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Welcome to the study of physics. This volume, more of a

student's guide than a text of the usual kind, is part of a

whole group of materials that includes a student handbook,

laboratory equipment, films, programmed instruction, readers,

transparencies, and so forth. Havrard Project Physics has

designed the materials to work together. They have all been

tested in classes that supplied results to the Project for

use in revisions of earlier versions.

The Project Physics course is the work of about 200 scien-

tists, scholars, and teachers from all parts of the country,

responding to a call by the National Science Foundation in

1963 to prepare a new introductory physics course for nation-

wide use. Harvard Project Physics was established in 1964,

on the basis of a two-year feasibility study supported by

the Carnegie Corporation. On the previous pages are the

names of our colleagues who helped during the last six years

in what became an extensive national curriculum development

program. Some of them worked on a full-time basis for sev-

eral years; others were part-time or occasional consultants,

contributing to some aspect of the whole course; but all

were valued and dedicated collaborators who richly earned

the gratitude of everyone who cares about science and the

improvement of science teaching.

Harvard Project Physics has received financial support

from the Carnegie Corporation of New York, the Ford Founda-

tion, the National Science Foundation, the Alfred P. Sloan

Foundation, the United States Office of Education and Har-

vard University. In addition, the Project has had the es-

sential support of several hundred participating schools

throughout the United States and Canada, who used and tested

the course as it went through several successive annual re-

visions.

The last and largest cycle of testing of all materials

is now completed; the final version of the Project Physics

course will be published in 1970 by Holt, Rinehart and

Winston, Inc., and will incorporate the final revisions and

improvements as necessary. To this end we invite our

students and instructors to write to us if in practice they

too discern ways of improving the course materials.

The Directors
Harvard Project Physics
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Prologue It is January of 1934, a dreary month in the city

of Paris, and a husband and wife are bombarding a bit of

aluminum with what are called alpha particles. Does this

seem like a momentous event? Certainly not when stated so

baldly. But let us look at it more closely, for it is momen-

tous indeed.

Never mind the technical terms. They will not get in the

way of the story. It begins as something of a family affair.

The husbanu and wife, French physicists, were Frederic Joliot

and Irene Curie, and the alpha particles they used in their

experiment came shooting out of a radioactive metal, poloni-

um, discovered 36 years before by none other than Irene's

illustrious parents, Pierre and Marie Curie, who also dis-

covered radium. What Frederic and Irene found was this:

when bombarded by alpha particles, the commonplace bit of

aluminum became radioactive.

Nothing like this had ever been observed before: a famil-

iar, everyday substance becoming radioactive. The news was

exciting to scientiststhough it made few, if any newspaper

headlines. The news traveled rapidly: by cablegram and

letter. In Rome, Enrico Fermi, a young physicist on the

staff at the University of Rome, became intrigued by the

possibility of repeating the experiment of Frederic and

Irene repeating it with one significant alteration. The

story is told in the book Atoms in the Family by Enrico

Fermi's wife, Laura. She writes:

..he decided he would try to produce artificial ra-
dioactivity with neutrons [instead of alpha particles].
Having no electric charge, neutrons are neither at-
tracted by electrons nor repelled by nuclei; their
path inside matter is much longer than that of alpha
particles; their speed and energy remain higher;
their chances of hitting a nucleus with full impact
are much greater. Against these unquestionable ad-
vantages, neutrons present a decidedly strong draw-
back. Unlike alpha particles, they are not emitted
spontaneously by radioactive substances, but they are
produced by bombarding certain elements with alpha
particles, a process yielding approximately one neu-
tron for every hundred thousand alpha particles.
This very low yield made the use of neutrons appear
questionable.

Only through actual experiment could one tell whether or

not neutrons were good projectiles for triggering artificial

radioactivity of the target nuclei. Therefore, Fermi, at

the age of 33 and already an outstanding theoretical physicist,

decided to design some experiments that could settle the

issue. His first task was to obtain suitable instruments for

detecting the particles emitted by radioactive materials. By

far the best such instruments were what are called Geiger

All cii1,,tati',1; in thu Prolove
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Again, follow the story to get
a feeling for the atmosphere of
important experiments don't
worry about details now.

2

counters, but in 1934, Geier counters were still relatively

new and not readily available. Therefore, Fermi constructed

his own.

The counters were soon finished, and tests showed that

they could detect the radiation from radioactive materials.

But Fermi also needed a source of neutrons. This he made

by enclosing beryllium powder and the radioactive gas radon

in a glass tube; the alpha particles from radon, on striking

the beryllium, caused it to emit neutrons.

Now Enrico was ready for the first experiments.
Being a man of method, he did not start by bombard-
ing substances at random, but proceeded in order,
starting from the lightest element, hydrogen, and
following the periodic table of elements. Hydrogen
gave no results: when he bombarded water with
neutrons, nothing happened. He tried lithium next,
but again without luck. He went on to beryllium,
then to boron, to carbon, to nitrogen. None were
activated. Enrico wavered, discouraged, and was
on the point of giving up his researches, but his
stubbornness made him refuse to yield. He would
try one more element. That oxygen would not become
radioactive he knew already, for his first bombard-
ment had been on water. So he irradiated flourine.
Hurrah: He was rewarded. Fluorine was strongly
activated, and so were other elements that came
after fluorine in the periodic table.

This field of investigation appeared so fruitful
that Enrico not only enlisted the help of Emilio
Segrd and of Edoardo Amaldi but felt justified in
sending a cable to Rasetti [a colleague who h? gone
to Morocco), to inform him of the experiments .id to
advise him to come back at once. A short later
a chemist, Oscar D'Agostino, joined the group, and
systematic investigation was carried on at a fast
pace.

With the help of his colleagues, Fermi's work at the

laboratory was pursued with high spirit, as Laura Fermi's

account shows:

..Irradiated substances were tested for radioactiv-
ity with Geiger counters. The radiation emitted by
the neutron source would have disturbed the measure-
ments had it reached the counters. Therefore, the
room where substances were irradiated and the room
with the counters were at the two ends of a long
corridor.

Sometimes the radioactivity produced in an element
was of short duration, and after less than a minute
it could no longer be detected. Then haste was es-
sential, and the time to cover the length of the
corridor had to be reduced by swift running. Amaldi
and Fermi prided themselves on being the fastest
runners, and theirs was the task of speeding short-
lived substances from one end of the corridor to the
other. They always raced, and Enrico claims that he
could run faster than Edoardo....



And then, on the morning of October 22, 1934, a fateful

discovery was made. Two of Fermi's co-workers were irradiat-

ing a hollow cylinder of silver with neutrons from a source

placed at the center of the cylinder, to make it artificially

radioactive. They found that the amount of radioactivity in-

duced in the silver depended on other objects in the room!

...The objects around the cylinder seemed to influence
its activity. If the cylinder had been on a wooden
table while being irradiated, its activity was greater
than if it had been on a piece of metal. By now the
whole group's interest had been aroused, and everybody
was participating in the work. They placed the neu-
tron source outside the cylinder and interposed objects
between them. A plats of lead made the activity in-
crease slightly. Lead is a heavy substance. "Let's
try a light one next," Fermi said, "for instance, paraf-
fin." [The most plentiful element in paraffin is hy-
drogen.] The experiment with paraffin was performed
on the morning of October 22.

They took a big block of paraffin, dug a cavity in
it, put the neutron source inside the cavity, irradi-
ated the silver cylinder, and brought it to a Geiger
counter to measure its activity. The counter clicked
madly. The halls of the physics building resounded
with loud exclamations: "Fantastic! Incredible!
Black Magic!" Paraffin increased the artificially in-
duced radioactivity of silver up to one hundred times.

By the time Fermi came back from lunch, he had already

formulated a theory to account for the strange action of

paraffin.

Paraffin contains a great deal of hydrogen.
Hydrogen nuclei are protons, particles having the
same mass as neutrons. When the source is inclosed
ia a paraffin block, the neutrons hit the protons
in the paraffin before reaching the silver nuclei.
In the collision with a proton, a neutron loses part
of its energy, in the same mariner as a billiard ball
is slowed down when it hits a ball of its same size
[whereas it loses little speed if it is reflected
off a much heavier ball, or a solid wall]. Before
emerging from the paraffin, a neutron will have
collided with many protons in succession, and its
velocity will be greatly reduced. This slow neu-
tron will have a much better chance of baiiij cap-
tured by a silver nucleus than a fast one, much as
a slow golf ball has a better chance of making a
hole than one which zooms fast and may bypass it.

If Enrico's explanations were correct, any other
substance containing a large proportion of hydrogen
should have the same effect as paraffin. "Let's
try and see what a considerable quantity of water
does to the silver activity," Enrico said on the
same afternoon.

There was no better place to find a "considerable
quantity of water" than the goldfish fountain...in
the garden behind the laboratory....
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In that fountain the physicists had sailed certain
small toy boats that had suddenly invaded the Italian
market. Each little craft bore a tiny candle on its
deck. When the candles were lighted, the boats sped
and puffed on the water like real motor-boats. They
were delightful. And the young men, who had never
been able to resist the charm of a new toy, had spent
much time watching them run in the fountain.

It was natural that, when in need of a considerable
amount of water, Fermi and his friends should think
of that fountain. On that afternoon of Octobr
they rushed their source of neutrons and thei el
cylinder to that fountain, and they placed bot,, _der
water. The goldfish, I am sure, retained their calm
and dignity, despite the neutron shower, more than
did the crowd outside. The men's excitement was fed
on the results of this experiment. It confirmed
Fermi's theory. Water also increased the artificial
radioactivity of silver by many times.

This discovery that slowed-down neutrons can produce

much stronger effects in the transmutation of certain atoms

than fast neutrons turned out to be a crucial step toward

further discoveries that, years later, led Fermi and others

to the extraction of atomic energy from uranium.

The reason for presenting a description of Fermi's dis-

covery of slow neutrons here was not to instruct you on

the details of the nucleus. It was, instead, to present a

quick, almost impressionistic, view of scientists in action.

No other discovery in science was made or will be made in

just the way Fermi and his colleagues made this one. Never-

theless, the episode does illustrate some of the character-

isticsand sorde of the drama of modern science.

Like religion, science probably began as a sense of awe

and wonder. In its highest form its motive power has been

sheer curiosity the urge to explore and to knot:. This

urge is within us all. It is vividly seen in the intense

absorption of a child examining a strange sea shell tossed

up from the ocean or a piece of metal found in the gutter.

Who among us has resisted the temptation to explore the

slippery properties of the mud in a rain puddle? Alas,

everyday cares and the problems of growing up overtake us

all too soon, and many of us lose our early sense of curios-

ity or channel it into more practical paths. Fortunately,

a few preserve their childlike, wide-eyed wonderment and it

is among such people that one often finds the great scien-

tists and poets.

Science gives us no final answers. But it has come upon

wondrous things, and some of them may renew our childhood

delight in the miracle that is within us and around us.

Take, for example, so basic a thing as size...or time.

The same process by which neu-
trons were slowed down in the
fountain is used in today's
large nuclear reactors. An ex-
ample is the "pool" research
reactor pictured on the opposite
page.
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A globular star cluster

OUP P1oee 'IR St ace,
(orders of magnitude)

Size of universe 10 26 m
Distance to nearest galaxy 1022 m
Distance to nearest star 1017 m
Distance to the sun 1011 m
Diameter of earth 107 m
One mile 103 m
Human height 100 m
Postage stamp 10-2 m
Paper thickness 10-4 m
Atomic diameter 10-10 m
Nuclear diameter 10 -14 m

The estimated size of the universe now
extends to more than a million, million,
millio-, million times a man's height.
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The smallest known constituent units of the universe
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Fossilized trilobites

Out Plaza. in lime.

(orders of magnitude)
Expected life of sun 1018 sec
Age of earth 101 6 sec
Human life span 109 sec

1One day 05 sec
Light from sun to earth 103 sec
Time between heartbeats 108 sec
One beat of fly's wings 10-3 sec
Average lifetime of a muon 10 6 sec
Average lifetime of pi meson 10-15 sec
Shortest-lived particles 10" sec

IML

The history of the universe has been traced back as
far into the past as a hundred million times the length
of a man's life.

Particle tracks in a bubble chamber

Events have been recorded that last only a
millionth of a millionth of a millionth of a
millionth of a man's heartbeat.

man's 14e. A 100 )000 ,000 man's ttittxt-4* 6ect.+ X 0. 000, 0

O

0

1 0 010 0 0
uC)0

00
It is hart to resist the temptation to say more about J()()1

these intriguing extremes; however, this is not where physics
started. Physics started with the man-sized world the world
of horse-drawn chariots, of falling rain, and of flying ar-
rows. It is with this man-sized world that we shall begin.
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1.1 The motion of things. Man crawls, walks, runs, jumps, dances.

To move himself faster, farther, higher, deeper, he invents

things like sleds, bicycles, submarines, rocket ships. As

human beings we are caught up in motion and fascinated by it..

Perhaps this is why so many artists try to portray movement.

It is one reason why scientists investigate motion. The

world is filled with things in motion: things as small as

dust, as large as stars, and as common as ourselves; motion

fast and slow, motion smooth, rhythmic, and erratic. We can-

not investigate all of these at once. So from this swirling,

whirling world of ours let us choose just one moving object

for attention, something interesting and typical, and, above

all, something manageable.

But where shall we start? We might start our investiga-

tion by looking at a modern machine the Saturn rocket, say,

or a supercharged dragster, or an automatic washing machine.

But as you know, things such as these, though made and con-

trolled by man, move in very complicated ways. We really

ought to start with something easier. Then how about the

bird in flight? Or a leaf falling from a tree?

Surely in all of nature there is no motion more ordinary

than that of a leaf fluttering down from a branch. Can we 4
describe how it falls or explain why it falls? As we think

about it we quickly realize that, while the motion may be

natural, it is very complicated: the leaf twists, turns,

sails to the right and left, back and forth, as it floats

down. Even a motion as ordinary as this may turn out, on

closer examination, to be more complicated than that of ma-

chines. Although we might describe it in detail, what would

we gain? No two leaves fall in quite the same way; therefore,

each leaf would require its own detailed description. Indeed,

this individuality is typical of many naturally occurring

events on earth!

There is a very old maxim: "To

be ignorant of motion is to be
ignorant of Nature."

And so we are faced with a real dilemma. We want to

describe motion, but the motions that excite and interest us

appear to be hopelessly complex. What shall we do? We shall

find a very simple motion and attempt to describe it. Those

of us who have learned to play a musical instrument will

appreciate the wisdom of starting with simple tasks. If

our music teacher confronted us in lesson number one with

a Beethoven piano sonata, we would in all probability have

quickly forgone music in favor.of a less taxing activity.

The place to start is in the laboratory, because there we

can find the simple ingredients that make up complex motions.

Study for "Dynamism of a Cyclist"
(1913) by Umberto Boccioni. Courtesy
Yale University Art Gallery.
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1.2 A motion experiment that does not quite work. A billiard

ball hit squarely in the center speeds across the table in

a straight line. Unfortunately, physics laboratories are

not usually equipped with billiard tables. But never mind.

Even better for our purposes is a disc of what is called dry

ice (really frozen carbon dioxide) moving on the floor. The

dry ice disc was placed on the floor and given a gentle push.

It floated slowly across the floor in front of the camera.

While the disc was moving, the shutter of the camera was kept
open. The resultant time exposure shows the path taken by

the dry ice disc.

Close-up of
a dry ice disc

Laboratory setup

1111%.,11_
Time exposure of the disc in motion

What can we learn about the disc's motion by examining the

photographic record? Was the path a straight line? Did the
disc slow down?

The question of path is easy enough to answer: as nearly

as we can judge by placing a ruler on the photograph, the

disc moved in a straight line. But did it slow down? From
the photograph we cannot tell. Let us improve our experi-
ment. Before we do so, however, we ought to be clear on

just how we might expect to measure speed.

Why not use something like an automobile speedometer?

All of us know how to read that most popular of all meters

even though we may not have a clear notion of how it works.

A speedometer tells us directly the speed at which the car

is moving at any time. Very convenient. Furthermore, such

See Study Guide 1.1 (page 32)

We are assuming here that you al-'
ready know what speed is, namely
how fast an object moves from
one place to another. A more
formal way to say the same thing
is: Speed is the time rate of
change of position.

11
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readings are independent of the path of our car. A given

speedometer reading specifies the same speed, whether the

car is moving uphill or down, or is traveling along a straight

road or a curved one.

But, alas, there is at least one practical trouble with

having to rely on a speedometer to measure speed: it is not

easy to put a speedometer on a disc of dry ice, or on a bul-

let, or on many other objects whose speed you may wish to

measure. However, the speedometer provides us with a good

clue. Remember how we express speedometer readings? We say

our car is moving 60 miles per hour. Translation: at the

instant the reading was taken, the car was traveling fast

enough to move a distance of 60 miles in a time interval of

1.0 hour, or 120 miles in 2.0 hours, or 6.0 miles in 1/10

hour or any distance and corresponding time interval for

which the ratio of distance to time is 60 miles per hour.

To find speed we measure a distance moved, measure the time

it took to move that distance, and then divide distance by

time.

With this reminder of how to measure speed (without a

speedometer), we can now return to the experiment with the

dry ice disc. Our task now is to redesign the exper.;ment so

that we can find the speed of the disc as it moves along its

straight-line path.

1.3 A better motion experiment. To find speed we'need to be able

to measure both distance and time. So let's repeat the exper-

iment with the dry ice disc after first placing a meter stick

on the table parallel to the expected path of the disc. This

is the photograph we obtain:

Now the total distance traveled by the disc during the

exposure can be measured. However, we still need to measure

the time requied for the disc to move through a particular

distance. However, even if we could measure both the distance

and the time we would still have too little information about



the motion of the disc. Specifically, to find out whether

or not the disc is slowing down and, if so, by how much

we must be able to find its speed at different places. To

do this, we must somehow obtain distance and time information

for different places along the path. Knowing only the total

distance and total time is not enough.

So let's try another modification. Instead of leaving

the camera shutter open, we can open and close it rapidly.

The result will be. the multiple-exposure photograph sho,,in

below.

Although we now have a variety of distances to measure, we

still need to know the elapsed time between each exposure.

With such information we could analyze the motion in detail,

obtaining the distance-to-time ratio (speed) for various

segments of the trip. One final change in the apparatus

makes this possible.

The camera shutter is again kept open and everything else

is the same as before, except that the only source of light

in a darkened room comes from a stroboscopic lamp. This

lamp flashes very brightly at a constant rate. Since each

pulse or flash of light lasts for only about one-millionth

of a second, we get a series of separate sharp exposures

rather than a continuous, blurred one. The photograph below

was made using such a stroboscopic lamp flashing 10 times a

second.

. 10 20 30
1

40 0 "0
1,1l(1,41ii111/11,1/1.1..111 I/I Ili illliiiillII

.

11 11
0

illii1111111111.4

Now we're finally getting somewhere. Our experiment en-

ables us to record accurately many positions of a moving ob-

ject. The meter stick measures the distance the disc moved

between successive light flashes. The time elapsed between

images is determined by the strobo-scopic lamp flashes.

13



How much did the disc slow down? We can find out by de-

termining its speed at the two ends of its path. The front

edge of the first clear image of the disc at the left is

6.0 cm from the zero mark on the meter stick. The front

edge of the second image from the left is at the position

19.0 cm. The distance traveled during that interval of time

is the difference between those two positions, or 13.0 cm.

The corresponding time interval is 0.10 sec. Therefore, the

speed at the start must have been 13.0 cm/0.10 sec, or

130 cm/sec.

Turning now :-..o the two images farthest to the right in the

photograph, we find that the distance traveled during 0.1 sec

was 13.0 cm. Thus, the speed at the end was 13.0 cm/0.1 sec,

or 130 cm/sec.

The disc did not slow down at all! The disc's speed was

130 cm/sec at the beginning of the path and 130 cm/sec at

the end of the path. AG nearly as we can tell from this

experiment, the speed was constant.

That result is hard to believe. Perhaps you are thinking

that the disc might have changed speed several times as it

moved from left to right but just happened to have identical

speeds over the two intervals selected for measurement. That

would be a strange coincidence but certainly not an impossible

one. You can easily check this possibility for yourself.

Since the time intervals between images are equal in all

cases, the speeds will be equal only if the distance intervals

are equal to each other. Is the scale distance between im-

ages always 13.0 cm?

Or perhaps you are thinking, "It was rigged!" or, if you

are less skeptical you may think it was just a rare event

and it would not happen again. All right then, you try it.

Most school physics laboratories have cameras, strobe lamps

(or mechanical strobes, which work just as well), and low-

friction discs of one sort or another. Repeat the experiment

several times at different initial speeds, and then compare

your results with ours.

You may have even a more serious reservation about the ex-

periment. If you ask, "How do you know that the disc didn't

slow down an amount too small to be detected by your measure-

ments?", we can only answer that we don't. All measurements

are approximations. If we had measured distances to the

nearest 0.001 cm (instead of to the nearest 0.1 cm) we might

have detected some slowing down. But if we again found no

change in speed, you could still raise the same objection.

14



There is no way out of this. We must simply admit that no

physical measurements are ever exact or infinitely precise.

Thus it is fair to question any set of measurements and the

findings based on them. Not only fair, but expected.

Before proceeding further in our study of motion, let us

briefly review the results of our experiment. We devised a

way to measure the successive positions of a moving dry ice

disc at known time intervals. From this we calculate first

the distance intervals and then the speed between selected

positions. We discovered that the speed did not change.

Objects that move in such a manner are said to have uniform
speed. What about nonuniform speed? That is our next con-
cern.

1.4 Leslie's "50" and the meaning of average speed. Consider
the situation at a swimming meet. As a spectator, you want

to see who are the fastest swimmers in each event. At the

end of each race, the name of the winner is announced, and
his total time given. Speeds as such are usually not an-

nounced, but since in a given race say the 100-yard back-

stroke every swimmer goes the same distance, the swimmer

with the shortest time is necessarily the one having the
highest average speed. We can define average speed as fol-
lows:

average speed - distance traveled
elapsed time

What information does a knowledge of the average speed convey?

We shall answer this question by studying a real example.

Leslie is not the fastest girl freestyle swimmer in the

world, but Olympic speed is not necessary for our purposes.

One day after school, Leslie was timed over two lengths of

the Cambridge High School 1, 31. The pool is 25 yards long,

and it took her 56.1 seconds to swim the two lengths. Thus

her average speed over the 50 yards was

50.0 yd
= 0.89 yd/sec.56.1 sec

Did Leslie swim with uniform speed? If not, which length

did she cover more quickly? What was her greatest speed? Her
least? How fast was she moving when she passed the 10, or

18, or 45-yard mark? Because we do not have the answer to

any of these questions, we must admit that average speed

does not tell us much. All we know is that Leslie swam the
50 yards in 56.1 seconds. The number 0.89 yd/sec probably

comes closer than any other one number to describing the

See the articles "Motion in
Words" and "Representation of
Morement" in Project Physics
Reader 1.

Some practice problems dealing
with constant speed are given in
Study Guide 1.2 (a,b,c and d).

So the speeds calculated on
page 14 are all average speeds.

This is the equivalent of 1.8
mph. Some speed! A sailfish
can do over 40 mph, , Id a fin-
back whale can do 20 ph. But
then man is a land animal. For
short distances he can run better
than 20 mph. But cheetahs have
been clocked at 70 mph and
ostriches at 50 mph.

15
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whole event. Such a number is useful and there is no denying

that it is easy to compute.

But those questions about the details of Leslie's swim

still nag us. To answer them, more data are necessary. That

is why we arranged the event as shown on the opposite page.

Observers stationed at 5-yard intervals from the 0 mark

to the 25-yard mark started their stop watches when the

starting signal was given. Each observer had two watches,

one which he stopped as Leslie passed his mark going down

the pool, and the other which he stopped as she passed on

Details of the speed at differ-
ent parts of a race can help
athletes improve their over-all
showing.

her return trip.

Position

The data are tabulated below.

(yards) 0 5 10 15 20 25 30 35 40 45 50

Time
(seconds) 0.0 2.5 6.0 11.0 16.0 22.0 26.5 32.0 39.5 47.5 56.0

From these data we can determine Leslie's average speed for

the first 25 yards and for the last 25 yards.

1) Average speed for first 25 yards distance traveled
elapsed time

25 yards=
22 seconds

= 1.1 yds/sec.

2) Average speed for last 25 yards distance traveled
elapsed time

25 yards
56 sec - 22 sec

25 yds
= .74 yd/sec.34 sec

It is clear that Leslie did not swim with uniform speed.

She swam the first length much faster (1.1 yds/sec) than the
second length (0.74 yd/sec). Notice that the overall average

speed (0.89 yd/sec) does not describe either lap very well.

If we wish to describe Leslie's performance in more detail,

it will be advantageous to modify our data table.

Before we continue our analysis of Leslie's swim, however,
we shall introduce some shorthand notation. In this short-

hand notation the definition of average speed can be simpli-
fied from

average speed - distance traveled
elapsed time

to the concise statement

=
Adv --vav At

The same concepts we are here
developing to discuss this
everyday type of motion will be
needed to discuss the motion of
planets, atoms, and so forth.

17



In this equation vav is the symbol for average speed, d

is the symbol for distance, and t is the symbol for time.

The symbol a is the fourth letter in the Greek alphabet. It

is called delta. When A precedes another symbol, it means

"the change in...." Thus, Ad does not mean that A multiplies

d, but rather "the change in d" or "distance interval." Like-

wise, At stands for "change in t" or "time interval."

We can now proceed with our analysis. Suppose as a next

step we calculate the average speed for each 5-yard interval.

This calculation is easily done; especially when our data are

organized as they are in the table below. The results of

this calculation for the first lap are entered in the right-

hand column.

Data Table for Leslie's 50-yard Swim

Distance
(yds)

Time
(sec)

Ad
(yds)

At
(sec)

Ad/At
(yd/sec)

0

5

10

15

20

25

30

35

40

45

50

0.0

2.5

6.0

11.0

16.0

22.0

26.5

32.0

39.5

47.5

56.1

5

5

5

5

5

5

5

5

5

5

2.5

3.5

5.0

5.0

6.0

4.5

5.5

2.0

1.4

1.0

1.0

.8

(The second-lap computations are left to you.)

Looking at the speed column, we discover that Leslie had

her greatest speed right at the beginning. During the middle

part of the first length she swam at a fairly steady rate,

and she slowed down coming into the turn. You can use your

own figures to see what happens after the turn.

Now we have described Leslie's 50-yard swim in greater

detail than when we gave a single, average speed for both

lengths. But one point must be clear: although we have de-

termined the speeds at various intervals along the path, we

are still dealing with average speeds. The intervals are

smaller the time required to swim 5 yards rather than the

entire 50but we do not know the details of what happened

within any of the intervals. Thus, Leslie's average speed

between the 15 and 20-yard marks was 1.0 yd/sec, but her

18



speed at the very instant she was 18 yards from the start is

still uncertain. Even so, the average speed computed over

the 15 to 20-yard interval is probably a better estimate of

her speed at the 18yatd mark than the average speed computed

over the whole 50 yards, or over either length. We shall

come back to this problem of the determination of speed at a

particular point in Sec. 1.7.

1.5 Graphing motion. What can we learn about motion by graphing

data rather than just tabulating them? Let us find out by

preparing a distance-versus-time graph using the data from

Leslie's 50-yard swim. It is shown below. (We assumed there

were no abrupt changes in her motion and so joined the data

points with a smooth curve.)

Now let us "read" the graph. If you will accept the idea

that the steepness of the graph in any region indicates some-

thing about the speed (the steeper the faster) you will have

no trouble seeing how Leslie's speed changed throughout the

trial. It will be proven to you a little later that the

speed can be calculated by measuring the steepness of the

graph. Notice that the graph is steepest at the start and

50

45 -

40

35

0 30 -

025-o

20-'

15-

10

5

Practice problems on average
speed can be found in Study
Guide 1.2 (e, f, g and h).

Study Guide 1.3, 1.4, 1.5 and
1.6 offer somewhat more chal-
lenging problems. Some sugges-
tions for average speeds to
measure are listed in Study
Guide 1.7 and 1.8. Questions
about the speedometer as a
measure of speed are raised in
Study Guide 1.9 and 1.10.

0

5 10 15 20 25 30 35 40 45 50
Time (sec)

55 60
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Multiply your measurements on
these photographs by 8 to get
actual plant sizes.

20

12m 5
m

711m n.

These photographs show a stormy outburst at the edge of the sun, a
river of ice, and a developing sunflower plant. From these pictures
and the included time intervals you can determine the average speeds
(1) of the solar flare with respect to the ;un's surface (radius of
sun is about 432,000 mi.), (2) of the glacier with respect to the
"river's bank," and (3) of the sunflower plant with respect to the
flower pot.

12
h

12h 12

decreases slightly up to the 10-yard mark. From 10 yards to

20 yards the graph appears to be a straight line becoming

neither more nor less steep. This means that her speed in

this stretch neither increased nor decreased but was uniform.

Reading the graph further, we see that she slowed down some-

what before she reached the 25-yard mark but gained some

speed at the turn. The steepness decreases gradually from

the 30-yard mark to the finish indicating that Leslie was

slowing down. (She could barely drag herself out of the pool

after the trial.)

Looked at in this way, a graph provides us with a picture

or visual representation of motion. But our interpretation

of it was merely qualitative. If we want to know just how

fast or slow Leslie was swimming at various times, we need

a quantitative method of expressing the steepness. The way

to indicate the steepness of a graph quantitatively is by

means of the "slope."

Slope is a widely used mathematical concept, and can be

used to indicate the steepness in any graph. If, in accor-

dance with custom, we call the vertical axis of any graph

the y-axis and the horizontal axis the x-axis, then by def-

inition,

slope = AZ .
Ax
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In a distance-time graph, distance is usually plotted on the

vertical axis. (d replaces y) and time on the horizontal axis

(t replaces x). Therefore, in such a graph,

slope = Ad
At

But this is just the definition of average speed. In other

words, the slope of any part of a graph of distance versus

time gives a measure of the average speed of the object

during that interval.

There is really nothing mysterious about slope or its

measurement. Highway engineers specify the steepness of a

road by the slope. They simply measure the rise in the road

and divide that rise by the horizontal distance one must go

in order to achieve that rise. If you have never encountered

the mathematical concept of slope before, or if you wish to

review it, you might find it helpful to turn to Study Guide

1.11 before continuing here.

We can now ask, "What was Leslie's speed at the 14 or

47-yard marks, or at 35 seconds after the start"? In fact,

by determining the slope, Leslie's speed can be estimated

at

21
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Determine Leslie's speed at
these times using the graph.

at any position or time by taking the slope of a small region

on the distance-time graph of her motion that includes the

particular instant or spot of interest. The answers to the

above question are worked out on the graph below.

50

40 -

35

30 --

coj 25 t
c
ai

c v

A ai= 4j7cfs,

't = 4s
iec

pd,= 2.8y4s

t 4stec

A d ,= 2.5yds

A+t 4.-4sec

It

---3 1 -!- 24

! 1

1
I f

1

! 1

,

10 15 20 25 30 35 40 45 50 55 60
Time (sec)

The plausibility of the results can be checked by compar-

ing them with Leslie's average speeds near those regions.

For example, her average speed during the last 10 yards (from

d = 40 to d = 50) was

10 yards
.60 yards /sec.,56.1 sec - 39.5 sec

Similarly from the graph we determined that Leslie's speed

was .62 yards/sec at the 47-yard mark.

01 Find the speeds at different points for a moving
object from the following distance-time graph:

02 What was the average speed for the
first 6 seconds?

4

5 3

. 2

.2 1

0
2 3 4

Time (sec)
5 6

(The end-of-section questions are to help you check
your understanding of the section. If your answers
don't agree reasonably well with those given on
pp. 127-128, you should read the section again.)
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US Time out for a warning. Graphs are useful but they can also

be misleading. You must always be aware of the limitations

of any graph you use. The only certain pieces of informa-

tion in a graph are the data points, and even they are cer-

tain only to within the accuracy limits of the measurements.

Furthermore, we often lessen the accuracy when we place the

points on a graph.

The line drawn through the points depends on personal

judgment and interpretation. The process of estimating

values between data points is called interpolation. That is

essentially what you are doing when you draw a line between

data points. Even more risky than interpolation is extrapo-

lation, where the graph line is extended to estimate values

beyond the known data.

An example of a high-altitude balloon experiment carried

out in Lexington, Massachusetts, will nicely illustrate the

danger 6Cextrapolation. A cluster of gas-filled balloons

carried some cosmic ray detectors high above the earth's

surface, and from time to time a measurement was made of

the height of the cluster. The adjoining graph shows the

results for the first hour and a half. As the straight line

drawn through the points suggests, the assumption is that

the balloons are rising with uniform speed. Thus the speed

can be calculated from the slope:

speed of ascent = Ah
At

27,000 ft
30 min

= 900 ft/min.

If you were asked how high the balloons would be at the end

of the experiment (500 min), you might extrapolate, obtain-

ing the result 500 min x 900 ft/min = 450,000 ft, which is

over 90 miles high! Would you be right? Turn to Study Guide

1.13 to see for yourself.

Turn back to p. 13 and in the
margin draw a distance-time
graph for the motion of the
dry ice disc.

90

80 t

70 1

60

50 r

-40

30

20 t---

10

-t------- H

0 +---

Time (min)

Q3 what is the difference between extrapola-
tion and interpolation?

100

1.7 Instantaneous speed. Now back to Leslie. In Sec. 1.5 we

saw that distance-time graphs could be extremely helpful in

describing motion. When we reached the end of the section,

we were speaking of specific speeds at particular points

along the path (e.g., "the 14-yard mark") and at particular

instants of time (e.g., "the 35-second instant"). You might

have been bothered by this, for earlier we had gone out of
23



1 Paris street scene, 1839

Photography 1839 to the Present

Photography has an important role
in our analysis of motion. These
pages illustrate some of the sig-
nificant advances in technique
over the last century.

^, 4

3 Boys on skateboards

2 American street scene, 1859

1 Note the lone figure in the otherwise empty street. He was
getting his shoes shined. The other pedestrians did not
remain in one place long enough to have their images recorded.
With exposure times several minutes long the outlook for the
possibility of portraiture was gloomy.

2 However, by 1859, due to improvements in photographic emul-
sions, illumination and lenses, it was not only possible to
photograph a person at rest, but one could capture a bustling
crowd of people, horses and carriages. Note the slight blur
of the jaywalker's legs.

3 Today, even with an ordinary camera one czn "stop" action.

4 A new mediumthe motion picture. In 1873 a group of Cali-
fornia sportsmen called in the photographer Eadweard Muybridge
to settle the question, "Does a trotting horse ever have all
four feet off the ground at once?" Five years later he
answered the question with these photos. The six pictures
were taken with six cameras lined up along the track, each
camera being triggered when the horse broke a string which
tripped the shutter. The motion of the horse can be recon-
stituted by making a flip pad of the pictures.

With the perfection of flexible film, only one camera was
needed to take many pictures in rapid succession. By 1895,
there were motion picture parlors throughout the United
States. Twenty-four frames each second were sufficient to
give the viewer the illusion of motion.
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5 Bullet cutting jack of hearts,
Harold Edgerton

" ` k

6 Stroboscopic photo of golfer's swing, Harold Edgerton
(See the article "The Dynamics of a Golf Club" in
Project Physics Reader 1,)

5 It took another ninety years after the time the crowded
street was photographed before a bullet in flight could be
"stopped." This remarkable picture was made by Professor
Harold Edgerton of MIT, using a brilliant electric spark
which lasted for about one millionth of a second.

6 A light can be flashed successfully at a controlled rate and
a multiple exposure (similar to the strobe photos in the
book) can be made. In this photo of the golfer, the light
flashed 100 times each second.

7 One does not need to have a flashing light to take multiple
exposures. You can take them accidentally by forgetting to
advance your film after each shot or you can do it purposely
by snapping the camera shutter rapidly in succession.

8 An interesting offshoot of motion pictures is the high-speed
motion picture. In the frames of the milk drop shown below,
1,000 pictures were taken each second. The film was whipped
past the open camera shutter while the milk was illuminated
with a flashing light (similar to the one used in photograph-
ing the golfer) synchronized with the film. When the film
is projected at 24 frames each second, action which took
place in 1 second is spread out over 42 seconds.

It is clear that the eye alone could not have seen the
elegant details of this somewhat mundane event.

8 Action shown in high speed film of milk drop. Harold Edgerton

eF

7 Girl rising
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our way to assert that the only kind of speed we can measure

is average speed. To find average speed we need a ratio of

distance and time intervals; a particular point along the

path does not define an interval. Nevertheless, there are

grounds for stating the speed at a point. We will see what

they are.

You remember that our answer to the question, "How fast

was Leslie swimming at time t = 35 sec?" was "0.70 yd/sec."

That answer was obtained by finding the slope of a small

portion of the curve encompassing the point t = 35 sec.

That section of the curve has been reproduced in the margin

here. Notice that the part of the curve we used is seeming-

ly a straight line. Thus, as the table under the graph

shows, the value of the slope does not change as we decrease

the time interval At. Now imagine that we closed in on the

point where t = 35 sec until the amount of curve remaining

became vanishingly small. Could we not safely assume that

the slope of that infinitesimal part of the curve would be

the same as that on the straight line of which it seems to

be a part? We think so. That is why we took the slope of

the straight line lying along the graph from t = 33.0 sec

to t = 37.0 and called it the speed at t = 35.0 sec.

Time
interval

(sec)

Distance
interval
(yds)

Ad
At

(yds/sec)

We hope you noticed that in estimating a value for Les-

lie's instantaneous speed at a particular time, we actually

measured the average speed over a 4.0-sec interval. Con -

ceptually, we have made a leap here. We have decided that

the instantaneous speed at a particular time can be equated

to an average speed Ad At provided; 1) that the particular

time is encompassed by the time interval, At, used to com-

pute pd/pt and 2) that the ratio Ad/At does not change ap-

preciably as we compute it over smaller and smaller time

intervals.

33
37 37

36

38.8

34
36

36.7
38.1

.70

34.5

35.5
37.05
37.75

.70

34.75

35.25

37.225
37.575

.70

A concrete example will help here. In the oldest known

study of its kind, the French scientist de Montbeillard

periodically recorded the height of his son during the period

1759-1777. A graph of height versus age is shown on the

next page.

From the graph we can compute the boy's average growth rate

over the entire 18-year interval or over any other time

interval. Suppose, however, we wanted to know how fast the

boy was growing on his fifteenth birthday. The answer
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becomes evident if we enlarge the

graph in the vicinity of the

fifteenth year. His height at 170

age 15 is indicated as point P,

and the other letters designate
150

time intervals on either side of

P. The boy's average growth rate

over a two-year interval is given 7
130

by the slope AB. Over a one-year s"

interval this average growth rate to

is given in the slope DC. The no

slope of BF gives the average

growth rate over six months,etc.

The three lines are not quite
90

parallel to each other and so

their slopes will be different.
70

In the enlarged sections below,

lines have been drawn joining

the end points of time intervals' 50

of 4 mo, 2 mo and 1 mo around

the point t = 15 years.

0 2 4 6 8 10

age (yrs)

190
Notice that for intervals less than t = 1 yr, the lines

appear to be parallel to each other and gradually to merge

into the curve, becoming nearly indistinguishable from it.

You can approximate the tangent to this curve by placing a

ruler along the line GH and extending it on both sides.

The values of the slopes have been computed for the

several time intervals and are tabulated below.

At Ad v

8 yr 49.0 cm 6.1 cm/yr

2 yr 19.0 cm 9.5 cm/yr

1 yr 8.0 cm 8.0 cm/yr

6 mo 3.5 cm 7.0 cm/yr

4 mo 2.0 cm 6.0 cm/yr

2 mo 1.0 cm 6.0 cm/yr

E

4)

a
w170

12 14 16 18

A

14 15 16 17 18

age (yrs)

The graph above is an enlarge-
ment of the corner of the graph
at the top. The graph below
is a further enlargement of the
middle of the enlargement.

180

We note that the values of v
av calculated for shorter and

shorter time intervals approach closer and closer to

6.0 cm/yr. In fact, for any time interval less than
co

2 months, the average speed v
av will be 6.0 cm/yr within the I,

limits of accuracy of the measurement of d and t. Thus, we

can say that on young de Montbeillard's fifteenth birthday, 170

he was growing at a rate of 6.0 cm/yr.
14 15

age (yrs)

16
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Average speed, we have said, is the ratio of distance

traveled to elapsed time, or, in symbols,

v =
Ad

av At

We now define instantaneous speed at a point in time as the

limiting value approached by the average speeds in time-

intervals including that point, as At is made smaller and

smaller. In almost all physical situations such a limiting

value can be accurately estimated by the method described

on the previous page. From now on we will use the letter

v, without any subscript, to mean the instantaneous speed

defined in this way. (For further discussion, see the

article "Speed" in Project Physics Reader 1.)

Why this definition of instantaneous speed? We can, of

course, define it any way we please; whether the definition

is a wise one is a matter of how useful it turns out to be

in analyzing motion. In chapter 3 we will find that change

of instantaneous speed, defined in this way, is related in a

beautifully simple way to force.

You may be wondering why we have used the letter "v" in-

stead of "s" for speed. The word "velocity" is often used

to mean the same thing as speed. In physics it is useful to

reserve "velocity" for the concept of speed in a specified

direction, and denote it by the symbol -4. When the direc-

tion is not specified, we remove the arrow and just use the

letter v, calling it speed. This distinction between v and

V will be discussed in more detail in Section 3.2.

Q4 Explain the difference between average
speed and instantaneous speed.

05 The baseball shown in the figure below
is presented here for your analysis.
You might tabulate your measurements
and construct a distance-time graph.
From the distance-time graph, you can
determine the instantaneous speed at
several times and construct a speed-
time graph. The time interval between
successive flashes is 0.5 sec. You
can check your results by referring to
the answer page at the back of this
unit.

fi
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1.8 Acceleration by comparison. The baseball in the problem

above was changing speed accelerating. You could tell that

its speed was changing without having to take measurements

and plot graphs. But how would you describe how fast the

ball was changing speed?

To answer this question you have really only one new thing

to learn the definition of acceleration. Actually, the defi-

nition is simple, so the problem is not so much for you to

learn it as it is to learn how to use it in situations like

the one above. For the time being we will define the time-

rate of change of speed as acceleration. Later, this defini-

tion will have to be modified somewhat when we encounter

motion in which change in direction becomes an important

factor. But for now, as long as we are dealing only with

straight line motion, we can equate the time-rate of change

of speed with acceleration.

Many of the effects of acceleration are well known to us.

It is acceleration, not speed, that we feel when an elevator

starts up or slows down. The sudden flutter in our stomachs

comes only during the speeding up and slowing down portions

of the trip, and not during most of the ride when the ele-

vator is moving at a steady speed. Likewise, much of the

excitement of the roller coaster and other rides at amuse-

ment parks is directly related to their unexpected accelera-

tions. How do you know it is really not speed that causes

these sensations? Simply stated, you always detect speed by

reference to objects outside yourself. You can only tell

you are moving at a high speed in an automobile by watching

the scenery as it whizzes past you, or by listening to the

sounds of air rushing against the car or the whine of the

tires on the pavement. In contrast, you "feel" accelerations

and do not need to look out your car window to realize the

driver has stepped on the accelerator or slammed on the

brakes.

Now let us compare acceleration and speed:

The rate of change of The rate of change of
position is speed. speed is acceleration.

This similarity of form will enable us to use our previous

work on the concept of speed as a guide for making use of

the concept of acceleration. The techniques which you have

already learned for analyzing motion in terms of speed can

be used to study motion in terms of acceleration. For

example you have learned that the slope of a distance-time

graph at a point is the instantaneous speed. What would the

slope (i.e., AvAt) of a speed-time graph indicate?
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For example, if speed changes
from 4 m/sec to 5 m/sec during
an interval of 1 second, average
acceleration is 1 (m/sec)/sec.
This is usually written more
briefly as 1 m/see2.

An airplane changes its speed
from 350 mi/hr to 470 mi/hr in
6.0 min. Its average accelera-
tion is 20 (mi/hr)/minwhether
or not the acceleration is uni-
form.

30

The remainder of this section is made up of a list of

statements about motion along a straight line. The list has
two purposes: 1) to help you review some of the main ideas

about speed presented in this chapter, and 2) to present

the corresponding iceas about acceleration so you may take

advantage of your knowledge of speed. For this reason,

each statement about speed is immediately followed by a

parallel statement about acceleration.

1. Speed is the rate of change of position. Acceleration
is the rate of change of speed.

2. Speed is expressed in the units distance/time. Accel-

eration is expressed in the units speed/time.

3. Average speed over any interval is the ratio of the

corresponding distance and time intervals:

Adv =
av At

Average acceleration over any interval is the ratio of the

corresponding speed and time intervals:

Av
a =av At

4. Instantaneous speed is the value approached by the

average speed as At is made smaller and smaller. Instanta-

neous acceleration is the value approached by the average

acceleration as 1t is made smaller and smaller.

5. If a distance-time graph is made of the motion of an

object, the instantaneous speed at any position will be given

by the slope of the tangent to the curve at the point of
interest. If a speed-time graph is made of the motion of an

object, the instantaneous acceleration at any position will

be given by the slope of the tangent to the curve at the
point of interest.

In this listing of statements about speed and acceleration,

the concepts of average and instantaneous acceleration have

been included for the sake of completeness. However, it

will be helpful to remember that when the acceleration is

uniform, it can be found by using the relationship

Dva -
et

for any interval whatever. That is, instantaneous and aver-

age acceleration have the same numerical value for constant

acceleration which will be the most usual case of motion we
shall encounter.



Until the work of Galileo in the seventeenth century,

acceleration proved to be a particularly difficult concept.

In the next chapter, we will examine Galileo's contribution

to our understanding of the nature of accelerated motion.

His work provides a good example of how scientific theory

and actual measurements are combined to develop physical

concepts.

Cqi What is the average acceleration of a
sports car which goes from 0 to 60 mph
in 5 seconds?

Q7 What is your average acceleration if you
change your speed from 4 miles per hour
to 2 miles per hour in an interval of
15 minute'?

11,

Zia14.2:4.5. 4 4 Alt,

is
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Study Guide

1.1 This book is probably different in
many ways from textbooks you have had
in other courses. Therefore we feel it
might help to make a few suggestions
concerning how to use it.

1. Unless you are told otherwise by
your teacher you should feel free to
write in the book. Indeed we encourage
you to do so. You will note that there
are wide margins. One of the purposes
of leaving that much space is to enable
you to write down questions or state-
ments as they occur to you as you are
studying the material. Mark passages
that you do not understand so that you
can seek help from your teacher. You
also notice that from time to time tables
are left incomplete or problems appear
in the text or margin. Complete such
tables and write your answers to problems
right in the text at the point where they
are raised.

2. You will find answers to all of
the end-of-section review questions on
page 127, and brief answers to some of
the Study Guide Questions on page 129.
Always try to do the problems yourself
first and then check your answers. If
your answer agrees with the one in the
book, then it is a good sign that you
understand the material (although it is
true, of course, that you can sometimes
get the right answer for the wrong
reason).

3. There are many different kinds of
items in the Study Guide at the end cf
each chapter. It is not intended that
you should do everything there. Some-
times we put into the Study Guide
material which we think will interest
some students but not enough students
to merit putting into the main part of
the text. Notice also that there are
several kinds of problems. Some are
intended to give practice and help the
student in learning a particular concept
whereas others are designed to help you
bring together several related concepts.
Still other problems are intended to
challenge those students who like numeri-
cal problems.

4. Activities and experiments which
you can carry out at home or outside the
laboratory are described. We do not
suppose that you want to do all of these
but we do want you to take them serious-
ly. If you do you will find that you
are able to do quite a bit of science
without having to have an elaborate
laboratory.
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5. The Project Physics course includes
many other materials in addition to this
book, such as film loops, programmed in-
struction booklets, and transparencies.
Be sure to familiarize yourself with the
Student Handbook, which describes further
outside activities as well as laboratory
experiments, and the Reader, which con-
tains interesting articles related to
physics.

1.2 Some practice problems:
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1,3 If you traveled one mile at a speed
of 1000 miles per hour and another mile
at a speed of 1 mile per hour your aver-
age speed would not be 1000 + 1

mphor 500.5 mph. 2

What would be your average speed?



1.4 A tsunami (incorrectly called "tidal
wave") caused by an earthquake occurring
near Alaska in 1946 consisted of several
sea waves which traveled at the average
speed of 490 miles/hour. The first of
the waves reached Hawaii four hours and
34 minutes after the earthquake occurred.
From these data, calculate how far the
origin of the tsunami was from Hawaii.

1.5 Light and radio waves travel through
a vacuum in a straight line at a speed
of nearly 3 x 108 m/sec. The nearest
star, Alpha Centauri, is 4.06 x 1016 m
distant from us. If this star possesses
planets on which highly intelligent:
beings live, how soon could we expect to
receive a reply after sending them a
radio or light signal strong enough to
be received there?

1.6 What is your average speed in the
following cases:

a) You run 100 m at a speed of 5.0
m/sec and then you walk 100 m
at a speed of 1.0 m/sec.

b) You run for 100 sec at a speed
of 5.0 m/sec and then you walk
for 100 sec at a speed of 1.0
m/sec?

1.7 Design some experiments which will
enable you to make estimates of the
average speeds for some of the following
objects in motion.

a) Baseball heaved from outfield to
home plate

b) The wind
c) A cloud
d) A raindrop (do all drops have

different speeds?)
e) Hand moving back and forth as

fast as possible
f) The tip of a baseball bat
g) Walking on level ground, up

stairs, down stairs
h) A bird flying
i) An ant walking
j) A Camera shutter opening and

closing

1.8 What problems arise when you attempt
to measure the speed if light? Can you
design an experiment to measure the
speed of light?

1.9 Sometime when you are a passt. er in
an-automobile compare the speed as read
from the speedometer to the speed calcu-
lated from As/At. Explain any differ-
ences.

1.10 An automobile speedometer is a small
current generator driven by a flexible
cable run off the drive shaft. The cur-
rent produced increases with the rate at
which the generator Is turned by the

Study Guide

rear axle. The speedometer needle indi-
cates the current. Until the speedometer
is calibrated it can only indicate
changes in speed, but not actual speeds
in miles per hour. How would you cali-
brate the speedometer in your car if the
company had forgotten to do the job? If
you replaced your 24" diameter rear wheels
with 28" diameter wheels, what would your
actual speed be if your speedometer read
50 mph? Would your speedometer read too
high or too low if you loaded down the
rear end of your car and had the tire
pressure too low? What effect does the
speedometer have on the speed of the car?
Can you invent a speedometer that has no
effect on the motion of the car?

1.11 Take a look at the graph of y versus
x shown below:

7

6

5

4

y

3

2

B
Ph Ay = .6
Ax= .3

1 2 3 4 5 6

Notice that in this graph the steepness
increases as x increases. One way to
indicate the steepness of the graph at
a point is by means of the "slope." The
numerical value of the slope at a point
P is obtained by the following procedure,
which is diagramed above. Move a short
distance along the graph from point A to
point B, which are on the curve and lie
on either side of point P. Measure the
change in y, (by) in going from A to B.
In this example Ay = .6. Measure the
corresponding change in x, (Ax) in going
from A to B. Ax here is .3. The slope
is defined as the ratio of Ay to Ax.

Slope a .

In the example

slope = a = = 2.
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NOW there are three important ques-
tions concerned with sloreo that we must
answer.

Q. What are the dimensions or units
for the slope?

A. The dimensions are just those of
y/x. For example, if y represents a
distance in meters and x represents a
time in seconds then the units for slope
will be meters/seconds or meters per
second.

Q. In practice how close do A and B
have to be to point P? (Close is not a
very precise adjective. New York is
close to Philadelphia if you are travel-
ing by jet. If you are walki 'Y it is
not close.)

A. Choose A and B near enough to
point P so that tne line connecting A
and B lies along the curve at point P.
For example.

y

7

6

5

4

3

2

1 2 3

x

4 5 6

Q. Suppose A and B are so close to-
gether that you cannot read Ax or Ay
from your graph. What does one do to
calculate the slope?

y

A. Extend line AB as it is shown in
the figure and compute its slope. Notice
that the small triangle is similar to
the large triangle and that AY Ay

AX Ax

Determine the slopes of this graph of
distance versus time at t = 1, 2, 3 and
4 seconds.

1.12 The electron beam in a TV set sweeps
out a complete picture in 1/30th of a
second and each picture is composed of
525 lines. If the width of the screen
is 20 inches, what is the speed of that
beam over tha surface of the screen?

1.13 (Answer to question in text, page 23.)
Indeed the prediction based upon the first
11/2 hour was vastly wrong. Such a predic-
tion, based on a drastic extrapolation from
the first fk hour's observation, neglects
all the factors which limit the maximum
height obtainable by such a cluster of
balloons, such as the bursting of some of
the balloons, the change in air pressure
and density with height, etc. In fact,
at the end of 500 minutes, the cluster was
not 450,000 feet high, but had come down
again, as the distance-time graph for the
entire experiment shows. For another
extrapolation problem, see Study Guide
1.14.

90

t 80
w
, 70
0

60

g 50
to

=
0 40

30

=

1 20

10

0

100 200 300 400 500

time (sec)

The altitude of a cosmic ray detector
carried aloft by a cluster of balloons.

1.14 World's 400-meter swimming records
for men and women. Ages are in paren-
theses:

1926 4:57.0 Weissmuller (18)
5:53.2 Gertrude Ederle (17)

1936 4:46.4 Syozo Makino (17)
5:28.5 Helene Madison (18)

1946 4:46.4 Makino (17)
5:00.1 Hveger (18)

1956 4:33.3 Hironoshin
Furuhashi (23)

4:47.2 Crapp (18)

1966 4:11.1 Frank Weigand (23)
4:38.0 Martha Randall (18)

By about how many meters would Martha
Randall have beaten Johnny Weissmuller
if they had raced each other? Could
you predict the 1976 world's record for
the 400-meter race by extrapolating the
graph of world records vs. dates up to
the year 1976?
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Detailed analysis of a stroboscopic
photograph of a rolling ball yielded
information which was plotted on the
graph above. By placing your ruler
tangent to the curve at appropriate
points estimate the following:

a) At what moment or interval was
the speed greatest? What was the
value of the speed at that time?

b) At what moment or interval was the
speed least? What was it at that
time?

c) What was the speed at time 5.0
sec?

d) What was the speed at time 0.5
sec?

e) How far did the ball move from
time 7.0 sec to 9.5 sec?

1.16 Suppose you must measure the instanta-
neous speed of a bullet as it leaves the
barre4of a rifle. Explain how you
would do this.

Study Guide

Car A and car B leave point 1 simul-
taneously and both travel at the same
speed. Car A moves from 1 to 2 to 3
while car B moves from 1 to 3 directly.
If B arrives at point 3 six minutes
before A arrives, what was the speed of
either car?

1.18 The data below show the instantaneous
speed in a test run of a Corvette car,
starting from rest. Plot the speed-
versus-time graph, and derive and plot
the acceleration-time graph.

a) What is the speed at t = 2.5
sec?

b) What is the maximum acceleration?

Time (sec) Speed (m/sec)

0.0 0.0
1.0 6.3
2.0 11.6
3.0 16.5
4.0 20.5
5.0 24.1
6.0 27.3
7.0 29.5
8.0 31.3
9.0 33.1
10.0 34.9

1.19 Discuss the motion of the cat in the
following photographs.

0 10 10 10

I
The numbers on each photograph indicate the number of inches measured
from the line marked "0" 35



Chapter 2 Free Fall-Galileo Describes Motion

Portrait of Galileo in crayon
by Ottavio Leoni, a contempo-
rary of Galileo.
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2.1 The Aristotelian theory of motion. In this chapter we shall

take a look at an important piece of research: Galileo's

study of freely falling bodies. While the physical problem

of free fall is fascinating in itself, our emphasis will be

on Galileo as one of the first modern scientists. Thus

Galileo's view of the world, his way of thinking, his use of

mathematics and his reliance upon experimental tests are as

important to us as the actual results of his investigation.

To understand the nature of Galileo's work and to ap-

preciate its significance, we must first examine the dif-

ferences between Galileo's new science of physics and the

medieval system of physical thought that it eventually re-

placed. By comparing the new with the old, we can see how

Galileo helped change our way of thinking about the world.

In medieval physical science, as Galileo learned it at

the University of Pisa, there was a sharp distinction be-

tween the objects on the earth and those in the sky. All

terrestrial matter, the matter within our physical reach,

was believed to be a mixture of four "elements " Earth, Water,

Air and Fire. Each of these four elements was thought to

have a natural place in the terrestrial region. The highest

place was allotted to Fire. Beneath Fire was Air, then

Water and, finally, in the lowest position, Earth. Each

was thought to seek its own place. Thus, Fire would tend to

rise through Air, and Air through Water, whereas Earth would

tend to fall through both Air and Water. The actual move-

ment of any real object depended on the particular mixture

of these four elements making it up and where it was in re-

lation to its natural place.

The medieval thinkers also believed that the stars,

planets and other celestial bodies moved in a far simpler

manner than those objects on, or near, the earth. The

celestial bodies were believed to contain none of the four

ordinary elements, but instead consisted solely of a fifth

element, the quintessence. The natural motion of objects

composed of this element was neither rising ncr falling, but

endless revolution in circles around the center of the uni-

verse. The center of the universe was considered to be

identical with the center of the Earth. Heavenly bodies,

although moving, were thus at all times in their natural

place. They were thus set apart from terrestrial objects,

which displayed natural motion only as they returned to

their natural places from which they were displaced.

This theory, so widely held in Galileo's time, originated

in the fourth century B.C.; we find it mainly in the writings

Diagram of medieval concept of
the world structure.

A good deal of commonsense ex-
perience supports this view.
For example, Water bubbles up
through Earth at springs. When
sufficient Fire is added to
ordinary Water, by heating it,
the resulting mixture of ele-
ments (what we call steam)
rises through the air. Can you
think of other examples?

From quinta essentia meaning
fifth essence. In earlier
Greek writings the term for it
was ether.
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of the Greek philosopher Aristotle. A physical science of

order, rank and place, it fits well many facts of everyday

observation. Moreover, these conceptions of matter and mo-

tion were part of an all-embracing scheme or "cosmology" by

which Aristotle sought to relate ideas which are nowadays

discussed separately under the headings of science, poetry,

politics, ethics and theology.

Aristotle was born in 384 B.C. in Stageira, a city in the

Greek province of Macedonia. His father was the physician

to Amyntas II, the king of Macedonia, and so Aristotle's

early childhood was spent in an environment of court life.

At the age of 17 he was sent to Athens to complete his educa-

tion. He spent 20 years there, first as a student and then

as a colleague of Plato. When Plato died, Aristotle left

Athens and later returned to Macedonia to become the private

tutor of Alexander the Great (356-323 B.C.). In 335 B.C.,

Aristotle came back to Athens and founded the Lyceum, a

school and center of research. Little is known of his

physical appearance and little biographical information has

survived. Fortunately, 50 volumes of his writings (out of

perhaps 400 in all) did sur- NT
vive. These works of Aristotle

remained unknown in Western

Europe for 1500 years after the

decline of the ancient Greek rd P

civilization, until they were

rediscovered in the thirteenth

century A.D. and incorporated

into Christian theology. Aris-

totle became such a dominant

influence in the late Middle

Ages that he was referred to

simply as "The Philosopher."

",--.40,47.....".461110

Because of his habit of lecturing
in the walking place (peripatos,
in Greek) of the Lyceum, Aris-
totle's company of philosophers
came to be known as the "Peri-
patetics."
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The works of Aristotle constitute an encyclopedia of

ancient Greek thoughtsome of it summarized from the work

of others, but much of it created by Aristotle himself. To-

day it seems incredible that one man could have written so

intelligently and knowledgeably on such different subjects as

logic, philosophy, theology, physics, astronomy, biology,

psychology, politics and literature. Some scholars doubt it

was all the work of one man.

Unfortunately, Aristotle's physical theories had limita-

tions which became evident much later, and we will devote

part of this chapter to showing where these limitations lie

in some specific cases. But this should riot detract from

Aristotle's great achievements in other fields.

'
+S.!, Vir

This painting titled "School of
Athens" was done by Raphael in
the beginning of the sixteenth
century. The painting clearly
reflects one aspect of the Ren-
aissance, a rebirth of interest
in classical Greek culture. The
central figures are Plato (on
left) and Aristotle. Raphael
used Leonardo da Vinci as his
model for Plato.
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According to Aristotle, the fall of a heavy object toward

the center of the earth is a natural motion. What factors

determine the rate of fall? A rock falls faster than a leaf;

therefore, he reasoned, weight must be a factor. An object

falls faster in air than in water, so the resistance of the

medium must also be a factor. Other factors, such as the

color and temperature of the object, could conceivably af-

fect the rate of fall, but to Aristotle these were evidently

1 of little importance. He assumed that the rate of fall must

therefore increase in proportion to the weight of the object,

and decrease in proportion to the resisting force of the
1 medium. The actual rate of fall in any particular case would

be determined by dividing the weight by the resistance. In4
his book On the Heavens, Aristotle makes the following state-

ment about natural motion (such as falling):

Aristotle: rate of fall is
proportional to weight divided
by resistance.

See Study Guide 2.13.

John Philoponus: rate of fall
is proportional to weight minus
resistance.

40

A given weight moves a given distance in a given
time; a weight which is heavier moves the same dis-
tance in less time, the time being inversely propor-
tional to the weights. For instance, if one weight
is twice another, it will take half as long over a
given distance.

Aristotle also discussed "violent" motion that is, motion

of an object which is not toward its natural place. Such

motion, he argued, must always be caused by a force, and the

speed of the motion will increase as the force increases.

When the force is removed, the motion must stop. This theory

agrees with our common experience in pushing desks or tables

across the floor. It doesn't seem to work quite so well for

objects thrown through the air, since they keep moving for a

while even after we have stopped exerting a force on them.

To account for this kind of motion, Aristotle assumed that

the air itself somehow exerts a force that continues to pro-

pel an object moving through it.

Later scientists proposed some modifications in Aristotle's

theory of motion. For example, John Philoponus of Alexandria,

in the fifth century A.D., argued that the speed of an object

in natural motion should be found by subtracting the re-

sistance of the medium from the weight of the object, rather

than dividing by the resistance. Philoponus claimed that he

had actually done experiments to support his theory, though

he did not report all the details; he simply said that he

dropped two weights, one of which was twice as heavy as the

other, and observed that the heavy one did not reach the

ground in half the time taken by the light one.

There were still other difficulties with Aristotle's

theory of motion. However, the realization that his teachings



concerning motion had their limitations did little to modify

the important position given to them in the universities of

France and Italy during the fifteenth and sixteenth

centuries. In any case, the study of motion through space

was of major interest to only a few scholars and, indeed, it

had been only a very small part of Aristotle's own work.

Nevertheless, Aristotle's theory of motion fitted much of

human experience in a general--if qualitative--way.

Two further influences stood in the way of radical

changes in the theory of motion. First, Aristotle had be-

lieved that mathematics was of little value in describing

change. Second, he had put great emphasis upon qualitative

observation as the basis for all theorizing. Simple qualita-

tive observation was very successful in Aristotle's bio-

logical studies. But progress in physics began only when

careful measurements were made under controlled conditions.

It would not be at all rash to suggest that when, over

19 centuries after Aristotle, Galileo turned his eyes away

from all the complicated motions of things in the outside

world and fixed them on the curiously artificial motion of

a polished brass ball rolling down an inclined plane, his

eyes made one of the most important turns in history. And

when he succeeded in describing the motion of that ball

mathematically he not only paved the way for other men to

describe and explain the motions of everything from planets

to pebbles but did in fact begin the intellectual revolution

which led to what we now call modern science.

2.2 Galileo and his times. The new developments in both phys-

ics and astronomy came to focus in the writings of Galileo

Galilei. This great scientist was born at Pisa in 1564 the

year of Michelangelo's death and Shakespeare's birth.

Galileo was the son of a nobleman from Florence and he ac-

quired his father's active interest in poetry, music, and

the classics. His scientific inventiveness also began to

show itself early. For example, as a young medical student

at the University of Pisa, he constructed a simple pendulum-

type timing device for the accurate measurement of pulse

rates.

Lured from medicine to physical science by reading Euclid

and Archimedes, Galileo quickly became known for his un-

usual ability. At the age of 26, he was appointed Professor

of Mathematics at Pisa. There he showed an independence of

spirit unmellowed by tact or patience. Soon after his ap-

pointment, he began to challenge the opinions of his older

wiy LAW
/77
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Map of Italy at the time of
Galileo.
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colleagues, many of whom became his enemies. Indeed, he

left Pisa before his term was completed, apparently forced

out by financial difficulties and by his enraged opponents.

Later, at Padua in the Republic of Venice, he began his work

in astronomy. His support of the sun-centered theory of the

universe eventually brought him additional enemies, but it

also brought him immortal fame. You will read more about

this in Unit 2.

Drawn back to his native province of Tuscany in 1610 by a

generous offer of the Grand Duke, Galileo became the Court

Mathematician and Philosopher, a title which he chose him-

self. From then until his death at 78 in 1642, he pro-

duced much of his excellent work. Despite illness, family

troubles, occasional brushes with poverty, and quarrels with

his enemies, he continued his research, teaching and writing.

Galileo gave us a new mathematical orientation toward the

natural world. His philosophy of science had its roots in

the ancient Greek tradition of Pythagoras, Plato and Ar-

chimedes, but it was in conflict with the qualitative ap-

proach characteristic of Aristotle. Unlike most of his

predecessors, however, Galileo respected the test of truth

provided by quantitative observation and experiment.

2.3 Galileo's "Two New Sciences." Galileo's early writings on

mechanics (the study of the behavior of matter under the in-

fluence of forces)were in the tradition of the standard

medieval theories of physics. Although he was keenly aware

of the short-comings of those theories, his chief interest

during his mature years was in astronomy. However, when his

important astronomical work, Dialogue on the Two Great World

Systems (1632), was condemned by the Roman Catholic Inquisi-

tion and he was forbidden to teach the "new" astronomy,

Galileo decided to concentrate on mechanics. This work led

to his book, Discourses and Mathematical Demonstrations Con-

cerning Two New Sciences Pertaining to Mechanics and Local

Motion, usually referred to as the Two New Sciences. The new

approach to the science of motion described in the Two New

Sciences signaled the beginning of the end not only of the

medieval theory of mechanics, but also of the entire Aris-

totelian cosmology.

Galileo was old, sick and nearly blind at the time he

wrote Two New Sciences, yet his style in it is spritely and

delightful. He used the dialogue form to allow a lively

conversation between three "speakers": Simplicio, who rep-

Title page of Dialogue on Two
Great World Systems (1632).

DISCORSI
E

DIMOSTRAZIONI
MATEMATICHE,

intorno ei due moue fiime

Attenenci alla

MECANICA &i Movtmewri LocAti,
idstfur

GALILEO GALILEI LINCEO,
Filorofoc MatentmcoprimanodelSeregamo

Grata Duca di Torcsna.

cnevssifferoduekleastraisresithstalarmi

IN LEIDA,
Apprefro g4 Elrevirii. a,. D. C. XUVU!.

Title page of Discourses and
Mathematical Demonstrations
Concerning Two New Sciences Per-
taining to Mechanics and Local
Motion (1638)
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edition of the Two New Sciences,
showing Salviati's statement
about Aristotle (see transla-
tion in text).
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resents the Aristotelian view; Salviati, who presents the

new views of Galileo; and Sagredo, the uncommitted man of

good will and open mind, eager to learn. To no one's sur-

prise, Salviati leads his companions to Galileo's views.

Let us listen to Galileo's three speakers as they discuss

the problem of free fall:

Salviati: I greatly doubt that Aristotle ever
tested by experiment whether it is true that two
stones, one weighing ten times as much as the other,
if allowed to fall at the same instant, from a height
of, say, 100 cubits, would so differ in speed that
when the heavier had reached the ground, the other
would not have fallen more than 10 cubits. [A "cubit"
is equivalent to about 20 inches.]

Simplicio: His language would seem to indicate
that he had tried the experiment, because he says:
We see the heavier; now the word see shows that he
had made the experiment.

Sagredo: But, I, Simplicio, who have made the
test can assure you that a cannon ball weighing one
or two hundred pounds, or even more, will not reach
the ground by as much as a span ahead of a musket
ball weighing only half a pound, provided both are
dropped from a height of 200 cubits.

Here, perhaps, one might have expected to find a detailed

report on an experiment done by Galileo or one of his col-

leagues. Instead, Galileo presents us with a "thought ex-

periment"an analysis of what would happen in an imaginary

experiment, in which Galileo ironically uses Aristotle's own

method of logical reasoning to attack Aristotle's theory of

motion:

Salviati: But, even without further experiment,
it is possible to prove clearly, by means of a short
and conclusive argument, that a heavier body does
not move more rapidly than a lighter one provided
both bodies are of the same material and in short
such as those mentioned by Aristotle. But tell me,
Simplicio, whether you admit that each falling body
acquires a definite speed fixed by nature, a velocity
which cannot be increased or diminished except by
the use of violence or resistance?

Simplicio: There can be no doubt but that one
and the same body moving in a single medium has a
fixed velocity which is determined by nature and
which cannot be increased except by the addition of
impetus or diminished except by some resistance which
retards it.

Salviati: If then we take two bodies whose natural
speeds are different, it is clear that on uniting
the two, the more rapid one will be partly retarded
by the slower, and the slower will be somewhat
hastened by the swifter. Do you not agree with me
in this opinion?

Simplicio: You are unquestionably right.



Salviati: But if this is true, and if a large
stone moves with a speed of, say, eight while a
smaller moves with a speed of four, then when they
are united, the system will move with a speed less
than eight; but the two stones when tied together
make a stone larger than that which before moved
with a speed of eight. Hence the heavier body moves
with less speed than the lighter; an effect which
is contrary to your supposition. Thus you see how,
from your assumption that the heavier body moves
more rapidly than the lighter one, I infer that the
heavier body moves more slowly.

Simplicio: I am all at sea....This is, indeed,
quite beyond my comprehension....

As Simplicio retreats in confusion, Salviati presses

forward with the argument, showing that it is self-

contradictory to assume that an object would fall faster

if its weight were increased by a small amount. Simplicio

cannot refute Galileo's logic, but on the other hand his

own eyes tell him that a heavy object does fall faster

than a light object:

Simplicio: Your discussion is really admirable;
yet I do not find it easy to believe that a bird-shot
falls as swiftly as a cannon ball.

Salviati: Why not say a grain of sand as rapidly
as a grindstone? But, Simplicio, I trust you will
not follow the example of many others who divert the
discussion from its main intent and fasten upon some
statement of mine that lacks a hairsbreadth of the
truth, and under this hair hide the fault of another
that is as big as a ship's cable. Aristotle says
that "an iron ball of one hundred pounds falling from
a height of 100 cubits reaches the ground before a
one-pound ball has fallen a single cubit." I say
that they arrive at the same time. You find, on mak-
ing the experiment, that the larger outstrips the
smaller by two fingerbreadths....Now you would
not hide behind these two fingers the 99 cubits of
Aristotle, nor would you mention my small error and
at the same time pass over in silence his very large
one.

This is a clear statement of an important principle: in

careful observation of a common natural event the observer's

attention may be distracted from a fundamental regularity

unless he considers the possibility that small, separately

explainable, variations will be associated with the event.

Different bodies falling in air from the same height do not

reach the ground at exactly the same time. However, the im-

portant point is not that the times of arrival are slightly

different, but that they are very nearly the same! The

failure of the bodies to arrive at exactly the same time is

seen to be a minor matter which can be explained by a deeper

understanding of motion in free fall. Galileo himself attri-

buted the observed results to the resistance of the air. A

fell, years after Galileo's death, the invention of the air pump

See Study Guide 2.5 and 2.14.

A stroboscopic photograph of
two freely falling balls of un-
equal weight. The balls were
released simultaneously. The
time interval between images is
1/30 sec.
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Another argument against the
possibility of a vacuum could
be deduced from Aristotle's
theory: if the rate of fall is
equal to the weight divided by
the resistance and the resist-
ance of a vacuum is zero, then
the rate of fall of all bodies
must be infinite in a vacuum.
But that is absurd. Hence, a
vacuum is impossible!

By Aristotelian cosmology is
meant the whole interlocking set
of ideas about the structure of
the physical universe and the
behavior of all the objects in
it. This was briefly and in-
completely outlined in Sec. 2.1.
Other aspects of it will be
presented in Unit 2.
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allowed others to show that Galileo was right. When a

feather and a heavy gold coin are dropped from the same

height at the same time inside an evacuated container, they

fall at the same rate and strike the bottom of the container

at the same instant.

We might say that learning wl.,t to ignore has been almost

as important in the growth of science as learning what to

take into account. In this particular case, Galileo's ex-

planation depended on his being able to imagine how an ob-

ject would fall if there were no air resistance. This may

be easy for us who know of vacuum pumps. But in Galileo's

time it was an explanation unlikely to be accepted because

of the basic beliefs held by most educated people. For them,

as for Aristotle, common sense said that air resistance is

always present in nature. Thus, a feather and a coin could

never fall at the same rate. Why should one talk about

hypothetical motions in a vacuum, when a vacuum does not

exist? Physics, said Aristotle and his followers, should

describe the real world as we observe it, not some imaginary

world which can never be found. Aristotle's physics had

dominated Europe since the thirteenth century, not merely be-

cause of the authority of the Catholic Church, as is some-

times said, but also because many intelligent scientists

were convinced that it offered the most rational method for

describing natural phenomena. To overthrow such a firmly

established doctrine required much more than writing reason-

able arguments or simply dropping heavy and light objects

from a tall building, as Galileo is supposed to have done in

his legendary experiment on the Leaning Tower of Pisa. It

demanded Galileo's unusual combination of mathematical

talent, experimental skill, literary style, and tireless

campaigning to defeat Aristotle's theories and to get on

the path to modern physics.

2.4 Why study the motion of freely falling bodies? To attack the

Aristotelian cosmology, Galileo gathered concepts, methods

of calculation, and techniques of measurement in order to

describe the motion of objects in a rigorous, mathematical

form. Few details of his work were actually new, but to-

gether his findings provided the first coherent presentation

of the science of motion. He realized that free-fall motion,

now seemingly so trite, was the key to the understanding of

all motions of all bodies.

Galileo also provides an example of a superb scientist.

He was an investigator whose skill in discovery and eloquence

in argument produced a deep and lasting impression on his

listeners. His approach to the problems of motion will



provide us with an opportunity for discussion of strategies

of inquiry that are used in science. We shall see a new

mode of scientific reasoning emerge, to become, eventually,

an accepted pattern for scientific thought.

These are the reasons why we study in detail Galileo's

attack on the problem of free fall. But perhaps Galileo

himself should tell us why he studied motion:

My purpose is to set forth a very new science deal-
ing with a very ancient subject. There is, in nature,
perhaps nothing older than motion, concerning which
the books written by philosophers are neither few nor
small; nevertheless, I have discovered some properties
of it that are worth knowing and that have not hitherto
been either observed or demonstrated. Some superficial
observations have been made, as, for instance, that the
natural motion of a heavy falling body is continuously
accelerated; but to just what extent this acceleration
occurs has not yet been announced....

Other facts, not few in number or less worth knowing I
have succeeded in proving; and, what I consider more
important, there have been opened up to this vast and
most excellent science, of vhich ny work is merely the
beginning, ways and means by which other minds more
acute than mine will explore its remote corners.

2.5Galileo chooses a definition of uniform acceleration. In

studying the following excerpts from the Two New Sciences,

which deal directly with the motion of freely falling bodies,

we must be alert to his overall plan. First, Gali1,-1 dis-

cusses the mathematics of a possible, simple type o motion,

namely, motion with uniform acceleration. Then he assumes

that this is the type of motion that a heavy body undergoes

during free fall. This assumption is his main hypothesis

about free fall. Third, he deduces from this hypothesis

some predictions that can be tested experimentally. Finally,

he shows that these tests do indeed bear out the predictions.

In the first part of Galileo's presentation there is a

thorough discussion of motion with un.form speed similar to

the one in our Chapter 1. The second part concerns "uni-

formly accelerated motion":

We pass n-,w to...naturally accelerated motion,
such as that generally experienced by heavy falling
bodies....

And first of all it seems desirable to find and
explain a definition best fitting natural phenomena.
For anyone may invent an arbitrary type of mr)tion
and discuss its properties...we have decided to
consider the phenomena of bodies falling with an
acceleration such as actually occurs in nature and
to make this definition of accelerated motion exhibit
the essential features of observed accelerated
motions.

He was wrong in this: more
than mere "superficial observa-
tions" had been made long be-
fore Galileo set to work. For
example, 14!colas Oresme and

others at the University of
Paris had by 1330 discovered
the same distance-time relation-
ship for falling bodies that
Galileo was to announce with a
flourish in the Two New Sci-
ences.

It will help you to have this
plan clearly in mind as you pro-
gress through the rest of this
chapter. As you study each suc-
ceeding section, ask yourself
whether Galileo is
- presenting a definition
- stating an assumption
- dedu:ing predictions from his
hypothesis

- experimentally testing the
predictions.

47



This is sometimes known as the
rule of parsimony: unless you
know otherwise, assume the sim-
plest possible hypothesis to
explain natural events.

Galileo is saying that just as
we have defined uniform speed
so that (to use our symbols,
not his):

Ad
v = ,

A t

let us also define uniform ac-
celeration so that:

Av
a = .

At

This is the same definition we
used in Chapter 1. Since Galileo
always deals with the case of
objects falling from rest, th's
can be written in the form

va= .

Here Salviati refers to Aris-
totle's assumption that air pro-
pels an object moving through
it (Sec. 2.1).
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Finally, in the investigation of naturally accel-
erated motion we were led, by hand as it were, in
following the habit and custom of nature herself,
in all her various other processes, to employ only
those means which are most common, simple and easy....

When, therefore, I observe a stone initially at
rest falling from an elevated position and contin-
ually acquiring new increments of speed, why should
I not believe that such increases take place in a
manner which is exceedingly simple and rather obvious
to everybody? If now we examine the matter carefully
we find no addition or increment more simple than
that which repeats itself always in the same manner.
This we readily understand when we consider the
intimate relationship between time and motion; for
just as uniformity of motion is defined by and
conceived through equal times and equal spaces
(thus we call a motion uniform when equal distances
are traversed during equal time-intervals), so also
we may, in a similar manner, through equal time-
intervals, conceive additions of speed as taking
place without complication....

Hence the definition of motion which we are
about to discuss may be stated as follows:

A motion is said to be uniformly accelerated,
when starting from rest, it acquires during equal
time-intervals, equal increments of speed.

Sagredo: Although I can offer no rational objec-
tion to this or indeed to any other definition devised
by any author whosoever, since all definitions are ar-
bitrary, I may nevertheless without defense be allowed
to doubt whether such a definition as the foregoing,
established in an abstract manner, corresponds to and
describes that kind of accelerated motion which we meet
in nature in the case of freely falling bodies....

Here Sagredo, the challenger, questicns whether Galileo's

arbitrary definition of acceleration actually corresponds to

the way real objects fall. Is acceleration, as def4ned, use-

ful in describing their change of motion? Sagredo tries to

divert the conversation:

From these considerations perhaps we can obtain an
answer to a question that has been argued by philoso-
phers, namely, what is the cause of the acceleration
of the natural motion of heavy bodies....

Salviati, the spokesman of Galileo, sternly turns away

from this ancient concern for causes. It is premature, he

declares, to ask about the cause of any motion until an ac-

curate desJription of it exists:

Salviati: The present doeS not seem to be the proper
time to investigate the cause of the acceleration of
natural motion concerning which various opinions have
been expressed by philosophers, some explaining it by
attraction to the center, others by repulsion between
the very small parts of the body, while still others
attribute it to a certain stress in the surrounding me-
dium which closes in behind the falling body and drives
it from one of its positions to another. Now, all these
fantasies, and others, too, ought to be examined; but



it is not really worth while. At present it is the
purpose of our Author merely to investigate and to demon-
strate some of the properties of accelerated motion,
whatever the cause of this acceleration may be.

Galileo has now introduced two distinct suggestions,

which we must take up in turn. 1) "Uniform acceleration"

means equal increases in speed Av in equal times At; and

2) things actually fall that way. Let us first look more

closely at Galileo's proposed definition.

Is this the only possible way of defining acceleration?

Is it obviously right? Not at all! As Galileo goes on to

admit, he once believed that in uniform acceleration the

speed increased in proportion to the distance traveled, id,

rather than to the time it. In fact, both definitions had

been discussed since early in the fourteenth century, and

both met Galileo's first command: assume a simple relation-

ship among the physical quantities concerned. Furthermore,

both definitions seem to match our commonsense idea of ac-
celeration. For example, when we say that a body is "ac-

celerating," we seem to imply "the farther it goes, the

faster it goes," as well as "the longer it keeps moving, the
faster it goes." And what, you might ask, is there to choose

between these two ways of putting it?

Acceleration could be defined either way. But which de-

finition can be found useful in a description of nature?

This is where experimentation is important. Galileo defined

uniform acceleration so that change of speed is proportional

to elapsed time, and this definition led to fruitful conse-
quences. Other scientists chose to define acceleration so

that speed is proportional to distance traversed. Galileo's

definition turned out to be the most useful so it was brought

into the language of physics.

2.13Galil cannot test his hypothesis directly. Galileo de-

fined uAiform acceleration so that it would match the way

he believed freely falling objects behaved. The next task

for Galileo was to show that the definition for uniform

acceleration (a = v/t = constant) was useful for describing

observed facts.

This was not as easy as it seems. Suppose we drop a

heavy object from several different heights say, from win-

dows on different floors of a building. In each case we

observe the time of fall t and the speed v just before the

object strikes the ground. Unfortunately, it would be very

difficult to make direct measurements of the speed v just

before striking the ground. Furthermore, the times of fall
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He wanted to answer the question:
for an object moving with uni-

form acceleration what is the
relationship between the dis-
tance traveled and the time

elapsed?

As before,

vinitial= initial speed

v
final

= final speed

v
av

= average speed.

See Study Guide 2.6.

Does this equation hold for
cases of uniform accelcration
only?

are smaller (less than 3 sec even from the top of a 10-story

building) than Galileo could have measured accurately with

the clocks available.

2.7 Looking for logical consequences of Galileo's hypothesis.

The inability to make direct measurements to test his hypoth-

esis that v/t is constant did not stop Galileo. He turned

to mathematics to derive some other relationship that could

be measured with the equipment available to him.

Distance, of r -,urse, is easily determined, so Galileo set

out to derive an equation for acceleration expressed in terms

of distance and time rather than speed and time. We shall

derive such an equation by using relationships familiar to

us, rather than by following Galileo's derivation exactly.

First, we recall the definition of average speed as the

distance traversed divided by the elapsed time. In symbols

we write

d
v = - .vav

t

This is a general definition and can be used to compute the

average speed for any moving object.

For the special case of an object moving with uniform ac-

celeration, we can express the average speed in another

way in terms of initial and final speed:

v
initial

+ v
final

v
av 2

If this uniformly accelerating object starts from rest, that

is v . . = 0, we can write
initial

v
final

v
av 2

= 1/2v
final

In words we would say the average speed of any object start-

ing from rest and accelerating uniformly is one-half the

final speed.

We now have two equations which can be applied to tne

special case of uniformly accelerated motion. Since the

average speed is given by both of these equations, we can

eliminate v
av

. Thus,

v
av

= - or d = v
av

t.
d
t

So, substituting Is
-vfinal

for v
av

we have

d `vfinal t.



We now have to take a final step. Somehow we need to

get acceleration into the equation and speed out of it.

Our starting place was:
v
final

a

which, when we solve for v
final'

becomes

v
final

= at.

If we now combine this with

d 'vfinal t

we get

or

d = 1/2(at)t

d = 1/2at2.

Galileo's own derivation was somewhat different from

this. Howe.'er, he reached the same conclusion: in uniform-

ly accelerated motion the distance traveled in any time by

an object starting from rest is equal to one-half the ac-

celeration times the square of the time. Since we are deal-

ing only with the special case in which acceleration is uni-

form and 1/2a is constant, we can state the conclusion as a

proportion: in uniform acceleration the distance traveled

is proportional to the square of the time elapsed. For ex-

ample, if a uniformly accelerating cart moves 3 m in 2 sec,

it would move 12 m in 4 sec.

Now let us see where we are with reference to Galileo's

vfinalproblem. Using the three expressions a
v
final

v
av 2

and d = v
av t, we found that d = 1/2ate. This

simple relation, derived from Galileo's definition of ac-

celeration, is the key to an experimental test which he pro-

posed. The relation can be put into a form of more direct

interest if we divide it by t2:

d
= 10

Thus a logical result of the original definition of uniform

acceleration is: whenever a is constant, the ratio, d/t2,

is constant. Therefore, any motion in which this ratio is

constant for different distances and times must be a case

of uniform acceleration as defined by Galileo. Of course,

it was his hypothesis that freely falling bodies exhibited

just such motion.

The derived relationship d/t2 = 10 has one big advantage

over the definition of uniform acceleration: it does not

What is the unwritten text be-
hind this equation?

Galileo's hypothesis restated:
for freely falling bodies the
ratio d/t2 is constant. How
else could this be worded?
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See Study Guide questions 2.16
and 2.17.

contain the speed v which Galileo had no reli, le way of

measuring. Instead, it contains the distance d, which he

could measure directly and easily. however, the measurement

of the time of fall t remains as difficult as before.

Hence, a direct test of his hypothesis still eluded Galileo.

111 Why did Galileo use the equation d =
1 v

iTat
2 rather than a = T n testing his

hypothesis?

Q2 If you simply combined the two equations

d = vt and a = Y you might expect to get
t

the result d = at2. Why is this wrong?

Note the careful description of
the experimental apparatus. To-
day an experimenter would add
to his verbal description any
detailed drawings, schematic
layouts, or photographs needed
to make it possible for any
other competent scientist to
duplicate the experiment.

Do you think measurements can
actually be made to 1/10-pulse
beat? Try it.
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2.8Galileo turns to an indirect test. Realizing that it was

still impossible to carry out direct quantitative tests with

freely falling bodies, Galileo next proposed a related hy-

pothesis which could be tested much more easily. According

to Galileo, the truth of his new hypothesis would be estab-

lished when we find that the inferences from it correspond

and agree exactly with experiment.

The new hypothesis is this: if a freely falling body has

an acceleration that is constant, then a perfectly round

ball rolling down a perfectly smooth inclined plane will

also have a constant, though smaller, acceleration. Thus,

Galileoclaimsthatifd
L
is constant for a body fallingt

freely from rest, this ratio will also be constant, although

smaller, for a ball released from rest and rolling different

distances down an inclined plane.

Here is how Salviati described Galileo's own experimental

test:

A piece of wooden moulding or scantling, about
12 cubits long, half a cubit wide, and three
finger-breadths thick, was taken; on its edge was
cut a channel a little more than one finger in
breadth; having made this groove very straight,
smooth, and polished, and having lined it with
parchment, also as smooth and polished as possible,
we rolled along it a hard, smooth, and very round
bronze ball. Having placed this board in a sloping
position, by lifting one end some one or two cubits
above the other, we rolled the ball, as I was just
saying, along the channel, noting, in a manner
presently to be described, the time required to
make the descent. We repeated this experiment
more than once in order to measure the time with
an accuracy such that the deviation between two
observations never exceeded one-tenth of a pulse-
beat. Having performed this operation and having
assured ourselves of its reliability, we now rolled
the ball only one-quarter of the length of the
channel; and having measured the time of its
descent, we found it precisely one-half of the former.
Next we tried other distances, comparing the time
for the whole length with that for the half, or
with that for two-thirds, or three-fourths, or
indeed for any fraction; in such experiments,



repeated a full hundred times, we always found
that the spaces traversed were to each other as
the squares of the times, and this was true for
all inclinations of the...channel along which we
rolled the ball....

This picture, painted in 1841
by G. Bezzuoli, reconstructs
for us an experiment Galileo
is alleged to have made during
his time as lecturer at Pisa.
To the left and right are men
of the blase Prince
Giovanni de Medici (Galileo
had shown a dredging-machine
invented by the prince to be

unusable), and Galileo's sci-
entific opponents. These were
leading men of the universities,
who are bending over a sacro-
sanct book of Aristotle, where
it is written in black and white
that, according to the rules of
gravity, bodies of unequal weight
fall with different speeds.
Galileo, the tallest figure leftGalileo has packed a great deal of information into these
of center in the picture, is

lines. He describes his procedures and apparatus clearly surrounded by a group of students.

enough to allow other investigators to repeat the experiment

for themselves if they wish; he gives an indication that

consistent measurements can be made; and he restates the two

experimental results which he believes support his free-fall

hypothesis. Let us examine the results carefully.

First, he found that when a ball rolled down an incline

at a fixed angle to the horizontal, the ratio of the distance

covered to the square of the corresponding time was always

the same. For example, if dl, d2, and d3 represent distances

from the starting point on the inclined plane, and tl, t2,

and t3 the corresponding times, then

al d2 d3

(t1)2 (t2)2 (t3)2

and in in general (for a given angle of incline),

= constant.
t2

Galileo did not present his experimental data in detail,

for that had not yet become the custom. However, his ex-

periment has been repeated by others, and they have obtained

results which paralleled his. For example, one experimenter

obtained the results shown in Table 2.1. But this is an ex-

periment which you can perform yourself with the help of one

or two other students. The students seen conducting this

experiment recorded the findings in their notebook shown on

the next page.

Galileo's second experimental finding relates to what

happens when the angle of inclination of the plane is
d

2

changed. He found when the angle changed, the ratio
t

also changed, although it was constant for any one angle.

Starting point

Angle of incline

Table 2.1. Results from an ex-
periment of Thomas Settle in
which the angle of inclination
was 3° 44' (See Science, 133,
19-23, June 6, 1961).

Distance Time (ml of d/t2
water?

15 ft 90 .00185

13 84 .00183
10 72 .00192
7 62 .00182
5 52 .00185
3 40 .00187

1 23.5 ; .00182
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This was confirmed by repeating the experiment "a full hun-

dred times" for each of many different angles. After finding

that the ratio -- was constant for each angle of inclination
t2

for which measurements of t could be carried out convenient-

ly, Galileo was willing to extrapolate.

H
d

e reasoned that the ratio -7 is a constant even for lar-

ger angles where the motion of the ball is too fast for ac-

curate measurements of t to be made. Further, he reasoned

that if the ratio -(1- is constant when the angle of inclina-
t2

tion is 90°, then (1-- is also a constant for a falling object.
t2

Thus, by combining experimentation and reason, Galileo was

able to make a convincing argument that for a falling object

d
ithe ratio -- is a constant.

t2

Now let us review the steps we have taken. By mathematics

we showed that 'IT = constant is a logical consequence of

= constant. In other words, if the statement

For each angle, the acceleration
is found to be a constant.

= constant Spheres rolling down planes of
increasingly steep inclination.

is true, then the statement At 90° the inclined plane
situation matches free fall.

d = constant (Actually, the ball will start

t2 slipping long before the angle
has become that large.)is also true.

Next, Galileo proceeded to prove that -T is a constant

for a falling object. By reversing the previous mathematics

you can show that if the statement

d
-T = constant

is true, then the statement

v- = constant
t

must also be true.

But - = constant matches Galileo's definition of uniform
t

acceleration, namely

a = I .

Therefore, his hypothesis that falling objects move downward

with uniform acceleration appears to be correct. See Study Guide questions 2.1,
2.2, 2.3, 2.4.

Q3 Galileo's verification of his hypothesis inclination can be extrapolated to large
that free fall is uniformly accelerated angles.
motion depends on the assumption that

(d) the speed of the ball is constant
(a) d/t2 is constant. as it rolls.

(b) the angle of inclination of the
plane does not change.

(c) the results for small angles of

(e) the acceleration of the rolling
ball is the same as the acceleration in
free fall.
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Early Water Clocks.
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2.13How valid was Galileo's procedure? Some doubts arise con-

cerning this whole process of reasoning and experimentation.

First, was Galileo's measurement of time accurate enough to

establish the constancy of -4 even for the earlier case of
t2

a slowly rolling object? Galileo tries to reassure possible

critics by providing a detailed description of his experi-

mental arrangement (thereby inviting any skeptics to try it

for themselves!) : \i

For the measurement of time, we employed a large
vessel of water placed in an elevated position; to
the bottom of this vessel was soldered a pipe of
small diameter giving a thin jet of water, which we
collected in a small cup during the time of each
descent, whether for the whole length of the chan-
nel or for a part of its length; the water thus col-
lected was weighed on a very accurate balance; the
differences and ratios of these weights gave us the
differences and ratios of the time intervals, and
this with such accuracy that, although the operation
was repeated many, many times, there was no appre-
ciable discrepancy in the results.

The water clock described by Galileo was not invented by
him. Indeed, there are references to water clocks in China

as early as the sixth century B.C., and they were probably

used in Babylonia and India even earlier. In Galileo's

time, the water clock was the most accurate of the world's

time measuring instruments, and it remained so until shortly

after his death when the work of Christian Huygens and others
resulted in the pendulum clock. Although Galileo's own water

clock was not the most precise available at the time, it was,

nevertheless, good enough for a convincing verification that

d
is-- i constant.

t2

Another reason for questioning Galileo's results is re-

lated to the large extrapolation involved. Galileo does

not report what angles he used in his experiment. However,

as you may have found out from doing a similar experiment,

the angles must be kept rather small. Naturally, as the

angle increases, the speed of the ball soon becomes so great

that it is difficult to measure the times involved. The

largest angle reported by Settle in his modern repetitici of

Galileo's experiment was only 6°. It is unlikely that Gali-

leo worked with much larger angles. This means that Gali-

leo's extrapolation was a large one, perhaps much too large

for a cautious person or for one not already convinced of
the truth of Galileo's hypothesis.

Still another reason for questioning Galileo's results is

the observation that, as the angle of incline is increased,

there comes a point where the ball starts to slide as well
as roll. This change in behavior could mean that the same



general law does not apply to both cases. Galileo does not

answer this objection. It is surprising that he never re-

peated the experiment with blocks which would slide, rather

than roll, down a smooth incline. If he had, he would have

found that for both sliding and rolling the ratio d
TT is a

constant although it is a different constant for the two cases.

Q4 The main reason why we might doubt the
validity of Galileo's procedure is

(a) his measurement of time was not
sufficiently accurate.

(b) he used too large an angle of
inclination.

(c) it is not clear that his results

apply to the case when the ball can slide
as well as roll.

(d) in Galileo's experiment the ball
was actually sliding rather than rolling,
and therefore his results cannot be ex-
trapolated to the case of free fall.

(e) d/t2 would not be constant for a
s?ading object.

2.10The consequences of Galileo's work on motion. As was

pointed out at the end of the previous section, one can not

get the correct value for the acceleration of a body in free

fall simply by extrapolating the results for larger and

larger angles of inclination. In fact Galileo did not even

attempt to calculate a numerical value for the acceleration

of freely falling bodies. Galileo's purpose could be well

served without knowing the value of the acceleration for

free fall; it was enough that he showed the acceleration to

be constant. This is the first consequence of Galileo's

work.

Second, if spheres of different weights are allowed to

roll down an inclined plane, they have the same acceleration.

We do not know how much experimental evidence Galileo him-

self had for this conclusion. At any rate, later work con-

firmed his "thought experiment" on the rate of fall of

bodies of different weights (Sec. 2.3). The fact that

bodies of different weights all fall at the same rate (aside

from the understandable effects of air resistance) is a de-

cisive refutation of Aristotle's theory of motion.

Third, Galileo developed a mathematical theory of ac-

celerated metien'from which other predictions about motion

could be derived. We will mention just one example here,

which will turn out to be very useful in Unit 3. Recall

that Galileo chose to define acceleration not as the rate

of change of speed in a given space, but rather as the rate

of change of speed in a given time. He then found by ex-

periment that accelerated bodies in nature actually do ex-

perience equal changes of speed in equal times. But one

might also ask: if speed does not change by equal amounts

in equal distances, is there anything else that does change

by equal amounts in equal distances, for a uniformly ac-

celerated motion? The answer is yes: the square of the

We now krow by measurement that
the magnitude of the accelera-
tion of gravity, symbol ag or
simply g, is about 9.8 m/sec2
or 32 ft /sect at the earth's

surface (see Study Guide 3.17).
The Student Handbook contains
five experiments for getting
ag.
g
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Can you derive this equation?
(Hint: start from equations
for d and v and eliminate t.)

See Study Guide 2.21 and 2.23.

speed changes by equal amounts in equal distances. There is

a mathematical equation which expresses this result:

v2 = 2ad

In words: if an object starts from rest and moves with uni-

form acceleration a through a distance d, then the square

of its speed will be equal to twice the product of its

acceleration and the distance it has moved. We shall see

the importance of v2 = 2ad in Unit 3.

These consequences of Galileo's w)rk, important as they

are to modern physics, would scarcely have been enough to

bring about a revolution in science by themselves. No sen-

sible person in the seventeenth century would have given up

his belief in the Aristotelian cosmology simply because its

predictions had been refuted in the case of falling bodies.

The significance of Galileo's work is that it prepared the

way for the development of a new kind of physics, and indeed

a new cosmology.

The more vexing scientific problem during Galileo's life-

time was not the motion of accelerated bodies, but the

structure of the universe. For example, is the earth or the

sun the center of the universe? Galileo supported the

theory that the earth and other planets revolve around the

sun. To accept si1,711 a tneory meant, ultimately, to reject

the Aristotelian cosmology; but in order to do this a phys-

ical theory of the motion of the earth would have to be de-

veloped. Galileo's theory of motion turned out to be just

what was needed for this purpose, but only after it had been

combined with further assumptions about the relation between

forces and motion by the English scientist Isaac Newton. We

shall return to the story of this revolution in science in

Unit 2.

There is another significant aspect of Galileo's work on

motion: it led to a new way of doing scientific research.

The heart of this approach is the cycle, repeated as often as

necessary: general observation + hypothesis + mathematical

analysis + experimental test + modification of hypothesis as

necessary in light of test, and so forth. But while the

steps in the mathematical analysis are determined by "cold

logic," this is not the case for the other elements. Thus a

variety of paths can lead to the hypothesis in the first

place: an inspired hunch based on general knowledge of the

experimental facts, a desire for simple and pleasing founda-

t...ors, a change of a previous hypothesis that failed. More-

over, there are no general rules about how well the experi-

mental data have to agree with the theoretical predictions.

In some areas of science, a theory is expected to be



accurate to better than one 1/1000th of a percent; in

other areas, scientists would be delighted to find a theory

that could make predictions with as little as 50 percent

error.

The process of proposing and testing hypotheses, so skill-

fully demonstrated by Galileo in the seventeenth century, is

widely used by scientists today. It is perhaps the most

significant thing that distinguishes modern science from

ancient and medieval science. The method is used not out of

respect for Galileo as a towering figure in the history of

science, but because it works so well sc much of the time.

Galileo himself was aware of the value of both the results

and the methods of his pioneering work. He concluded his

treatment of accelerated motion by putting the following

words into the mouths of the commentators on his book:

Sagredo: I think we may concede to our Academi-
cian, without flattery, his claim that in the prin-
ciple laid down in this treatise he has established
a new science dealing with a very old subject. Ob-
serving with what ease and clearness he deduces from
a single principle the proofs of so many theorems,
I wonder not a little how such a question escaped
the attention of Archimedes, Appolonius, Euclid and
so many other mathematicians and illustrious philo-
sophers, especially since so many ponderous tomes
have been devoted to the subject of motion.

Salviati: ...we may say the door is now opened,
for the first time, to a new method fraught with
numerous and wonderful results which in future years
will command the attention of other minds.

Sagredo: I really believe that...the principles
which ar et forth in this little treatise will,
when taken up by speculative minds, lead to
another more remarkable result; and it is to be
believed that it will be so on account of the
nobility of the subject, which is superior to
any other in nature.

During this long and laborious day, I have en-
joyed these simple theorems more than their proofs,
many of which, for their complete comprehension,
would require more than an hour each; this study,
if you will be good enough to leave the book in my
hands, is one which I mean to take up at my leisure
after we have read the remaining portion which deals
w4th the motion of projectiles; and this if agree-
able to you we shall take up tomorrow.

Salviati: I shall not fail to be with you.

The "Academician" is the author
of the treatise being discussed
in the dialogues that is, Gali-
leo himself.

Projectile motion will be taken
up in Chapter 4.

Q5 Which of the following was not a conse-
quence of Galileo's work on motion?

(a) The correct numerical value of
the acceleration in free fall was ob-
tained by extrapolating the results for
larger and larger angles of inclination.

(b) If an object starts from rest

and moves with uniform acceleration a
through a distance d, then the square
of its speed will be proportional to a
and also proportional to d.

(c) Bodies moving on a smooth inclined
plane are uniformly accelerated (ac-
cording to Galileo's definition of ac-
celeration).
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Study Guide

2.1 List the steps by which Galileo pro-
gressed from his first definition of
uniformly accelerated motion to his
final confirmation that this definition
is useful in describing the motion of a
freely falling body. Identify each step
as a hypothesis, deduction, observation,
or computation, etc. What limitations
and idealizations appear in the argument?

2.2 Which of the following statements
best summarizes the work of Galileo on
free fall? (Be prepared to defend your
choice.) Galileo:

a) proved that all objects fall at
exactly the same speed regard-
less of their weight.

b) proved that for any one freely
falling object, the ratio: d
is constant for any T2

distance.
c) demonstrated conclusively that

an object rolling down a smooth
incline accelerates in the same
way as (although more slowly
than) the same object falling
freely.

d) used logic and experimentation to
verify indirectly his assertion
that the speed of a freely f all -
ing object at any point depends
only upon, and is proportional
to, the time elapsed.

e) made it clear that until a vacuum
could be produced, it would not
be possible to settle the free-
fall question once and for all.

2.3 Write a short statement (not more
than two or three sentences) summarizing
Galileo's work on free fall better than
any of those in 2.2 above.

2.4 As Director of Research in your class,
you receive the following research pro-
posals from physics students wishing to
improve upon Galileo's free-fall experi-
ment. Would you recommend support for
any of them? If you reject a proposal,
you should make it clear why you do so.

a) Historians believe that Galileo
never dropped objects from the
Leaning Tower of Pisa. Too bad!
Such an experiment is more di-
rect and more fun than inclined
plane experiments, and of course,
now that accurate stopwatches
are available, it can be carried
out much better than in Galileo's
time. The experiment involves
dropping, one by one, different
size spheres made of copper,
steel, and glass from the top
of the Leaning Tower and finding
how long it takes each one to
reach the ground. Knowing d
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(the height of the tower) and
time of fall t, I will substitute
in the equation d = hat2 to see
if the acceleration a has the
same value for each sphere.

b) A shotput will be dropped from
the roof of a 4-story building.
As the shotput falls, it passes
a window at each story. At each
window there will be a student
who starts his stopwatch upon
hearing a signal that the shot
has been released, and stops the
watch as the snot passes his
window. Also, each student re-
cords the speed of the shot.
From his own data, each student
will compute the ratio v/t. All
four students should obtain the
same numerical value of the
ratio.

c) Galileo's inclined planes "dilute"
motion all right, but the trouble
is that there is no reason to
suppose that a ball rolling down
a board is behaving like a ball
falling straight downward. A
better way to accomplish this
is to use light, fluffy, cotton
balls. These will not drop as
rapidly as metal spheres, and
therefore it would be possible
to measure the time of the fall
t for different distances d.
The ratio d/t2 could be deter-
mined for different distances
to see if it remained constant.
The compactness of the cotton
ball could then be changed to
see if a different value was
obtained for the ratio.

2.5 Consider Aristotle's statement "A
given weight moves [falls] a given dis-
tance in a given time; a weight which is
as great and more moves the same dis-
tance in less time, the times being in
inverse proportion to the weights. For
instance, if one weight is twice another,
it will take half as long over a given
movement." [De Caelo]

Indicate what Simplicio and Salviati
each would predict for the rest of the
falling motion in these cases:

a) A two-pound rock falls from a
cliff and, while dropping,
breaks into two equal pieces.

b) A hundred-pound rock is dropped
at the same time as one hundred
one-pound pieces of tae same
type of rock.

c) A hundred one-pound pieces of
rock, falling from a height,
drop into a loosely held sack
which pulls loose and falls.



All the rocks are in the sack
and continue falling while con-
tained by the sack.

2.6 A good deal of work preceded tnat of
Galileo on the topic of motion. In the
period (1280-1340) mathematicians at
Merton College, Oxford, carefully con-
sidered quantities that change with the
passage of time. One result that had
profound influence was a general theo-
rem known as the "Merton Theorem" or
"Mean Speed Rule."

This theorem might be restated in our
language and applied to uniform accel-
eration as follows: the distance an ob-
ject goes during some time while its
speed is changing uniformly is the same
distance it would go if it went at the
average speed the whole time.

Using a graph, and techniques of
algebra and geometry, construct a proof
of the "Merton Rule."

2.7 In the Two New Sciences Galileo
states, "...for so far as I know, no
one has yet pointed out that the dis-
tances traversed, during equal interval
of time, by a body falling from rest,
stand to one another in the same ratio
as the odd numbers beginning with unity
(namely

The area beneath a speed-time graph
represents the distance traveled during
some time interval. Using that idea,
give a proof that the distances an ob-
ject falls in successive equal time in-
tervals will be in such a ratio.

2J8 Indicate whether the following
statements are true or false when ap-
plied to the strobe photo at the right:

a) The speed of the ball is greater
at the bottom than at the top.

b) The direction of the acceleration
is vertically downward.

c) This could be a freely falling
object.

d) This could be a ball thrown
straight upward.

Study Guide

2.10 These last two questions raise the
issue of direction. The photograph
in the figure below is of a ball
thrown upward, yet its acceleration
is downward. The acceleration due to
gravity may appear as the slowing down
of an upward moving object, or as the
speeding up of a downward moving one.
To keep these matters straight, a plus
and minus sign convention is adopted.
Such a convention is merely an arbi-
trary but consistent set of rules.

U

2J9 Apply the same statements to the
photo at the right, once again indi-
cating whether each statement is true
or false.

The main rule we adopt is: 112. is the
positive direction. It follows that the
acceleration due to free fall g always
takes the negative sign; distances above
the point of release are positive, those
below it negative; and the speed of an
object moving upward is positive, down-
ward negative.

The figure below is a photo of the
path that a ball might take if you threw
it up and then let it fall to the ground
rather than catching it when it reached
your hand again. Tc assure yourself
that you understand the sign convention
stated above, complete the table below.

B

A

C

D

E

Stroboscopic photograph of a
ball thrown into the air.

osition d v a

A + +
B
C

D

E
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2.11 Draw a set of points (as in a strobe
photo) to show the successive positions
of an object that had a positive accel-
eration upward. Can you think of any
.way to produce such an event physically?

2.12 The instrument shown below on a cart
is called a liquid surface accelerometer.
Whenever the accelerometer experiences
an acceleration in a direction parallel
to its long dimension, the surface of
the liquid tilts in the direction of the
acceleration. Design a demonstration in
which acceleration remains constant but
speed and direction change.

2.13 Drop sheets of paper with various de-
grees of "crumpling." Can you crumple a
sheet of paper tight enough that it will
fall at the same rate as a tennis ball?

2.14 Tie two objects (of greatly different
weight) together with a piece of string.
Drop the combination with different
orientations of objects. Watch the
string. In a few sentences summarize
your results.

2.15 In tnese first two chapters we hav-
been concerned with motion in a straight
line. We have dealt with distance,
tin,,., speed and acceleration, and with
the relac.,.onsnips between them. Sur-
prisingly, most of the results of our
discussion can be summarized in the
three equations listed below.

v = --
Ad a = d = fat?av Gt av At

The last of these equations applies
only to those cases where the accelera-
tion is constant. Be.ause these three
equations are so useful, they are worth
remembering.
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a) State each of the three equations
in words.

b) Which of the equations can be
applied only to objects starting
from rest?

c) Make up a simple problem to demon-
strate the use of each equation.
For example: How long will it
take a jet plane to travel 3200
miles if it averages 400 mi,l,r?
Also work out the solution just
to be sure the problem can be
solved.

2.16 Memorizing equations will not save
you from having to think your way through
a problem. You must decide if, when
and how to use equations. This means
analyzing the problem to make certain
you understand what information is given
and what is to be found. Test yourself
on the following problem. Assume that the
acceleration due to gravity is 10 m/sec2.

Problem: A stone is dropped from
rest from the top of a high cliff.

a) How far has it fallen after 1
second?

b) What is the stone's speed after
1 second of fall?

c) How far does the stone fall during
the second second? (That is,
from the end of the first second
to the end of the second second.)

2.17 Think you have it now? Test yourself
once more. If you have no trouble with
this, you may wish to try problem 2.18,
2.19, or 2.20.

Problem: An object is thrown straight
upward with an initial velocity of
20 m/sec.

a) What is its speed after 1.0 sec?
b) How far did it go in this first

second?
c) How long did the object take to

reach its maximum height':
d) How high is this maximum haight?
e) What is its final speed just

before impact?

2.18 A batter hits a pop fly that travels
straight upwards. The ball leaves his
bat with an initial speed of 40 m/sec.

a) What is the speed of the ball at
the end of 2 seconds?

b) What is its speed at the end of
6 seconds?

c) When does the ball reach its
highest point?

d) How high is this highest point?
e) What is the speed of the ball at

the end of 10 seconds? (Graph
this series of speeds.)

f) What is its speed when caught by
the catcher?



2.19 A ball starts up an inclined plane 2.23
with a speed of 4 m/sec, and comes to a
halt after 2 seconds.

a) What acceleration does the ball
experience?

b) What is the average speed of the
ball during this interval?

c) What is the ball's speed after 1
second?

d) How far up the slope will the
ball travel?

e) What will be the speed of the
ball 3 seconds after starting
up the slope?

f) What is the total time for a
round trip to the top and back
to the start?

Study Guide

A student on the planet Arret in
another solar system dropped an object
in order to determine the acceleration
due to gravity. The following data are
recordeo (in local units):

Time Distance
(in surgs) (in welfs)

0.0
0.5
1.0
1.5
2.0
2.2
2.4
2.6
2.8
3.0

0.00
0.54
2.15
4.84
8.60

10.41
12.39
14.54
16.86
19.33

2.20 Lt. Col. John L. Stapp achieved a
speed of 632 mph (284 m/sec) in an ex-
perimental rocket sled at the Holloman
Air Base Development Center, Alamogordo,
New Mexico, on March 19, 1954. Running
on rails and propelled by nine rockets,
the sled reached its top speed within 5
seconds. Stapp survived a maximum
acceleration of 22 g's in slowing to
rest during a time interval of IA
seconds. (22 g's means 22 x a

g
.)

a) Find the average acceleration in
reaching maximum speed.

b) How far did the sled travel be-
fore attaining maximum speed?

c) Find the average acceleration
while stopping.

2.21 Sometimes it is helpful to have a
special equation relating certain vari-
ables. For example, initial and final
speed, distance, and acceleration are
related by the equation

lif2=1.7i 2.1- 2ad.

Try to derive this equation from some
others you are familiar with.

2.22 Use the graph below, and the idea that
the area under a curve in a speed-time
graph gives a value for the distance
traveled, to derive the equation

d = vi t + 1/2at2.

time

a)

b)

What is the acceleration due to
gravity on the planet Arret,
expressed in welfs /surge?

A visitor from Earth finds that
one welf is equal to about 6.33
cm and that one surg is equiva-
lent to 0.167 sec. What would
this tell us about Arret?
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3.1 The concepts of mass and force. Galileo investigated many

topics in mechanics with insight, ingenuity and gusto.

The most valuable part of that work dealt with special types

of motion, such as free fall. In a clear and consistent

way, he developed useful schemes for describing how objects

move. Kinematics is the study of how objects move.

When Isaac Newton began his studies of motion in the

second half of the seventeenth century, Galileo's earlier

insistence that "the present does not seem to be the proper

time to investigate the cause of the acceleration of natural

motion...." was no longer valid. Indeed, largely because

Galileo had been so effective in describing motion, Newton

could turn his attention to dynamics; that is, to the

question of why objects move the way they do.

How does dynamics differ from kinematics? As we have

seen in the two earlier chapters, kinematics deals with

the description of motion. Dynamics goes beyond kinematics

by taking into account the cause of the motion. For exam-

ple, in describing the motion of a stone dropped from a

cliff, we might include the height from which the stone is

dropped and the time the stone remains in its fall. With

this information we could compute the stone's average speed

and its acceleration. But, when we have completed our de-

scription of the stone's motion, we are still not satisfied.

Why, we might ask, does the stone accelerate rather than

fall with a constant speed? Why does it accelerate uniform-

ly? To answer these questions, we must add to oar arsenal

of concepts those of force and mass; and in answering, we

are doing dynamics.

Fortunately, the concepts of force and mass are not

exactly new. Our common sense idea of force is closely

linked with our own muscular activity. We know a sustained

effort is required to lift and support a heavy stone. When

we push a lawnmower, row a boat, draw a bow, or pull a sled,

our muscles let us know we are exerting a force. Perhaps

you notice how naturally force and motion and muscular ac-

tivity are united in our minds. In fact, when you think of

moving or changing the motion of an object (e.g., hitting

a base all), you naturally think of the muscular sensation

of exerting a force.

The idea of mass is a little more subtle. You have

used the word mass, but common sense alone does not lead

to a useful definition. Certainly it does not have to

do only with size--a brick is more massive than a beach-

ball. Think of a grapefruit and a shot put. Which has

Kinematic Concepts

position
time

speed

acceleration

Dynamic Concepts

mass
force

momentum (Ch. 9)
kinetic energy (Ch. 10)
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A vector is represented by an
arrow-headed line segment whose
length is drawn proportional to
the magnitude of the vector and
whose direction is the same as
the vector.
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a greater mass? The shot put, you say. But why? Because

it is heavier? Is mass merely a synonym for weight? No,

because if an astronaut smuggled the shot put and the

grapefruit aboard his space capsule, then once the vehicle

is in a region where the gravitational pull is no longer

felt, it will still be much more difficult to accelerate

the shot put in throwing it forward (as on p. 64) than

would be a grapefruit. Even in the absence of weight,

mass remains, and one is felt to be more massive than the

other. Probably we can agree that mass is a measure of

the quantity of matter in any object; but even this does

not solve our difficulty. The question still remaining

is, "What is meant by 'quantity of matter'?"

Newton did not "discover" the concepts of force and mass.

What he did was this: first, he recognized that these con-

cepts were basic for an understanding of motion and second,

he clarified these concepts and defined them in a way that

made them extremely useful. In the mind of Newton, the con-

cepts of force and mass became more than fuzzy, qualitative

notions he found a way to attach numbers to them. This may

not sound like much. But, by the end of this chapter, per-

haps you will agree that Newton's contribution was indeed

extraordinary.

3.2 About vectors. Force is a vector. If you are asked to push

a piece of furniture from one part of a roc- to another,

you size up the situation as follows. First, your experi-

ud ence suggests to you the magnitude of the force required. A

force of greater magnitude is required to move a piano than

to move a foot stool. Second, you determine the direction

in which the force must be applied to make the desired move.

Obviously, both the magnitude and the directions of the force

are important.

We cannot define a vector until we understand how two

vectors are added together. If two forces of elual magni-

tude, one directed due east and the other directed due

north, are applied to a resting object free to move, it

will take off in the northeast direction the direction of

the resultant force. The resultant force is the sum of the

individual forces. The resultant force is found by appli-

cation of the rule for vector addition the parallelogram

law. The parallelogram law is illustrated below.



Now we can define a vector. Something which has both

magnitude and direction, and which adds by the parallelo-

gram law, is a vector. A surprising variety of things have

both magnitude and direction and add together according to

the parallelogram law. For example, displacement, velocity

and acceleration are vector quantities.. Concepts such as

volume, distance, or speed do not require specifying a

direction in space, and are called scalar quantities.

In Sec. 1.8 we hedged a bit on our definition of acceler-

ation. There we defined acceleration as the rate of change

in speed. That is correct, but it is incomplete. Now we

want to consider the direction of motion as well. We shall

define acceleration as the rate of change of velocity where

velocity is a vector having both magnitude and direction.

In symbols,
Ay

a =
a v At

where A; is the change in velocity. Velocity can change in

two ways: by changing its magnitude (speed) and by changing

its direction. In other words, an object is accelerating

when it speeds up, slows down, or changes direction.

We will use vectors frequently. To learn more about them,

ask your teacher for the Project Physics program Vectors.

A vector is labeled by a letter
with an arrow over it; for ex-
ample, f, -A', or v.

Wm.
1,W14

Ca What is the difference between speed and
velocity?

Q2 An object is moving with a velocity of
10 m/sec due north. Five seconds later,
it is moving with a velocity of 10 m/sec

due east.

(a) What is the change in the veloci-
ty 6-xi?

(b) What is the average acceleration
Ay/At?

3.3 Explanation and the laws of motion. So far in our study of

kinematics, we have encountered four situations: an object

might

a) remain at rest

b) move uniformly in a straight line

c) speed up, and

d) slow down.

Because the last two of these are examples of acceleration

the list could really be reduced to 1) rest, 2) uniform

rectilinear motion, and 3) acceleration. These are the

phenomena that we shall first try to explain.

The words "explain" or "cause" have to be used with

care. To the physicist, an event is "explained" when he

can demonstrate that the event is a logical consequence of

a law he assumes to be true. In other words, a physicist,
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with faith in a law, "explains" an observation by showing

that it is consistent with the law. In a sense, the

physicist's job is to show that the infinity of separate,

different-looking occurrences are merely different mani-

festations of a few general rules on which the world is

built.

To explain rest, uniform motion and acceleration, we

must be able to answer such questions as: why does a vase

placed on a table remain stationary? If a dry ice puck

resting on a smooth, level surface is given a brief push,

why does it move with uniform speed in a straight line,

rather than slow down noticeably or curve to the right or

left?

Answers to these (and almost all) specific questions

about motion are contained either directly or indirectly in

the three general laws of motion formulated by Newton.

These laws appear in his famous book, Philosophiae Naturalis

Principia Mathematica, which is usually referred to simply
as The Principia. We shall examine Newton's three laws of

motion one by one. If you are curious about these laws

and if your Latin is fairly good you might try translating

them from the original (shown in the margin). A modernized

version of Newton's laws, in English, is in Study Guide 3.1.

Before looking at Newton's contribution let us first

find out how some other scientists of Newton's time might

have responded to some of these questions.
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played a central role in the dynamics of Aristotle, twenty
centuries before Newton. You will recall from Chapter 2

that there were two types of motion "natural" motion and
"violent" motion. For example, a falling stone is n

natural motion. A stone being steadily lifted is in vio-
lent motion. To maintain this uniform violent motion, a

force must be continuously applied. A person lifting a

large stone is keenly aware that a continual force is re-
quired as he strains to hoist the stone higher.

Let us explore the idea of violent or unnatural motion

a little further, for as we shall see, there were difficul-
ties. To understand these difficulties, let us take a

specific example an arrow flying through the air. Aris-
totle had generalized the common-sense notion that an ob-

ject cannot undergo violent motion without a mover, or
something pushing on it. Thus, an arrow flying through the

air must be continually propelled by a force. Further, if



the propelling force is removed, the arrow should immediate-

ly stop its flight and fall directly to the ground. But

how can this be? Does the arrow fall to the ground as soon

as it loses direct contact with the bow string? The archer

and certainly the victim are aware that it does not.

What then is the force that propels the arrow? This

force was accounted for by an ingenious suggestion: the

motion of the arrow was maintained by the air itself! A

commotion is set up in the air by the initial movement of

the arrow; that is, as the arrow starts to move the air is

compressed and pushed aside. The rush of air to fill the

space being vacated by the arrow (remember that according

to Aristotle a vacuum is impossible) maintains it in its

flight.

To an Aristotelian, a force is necessary to sustain uni-

form motion. The explanation of uniform motion is reduced

to identifying the origin of the force. And that is not

always easy.

Of course, Aristotle's followers had other problems. For

example, a falling acorn does not move with uniform speed

it accelerates. How is acceleration explained? Aristoteli-

ans thought the speeding up of a falling object was associ-

ated with its approaching arrival at its natural place, or

home, the earth. In other words, a falling object is like

the tired old horse that perks up and starts to gallop as it

approaches the barn. Galileo's Aristotelian contemporaries

offered a more scientic1Q-sounding but equally false expl:

nation for the acceleration of falling bodies. They claimed

that when an object falls, the weight of the air above it

increases while the column of air below it decreases, thus

offering less resistance to its fall.

When a falling acorn finally reaches the ground, as

close to the center of the earth as it can get, it stops.

And there, in its natural place, it remains. Rest, the

natural state of the acorn, requires no explanation. You

see, the three phenomena rest, uniform motion, and acceler-

ation could be explained by an Aristotelian. Now, let us

examine the alternative explanation that our present under-

standing offers.

Keeping an object in motion at
uniform (constant) velocity.

Study Guide 3.2

Q3 According to Aristotle, a
necessary to maintain motion.

is Q4 Can you come up with an Aristotelian ex-
planation of a dry-ice puck's uniform
motion across a table top?
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In which cases are
the forces balanced?

For reasons explained in the
next section, we shall have to
make a correction, and add "or
in uniform rectilinear motion"
wherever the word "rest"
appears in this section.
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3.5 Forces in equilibrium. Forces make thinas move--they also

hold thinas still. The barrel supporting a circus elephant

and the cable supporting the main span of the Golden sate

Bridge are both under the influence of mighty forces, yet

they remain at rest. Apparently, more is required to ini-

tiate motion than the mere application of a force.

Of course, this may not be surprising to you. We have

all seen children quarrelling over the same toy. if each

child pulls determinedly in his own direction, the toy goes

nowhere. On the other hand, if two of the children cooper-

ate and pull together against the third, then the tide of

battle shifts.

Likewise, in a tug-of-war between two teams, there are

large forces exerted at each end, but the rope may not

budge an inch. You might say it is all a matter of balance.

If the team pulling in one direction exerts a force equal

to that of the team pulling in the other direction, the

forces acting on the rope are balanced and the rope does

not move. The physicist would say that the rope is in

equilibrium under the forces acting on it.

The vector nature of force suggests a graphical repre-

sentation of the tug-of-war or the toy-pulling episode.

When we draw the lengths of the vectors representing the

forces acting on the rope or toy proportional to the mag-

nitudes of the forces, we discover a surprising result.

We can predict whether or not the rope or the toy will re-

main at rest! In fact, if we know the forces acting on

any object, we can generally predict whether an object at

rest will remain at rest.

It is as simple as this: if the vectors representing

the forces acting on an object at rest add up to zero, the

object is in equilibrium under these forces and will re-

main at rest. To return to our tug-of-war, let us assume

the forces are known and are accurately represented by the

vectors drawn below. They are balanced; that is, the net

force is zero.

fordo Fc force V;

-4-
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This same procedure can be applied to the toy. Again, the

known forces are represented by vectors and are drawn be-

low. Is the toy in equilibrium under the forces? Yes, if

the vectors add up to zero. Let's see.

F3 =0

Yes, indeed, the truck is in equilibrium. To obtain the

answer, we merely apply the rule of vector addition. A

ruler and protractor are, of course, handy tools of the trade.

We can now summarize our understanding of the state of

rest as follows: if the sum of all forces acting on an ob-

ject at rest is zero, the object will remain at rest. We

regard rest as a condition or state in which forces are

balanced.

We are defining equilibrium
without worrying whether the
object will rotate. For ex-
ample

..zoydoftwoace,

F74-r; sO

The sum of the forces on the
plank in the diagram is zero,
but it is obvious that the
plank will rotate.

Study Guide 3.3

01.6 Which arrow (a,b,c, or d)
indicates the direction
and magnitude of the force
needed to balance the two
10-pound forces indicated
in the diagram?

b d

3.6 Newton's first law of motion. Were you surprised when you

first pushed a dry-ice puck or some other frictionless de-

vice? Remember how it glided along after just the slightest

nudge? Remember how it showed no signs of slowing down?

Or speeding up? We were surprised, probably because the

puck failed to live up to our everyday Aristotelian

expectations.

Yet the puck was behaving quite naturally indeed. If

the retarding forces of friction were absent, a gentle

push would cause tables and chairs to glide across the

floor just like a dry-ice puck. Newton's first law brings

the eerie motion of the puck from the realm of the unnatural

to that of the natural. The first law can be stated as

follows:

Every object continues in its state of rest or of
uniform rectilinear motion unless acted upon by
an unbalanced force.

One must think of all the forces acting on an object.

If all forces, including friction, balance, the

be moving at constant v ("rest" being a special

namely v = 0). Straight-line motion is assured

forces on the object balance or cancel.

body will

case,

if all
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Another thought experiment.
(a) A ball rolls down a smooth
inclined plane; it gathers speed,
i.e., v increases. (b) If it is
made to roll up an incline,
decreases. (c) If the surface
slants neither up nor down, i.e.,
is perfectly level, the ball,
once started, will neither speed
up nor slow down, i.e., 1 will
remain constant.

b)

c)
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Although Newton was the first to express this law in

general terms, it was clearly anticipated by Galileo. Of

course, neither Galileo nor Newton had dry ice pucks, so

they could not experimentally observe motion for which

friction had been so significantly reduced. Instead, Gali-

leo did a thought experiment in which he imagined the

friction to be zero.

This thought experiment started with an actual observa-

tion. If a pendulum bob on the end of a string is pulled

back and released from rest, it will swing through an arc

rising to very nearly its starting height. Indeed, as

Galileo showed, the pendulum bob will rise almost to its

starting height even if a peg is used to change the path

From this observation he generates his thought experiment.

A ball released from a height, h, on a frictionless incline,

will roll up an adjoining incline, also frictionless, to

the same height. Further, he reasons, this result is in-

dependent of the path length.

The implications of the thought experiment illustrated

in the above diagram are these: as the incline on the

right is lowered from positions (a) to (b) and to (c), the

ball must roll further in each case to reach its original

height. In the final position (d) the ball can never

reach its original height;, therefore, Galileo believed the

ball would roll in a straight line and at a uniform speed

forever.

This tendency of objects to maintain their state of

rest, or of uniform motion, is called "the principle of

inertia." In fact, Newton's first law is sometimes referred

to as the law of inertia. Inertia is an inherent property



of all objects: the greater the inertia of an object, the

greater is its resistance to a change in its state of mo.

tion. Material bodies are, so to speak, subject to a

stubborn streak of nature so far as their state of motion

is concerned: they continue to move with unchanging

velocity (unchanging speed and direction) unless compelled

by some force to do otherwise.

A consequence of Newton's first law is that if an object

moves with a constant speed in a straight line, the forces

acting on it are balanced. But wait. In the last section

(3.5) we established that an object remains at rest as

long as there are no unbalanced forces acting on it. Does

this mean that the state of rest and the state of uniform

motion are equivalent for dynamics? Indeed it does.

This equivalence can be demonstrated by re-examining the

quarrel over the toy. Suppose the quarrelling children

were sitting on the deck of a barge that was slowly drift-

ing, with uniform velocity, down a lazy river. Two observ-

ers one on the barge and one on the shore will give

reports on the incident as viewed from their frames of

reference. The observer on the barge will observe that

the forces on the toy are balanced and will report that with

respect to him it is at rest. The observer on the shore will

report that the forces on the toy are balanced and that with

respect to him the toy is in uniform motion. Which observer

is right? They are both right. Rest or uniform motion

depends on one's point of view.

You .nay have found Galileo's thought experiment to be

convincing, but remember that neither Galileo nor Newton

proved the principle of inertia. Think of how you might

try to verify that principle experimentally. vcu could

start an object moving (perhaps a dry ice disc) in a situa-

tion in which there is no unbalanced force acting on it.

Then you could observe whether or not the object continued

to move uniformly in a straight line, as the first law

claims it should. But there are at least two drawbacks to

this experiment:

1. How do you know that there is no unbalancea force

acting on the object? The only answer we have is: because

the object continues to move uniformly in a straight line.

But that reason is merely a restatement of the first law

which we wanted to prove by experiment. Surely we cannot

use the first law to verify the first law!

Do you understand inertia? See
Study Guide 3.4.
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2. What is meant by a "straight line"? When Galileo

wrote about uniform motion along a "straight" line, he was

thinking of a line parallel to the earth's surface. Thus,

an object given an initial push would move around and

around the earth. Galileo's "sfeaight line" was really a

circle! Newton, on the other hand, meant an ideal straight

line such as you talk about in plane geomery. Such a line

is not parallel to the earth's surface; instead it con-
Galileo's idea of a straight tinues indefinitely out into space. 'hie line traced by a
line.

dry ice disc in any actual laboratory experiment is so

short relative to the earth's circumference, that it

could fit either Galileo's or Newton's meaning.

What, then, is the significance of Newton's first law

of motion? For convenience let us list the important in-

sights the first law provides.

1. It presents inertia, the tendency of an object to

maintain its state of rest or uniform motion, as a basic

inherent property of all objects.

2. It makes no dynamical distinction between an object

at rest and an object in uniform motion. Both states a.ce

characterized by the absence of unbalanced forces.

3. It raises the whole issue of reference frames. An

object static,nary for one observer might be in motion for

another observer; therefore,-if-the ideas of rest or un::-

form motion are to have any significance, a reference

frame must be stipulated.

4. It is a general law. It emphasizes right from the

start that a single scheme is being formulated to deal with

motion anywhere in the universe. For the first time no

distinction is made between terrestrial and celestial

domains. The same law applies to objects on earth as for

planets and stars.

5. The first law informs us of the behavior of objects

when no force acts on them. Thus, it sets the stage for

the question: what happens when a force does act on an

object?

Newton's idea of a straight
line.

Study Guide 3.5 and 3.6

Q6 Can you give a Newtonian explanation of
a dry-ice puck's uniform motion across
the table top?

Q7 How does Newton's concept of inertia
differ from Galileo's?

3.7 Newton's second law of motion. So far we have met two of

our three objectives: the explanation of rest and of

uniform motion. In terms of the first law, the states

of rest and uniform motion are equivalent; they are the

states that result ',hen no unbalanced force acts on an

object.



The last sectJor was concluded by a lis. of insights

orovIded by the first law. Perhaps you noticed that there

was no quantitative relationship established between force

and inertia. Newton's second law of motion enables us to

reach our third objective--the explanation of acceleration

and also provides a quantitative relationship between

force and inertia. We shall study these two aspects of

the second law, force and Inertia, individually. First

we consider the situation in which different forces act on

the same object, and then the situation in which the same

force acts on different objects.

To emphasize the force aspect, the second law can be

stated as follows:

The net unbalanced force acting on an object
is directly proportional to, and in the same
direction as, the acceleration of the object.

More briefly, this can be written as:

acceleration is proportional to net force.

If we let F stand for force and, as before, let a stand

for acceleration, we can rewrite this as:

.

a is proportional to F.

To say that one quantity is proportional to another is to

make a precise mathematical statement. Here it means that

if a giver force causes an object to --owe with a certain

acceleration, then twice the force will cause the same

object to have twice the acceleration, three times the

force will cause three times tne acce:er,Ation, and so on.

Using symbols, this becomes:

if F causes a

then 2F w ill cause 2a

3F w ill cause 3a

w ill cause 1/2A

5.5F w ill cause 5.5-A

and so on. So much for the eZfcct of different forces on

a single object. Now we can consider the inertia aspect of

the second law, the effect of the same force acting on dif-

ferent objects. In discussing the first law, we defined

inertia as the resistance of an object to having its veloc-

ity changed. We know from experience and observation that

some objects have greater inertia than others. For in-

stance, if you were to throw a baseball and a shot put with

your full force, you know very well that the baseball would

be accelerated to a greater speed than the shot put. The

acceleration given to a body thus depends as much on an

inherent characteristic as it does on the force applied.

Find the net force on the body
in each case:

Apple falling - negligible
friction

fDRAq

wg144r
iwc

Feather falling at nearly
constant speed

Kite, held suspended by wind

Man running against NLnd
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What does it mean to say that
mass is a scalar quantity?

Complete this table of the re-
lationships between mass and
acceleration for a fixed force:

mass aczeleration

m
2m

3m

1/5m
0.4m
45m

2
30 m/sec

2
15 m/sec

(Remember: the force referred to is always the unbalanced

or resultant force.)

Inertia seems to be associated with the massiveness, the

amount of matter in an object. These vague ideas of "mas-

siveness" and "amount of matter" have been replaced in

physics by the quantitative concept of mass. Mass is a

measure of the inertia of any object.

If you hake several objects, and if you apply the same

force to each, the various accelerations will not be the

same. Newton's claim is that the resulting acceleration

of each object is inversely proportional to its mass.

Using m as a symbol for mass (a scalar quantity), and a as

a symbol for the magnitude of the vector acceleration a, we

can write

a is inversely proportional to m,

or, what is mathematically the came thing,

1
a is proportional to IT .

This means that if a certain force causes a given object

to have a certain acceleration, then the same force will

cause: an object having twice the mass to undergo one-half

the acceleration; an object having three times the mass,

one-third the acceleration; an object of one-fifth the mass,

five times the acceleration; and so on. Using symbols, we

can exp ess this as:

if for a given force P

m will experience a,

then 2m will experience 1/2 a,

3m will experience 1/3 a,

1/5 m will experience 5a,

2.5m will experience 0.4a,

etc.

Now we can combine the roles played by force End mass

in the second law into a single statement:

The acceleration of an object is directly propor-
tinnal to, and in the same direction as, the un-

3 m/sec
2

sect

alanced force acting on it, and inversely propor-
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tional to the mass of the object.

L.
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Fortunately, the idea expressed in this long statement can

be summarized by the equation

P
na = et
m

which can be taken as a statement of Newton's second law.

In this expression the unbalanced or net force is symbol-

ized by Pnet . The second law may of course equally well be

written in the form

P
net

= ma.



This is probably the most fundamental single equation in

all of Newtonian mechanics. We must not let the simplicity

of the laW fool us; behind that equation there is a lengthy

"text."

If the law is to be useful, however, we must find a

way to express force and mass numerically. But how? By

measuring the acceleration which an unknown force gives a

body of known mass, we could compute a numerical value

for the force. Or, by measuring the acceleration which a

known force gives a body of unknown mass, we could compute

a numerical value for the mass. But we seem to be going

in a circle in trying to find values for force and mass

to find one we apparently need to know the other in advance.

One straightforward solution to this dilemma is to choose

some convenient stable object, perhaps a certain piece of

polished rock or metal, as the universal standard of mass.

We arbitrarily assign it a mass of one unit. Such a stan-

dard object has, in fact, been agreed on by the scientific

community. Once this unit has been selected we can pro-

ceed to develop a measure of force.

Although we are free to choose any object as a standard

of mass, ideally it should be exceedingly stable, easily

reproducible, and of reasonably convenient magnitude.

By international agreement, the primary standard of mass
is a cylinder of platinum-iridium alloy, kept near Paris at

the International Bureau of Weights and Measures. The

mass of this platinum cylinder is defined as 1 kilogram.

Accurate copies of this international primary standard

of mass have been deposited at the various standards labor-

atories throughout the world. From these, in turn, other

copies are made for distribution to manufacturers and

laboratories.

Now we can decide on an answer to the question of how
much "push or pull" should be regarded as one unit of force.

We will simply define 1 unit force as a force which when

acting alone zauses a mass of 1 kilogram to accelerate at

the rate of 1 meter/second2.

Imagine an experiment in which the standard 1-kilogram

mass is pulled in a horizontal direction across a level,

frictionless surface with a light cord, and the pull is

regulated so that the 1-kilogram mass accelerates at exactly
1 m/sec2. The force will be one unit in magnitude.

What shall we call this unit of force? According to the
second law (using only magnitudes):
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1 unit of acceleration = 1 m/sec..

1 unit of force = 1 kg , m/sec.

Study Guide 3.10 and 3.11

F = ma

1 unit of force = 1 unit of mass
1 unit of acceleration

= 1 kilogram 1 meter
second-

1
kilogram , meter

=
second-

1
kg m
sec-

kg .
Thus, 1

sec,.

m
of force is that quantity of force which

causes a mass of 1 kg to accelerate 1 m/sec-.

The unit kg x m/sec2 has been given a f..lorter name: it

is called the newton (abbreviated as N). The newton is,

therefore, a derived unit which is defined in terms of a

particular relationship between the meter, the kilogram

and the second. These three are taken as the fundamental

units of the mks system of units.

101.8A net force of 10 N gives an object a aloA 2 kg object is shoved across the floor
constant acceleration of 4 m/sec-. The with an initial speed of 10 m/sec, It
object's mass is comes to rest in 5 sec.

Q9 Newton's second law holds only when frig- (a) What was the average acceleration?

tional forces are absent. (True or (b) What was the magnitude of the
false.) force producing this acceleration?

(c) What do we call this force?

3.8 Mass, weight and gravitation. Objects may be acted upon

by all kinds of forces by a push of the hand, by a pull on

a string, or by a blow from a hammer. These forces don't

have to be "mechanical" or exerted by contact only, they

can be due to gravitational, electric, magnetic or other

actions. The laws of Newton are valid for all of them.

The force of gravity, which we take so much for granted,

is of the kind that acts without direct contact, not only

on a stone or ball that is falling near the earth, but also

across empty space, for example on one of the artificial

satellites around it.

-We shall give the gravitational force which pulls all ob-

jects towards the earth the symbol fig. The magnitude of

the gravitational pull, f , on any particular object is,

roughly speakinc:, the same anywhere on the surface of the

earth. When we choose to be more precise, we can take into

account the following facts:

1. the earth is not exactly spherical and

2. there are irregularities in the composition of the

earth's crust. These two factors cause slight variations in

the gravitational force as we go from place to place. (Ge-
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ologists make use of these variations in locating oil and

mineral deposits.)

The term weight is used frequently in every day conver-

sation as if it is the same as bulk or mass. In physics,

we define the weight of an object as equal to the gravi-

tational force that the body experiences. Hence weight

(symbol 0) is a vector, as are all forces, and W =
gray'

by by definition. When you stand on a bathroom scale to

"weigh" yourself, your weight is the downward force the

planet exerts on you. The bathroom scale is only register-

ing the force with which it is pushing up on your feet and

to keep you in balance, and this will be equal in magnitude

to your weight if the scale is fixed and is not acceler-

ating. If, on the other hand, the gravitational force on

you is the only force you experience, and there is no other

force cn you that balances it, then you must be in free

fall motion!

This is what would happen if the bathroom floor suddenly

gave way as you stand on the scale (forgive the absurd

"thought experiment"!). You and the scale would both fall

down at equal rates, as all bodies do, pulled down by their

weight. Your feet would now barely touch the scale, if at

all; and if you looked down you would see that the scale

registers zero since it is no longer pushing up on you.

This does not mean you have lost your weightthat could

only happen if the earth suddenly disappeared, or if you

are taken to interstellar space. No, P
gray acts as before,

and keeps you in free fall; it just means a bathroom scale

does not measure your weight if it is accelerating.

We are now in a position to deepen our insight into

Galileo's experiment on falling objects. Galileo's experi-

ments indicated that every object (at a given locality)

falls with uniform acceleration. And what causes a uniform

acceleration? A

fall, just Fg or

tionship beween

and we can write

constant net force in this case, in free

W. Newton's second law gives us the rela-

this force and the resulting acceleration

P = ma
g g

where m is the mass of the falling object and a
g

is the ac-

celeration zesulting from the gravitational force F . Thus

we would conclude from Newton's second law that as long as

the gravitational force is constant, the resulting accelera-

tion is constant.

Galileo, however, did more than just show that all ob-

jects fall with uniform acceleration: he showed that all

Study Guide 3.15



What does it measure--mass or
weight?

Study Guide 3.17

objects fall with the same uniform acceleration. Regardless

of an object's weight, g
g'

it falls with tae same accelera-

tion
g

tion a . Is this consistent with the above relation,

g
g

= ma
g
? It is only consistent provided there is a direct

proportionality between weight and mass: if m is doubled,

g
g
must double, if m triples, g

g
must triple. This is a

nrofound result indeed: weight and mass are entirely dif-

ferent concepts

weight is the gravitational force on an object

(hence weight is a vector)

mass is a measure of the resistance of an object to

changes in motion, a measure of inertia (mass is a scalar)

yet the magnitudes of these two quite different quantities

are oronortional in a given locality.

As a specific example, let us compare the magnitude of

the weight and the mass of a 1-kg object and a 2-kg object,

The respective weights 01 and W2, can be com7uted as follows

(at the surface of the earth):

01 = g
g

= mi..
g

= (1 kg)(9.8 m/sec2) = 9.8 N

02 = e
g

= m2-a'
g

= (2 kg) (9.8 r. /sect) = 19.6 N

We see again that the ratio of the magnitudes of the weights

(19.6:9.8 = 2:1) is the same as the mass ratio. These

ratios will only be the same, however, if both objects are

at the same location. For example, if the 1-kg object is

placed at a higher altitude, its weight will be diminished

but its mass will not; and so t.,e weight ratio between it

and the 2-kg object will change while the mass ratio remains

2:1. In other words, weight depends on position. but mass

does not.

011 An astronaut is orbiting the earth in a
space capsule. The acceleration of grav-
ity is half its value on the surface of
the earth. Which of the following state-
ments is true?
(a) His weight is zero.
(b) His mass is zero.
(c) His weight is half its original value.

(d) His mass is half its original value.
(e) 1-is weight is the same.
(f) His mass is the same.

0.12 A h y jumps from a table top. Halfway
between the table top and the floor,
which of these statements (for Q11) is
true?
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3.9Newton's third law of motion, Newton's first law describes

motion of objects when the., are in a state of equilibrium,

that is, when the resultant force acting on them is zero.

The second law tells how their motion changes when the result-

ant force is not zero. Neither of these laws indicates what

the origin of the force is.

For example, in the 100-meter dash, an Olympic track star

will go from rest to nearly his top sreed in a very short

time. With high speed photography his initial acceleration



could be measured. Also, we could measure his mass. With

mass and acceleration known, we could use = ma to find

the force acting on him. But where does the force come

from? It must have something to do with the runner himself,

but can he exert a force on himself as a whole? Can you

lift yourself by your own bootstraps?

Newton's third law of motion helps us tc explain just such

puzzling situations. First, let us examine the third law to

see what it claims. In Newtor s words,

To every action there is always opposed an equal reac-
tior.: or, mutual actions of two bodies upon each other
are always equal and directed to contrary parts.

This is a rather literal translation. It is generally

agreed, however, that the word force may be substituted for

both the word action and the word reaction in Newton's

statement.

The most startling idea to come cut cf this statement is

that forces always exist in pairs. Indeed, any thought of

a single unaccompanied force is without any meaning whatso-

ever. On this point Newton wrote:

Whatever draws or presses another is as much drawn or
pressed by that other. If you press a stone with your
finger, the finger is also pressed by the stone.

This suggests that forces always arise as a result of

interactions between objects: object A pushes or pulls on

B while at the same time object B pushes or pulls with pre-

cisely equal amount on A. These paired pulls and pushes

are always equal in magnitude and opposite in direction.

The terms action and reaction are arbitrary, as is the

order of their naming. The action does not cause the re-

action. The two coexist. And most important, they are not

acting on the same body. In a way, they are like debt and

credit: cne is impossible without the other; they are

equally large but of opposite sign, and they happen to two

different objects.

We can describe the situation where A exerts a force on

B and at the same time B exerts on A an equal anl opposite

force. In the efficient shorthand cf algebra we may write

P
AB

=
BA

This is the equivalent of Newton's statement that,

Whenever two bodies interact, the forces they exert
on each other are equal in magnitude and opposite
in direction.

Note, now, what the third law does not sayfor this,

too, is of importance. It does not speak of hew the push or

pull is applied, whether it is through contact (if we could

The Principia was written in
Latin, although in Newton's day
scholars were beginning to use
their native language more and
more in their writings. The
English language itself has
always been changing, and so
what constitutes the most ac-
curate translation of seventeenth-
century Latin into twentieth-
century English is not beyond
dispute.

In the collision between the
ball and the club, the force
the ball exerts 1.1 the club is

equal and opposite to the force
the club exerts on the ball.
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define that word) or by

magnetic action or elec-

trical action. Nor does

the law require that the

force be either an attrac-

tion or repulsion. The

third law really does not

depend on any particular

kind of force. Indeed,

what makes the third law

extremely valuable, is its

universal nature.

013 A piece of fishing line will break if
the force exerted on it is greater than
500 N. Will the line break if two

people at opposite ends of the line
pull on it, each with a force of 300 N?

O

The force on the moon due to
the earth is equal and opposite
to the force on the earth due
to the moon.

FaX
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3.10Using Newton's laws of motion. We have discussed Newton's

three laws of motion in some detail. In doing so, we saw

that each law is important in its own right. The first

law emphasizes the modern point of view for the study of

motion: what requires explanation is not uniform motion, but

change of motion. The first law stresses that what one must

account for is why an object speeds up or slows down or

changes direction. The second law asserts that the rate of

change of velocity of an object is related to both the mass

of an object and the net force applied to it. In fact, the

very meanings of force and mass are bound up in the second

law. The third law is a statement of the force relationship

between interacting objects.

Des,ite their individual importance, Newton's three laws

are most powerful when used together to explain complex

phenomena. Let us examine a few specific examples that il-

lustrate the use of these laws.

Example 1. On Monday, September 12, 1966, a dramatic ex-

periment based on Newton's second law was carried out high

over the earth. In this experiment, the mass of an orbiting

Agena rocket was determined by accelerating it with a push

from a Gemini spacecraft. After the Gemini spa:ecraft made

contact with the Agena rocket, the aft thrusters on the

Gemini, calibrated to give a thrusting force of 890 N, were

fired for 7 sec. The change in velocity of the spacecraft

and rocked: was 0.93 m/sec. The mass of the Gemini space-

craft was 3360 kg. WhaL was the mass of the Agena?



/

A force of magnitude 890 N acts on a total mass M where

M = f. 1Gemini MAgena
+ f or M = 3360 kg + M

Agena .

The magnitude of the acceleration is given as follows:

=
W

a
At

.93 m/sec
7 sec

= 0.13 m/sec2.

Newton's second law gives us the relation

T = Ma

T = (M
Agena + 3360 kg)a

where T is the thrust. Solving for MAgena gives

890 N
MAgena = a

3360 kg = .13 m/sec 3360 kg

MAgena = 6850 kg - 336C kg = 3490 kg.

The mass of the Agena was known to be approximately

3660 kg which means there was a 5% error in the measurement.

(This experiment was performed to determine the feasibility

of this technique as a means fcr finding the mass of a foreign

satellite while it is in orbit.)

I

In this equation, T is used for
force since it is a thrusting
force.
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What is your interpretation of
this equation?

Study Guide 3.13, 3.14, 3.16,
3.18
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Example 2. A case of books whose mass is 8.0 kg rests

on a table. What constant horizontal force is required to

give it a velocity of 6 m/sec in 2 sec, starting from rest,

if the friction force t between the moving case and the

table is constant and is equal to 6 newtons? (Assume all

forces act at the center of the case. )

In solving problems such a& this, it is always helpful to

make a sketch showing the forces acting. The forces acting

on the case are the frictional force t, the force, the

force of gravity Fg (the case's weight), and the force of

the table on the case P. The case pushes down on the table

with a force f and the table pushes back on ;.he case with
g

a force P (Newton's third law). Therefore

= -P

org = 0.
"or the forces parallel to the surface we can write

unbalanced force = - t = - 6N

From the second law we have

net
= ma

- 6N = n1;;

= n1;; + 6N

The magnitude of the acceleration is

LIV 6 m/sec
a

At 2 sec
= 3 m/sec2,

Thus we can now determine the magnitude of the horizontal

force.

T = ma + 6.0 N - (8 0 kg) (3 m/sec2) + 6.0 N

T = 24 N + 6 N = 30 N.

3.11 Nature's basic forces. Our study of Newton's laws of mo-

tion has increased our understanding of objects at rest, in

uniform motion, and accelerating. However, we have accom-

plished much more in the process. Newton's first law alerted

us to the importance of reference frames. What you observe

depends upon your point of view your frame of reference. A

critical analysis of the relationship between descriptions

from different frames of reference was a forerunner of the

theory of relativity.



Newton's second law alerted us to the importance of for-

ces. In fact, it presents us with a mandate: when we ob-

serve acceleration, find the force! For example, when we

recognize that an orbiting satellite is accelerating, we

look fo,- A fr''.. We might begin this sedtch by giving the

force a name, for example, gravitational force.

But a name alone adds nothing to our basic understanding.

We really want to know what determines the force acting on

a satellite. Does the force depend on the earth? Obviously

it does. Does the force depend on the satellite's position?

On its velocity? On the time? Answers to questions such as

these can be summarizes in a force law which describes the

force in terms of those factors it depends on. A force law

provides a basis for understanding the way in which the

earth and a satellite interact with each other. Knowing the

force law, the physicist claims to "understand" the nature

of the interaction.

Gravitational attraction is just one of the basic ways in

which objects interact. It is exciting to realize that

there appear to be very few of these basic interactions. In

fact, physicists now believe there are just four. Does it

surprise you to think there are so few? Imagine all we ob-

serve in nature is the consequence of just four basic inter-

actions. In terms of our present understanding, all the

forces of nature subnuclear and nuclear, atomic and molec-

ular, terrestrial and solar, galactic and extragalactic are

the manifestations of these four basic interactions.

There is, of course, nothing sacred about the number

four. The number might be reduced or enlarged due to new

discoveries. In fact, physicists hope that as th Jain

further insight into these basic interactions, two (or more)

of them might be seen as the consequence of something even

more basic.

The first intekact;on, the gravitatiunal, becomes impor-

tant only on a veiy large scale, when there are tremendous

amounts of matter involved. It literally holds the universe

together. The second interaction concerns electric and mag-

netic processes. These processes are most important on a

small scale the atomic and molecular scale. We know the

force laps governing gravitational and electromagnetic inter-

actions; therefore they are fairly well "understood." The

sit'iation changes completely when we consider the remaining

basic interactions. They are still the subject of %-gorous

research today. The third interaction (tne so-called

"strong" interaction) somehow holds the nucleus together.

8-



"The ;tarry Night", 1889, by Vincent van Gogh.
Collection, The Museum of Modern Art, New York.

The fourth in,.eraction (the so-called "weak" interaction)

governs certain reactions among subnuclear particles.

We do, of course, have other names for forces. One of

the most common, yet one of the least understood, is the

frictional force. This subtle force fooled people for cen-

turies into thinking that an object required a "pusher" or

"puller" if it was to remain in motion. Yet, the frictional

force is undoubtedly an electrical type of force; that is,

the atoms on the surfaces of the objects sliding or rubbing

against each other interact electrically. In this case,

too, we seem to be able to understand all our observations

of nature in terms of just a few basic interactions.

We shall be encountering some of these ideas again. We

shall meet the gravitational force in Unit 2, the electrical

and magnetic forces in Unit 4 and the nuclear force in

Unit 6. in all these cases remember that a force plays the

same role regardless of its origin; that is, an object sensi-

tive to the force will be accelerated.

The knowledge that there are so few basic interactions is

both surprising and encouraging. It is surprising because at

first glance the world seems so complicated; it is encour-

aging because our elusive goal an understanding of nature

seems nearer.
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Study Guide

3.1 Newton's First Law: Every object
continues in its state of rest or of
uniform rectilinear motion unless acted
upon by an unbalanced force.

Newton's Second Law: The accelera-
tion of an object is directly propor-
tional to, and in the same direction as,
the unbalanced force acting on it, and
inversely proportional to the mass of
the object.

Newton's Third Law: To every action
there is always opposed an equal reac-
tion: or, mutual actions of two bodies
upon each other are always equal and
directed to contrary parts.

3.2 The Aristotelian explanation of mo-
tion should not be dismissed lightly.
Great intellects of the Renaissance
period such as Leonardo da Vinci, who,
among other things, designed artillery
for launching projectiles, apparently
did not challenge the Aristotelian
explanation. One reason for the longev-
ity of Aristotle's ideas is that they
are so closely aligned with our common-
sense ideas. Ia what ways do your com-
mon-sense notions of motion agree with
Aristotle's?

3.3 Three children, Karen, Keith and
Sarah are each pulling on the same toy.

Karen pulls toward the east with a
force of 8 units.

Sarah pulls toward the north with a
force of 6 units.

Keith pulls in a direction 300 south
of west with a force of 12 units.

a) Is there a net (i.e., unbalanced)
force on the toy?

b) If there is a net force, what is
its magnitude and direction?

3.4 A 2 kg mass is suspended
by a string.. A second string
is tied to the bottom of the
mass.
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a) If the bottom string
is pulled with a
sudden jerk, the
bottom string breaks.

b) If the bottom string
is pulled with a
steady pull, the top
string breaks.

Explain.

(Try this experiment for yourself.
You might tie thread to brick, or a
hammer, or a pipe wrencl-.)

3.5 In terms of Newton's first law,
explain:

a) why people in a moving car lurch
forward when the car suddenly
decelerates;,

b) what happens to the passengers of
a car that makes a sharp and
quick turn;

c) why, when a coin is put on a
phonograph turntable and the
motor is started, the coin flies
off wh.n the turntable reaches
a certain speed. 1:hy doesn't
it fly off before?

3.6 a) You .exert a force on a box, but
it does not move. How would
you explain this? How might an
Aristotelian explain it?

b) Suppose now that you exert a
greater force, and the box
moves. Explain this from your
point of view and from an
Aristotelian point of view.

3.7 Assume that the floor of a laboratory
could be made perfectly horizontal and
perfectly smooth. A block of wood is
placed on the floor and given a small
push. Predict the way in which the
block will move. How would this motion
differ if the whole laboratory were
moving with constant velocity during
the experiment. How would it differ if
the whole laboratory were accelerating
along a straight line? If the block
were seen to move in a curved path along
the floor, how would you explain this?

3.8 A body is being accelerated by an
unbalanced force. If the magnitude of
the net force is doubled and the mass
of the body is reduced to one-third of
the original value, what will be the
ratio of the second acceleration to the
first?

3.9 Hooke's Law says that the force
exerted by a stretched or compressed
spring is directly proportional to the
amount of the compression or extension.
As Robe.t Hooke put it in announcing
his discovery:

...the power of any spring is in the
same :Ioportion with the tension
thr-1.!o:: that is, if one power
stretch or bend it one space, two
will bend it two, three will bend it
three, and so forward. Now as the
theory is very short, so the way
of trying it is very easie.

If Hoo }e says it's "easie," then it
might well be so. You can probably
think immeliately of how to test this
law using vprings and wef.ghts. Try
designing soch experiment; then after
checking with your teacher, carry it out.



Hooke's experiment is described in his
own words in W. F. Magie, A Source Book
in Physics, McGraw-Hill, 1935.

3.10 If you have dynamics carts available,
here is one way of doing an experiment
to test the inverse proportionality be-
tween acceleration and mass:

a) Add load blocks to one or the
other of two carts until the
carts balance when placed on
opposite platforms of a labora-
tory balance. Balance a third
cart with one of the first pair.
Each cart now has mass m. (State
two main assumptions involved
here.)

b) Accelerate one cart on a level
surface using the rubber-band
technique; that is, pull the car
with the rubber band keeping it
stretched a constant amount.
Any other method can also be
used that will assure you that,
within reason, the same force
is being applied each time.
Record the position of the cart
at equal time intervals by means
of stroboscopic photography.

c) Repeat the last step in all de-
tails, but use two carts hooked
together. Repeat again using
all three carts hooked together.
In all three cases it is crucial
that the applied force be essen-

Study Guide

3.13 A certain block is dragged with
constant velocity along a rough horizon-
tal table top, by means of a spring
balance horizontally attached to it which
reads 0.40 N, no matter wit the velocity
happens to be. This means that the
retarding frictional force between block
and table is 0.40 N and not dependent on
the speed. When the block is given a
constant acceleration of 0.85 m/sec2,
the balance is found to read 2.1 N.
Compute the mass of the block.

3.14 A sled has a mass of 4440 kg and is
propelled by a solid propellant rocket
motor of 890,000 N thrust which burns
for 3.9 seconds.

tially the same.
d) Determine the value of accelera-

tion for masses of m (1 cart),
2m (2 carts), and 3m (3 carts).

e) Prepare a graph of a vs. m, of
a vs.1, and of 1 vs. m.

m a

Comment on your results.

3.11 Complete this table:

a) 1.0 N 1.0 kg 1.0 m/sec2
b) 24.0 N 2.0 kg 12.0 m/sec2
c) N 3.0 kg 8.0 m/sec2
d) N 74.0 kg 0.2 m/sec2
e) N 0.0066 kg 130.0 m/sec2
f) 72.0 N kg 8.0 m/sec2
g) 3.6 N kg 12.0 m/sec2
h) 1.3 N kg 6.4 m/sec2
i) 30.0 N 10.0 kg m/sec2
j) 0.5 N 0.20 kg m/sec2
k) 120.0 N 48.0 kg m/sec2

3.15

3.16

3.12 Recount in detail what steps you must
take (in idealized experimentation) to
determine the unknown mass m (in kilo-
grams) of a certain object if you are
given nothing but a frictionless hori-
zontal plane, a 1-kg standard, an un-
calibrated spring balance, a meter stick,
and a stopwatch.

a) What is the sled's average
acceleration and maximum speed?

b) The data source states that this
sled has a maximum acceleration
of 30g (=30xag). How can that
be, considering the data given?

c) If the sled travels a distance of
1530 m while attaining a top
speed of 860 m/sec (how did it
attain that high a speed?!),
what is its average acceleration?

Discuss the statement that while the
mass of an object is the same everywhere,
its weight may vary from place to place.

A 75 kg man stands in an elevator.
What force does the floor exert on him
when the elevator

a) starts moving upward with an
acceleration of 1.5 m/sec2?

b) When the elevator moves upward
with a constant speed of
2.0 m/sec?

c) When the elevator starts accel-
erating downward at 1.5 m/sec2?

d) If the man were standing on a
bathroom (spring) scale during
his ride, what readings would
the scale have in parts a, b,
and c?

e) It is sometimes said that the
"apparent weight" changes when
the elevator accelerates. What
could this mean? Does the
weight really change?
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3.17 A replica of the standard kilogram is
constructed in Paris and then sent to
the National Bureau of Standards in
Washington. Assuming that this secondary
standard is rot damaged in transit, what
is

a) its mass in Washington,
b) its weight in Paris and in

Washington. (In Paris,
ag=9.81 m/sec2; in Wash-
ington, ag=9.80 m/sec2.)

3.18 Consider the system consisting of a
1.0 kg ball and the earth. The ball is
dropped from a short distance above the
ground and falls freely. We can take
the mass of the earth to be approximately
6.0 x 1024 kg.

a) Make a vector diagram illustrating
the important forces acting on
the members of the system.

b) Calculate the acceleration of the
earth in this interaction.

c) Find the ratio of the magnitude
of the ball's acceleration to
that of the earth's acceleration
(ab/ae).

3.19 In terms of Newton's third law assess
the following statements:

a) You are standing perfectly still
on the ground; therefore you
and the earth do not exert equal
and opposite forces on each other.

b) The reason that a jet airplane
cannot fly above the atmosphere
is that there is no air to push
against, as required by the third
law.

c) The mass of object A is 100 times
greater than that of object B,
but even so the force it (A)
exerts on B is no greater than
the force of B on it.

d) C, D, and T Are three objects
having equal masses; if C and D
both push against E at the same
time, then E exerts only one-
half as much force on C as C
does on E.
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3.20 Consider a tractor pulling a heavy log
in a straight line. On the basis of New-
ton's third law, one might argue that the
log pulls back on the tractor just as
strongly as the tractor pulls the log. But
why, then, does the tractor move?
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Drawing by Folon; © 1966 The New Yorker Magazine, Inc.



"...a stone that is pro-
jected is by the pressure
of its own weight forced
out of the rectilinear
path, which by the initial
projection alone it should
have pursued, and made to
describe a curved line in
the air; and through that
crooked way is at last
brought down to the ground;
and the greater the veloc-
ity is with which it is
projected, the farther it
goes before it falls to
the earth. We may there-
fore suppose the velocity
to be so increased, that
it would describe an arc
of 1, 2, 5, 10, 100, 1000
miles before it arrived at
the earth, till at last,
exceeding the limits of
the earth, it should pass
into space without touch-
ing it." (Newton's
Principia]
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4.1 A trio to the moon. Imagine a Saturn missile taking off in

the early morning hours from its launching pad at Cape Ken-

nedy. It climbs in a curved path above the earth, passing

through the atmosphere and beyond. Successive stages of the

missile burn out leaving finally an instrument capsule hur-

tling through the near vacuum of space coward its destination

240,000 miles away. Approximately 65 hours after take-off,

the capsule circles the moon and plummets to its target the

center of the lunar crater Copernicus.

As you first think about it, you are likely to be struck

by the complexity of such a voyage. The atmospheric drag at

the beginning of the flight depends upon the missile's speed

and altitude; the rocket's thrust changes with time. You

must consider the changing gravitational pulls of the sun,

the earth, and the moon as the capsule changes its position

relative to them. Besides the forces, you must consider the

facts that the rocket's mass is changing and that it is

launched from a spinning earth, which in turn is circling

the sun. Furthermore, the target the moon is moving around

the earth at a speed of about 2,300 miles per hour.

The complexities of a rocket flight from earth to moon

are indeed great and the amount of computation enormous

which is why NASA,

4- the National Aero-
ZAN nautics and Space

Administration, uses

high speed electron-

is computers to help

analyze and control

the flight path.

Though complicated

in its totality, this

flight can be broken

down into small por-

tions which are each

relatively simple to

analyze and describe.

What we have learned

in earlier chapters

will be useful in

this task.

The world's first view of the
earth taken by a spacecraft
from the vicinity of the moon.

Over 100 years ago, the French
author Jules Verne (1828-1905)
portrayed how technology might
be employed to place a man on
the moon. In two prophetic
novels, Verne launched three
intrepid spacemen to the moon
by means of a gigantic charge
fixed in a steel pipe deep in
the earth.

*
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Earth's Orbit
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The earth-moon trip shown in the figure above can be di-

vided into these six parts.

Part 1. The rocket accelerates vertically upward

from the surface of the earth. The force

acting on the rocket is essentially con-
stant. The mass of the rocket, however,

is decreasing. The value of the accelera-

tion at any instant can be computed using

Newton's second law.

Part 2. The rocket, still accelerating, follows a

curved path as it enters into an orbit

about the earth.

Part 3. In an orbii. 115 miles above the earth's

surface, the rocket circles at a constant

speed of 17,380 miles/hr. The minimum

escape velocity is 24,670 miles/hr; there-

fore, by accelerating in the direction of

its path when it has reached the bottom of

the semi-circular arc, the rocket can now

thrust into distant space.



Part 4. In flight between earth and moon, only oc-

casional bursts from the capsule's thrust-

ers are required to keep it on course.

Between these correction thrusts, the cap-

sule moves under the influence of the

gravitational forces of earth, moon, and

sun. We know from Newton's first law that

the capsule would move with constant ve-

locity if it were not for these forces.

Part 5. The capsule is moving with constant speed

of 1 mile/sec in a circular path 50 miles

above the moon's surface.

Part 6. The capsule is accelerating toward the sur-

face of the moon. It follows an arching

path before landing in the crater Coperni-

cus.

Let us analyze in greater detail the last two parts of this

trip the capsule circling the moon and then falling to the

moon's surface since they are examples of circular motion

and projectile motion, two important classes of motion. How

shall we go about this? Must we travel to the moon, set up

our cameras on the edge of the crater Copernicus, and make

a stroboscopic record of the path of the capsule as it

streaks through the lunar vacuum and crashes into the moon's

surface? Not at all! We now realize, thanks to Galileo and

Newton, that we can learn about the behavior of moving objects

beyond our reach by studying the motion of objects near at

hand.

y.nor47:-,
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To avoid confusion in notation,
we let the displacement in the
horizontal direction be x and
the displacement in the vertical
direction be y. This leads to
the set of axes.

4.2 Projectile motion. Imagine a rifle mounted on a tower ditn

its barrel parallel to the ground. Imagine also that tnt

ground over which the bullet will travel is level for a very

great distance. Suppose further that at the Instant a bullet

leaves the rifle, a second, identical bullet is dropped from

the same height as the muzzle of the rifle. The second bul-

let has no horizontal motion relative to the ground. Which

bullet will reach the ground first? Do we need to know some-

thing about the muzzle velocity of the bullet and the height

of the tower before we can answer this question?

..
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Consider first the motion of the bullet that is dropped.

As a freely falling object, it accelerates toward the ground

with uniform acceleration. Hence, in a time t it will fall

a distance, y, given by

y = ha
g
t2

where a
g

is the acceleration due to gravity.

The bullet that is fired horizontally from the rifle is

an example of a projectile. Any object that is given an

initial velocity and whose subsequent path is determined

solely by the gravitational force and ny the resistance of

the air is a projectile. The path followed by a projectile

is its trajectory. As the gunpowder-explodes, tne bullet is

driven by the force of expanding gases and accelerated very

rapidly until it reaches the muzzle of the rifle. On reach-

ing the muzzle these gases escape and no longer push the

bullet. At this moment, however, the bullet has a very

large horizontal speed, vx. The air will slow the bullet

slightly, but we shall ignore that fact in our development

1.4".......-.1....4....... .
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and imagine an ideal case with no air friction. As long as

air friction is ignored, there is no net force acting in the

horizontal direction. Hence, the horizontal speed will re-

main constant. From the instant the bullet leaves the muzzle,

we would expect its horizontal motion to be described by the

equation

As

comes

moves

x = v
x
t.

soon as the bullet leaves the gun, however, it be-

an unsupported body and falls toward the earth as it

forward. Can we use the same equation to describe its

fall that we used to describe the fall of the dropped bullet?

That is, can we use y = 1
- a

gt2 to describe the fall of the2

high speed bullet? We believe, of course, that the bullet

will fall to the ground, for any other answer would be con-

trary to our experience. But, whether it will fall at the

same rate as the bullet with no horizontal motion is not

clear. Nor, for that matter, can we be sure how falling

will affect the bullet's horizontal motion. These doubts

raise a more fundamental question that goes beyond just the

behavior of bullets; namely, is the vertical motion of an

object affected by its horizontal motion? Or vice versa?

To answer these questions, we can carry out a real ex-

periment similar to our thought experiment. We can use a

special laboratory device designed to fire a ball in a hori-

zontal direction at the moment that a second ball is released

to fall freely from the same height. We set up our appara-

tus so that both balls are the same height above a level

floor. The experiment is started. Although the motions of

the balls may be too rapid for us to follow with the eye,

we hear only a single sound as they strike the floor. This

result suggests that the vertical motion of the projected

ball is unaffected by its horizontal velocity.

Let us examine a stroboscopic photograph of this experi-

ment. Equally spaced lines in the background aid our ex-

amination. Look first at the ball which was released

without any horizontal motion. You see that it is accel-

erated because as it moves it travels a greater distance be-

tween successive flashes. Careful measurement of the

photograph shows that the acceleration is uniform to within

the precision of our measurements.

Now compare the vertical positions of the ball fired to

the right with the vertical positions of the ball which is

falling freely. The horizontal lines show that the dis-

1

The two balls in this strob-
scopic photograph were released
simultaneously. The one on the
left was simply dropped from
rest position; the one on the
right was given an initial ve-
locity in the horizontal direc-
tion.

97



----

A projectile has a constant
horizontal velocity vx.

The displacement a of an object
is a vector giving the straight-

line distance from beginning to
end of an actual path; S can be
thought of as made up of a hori-
zontal (x) and vertical (y)

component9.ofdisplacement, that
is, 1 = x + y (added vectorial-
ly).

vy

vx

See Study Guide 4.3.

tances of fall are the same for corresponding times. The

two balls obey the same law for motion in a vertical direc-

tion. That is, at every instant they both have the same

constant acceleration, a , the same downward velocity, and

the same vertical displacement.

We can use the strobe photo to see if the downward ac-

celeration of the projectile affects its horizontal velocity

by measuring the horizontal distance between successive
images. We see that the horizontal distances are essentially
equal. Since the time intervals between images are equal,

we can conclude that the horizontal velocity vx is constant.

We now have definite answers to our questions. The hori-

zontal motion of the ball does not interfere with the vertical
motion, and vice versa. The two motions are completely in-

dependent of each other.. Th.,.s experiment can be repeated

from different heights, and with different muzzle velocities,

but the results will always show that the horizontal motion

is independent of the vertical motion.

The independence of motions at right angles has interest-

ing consequences. For example, it is easy to predict the

displacement and the velocity of a projectile at any time
during its flight. We need merely to consider the horizontal

and vertical aspects of the motion separately and then add
the results vectorially. We can predict the positions x
and y and the speeds v

x
and v at any instant by application

of the appropriate equations. For the horizontal component
of motion

v
x
= constant

x = vxt

and for the vertical component of motion,

v = a t
Y g

y = t2.

Because x, y, and d and vx, vy and v are the sides of right

triangles, the magnitude d of the total vector displacement
a can be written as

d = X2 y2

and the magnitude v of the velocity cancan be written as

v =
x

2 v 2 .

0.1 A projectile is launched horizontally
with a muzzle velocity of 1,000 m/sec
from a point 20 m above the ground. How

long will it be in flight? How far,
horizontally, will the projectile travel?



4.3 What is the path of a projectile? It is easy to see that a

thrown object, such as a rock, follows a curved path. But

there are many kinds of curves, and it is not so easy to

see which kind of curve a projectile traces, For example,

arcs of circles, ellipses, parabolas, hyperbolas and cy-

cloids (to name only a few geometric figures) all provide

likely looking curved paths.

Ufano, a contemporary of Galileo, held a common belief

about projectile trajectories. He thought that a projectile

rises along a rather flat path, and then drops suddenly.

Ufano was wrong, but more important is the fact tnat by

direct observation of the moving object itself one could not

determine the details of the trajectory.

6",41ft.

.4 AO

The path taken by a
cannon ball accord-
ing to a drawing by
Ufano (1621). He
shows that the same
horizontal distance
can be obtained by
two different fir-
ing angles. Gun-
ners had previously
found this by ex-
perience. What
angles give the

maximum range?

New knowledge about the path of a projectile was gained

when the power of mathematics was applied to the problem.

This was done by setting out to derive an equation that

would express the shape of the path. Only a few steps are

involved. First let us list equations we already know for

a projectile launched horizontally.

and

x = vx t

y = ha t2.

We would know the shape of the trajectory if we knew the

height of the projectile above the ground for any horizontal

distance from the launch point; that is, if we knew y :or

any value of x. We can find the height, y, for any hori-

zontal distance, x, by combining our two equations in a way

that eliminates the time variable. Solving the horizontal

distance equation for t, we get

t =
X--
V

X
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Specialized equations such as
these are not to be memorized.

8

11,

The parabolic path of a projec-
tile fired horizontally to the
left as deduced by Galileo on
theoretical grounds in his
Dialogues Concerning Two New
Sciences. What is the rela-
tion between distances bo, og,
and gl; and why?
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Because t means the same in both equations we can substitute

for t in the vertical distance equation to obtain

y = ha (-- .g v
x

x )2

In this last equation there are two variables of interest,

x and y, and three constant quantities: the number h, the

uniform acceleration of free fall a , and the horizontal

speed vx which is constant for any one flight. bringing

these constants together, we can write the equation as

or

where

y

(a

--2-) x22v
x
2

y = kx2

a
k ( g

2v
x
2)-

This equation relates x and y for the trajectory. We can

translate it as: the distance a projectile falls (vertically)

is proportional to the square of how far it M0142S sideways

(horizontally).

The mathematical curve represented by this relationship

between x and y is called a parabola. Galileo deduced the

parabolic nature of the trajectory (by an argument similar

X

14.



to the one we used). With this discovery, the study of pro-

jectile motion became much simpler, because the geometric

properties of the parabola had been established centuries

earlier by Greek mathematicians.

Here we find a clue to one of the important strategies in

modern science. When we express the features of a phenome-

non quantitatively and cast the relations between them into

equation form, we can use the rules of mathematics to manipu-

late the equations, and open the way to unexpected insights.

Galileo insisted that the proper language of nature is

mathematics, and that an understanding of natural phenomena

is aided by translating our qualitative experiences into

quantitative terms. If, for example, we find that trajec-

tories have a parabolic shape, we can apply all we know about

the mathematics of parabolas to describe and predict

trajectories. There is always a need for well-developed

systems of pure mathematics which the physicist may use to

express in precise form his conceptions of natural phenomena.

Moreover, the physical scientist often tries to use

methods from another branch of science, or from mathematics,

to find a solution for his particular problem. For example,

just as Galileo applied the already known mathematics of

parabolas to estimate actual projectile motions, so the

modern sound engineer solves problems in acoustics using

mathematical schemes developed independently by electrical

engineers. Whatever the methods of science may be, many

ideas and concepts can often be extended from one.: specialty

to another with fruitful results.

We can now apply our theory of projectile motion to the

descent of a space capsule onto the moon's surface. The

retro rockets of the orbiting capsule are fired to decrease

its speed. After the retro rockets are turned off, the

capsule's horizontal velocity (the velocity component par-

allel to the moon's surface) remains constant and the cap-

sule falls freely under the influence of the moon's gravity.

The path followed by the capsule with respect to the

surface is a parabola. Space-flight engineers an able to

apply these ideas to land a space capsule on a desired moon

target.

"Philosophy is written in this
grand book, the universe, which
stands continually open to our
gaze. But the book cannot be
understood unless one first
learns to comprehend the lan-
guage and read the letters in
which it is composed. It is
written in the language of
mathematics, and its characters
are triangles, circles, and
other geometric figures without
which it is humanly impossible
to understand a single word of
it." (Discoveries and Opinions
of Galileo, translated by
Stillman Drake, Anchor Books,

pp. 237-238.)

See Study Guide 4.4.

Q2 In the derivation of the path followed a projectile launched horizontally on
by a projectile, what assumptions have the moon.
been made?

004What is the constant in your equation in
Write an equation for the trajectory of Q3?
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earth

The critics of Galileo claimed
that if the earth moved, a

dropped ball would land beyond
the foot of the tower.

stattonary
earth

moving
earth

Galileo argued that as the ball
also shared the motion of the
earth, an observer on earth
could not tell whether or not
the earth moved.

4.4 Galilean relativity. Galileo's work on projectiles illus-

trates the importance of reference frames. As you will see

in Unit 2, Galileo ardently supported the idea that the ref-

eren-- --ame for discussing motions in our planetary system

be t to .red to the sun, not the earth, and that there-

fore the earth both rotates on its own axis and moves in a

path around the sun. For many scientists of Galileo's time,

this was not an easy idea to accept. If the earth moved,

they said, a stone dropped from a tower would not land di-

rectly at its base. As earth moves through space, they

argued, the stone would be left behind while failing through

the air, and consequently would land far behind the base of

the tower. But this is not what happens, so many of

Galileo's critics believed that the tower and the earth can-

not De considered to be in motion.

To answer these critics, Galileo first assumed that dur-

ing the time of fall, the tower and the ground supporting it

were moving forward equally with some uniform horizontal

velocity vx. He then claimed that the stone being held at.

the top of the tower also had the same horizontal velocity

v
x

, and that this velocity was not affected by the fact that

the stone moves vertically upon being released. In other

words, the falling stone behaves like any other projectile:

the horizontal and vertical components of its motion are in-

denendent of each other. Since the stone and tower have the

same v
x

, the stone will not be left behind as it falls.

Therefore, whether the speed of the earth is zero or not,

the stone should land at the foot of the tower. So, the

fact that falling stones are not "left behind" does not

mean the earth is standing still.

Similarly, Galileo said, an object released from a crow's

nest at the top of a snip's straight mast will land at the

foot of the mast whether the boat is standing still in the

harbor or moving with constant velocity through quiet water.

To a sailor standing on the ship, the trajectory will appear

to be a straigh vertical line in either case. To a person

standing on shore, however, the trajectory appears to be a

straight vertical line when the ship is stationary, and a

curved line when the ship is movina. Obviously, the frame

of reference of the observer must be taken into account when

analyzing the motion of objects. Galileo's explanation of

the differing descriptions of the falling object was that

the sailor on the deck of the moving ship is sharing the

horizontal velocity of both the ship and the falling object.

Sailor, ship, mast and object are all moving horizontally,

so he cannot notice this component of the motion. By con-



trast, the observer on shore does not have the horizontal

velocity vx of the ship and object, and so he can see both

the horizontal and vertic'l velocities of the falling ob-

ject. These velocities, as we know, add vectorially to

give a parabola.

The same ideas apply not only to falling bodies but also

to projectiles in general. For example, if an object is

projected vertically upward from a cart, it will fall back

into the cart whether the cart is continuously moving at

constant velocity or is standing still. From this, and

equivalent observations, has come a most valuable generaliza-

tion, usually called the Galilean relativity principle:,

any mechanical experiment will give the same result for any

observer moving with constant velocity no matter what the

magnitude and direction of the velocity. In other words, it

is impossible to tell by any kind of mechanical experiment

whether or not one's laboratory (reference frame) is really

at rest or is moving with some constant velocity.

From the Galilean relativity principle, it follows that

the laws which describe mechanical experiments are the same

in a reference frame at rest or in a reference frame moving

with a constant velocity. Therefore, the laws for the

description of the motion of projectiles would be found to

be the same whether these laws are obtained by experiments

inside a ship moving with constant velocity or at the dock;

Iether on a stationary earth or on an earth which, during

any mechanical experiment on projectiles, is moving with vir-

tually a constant velocity. In all these cases, we are in

inertial frames of reference and we would arrive at a set of

equations identical to the ones we have encountered in this

and the earlier chapters.

\ I

1.

/ .;

Two special clocks are attached
to a cart. While the cart is
moving at a constant speed, one
of the clocks is sprung straight
upwards from it and the subse-
quent motion of the two clocks
is photographed under a strobo-
scopic light source. How do the
horizontal positions of the two
clocks ccmpare in successive
images?

The questions in Study Guide 4.5
and 4.6 deal with Galilean rela-
tivity.

Before turning to circular mo-
tion, consider the famous- "mon -

key in the tree" problem. It

is described in Study Guide 4.7.

QS Compare the results of Galileo's inclines
plane experiment performed in an eleva-
tor under the following circumstances:

d) elevator accelerating uniformly
upward.

e) elevator accelerating uniformly
downward.

a) elevator at rest.
b) elevator moving uniformly upward. CIA3For which experiment in Q5 would a ap-
c) elevator moving uniformly down- pear to be the largest?

ward.

4.5 Circular motion. A projectile launched horizontally from

tall tower strikes the earth at a point determined by the

speed of the projectile, the height of the tower and the ac-

celeration due to the force of gravity. As tne projectile's

launch speed is increased, it strikes the earth at points

farther and farther from the tower's base. (The assumptions

we made in the analysis of projectile motion such as a "flat"
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In discussing circular motion
it is useful to keep clearly in
mind a distinction between rev-
olution and rotation. We de-
fine these terms differently:
revolution is the act of travel-
ing along a circular path; ro-
tation is the act of spinning
without traveling at all. A

point on the rim of a phono-
graph turntable travels a long
way; it is revolving about the
axis of the turntable. But the
turntable as a unit does not
move from place to place: it

merely rotates. In some situ-
ations both processes occur at
once; for example, the earth
rotates about its own axis
while it also revolves (in a
nearly circular path) around
the sun..

The circular motion of a double
ferris wheel.
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earth which in turn implies a fixed direction of the gravita-

tional force are no longer valid.) If we suppose tne launch

speed to be increased evon more, the projectile would strike

the earth at points ever farther from the tower, till at

last it would rush around the earth in a near circular

orbit. At this orbiting speed, the "projectile" is traveling

so fast that its vertical fall just keeps pace with the re-

ceding surface of the curved earth.

What horizontal launch speed is required to put an object

into a circular orbit about the earth? We shall be able to

answer this quest:,on quite easily when we learn more about

circular motion. We will also then be able to consider our

problem of the capsule circling the moon.

The simplest kind of circular motion is uniform circular

motion, that is, motion in a circle at constant speed. If

you drive a car around a perfectly circular track so that at

every instant the speedometer reading is forty miles per

hour, you are executing uniform circular motion. But you

will not be doing so if the track is any shape other than

circular, or if your speed changes at any point.

How does one find whether an object in circular motion is

moving at constant speed? The answer, surely, is to apply

the same test we use in decidig whether or not an object

traveling in a straight line does so with constant speed.

We measure the instantaneous speed at many different moments

and see whether the values are the same. If the speed is

constant, we can describe the circular motion of an object

by means of two numbers:

the radius R of the cir-

cle and the speed v along

the path. Instead of the

speed, however, we shall

44-
' 11

114.. .1

..



use a quantity easier to measure: either (1) the time re-

quired by an object to make one compete revolution, or

(2) the number of revolutions the object completes in a

stated interval of time. These latter two concepts have

have been given names. The time required for an object to

complete one revolution in a circular path is called the

period of the motion. The period is denoted by the letter T.

The number of revolutions completed by the same object in a

specified time is called the frequency of the motion. Fre-

quency will be denoted by the letter f.

In these terms we can describe a car moving with uniform

speed on a circular track. Let us suppose the car takes

20 seconds to make one lap around the track. Thus, T =

20 seconds. Alternatively, we might say that the car makes

3 laps per minute, that is, 3/60 = 1/20 laps per second.

Therefore, f = 1/20 revolutions/sec or more briefly f =

1/20 sec-1. In this last expression the symbol sec-1

stands for 1/sec, or "per second." When the same time unit

is used, the relationship bP-aeen frequency and period is

f =
1

T'

Any convenient units may be used. Radius may be expressed

in terms of centimeters, kilometers, miles, or any other

distance unit. Period may be expressed in seconds, minutes,

or years. Correspondingly, the frequency may be expressed

as "per second," "per minute," or "per year." The most

widely used units of radius, period and frequency in scien-

tific work are meter, second and per second.

Table 4.1

AbOstlatists6 ShOt4hbelbw-o
-

various kitdsa-circula:m6t

Can `you ,pat= all

sec?

-Phenoinena'

Electron in -atom

Uliracentrifuie,2

Hoover' Rat t4044*

4piatiOre-Off-eairifi

Meow-around:the-'-ear

-Earih-,4abobt 'the_
-0

If an object is in uniform circular motion, a person who

knows the frequency of revolution f and the radius R of the

path can compute the speed v of the object without difficulty.

Many commercial record turn-
tables are designed to rotate
at frequencies of 16 2/3 rpm
(called transcription speed),
33 1/3 rpm (for LP's), 45 rpm
(pop records), and 78 rpm (old-
fashioned). What is the period
corresponding to each of these
frequencies?
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The distance traveled in on revolution is simply the

perimeter of the circular path, that is, 2rR. Tne time for

one revolution is just the period T. Thus since

speed = distance traveled
time elapsed

by substitution we can get

2
v = 2nR

T

To reformulate this circular motion equation in terms of

frequency f we rewrite it as

v = (27R) 1
T

.

Now since by definition

we find that

1f =
T '

v = (27R)(f) = 2712f.

If the body is in uniform circular motion, the speed com-

puted with the aid of this equation is both the instantaneous

speed and the average speed. If the motion is nonuniform,

the formula aives only the average speed. The instantaneous

speed can be determined only if we are able somehow to find

Ld/ift from measurements of very small segments of the path.

Let us now see how this equation can be used. We can

calculate the speed of the tip of a helicopter rotor blade

as the helicopter sits on the ground. On one model, the

main rotor has a diameter of 7.6 m and a frequency of

450 revolutions/minute under standard conditions. Thus f =

450 per minute and R = 3.8 m, so

v = 27Rf

v = 27(3.8)(450) meters/minute

v = 10,700 meters/minute,
See Study Guide 4.9 and 4.11.

or about 400 mph.

Q7 A phonograph turntable makes 90 revolu-
tions in 120 seconds.

a) What is its period (in seconds)?
b) What is its period (in minutes)?
c) What is its frequency in cycles

per second?

Q8 What is the period of the minute hand
of an ordinary clock? If the hand is
6.0 cm long, what is the linear speed
of the tip of the minute hand?
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4.6 Centripetal acceleration. Let us assume that a stone,

whirling on a string, is moving with uniform circular mo-

tion. The speed of the stone is constant. The velocity,

however, is continuously changing because the direction of

motion is continuously changing. At any instant, the direc-

tion of the velocity is tangent to the circular path. Since

the velocity is changing, the stone is accelerating.

To keep the stone moving in a circular path, that is, to

produce an acceleration, a force is needed. In the case of

the whirling stone, a force is exerted on the stone by the

string. If the string were suddenly cut, the stone woula go

flying off with the velocity it had at the instant the string

was cut. As long as the string holds together, the stone is

forced into a circular path.

The direction of the fcrce acting on the stone is along

the string. Thus the force is always pointing towara the

center of rotation. This kind of forceLalways directea

toward the center of rotation is called a centripetal

force. (The adjective centripetal literally means "tending

toward the center.") We shall give centripetal force the

symbol F. In uniform circular motion, the centripetal

force always makes a right angle with the instantaneous

velocity. As long as the force and the instantaneous veloc-

ity are at right angles, the magnitude of the velocity (that

is the speed) does not change.

From Newton's second law we know that force and accelera-

tion are in the same direction. Thus, the acceleration of

the stone moving with constant speed along a circular path

must, like the force, be directed toward the center of rota-

tion. Furthermore, like the force, the acceleration always

makes a right angle with the instantaneous velocity. We

shall call this acceleration centripetal acceleration and

give it the symbol ac. Any object moving along a circular

path has a centripetal acceleration.

We know the direction of centripetal acceleration. What

is its magnitude? We can determine the magnitude of the

centripetal acceleration by an analysis of the figures on the

next page. Assume the stone is moving in a circle of radius

R. At any instant, the stone has a velocity, it has an ac-

celeration, and it has a force exerted on it by the string.

In order to keep the stone moving with constant speed in a

circular path, a definite relationship between the magnitudes

of the velocity, v, and the centripetal acceleration ac,

must exist. We can find what this relationship is by treat-

ing a small part of the circular path as the combination of

-r
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a tangential motion and an acceleration toward the center.

To follow the circular path, the stone must accelerate to-

ward the center through a distance h in the same time that

it would move a tangential distance d. The stone, with

speed v, would travel a horizontal distance d given by

d = vt. In the same time t, the stone, with acceleration ac,

would travel toward the center a distance h given by h =

c
t2. (We can use. this last equation because at t = 0, the

stone's velocity toward the center is zero.)

We can now apply the Pythagorean Theorem to the triangle

in the figure above.

R2 + d2 = (R + h) 2 = R2 + 2Rh + h2.

When we cancel the like terms on each side of the equation,

we are left with

d2 = 2Rh + h2.

We can simplify this expression by making an approximation:

since h is very small compared to R, h2 will be very small

compared to Rh. So we shall neglect h2 and write

d2 = 2Rh.

However, we know d = vt and h = 1/2act2 so we can substitute

for d2 and for h. Thus

(vt)2 = 2R (1/2act2)

v2t2 = Ract2

or

v2 = Ra
c

V2
ac

R
= .

This is the magnitude of the centripetal acceleration for an

object moving with a speed v on a circular path of radius R.

Let us verify this relationship. A photograph has been

made of a blinky which was placed on a rotating phonograph

turntable. The photograph and the actual setup are shown

below. The blinky travels in a circular path with constant

speed. The centripetal force in this case 4. the fricticnal

force acting between the blinky and the surface of the

phonograph turntable.



(a) The laboratory equipment for
the rotating blinky experiment.
(b) A photographic record of one
revolution by the blinky. The
blinky had a frequency of 9.4
sec and its path has a radius
of 10.6 cm.

We shall determine the acceleration of the blinky by two

methods. The first method makes use of the basic definition

of acceleration, a = TE. The second makes use of the equa-
v2tion ac =

As the blinky travels around its circular path, it may be

at position P1 at some instant and at position P2 a short

time later. At each such position its velocity can be re-

presented by a vector. Since the circular motion is uni-

form, the arrows representing v1 and v2 must be equal in

length. However, the vectors ;1 and v2 differ in direction.

What is the difference between the vectors? The figure be-

low shows the two vectors (arranged with the tails at the

a)

same point, to make the comparison easier) and makes clear

that they differ by the vector labeled L. That is, A; has

a direction and a magnitude such that

VI 4. Av = v2.

In words, this equation means that in the short time in-

terval At in which the blinky travels from P1 to P2, it must

acquire a new component of velocity--a component having the

direction and magnitude of L. The direction of A.3V. is

toward the center of the circle.

From measurements on the revolving blinky, we have deter-

mined the speed v. Using an appropriate scale factor (in

this case 1.0 cm stands for 45 cm/sec) we plotted the veloc-

ity at points P1 and P2 and determined Av by a direct length

measurement. The magnitude of the change in velocity was

found to be 20 cm/sec. The rest is straight calculation.

The time interval At between flashes was .11 sec, and there-

fore;

By rearrangement, this becomes

- +
Av = vv2 - 1,

which is the definition of
"change in velocity."

Can you determine the speed of
the blinky from the data given?
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How is 't = .11 sec obtained
from the information that f = 9.4

flashes/sec?

There were 9.4 blinks/sec and a
total of 14 blinks; therefore the
period T must be

or

14 blinks

9.4 blinks/sec '

T = 1.5 sec.

For this and most other problems
on uniform circular motion, it
is only necessary to remember
and understand

27TR
v = -7- ,

f =
T '

and

,2

ac = R
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the magnitide the magnitude of the change in velocity
of the acceleration the change in time

20 cm/sec
.11 sec

= 190 cm/sec2.

Thus, by a combination of graphical and algebraic steps, we

found the magnitude of the acceleration the blinky underwent

as it revolved on the turntable.

vzLet us now use the equation, ac = 17- , to find the cen-

tripetal acceleration of the blinky and compare it to the

results obtained by the graphical method. The information

we have is R = 10.6 cm and T = 1.5 sec. The speed of the

blinky is given by

27R
v =

T

Substituting in numerical values we yet

v = 2(3.14) (10.6) cm
1.5 sec

= 44 cm/sec.

We can substitute this value for speed into the expression

we derived for the acceleration.

v2
a = ---
C R

(44.4 cm/sec)2
10.6 cm

1971 cm2/sec2
10.6 cm

= 190 cm /sect.

The answers obtained by the two methods agree.

If v2/R is the magnitude of the centripetal acceleration,

then from Newton's second law we can conclude that mv2/R is

the magnitude of the centripetal force. The hammer thrower

in the photograph is exerting a tremendous centripetal force

to keep the hammer moving in a circle as he speeds it up.

From the distance the hammer travels, we can estimate its

speed at release. To keep the 16-pound hammer in a circle

at the release speed requires over 500 pounds r.e force!

Let us return to our space flight. The space capsule in

Part 5 of our earth-moon flight is orbiting the moon in a

circle at a constant speed. From the radius of the orbit

and the capsule's speed, we can compute the centripetal ac-

celeration and, if we know the capsule's mass, the centripetal



force. What is the origin of the centripetal force? If you

do not already know, you will find out in Unit 2. By knowing

what the centripetal force is, space engineers can work the

problem backwards to determine the speed the capsule must

have for a particular lunar orbit.

See Study Guide 4.12 4.14, and
4.15 for further thoughts on
centripetal acceleration.

Q9 In the last section we calculated
that the tip of a helicopter rotor
blade (f = 450 min-1 and R = 3.8 m)

was moving about 10,700 m/sec. Find
centripetal acceleration of the tip.

4.7 The motion of earth satellites. Nature and technology pro-

vide many examples of the type of motion where an object is

in uniform circular motion. The wheel has been a main

characteristic of our civilization, first as it appeared on

crude carts and then later as an essential part of complex

machines. The historical importance of rotary motion in the

development of modern technology has been described by the

historian V. Gordon Childe:

Rotating machines for performing repetitive
operations, driven by water, by thermal power, or
by electrical energy, were the most decisive factors
of the industrial revolution, and, from the first
steamship till the invention of the jet plane, it
is the application of rotary motion to transport
that has revolutionized communications. The use of
rotary Machines, as of any other human tools, has
been cumulative and progressive. The inventors of
the eighteenth and nineteenth centuries were merely
extending the applications of rotary motion that had
been devised in previous generations, reaching back
thousands of years into the prehistoric past....
[V. Gordon Childe "Rotary Motion" in The History
of Technolo4y, ed. Charles Singer, E. J. Holmyard,
and A. R. Hall, Vol. I (New York: Oxford University
Press, 1953) p. 187.)

We shall see in Unit 2 that another rotational motion, that

of the orbiting planets around the sun, has also been one of

the central concerns of man throughout recorded history.

Since the kinematics and dynamics of all uniform circular

motion are the same, we can apply what we have learned to

the motion of artificial earth satellites in circular (or

nearly circular) paths. The satellite selected for study

here is Alouette, Canada's first satellite, which was

launched into a nearly circular orbit by a Thor-Agena B

rocket on September 29, 1962.

Alouette is orbiting at an average distance of 4,593 miles

from the center of the earth. Its closest approach to the

earth is 620 miles, and its farthest distance from the earth

Chariot. Alberto Giacometti,
1950. Courtesy Museum of Modern
Art.

IX1
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Alouette I still
provides useful
data upon command.
Alouette II was
placed in orbit
in late 1965.
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is 640 miles. Since this path is so nearly circular, we will

treat it as a circle in our analysis of the satellite's mo-

tion. The speed of Alouette can be taken to be constant for

our purposes, since it varies less than one mile per minute

above or below the average speed of 275 miles per minute.

Now let us compute the orbital speed and centripetal ac-

celeration of Alouette. The relationship v = 2rR/T allows

us to find the speed of any object moving uniformly in a

circle if R and T are known. To determine a satellite's

speed, we need to know its distance R from the center of the

earth and its period T.

Tracking stations located in many places around the world

maintain a record of any satellite's position in space. From

the position data, the satellite's distance abo7e the eartn

at any time and its period of revolution are found. By means

of such tracking, we know that Alouette moves at an average

height of 630 miles above sea level, and takes 105.4 min to

complete one circular orbit. Adding 630 miles to the earth's

radius, 3,963 miles, we obtain R = 4,593 miles, and

v =
2rR 2r(4,590) mi 28,800 mi

105 min 105 min

This is equivalent to 16,500 mi/hr, or 7,150 m/sec.

The last equation can be used to find the speed of any

satellite, for example, that of our moon. The average dis-

tance from the center of the earth to the center of the moon

is approximately 2.39 x 105 mi, and the moon takes an average

of 27 days, 7 hrs, 43 min to complete one revolution around

the earth with respect to the fixed stars. Thus

v 2r(2.39 x 105) mi - 38.1 mi/min,
3.93 x 104 min

or roughly 2,280 mi/hr.

If we wish to calculate the centripetal acceleration of

Alouette, we can use the value of v found above along with
2Rthe relationship a = . Thus

(275 mi/min)2a 16.5 mi/min24,590 mi

This is the equivalent of 7.42 m/sec2. What force gives

rise to this acceleration? (Hint: the acceleration of a

falling stone at the surface of the earth is 9.80 m/sec2.)

Earlier we asked the question, "What horizontal launch ,

speed is required to put an object into a circular orbit

about the earth?" Can you answer this question now? If not,

turn to Study Guide 4.23 for help.

In Chapter 2 we found that the
acceleration due to gravity at
the earth's surface was about
9.8 m/sec2. Here we have just
calculated the acceleration of
Alouette toward the center of
the earth to be about 7.4 m/sec2.
Calculate the moon's centripetal
acceleration.
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A vibrating string

114 equilibrium

Swinging children

Simple Harmonic Motion

Back-and-forth motions similar to the
swinging child and the vibrating guitar
string are common. There are rocking
boats, swaying trees, and vibrating
tuning forks. There are clock pendula and
quivering diving boards. What are the
details of such oscillatory motions?
What kind of force is acting on an os-
cillating object? No new concepts are
needed to answer these questions, so let
us proceed.

The mass on the spring pictured be-
low is in equilibrium. If we displace
the mass vertically from its equilibrium
position, a force is exerted on the mass
by the spring, This force, Fs, tends to
restore the mass to its equilibrium
position. Let us displace the mass, re-
lease it and observe its motion. We
observe that the mass oscillates back

0

0
0

0

O

A mass in

Z.

A mass displaced
from equilibrium

and forth through its equilibrium posi-
tion. If we start a timer at the in-
stant of release, we could represent the
displacement of the mass at any time on
a graph. The displacement of the mass
ranges from a maximum in one direction
to a maximum in the other direction;
that is, from + d to -d.



As the mass approaches its maximum
displacement, it slows down, stops and
then speeds up in the opposite direction.
The speed of the mass is the greatest
as it passes through the equilibrium
position. This information can also be
represented graphically. The displace-
ment-time, velocity-time and acceleration-
time graphs are shown below.
These graphs give us the kinematic de-
tails of the motion. From the graphs
we see that the velocity is a maximum
when the displacement is a minimum.
Further, we see that when the displace-
ment is a maximum in one direction, the
acceleration is a maximum in the other
direction.

What about the force exerted on the
mass by the spring? By combining the
information in the acceleration-time
graph with Newton's second law, we know
that the force is varying in both magni-
tude and direction. We can determine
how the force varies by an experiment
shown in the photographs below. In this
experiment forces of known magnitudes
C.5 N and 1.0 N--were applied to the
mass. From the photographs we can mea-
sure the displacements of the mass

F
s
=0.5 N

d=3.7 cm

A0

O

0

0

1.=

F
s
=1.0 N

d=7.5 cm

resulting from the known forces. This
measurement tells us the force that the
spring da exerting on the mass at these
two displacements.

That is, when

d = 3,7 cm then F
s

= 0.5 N

and when

d 7.5 cm then F
s
= 1.0 N.

A close look at these results seems to
indicate that Fs a d or Fs = kd where
k is a constant of proportionality.
(Verify for yourself that Fs is propor-
tional to d. Remember Study Guide 3.9.)

One additional piece of information
is needed before we fully understand the
spring force Fs. What is the relation
between the directions of Fs and d?
When the displacement is in the downward
direction, the spring force is in the
upward direction and vice versa. In
other words, the force F is in the op-
posite direction of Oe can now write
the force law which expresses the nature
of the force exerted by the spring on
the mass. This force law is

The minus sign indicates the opposite
directions of and 8.

The back-and-forth motion resulting
from the force Fs = -kd is called
simple harmonic motion. Ace the swing-
ing child and the vibrating guitar
string examples of simple harmonic mo-
tion? Are they examples of motion for
which the motivating force is propor-
tional to the displacement? The answer
to both of these questions is "only
approximately." There are other forces
which tend to slow down and bring to
rest the swinging child and the guitar
string. In other words, the back-and-
forth motion is damped. If the damping
forces are not large, these motions and
many others besides closely approximate
simple harmonic motion.

SCV=GESTED ACTIVITY

The stroboscopic photo-
graph at the right shows
the position of a light
attached to the mass at
time intervals of 1/30
second. The mass is '.52
kg.

1. What is the equilib-
rium position?

2. Construct a displace-
ment-time graph.

3. Measure the slope of
the displacement-time
graph at several different
times and construct a ve-
locity-time graph.

4. Determine the ac-
celeration of the mass
when it is positioned
half-way between the maxi-
mum displacement and the
equilibrium position.

5. What is the force ex-
erted on the mass by the
spring at the same point
chosen in (4) above?

6. Does Newton's second
law hold?

7. For additional sug-
gested activities see
Study Guide 4.22.
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4.8 What about other motions? So far we have described recti-

linear motion, both uniform and accelerated, projectile

motion, uniform circular motion, and simple harmonic motion.

Taken together, these descriptions are useful in clarifying

much of interest in the world of motion. Even so, it is

clear that we still have avoided many complicated kinds of

motion that may interest us. For instance, consider these:

a) the motion in a pattern of water ripples;

b) the motion of the Empire State Building;

c) the motion of a small dust particle as it zig-zags

through still air;

d) a person running.

4r.#

NOV AI

Even if we have not treated these motions directly, what

we have done so far is of real value. The methods for

dealing with motion which we have developed in this and the

preceding chapters are important because they give us means

for dealing with any kind of motion whatsoever. All motion

can be analyzed in terms of position, velocity, and accelera-

tion.

When we considered the forces needed to produce motion,

Newton's laws supplied us with concise yet very general an-

swers. Later, wien we discuss the elliptical motion of

planets, and the hyperbolic mo_ion of an alpha particle

passing near a nucleus, we shall be able to infer the magni-

tude and direction of the forces acting in each case.



On the other hand, when we know the magnitude and direc-

tion of the force acting on an object, we can determine

what its change in motion will be. If in addition to this,

we know the position and velocity of an object, we can re-

construct how it moved in the past and we can predict how it

will move in the future. Thus, Newton's laws provide a com-

prehensive view of forces and motion. It is not surprising

that Newton's work was greeted with astonished wonder. Such

wonder is aptly expressed in Alexander Pope's oft-quoted

couplet:

Nature and Nature's laws lay hid in night,

God said, "Let Newton be!" and all was light.
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4.1 Using symbols other than words, give
:n example of each of these:

a) a scalar.
b) a vector.
c) the addition of two scalars.
d) the addition of two vectors.
e) the addition of three vectors.
f) the subtraction of one scalar

from another.
g) the subtraction of one vector

from another.

4.2 For a given moving object the veloc-
ity and acceleration can be represented
by these vectors:

and

The sum of these two vectors is:

(a) v (b)

c)

a

V

(d)

V

e) They cannot be added.

4.3 A sphere is launched horizontally,
as shown below. Suppose the initial
speed vx is 3.0 m/sec. Where is the
projectile (displacement), and what is
its speed and direction (velocity)
0.5 sec after launching?

I
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4.4 If a raindrop accelerated at a con-
stant rate of 9.8 m/sec2 from a cloud
1 mile up what would be its speed just
before striking the ground. Does a
raindrop accelerate at a constant rate
over a 1 mile fall?

4.5 An airplane has a gun that fires bul-
lets at the speed of 600 mph when tested
on the ground with the plane stationary.
The plane takes off and flies due east
at 600 mph. Which of the following
claims are correct, if any? In defend-
ing your answers, refer to Galilean
relativity.

a) When fired directly ahead the bul-
lets move eastward at a speed
of 1200 mph.

b) When fired in the opposite direc-
tion, the bullets drop vertically
downward.

c) 1f-fired vertically downward, the
bullets move eastward at 600 mph.

4.6 Two persons watch the same object
move. One says it accelerates straight
downward, but the other claims it falls
along a curved path. Invent a situation
in which they both could be right.

4.7 A hunter points his gun barrel di-
rectly at a monkey in a distant palm
tree. Where will the bullet go? If the
animal, startled by the flash, drops out
of the branches at the very instant of
firing, will it then be hit by the bul-
let? Explain.

4J8 If a broad jumper takes off with a
speed of 10 m/sec at an angle of 45°
with respect to the earth's surface, how
far would he leap? If he took off from
the moon's surface with that same speed
and angle, what would be the length of
his leap. The gravitational acceleration
of a body at the moon's surface is

6

1
-th of that at the earth's surface.

4.9 Contrast rectilinear motion, projec-
tile motion, and uniform circular motion
by:

a) defining each.
b) giving examples.
c) comparing the velocity-acceleration

relationships.

4.10 You are inside a uniformly accelerating
moving van. If when the van is traveling
at 10 mph (and still accelerating) you
dropped a ball from the roof of the van
onto the floor, what would be the ball's
path relative to the van? What would
be its path relative to a person driving
past the van in the opposite direction
of the van at a uniform speed? What
would be its path relative to a person
standing on road?



4.11 An object in uniform circular motion
makes 20 revolutions in 4.0 sec.

a) What is its period T?
b) What is its frequency f?
c) If the radius of rotation is

2 meters, what is its speed?

4.12 Two blinkies were placed on a rotating
turntable and photographed from directly
overhead. The result is shown in the
figure below. The outer blinky has a
frequency of 9.4 flashes/sec and is lo-
cated 15.0 cm from the center. For the
inner blinky, the values are 9.1
flashes/sec and 10.6 cm.

a) What is the period of the turn-
table?

b) What is the frequency of rotation
of the turntable? Is this a
standard phonograph speed?

c) What is the linear speed of the
turntable at the position of
the outer blinky?

d) What is the linear speed of the
turntable at the position of
the inner olinky?

e) What is the linear speed of the
turntable at the center?

f) What is the angular speed of each
blinky in degrees/sec? Are they
equal?

g) What is the centripetal accelera-
tion experienced by the inner
blinky?

h) What is the centripetal accelera-
tion experienced by the outer
blinky?

4.13 These questions are asked with refer-
ence to Table 4.2 on page 112.

a) Are the distances to apogee and
perigee given as height above
the surface of the earth or
distance from the center of
the earth?

b) Which satellite has the most
nearly circular orbit?

Study Guide

c) Which are the most eccentric?
How did you arrive at your
answer?

d) Which satellite in the table has
the longest period?

e) What is the period of Syncom 2
in hours.

f) How does the position of Syncom
relative to a point on the
earth change over one day.

g) Which satellite has the greater
centripetal acceleration,
Midas 3 or Syncom 2?

h) What is the magnitude of the
centripetal acceleration of
Vostok 6. Express answer in
m/sec2.

4.14 The following table shows the period
and the mean distance from the sun for
the three planets that most nearly go
in a circular orbit.

Planet Mean distance (r) Period (T)
from sun (in A.U.) in years

Venus

Earth

Neptune

0.72

1.00

30.06

0.62

1.00

164.8

(A.U. = astronomical unit = the mean
distance of the earth from the sun;
1 A.U. = 92.9 x 106 miles.)

a) What is the average orbital speed
for each planet (in A.U./year)?

b) Calculate the centripetal ac-
celeration for each planet in
A.U./yr2.

c) Can you see any relationship be-
tween the mean distance and the
centripetal acceleration ac?

(Hint: Does it appear to be

(1) ac a r, or (2) ac a l/r; or

(3) a
c

a r2; or (4) a
c

a 1/r2?

How can a graph help you to de-
cide?]
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4.15 Explain why it is impossible to have
an earth satellite orbit the earth in
80 minutes. Does this mean that it is
impossible for an object to circle the
earth in less than 80 minutes?

4.16 The intention of the first four
chapters has been to describe "simple"
motions and to progress to the descrip-
tion of "complex" motions. Organize
the following examples into a list from
the simplest to the most complex, making
whatever idealizing assumptions you
wish. Be prepared to say why you placed
any one example ahead of those below it,
and to state any assumptions you made.

A "human cannon ball" in flight
A car going from 40 mph to a complete
stop

A redwood tree
A child riding a ferris wheel
A rock dropped 3 m
A woman standing on an escalator
A climber ascending Mt. Everest

4.17 Could you rank the above examples if
you were not permitted to idealize? If
yes, how would you then rank them? If
no, why not?

4.20 Compare the centripetal acceleration
of the tire tread of a motor scooter
wheel (diameter 1 ft) with that of a
motorcycle wheel (diameter 2 ft) if both
vehicles are moving at the same speed.

4.21 Our sun is located at a point in our
galaxy about 30,000 light years (1 light
year = 9.46 x 1012 km) from the galactic
center. It is thought to be revolving
around the center at a linear speed of
approximately 250 km/sec. a) What is
the sun's centripetal acceleration with
respect to the center of our galaxy?
b) If the sun's mass is taken to be
1.98 x 103° kg, what centripetal force
is required to keep it moving in a cir-
cular orbit about the galactic center?
c) Compare the centripetal force in b)
with that necessary to keep the earth in
orbit about the sun. (The earth's mass
is 5.98 x 1024 kg and its average dis-
tance from the sun is 1.495 x 108 km.
What is its linear speed in orbit?)

4.18 Using a full sheet of paper, make and complete a table like the one below.

Concept Symbol Definition Example

Length of a path between
any two points as measured
along the path

Straight line distance and di-
rection from Detroit to Chicago

speed

Ti

.

An airplane flying west at 400
mph at constant altitude

Time rate of change of
velocity

a
g

Centripetal
acceleration

The drive shaft of some automo-
biles turns 600 rpm in low gear

The time it takes to make
one complete revolution

4.19 The diameter of the main wheel tires
on a Boeing 727 fan jet is 1.26 m. The
nose wheel tire has a diameter of
0.81 m. The speed of the plane just be-
fore it clears the runway is 86.1 m/sec.
At this instant, find the centripetal
acceleration of the tire tread, for each
tire.
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4.22 Here are a list of some possible in-
vestigations into simple harmonic motion.

1. How does the period of a pendulum de-
pend upon

a) the mass of the pendulum bob?
b) the length of the pendulum?
c) the amplitude of the swing (for

a fixed length and fixed mass)?

2. How does the period of an object on
the end of a spring depend upon

a) the mass of the object?
b) the spring constant, k, where

the spring constant k is defined
as the slope of the graph of
force versus spring extension?
Its units are newtons/meter.

4.23 The centripetal acceleration experi-
enced by a satellite orbiting at the
earth's surface (air resistance conven-
iently neglected) is the acceleration
due to gravity of an object at the
earth's surface (9.8 m/sec2). There-
fore, the speed required to maintain
the satellite in a circular orbit must
be such that the centripetal accelera-
tion of the satellite is 9.8 m/sec2.
This condition can be expressed as fol-
lows.

V2
a
c R

= = a = 9.8 m/sec2

R, the radius of the earth, is
6.38 x 10b meters

ag = 9.8 m/sec2

V2 = 9.8 m/sec2 x 6.38 x 10b m

= 62.5 x 10b m2/sec2

V = 7.85 x 103 m/sec

What is the period T of this orbit?

What is the satellite's speed ex-
pressed in miles per hour? (Hint:
1,000 meters = .61 miles.)

Study Guide

4.24 The thrust of a Saturn Apollo launch
vehicle is 7,370,000 newtons (approxi-
mately 1,650,000 lbs) and its mass is
540,000 kg. What would be the accel-
eration of the vehicle relative to the
earth's surface at lift off? How long
would it take for the vehicle to rise
50 meters? The acceleration of the
vehicle increases greatly with time
(it is 47 m/sec2 at first stage burn-
out), even though the thrust force does
not increase appreciably. Explain why
the acceleration increases.

4.25 Write a short essay on one of the
following pictures.
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Epilogue The purpose of this Unit was to deal with the

fundamental concepts of motion. We decided to start by

analyzing particularly simple kinds of motion in the expecta-

tion that we might discover the "ABC's" of physics. With

these basic ideas it was hoped we could turn our attention
back to some of the more complex (and more interesting) fea-
tures of the world. To what extent were these expectations

fulfilled?

We did find that a relatively few basic Concepts allowed
us to gain a considerable understanding of motion. First
of all, qe found that useful descriptions of the motion of

objects can be given using the concepts of distance, dis-
placement, time, speed, velocity and acceleration. If to

these we add force and mass and the relationships expressed
in Newton's three laws of motion, it becomes possible to ac-

count for observed motion in an effective way. The surpris-
ing thing is that these concepts of motion, which were

developed in extraordinarily restricted circumstances, can
in fact be so widely applied. For example, our work in the

laboratory centered around the use of sliding dry ice pucks

and steel balls rolling down inclined planes. These are not
objects to be found in the everyday "natural" world. Even so,

we found that the ideas obtained from those experiments could

be used to deepen our understanding of objects falling near

the earth's surface, of projectiles, and of objects moving
in circular paths. We started by analyzing the motion of a

piece of dry ice moving across a smooth surface and ended up
analyzing the motion of a space capsule as it circles the
moon and crashes to its surface.

In other words, we really have made substantial progress.

On the other hand, we cannot be satisfied that we have all of

the intellectual tools necessary to understand all of the
phenomena that interest us. We will find this to be especial-
ly true as we turn our attention away from interactions in-

volving a relatively few objects of easily discernable size,

and to interactions involving countless numbers of submicro-

scopic objects, i.e., molecules and atoms. Thus in Unit 3

we shall add to our stock of fundamental concepts a few ad-

ditional ones, particularly those of momentum, work and
energy.

In this Unit we have dealt primarily with concepts that
owe their greatest debts to Galileo, Newton and their fol-
lowers. If space had permitted, we should also have included
the contributions of Rene Descartes and the Dutch scientist,
Christian Huyghens. The mathematician and philosopher,
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A. N. Whitehead has summarized the role of these four men

and the significance of the concepts we have been dealing

with in this Unit in the following words:

This subject of the formation of the three laws
of motion and of the law of gravitation [which we
shall fn!*--_ in Unit 2) deserves critical attention.
The whole development of thought occupied exactly two
generations. It commenced with Galileo and ended
with Newton's Principia; and Newton was born in the
year that Galileo died. Also the lives of Descartes
and Huyqhens fall within the period occupied by these
great terminal figures. The issue of the combined
labours of these four men has some right to be con-
sidered as the greatest single intellectual success
which mankind has achieved. [Science and the Modern
World)

The revolution Whitehead speaks of, and the subject of

this Unit, was important for many reasons, but most of all

because it led to a deeper understanding of celestial motion.

For at least 25 centuries man has been trying to reduce the

complex motions of the stars, sun, moon, and planets to an

orderly system. The genius of Galileo and Newton was in

studying the nature of motion as it occurs on earth and then

assuming that the same laws would apply to objects in the

heavens oeyond man's reach. Unit 2 is an account of the im-

mense success of this idea. We shall trace the line of

thought, starting with the formulation of the planetary

problems by the ancient Greeks, through the work over a

100-year span of Copernicus, Tycho Brahe, Kepler, and Gali-

leo, that provided a planetary model and several general laws

for planetary motion, to Newton's magnificent synthesis of

terrestrial and celestial physics in his Law of Universal

Gravitation.
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Third law of motion, Newton's, 80, 88
Thought experiment, 44, 72
Trajectory, 96
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Principle of inertia, 72
proven, 73 Water clock, 56

Projectile, 96 Weight, 78
path of, 99 defined, 80
trajectories, 99

Projectile motion, 95, 96, 101
Pythagorean theorem, 108
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Answers to End of Section Questions

Chapter 1

Q1 .5 cm/sec from 0 to 2 seconds; .33 cm/sec
from 2 to 5 seconds; 2 cm/sec from 5 to
6 seconds.

Q2 .66 cm/sec.

Q3 Interpolation means estimating value
between data points; extrapolation means
estimating values beyond data points.

Q4 The average speed over an interval of
time At is Ad/At; instantaneous speed
means in principle the speed at a point,
and in practice is defined as the
average speed for an interval so small
that the average speed wouldn't change
if the interval were made smaller.

60-

50-

''13) 40-
N

--...
E
u

30-

w

a. 20-
N

10-

0
.5 1.0 1.5 2.0 2.5

time (sec)

Q5 The following table summarizes the
in the photo on page 28. The two
companying graph, are based on the
data.

position s t v

data
ac-
same Why doesn't the speed-time graph pass

the origin?

Q6 40,000 miles/hour2 or 12 mph/sec.

through

0 0 cm 0 sec Q7 -8 miles/hour2.

19 cm/sec
1 9.5 0.5 Chapter 2

28

2 23.5 1.0 Q1 He could not measure v.
35

3 41 1.5

42
Q2 d = vt can only be used if v is

In acceleration motion v is not
constant.
constant

4 62 2.0

51
and the two equations cannot be
bined.

com-

5 87.5 2.5

.5 1.0 1.5 2.0 2.5

time (sec)

Q3 c

Q4 c (a case can also be made for (a) or (b))

Q5 a

Chapter 3

Q1 Speed is a scalar quantity having only
a magnitude while velocity is a vector
quantity having both a magnitude and a
direction.

Q2 a) .4); = 14.1 m/sec southeast
b) a = 2.8 m/sec2 southeast

Q3 Force

Q4 According to Aristotelian physics a
force is needed to maintain a motion.
One possible (but slightly unbelievable)
explanation would be "air currents cir-
culate around the puck and push it along."
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Q6 The net force acting on the puck is
zero. Therefore the velocity does not
change.

Q7 Galileo's "straight" lines were actually
great circles about the earth. Newton's
straight lines were straight.

Q8 2.5 kg

Q9 False

Q10 a) 2 m/sec2
b) 4 N
c) Friction

Q11 c and f

Q12 e and f

Q13 No. The force "pulling the string apart"
is still only 300 N.

Chapter 4

Ql a) 2 seconds
b) 2,000 meters

Q2 a) No air resistance
b) The motion in the horizontal direction

has no effect on the motion in the
vertical direction.

a

Q3 Y 2(vg)2 x x2 where ag is the accelera-

tion due to gravity at the moon's sur-
face.

a
Q4 g

2(vx)2

Q5 In cases a, b and c the results would be
identical. In cases d and e the accelera-
tion of the ball would be constant but
the acceleration would be greater in
case d than in case e.

Q6 Case d

Q7 a) 1.33 seconds/cycle
b) .022 minutes
c) .75 cycles/sec

Q8 3.1 m/sec2

Q9 .77 m/sec2
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Brief Answers to Study Guide

Chapter 1

1.2 a) 6 cm/sec
b) 15 miles
c) 15 sec
d) 3 m/sec
e) 40 miles/hr
f) 40 miles/hr
g) 5.5 sec
h) 8.8 m

1.3 1.99 miles/hr

1.5 2.7 x 108 seconds

1.6 a) 1.65 m/sec
b) 3 m/sec

1.12 3.15 x 105 cm/sec

1.14 a) Approximately 25 meters
b) No

1.17 40 mph

Chapter 2

2.8 a) True
b) True
c) False
d) True (if air resistance is present)

2.15 c) 8 hours

2.16 a) 4.9 m
b) 9.8 m/sec
c) 14.7 m

2.17 a) 10.2 m/sec
b) 15.1 m
c) 2.04 sec
d) 20.4 m
e) 20 m/sec

2.18 a) 20.4 m/sec
b) 18.8 m/sec
c) 4.08 sec
d) 81.6 m
e) 0 (It is on the ground.)
f) 40 m/sec

2.19 a) 2 m/sec2
b) 2 m/sec
c) 2 m/sec
d) 4 m
e) 2 m/sec
f) 4 sec

2.20 a) 56.8 m/sec2
b) 710 m (approximately)
c) 189 m/sec2 (about 19.5 g's)

2.23 a) 4.30 welfs/surgs2
b) as = 980 cm /sect or 9.8 m/sec2.

The planet Arret could be similar to
the planet earth.

Chapter 3

3.3 a) Yes
b) 4.2 units 20° south of west

3.8 6:1

3.13 2 kg

3.14 a) a = 201 m/sec2 v = 790 m/sec
b) The mass of the rocket decreases as

propellent leaves the rocket.
c) 220 m/sec2 (The acceleration is not

uniform.)

3.16 a) 850 N
b) 735 N
c) 622 N
d) 850 N, 735 N, 622 N
e) The bathroom scale indicates a weight

change.

3.17 a) 1 kg
b) 9.81 N, 9.80 N

3.18 b) 1.6 x 10-24 m/sec
c) 6.0 x 1024:1

Chapter 4

4.2 e

4.3 a) x = 1.5 m, y = 1.25 m, a = 1.9 m at
angle 40° below horizontal

b) ; = 5.7 m/sec at angle 59° below
horizontal

4.8 a) 10.2 meters
b) 61.2 meters

4.11 a) 0.2 seconds
b) 5 cps
c) 62.8 m/sec
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4.13 a) Heigh.: above surface
b) Syncom 2
c) Lunik 3 and Luna 4
d) Luna 4
e) 24.3 hours
f) Remains almost directly above that

spot
g) Midas 3
h) 9.4 m/sec2

4.19 For the nose wheels, a
c

= 1.8 x 104
m/sec2.

4.20 The centripetal acceleration of the
scooter wheel would be twice that of the
motor cycle wheel.

4.21 a) a = 2.2 x 10-10 m/sec2
b) Fc= 4 x 1020 N
c) F = 3.55 x 1022 N
d) v = 2.98 x 104 m/sec
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