
AO-

DOM.= RESUME

ED 071 452 EN 010 718

AUTHOR Gregory, Carl; Bessent, Authella
TITLE A Conceptualization of an Improved Authoring Language

(IAL). Technical Report Number 11..
INSTITUTION Texas Univ., Austin. Computer-Assisted Instruction

Lab.
SPONS AGENCY National Science Foundation, Way 'ngton, D.C.
PUB DATE Sep 41
NOTE 21p.

EDRS PRICE MF-$0.65 BC-83.29
DESCRIPTORS *Computer Assisted Instruction; Program Descriptions;

*Programing; *Programing Languages
IDENTIFIERS IAL; *Improved Authoring Language

ABSTRACT
One of the most difficult tasks in program production

of computer-assisted instruction (CAI) has been the transformation of
an author's ideas into machine-usable form. Thus, an improved
authoring language (IAL) to facilitate the transformation of authors'
drafts to machine-usable form was conceptualized. IAL was designed so
that an instructional designer can help the author give his course a
coherence that will meet programing needs. IAL requires data to be
specified completely before the material reaches the programer. The
language is a series of commands, many of which could be standard
routines in the eventual programing language. Each piece of
courseware data is identified, or labeled, so that it can be
referenced. Data may be either LOCAL (defined for a given page,
template, mudule, or unit), GLOBAL (defined for a given student), or
UNIVERSAL (defined for the entire course). Commands are applicable to
any subject matter. Many parameters are formulated only loosely, so
that authors can, at times, specify material in sentence form.
(Author /JR)

I

FILMED FROM BEST AVAILABLE COPY

THE UNIVERSITY OF TEXAS AT AUSTIN

Computer Assisted Instruction Laboratory

AUSTIN

A CONCEPTUALIZATION OF

AN IMPROVED AUTHORING LANGUAGE (IAL)

TECHNICAL REPORT NO. 11

Carl Gregory and Authella Bessent

U S. DEPARTMENT OF HEALTH.
EDUCATION WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS SEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIG-
INATING IT POINTS OF VIEW OR OPIN-
IONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY

September 1971

Supported By:

THE NATIONAL SCIENCE FOUNDATION
Grant CJ 509 X

The University of Texas at Austin

Computer-Assisted Instruction Laboratory
Austin, Texas 78712

Abstract

In previous computer-assisted instruction (CAI) development efforts,
one of the most difficult and trying tasks in program production has been the
transformation of an author's ideas into machine-usable form. Programmers

have been required to make decisions about data structures, branching logic,
and control procedures because authors were not able to anticipate precise

specifications when the course was being written. Thus, an improved authoring

language (IAL) to facilitate the transformation of authors' drafts to machine-
usable form was conceptualized.

The design of IAL is such that an instructional designer can aid
the author in giving his course the coherence that will meet programming needs.
The improved language thus serves as a formal structure that the authoring
staff can utilize to organize the author's ideas. Providing a "programming

13nguage" structure, IAL requires data to be specified completely before'the
material reaches the programmer.

The language is written as a series of commands, many of which could
be standard routines in the eventual programming language. Each piece of

courseware data which is manipulated at any one time must be identified

(labeled) so that it can be referenced. Data may be LOCAL (defined for a given

uage, template, module, or unit), GLOBAL (defined for a given student), or

UNIVERSAL (defined for an entire course). Commands are applicable to any type

of course, but specific parameters or conditions may be unique to a certain

type of subject matter. Other commands may be defined as needed by a given

course or a given installation. Many parameters are only loosely formatted,

so that authors can, at times, specify material in sentence form.

41.

Introduction

In previous computer-assisted instruction (CAI) development efforts,

one of the most difficult and trying tasks in the production of CAI programs

has been the transformation of an author's ideas into machine-usable form.

Given the available programming languages for a certain computer, the pro-

gramming staff has usually borne the burden of understanding the author's

material and ordering that material logically so that the program may be

written. Unfortunately, teachers do not always prepare course material

according to programming logic, and not often aware of the procedures

and data that must be specified completely in order for their course to be

coded. Programmers have had to make decisions about data structures, branch-

ing logic, and even control procedures because authors have failed to specify

nem when the course was being written.

On the authoring staff, an instructional designer can be utilized to

aid the author in giving the kind of coherence to his course that will fill

programming needs. In this r&.gard, the improved language serves as a formal

structure that the authoring staff will utilize to order the author's ideas.

By giving standard methods in indicating procedures, the language can reduce

ambiguity in specification. With a "programming language" structure, the

improved language will require data to be specified completely before the

material reaches the programmer.

The authoring staff, then, will write a "pre-program program," and

so produce material for the programming staff that requires no "debugging" of

logic or interpretation. This leaves the programmers free to work with their

unique problems of coding, keypunching, loading, and system considerations.

1

2

Description

The language is written as a series of commands, many of which

could be standard routines in the eventual programming language. Data

consists of:

1. Paradigms for control, i.e., student progress, display

presentation, data manipulation, answer processing.

Paradigms describe general logic processes, e.g., standard

Coursewriter branching logic, "Clue" branching logic, how

to handle a student response of "help."

2. Routines describing control processes, repeatedly used

procedures, etc. Routines, unlike paradigms, are specific

sequences of commands, and when called they are "executed"

in sequence. Where paradigms are referred to and imply a

coding sequence, routines are called like subroutines or

macros and define a coding sequence.

3. Variables used for scoring, control, etc.

4. Items in a table, array, or list structure.

5. Lists of tables, arrays, etc.

6. Displays, consisting of the text to be displayed and the

position of the display.

7. Any author-defined material specific to his course, e.g.,

special considerations and procedures requiring his explan-

ation.

Each piece of data which is manipulated at any one time must be

identified (labeled) so that it can be referenced. Manipulation consists

of:

1. Displaying.

2. Erasing.

3. Inserting.

4. Moving.

5. Altering (adding, subtracting, etc.).

6. Calling (routines).

If data is defined at the beginning of a course unit, it retains

its definition in all subdivisions of that unit, i.e., it is LOCAL to that

unit as opposed to other units in the course, but it is GLOBAL for all

modules within its unit. Data defined for a given module is LOCAL to the

module, but GLOBAL to the objectives within the module, etc. Any data

defined for an entire course is referred to as UNIVERSAL.

Commands are applicable to any type of course, but specific

parameters or conditions may be unique to a certain type of subject matter.

Other commands may be defined as needed by a given course or a given

installation. Parameters are separated by keyword delimiters, giving a

natural language appearance. Many parameters, especially conditions,

are only loosely formatted, so that authors at times will specify material

in sentence form. This flexibility is necessary to ensure thet :.ors

are not restricted in the power of their design. But some keyword format

will still be present to limit ambiguity as much is possible.

3

Manuscript Conventions

Standard symbology in command formats:

1. : : to enclose data identifiers, e.g.,

:V1: refers to a variable

:A0003: refers to a message

:CKSW: refers to a routine

:V1, V2, Al: refers to three variables

2. [] to enclose a literal string when used in a command

3. } to enclose parameters when calling a subroutine

4. () for subscripting as in

:TABLE5 (Row, Item):

:LIST1 (Item):

e.g.:

:TABLE5 (3,4): refers to a specific item in an array

or table

:TABLE5 (3): refers to the third row of the table

:TABLE5 (,4): refers to the fourth item in each row of

the table

:LIST1 (3): refers to the third item in a list

Standard conventions for constructing displays:

1. : : to enclose variables in displays

2. / A to indicate "reverse shading," e.g.,

4

*3. to indicate keyboard response area

5

*4. El or 57;;71; to indicate light pen response area

5. All labels, message identifiers, response identifiers, etc.,

are to be indicated elsewhere than the display guide screen

grid, i.e., the display grid should not contain anything that

is not supposed to be actually displayed.

*These indicate information that is not to be displayed, but must be

represented on the display grid. Such information, along with identifiers

for the responses, numbering for response areas if there are more than one

at a given time, should be in a color other than the display material (which

is usually in pencil).

6

Keyword Definitions

I. Structure definition

1. UNIT) mark the beginning of each unit,

MODULE) module, objective, and page, and

OBJECTIVE) identify them by number, e.g.:

PAGE UNIT 1

MODULE 1.1

JECTIVE 1.2.,

PAGE 1.3.2.4

2. RESTART (RST) marks the point where student records are saved.

II. Branching keywords

1. IF :Cl: THEN :Al:

where :Cl: is the author-described condition

:Al: is the action taken (command sequence) if the

condition is true

2. GO TO :Pl:

where :Pl: is a command in the sequence, or in a unique

label

e.g., gig MODULE 2.3

Go RESPONSE A003IB

GO If B3#01

r -

III. Operative keywords (or commands)

1. ADD (AD) ... TO

2. SUBTRACT (SB) ... FROM

3. MULTIPLY (MP) ... BY

4. DIVIDE (DV) ... BY

5. SET ... TO [assigns a value to a piece of data]

e.g., SET :A: TO 1

SET :B: TO "The old man"

SET :TABLE1 (3,2): TO 5

IV. Comparative keywords

[all numeric comparisons]

1. EQUALS (ED)

2. GREATER THAN (G)

3. LESS THAN (L)

4. GREATER THAN OR EQUAL TO (GE)

5. LESS THAN OR EQUAL TO (LE)

V. Logical keywords

1. AND

7

the statement :Cl: AND :C2: is true only

if :Cl: and :C2: are both true; may alsb

be used to sequence actions, e.g.:

IF :A: EQUALS :8:

AND IF :B: GE :C: THEN DISPLAY :Ml:

AND THEN GO 11 B3

8

2. OR the statement :Cl: OR :C2: is true only

if either :Cl: is true or :C2: is true,

but not both, e.g.:

IF :A: EQUALS :B:

OR IF :B: EQUALS :C: THEN GO TO B3

3. AND/OR the statement :Cl: AND/OR :C2: is true if

either :Cl: is true or :C2: is true or if

both are true (used as in previous example)

4. ELSE precedes the alternative for an unsatisfied

condition, e.g.:

IF :A: g. :B: THEN DISPLAY :Ml:

ELSE DISPLAY :M2: AND THEN GO TO #01

GO TO #02

When the IF condition is true, :Ml: is

displayed, the alternative is ignored, and

the sequence branches to #02. When the IF

condition is not true, :M2: is displayed

and the sequence branches to #01.

There may be a sequence of IF conditions, related by AND, OR, AND/OR,

that define a set action pattern. ELSE separates this condition-

action pattern from the next immediate condition and/or action:

IF :A: Eg. :B:

AND IF :B: gg. :C:

OR IF :A: gg. :0: THEN DISPLAY :M1:

9

ELSE IF :A: Eg. :B:

OR IF :B: EQ. :C:

AND IF :A: Eg. :D: THEN GO TO #01

ELSE GO TO #02

:Ml: is displayed (1) if A=B and if B=C

or (2) if A=D

sequence branches to #01 (1) if A =B and

if A =D

or (2) if B=C and

if A=D

VI. Evaluative keywords

1. Keywords used to evaluate syntax

a. MATCH :A: MATCH :B: is true only if A and B are

the same character or sequence of characters

b. SIMILAR the truth of :A: SIMILAR :B: will depend

upon similarity criteria specified by the

author

c. KEY indicates a match with a system key, such

as HELP, etc., e.g.:

IF :RESPONSE: KEY HELP THEN ...

d. INDICATE (IND) used with light pen responses

IF INDICATE :P003,1: THEN ...

this is a match condition if the student

indicates an area numbered 1 associated

with response are labeled P003

10

2. Keywords used to evaluate semantic criteria

a. EQUIVALENT (EQV) :A: EQV :B: is true only if A implies B

and B implies A. For example:

beagle implies dog,

but dog does not imply beagle,

so dog and beagle are not equivalent.

Implication may be described by:

if A then B

Equivalence may be described by:

if A then B and if B then A

1

11

IMPROVED LANGUAGE COMMANDS

(Keywords are capital letters underlined.)

1. RECORD [for storing archival data--specified at
the beginning of a unit, module, page,
or template]

Form: RECORD :Nl: AT :Wl:

where

:Nl: specifies data to be stored

(test scores, variables, responses,
etc.; or the identifier of a list)

:Wl: specifies when the records are

to be recorded

(restart points, response point, etc.)

2. DEFINE [identifies data specified at the begin-
ning of a unit, module, page, or template;
data defined is "local" to that unit,
module, page, or template]

Form: DEFINE :Wl:

where

:Wl: is VARIABLES

e.g., author (NWA--number of wrong
answers
(NT1--number of trials

specifies (etc.

LISTS

(e.g., a list of tables or
display identifiers)

TABLES

(e.g., arrays, matrices)

12

DICTIONARIES & GRAPHICS

DISPLAYS

(e.g., display guides)

PARADIGMS

(e.g., logical processes)

ROUTINES

(e.g., subroutines)

SPECIAL

(any original author-defined
material, e.g., special considera-

tions or conditions, repeatedly
used instructions, etc.)

3. SAVE [specifies dynamic data to be saved;
specified at the beginning of a unit,
module, page, or template]

Form: SAVE :Nl: IF :Wl:

where

:Nl: is the identifier of the data
to be saved

:Wl: is the condition for saving the
data (usually written semanti-
cally--see Keyword Definitions)

4. SELECT [specifies parameters for locating an item

in a list where all the items in the list
are values for a single variable]

Form: SELECT :V1: FROM :Ll: STARTING :Nl:

TO :N2: INCREMENT :N3: UNIQUE

where

:V1: identifies the variable for which
the value is being selected

13

:Ll: identifies the list or table
used (may be written TABLE:Ll:
or LIST:L1:, etc.)

:N1: is the starting field (may
be omitted; Default: first
field)

:N2: is the ending field (may be
omitted; Default: final field)

:N3: is the increment:

:--sequentially through the list

2--every other item is selected,
beginning with the first

3--every third item is selected,

etc.

(may be negative to reverse the order of
selection of keywords:

RANDOM--items are selected from the
list at random

:R1: --the identifier of an author-
defined routine for selecting
items

(may be omitted; Default: 1)

UNIQUE--if included, no item from the
list will be selected twice

5. SELECT [specified parameters for selecting lines
from a table where the items in the line
are values for more than one variable]

Form: SELECT :V1, V2, etc.: FROM :L1: STARTING :Nl:

TO:N2: INCREMENT:N3: UNIQUE

where
:V1, V2, etc.: identify the variables
for which the values are being selected

:Ll: as in 4

14

:N1: is the starting line)

)

:N2: is the ending line) as in 4

)

:N3: is the increment)

UNIQUE--if included, no line from
the table will be selected

twice

6. GENERATE [generates random numbers for a variable]

Form: GENERATE :V1, V2, etc.: BETWEEN :Nl: AND

:N2: UNIQUE

where

:V1, V2, etc.: identifies the variable(s)
for which values are being generated

:Nl: is the lower limit

:N2: is the upper limit

UNIQUE--if included, none of the varia-
bles will receive the same
random value as any other in

the command

7. DISPLAY [indicates that text is to be displayed on

the screen]

Form: DISPLAY :Ml: STARTING LINE :Nl: i.:W1:1

where

:Ml: --

(a) is a predefined message
identifier

(b) is a variable identifier

(c) is a written message

15

:Nl: specifies the starting line of
the display. If the message is
already defined with positioning
parameters, :Nl: will override

(may be omitted. Default: if no
positioning parameters are inherent
to the message, the message is displayed
starting with the first line available
on the screen at the time the command
is made. If sufficient space is

unavailable, no message is displayed
and the author shall be informed at the
programmer's discretion, or, if space
is available, the message ":Ml: too
large" will be programmed.)

:Wl: is a special consideration in
displaying the line, e.g.,

CENTER) may be defined
) semantically

SPELL-OUT)

)

RIGHT TO LEFT) by the author (see 2)

(may be an identifier for an author-
defined routine describing the method
of display)

8. ERASE [specifies an area of the screen to be

erased]

Form: ERASE :Ml:

where

:Ml: --

(a) identifies a message previously
displayed to be erased from the
screen as it was most previously
displayed

(b) is :N1:, :N2: when
r,

:Nl: is the first line to be

erased

:N2: is the last line to be
erased and all lines

between are to be erased

9. POSITION SLIDE :Nl:

SHOW SLIDE :Nl:

REMOVE SLIDE :Nl:

10. POSITION AUDIO :N1:

16

[positions slide and opens shutter]

[Closes the shutter; must be included if
new slide is to be positioned with shutter

closed]

where

:Nl: identifies a frame on the slide
projector

PLAY AUDIO :Nl: [positions and plays]

where

:Nl: identifies the audio message to

be played

11. RESPONSE [indicates that a student response is to

be accepted]

Form: RESPONSE :Ll: :Wl:

where

:Ll: is an EP identifier; refers to
a display guide on which the area
for the student response is indi-
cated by a box with the EPID

associated

:W1: indicates the method of response:

KEYBOARD

PEN

(may be omitted, Default: KEYBOARD)

12. EVALUATE RESPONSE [precedes a description of evaluation action
and criteria for action; may be a routine

defined in 2]

Form:

17

IF :Cl:

OR IF :C2: THEN :Al:

JUDGE :Wl:

ELSE IF :C3:

AND IF :C4:

OR IF :C5: THEN :A2:

JUDGE :W2:

where

:Al:

:A2: denote actions to be taken, e.g.,

DISPLAY :Ml:

CALL :R1:

:Cl:

:C2:

:C3:

:C4: are conditions written semantically
by the author
(see Keyword Definitions)

:W1: is either CORRECT, INCORRECT, or
UNANTICIPATED (may be written CA,

WA, UN, AA (no judgment), or
simply as an identifier, e.g.,

Cl

CA1, etc.)

(may be omitted)

18

13. CALL [indicates that a routine is to be performed]

CALL :R1: {:P1, P2, P3:1

where

:R1: identifies the routine to be

performed

:Pl, P2, P3: are parameters to the
routine

(may be omitted; if specified the
routine must have a list with the
same number of items referring to

data in the routine)

When a routine is called, the coding sequence branches to the

beginning of the routine and proceeds until the end of the routine

is reached. The coding sequence then branches to the statement

immediately following the CALL command and proceeds. Units, modules,

objectives, and pages may all be called as routines.

14. CONTINUE [indicates that course execution is
interrupted until the student presses the
CONTINUE key, space bar, etc., depending

on the hardware available]

15. REFER [indicates that a paradigm will describe

the logical flow of a coding sequence]

Form: REFER :R1:

where

:R1: identifies the paradigm

The placement of the REFER command determines the coding sequence it

will govern. If the command immediately follows a UNIT, MODULE,

OBJECTIVE, PAGE, or routine identifier, then the paradigm will demon-

strate the logical structure of the unit, module, etc. If the REFER

command follows an EVALUATIVE command, then the paradigm will govern

the answer-processing logic.

