

value to 965 cm/sec2, an error of about

1.5%.

11 What errors would be introduced by

I.:ling a tuning fork whose vibrations are

Lower than about 100 vibrations per

_Q,:ond?

Q2 Higher than about 400 vibrations per

second?

Q3 Is ag the same everywhere (a) on the

earth's surface? (b) in the solar sys-

tem?

b) a,fronia pendulum

An easy way to find a is to time the

back-and-forth oscillations of a pendu-

lum. Of course the pendulum is not fall-

ing straight down, but the time it takes

for a round-trip swing still depends on

a The time T it takes for a round -

trip swing is

T = 21
a

In this formula t is the length of the

pendulum. If you measure t with a ruler

and T with a clock, you should be able

to solve for ag.

You may learn in a later physics

course how to deri,a the formula. Scien-

tists often use fo,mulas they have not

derived .hemselves, as long as they are

confident of their validity.

Experiments
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Although this is an indirect meth-
od for measurinig ag, it is probably
the simplest method that can be con-
sidered accurate.

The derivation of the equation for
T draws upon concepts of simple har-
monic motion which students at this
stage are unable to follow. Most
first-year college texts in general
physics give the derivation.
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The practical considerations are
very simple.

The clamp that holds the top of
the pendulum suspension must not have
rounded edges to its jaws, for if it
does the suspension will, in effect,
be shortened slightly as its sideways
motion wraps the top few millimeters
around the rounded edges. The clamp
must also be very rigid; any back-
and-forth wobble will increase the
period.

Since the formula is only correct
for very small amplitudes of swing
(certainly no more than 10°), the
timing should be done with the small-
est swings that can still be seen
after 20 round trips.

If 20 round trips lasting 12.0
seconds are timed with starting and
stopping errors of 0.2 seconds each,
the total timing error is 0.4 seconds.
Since this error is shared among 20
swings, the timing error per swing
is only 0.02 seconds. Since each
swing takes 12.0/20 = 0.60 seconds
= T, the uncertainty in T due to
timing is 3%. This is very large
indeed compared with other possible
sources. To reduce it, time a larger
number of swings--say 50, whereupon
the same error in timing leads to
only about 1.3% uncertainty in T.
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Making the measurements

The formula is uetived for a pendulum

with all the mass concentrated in tne

bob. Hence the best pendulum to use is

one whose bob is a metal sphere hunt; up

by a fine thread. In this case you can

be sure that almost all the mass is in

the bob. The pendulum's length, ,, is

the distance from the suspension to the

center of the bob.

Your suspension thread can nave any

convenient length. Measure as accu-

rately as poF...ible, in either feet or

meters.

Set the pendulum swinging with small

swings. The formula doesn't work with

large swings, as you can test for your-

self later.

Time at least 20 complete round trips,

preferably more. By timing many trips

instead of 3ust one trip you make the

errors in starting and stopping the clock

a smaller fraction of the total time be-

ing measured. Why is this desirable?

Divide the total time by the number

of swings to find the time of one swing,

T.

Repeat your measurement at least once

as a check.

Finally, substitute your measured

quantities into the formula and solve it

for aq.

If you measured t in meters, the ac-

cepted value of a is 9.80 meters /sect.

If you measured 2. in feet, the accepted

value of a is 32.1 ft /sect.

Finding errors

You probably did not get the accepted

answer.

Which of your measurements to you

think was the least accurate?
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If you think it was your measurement

of length and you think you might be,off

by as much as 0.5 cm, change your value

of 2 by 0.5 cm and calculate once more

the value of ag. Has ag changed enough

to account for your error? (If ag went

up and your value of ag was already too

high, then you should have altered your

measured i in the opposite direction.

Try again!)

If your possible error in measuring

is not enough to explain your difference

in ag, try changing your total time by

a few tenths of a second--a possible er-

ror in timing. Then you must recalculate

T and thence ag.
9

If neither of these attempts works (ncr

both taken together in the appropriate

direction) then you almost certainly have

made an error in arithmetic or in reading

your measuring instruments. It is most

unlikely that ag in your school differs

from the above values by more than one

unit in the third digit.

Find your percentage error by dividing

your error by the accepted value and

multiplying by 100:

% error =

accepted value - your value
100

accepted value

error
x 100accepted value

With care your value of ag should agree

within about 1%.

Ql How does the length of the pendulum

affect your value of T? of g?

Q2 How long is a pendulum for which T =

2 seconds? This is a useful timekeeper.

27
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The length of a pendulum whose
T is 1 sec. is 24.8 cm. Remember
that T is the time for a round trip.
The pendulum that takes 1 sec to
swing one way only is going to be
99.4 cm long.

More values are in Table 1.

Table 1

Period of various pendulums

20 cm 0.75 sec

40 1.26

60 1.54

80 1.78

100 1.98 181
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c) slow motion photography (film loop)

With a slow-motion movie camera you

could photograph an object falling along

the edge of a measuring stick. Then you

could determine ag by projecting the film

at standard speed and measuring the dis-

tance the object fell in successive

frames of the film.

This procedure has been followed in

Film Loops 1 and 2, and detailed direc-

tions are given for their use in tne

film loop notes on pzIge 17.

d) falling water drops

You can measure the acceleration due

to gravity, ag, with a burette and a pie

plate.

Put a metal tray or pie plate on the

floor and set up the burette so that the

tap is at least a meter above the plate.

Fill the burette with water. Open the

tap slightly so that water drops fall

steadily onto the plate. Carefully ad-

just the tap so that one drop hits the

plate just at the same instant that the

next begins to fall. You can do this

most easily by watching the drop on the

tap while listening for the previous one
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to hit the plate. The time that it takes

a drop to fall to the floor is now equal

to the time interval between one drop and

the next, When you have adjusted the

rate of drip in this way, find the time

interval between drops, t. (To gain ac-

curacy, you may want to count the number

that fall in one minute, or if your watch

has a second hand, by timing 100 drops.)

You also need to measure the height from

plate to tap, d.

You now know the time t it takes a

drop to fall a distance s from rest.

From this you ea:1 calculate a
g

(since
1

d = , a
g
t2 for objects falling from

rest).

Can you adapt this method to something

that can be done at home, e.g., in the

kitchen sin;?

e) falling ball and turntable

You can measure a
g

with a record-player

turntable, a ring stand and clamp, car-

bon paper, two balls and thin thread.

.1,71, lair''

:
,,

\
.,,

1

Fs

Ball X and ball Y are draped across

the prongs of the clamp. They are lined

up along a radius of the turntable.

With the table turning, the thread is

burned and each ball, as it hits the

carbon paper, will leave a mark on the

paper under it.

The angular distance between the marks

and the speed of the turntable are used

to determine free-fall time.
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The distance between marks indicates
the difference in fall times. The ex-
pression for a, will be manageably
simple only if'the lower ball is imme-
diately above the turntable.
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It is assumed that students have
recently completed Sec. 3.7 on New-
ton's Second Law.

Purpose #1

In this experiment they familiar-
ize themselves with the relationship
between F

net'
m, and a. In no sense

do they prove or even verify the law.

Working from stroboscope photo-
graphs there will certainly not be
enough time for a single student (or
group of students) to take a series
of data on "a" vs F

net
and also on

"a" vs m. If the task is distrib-
uted among several students or groups,
however, two graphs can be drawn and
each student can contribute a point
or two to one of the graphs.

The graph of "a" vs F
net

with m

held constant will be a straight line
through the origin.

The graph of "a" vs m with Fnet

held constant will be a hyperbola.
The graph cannot be recognized as
a hyperbola, however. Students
should be challenged on this point
to show that it is not, for instance,
part of a circle, an ellipse, or a
parabola. Only by finding how to
convert it into a straight line (or
a circle), which are identifiable
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Experiment 8 Newton's Second Law

Newton's Second Law is one of the most

important and useful laws of nature.

Review Sec. 3.7 to make sure you under-
stand what it says.

This is not a law that you can prove

before trying it, as you can prove that

the path of a projectile will be a parab-
ola. The law is simply a description,

much as the conservation laws are that

you will study in Unit 3.

This is not even a law that you can

verify, in the sense that you can verify

by experiment that a projectile's path
really is a parabola. Newton's Second
Law has to agree with experiments simply

because the law is used to define the

units of all Second Law experiments in

such a way as to make them come out
right.

So what can be the use of our doing
an experiment?

Our experiment has two purposes.

First, just because the law is so im-

portant it is useful to get a feeling

for the behavior of F, m and a. The first

part of the experiment is devoted to doing
this.

Second, the experiment is an excellent

one in which to consider the effect of

uncertainties of measurement. This is

the purpose of the latter part of the

experiment.

How the apparatus works

You are about to find the mass of a
loaded cart on which you then exert a

measurable force. If you accept Newton's

Law as true then you can use it to pre-,

dict the resulting acceleration of the
loaded cart.

Arrange the apparatus as shown in Fig.
1. A spring scale is firmly taped to a

dynamics cart. The cart, carrying a
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Fig. 1(a).

blinky, is pulled along by a cora attached

to the hook of the spring scale. The

scale therefore measures the force exerted

on the cart.

The cord runs over a pulley at the

edge of the lab table and from its end

hangs a weight. The hanging weight can

be changed so as to exert various ten-

sions in the cord and hence various

accelerating forces on the cart.

Measure the mass of the cart together

with the blinky, the spring scale and

any other weights you may want to include

with it. This is the mass m being

accelerated.

Now you are ready to go.

Fig. J(b)

3
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by simple inspection, can one then
work backwards to discover the orig-
inal shape.

Thus in the case of "a" vs m, a
graph of 1/a vs m yields a straight
line through the origin. All such
lines must have the equation y = kx
or in this particular case

= km
a

whence
ma = constant

which is the graph of a hyperbola.

Moreover this behavior is consis-
tent with Newton's Second Law.
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The liquid surface accelerometer

Using a calibrated accelerometer
on his dynamics cart a single student
(or group of students) may be able
to gather all the data alone, if this
seems desirable. Certainly he can
work faster than he can from photo-
graphs.

The action of the accelerometer
is described in the Student Handbook,
Chap. 3, activity: "Accelerometers."
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Begin the experiment by releasing the

system and allowing to accelerate. Re-

peat the motion several times while

watching the spring scale pointer. With

a little practice you should be able to

see that the pointer has a range of

positions. The midpoint of this range

is a fairly good measurement of the

average force Fay (often written T) pro-

ducing the accelerations.

Record F in newtons.

Our faith in Newton's Law is such that

we assume the acceleration is the same

and is constant every time this particu-

lar F acts on the mass m.

Use Newton's Law to predict a.

Then measure a to see if your predic-

tion agrees with reality.

To measure the acceleration a take

a Polaroid photograph of the flashing

blinky (or a strobe picture of a light

source) mounted on the cart. As an al-

ternative you might use a liquid surface

accelerometer, described in detail else-

where in this book. Analyze the record

just as in the experiments on uniform

and accelerated motion in order to find
a.

This time, however, you must know the

distance traveled in meters and the time

interval in seconds, not just in blinks.

To find the time interval, count the num-

ber of blinks in a minute and divide the

total by 60.

Ql Does F = ma?

Q2 By what percent do your two values

disagree?

Your teacher may ask you to observe

the following effects without actually

making numerical measurements.

1. Keeping the mass of the cart con-

stant, observe how various forces

affect the acceleration.

2. Keeping the force constant, ob-

serve how various masses of the cart

affect the acceleration.

1 2



Q3 Do your observations support Newton's

Second Law? Why do you think so?

Experimental errors

It is unlikely that your values of F

and ma were equal.

This does not necessarily mean that

you have done a poor job of taking data.

There are at least two other possible

reasons for the inequality.

a) You have not yet measured every-

thing necessary in order to get an

accurate value for each of your three

quantities.

In particular, P means net, or

resultant, force on the cart not just

the towing force that you measured.

Friction force also acts on your cart

opposing the accelerating force. You

can measure it by reading the spring

scale as you tow the cart by hand at

constant speed. Do it several times

and take an average, Ff. Since fric-

tion, Ff, acts in a direction opposite

to the towing force, FT,

Fnet PT Pfrict

If P
frict

is too small to measure,

then Fnet PT' which is simply the

towing force that you wrote as F in

the beginning of the experiment.

b) Another reason for the inequality

of F and ma may be that your value

for each of these quantities is based

on measurements and every measurement

is uncertain to some extent.

You should estimate the uncer-

tainty of each of your measurements.

Uncertainty in P.

For example, your uncertainty in the

measurement of P is the average reading

of your spring scale (converted to new-

tons if necessary) plus or minus the

range of uncertainty you marked on your

Experiments
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Purpose #2

A second major purpose of this ex-
periment is the study of experimental
errors.

It may be desirable to pursue this
treatment in a subsequent laboratory
or class period. The ideas developed
here will be assumed in future dis-
cussions of experimental error.

The question is asked: "Does your

measured value of F
rrit

really equal

your measured value of ma?" Siace

all three quantities are the results
of measurements that have inherent
uncertainties, the measurement of
F
net

will almost certainly not equal

ma. This discrepancy does not nec-
essarily mean disagreement with New-
ton's Second Law. It does mean that
experimenters must consider uncertain-
ties of measurement and the propaga-
tion of error.

If students do find that F
net

is

equal to ma, within the experimental
uncertainty, then all is well. (Al-

though if the uncertainty is large,
they may justifiably point out that
it is a poor experiment.) If the
difference between the measured value
of F

net
and the calculated value of

ma is greater than the experimental
uncertainty, the most likely explana-
tions (apart from miscalculation, or
the use of inconsistent units) are
probably:

a) the force measured by the
spring scale is not the only
force acting (friction), and

b) the spring scale has a signi-
ficant error, or is inaccu-
rately calibrated.

Discussion of error propagation

The student notes point out that
the uncertainty in the difference
between two measured quantities is
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the sum of the uncertainties in the
two measurements. In symbols:

A (x - y) = O x + Ay

The same is true for the sum of two
measurements, of course:

6(x + y) =61t + Ay

Students may ask about the uncer-
tainty in a product. There is a
transparency to show this, but if it
is not available draw a rectangle
with sides of length x and y (Fig. 1).
The area of the rectangle is xy.
This is how we compute the product
of two numbers.

Draw a second rectangle, sides of
length x + Ax, y + Ay (Fig. 2).

The area of this rectangle is:

(x + y) + (x. Ay) + (yAx) + (Ax.Ay)

If each side of the rectangle repre-
sents a measurement (x,y) and the un-
certainty in the measurement (px,py),
then the uncertainty in the product
is represented by the shaded area in
the figure.

p(xy) = (y.px) + (x.Ay) + (AxAy)

A little algebra will show that the
percentage uncertainty in the product
is equal to the sum of the percentage
uncertainties in each measurement.
Since Ax and Ay are both small, we
can neglect the product AxAy, and
write:

(xy) = (yAx) + (xAy)

The percentage uncertainty is:

Ax x . Ay
11(xY) 100 =

17
100

x.y xy

=A?1100 + A1.100
x y

(If we had used a rectangle x - px
by y - Ay, we would have gotten just
the same result.)
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paper tape (also co.lvertec! to newtons).

Thus if your scale reading ranged from

1.0 to 1.4 N then the averaQe Is 1.2 N.

The range of uncertainty is 0.2 N.

Thus the value of F is 1.2 ± 0.2 N.

WI-at is your value of T?

Uncertainty in m

Your uncertainty in m is half the

smallest scale reading of the balance

with which you measuiad it. Your mass

consisted of a cart, a blinky and a

spring scale (and possibly an additional

weight). Record the mass of each of

these n kilograms, in some way such as

follows.

= 0.90 ± 0.05 kgm
cart

blinky = 0.30 ± 0.05 kg

= 0.10 ± 0.05 kg.m
scale

The total mass being accelerated is

the sam of these masses. The uncertainty

IA the total mass is the sum of the three

uncertainties. Thus, in our example,

m = 1.30 ± 0.15 kg.

Even when you subtract measured values

the uncertainty is still the sum of the

uncertainties.

What is y22.1111 value of m?

Uncertainty in a

Finally, consider the measurement of

a. You found this by measuring As/At

for each of the intervals between the

points on your blinky photograph.

sd, 441 + cd4 -.1:

Fig. 2.

Suppose the points in Fig. 2 represent

the record of blinky flashes. The dis-

tance between the points must be measured.

Your table of data should be similar to

Table 1.
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The uncertainty in each value of As/At

is due primarily to the fact that the

records of the blinky flashes are not true

points. Suppose that the uncertainty in

locating the distance between the centers

TABLE 1

AVERAGE SPEEDS

L§-1- = 2
s

5 cm
ec

+ 0 1 cm
Lt sec

LIL = 3.4 + 0 1 cm
Lt sec sec

's3 = 4.0 cm 0.1 cm
sec sec

4s cm cm4.8 --- 01 .
sec sec

cii cm
0.2 , cm

sect
- V.4 1J-C2

= v.o ---2 I V.4
e CM , CM

sec sec'

LEI = 0.8 22- 0.2 cm
sect sect

cm cm
Average 0.8 ---2 t 0.2 ---

sec sect

of the dots is 0.01 cm as shown in the

first column of Table 1. When we take

the differences between successive values

of the speeds, As/At, we get the acceler-

ations, Av/At, the speeds recorded in the

second column. As we noted above, when a

difference in two measurements is involved,

we find the uncertainty of the difference

(in this case, Av/At) by adding the un-

certainties of the two measurements.

This results in a maximum uncertainty in

accelera,-Ion of ± 0.2 cm /sect as recorded

in the table.

Comparing our results

We now have values of F, m and a to-

gether with their uncertainties, and we

should consider the uncertainty of ma.

When we have discovered the uncertainty

of this product of bdo quantities, we

shall then compare the value of ma with

the value of F and draw our final conclu-

sions.

33
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This is a general result: the

percentage uncertainty in a product
is equal to the sum of the percentage
uncertainties in each measurement,
however many terms there are in the
product. Similarly, for a quotient,
the percentage uncertainty is equal
to the sum of the percentage uncer-
tainties of all the terms.

While the simplicities outlined
above are useful for our introductory
exercise, a much more general ap-
proach to uncertainty and its analy-
sis is required for most experimen-
tal situations. This generality is
needed because a) there is a variety
of mechanisms responsible for intro-
ducing uncertainties, and b) there
are, of course, other kinds of func-
tions through which uncertainties
are to be propagated during the
course of the year. Tables 1 and 2
provide a brief outline summary of

these factors.

Table 1

Mechanisms Responsible for Uncer-
tainties

1) Scale reading uncertainties. Fi-
nite space between marks on
scales.

2) Object irregularities.
a) Obvious variations which can

be identified and have pre-
dictable effects.

b) Perturbations requiring a
statistical treatment of
the final results (e.g.,
population surveys, radio-
active disintegrations).

3) Systematic discrepancies intro-
duced by
a) Bias, due to poor experimental

design
b) Use of oversimplified theory.
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Table 2
When two guantitics are multip11::,i

the percentage once- tainty fn the pro,:ue',Propagation Rules to Calculate
Maximum Uncertainties is the sum of the percentage uncertfintic:

in each of tle factors. Thus, in our1) (;ums and differences
example,

Add absolute uncertainties to ob- m a = 1,30 kg = 1.04 1=.
tain absolute uncertainty in re- sec- sec
suit.

The percentage uncertainty in
For example:

a = 0.8 ± 0.2 cm/sec is (since 0.2
If A = 2.51 0.01 is 25% of 0.8). The percentage uncei-

B = 3.33 0.02 tainty in m is 11.5. Thus thf, percent-
then A + B = 5.84 0.03.

a(fe uncertainty in ma is 25%
2) Products and quotients and we can write our product as

Add % uncertainties to obtain %
uncertainty in result.

For example:

If A = 2.51 0.01 or i 0.4%
and B = 3.33 0.02 or ± 0.3%,
then AB = 8.36 0.7%

190

ma = 1.04 /ELF 36%
sec'

wh =en is, to two sig.ificant figures,

ma = 1.0 ± 0.4 L2.---D (or newtons).
sec-

In our example we fount, from direct mea-

surement that 17'
net

= 1.2 ± 0.2 N.

Are these the se:-e quantity?

Although 1.0 does not equal 1.2, since

the range of 1.0 ± ,.4 overlaps the range

of 1.2 ± 0.2 we can ily that the two

numbers agree within the range of uncer-

tainty of measurem.int."

An example of lack of agreement would

be 1.0 ± 0.2 and :.4 ± 0.1. These cannot

be the same qaantity since there is no

overlap.

In a similar work out your values

of F
net

ral ma.

Q4 Do thEy ,gree within the range of

uncertain y of ytur measurement?

Q5 Is th( rela,ionship I'
net

= ma an ex-

me imenta fact? If not, what Is l'?
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3) Power and roots

Multiply % uncertainty by power
or root (exponent) to obtain per-
centage uncertainty in the re-
sult.

For example:

If A = 2.51 ± 0.01 or ± 0.4%,

then A2 = 5.80 ± 0.8%

Exercises could be invented to
provide drill and practice on any of
the items listed in the tables. But

it is probably more appropriate to
call attention to them as they are
needed.

Remember not to give the whole
bottle of medicine in one sitting
parcel it out in gentle doses over
the whole year. The therapy takes
time!
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Experiment 9 Inertial and Gravitational Mass

Apparatus

Inertial balance, clamps, metal

slug, wire, ring stand, cord, unknown

mass, spring balance.

Procedure Notes

Weight is a measure of the gravita-

tional force on an object. Mass is a

measure of resistance of an object to

changes in the state of motion, a measure

of inertia.

The inertial balance is a simple de-

vice for measuring the inertial mass of
different objects. The frequency of its

horizontal vibration depends upon the

inertial mass placed on the balance,

since inertia is a resistance to any mo-

tion or change of motion.

1. Measure the period of the balance

alone by measuring the time for as many

vibrations a: you can conveniently count.

2. Select six identical objects of mass

such as six C-clamps. Measure their pe-

riod using first one, then two, then

three, etc., of the clamps on the balance.

3. Measure the period of an unknown mass

supplied by the instructor and record

this result.

4. Calibrate the C-clamps by measuring

their actual masses on a scale.

5. Discover whether or not gravity plays

a part in the operation of the inertial

balance. Load it with the iron slug.

This can be done by inserting a wire

through the center hole of the slug and

letting the slug rest on the platform.

Measure its period. Now lift the slug

slightly so that it no longer rests upon

the platform, support it from a ringstand

and again measure the period.
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Written Work

1. Plot the period, T, against the mass

used in each case.

2. Arrange the data in orderly fashion.

3. Locate the value of the unknown mass

on the prepared graph and compare with the

actual measured value.

4. Compare the data obtained when the

metal slug was supported by the platform

and when it was free. Is inertia related

to or dependent upon gravity?

5. Include a sketch of the apparatus.

F. Summarize briefly what you have learned

from this exercise.

35
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In the short version of this ex-
periment students can stop after re-
cording the path of the ball (before
section, Analyzing your data). By
this point they have plotted the tra-

jectory for themselves, which may be
sufficient.

However, another important pay-off
of this experiment is an understand-
ing of the principle of superposition
and for this the students must go on
to analyze their data. The principle
can be made particularly clear if the
horizontal displacements are graphed
against time squared. Both graphs
should be straight lines, as would
be expected of Coe two motions if
they took place separately.
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Experiment 10 TrajectoriesI

in 1 L. 1,A.C,, It

ti.t floor and thc:_ Let=1, it ,'a,es

voill travel -.30:e distan,:r_ nc,rc:,:nt 117.

There arc a num:._,er of c)dins rtc::_. fol-

low 1, doing tnis.

In ti.114 ent yr..r prc:_leT

find out just wn.ct patch

travel You will prc7,0aoL7 accI,

to find a "lathematical description with

which you can make useful and accurate

predictions.

How to use the equipment

If you are setting up the equipment

for the first time follow the manufac-

turer's instructions for asserbling it.

Fig. 1.

The apparatus (Fig. 1) consists of

one or two ramps down which you can roll

a steel ball. Adjust one of the ramps

(perhaps with the help of a level) so

that the ball leaves it horizontally.

Set the vertical impact board on the

plotting board so that a ball launched

from the ramp will hit it.

Attach a piece of carbon paper to the

side of the impact board facing the end

of the ramp, with the carbon side facing
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t-,0 . Then tape a loo of trans-

I 1-lion skin paper over the carbon

Tq.e a larger piece of paper, pre-

f.::rably squared graph paper, to the plot-

ti%:3 board with its left-hand edge be-

Lin,1 the end of the launching ramp.

::elease the ball from various points

tne ramp until ,.ou finl one from

the ball falls close to the bot-

tom right-hand corner of the plotting

hoard. Mark the point of release on the

ramp. Now when you put the impact board

in its way, the ball hits it and leaves

a mark, recording the point of impact

between ball and board, that you can see

through the onion skin paper. (Make

sure that the impact board doesn't move

when the ball hits i-; steady it with

your hand if necessary.) Transfe'r the

point to the plotting board by making a

mark ,-)n it just next to the point on the

impact board.

Repeat this for other positions of

the impact board to record more points

on the ball's path. Move the board

back equal distances every time and al-

ways release the ball from the same spot

on the ramp. Continue until the ball

does not hit the impact board any longer.

To release the ball do not hold it in

your fingersit is impossible to let

go of it in the same way every time.

Instead dam it up with a ruler held at

a mark on the ramp and release the ball

by lifting the ruler quickly.

Try releasing the ball several times

(always from the same point) for the

same setting of the impact board. Do

all the impact points exactly coincide?

Now remove the impact board, release

the ball once more and watch carefully

to see that it moves along the points

marked on the plotting board.

Experiments

El0
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By observing the path the ball follows

you have completed the first goal of the

experiment.

The curve traced out by your plotted

points is called the trajectory of the
ball.

You may want to stop here, though you
will find it useful to go further and

explore some of the properties of your

trajectory.

Analyzing your data

To help you analyze the trajectory,

draw a horizontal line on the paper at

the level of the lip of the launching

ramp. Then remove the paper from the

plotting board and draw a smooth con-

tinuous curve through the points.

If it is true that an object moves

equal distances in equal times when no

net force acts on it, then you can assume

that the ball will move horizontally at

constant speed.

Fig. 2.

42
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Draw vertical lines through the points

on your graph (Fig. 2). Make the first

line coincide with the lip of the launch-

ing ramp. Because of your plotting pro-

cedure these lines should be equally

spaced. If the horizontal speed of the

ball is uniform, these vertical lines

are drawn through positions of the ball

separated by equal time intervals. This

means that the ball travels across the

first measured space and reaches the

second vertical line one unit of time

after leaving the ramp; it reaches the

third line after two time units, the

fourth after three, and so on.

Now consider the vertical distances

fallen in each time interval. Measure

down from your horizontal line the ver-

tical fall to each of your plotted

points. Record your measurements in a

column and alongside them in a parallel

column record the corresponding horizon-

tal distance measured from the first

vertical line.

Q1 What would a graph look like on which

you plot horizontal distance against

time?

Earlier in your work with accelerated

motion. you learned how to recognize uni-

form acceleration (see Secs. 2.5-2.8 in

the text and Experiment 5 ). Use the

data you have just collected to decide

whether the vertical motion of the ball

was uniformly accelerated motion.

Q2 What do you find?

Q3 Do the horizontal and the vertical

motions affect each other in any way?

Write the equation that describes the

horizontal motion in terms of horizontal

velocity, vh, the horizontal distance,

dh, and the time of travel, t.

Q4 What is the equation that describes

the vertical motion in terms of the dis-

tance fallen vertically, dv, the vertical

acceleration, a , and the time of travel,

t?

Experiments
E10

The graph of horizontal distance
against time is a straight line be-

ginning at the origin.

If vertical motion is uniformly
accelerated then a plot of total ver-
tical distance fallen against the
square of the horizontal distance
(actually t2) will be a straight
line.

Another way to show this is to
measure the change in distance, Ad,
(the additional distance fallen) in
each time interval. Ad should in-
crease by the same amount in each
time interval.

The horizontal and vertical mo-
tions have no effect on each other.

Horizontal distance, dh = vht

Vertical distance, dv = a t2/2

To find a single equation for the
trajectory see the derivation on pp.
99-100 of the text.

197



Experiments

E10

All balls-of whatever size or
mass should have nearly the same
acceleration, though very small or
lightweight balls are slowed by
roughness of the plane or by air
resistance.
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Testing your model

t

, e

it pre,:

it wtul::

Lt'Itt IS cne yct

Le ;ad, tc t1,111-1

*i<

;<= .-cry Ictrs L tn<,

eTaattons !or tat bo.11's motion that

do not. knot-. (the times, the tall's

initial horizont,1 spec,i). ro.:t you can

.--,,mbine the equations to Tet rid of tnese

unttno%:ns, and ..`se just tne vertloal and

horizontal distances that you measure on

your plot. Then for the nc,: vortical

distance (height of the luuncn point a:Jove

the floor) you can predict tne horizontal

distance that the balll will travel. Put

dcwn a sheet of paper at this poiLt and

mark your predicted spot. Before you

test your prediction try to estimate how

close to your mark you think the Lail

will actually land.

Extens'ons

There are many other things you can

do with this apparatus. Here are some

of them.

Q5 Wha. do you expect would happen if

you repeated the experiment with a glass

marble of the same size instead of a

steel ball? Try it

06 What will happen if you next try

to repeat the e,:neriment starting the

ball from a different point on the ramp?

Q7 What do you expect if you use a

smaller or a larger ball starting always

from the same reference point on the

ramp?
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the trajectory th't re,11#s

,1 ramp tnat 1aun-ht5 tne rail at

to t.:le nerizontal.

c9 In w:,rt wry 1,.; this C0t70 similar tc,

.2"or firt trajectory?

lu FInd a from this experiment using:

r i:rocedure similar to that described on

r,a,Tc

WhItI c,th:r changes in the conditions

cf th.:s experiment can you suggest? con-

alt teacher before testing tnem.
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If the ball has an upward velocity
at the time of launching, separate
analysis of the upward and the down-
ward leg will show that each of them
is a parabola as in the earlier case.
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This experiment, like the preced-
ing one (Trajectories - I) assumes
student mastery of Secs. 4.2 and 4.3.

This experiment develops the same
insights as Trajectories - I but in
less detail. It also requires less
time and less equipment.
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Experiment 10 Trajectories II

This experiment tests the equation

for projectile motion by using it to

predict the landing point of a ball

launched horizontally from a table top.

You will determine the speed, v0, of the

ball as it leaves the table and, knowing

the height of the table above the floor

and a
g

, you will use the equation to

predict where on the floor the ball will

land.

The equation is based on certain as-

sumptions. If it correctly predicts the

landing point, then the assumptions are

evidently valid.

The assumptions

If the ball continues to move hori-

zontally with velocity vo.(Assumption 1),

the horizontal distance x at time t

from launch will be given by the equa-

tion

X = vet (1)

where v0 is the horizontal velocity at

launch.

Similarly, If the ball moves vertical-

ly with uniform acceleration (Assumption

2), the vertical distance fallen at time

t will be given by this equation.

y = ;la
g
t2 (2)

Arieasw. Ina v
..1 0

VV7. -
77°

F
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Solving equation

Substituting

we have

Y = 1/2a

g

t =

this

2

=
vo

(1) for t,

X--
vo

into equation

a x2

(3)

(2),

(4)2v02

This is the equation to test,by using

it to predict the value of x where the

ball strikes the floor. Solving equa-

tion (4) for x, we have

2v02y
x2

Or/

a
g

x
ag = vo

.2-72vo2Y

From this last equation we can pre-

dict x if we know vo, y and a .

9

The experiment

You can determine vo by measuring the

time t that the ball takes to roll a

distance R. along the table top (Fig. 1).

Repeat the measurement a few times, al-

ways releasing the ball from the same

place on the ramp, and take the average

value of vo.

1g. 1.

,

stand
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Ql ThiL is the same situation as
that examined in the laboratory. If
the slingshot is held at a distance
y above the ground, the range, x,
will be

X = V
O a

g

Vzy

But what is vo? To find this, shoot
the same projectile vertically upward reiea-;c once rTor'.1,
and time its flight. Since vo = agt thtn tie let It roll e'fi tnt -diu
for each half of the flight, the time, land on the floor (F1.1. z).T, for the round trip will be twice t,
Or If tae ball actually d6us f it within

tne ran,le of values or you hav_
T = 2t =

2v
°

tar^aLea, then VOL have verlticd tne :s-

Experiments

y and

tne flcci: at

landlnq spot. hcw

ye.r predicticn: Since

re,a.--;.1rer;ent tnere is i= an;fttaInty

Involved. Mark ary art'a ream tna

to indicate tne dneertaIntl

ag sarlpticns on which your oaloulataut waa T
whence vo = and our expression hased.

2

for the range x becomes

vX = - 11-
a

N
11 = T

2
2

Q2 We assume that the ball is
launched with the same horizontal
velocity, vh, and vertical velocity,
vv, as on the earth.

Consider the first half of the
ball's flight on earth, in which it
rises to the top of its trajectory.

/

It will reach this high point in a
time, t, defined by vv = agt, whence

:71,P, \if
t = vv/ag. <

During this same time the ball is rig.

r"

also travelling horizontally with a
velocity vh and will therefore have
covered a horizontal distance, d =
vht which becomes on substitution
d = vhvv/ag.
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The ball will cover an additional
equal distance during the descending
half of its trajectory so its total
range, R, on earth will be

R = 2d = 2v
h
v
v
/a

g

On the moon ag is only one-sixth
as great as on the earth and hence
R must be six times as great.

Q3 Assumptions (1) and (2) hold as
long as we can ignore the effect of
air resistance and as long as we as-
sume the force of gravity is constant
in magnitude and direction.

If the earth had no atmosphere,
therefore, the answer to the question
would be "yes," but in fact air re-
sistance will reduce both the hori-
zontal and the vertical distances
travelled in a time t. The quickest
way to appreciate this is to play
"catch" with a ping pong ball.
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The instructions assume that the
students have already studied the
subject of circular motion through
Sec. 4.7.

The next experiment, Circular Mo-
tion II, assumes that the students
have not yet studied circular motion,
and they discover F = mv2/R for them-
selves in the lab.

Whichever version of circular mo-
tion is used, the teacher should no-
tice that it uses insights derived
from the preceding work on Newton's
Second Law (an acceleration, v2/R,
results from a force, F). It is al-
so very important to notice that the
work on circular motion is central
to the study of satellite motion in
Unit 2 and leads directly into Chap-
ter 7.

The object of the lab is to pre-
dict the maximum radius at which an
object' can be located on a rotating
platform as a function of the period,
and the friction force. If their
predictions are within 10% of the ex-
perimental results you can consider
them a success.
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Experiment 11 Circular Motion .1

You may have had the experience of

spinning around on an amusement park con-

traption known as the Whirling Platter.

The riders seat themselves at various

places on a la-ge flat polished wooden

turntable about 40 feet in diameter.

The turntable gradually rotates faster

and faster until everyone (except for

the person in the center of the table)

has slid off. The people at the edge are

the first to go.

Ql Why do the people fall off?

Study Sec. 4.6, where you learn that

the centripetal force needed to hold a

rider in a circular path is given by

F = mv2/R.

Friction on a spinning table

On the rotating table the centrip,!tal

force is provided by friction. Friction

is the centripetal force. On a friction-

less table there could be no such centri-

petal force and everyone except a rider

at the center would ,, de off right at

the start,

Near the outer edge where the riders

have the greatest velocity, v, the fric-

tion force, F, needed to hold them in a

circular path is large. (The effect of

R in the denominator also being large is

more than cancelled out by the fact that

v is squared in the numerator.)

Near the center where v is nearly zero

very little friction force is needed.

Q2 Where should a rider sit on a fric-

tionless tale to avoid sliding off?

Use the formula above to justify your

answer.

Evidently, if ;ou know the force needed

to start a rider sliding across a motion-

less table top (the force of friction),

you know the value of the centripetal

force, mv2/R, at which the rider would

begin to slip when the table is rotating.
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Fig. 1.

Studying centripetal force

Unfortunately you probably do not have

a Whirling Platter in your classroom, but

you do have a masonite disc which fts on

a turntable. The object of this experi-

ment is to predict the maximum radius at

which a mass can be placed on the rotating

turntable without sliding off.

If you do this under a variety of cor

ditions, you will see for yourself how

forces act in circular motion.

For these experiments it is more con-

venient to write the formula F = mv2/R

in terms of the period, T, of the table

instead of the value of v and R at some

point on it. This is because it is easier

Lo measure T and R than to measure v. We

rewrite the formula as follows:

d. stance travelled by
a rider ln one revolution

v
tiro for c.. revolution

2-Tr
=

Substitute this into the expression for

centripetal force

mv' m 47r2R2 4 -emit= =
R R T2

Then solve it for R.

R
4-'m

You can measure -111 the quantities in

this equatInn.

:47
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The friction force needed to get
the object started differs from the
sliding friction. You might want
some students to investigate this
curious difference.

Remember that R must be measured
to the center of the mass on the turn-
table. Have the students mark the
inner and the outer edges of the mass
in the position where it begins to
slip, and then later measure R to the
midpoint between them. Also when we
measure R to the center of mass we
assume that R is several times larg-
er than the radius of the weight.
Typical data are in Table 1.

If there are no small spring bal-
ances (2.5 newtons) you can have the
students measure the friction force
by tilting the turntable up until
the mass begins to slide down. The
fricticn force can be determined from
the vector diagram.

sin e = F
f

or

Ff = sin 0

For small angles sin 0 =e and o
2R'Wh

so
Lf 2R.
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The students can be asked to de-
termine the frequency of the turn-
table. The table may not be turn-
ing at 33, 45 or 78 rpm. You may
have to review the difference be-

tween frequency and period and also
make sure that periods are expressed
in seconds not minutes.

Q4 When the mass is made smaller it
might seem that the radius, R, would
have to be smaller since R appears
to be proportional to m in the ex-
pression F = mv2/R,

But F is also a function of m, and
v is a function of R, so the answer
to the question is not obvious.

In particular the centripetal
force, F, is equal to the force of
friction at the moment of slipping,
which means that

F = kma
g

where k is the coefficient of fric-
tion and mag is the weight of the ob-
ject on the turntable, assumed to be
horizontal.

Also v2 = (2R/T)2.

Putting these expressions for F
and v2 into the centripetal force
equation we get

n
2
R
2

kmag = m 4--2

simplifying
Ka
,_ T2

R -

Since m has now vanished from the
expression for R it follows that the
value of R is independent of m. This
means that for a given solution for
R you can use an mass.
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Your task is to predict the radius, R,

at which a weight can be placed on the

rotating table so that it will just

barely remain and not slip.

Use a spring scale to measure the

force, F, needed to make a mass, m, of

0.20 to 1.00 kg start to slide across

the motionless disc (Fig. 1).

Then make a chalk mark on the table

and time it for 100 revolutions to cal-

culate T, the time for one revolution

(or accept the given values of turntable

frequency). Remember that T, the period,

is 1/frequency.

Make your predictions of R for turn-

table frequencies of 33 rpm, 45 rpm and

78 rpm.

Then try it

48



Q3 How great is the percentage differ-

ence between prediction and experiment in

each case? Do you think this is reason-

able agreement?

Q4 What effect would decreasing the mass

have on the predicted value of R? Care-

ful! Decreasing the mass has an effect

on F also. Check your answer by doing

an experiment.

Q5 What is the smallest radius you can

turn a car in if you are moving 60 miles

an hour and the friction force between

tires and road is one third the weight

of the car?

Q6 What happens to the period of an

earth satellite as it falls into a lower

orbit?

Weight

1000 gm
500
300

200
100

Note: R includes the radius of the weight.

Experiments
Ell

Q5 Changing the mass of the object
should have no effect because the
friction force should increase with
the mass as will the centripetal
force, and the two effects will
cancel.

1 mv
2

F = ma =
f 3 g R

3v
2

R = , which does not contain m.
a
g

60 mph = 88 feet/sec = 27 m/sec.

3 x9(87)2
R 224 meters (pretty

8

wide arc).

Q6 The expresbion derived in Q4
above gives the connection between R
and the period, T. It shows that as
R decreases so does T. More specif-
ically, if R becomes one quarter as
great, T becomes half as great. R
is measured from the center of the
earth in the case of an earth sat-
ellite.

Table 1

Typical data for brass weight on
masonite turntable

Force to
start

slipping

R for slipping
1

33-rpm
16rpm 3 45rpm 78rpm

1.5 to 2N no slip 21.5cm 9.7cm 3.0cm
0.9 to 1.1 no slip 20.9 9.3 2.5
0.5 to 0.6 no slip 14.5 7.8 2.2
0.4 to 0.5 no slip 21.0 9.7 2.5

0.2 to 0.3 no slip 19.2 10.0 3.2
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This experiment assumes that stu-
dents have not studied text Sec. 4.6
in which the formula for centripetal
force is derived. Instead the ex-
periment leads to the students dis-
covering that F is pro.ortional to
m, v2, and 1/R.

Apparatus

The equipment is easy to assemble
if no ready-made device is available.
One needs a spring scale calibrated
preferably in newtons or dynes,
string, rubber stoppers for weights,
a stick (such as a meter stick)
around which the weighted string can
be rotated, and an audible timing de-
vice. As a timing device use a metro-
nome. Or a student with a watch can
count out the time.

A scale calibrated in grams can
be converted to a force scale in new-
tons by placing a piece of tape along
one edge and marking the correspond-
ing force units on it in newtons
(1 newton = 102 grams weight; 1 kg.
weight = 1 x 9.8 newtons).

If you use a glass medicine drop-
per tube for the bearing, be careful
to tape it completely so that if it
cracks it will not shatter. You can
also use a plastic or metal tube.
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Experiment 12 Circular Motion II

An eartb satellite and a wt swung

around your head on the end of a latra.n4

aro controlled by the sume laws of mo-

tion. Both are accelerating towurd the

center of their orbit lce to the action

of an unbalanced force.

In tne followirg experi-ent you dis-

cover for yourself now tnis centripetal

force depends on tb, mass of tnt:

and on its speed and list -once fro the

center.

How the apparatus works

Your "satellite" is one or more rubber

stoppers. When you hold the apparatus

(Fig. 1) in both hands and swing the

stopper around your head you can measure

the centripetal force on it with a spring

scale at the base of the stick. The

scale should read in newtons or else its

readings should be converted. Remember

1 N = the weight of 102 gms weight or

1 kg weight = 9.8 N.

You can change the length of the

string so as to vary the radius, R, of

the circular orbit, and you can tie on

more stoppers to vary the satellite mass, m.
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Tre best way to time the eerie.,.:, T, is

to swing the apparatus in time wit-. Some

periodic sound such as tr.e tick of

metronome or have an assistant count out

loud using a watch. You keep the rite

constant by adjustina the swinging until

ICU see the stopper cross tre same point

in the room at every tick.

Hold the stick vertically and have as

little motion at the top as possible,

since this would change the radius.

Since the stretch of the spring scale

also alters the radius it is helpful to

move the scale up or down slightly to com-

pensate for this.

Doing the experiment

The object of the experiment is to find

out how the force read on the spring scale

varies with m, with v and with R.

You should only change one of these

three quantities at a time so that the

effect of each one can be investigated

independently of the ethers. It's easiest

to either double or triple m, v and R (or

halve them, etc. if you started with large

values).

Two or three different values should

be enough in each case. Make a table and

record your numbers in it clearly.

Q1 How do changes in m affect F if R is

kept constant? Write a formula that

states this relationship.

Q2 How do changes in v affect F if m is

kept constant? Write a formula to express

this too.

Q3 Measure the effect of R and express

it in a formula.

Q4 Can you put m, v and R all together

in a single formula for centripetal force,

F?

After you have committed yourself,

check your formula by studying text Sec.

4.6.

Experiments
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An assumption

As the stoppers are swung in a cir-
cle at low speed the string is by no
means horizontal, and the stoppers'
distance from the vertical stick, R',
grows less than R, the length of the
string (Fig. 2). Students may wonder
whether the centripetal force is de-
termined by R or by R'. The answer
is that R is still the correct length
to measure, as the following analysis
shows.

When the string sags the mass moves
in a smaller circle whose radius is

R' = R cos 0

Its velocity becomes

-
, 2TrR' 2Tacose

- v cos e

and the centripetal force is reduced to

F' = F cos 0.

Substituting these expressions for
R', v', and F' into

mv
F'

12

(1)

gives us
R'

F cose = m
v2cos20
Rcos 0

which simplifies to

mv 2

F = (2)
R

Thus formula (1) which describes
the centripetal force when the string
sags is really the same as formula (2)
which students have been seeking to
verify on the assumption that the
string was horizontal.
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Discussion

Groups of students can be assigned
different sets on conditions; then the
data can be pooled.

With the data collected, the stu-
dents can proceed to compare their
data. As we are only concerned with
developing the functional relation
between the force and variables, the
data can be treated as units (1, 2, 3)
and the 47T2 constant dropped.

Because the error terms associated
with the variables in this experiment
range from very small (for the mass)
to vary large (for the period), a dis-
cussion of error and its estimation
would be appropriat here.

A second topic would be to present
the students with the height of a
satellite orbit and its velocity (for
Alouette I, h = 650 miles and v =
16,500 miles per hour) and ask them
either how much faster it would have
to go to boost its orbit 100 miles,
or how much its orbit would be in-
creased if it added 100 miles per hour
to its velocity. This is a simplified
problem quite similar to those which
astronauts solve during maneuvering.

210

Experiments
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60111% BE THE LOYJC-Er
ORBIT ON RECORD.
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To solve the problem, one can as-
sume that the gravitational force does
not change appreciably over relatively
small distances (like 100 miles). Set

my
F
1

- for the initial orbit, and
R

1

1

mv 2

F
2 R

2
= for the final orbit. When

2

any three of the values are known, the
fourth can be calculated. Radius of
the earth is 3959 miles. So Ri =
3959 + h miles.
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An iron plug was inserted into the
top of the bowling ball to allow for
magnetic release of the ball.

Deviations of projector speed from
the nominal 18 frames/sec are usually
no more than ±1 frame/sec; but this
is greater than 5%.

A formal proof of this statement is
as follows: If the acceleration is
constant during a time interval of
duration T, the speed at the midtime
is vm = vi+ a(T/2). But the aver-
age speed is 17 = (vi + v2)/2 =
[vi + (v1 + aT)1/2 = vi + a(T/2).
Hence vm =17. The simplifying as-
sumption that average speed equals
instantaneous speed at the midtime is
valid in uniformly accelerated motion
for any size of time interval. The
statement is true for an arbitrary mo-
tion only as the time interval ap-
proaches zero.
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Film Loop 1 Acceleration Due To Gravity Method I

A bowling ball in free fall was fIlmcd

in slow motion. The film was exposed

at 3900 frames/sec, and is projected at

about 18 frames/sec. The slow-motion

factor is therefore 3900/18, or about

217. Your projector may not run at ex-

actly 18 frames/sec, so for best results

you should calibrate it by timing the

length of the entire loop, which contains

3273 frames betlheen panch marks. To

find the acceleration of the falling

body we need the instantaneous speed at

two times; then we can use the definition

acceleration = change in speed
time interval

We cannot measure instantaneous speed

directly, but we can get around this by

measuring the average speed during an

interval. Suppose the speed increases

steadily, as it does for a freely falling

body. During the first half of any in-

terval the speed is less than average,

and during the second half of the inter-

val the speed is greater than average,

Therefore, for uniformly accelerated

motion the average speed v equals the

instantaneous speed at the midtime of

the interval. We use this fact to find

the values of instantaneous speed at the

midtimes of each of two intervals. Then

we can calculate the acceleration from

V2 - VI
a -

t2 - ti

where ;71 and v2 are the average speeds

during the first and second intervals,

and ti and t2 are the midtimes of these

intervals.

Two intervals 0.50 meter in length

are indicated in the film. The ball

falls 1 meter before the start of the

first marked interval, so it has some

initial speed as it crosses the first

line. Use an ordinary watch (with a

sweep second hand) to time the ball's
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motion and record the times (by the

watch) of crossing each of the four

lines. From these times you can find

the time (in apparent seconds) between

the midtimes of the two intervals, and

the times for the ball to move through

each 1/2-meter interval. Repeat the

measurements at least once, and find the

average times. Now you can use the slow-

motion factor to convert these times to

real seconds, and then calculate the two

values of 7. Finally, calculate the ac-

celeration.

The film was made at Montreal, Canada.

The value of the acceleration due to

gravity there is, to 3 significant fig-

ures, 9.81 m/sec2. When rounded off to

!IA-, this becomes 9.8 m/sec`. Try to

decide from the internal consistency of

your data (the repeatability of your

time measurements) how precisely you

should write your result.

Film Loops

An error of ±0.04 in the value of
a would still give some "significance"
to a final digit in a result such as
9.76 or 9.81 m/sec2. This would re-
quire a student's measurements to be
within half of one percent, which is
very unlikely. A more reasonable ex-
pectation would be to obtain a to
within perhaps ±0.1 m/sec2 (i.e., to
within 1%).

213



Film Loops

L2

The Technicolor projectors are un-
likely to have speeds in error by more
than ±1 frame/sec; this is, however,
more than 5%.

When Unit 3 has been studied, the
student will see that this equation
can also be derived from the law of
conservation of energy. If the initial
speed is vi and the final speed is vf,
then

Ep + EK = Ep + EK

ma
g
s + 3imvi2 = 0 + kmvf2

vf 2
- vi

2
= 2a s

g
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Film Loop 2 Acceleration Due To Gravity Method II

A bowling ball in free fall was filmed

in slow motion. The film was exposed at

3415 frames/sec, and is projected at

about 18 frames/sec. For best results,

you should calibrate your projector by

timing the length of the entire film,

which contains 3695 frames between punch

marks.

If the ball starts from rest and ac-

quires a speed v after falling through

a distance d, the average speed is v =
0 + v

k2v, and the time to fall this
2

distance is given by t = d
=

d
-- = 2d

.

v 1/21, v
The acceleration is given by

acceleration = change of speed
time interval

from which

v
v

a =
2d/ or a = v2/2d.

Thus to measure the acceleration we need

to know the instantaneous speed v of the

falling body at a known distance d be-

low the starting point. All we can mea-

sure, of course, is an average speed

over some small interval. In the film,

small intervals of 20 cm are centered

on positions 1 m, 2 m, 3 m and 4 m below

the starting point. We make the approxi-

mation that the average speed is the in-

stantaneous speed at the midpoint of the

interval. Actually, the average speed

is the instantaneous speed at the mid-

time, not the midpoint; but the error is

negligible in our work because we are

using such a short interval.

Determine the four average speeds by

timing the ball's motion across the 20-

cm intervals. Repeat each measurement

several times to average out errors of

measurement. Convert your measured

times into real times, using the slow-

motion factor. Compute the speeds, in

m/sec, and then compute the value of



v2/2d for each value of d.

To analyze your results, make a table

of calculated values of a, listing them

in the order of increasing values of d.

Is there any evidence for a systematic

trend in the values? State the result

of your experiment by giving an average

value of the acceleration and an estimate

of the possible error. The error estimate

is a matter of judgment, and should be

based on the consistency of your four

measured values of the acceleration.

7Pei.0)(4.4t4ogAsTcH
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In theory, a systematic trend exists
because of the approximation we made.
The ball speeds up as it passes Clrough
any interval; at the midtime it is
slightly above the midpoint of the in-
terval. Hence each value of s should
be decreased very slightly, and the
effect is largest for small values of
s where the speed changes by a larger
fraction during the interval. In

practice, the error is negligible and
will not be observed. For the worst
case, consider the motion of the ball
from s = 0.90 m to s = 1.10 m. From

s = kagt2, the time to fall to 1.10 m

is t = 2s/ag = 2(1.10)/9.80 =

0.47380 sec; the time to fall 0.90 m

is 2(0.90)/9.80 = 0.42857 sec. The

midtime is thus at tin = 0.45118 sec,

and the displacement at the midtime
is s = kagtm2 = 1/2(9.80)/0.45118)2 =

0.9975 m. So we see that the value
of s that corresponds to the meas-
ured V is 0.9975 m, only 0.0025 m
(2.5 mm) above the midpoint of the
interval. The error in s is 0.25%,
and therefore the error in ag is also
only 0.25%. The percent error is even
less for the measurements at s = 2 m,
3 m, and 4 m.
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The student notes are somewhat more
detailed than usual, because vector
addition as such is not discussed very
fully in the text.

The physical conditions were not
ideal; you can easily verify that the
river's speed is not as uniform as
would be desirable. There is about a
25% variation between the speeds at the
extreme left and the extreme right of
the picture. The average speed at the
middle of the frame should be used.

Careful observation also shows that the
direction of the river flow is a few
degrees off from being perpendicular
to the line connecting the markers;
this is not mentioned 4.n the student
notes but is implicit in the illustra-
tive vector diagrams of Fig. 4 and
Fig. 5.
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Film Loop 3. Vector Addition I Velocity of a Boat

The head-to-tail method of add_no vec-

tors is illustrated in rig. 1. Since ve-

locity is a vector quantity (it has both

magnitude and direction) we can study

vector addition by using velocity vectors.

Fig. 1.

An easy way of keeping track of the order

in which vectors are to be added is by

using subscripts:

VBE velocity of boat relative to earth

ZW velocity of boat relative to water

v
WE velocity of water relative to earth.

Then

"BE =% VWE.

In the film a motorboat is photographed

from a bridge above a river. The operator

tried to keep a steady speed relative to

the water by keeping the throttle at a

fixed setting. The boat heads upstream,

then downstream, then directly across

stream, and finally it heads at an angle

somewhat upstream so as to move straight

across. For each heading of the boat, a

vector diagram can be drawn by laying

off the velocities to scale, using a ruler
and a protractor.

First project the film on a piece of

graph paper and mark out lines along which

the boat's image moves. Then measure

speeds by timing the motion of the boat as

it moves some predetermined number of
squares. Repeat each measurement three
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times, and use the average times to cal-

culate the speeds. Express all speeds in

the Sarni:: unit, such as "squares per sec-

ond," or "square per cm" where cm

refers to measured separations between

marks on the moving paper of a dragstrip.

There is no need to convert the speeds to

meters per second. Why is it a good idea

to use a fairly large distance between

the tIming marks on the graph paper? A

suggested procedure is to record data for

each of the five scenes, and draw the

vector diagrams after taking all the

data.

1. Two blocks of wood are dropped over-

board. Time the blocks; find the speed
-

E'
of the river. This is vWE, to be used

in the vector additions to follow.

2. The boat heads upstream. Measure

v
BE'

then find v
BW

using a vector diagram

(Fig. 2).

Fig. 2.

V01" V1,4F

Film Loops

L3

As with all measurements of speed
using film loops, it is essential to
repeat each time measurement several
times to average out errors (or to
allow one to discard an obviously
wrong value).

Scene 1 is really superfluous,
since the river speed can be meas-
ured well enough in the other scenes
using patches of foam floating on the
surface. However, the pieces of wood
may be easier to see.
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3. The boat heads downstream. Measure

vBE , then find v
BW using a vector diagram

(Fig. 3) :

;.;

_

we
Fig. 3.

vBE

t
. + NEFE vow

4. The boat heads across stream and

drifts downward. Measure the speed of

the boat and the direction of its path;

these give you the magnitude and direc-

tion necessary to specify the vector ;*7BB.

Also measure the direction of v
BW

this

is the heading of the boat, the direction

in which it points. A good way to record

data is to refer everything to a set of

axes with the 00 - 180° axis passing

through the round markers anchored in the

river. Ir Fig. 4 the numbers are delib-

erately falsified; record your own mea-

surements in a similar diagram.

Ho° 0

F, 0

Fig. 4(a)

tio°

ob;:;,_stue_d:04.-1-
V.eadtfq,)

---,

--4.I

Vac

N.V.!

vI?E

Fig. 4(b)
vec = V1310 v

VJE

5. The boat heads upstream at an angle,

but moves across stream. Typical data

might be similar to those in Fig. 5.

900

Iso°
rgo°

Fig. 5.

ew
wit

V' Se

I

2.62°

2.70°
47 46'4 .i)(:4tyP

VecGv dm() vow.,

Checking your work

a) In parts 2, ?, 4 aid 5 you have

found four values of the magnitude of

vBw. How well do these agree with

each other? Can yo';: suggest reasons

for any discrepancies?

b) In part 4, you have foulf(by'

graphical construction) a direction

for v
BW'

the calculated heading of the

boat. How well does this angle agree

with the observed boat heading?

c) In part 5, you have found a direc-

tiOn for How well does this

angle agree with the observed boat

heading?

o°

Film Loops
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As an indication of the consis-
tency of results obtainable with this
loop, we give some typical results of
measurements by the techniques de-
scribed. In the four scenes (using
foa.n as reference points) the water
speed was 2.0, 2.0, 2.1, and 2.0 units.
On the same scale, the values of
v
BW

were 4.0, 3.9, 4.3 and 4.5 units.

The agreement between calculated and
observed boat heading was ±10 for
scene 4, and ±50 for scene 5. Prob-
able reasons for variations in v

BW
were the inability of the operator to
maintain exactly constant motor power,
and some errors in steering.
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This is a qualitative demonstration
loop for repeated classroom use by the
teacher. The concepts used are:
(a) relative velocity and Galilean rel-
ativity (Unit 1); (b) principles of
conservation of momentum and conserva-
tion of energy in elastic collisions
(Unit 3). It is suggested that the
teacher stop the projector near the
start of the loop when a message on
the screen asks "How did these events
differ?" Encourage the students to
describe the events they have just
seen, without attempting to speculate
on the ways in which the events were
photographed. Then project the rest
of the loop and initiate a discussion

of relative motion and frames of ref-
erence. Come back to the loop when
the conservation laws are studied in
Unit 3.

In a technical sense, the word
"event" implies knowledge of both
places and times. A student walks
from his home to school between 8:00
and 8:20 on Monday, and again between
8:00 and 8:20 on Tuesday. These are
two different events. They are simi-
lar events, one being a repetition of
the other. In the loop, three events
not only occur during different time
intervals, but also appear to be
physically different. The student
should be encouraged to describe what
he sees--and the events do seem to re-
quire different descriptions.

The principle of Galilean Relativity
is discussed on pp. 98-100 of the text
of Unit 1: "Any mechanical experiment
will yield the same results when per-
formed in a frame cf reference moving
with uniform velocity as in a station-
ary frame of reference." In other
words, the form of any law of mechanics
is independent of the uniform motion of
the frame of reference of the observer.
Einstein broadened the principle to in-
clude all laws of physics, not just the
laws of mechanics. Thus the Einstein
relativity includes the laws of elec-
tromagnetism, which describe the propa-
gation of light, as well as the mechan-
ical laws of conservation of momentum
and conservation'of energy which are
sufficient for our study of colliding
carts. 220

Film Loop 4 A Master Of Relative Motion

In 'h's film loop mechanical experiments

pertormed in which two simple carts of

equal mass collide. In the filr, tnree

sequences labeled Event A, Event B and

Event C are photographed by a camera on a

cart which is on a second lamp parallel

to the one on which the colliding carts

move. The camera is our frame of refer-

ence; this frame of reference may or may

not be in motion. As photographed, the

three events appear to be quite different.

Describe these events, in words, as they

appear to you (and to the camera). The

question arises: cc,:ld these three

events really be similar events, viewed

from different frames of reference?

Although to the observer Events A, B

and C are visibly different, in each the

carts interact similarly, and so could be

the same event received from different

reference frames. They are, in fact,

closely similar events photographed from

different frames of reference. The ques-

tion of which cart is really in motion is

resolved by sequences at the end of the

film, in which an experimenter stands

near the ramp to provide a reference ob-

ject. But is this fixed frame of refer-

ence any more fundamental than one of the

moving frames of reference? Fixed rela-

tive to what?



The algebra of this prediction in-
volved simultaneous equations; the un-
knowns are V1 and V2 (Fig. 1).

Conservation of momentum:

0 + mv = mV
1
+ mV

2

Conservation of energy:

0 + kmv2 = km1112 + kmV2
2

(1)

(2)

The masses m cancel out. Solve (1) for
V1, getting

Vi = v - V
2

(3)

Substitute into (2): v2 = (v - V2)2 +

V2
2
, which simplifies to (V2 - v)V2 = 0.

Hence V2 = v and, from (3), V1 = 0.

If two equal carts approach each
other with equal speeds, (Fig. 2), we
have

my - my = mV
1
+ mV

2
(4)

2imv + kmv
2
= kmV

1

2 + kW
2

2 (5)

Solve (4) for V2 and substitute into

(5), getting V
1
2 = v2, i.e., V

1
= tv.

If V1 = +v there is no collision, so
we use the - sign. Then V1 = -v, and
from (4) we get V2 = -V1 = +v.

The student may be able to get some
clues as to what is "really" happening
by closely observing the rolling wheels
of the carts, and will perhaps see the
apparent motion of wrinkles in the pale
blue background cloth. The teacher

Film Loops
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should ask the student what he means
by "really" happening--it should become
clear that he is subconsciously iden-
tifying one frame of reference (the
earth) as the "real" frame. The point
of the film is that the other two
(moving) frames are just as "real",
and events taking plac- in them are
described by the same laws of mechanics.

When using this loop in Unit 3, a
discussion of the "laws" can be given.
We are dealing with a collision. This

is governed by the "law of mechanics"
we call the law of conservation of
momentum. In each event, momentum is
conserved:

event

before
collision

after
collision

total
momentum

A 0 + (-mv) (-mv) + 0 -mv

B (+mv) + 0 0 + (+mv) +mv

C (+kmv) + (-kmv) (-kmv) + (+kmv) 0

The total momentum of the pair of
carts has a different magnitude and
direction in each of the three frames
of reference, but the "law" or "prin-
ciple" of conservation of momentum
is equally valid in each frame of
reference.

The collisions of the carts are,
moreover, of the type called "per-
fectly elastic." In this type of
collision, the "law of mechanics"
which also applies is: kinetic en-
ergy is conserved. Again we find
that this "law" is equally valid in
the three frames of reference. The
total kinetic energy in each case
is indeed the same before and after
collision. But its value needn't
be the same in each frame of refer-
ence. It is kmv2 in Event A, kmv2
in Event B, and kmv2 in Event C.
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General reference: Text, Sec. 3.6.
Sagredo's analysis of Event A is found
in Dialogue on the Great World Systems.
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Film Loop 5 Galilean Relativity I Ball
Dropped from Mast Of Ship

This film is a realization of an ex-

periment described by Sagredo in Galileo's

Two New Sciences:

If it be true that the impetus with
which the ship moves remains indelibly
mpreJsed in the stone after it is
let fall from the mast; and if it
b& further true that this motion
tring-: no impediment or retardment
to the motion directly downwards
natural to the stone, then there
ought to ensue an effect of a very
wondrous nature. Suppose a ship
stands still, and the time of the
falling of a stone from the mast's
round top to the deck is two beats
of the pulse. Then afterwards
h,.ve the ship under sail and let
the same stone depart from the
same place. According to what has
been premised, it shall take up
the time of two pulses in its fall,
in which time the ship will have
gone, say, twenty yards. The true
motion of the stone then will be a
transverse line [i.e., a curved line
in the vertical plane], consider-
ably longer than the first straight
and perpendicular line, the height
of the mast, and yet nevertheless
the stone will have passed it in
the same time. Increase the ship's
velocity as much as you will, the
falling stone shall describe its
transverse lines still longer and
longer and yet shall pass them all
in those selfsame two pulses.
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Because the stone "remembers" its initial

horizontal velocity which is the ship's

motion, it will strike the deck of the

ship at the base of the mast.

In the film, a ball is dropped three

times. Event 1: As in Galileo's dis-

cussion, the ball continues to move for-

ward with the boat's velocity, and it

falls vertically relative to the mast.

Event 2: The ball is tipped off a sta-

tionary support as the boat goes by; now

it has no forward velocity and it falls

vertically relative to the ground. Event

3: In the final trial, a student moving

with the boat picks up the ball and holds

it a few seconds before releasing it.

Galilean relativity is illustrated by

these three events. The ship and earth

are the two frames of reference which are

in relative motion. The same laws for the

description of projectile motion are valid

in either system. Thus each of the three

events can be described as viewed in either

of two frames of reference; but only one

set of laws for projectile motion is needed

for all six descriptions. For example,

Evmt 1 in the boat frame is described

this: "A ball, initially at rest, is re-

leased. It accelerates downward at 9.8

m/sec2 and strikes a point directly be-

neath the starting point." Event 1 in

the earth frame is described differently:

"A ball is projected horizon ally toward

the left; its path is a parabola and it

strikes a point below and to the left of

the starting point."

To test your understancEag of Galilean

relativity, you should also describe, in

words, the following: Event 2 in boat

frame; Event 2 in earth frame; Event 3

in boat frame; Event 3 in earth frame.

Film Loops
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Event 2 boat frame: "A ball is moving
horizontally toward the right, and at
the moment it is opposite an observer
it is allowed to move freely as a
projectile. The path of the ball is
a parabola, and the ball moves down-
ward and to the right."
Event 2, earth fraae: "A ball is al-
lowed to fall vertically from rest,
and it strikes a point directly be-
low the point of release."
Event 3, boat frame: "A ball, initi-
ally moving toward the right, is
stopped by the muscular action of a
student who is staticnary on the
mast. The student lets go the ball,
which then falls vertically downward."
Event 3, earth frame: "A stationary
ball is given a forward velocity to
the left by the muscular action of a
student. The ball is then released,
and its motion, that of a projectile,
takes the ball to a point downward
and to the left of the starting
point."
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Film Loop 6: Galilean Relativity 11 -- Object
Dropped From Aircraft

A Cessna 150 aircraft 23 ft long is

moving almost horizontally at about 100

ft/sec at an altitude of about 200 ft.

A lighted flare is dropped from the cock-

pit of the aircraft; the action is filmed

from the ground in slow motion. Quanti-

tative measurements can be made at any

of the "freeze frames" when the motion on

the screen is stopped for a few seconds.

Scene 1 shows part of the flare's motion;,

Scene 2, shot from a greater distance,

shows the flare dropping into a lake.

Consider the motion relative to two

frames of reference. In the earth frame,

the motion is that of a projectile whose

original velocity is the plane's velocity.

The motion is a parabola in this frame of

reference. Relative to the plane, the

motion is that of a freely falling body

which starts from rest. In this frame

of reference (the plane frame) the motion

is vertically downward. Scene 3 shows

this vertical motion viewed head-on.

The plane is fly:nq at uniform speed

in a straight line, but its path is not

necessarily a horizontal line. The flare

retains the plane's original velocity

both in magnitude and direction, and in

addition it falls freely under the action
224

of gravity. We might expect the displace-

ment below the plane to be given by

d = 1/2 ate, but there is a slight problem.

We cannot be sure that the first freeze

frame occurs at the very instant the flare

is dropped overboard. However, there is

a way of getting around this difficulty.

Suppose a time B has elapsed between the

release of the flare and the first freeze

frame. This time must be added to each

of the freeze frame times, and so we

would have

d = 1/2 a(t 13)2. (1)

To see if the flare follows an equation

such as this, take the square root of each

side:

4I. (constant) (t + B). (2)

Now if we plot 71 against t, we expect

a straight line. Moreover, if B = 0,

this straight line will also pass through

the origin.

Suggested Measurements

a) Path relative to ground. Project

Scene 1 on a piece of paper. At each

freeze frame, mark the position of

the flare and that of the aircraft

cockpit. Measure the displacement

d (in arbitrary units) of the flare

below the plane. The times can be

considered to be integers, t = 0, 1,

2,.... designating the various freeze

frames. Plot a graph of id versus t.

Discuss your result: does the graph

deviate from a straight line? What

would be the effect of air resistance

on the motion, and how would this

show up in your graph? Does the

graph pass through the origin?

b) Analyze Scene 2 in the same way.

Does this graph pass through the

origin? Are the effects of air re-

sistance noticeable in the horizontal

motion? Does air resistance seem to

affect the vertical motion appreciably?



The slow motion factors are 2.4 for
scene 1 and 5.1 for scene 2 (rounded
off to 5 in the film).

This illustrates a common pro-
cedure in science, in which data are
manipulated before graphs are plotted.
In this case, a graph of s versus t2
would not give nearly as much insight
as does a graph of t.

If air resistance were negligible,
the horizontal displacement graph
would be a straight line passing
through the origin, x = vot, assum-
ing that the correction B is 0. The

vertical displacement graph would be
a parabola, s = ka t2. The horizon-
tal motion shows a decided "droop"
due to air resistance, but the ver-
tical motion is surprisingly good,
as shown by the fact that the graph
of s versus t remains almost
straight for the whole motion even
in scene 2 which is the longer of
the two. To explain this, note that
air resistance depends on speed. The

flare is moving at large horizontal
speed from the instant it is released,
but it has large vertical speed only
for the latter part of the trajectory.

Film Loops

L6

c) Superposition of motions. Use

another piece of graph paper with

time (in intervals) plotted horizon-

tally and displacements (in squares)

plotted vertically. Using the same

set of axes, make two graphs for the

two independent simultaneous motions

in Scene 2. Use one color of pencil

for the horizontal displacement as a

function of time, and another color

for vertical displacement as a func-

tion of time.

d) Acceleration due to 9ravity. (op-

tional). The "constant" in Eq.,

(2) is ic-a-; this is the slope of the

straight line graph obtained in part

a). The square of the slope gives 1/2a,

so the acceleration is twice the square

of the slope. In this way you can ob-

tain the acceleration in squares/(in-

terval)2. To convert your accelera-

tion into ft /sect or m/sec2, you can

estimate the size of a "square" from

the fact that the length of the plane

is 23 ft (7 m). The time interval

in seconds between freeze frames can

be found from the slow-motion factor.

SVIONG. WIND TODAY.
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According to Galilean relativity,
the flare retains the velocity (if any)
of the ski-doo. Relative to the earth,
each event is the usual parabola of
projectile motion. Relative to the
ski-doo, Event 2 is a vertical motion;
the flare falls down again into the ski-
doo (compare Figs. 3.24 and 3.25). In
Event 3, the ski-doo comes to a halt
after the flare is fired, so the flare
lands ahead of the ski-doo. In Event
4, the ski-doo accelerates in the for-
ward direction after the flare is
fired, so the flare lands behind the
ski-doo.
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Film Loop 7 Galilean Relativity III
Projectile Fired Vertically

A rocket gun is mounted in gymbal bear-
ings which are free to turn in any direc-
tion. When the gun is hauled along the

snow-covered surface of a frozen lake by

a tractor-like vehicle called a "ski-doo,"
the gymbals allow the gun to remain point-

ing vertically upward in spite of some
roughness of path. Equally-spaced lamps

along the path allow one to jucge whether
the ski-doo has constant velocity or is

accelerating in either a positi a or a

negative sense. A preliminary run shows
the entire scene the setting, at dusk,

is in the Laurentian mountains in the

Province of Quebec.

Four events are photographed. In each

case the flare is fired vertically upward

relative to the ski-doo. Event 1: the

ski-doo is stationary relative to the
earth. Event 2: the ski-doo moves at

uniform velocity relative to the earth.

Describe the motion of the flare relative

to the earth; describe the motion of the

flare relative to the ski-doo. Events 3
and 4: the ski-doo's speed changes after

the shot is fired; describe the flare's

motion in each case relative to the

earth, and also relative to

How do the events shown in this film

illustrate the principle of Galilean

relativity?



Film Loop 8 Analysis Of A Hurdle Race
Part 1

Film Loop 9 Analysis Of A Hurdle Race
Part 2

Some preliminary scenes show a hurdle

race of regulation length. The hurdles,

each 1 meter high, were spaced 9 meters

apart. Judging from the number of hurdles

knocked over, the competitors were of

something less than Olympic caliber!

Next, a single runner is shown in medium

slow motion during a 50-meter run. Final-

ly, three parts of the run are shown in

..!xtreme slow motion for purposes of anal-

ysis. The solo runner was Frank White,

a 75-kg medical student at McGill Univer-

sity. His time for 50 meters was 8.1

sec.

To study the runner's motion, measure

the average speed for each of the 1-meter

intervals in the three slow-motion scenes.

We are interested in how the speed

varies during the run; therefore, you

need only calculate relative values of

speed, in whatever units you find conven-

ient. The slow-motion factor of 80 is

viven for orientation and need not be

used for this part of the analysis. We

assume you are using a "dragstrip" to

measure time intervals. Then the time

is measured in "cm" (distance between

marks on the moving piece of paper).

Film Loops

L8, L9

These two loops are intended to
give the student a feeling for the
power of careful measurement to re-
veal "structure" in a motion which
seems to a casual observer to be
nearly uniform; and to encourage him
to speculate on the causes of the
changes in motion which he observes.
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Whatever method you choose for measuring
the time intervals, the small but signif-
icant variations in speed will be lost
in the experimental uncertainty unless
you work very carefully. Repeat each
measurement three times, reading to the
nearest half-millimeter on the dragstrip.

Use the average times to compute the
speeds. For example, if the time for the
interval 2 m to 3 m is measured as 13.7
cm, 12.9 cm and 13.25 cm, the everage
time is 13.28 units and the speed is

(100 cm)/(13.28 cm) = 7.55 units. This
is plotted at the mid-time of the inter-
val. The error bar is based on the
spread of the observed times. The worst
values are about 0.4 unit away from the
average; this error of 0.4 unit out of
13.28 units i. about 3 out of 100, or 3%.
The speed is subject to the same percent

error as is the time, and 3% of 7.55 is
0.2. We plot the point as 7.55 ± 0.2
units (Fig. 1) .

4

;

0 I 2 ,g 4 5
disibeerred- (meters)

You are in the best tradition of ex-

perimental science when you pay close

attention to limits of error. Only then

can you decide whether some of the seem-

ingly small changes in the runner's speed
are really significant. Your graph is
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likely to be at least as good as those

research workers draw conclusions from.

Thus in Fig. 2 a research team has

plotted a

I 1 _
3.15 3.16 3.17 3.1g 3.19 3.2o 3.21 .3.22.

foss /f0

06o.sc0Fi'a Cojr-i(AftrCe Posi4Itie
MOMS in 'Cf110f,yrfsn

foss =

quantity designated as "SR/SAR" which de-

pends on a ratio f_
osc

/f
p

(to appreciate

the point we are making, it is not nec-

essary that you know anything at all

about the experiment as such). The peak

at 3.19 in Fig. 2 is significant, even

though some of the plotted points have

error bars representing limits of error

as large as 5%.

Scene 1 shows the runner's motion from

0 m to 6 m. Mark the dragstrip paper

when the seat- of the runner's shorts just

clears the far (left-hand) edge of the

vertical red meter-marks. (What are

some other possible reference points on

the runner that could be used? Are all

reference points equally useful? Would

the near edge of the meter-marker allow

as precise a measurement as does the far

edge?) Use a ruler or meter stick to

measure each of the six dragstrip inter-

vals corresponding to 0-1, 12, 2-3, 3-4,

4-5 and 5-6 m. Mark the dragstrip in

this way three times and average your
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The graph from Physical Review
Letters is shown to reassure the
student who may be unhappy with a
graph whose plotted points show con-
siderable scatter. It is not neces-
sary to go into the details of the
experiment summarized in Fig. 2, ex-
cept to point out that this graph is
a real-life example of published work
by a team of five highly capable
physicists.

See the remarks earlier in the Stu-
dent Activity Book on using the drag-
strip for measuring time intervals. A
student may suggest that a systematic
error has occurred because of perspec-
tive. This was taken into account
when the meter-marks were located on
the wall behind the runner. The cam-
era was positioned opposite the middle
of the 6-meter interval, and the
markers were "spread" somewhat so that
the runner's positions are correctly
indicated when his image coincides
with those of the markers.

The front of the runner's shorts
would be unreliable because he
straightens up after the start. Using
the forward edge of the vertical meter-
marker is helpful because it gives the
observer time to anticipate the moment
of tangency.
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Carefi:l measurements give a speed
graph for the first 6 m similar to
Fig. 3. The "droop" at 5 m can be re-
lated to Newton's second law, as sug-
gested in the student notes. A good
student should be encouraged to study
the film closely, perhaps plotting
regions of "push" as in the graph
shown here for your information. It
is evident that the runner is practi-
cally coasting as his hip moves from
"5" to "6". The initial acceleration
can be found from s = kat2; for s =
1.4 m and t = 38/80 sec, this gives
a = 12.5 m/sec2. The average accel-
eration during the first 1.4 m is
about 1.3 times the acceleration due
to gravity. Thus the ground pushes
on the runner, and the runner on the
ground, with a force about 1.3 times
his own weight (about 100 kg, or 220
lb). If this seems unreasonable,
note that the world record for weight-
lifting, using arm muscles only, is
about 180 kg (395 lb). The accele-
ration is even greater at the very
start, during the first 0.1 m of mo-
tion. A frame-by-frame analysis of
the film gave an acceleration of
about 40 m/sec2 during this interval,
corresponding to a momentary force of
more than 600 lb.
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results for each interval. It might im-

prove your accuracy if you form a grand

average by combining your averages with

those of your lab partner (assuming that

he used the same dragstrip). Calculate

the average speed for each interval, and

plot a graph of speed versus displacement.

Estimate the limit of error for a typical

point and add similar error bars to each

plotted point. Draw a smooth graph

through the points. Discuss any interest-

ing features of the graph.

One might assume that any push of the

runner's legs comes only between the time

when a foot is directly beneath the run-

ner's hip and the time when that foot

lifts off the ground. Study th'?, film

carefully; is there any relationship be-

tween your graph of speed and the way the

runner's feet push on the track?

The initial acceleration of the runner

can be estimated if you find the time for

him to travel from the starting point to

the 1-meter mark. For this you must use

a clock or a watch with sweep second

hand, and you must use the slow motion

factor to convert apparent time to real

time. Calculate the average acceleration,

in m/sec2, during this initial interval

of about 1.4 m. How does this forward

acceleration comparJ with the magnitude

of the acceleration of a freely falling

body? How much force was required to

give the runner this acceleration? What

was the origin of this force?

Scene 2 and Scene 3 are on a second

loop which is a continuation of the first

loop. In Scene 2, the hurdler moves

from 20 m to 26 m, clearing a hurdle at

23 m. In Scene 3, the runner moves from

40 m to 50 m, clearing a hurdle at 41 m

and sprinting toward the finish line at

50 m. Plot graphs of these motions, and

discuss any interesting features.
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In Scene 2, the speed increases
just after the runner clears the
hurdle, while he is still in the air.
This paradoxical result is explained
by the fact that the runner straightens
up after clearing the hurdle; if his
center of mass maintains constant
speed then his hip must come forward
as his knee and torso come back rela-
tive to the center of mass. This un-
expected result is clearly shown in
a typical student measurement and
should provoke a valuable discussion.
A similar effect explains the con-
tinued rise of speed in the 2 m to
3 m interval of Scene 1; the runner
is still straightening his torso fol-
lowing the start of the run. In Scene
3, the measurements are less precise
than in Scenes 1 and 2 because the
magnification is less. There is a
modest rise in speed as the runner
approaches the finish lines at 50 m.
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Newton's method, his conception
of man and the world, and his
ideas of mass, space and time.
Discusses also Newton's con-
ceptions of the ether and his
theological beliefs.

Butterfield, H., The Origins of Modern
Science, Collier Books, New York,
1962.

An excellent readat'e source of
information about the beginnings of
mechanics.

Clark, Sir George, The Seventeenth Cen-
tury, Oxford University Press, New
York, 1961.

Chapter XV, "Mathematics and Sci-
ence," pp. 233-251. The scientific
and mathematical work of the century
seen in total cultural context.

Crombie, A. C., Medieval and Early Mod-
ern Science, Doubleday Anchor Book,
Garden City, New York, 1959.

de Santillana, G., The Crime of Galileo,
University of Chicago Press, 1955.

Fi,n1,< P., Philosophy of Science,
Prentice -Hall, 1957, and Spectrum
Paperback, 1962.

hall, A. R., The Scientific Revolution,
1(0-1800, T1' Beacon Press, Boston,

(Also in paperback.)

a) Chapter III, "The Attack on
Tradition: Mechanics,' pp. 73-
101. A very thorough presenta-
tion of Galileo's contributions
to mechanics. Influences on
his work, and his on others, in
a detailed historical context.

b) Chapter IX, 'The Principate of
Newton," pp. 244-274. Newton's
contributions, influences, etc.

Hall, A< R., The Rise of Modern Science,
Volume III: From Galileo to Newton:
1630-1720," Harper and Row Publishers,
New York, 1963.

An entire volume devoted to the
period of particular concern for
Unit 1 (344 pages and bibliography).

Mason, C. F., lain Currents of Scien-
tific Thought, Henry Schuman, New
York, 1953.

Nagel, E., The Structure of Science,
Harcourt, Brace, and World, New York,
1961.



O'Leary, D., How Greek Science Passed
to the Arabs, Humanities Press, Inc.

Sham.s, M., Great Experiments in Phys-
i,s, Holt, New York, 1959.

Chapter 4, "The Laws of Motion,"
pp. 42-58 and bibliography. An an-
notated series of Newton's definitions
and arguments.

Sambursky, S., The Physical World of
the Greeks, Routledge and Kegan Paul,
London, 1956. Also, Collier Books,
BS28V ($1.50).

Weiner, P. and Noland, A, Roots of
Scientific Thought, Basic Books,
New York, 1957.

C. Biography

Cajori, F., A History of Physics, Dover
Publications, Inc., New York, T.970
($2.00).

Fahie, J. J., Galileo, His Life and
Work, John Murray, London, 1903.
77C. Brown Reprint Library, Dubuque,
Towa.)

A thorough biography.

Fermi, L. and Bernardini, G., Galileo
and the Scientific Revolution, Basic
Books, lnc., New York, 1961.

A very readable short biography.

Greene, E. J., 100 Great Scientists,
Washington Press, 1964, W830 ($.60).

A good collection of short biog-
raphies of scientists from ancient
times to the present.

Lenard, P., Great Men of Science, The
Macmillan Co., New York, 1933.

a) Galileo, pp. 24-39.

b) Newton, pp. 83-111. Brief ac-
counts of the lives and works
of notable scientists.

Rosen,, S., Galileo and the Magic Num-
bers, Little Brown and Co., Boston.

A fictional biography of Galileo.
Very easy reading level,

Taylor, F. S., Galileo and the Freedom
of Thought, London, 1938.

L. Source Materials

Cohen, M. R. and Drabkin, I. f., A
Sourcebook in Greek Science, V rvard
University Press, 1958.

Aristotle (from De Caelo), pp. 200-
203, translation, J. L. Stocks.
Aristotle's work: on natural and un-
natural motions, motion and inertia,
and falling bodies.

Dampier, W. C. and Dampier, M., Read-
ings in the Literature of Science,
Harper Torchbooks, TB512 (7:7557

Bibliography

Aristotle, "On the Heavens."

Galilei, Galileo, Dialogues Concerning
Two New Sciences, 1638, translated
by H. Crew and A. de Salvio, Dover
paperback, 5-99.

Magie, W. F., A Sourcebook in Physics,
Harvard University Press, Cambridge,
1963.

a) Newton, pp. 30-46. A brief
biographical sketch followed
by quotations from the 1803
(Motte's) translation of the
Principle.

b) Galileo, pp. 1-22. A biograph-
ical sketch followed by ex-
cerpts from the Crew and
de Salvio translation of Two
New Sciences, 1914.

Newton, I., Principiu, Motte's trans-
lation as revised by Cajori, Univer-
sity of California Press, Cal 61 and
Cal 62 ($2.45 and $1.95).

a) Volume I, "The Motion of Bod-
ies," pp. 13-14. Laws of mo-
tion, I, II, III.

b) Volume II, "The System of the
World." projectiles and satel-
lites, p. 551; mass relation-
ship in gravitation, pe 414;
inverse-square law of gravita-
tion, p. 406.

U. S. Government Printing Office, Super-
intendent of Documents, Washington,
D. C.

a) Development of Gravity Pendu-
lums in the Nineteenth Century,
U. S. National Museum Bulletin
240, Paper 44 ($.75).

b) The International System of
Units, N. A. S. A. Publication
($.20).

E. Resource Letters

Teachers should know of and obtain
copies of resource letters reprinted
f.:om the American Journal of Physics.
Resource letters may be obtained free
by sending a self-addressed, stamped
envelope to the American Institute of
Physics, 335 East 45th St., New York,
N. Y. 10017. Name the resource letter
requested.

Resource Letter SL-1, Science and
Literature, prepared by Marjorie
Nicholson, has many references that
are appropriate to Unit 1. A useful
list of article-length readings is in
the resource letter: Collateral Read-
ings in Physics Courses, prepared by
Alfred Bork and Arnold Arons.
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Answers
Test A

Suggested Answers to Unit 1 Tests

Test A

ITEM ANSWER
SECTION
OF UNIT

PROPORTION OF
TEST SAMPLE
ANSWERING ITEM
CORRECTLY

1 A 3.4 0.472

2 C 3.2 0.674

3 B 4.10 ').416

.4 E 4.11 0.483

5 D 1.6 0.944

6 D 1.6 0.876

7 E 1.0 0.404

8 A 1.5 0.640

9 E 1.5 0.933

10 B 3.5 0.607

11 C 1.0 not available

12 A 1.0 0.640

13 C 4.11 0.438

14 D 2.8 0.551

15 B 4.11 0.730
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Answers
Test A

PROBLEM-AND-ESSAY QUESTIONS

Group One

1. Section of Unit: 3.10

F = ma

a =
m

(10 kg) (10 sect)

10 kg + 30 kg

100 m
40 sect

= 2.5 m
sect

30 kg

1 1-

The 10 kg mass accelerates downwards at 2.5 m/sec2.

The 30 kg mass accelerates to the right at 2.5 m/sec2.

2. Section of Unit: 1.7

a) The average speed of the car is the total distance traveled from the

stoplight divided by the total time traveled. The instantaneous speed

is an "average" speed calculated over an infinitesimally small time

interval.

b) 7
At
Ad

v = average speed

v = lim Ad v. = instantaneous speed

At r 0
At

Ad = distance traveled

3. Section of Unit: 2.3

a
d = t2

2

a =
2d2

(2) (8 cm)

(.4 sec) 2
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Answers
Test A

16 cm
.16 sect

4. Sections of Unit 3.2, 4.6, programmed material

-.. 4 *

Find Av, where Av = v2 - vl.

(by adding --ii to v2)

(from the head of to to the head
,

\IN of v2)



Answers
Test A

PROBLEM-AND-ESSAY QUESTIONS

Group Two

5. Section of Unit 4.3

A satisfactory answer may involve:

a) a discussion in depth of one or two relevant points, or
b) a comprehensive overview of many relevant points.

A suitable answer may involve any of the following points. This list does
not include all possibilities.

a) Precise description allowing comparison, measurement, graphical repre-
sentation, transmission of knowledge.

b) Functional relationships allowing prediction, specific tests, deduction,
inference, combination of independent equations, mathematical operations

6. Section of Unit 1.6

During the first 10 minutes the man wal;.s 0.5 miles at a constant speed of
v = d/t = 0.5 miles/10 min = 0.05 miles/min.

During the next 10 minutes he does not move.

In the following 5 minutes he walks 0.25 miles at a constant speed of 0.25
miles/5 min = 0.05 miles/min.

Beyond the 25th minute the man is at rest.
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Answers
Test B

Suggested Answers to Unit 1 Tests

Test B

ITEM ANSWER
SECTION
OF UNIT

PROPORTION OF
TEST SAMPLE

ANSWERING ITEM
CORRECTLY

1 B 1.5 0.889

2 B 1.5 0.750

3 D 3.5 0.792

4 A 2.0 not available

5 E 4.13 0.431

6 C 4.11 not available

7 D 1.7 0.500

8 B 4.6 0.458

9 C 2.7 0.736

10 D 3.5 0.944

11 E 3.12 0.375

12 A general 0.944

13 B 3.4 0.250

14 B 3.11 0.819

15 E 3.4 0.653
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Answers
Test B

PROBLEM-AND-ESSAY QUESTIONS

Group One

1. Section of Unit 2.9

The answer must depend on your assessment of the accuracy of Galileo's instru-
ments.

The extreme values in this column of data are .00192 and .00182e

They differ by less than 5%. Assuming the crudeness of Galileo's equipment
accounts for this variation, we can conclude that d/t2 is constant.

2. Section of Unit 4.4

a) As seen by the pilot, the flare drops straight down.
b) As seen by an observer on the ground, the flare is a projectile whose

trajectory is a parabola.

3. Section of Unit:3.8

Weight is a measure of the gravitational force on an object. It is defined
by Newton's 2nd Law: w = ma its unit is the newton

(= 1 kg - m/sec2).

Mass is a measure of the resistance of an object to changes in motion, a
measure of inertia. It is also defined by Newton's 2nd Law: m = w/aa. Its
unit is the kilogram.

4. Section of Unit:3.8

F = ma

a =
m

a
=
m

a = a or about 10 m
----

g
sect
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Answers
Test B

PROBLEM-AND-ESSAY QUESTIONS

Group Two

5. Sections of Units 2.7 2.10

a) Joe's point of view is stated mathematically as v = at. i.e. If an object

is accelerating uniformly, the longer it goes, the faster it goes.

Louis' point of view is stated mathematically as v2 = 2ad. i.e. If an object

is accelerating uniformly, the farther it goes, the faster it goes.

b) Both points of view are correct. Louis' equation may be derived from Joe's.

square

substitute

v = at d = h ate

v2 = a2t2

2d
for t2

a

2v - a2 2d
a

t2 2d
a

v2 = 2ad

6. Sections of Units 2.2 - 2.4

A satisfactory answer may involve the following points. These suggestions do

not exhaust the list of possibilities.

a) Precise description - allowing comparison, measurement, graphical represen-

tation, transmission of knowledge, etc.

Functional relationships - allowing prediction, tests, deduction, inference,

mathematical operations, 'etc.

b) Thought experiments

'Ideal' motion frirtionless surface. Real situations are often too

complicated.

Newton's laws, Galileo, etc.
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Answers
Test C

Suggesied Answers to Unit 1 Tests

Test C

ITEM ANSWER
SECTION
OF UNIT

PROPORTION OF
TEST SAMPLE

ANSWERING ITEM
CORRECTLY ITEM ANSWER

SECTION
OF UNIT

PROPORTION OF
TEST SAMPLE
ANSWERING ITEM

CORRECTLY

1 C 1.4 0.857 21 D 1.6 0.847

2 B general 0.896 22 D 1.5 0.782

3 A 3.2,4.4,4.5 0.700 23 A 3.7 0.436

4 E 1.6 0.700 24 E 4.3 0.528

5 B 1.7 0.632 25 E 4.3 0.362

6 D 3.2 0.814 26 E 3.2 0.622

7 C 4.5 0.779 27 C 2.10 0.371

8 B 3.7 0.788 28 D 1.4 0.788

9 A 3.6 0.590 29 C 1.7 0.436

10 C general 0.697 30 C 4.5 0.918

11 A 3.10 0.554 31 A 4.4 0.678

12 B 3.10 0.482 32 A 3.2 0.436

13 B 2.3 0.423 33 D 3.8 not available

14 B general 0.469 34 C 4.3 0.629

15 E 1.7 0.821 35 A 2.1 0.326

16 A 1.4 0.749 36 C 3.2 0.394

17 D 1.7 0.736 37 B 2.8 0.557

18 A 4.4 0.893 38 A 3.2 0.391

19 C 2.8 0.557 39 D 4.6 0.414

20 B 2.8 0.661 40 C 4 6 0.404

242



Answers
Test D

Suggested Answers to Unit 1 Tests
Test D

Group One

1. Sections of Unit: 4.4, 4.5

Force - central, due to gravitational interaction between earth and satellite,

constant magnitude

Acceleration in direction of force, constant magnitude

Velocity perpendicular to acceleration, constant magnitude

Speed constant

2. Sections of Unit: 1.5, 2.7

3. Section of Unit: 2.3

1. Photography

a) slow motion

b) strobe light

c) 'fast' motion

2. Doppler effect

3. Accurate mea,utement of time

a) 'atomic' clocks

b) photography

3 4 5 6

time sec
7 8 9

4. Elimination of friction - approaches ideal motion

a) dry ice puck

b) air track

5. Vector mathematics

6. The calculus
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Answers
Test D

4. Section of Unit: 3.2 and programmed material

a)

b) Parallelogram method

5. Section of Lnit: 3.4

Newton's first law states that a body will remain a: rest or in uniform motion
unless acted on by an external unbalanced force.

A Newtonian would not accept an a priori statement as fact. He would expect
experimental verification.
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Group Two

6. Section of Unit: 4.2

a) d =Z a t2

t2 = 2d
a
g

(2)(2000 m)

10 E---
sec2

400 sec2

20 sec.

7. Section of Unit: 1.8

Aa
a) surge

av
= --

At

b)

sec
3 or distance/time3

c) Instantaneous surge is the slope of an acceleration-time graph at any point.

m

b) d = vt

= 200
sec

= 4000 m

(20 sec)

Answers
Test D

8. Section of Unit: 2.3

a) Three assumptions are

1, if a heavy and light body are tied together, the natural speed of the

new body will be the "average" of the natural speeds of the two original

bodies

2. bodies have natural speeds that differ from body to body

3. the natural speed of a heavy body is greater than that of a light body

b) More appropriate assumptions are

1. if a heavy and light body are tied together, the natural speed of the

new body will be the "sum" of the natural speeds of the two original

bodies

2. bodies do not have natural speeds

3. all bodies accelerate towards the earth at ti,e same rate

4. all bodies have the same natural speeds
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Answers
Test D

c) The following are conclusions based on the assumptions suggested in part D.

1. A heavy object has a natural speed which is greater than that of a
light object,

2. On the basis of this premise we can make no conclusion concerning the

speeds with which heavy and light objects fall.

3. Heavy and light bodies should fall at the same speed.
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Acceleration, 76
Acceleration of gravity
development, 81
experiment, 18, 178-185

film loops, 68, 184, 212-231
Accelerometer, 87, 92, 95, 9G, 125
Action-reaction forces
demonstrations, 101-103

Activities, 13, 17, 21, 25
Advice to Young People, Reader article, 69
Air track, 124
Aristotelian scie-ce, 76, 77
Astronomy, naked-eye observations, 14, 138-150
Athletic measurements, Bad Physics in,
Reader article, 70

Bibliography, 232-233
Slinky, 105, 115, 123-124

Cannon, 126
Centripetal acceleration
development, 34
transparency, 68

Chapter Schedule Blocks, 11, 15, 19, 23
Circular motion
demonstration, 105, 106

development, 84
experiments, 26, 204-211

Demonstrations, 87-106

Evaluation, 5
Experiments, 3, 14, 18, 22, 26, 73, 137-211
Extrapolation, 75

Film loops, 5, 13, 17, 21, 25, 68-69, 212-231
Films, 4, 71, 72
Frames of Reference, demonstration, 105
Friction, effect on acceleration
demonstration, 96

Future, Reader article, 71

Galilean Relativity, film loops, 68, 69, 222-226
Galileo, 76-73
Galileo's discussion of projectile motion
Reader article, 70

Galileo's experiment, 18, 78, 166-172
Golf club, dynamics of, Reader article, 70
Graphs, 74
Gravity, acceleration of
experiment, 18, 176-183
film loops, 68, 212

Humanistic physics, 1

Reader articles, 69-71
Hurdle race, film loops, 69, 227-231

Inert-al and gravitational mass
experiment, 22, 192-193

Inertial balance, demonstration, 101
Inertial vs. non-inertial reference frames
demonstration, 106

Instantaneous speed
demonstration, 89-92
development, 75
transparency, 68

Interpolation, 75

Mass, inertial and gravitational
experiment, 22, 192-193

Motion
demonstration, 87f.
development, 73
Reader articles, 69-70

Multi-Media systems, 4, 7-10

(

Index

Newton's First Law
demonstration, 95
development, 80

Newton's Second Law
development, 80-81
experiment, 22, 184-191
Reader article, 70

Newton's Third Law
demonstration, 102
development, 81-82

Organizational sheets, 12-13, 16-17, 20-21, 24-25
Oscilloscope, 117, 127-136
Overhead Projector transparencies, 4, 13, 17, 21

25, 68

People and Particles film, 4, 72
Photography, 107-114
Planetarium program, 153
Problem-solving, Reader article, 69
Programmed instruction, 4, 71
Project Physics course, general information, 1-5
Projectiles
development, 83
equipment, 126
film loops, 69
Reader article, 70
transparencies, 68

Rabi, I.I., humanistic physics, 1
Reader, 2, 13, 17, 21, 25, 69-70
Reasoning in scieuce fiction,
Reader article, 69

Regularity and time experiment, 14, 151-153
Relative motion, film loops, 68, 69, 220-226
Rigid body (Sings), Reader article, 70
Rockets, demonstrations, 96-101
Rotations, non-cummutativity of

demonstration, 95

Satellites, 84-85
Science, value of, Reader article, 69
Scientific method, Reader article, 69
Scientific revolution, Reader articles, 70
Seventeenth-century experiment, 18, 166-172
Simple harmonic motion, demonstrations, 106, 128
Speed

demonstrations, 87f.
development, 74
Reader articles, 70

Strobe photos
demonstrations, 87
transparencies, 87
strobe-disc photography, 115-116

StrobDscopes, calibration of, 117
Student Handbook, 3
Study Guide, brief answers and solutions, 27-67

Test, Answers, 5, 237-248
Time charts, 77
Tractor-log paradox, 55, 68
Trajectories, experiments, 26, 194-203
Transparencies, 4, 13, 17, 21, 25, 68

Uniform motion, experiment, 14, 158-166

Variations in data, experiment, 14, 154-156
Vectors

demonstration, 93
film loops, 68, 212-231
Programmed instruction, 71

247


