
DOCIBUSIIT ASSUME

ED 071.683 LI 004 078

AUTHOR Foulke Clinton R.; Juelich, Otto C.
TITLE , Smooth Programs and Languages.
INSTITUTION Ohio State Univ., Coluz,bus.,Computer and Information

Science Research Center..
SPONS AGENCY National Science Foundation, Washi-gton, D.C.
REPORT NO OSU-CISRC-TR-72-13
PUB DATE Nov 72
NOTE 19p.;(10 References)

EDRS PRICE MF-S0.65 H043.29
DESCRIPTORS *Computer Programs; *Computer Science; Flow Charts;

*Information Science; *Programing Languages

ABSTRACT
A smooth program is defined to be one which is "go

to"-free in the sense that it can be represented by a flowchart
consisting only of concatenation, alternation, and interation
elements. Three methods of eliminating the "go to" statement from a
program have been proposed: (1) the introduction of additional
Boolean variables or the equivalent recomputation of certain
quantities in the program, (2) the use of recursive procedure calls,
and (3) replacement of the "go to" statement by a restricted form of
the "go to" such as the "exit" or "leave" statement..We show that
only the first of these is capable of transforming a non-smooth
program into a smooth one, since strict application of the recursive
procedure method requires the use of a so-called "null procedure"
which.is in fact also a restricted form of the "go to." (Author)



.4.

(OSU-CISRC-TR-72-13)

U.S. OEPARTMENT OF HEALTH,
EOUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEH REPRO.
OlICE0 EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIG
INATING IT- POINTS OF VIEW OR OPIN
IONS STATED 00 NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EOU
CATION POSITION OR POLICY,

SMOOTH PROGRAMS AND LANGPAGES

by

Clinton R. Foulk and Otto Z. Juelich

Work performed under

Grant No. 534.1, National Science Foundation

Computer and Information Science Research Center

The Ohio State University

O Columbus, Ohio 43210

November 1972



ABSTRACT

In this paper a smooth program is defined to be one which is go to-

free in the sense that it can be represented by a flowchart consisting only

of concatenation, alternation, and iteration elements. Three methods of

eliminating the go to statement from a program have been proposed: 1)

the introduction of additional Boolean variables or the equivalent recom-

putation of certain quantities in the program, 2) the use of recursive

procedure calls, and 3) replacement of the .go to statement by a restricted

1"6-
fokm Of the go to such as the exit or leave statement. We show that only

the first of these is capable of transforming a non-smooth program into a

smooth one, since strict application of the recursive procedure method

requires the use of a so-called "null procedure" which is in fact also a

restricted form of the .go to.

ii



PREFACE

This report is the result of -.-esearch supported in part by NSF Grant

Number GN 534.1 from the Office of Science Information Service, National

Science Foundation to the Computer and Information Science Research Center,

The Ohio State University.

The Computer and Information Science Research Center of The Ohio State

University is an interdisciplinary research organization which consists of

the staff, graduate students, and faculty of many University departments

and laboratories. This report is based on research accomplished in the

Department of Computer and Information Science..

The research was administered and monitored by The Ohio State Univer-

sity Research Foundation.



?

TABLE OF CONTENTS

Page

Abstract ii

Preface iii

I. INTRODUCTION 1

II. DEFINITIONS 3

III. THE RECURSIVE PROCEDURE METHOD 5

IV. THE exit STATEMENT 12

V. CONCLUSIONS 14

References 16

- --

iv



I. Introduction

In [1] Bohm and Jacopini consider the class of programs that can be

represented by flow charts consisLi:g of connections of computational and

decision nodes. They assert that there exist flow charts which cannot be

transformed directly into equivalent flowcharts consisting only of the

flowchart elements 7r, A, and Q, representing concatenation, alternation,

and iteration respectively. If, however, additional Boolean variables

may be introduced into the program, then any flowchart may be transformed

into an equivalent flowchart consisting only of 7r, A, and.Q flowchart

elements. In [2], Cooper showed; that the Boolean variables can be intro-

duced in such a way as to simulate a location counter, yielding a trivial

transformation of any flowchart into 7r, A, and a- single Q element. Bruno

and Steiglitz [3] call a flowchar:. in 7r, A, Q form a D-chart (after

Dijkstza [4]) and give a formal proof of the existence of a flowchart

which is not a D-chart, but whiCh can be transformed into a D-chart by

the addition of Boolean variables or by recomputation of certain quantities

in the program. We shall call a program representable -by a - -D -chart a

smooth program and a language capable of expressing only smooth programs

a smooth language.

Knuth and Floyd [5] indicate the existence of two additional methods

of eliminating go to statements from a program, namely the use of recursive

procedure calls and the introduction of a restricted form of the go to such

as the exit statement, which causes a premature exit from an iteration. They

seem to suggest that the procedure call method is capable of transforming a

non-smooth program into a smooth one. In fact, however, the recursive

procedure method requires the introduction of a so-called "null procedure"



which is different from all other procedures, including the go to procedure,

in that it does not return to its point of invocation, but rather jumps to

the end of the program. In ALGOL 60 [6] this null procedure can only be

written as a procedure containing a go to statement. Therefore, we con-

clude that the null procedure is actually a restricted form of the .go to

and that it is specifically the sp to statement, not the procedure call

mechanism, which makes ALGOL 60 a non-smooth languar:



II. Definitions

We begin by considering flowcharts which consist of n (concatenation)

and A (alternation) only. Such flowcharts are series-parallel networks.

They can arise from a block structured language such as ALGOL 60 by re-

stricting the admissible statement types to computational and decision

statements. Procedure invocation may also be admitted, provided the depth

of recursion is bounded.

Iteration statements may be mapped in terms of recursive procedure

calls directly. For instance in pseudo-ALGOL 60

for c do L:S;

can be rewritten

procedure L; if b then begin S;j;L end;

i; L;

where i, j, and b are the initialize, increment, and test components of c

respectively. Thus programs containing iteration statements can be decomposed

into n and A without introduction of additional Boolean variables provided

the iterative loops are rewritten as recursive prOcedure calls. Alternatively

if Bohm and Jacopini's 0 (iteration) flowchart element is also allowed it is

possible to flowchart iterative statements diredtly. We now make the following

definitions:

Definition 1. A smooth is one which can be decomposed into

the flowchart elements n (concatenation), A (alternation), and Q (iteration)

without the introduction of additional Boolean variables. More briefly a

smooth program is one whose flowchart is a D-chart.

The concept may be related to work in the area of compiler design if we

introduce the interval conceptas defined by Cocke [7] and Allen [8]. They



define an interval as a maximal single entry subgraph of a flowchart, such

that all cyclic paths pass through the entry node. This leads to the following

recursive definition:

Definition 2. A single computational or decision node is a smooth

interval. A two-terminal network of smooth intervals is a smooth interval if

it satisfies the following restrictions: 1) the cyclic portion must be

a series-parallel network leading from the entry node hack to the entry

node and 2) the acyclic portion must be a series-parallel network.

Definition 1'. A smooth program is a smooth interval.

Definition 3. A smooth language is a programming language which can

express onlysmooth programs.,



II-I. The Recursive Procedure Method

Since Bruno and Steiglitz have shown that not all flowcharts are D-charts,

the 'class of smooth programs must be a proper subclass of the class of all

programs. Moreover, as we have noted, ALGOL 60 deprived of its go to state-

ment is a smooth language, and we should therefore be able tto conclude that

not all ALGOL 60 programs can be written without the use of the go to state-

ment. This conclusion is apparently contradicted by Knuth and Floyd when

they indicate that go to statements can be replaced in ALGOL 60 by procedure

calls and, in fact, that 'Igo to' is in some sense a special case of the

procedure calling mechanism." As we shall see, this apparent contradiction

arises because 1) they fail to point out that the null procedure is actually

a-restricted form of the go to, and 2) they do not distinguish carefully

between programs which are go to -free because they are smooth and those

which are go to -free because they are non-smooth but happen to employ some

restricted form of the go to.

In replacing go to statements by procedure calls, Knuth and Floyd

begin by labelling each statement of the program. Then they replace each

L:S;

by

procedure L; begin S; L' end

where L' is the successor of L. In the case of the go to statement they

replace

L: go to L';

by

procedure L; L';

The composite statements of ALGOL 60 are not mentioned in this context

by Knuth and Floyd. It does no violence to their Tialysis to specify that

-5-



1) L: if b then LT: ST else LF: SF;

be replaced by

procedure L; begin if b thea LT else LF; L' end

that

2) L: for c do LG: SG;

be replaced by

procedure L; bin for c do LG; L' end

that

3) L: begin Ideclarations0 LG:SG; ..,end

be replaced by

procedure L; begin [declarations;) LG; L' end

and finally that

4) the governed statements of tilt decision and iteration statements as well

as the last statements in compound statements and blocks be replaced simply by:

procedur- S;

since in all these cases the successor is already specified by the containing

statement. Knuth and Floyd conclude the exposition of their technique by

stating "The program ends by calling a null procedure."

To see why this technique merely replaces the go to statement by an

equivalent construct, namely the null procedure, we will apply the technique

to a'program already discussed by Knuth and Floyd. We will treat it as a

"complete" program, omitting declarations, input, and output, in order to

focus attention on the control flow. The example program, augumented with

labels as. required by the technique, is:

begin

Ll: for i:=1 step 1 until n do

-6-



s,

L2: if gij=x then L3: go to found;

L4: not found: n:=i; L5: gi]:=x; L6: B[i]=0;

L7: found: B[1]:=B[i]-1-1;

e,:d

The flow chart for this program is:

If we'apply the stated rules to the example program the following procedures

are obtained.

procedure Ll; begin for i:=1 step 1 until n

do L2; L4 end

procedure L2; if A[i]=x then L3;

procedure L3; L7;

4



procedure L4; begin n:=i; L5 end

procedure L5; begin A[i]:=x; L6 end

procedure L6; begin B[i]:=0; L7 end

procedure L7: begin B[i]:=B[i]+1; null end

where we include the call on "null" in procedure L7 because statement Li

concludes the program.

The flowcharts of the ah^ve procedures are

Ll:

L2:

L3:

i:=1



_
1

I

t



Substituting each at its point of invocation yields: 4

B[i]:=

I...___V

BM: = B[i]+11

null

This flowchart is smooth, but does not represent the program because

it does not show that the null procedure fails to return control to its

point' of invocation, but instead jumps to the end of the program. In

ALGOL 60, a procedure can do this only by executing a go to statement.

Knuth and Floyd do give a smooth program using recursive procedure

calls which is equivalent to their original non-smooth program:

procedure find;



If i > n then begin n:=i; A[i]:=x; B[i]:=0

end;

else if A[i] x then

begin i:=i+1; find end;

i:=1; find; B[i]: = B[i]+1;

They are able to do this only because of the simplicity'of their original

example. If, for example, we replace the statement L6 of their example by

the semantically equivalent sequence:

L6: B[i]:=1; go to L8;

where L8 is a label placed on the end of the original program, their ad hoc

transformation would no longer apply.



IV. The exit Statement

Knuth and Floyd suggest that a third way of writing their example pro-

gram is with a special repeat statement and a restricted form of the go to

called an exit statement. In this form, their example becomes:

begin i:=1;

repeat begin

while i < n do if A[i]=x then exit else i:=i+1;

n:=i; A[i]:=x; B[i]:=0; exit

end;

B[i]: = B[i]+1;

end;

The flowchart of this example is:

i:=i1

repeat

n:=i

A[i]:=x

i:=i+1



This flowchart is clearly equivalent to the original.

Another restricted form of the go to is found in-the go to-free

language BLISS[9] where the construct: leave <1abel> with <expression>

serves this purpose. This brings out the fact that the mere absence of the

go to statement does not insure the smoothness of a programming language.

On the other hand the absence of convenient block structuring features in

FORTRAN would make the writing of even a smooth program in GO TO-less FORTRAN

somewhat awkward.

-13-



V. Conclusions

In this paper we have shown that the recursive procedure method proposed

by Knuth and Floyd does not, as they suggest, transform a non-smooth program

into a smooth one. Instead it merely replaces the go to statement by a re-

stricted form of the go to, namely the null procedure. We have seen that

ALGOL 60 without the go to statement is a smooth language whether invocation

of non-null procedures is allowed or not. Therefore WP are left with Bohm

and Jacopinits original result, namely that in general the transformation of

non-smooth programs into smooth ones requires the introduction of additional

variables or the equivalent recomputation of some quantities in the program.

It should be clear from the discussion that smoothness is not a property

of the algorithm being implemented, but of the program which implements the

algorithm. Whether it: is desirable to retain, restrict, or eliminate the

go to_statement is a question of esthetics, since go to statements occurring

in a program can always be replaced by additional code. It seems to us that

a reasonable case has been made by Wulf for the replacement of the arbitrary

go to by a restricted form, such as the leave construct of BLISS. Perhaps

the term quasi-smooth could be used for non-smooth programs and languages

using a restricted form,of,the go to.
J

)

It should be possilbI4 to, find a use for the concept of the smooth pro-

gram as a tool in the analysis of programs. One such application, to pro-

gram analysis for parallel execution, has already been found and will be re-

ported in a forthcoming paper. Other applications in the area of compiler

optimization are being sought at the present time. Observations by other re-

cent workers in this field, especially the remark by Lowry and Medlock [10]

that most loops in FORTRAN programs are single entry loops, give us reason to



believe that the class of smooth programs includes a substantial subset of

useful programs. We believe therefore that the class of smooth languages

should also be of practical interest.



REFERENCES

1. Bohm, Corrado and Jacopini, Giuseppe. Flow diagrams, Turing machines,
and languages with only two formation rules. Comm. ACM 9 (1966),
366-371.

2. Cooper, David C. Bohm and Jacopini's reduction of flowcharts. Comm.

ACM 10 (1967), 463, 473.

3. Bruno, J. and Steiglitz, K. The expression of algorithms by charts.
JACM 19 (1972), 517-525.

4. Dijkstra, E. Go to statement considered harmful Comm. ACM 11 (1968),
147-148.

5. Knuth, D. E. and Floyd, R. W. Notes on avoiding "GO TO" statements.
Information Processing Letters 1 (1971); 23-31.

6. Naur, Peter. (Ed.) Revised report on the algorithmic language ALGOL 60.
Comm. ACM 6 (1963), 1-17.

7. Cocke, John. Global common subexpression elimination. SIGPLAN Notices 5,
7 (1970), 20-24.

8. Allen, Frances E. Control flow analysis. SIGPLAN Notices 5, 7 (1970),
1-19.

9. Wulf, William A. A case against the GO TO. Proc. ACM 72, 791-797.

10. Lowry, Edward S. and Medlock, C. Object code optimization. Comm.
ACM 12 (1969), 13-22.


