
DOCUMENT RESUME

ED 070 299 EM 010 592

AUTHOR Rigney, Joseph W.; And Others
TITLE Computer-Aided Performance Training for Diagnostic

and Procedural Tasks.
INSTITUTION University of Southern California, Los Angeles. Dept.

of Psychology,
SPONS AGENCY Office of Naval Research, Washingtcn, D.C. Personnel

and Training Research Programs Office.
REPORT NO USC-TR-70
PUB DATE Oct 72
NOTE 97p.; See Also EM 010 593

EDRS PRICE 14F-$0.65 HC-$3.29
DESCRIPTORS Behavioral Science Research; *Computer Assisted

Instruction; Computer Graphics; Computers;
Iastructional Technology; *Programed Instruction;
*Programed Materials; Programing Languages; *Task
Performance

IDENTIFIERS L1SP; TASKTEACH

ABSTRACT
Two computer programs for computer-assisted

performance training were developed to give the students the
opportunity for concentrated practice of troubleshooting and
procedural tasks in naval electronics. In contrast to the usual
approach taken in computer-assisted instruction (CAI), these programs
simulate essential aspects of devices and tasks and continuously
update their states during a practice session; they generate
responses to a student's inputs from that student's history and
simple list-structures; they are made specific to particular devices
and tasks by data modules (therefore no "CAI language" is used) ; and
they offer the student several options for drills and for receiving
advice during practice. The LISP variation of the 1ASKTEACH programs
was used and has been reviewed. These programs are being converted to
run in a new type of program graphics terminal with two integral
minicomputers. This terminal will be the basis for small "stand
alone" CAI systems offering static and dynamic graphics,
random-access photographic slides, and front panel simulators.
(MC)

FIL:.!ED FROM BEST AVAILABLE COPY

BEHAVIORAL
TECHNOLOGY LABORATORIES

Department of Psychology

University of Southern California

This document has been approved for public release and sale;
its distribution is unlimited. Reproduction in whole or in part
is permitted for any purpose of the United States Government.

U S DEPARTMENT OF HEALTH.
EDUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRO
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGOBIATION ORIG
INATING IT POINTS OF VIEW OR OPIN
IONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU
CATION POSITION OR POLICY

DEPARTMENT OF PSYCHOLOGY

UNIVERSITY OF SOUTHERN CALIFORNIA

Technical Report No. 70

COMPUTER-AIDED PERFORMANCE TRAINING
FOR DIAGNOSTIC AND PROCEDURAL TASKS

October 1912

Joseph W. Rigney
Douglas M. Towne
Carole A. King

Edward T. Langston

Prepared for

Personnel and Training Research Programs
Psychological Sciences Division

Office of Naval Research

Contract N00014-67-A-0269-0012
Contract Authority Identification No. NR 154-295

Reproduction in whole or in part is permitted
for any purpose of the United States Government

THIS DOCUMENT HAS BEEN APPROVED FVR PUBLIC
RELEASE AND SALE; ITS DISTRIBUTION IN UNLIMITED

Unclassified

DOCUMENT CONTROL DATA . R & 0
NT. "AA . 10el...lion of 1,1e, 1...1, al strOs. rI rootlet...! ,.ma WI. . n,,, I. v/11..4 bro the rat: A r.../ i . t ..., N/A...A

o f1,./ ,...t. C Vivi II ft Poor;

Behavioral Technology laboratories
University of. Southern California
Los Angeles, California 90007

Unclassified

. AI 1100 V I. IL I.

COMPUTER-AIDED PERFORMANCE TRAINING FOR DIAGNOSTIC AND PROCEDURAL TASKS

_ _ _______
.r sc.., I iVI" NOT CS (r3pe III tsmS1 mml mfr., rt.. risk, ,

Technical Report 70 October 1972
.. So ,..011,5. o I- all nor, mrIrIler mrIml, MAO norm./

Joseph W. Rigney Carole A. King
Douglas M. Towne Edward T. Langston

4 Al AMA T Il i t

September 1972

I*. TOI Al. NO OT I ' S , E S

82

Iv NO 0 . I 1 ,

9
is CON I AC I CIA GA.. I AO

N00014-67-A-0269-0012
A ORO.. C T AO

NR154-295

J.

IS. OSAGIN 10A AT no. I . oko I 'A.,.

Technical Report 70

SD. 0 'At A At 00 A r .60.1 i Atv MAT, menber Thal nosy tar r.;1
001 report)

It, DIS1110JTION ST TE4113.3

THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE;
ITS DISTRIBUTION IS UNLIMITED

I, SuAALIPSEA t A V NO TT, I: SPOASOI/INO ssi, . A, c / y. t

Personnel and Training Research Programs
Psychological Sciences Division
Office of. Naval Research

13 HS 3.11C 1

Two computer programs for computer-aided performance training were
developed. These programs were designed to give students the opportunity
for concentrated practice of troubleshooting and of procedural tasks. In

contrast to the usual approach taken in CAI, these programs simulate
essential aspects of devices and tasks and continuously update their states
during a practice session; they generate responses to a student's inputs
from that student's history and simple List- structures; they are made
specific to particular devices and tasks by data modules, therefore no
"CAI language" is used; and they offer the student several options for
drills and for receiving advice during practice. (U)

These programs are being converted to run in a new type of programmable
graphics terminal with two integral minicomputers. This terminal will be
the basis for small "stand alone" CAI systems offering static and dynamic
graphics, random-access photographic slides, and front panel simulators. (U)

DD (pAnr 1)

010 I.su I. 6801

3

Unclassifi,d
hCUTIty l III m

Unclassified
- 61,11 SO'

.- .

Computer-Aided Instruction

Task Simulation

Generative Programming

Maintenance Training

Computer Progranning

DD I F. ?ni .51473 illAcK)

4

Unclassified
Security

ACKNOWLEDGMENTS

This work was made possible through the support and encouragement
of Dr. Marshall Farr and Dr. Joseph Young, Personnel and Training Research
Programs, and Dr. Glenn Bryan, Director of Psychological Research Division,
Office of Naval Research. Their continued support is gratefully
acknowledged.

This U.S. Naval Schools Command, Treasure Island, San Francisco,
supplied students for testing the program. The interest and encouragement
of Mr. Robert Cushing, Educational Advisor at that Command, is most
appreciated.

5

ABSTRACT

Two computer programs for computer-aided performance training were
developed. These programs were designed to give students the opportunity
for concentrated practice of troubleshooting and of procedural tasks.
In contrast to the usual approach taken in CAI, these programs simulate
essential aspects of devices and tasks and continuously update their
states during a practice session; they generate responses to a scudent's
inputs from that student's history and simple list-structures; the'y are
made specific to particular devices and tasks by data modules, therefore
no "CAI language" is used; and they offer the student several options
for drills and for receiving advice during practice.

These programs are being converted to run in a new type of program-
mable graphics terminal with two integral minicomputers. This terminal
will be the basis for small "stand alone" CAI systems offering static and
dynamic graphics, random-access photographic slides, and front panel
simulators.

.5

4

TABLE OF CONTENTS

Section Page

I. VARIETIES OF CAI I

II. TASK STRUCTURES 4

III. EQUIPMENT STRUCTURES 8

IV. INSTRUCTIONAL STRATEGY 10

V. COMPUTER PROGRAMS FOR PERFORMANCE TRAINING 12

Introduction 12

TASKTEACH Programs 13

VI. COMPUTER ASSISTED PERFORMANCE TRAINING IN DIAGNOSTIC
SKILLS 17

Troubleshooting Program Subroutines 17

VII. COMPUTER-ASSISTED PERFORMANCE TRAINING IN PROCEDURAL
SKILLS 23

Program Subroutines 23

System Commands for Interaction and Control 26

VIII. PROGRAM TESTING 32

Troubleshooting Program Tests 32

Procedural Program Tests 39

IX. FUTURE DEVELOPMENT 44

APPENDICES:

A MAMPLE OF LISP 1.85 FUNCTION 46
B INSTRUCTIONS FOR USING THE TROUBLESHOOTING PROGRAM 49
C INSTRUCTIONS FOR USING THE PROCEDURAL PROGRAM

. . 69

REFERENCES 82

LIST OF FIGURES

Figure Page

1. General modular structure of programs 15

2. Diagnostic (troubleshooting) program modules 18

3. Typical dialogue between student and troubleshooang
program 19

4. Procedural program modules 24

5. Availability of commands in modes 28

6. Graphic representation of a task structure 29

7. Typical dialogue between student and procedural program . . . 31

-iv-

LIST OF TABLES

Table Page

1. Data from Test of Troubleshooting Program 36

2. Frequency of Use of Self-Tests and Drills During
Practice Sessions 37

3. Mean Frequency of Use of System Commands by Students . . . 42

4. Mean Frequencies of Errors 43

-v-

COMPUTER-AIDED PERFORMANCE TRAINING FOR DIAGNOSTIC
AND PROCEDURAL TASKS

SECTION I. VARIETIES OF CAI

There are numerous ways to use computers in interaction with students

to create and to control learning experiences. The way most often used

;volved from programmed instruction, not surprisingly, since an obvious

way to get started was to implement this known instructional procedure

with relatively simple data-processing technology. In this approach,

detailed organization of the material to be learned, and detailed

specification of computer and student responses in the interaction falls

on the :it who prepares the course before instruction commences. The

unit of interaction often is somewhat similar to an objective test item

format and is called a frame. Hundreds of frames must be written by the

course preparer and tried out on students, following a procedure not

significantly different from preparation of programmed instruction. The

prescriptions from programmed-instruction days regarding how to construct

"good" frames are applicable. Eventually, a long sequence of tested

frames is developed and judged suitable for use on a particular popula-

tion of students.

Other varieties of CAI have been described by Carbonnel (1972),

Feurtzig (1971), Uttal (1968), and others. In some of these, the inves-

tigator has been concerned with finding ways of using more of the poten-

tial of computers. After all, they are, in compa.C.3on to students, very

high speed processors, capable of executing thousaods or hundreds of

-1-

10

thousands of instructions in a fraction of a second. They can store

mill ions of units of information, and access any selected group of units

in mil 1 iseconds. With the proper logic, they can sort, select, transform,

concatenate, substitute, replace, search, update, decode, or do any of

dozens of other operations between the time a student en ters data through

a terminal and the time an "immediate" response is required.

Our long-term objective has been to find ways to utilize more of

the power inherent in the digital computer for creating and controlling

condit ions for learning that would be imposs i.b le ly; any other means .

The computer's unique role is to do things that could not otherwise be

done at all and that immensely enhance the effectiveness of learning

environments. We do not suppose that our techniques have fully explored

this potential of the computer, but it is toward this end that we have

produced the programs described here.

We do not believe our approach is the only approach, or that the

evolution of CAI from programmed instruction is not fruitful. CAT is

in very early stages of development. It is in these early stages, we do

believe, that many different approaches should be developed and tried out.

The principal characteristics of our approach are:

1. The computer programs contain the majority of the logic for

creating the dialogue with the student. There is no "CAI

language" in the sense of Coursewriter, Planit, etc. The

programs operate on simple lists which constitute the "data

module."

2. The computer programs contain general logic. The addition of

the data module makes a combination that is specific to a

particular equipment Upon which the tasks are to be performed.

-2-

3. The interaction with a student is unique to that student. The

interaction is generated by reference to continuously updated

histories of that student's responses and of task and equipment

states.

4. There are no long sequences of programmed instruction frames to

write. Instead, comparatively short list-structures are

prepared from analysis of equipment and tasks.

5. This brand of CAI is intended to give students the opportunity

to practice job-related tasks. It is not oriented toward

teaching "theory."

Of the necessary hardware and software elements for a complete CAI

system, we have chosen to work on the computer programs that sustain

the interaction with a student while he is learning. It was convenient

to use time-sharing systems to develop these programs. In fact, they

could not have been developed without the powerful programming languages

such as Lisp, PL/1, Basic, and Fortran, that these systems offer.

These resources make writing and debugging programs on the order of ten

times faster in comparison to using batch systems. It is not particularly

convenient, and it is not yet cost-effective, to use these same time-

sharing systems to implement CAI in a school. Therefore, this report

will be about computer programs that have been developed and tested as

programs. Implementation testing will follow, using quite different, and

much cheaper hardware, than was used for program development.

SECTION II. TASK STRUCTURES

A convenient, and quite general way to describe procedural tasks is

in terms of goal and action hierarchies. Some endpoint goal is identified.

This can be attained only by successively attaining intermediate goals.

Each intermediate goal is accomplished by performing all or a subset of

a set of actions. Variations in sequence and other relationships among

actions and goals that depart from a simple hierarchical structure can be

described by cluste.7ing operators. These three elements, goal descriptions,

action descriptions, and clustering operators, are necessary to describe

any task structure. The task structure may be extended downward to a

level of detail that suits the requirements for its use. When the des-

cription is to be used for generating instructions co a student telling

him how to perform a task, the downward extension need go only as far as

necessary to fully instruct the most naive students from a particular

population. This usually is far above the "time-and-motion" level used

by industrial engineers. Where tasks are performed on equipment inter-

faces, it is sufficient to specify what control is to be operated, and

the terminal state of the control or associated display that is required

as a consequence of the operation. Several advantages of this approach

to describing task structures are:

1. Computer program logic can be developed to process the syntatic

structure composed of goal, action, and clustering operator symbols, and

to supply the semantic structure to the student by substituting verbal

statements for these syntatic codes when communicating with the student.

-4-

13

2. The hierarchical nature of the description allows the student to

work at any level of detail appropriate to his needs. If he already

knows how to perform sections'of a task structure, he can skip through

these at higher goal levels, until he reaches a section he does not know

so well. He can go into this section at a finer level of detail in his

practice.

3. Actions are clustered under goals, so that the two form conven-

ient units to learn and remember. Actions belonging to a cluster can be

associated with the name, the goal description, of that cluster. Thus,

there is an isomorphism between the task structure and organizations

known to facilitate learning and remembering.

4. "Maps" of task structures can be used to help the student grasp

the syntatic relationships in the structure..

5. Clustering operators permit descriptions to the computer program

and to the studentof special goal-action relationships encountered in

many tasks. The operators that have been found sufficient so far are

described below. The code names for them are recognized by the computer

programs for teaching procedures: SEQ, ANY, ALL, ANYN, IFIN, IFEX, IFIC,

REP, REPU, UNDO.

SEQ: All subgoals or actions associated with the goal must be per-

formed in a prescribed sequence.

ANY: Performing any one of a set of goals or actions is sufficient

to accomplish the next higher goal.

ANYN: Performing any prescribed subset (N) of a set of goals or

actions is sufficient to progress in the task structure.

ALL: All goals or actions in a set must be performed, but they can

he performed in any order. Sequence is unimportant.

-5-

14

IFIN: If some condition internal to the task structure is true,

then some particular action should be taken, otherwise skip that action.

For example, if the student has put a multi-mode device in a particular

mode, there may be a goal or action peculiar to that mode. The procedural

computer program decodes this operator and informs the student at the

appropriate point in its interaction with him.

IFEX: Without on-line front-panel simulators, the computer program

cannot sense the results of certain actions on displays. In general,

with this operator, the program asks the student questions about the

"state" of the external world. It uses his answers to select the imme-

diately following part of the task structure.

IFIC: (If certain initial conditions are true..) many devices have

attachments, and there may be a variety of other initial conditions from

which the student wishes to establish a particular configuration for a

practice session. This operator allows the computer program to ask the

student questions about which of a set of initial conditions the student

wishes to be true. This subset of initial conditions then is used to

select appropriate sections of the task structure. For example, if there

is no telephoto lens for a camera the student is learning to operate

the part of the task structure concerned with using a telephoto lens is

left out of the practice session.

REP: Certain goal-actions clusters are used repetitively. For

example, removing an access plate may require removing ten screws. The

actions for unscrewing a screw would be repeated nine times. This

operator allows the program to handle this situation without requiring

that the goal-actions cluster be represented in the task structure ten

times.

-6-

15

REPU: Frequently, actions must be repeated an indefinite number

of times until a desired result occurs. This operator represents this

situation.

UNDO: In working on devices, there are occasions when a goal that

was attained at one stage must be "undone." A common example is detuning

a transmitter after it has been tuned. This operator allows the program

to instruct the student properly F.rom only one specification of the

cluster.

DIFFICULTY LEVEL: Goal-actions clusters may be categorized in terms

of difficulty level, if expert judgment is available, or if some optimizing

algorithm was used. This operator should not be used without these sources

of information. By setting a desired difficulty level, a student can

learn to perform the task in a way which is suited to his level of

learning. As his skill increases, and he requests higher levels of

difficulty, the program will introduce new alternatives which are more

difficult to perform. An alternative strategy was used in the testing

of the procedural program. Students could repeat practicing parts of

the task structure that were difficult for them as many times as necessary

to achieve a criterion level.

-7-

16

SECTION III. EQUIPMENT STRUCTURES

It is reasonable to suppose that students learning 'to operate or

to troubleshoot equipment develop some sort of mental representation of

equipment structures that serves them, with appropriate "extended

memories" in the form of visual aids and cues, and with appropriate

feedback and knowledge of results, in guiding their performance. This

mental representation probably includes a number of different ways of

"looking at" structure, depending on the immediate performance require-

ments, made possible in part by the associative nature of human memory.

A physical analog, no doubt immensely cruder, and probably far too

deterministic, can be found in circuit analysis computer programs. For

example, one widely used program can "look at" a circuit from the stand-

point of DC voltages, AC rms voltages, effects of particular transients,

sensitivity relationships, and worst case conditions.

If this assumption is correct, a primary objective of training must

be to teach structure in ways such that the student is led to develop a

sufficient number of related mental representations. Electronic equip-

ment, e.g., a radar repeater, characteristically is described in technical

manuals in highly fragmented ways that require the student to spend a

great deal of time analyzing schematics and block diagrams to put together

more useful mental representations. For example, if the goal is to learn

to troubleshoot an electronic equipment from front panel symptoms, then

the relationships among such symptoms and the circuitry must be learned.

One way to facilitate this learning is to give the student "maps" of this

-8-

particular structure that he can refer to while practicing troubleshooting

Once he learns effective troubleshooting procedures, he can, if necessary,

learn to reorganize the, more general maps in his technical manual. But,

to ask him to mentally reorganize material in the technical manual while

attempting to practice troubleshooting on-line with a CAI system would be

intermixing two difficult tasks.

There are variously sophisticated ways of presenting equipment maps to

students. In the present case, during the tests of the computer programs,

the simplest possible way was used: printed diagrams with explanatory

text in reference manuals. However, a longer-term objective would be to

help the student develop what might be called "associative multi-

representations" (AMRS) of structures. That is, many related t;emantic

structures could be associated with each other and could be derived from

the same "bare bones" or syntactic structur. We might suppose that the

result would be somewhat analogous to results of language learning. Some

sort of "deep structure" might be learnel that would serve as the basis

for variations which would be useful, in combination with similar AMRS of

task structures, in generating the performance required at the moment.

This longer term objective might be approached through the use of com-

puter graphics, a possibility that now is under investigation. It is

expected that this will be an effective way to extend the current purely

drill and practice CAI programs into instruction in "theory."

-9-

18

SECTION IV. INSTRUCTIONAL STRATEGY

Rigney, Fromer, and Bond (1967) discussed fundamental considerations

for an instructional strategy for computer-aided performance training, and

reviewed several adaptive control and optimization models with possible

transfer value for CAI. The strategy that was developed from these con-

siderations is based on several assumptions:

1. Effective performance of non-trivial tasks requires that several

different subskills be integrated: i.e., "called up" at appropriate

points; and that the performer monitor his own performance. (A descrip-

tive model of how performance might be organized was presented by Rigney

(1970).

2. Learning'how to perform job-related tasks can be accomplished

by practicing job-related tasks in permissive environments which offer

"look-back" and "look-ahead" analysis and advice to the student.

3. Adaptation to individual differences can be accomplished by

(a) student-controlled options, (b) self-tests which indicate to the

student his current level of proficiency, (c) "trials-to-criterion"

logic that allows differential practice on difficult and easy parts of

the task, and (d) "fall back" levels in which drills in necessary sub-

skills are available. These assumptions are based on an appreciable

amouat of experience in observing and analyzing the performance of

procedural and troubleshooting tasks in electronics maintenance.

Their implications are essentially prescriptive. As Atkinson and

Paulson (1972) pointed out, instructional psychology will have to operate

-10-

19

in a prescriptive mode for some time without substantial guidance from

learning theory until appropriate theory can be developed.

20

SECTION V. COMPUTER PROGRAMS FOR PERFORMANCE TRAINING

Introduction

Several intermediate models of the current programs were developed,

with each succeeding model incorporating improvements relating either to

more efficient internal processing or to additional instructional

features. Several different programming languages were used at dif-

ferent times, as a matter of convenience or cost-reduction. The initial

logic was written in LISP 1.85, and was oriented toward troubleshooting

basic circuits and operating test equipment (Rigney and Towne, 1970). It

was tested on students in a Naval electronics school with a data module

composed of list-structures, describing a symptom-malfunction matrix for

a phase -shift oscillator and the task structure for determining the

frequency and voltage of an unknown signal with an oscilloscope.

LISP is an interesting language, with powerful list-processing

capabilities. Its recursive features are particularly. appropriate for

processing task structures. Since it was possible to write special

recursive functions and to call them in a program, the initial develop-

ment of the basic characteristics of the TASKTEACH programs was greatly

facilitated by the use of this language. An example of a typical LISP

function is given in Appendix A. The LISP version of TASKTEACH was

capable of administering practice in using test equipment, or a drill

in identifying front-panel controls and their modes of operation, or

practice in troubleshooting a basic circuit. The student could shift

-12-

21

back and forth from one of these three to any other one. It was

anticipated that these features would be useful in automated laboratory

training.

The availability of LISP in the beginning of this work was a

fortunate circumstance. LISP is, however, not necessarily a good language

to use for implementation; it is relatively slow, it is not widely avail-

able, it does not do computations efficiently, and it is a difficult

language to learn. It also became economically more appropriate to use

different, more conventional programming languages. Consequently,

subsequent development of the computer programs was done using commonly

available programming languages. The current versions are in Fortran IV,

because it is currently the best language available on the cheapest time-

sharing system available. Differences among programming languages like

Basic, PL/1 and F ?rtran IV are not so great that translation from one to

another is a major problem. Each has minor advantages and disadvantages

for a particular kind of application.

TASKTEACH Programs

Currently, the generic term, TASKTEACH, includes two large computer

programs, each composed of a number of subroutines. Both programs are

developments from work originally done with the LISP language. However,

both programs contain new features and both necessarily use logic that

is different from the logic that would be typical of LISP programming.

Although these two programs were developed separately, they could be

readily used together by the addition of a small executive routine. Both

programs are organized in a similar way, which probably is a standard

way to organize fairly large programs for core-swapping and to preserve

-13-

22

a certain amount of open-endedness. The general format is illustrated in

Figure 1.

Both programs incorporate the instructional strategy discussed

above, although they implement it differently. Both are what Uttal (1968)

calls generative, in that they generate or "put together" the interaction

with each student. Therefore the content of this interaction is unique

to a student. The programs do this by, in effect, "solving the problem"

or "performing the task" along with the student. Since the programs do

it right, they "know" when the student makes an error, or is using an

ineffective strategy, and they "know" what advice to give a particular

student when he asks for one of several categories of advice provided

for in the programs. With this approach, a great deal of information

processing goes on between a student's input--an action or a command--to

the programs and the programs' replies to the student. We believe this

is an appropriate use of computer power in the long term. Two or three

seconds is sufficient time for a computer to accomplish a rather startling

.number of information-processing operations, at whatever level they may

be viewed, considering that cycle times today range from around 300

nanoseconds to around 2 microseconds, and only one to three cycles may

be used to execute a machine-language instruction. In the short term,

this is a relatively expensive approach to use on some current kinds of

data-processing systems. It is not particularly expensive, however, if

used in a dedicated system based on minicomputers.

The two programs included in TASKTEACH are described separately

below. The troubleshooting program was designed to give students who

are attending a school and are learning "theory" by other means, the

opportunity to practice troubleshooting in a permissive and supportive

-14-

23

SPECIAL
FUNCTION

PREPROCESSORS

INITIALIZERS

COMMON
FUNCTIONS

SPECIAL

FUNCTION

I SPECIAL

i FUNCTION 1

L J

Fig. 1. General modular structure of programs.

-15-

24

learning environment. The procedural program was designed to teach

students who might or might not be attending a school on the same equip-

ment, how to operate that equipment. Students who know nothing about

the equipment would necessarily have to spend more time o. identifying

and locating controls and displays than those who had some familiarity

with it. The program was designed to work with either population.

We emphasize, again, that our concern up to this point has been

with developing software, the terminals we used to test these programs

are not desirable for student use. Although the troubleshooting program

could be used effectively with a simple alphanumeric CRT or a teletype,

the procedural program should not be used for students with such terminals.

Its potentialities can be exploited only with a graphics terminal with a

pointing device for input.

SECTION VI. COMPUTER-AIDED PERFORMANCE
TRAINING IN DIAGNOSTIC SKILLS

This program operates on a data module descriptive of essential

features of a particular device to simulate equipment characteristics

and states, to generate the interaction with the student, including

providing on-demand advice to him, and to record student responses. The

program is modularized, as is shown in Figure 2, modules consisting of

subroutines that can be called from other modules, or by commands the

student can use.

The two modules called MAIN and ACTON must be resident in core while

the program is running. The other modules can be read into core from disk

memory as needed. These are concerned with implementing specific functions

needed only at particular times. Following a brief discussion of these

subroutines, interactions with the student generated by the subroutines

that do communicate with the student are illustrated in Figure 3. Instruc-

tions for using the program are reproduced in Appendix B.

Troubleshooting Program Subroutines

MAPPER. This subroutine may be used to preprocess a data module to

reduce CPU costs when the student is on-line. In effect, it re-arranges

certain parts of the data into arrays at a level intermediate between the

human analyst's output and the processing required during interaction with

the student. MAPPER also processes the data module's disk file to compute

pointers to use in accessing parts of the file. Since it is a utility

program, it is not shown in Figure 2.

-17-

26

M
A
I
N

A
C
T
O
N

C
O
U
R
S
E

P
R
O
G

T
E
S
T

R
E
V

N
E
X
T

"
Q
U
I
T
"

O
V
E
R

D
O
N
E

F
i
g
.

2
.

D
i
a
g
n
o
s
t
i
c

(
t
r
o
u
b
l
e
s
h
o
o
t
i
n
g
)

p
r
o
g
r
a
m

m
o
d
u
l
e
s
.

S
E
T

I

D
R
I
L
L

P
R
O
B

"
Q
U
I
T
"

ALIGN VIDEO BEAK!

ACTION(S)? PROG

THERE ARE (52) POSSIBLE MALFUNCTIONS REMAINING

ACTION(S)? 11,12

29.

30.

VIDEO SWEEP IS (NORMAL)

IS (NORMAL)[CURSOR SWEEP'

ACTION(S)? PROG

THERE ARE (49) POSSIBLE MALFUNCTIONS REMAINING

ACTION(S)? S2 -2,I16

31. IMUkALIGN SWITCH S21 NOW SET TO (ALIGN)

32.

ACTION(S)? S2 -1,I16

IS (NORMAL)

33. (NORM -ALIQN SWITCH S21NOW SET TO (NORM)

(--- > ALIGN VIDEO BEAM SHOULD NOT BE CHECKED IN
THIS CONFIGURATION)

ACTION(S)? S2-1

LEGEND:
() Computed or retrieved

from data module based
upon prior performance.

C=7 Retrieved from data
module--prior per-
formance does not
affect.

Underline--student
input.

Remaining text printed
from fixed formats in
program.

(--->fNORM-ALIGN SWITCH S21 ALREADY SET TO (NORM))

ACTION(S)? PROG

THERE ARE (48) POSSIBLE MALFUNCTIONS REMAINING

ACTION(S)? REV

ENTER THE MALFUNCTION(S) WHICH YOU SUSPECT? M51

fik5C9 SHORTED; OR K8B OPEN CONTACT 5
THE MALFUNCTION)

CHECK YOUR STEP NUMBER (1)

(COULDN'T BE

(FOR SOME REASON, YOU ARE NOT SUSPECTING THE
ACTUAL MALFUNCTION)
THERE ARE (48) OTHER MALFUNCTIONS WHICH COULD
CAUSE THE INDICATIONS YOU HAVE RECEIVED

Fig. 3. Typical dialogue between student and
troubleshooting program.

-19-

28

MAIN. MAIN establishes initial conditions with the subject; subject

number, course number, problem number, etc. It also contains logic for

decoding student inputs and for calling different subroutines required by

different student inputs. In this sense it is a simple executive routine.

ACTON. This subroutine is responsible among other things for keeping

the simulation of equipment states updated; e.g., front panel settings

and malfunction possibilities not yet eliminated, and for checking the

validity of proposed student actions against these current states. It

is the most essential, the longest, and the most complex subroutine in

the program. ACTON must be resident in core, with MAIN, while the program

is running with a student. However, ACTON does not communicate directly

with the student.

COURSE. This short subroutine primarily reads records from disk

files into core, preparatory to administering a particular course to a

student.

PROG. Progress is one of the on-demand advisory functions the student

can use by typing in the command, PROG. This subroutine then looks at the

current state of the equipment that the student is troubleshooting and

informs the student of the number of defined possibilities for malfunc-

tions remaining (or the number eliminated) up to that point. The communi-

cation with the student is illustrated in the instructions to the subject.

TEST. The instructional strategy allows the student to take a self-

test any time he wishes, or to take an end test when he thinks he is

ready. Two small subroutines, STES and TEST, actually are responsible

for managing the necessary processing. Both are embedded in MAIN. The

student communicates his wishes by using the commands STES and TEST.

-20-

29

REV. This subroutine manages the processing for the command, REV,

which the student can use to ask the program's advice about possible

causes of the symptoms he has observed up to that poin, in a trouble-

shooting problem. The subroutine must look at the current state of the

problem and at the individual student's action history to provide this

advice.

NEXT. This student can ask for advice about the next step to take

during troubleshooting, by entering the command, NEXT. Various considera-

tions could determine the fault-area reduction strategy used in the

subroutine. Currently, the subroutine uses a simplified Bayesian,

essentially a half-split,algorithm. The student can, as in all other

cases, take the advice of the program or not. If he does not know how

to make the test suggested as the next step, he may ask for a list of

controls that must be set for the test.

DONE. This subroutine does the necessary processing after the

student indicates to the program, by entering DONE, that he thinks he

has solved the problem. If it is a practice session, the program will

give the student knowledge of results. If it is a test session, the

program will go on to the next problem.

SET. This small subroutine is necessary only when the program is

used without front panel simulators, or the actual equipment, and the

student cannot check the current state of the front panel control

settings visually. Typing in the command, SET, will result in a list

of controls and their positions that were last changed.

OVER. This subroutine:, and its corresponding command, allows the

student to review a problem after he has finished. OVER provides for a

selective review, since it is likely that the student would be curious

only about some particular aspect of his performance.

DRILL. The corresponding command, DRILL, calls this subroutine,

which does the processing for administering two types of drills. The

student can ask for a drill in how to make front panel tests, by entering

I, or for a "backwards troubleshooting" drill if he enters M. These

drills are only two of many that could be conceived and implemented to

help students bring themselves up to the integrated performance level.

PROB. This performs operations associated with problem selection,

and is called from MAIN and DRILL. This subroutine is called automatical-

ly when the student starts each prohl,..m.

The instructions in the use of this program are given in Appendix B.

Some typical dialogue between computer and student is shown in

Figure 3. This interaction has been marked to illustrate the source of

various sections of text. Underlined words were entered by the student.

Output in parenthedis was either retrieved from the data module or computed;

in either case the particular test depended entirely upon the malfunction

being assumed by the program and the student's prior steps. Text enclosed

in boxes was retrieved from the data module, and does not depend upon the

malfunction or the student's prior work.

-22-

SECTION VII. COMPUTER-ASSISTED PERFORMANCE
TRAINING IN PROCEDURAL SKILLS

This program evolved from the less complete logic initially incor-

porated in the LISP program. That logic worked quite well in tests with

students at a Naval electronics school. Task structures could be defined

efficiently as list structures. Recursive functions were written for the

purpose operated on these lists. When all programs comprising TASKTEACH

were converted to a lass esoteric language, this part of the logic was

expanded to include more clustering operators and to provide three

instructional modes: Instruct, Practice, and Test. Additional commands

were added for the student's use during learning, and subroutines were

written to present auxiliary information in the form of photographic

slides and "to dig peeper" verbal information.

Program Subroutines

The current program includes the subroutines shown in Figure 4.

DATRED. This is a preprocessor subroutine that performs checks for

errors in an ASCII data module prepared by a task analyst, substitutes

internally used codes for certain types of verbal material,creates informa-

tive lists about the data, and writes the data module and lists on a

binary random disk file, if no errors were found. If the analyst did make

errors, this subroutine will describe to him the error(s) it has identified.

It will ask the analyst to correct the errors and to rerun the subroutine.

CAPTIVE. This is the executive subroutine. It initializes conditions,

starts communications with the student, reads into core from appropriate

-23-

32

1

F
i
g
.

4
.

P
r
o
c
e
d
u
r
a
l

p
r
o
g
r
a
m

m
o
d
u
l
e
s
.

course files, gets the student started out on the course, accepts the

system commands the student uses to communicate with the program, and

calls appropriate subroutines.

CANDO. This does the basic operations on the data module to generate

interaction with the student. It decodes clustering operators and per-

forms the different processing operations required by each. It keeps

track of the student's progress in the task structure and communicates

with the student.

PRTNAM. This short subroutine translates between the internal world

numeric codes of the program and the external world verbalization required

by the student, by reading goal and action names from a file and printing

them on a terminal.

DIAGNO. DIAGNO gives a verbal description of how to accomplish

goals. It is called when the student types a "D" followed by a goal

number.

NEXT. This subroutine is called by the command, NEXT, it gives the

student the next action(s) or goal(s) that could logically be performed.

MORE. This is the subroutine that, when called by MORE, reads

appropriate "to-dig'deeper" information about a goal or an action from

a random access disk file, and displays this information to the student.

It also operates a random access slide projector to show the student

appropriate slides.

HELP. This subroutine is called by the command, HELP, if the

student gets lost in a task structure, he may use this command to be

told where he is and be shown a map of the task structure.

System Commands for Interaction and Control

The program for procedural training provides three "modes" of

interaction with the student; Instruct, Practice, and Test. Unlike

the program described earlier, this program makes no assumptions about

the previous experience of the student. It can be used with completely

naive students so far as the subject-matter is concerned. The Instruct

mode will lead the student by the hand, action-by-action and goal-by-

goal through a task structure, giving him "to-dig-deeper" information

and showing him slides along the way. If the student wishes, he can

explore an entire task structure, without attempting to practice per-

forming it, or, he can, after being instructed in each goal-action

cluster, practice recalling it.

The Practice mode allows the student to practice learning a task

structure in any of several ways. He can go through the "top level,"

learning the sequence of major goals first, and then practice lower level

goal-action clusters, or he can take the opposite approach, or he can

select particular segments of the structure for concentrated practice.

The student can ask that a particular cluster be repeated over and over

as he is learning its elements.

The Test mode allows the student to "try out his wings," as it were,

by trying to perform the task structure without any help. The various

system commands the student can use to control the program are described

below, in relation to the modes in which they are available. A brief

description of each of these is given below.

1. MAIN. This allows the student to change the goal he wants to

work on.

-26-

2. MODE. The student can change to another of the three modes by

using this command.

3. W #. The student must tell the program the goal for which he

wishes to learn the actions. W stands for work, # is the goal number.

4. D#. Stands for Describe (list) the actions associated with

goal #.

5. P#. Indicates the action the student has performed.

6. GO. Is used by the student in the practice mode to clear the

CRT screen when he wishes to practice recalling actions.

7. R#. Means repeat the action cluster associated with goal #.

8. S#. Asks the program to show Slide #.

9. CR. (Carriage return) is used at the end of every student input

to signal the computer that the input is ended. When used after S#, it

will cause the next of a set of slides to be displayed if there is more

than one slide in a set. If not, CR will cause the "standard" slide to

be displayed.

10. NEXT. Asks the program, in Mode 1, to list the next action or

goal to be performed.

11. HELP. Asks the program to tell the student where he is in a

task structure and to show him a map of the structure.

12. BREAK. Is a time sharing system command that can be used to

stop the program.

13. QUIT. Tells the program the student wishes to terminate a

session.

All of these commands are described in greater detail in the instruc-

tions given in Appendix C. Figure 5 summarizes the availability of

different system commands in the three different modes. Figure 6

-27-

36

COMMANDS
MODE 1
INSTRUCT

MODE 2
PRACTICE

MODE 3

TEST

MAIN

MODE

D# AC A
P#

GO A
.

A
Rit

Pr Z rr A
Sit

CR

NEXT A. A
HELP /4.
BREAK

sUIT

L____J Available

Not available

Fig. 5. Availability of commands in modes.

-28-

OPERATE AN/ URC- :12 RECEIVER

PRESET FOR SAFETY

1 PR ESF:T TO It EC 1: E ALL

151 168 188

SUECT MODE

15 1.1.

AMV

1 1

--11811

H191 I

38 A LL

1.S RV

'-I 162 1

.3

r4d) ALL

200

ALL

FSK

164 1

186 I -F7
-I 190 I -I 190_1 190 I -I 190 I

11 1"1.:LECT BAND AND 1141:Q11:N(:1' SEE

I 0 T1' NE S1.10 SEQ

20 I

205

1 206 I

10 DO IF IN FSK MODE IF IN

I152

Fig. 6. Graphic representation of a task structure.
(Numbers refer to actions performed on the
front panel)

-29-

illustrates one way of diagramming a task structure. Figure 7 presents

a short example of a typical dialogue between a student and the program.

-30-

,e79

>?P207 P223 P216

"SET BANDCHANGE SWITCH 4S1 TO SELECTED BAND" 1
"SET DIAL LOCK (4S3) UP (RELEASE)"
"SET FREQUENCY CHANGE CONTROL (4FC) TO A FREQUENCY'S

YOU HAVE NOW COMPLETED
(-"SELECT A BAND AND A FREQUENCY")

>?NEXT

NEXT YOU MAY PERFORM

(-"TUNE SMO")

>?W110 P205 P204

-"TUNE SMO"I
"HOLD OPERATE/TUNE SWITCH (4S2) TO TUNE FOR 1-2 SECONDS"'

(rADJUST RECEIVER GAIN POT 5R15) UNTIL AUDIO Isjimpej
ISN'T PART OF THE GOAL ON WHICH YOU ARE WORKING)
LAST INPUT ACCEPTED WAS (P205)

>?P206

'RELEASE OPERATETUNE SWITCH

YOU HAVE NOW COMPLETED
(-"TUNE SMO")

>?P204

MAU

I"ADJUST RECEIVER GAIN POT (5R15) UNTIL AUDIO IS HEARD1

> ?W10

L:"ADJUST BFO IF IN FSK RECEIVE MODE"

FaUbST BFO IF IN FSK RECEIVE MODE"'
REQUIRES NO ACTION BECAUSE
(-"SET CONTROLS FOR FSK")
HAS NOT BEEN DONE

> ?P152

"SET POWER SWITCH (11S1) TO OFF"
YOU HAVE COMPLETED THE MAIN GOAL

LEGEND:
() Computed or retrieved

from data module based
upon prior performance.

C=7 Retrieved from data
module--prior performance
does not affect.

Underline--student input.

Remaining text printed
from fixed formats in
program.

Fig. 7. Typical dialogue between student and
procedural program.

-31-

40

SECTION VIII. PROGRAM TESTING

It was possible to do some limited testing of both troubleshooting

and procedural programs. The objectives were to assess how well the

programs performei.i with students without the presence of the actual

equipment, to discover errors in program logic and data modules, to

observe student acceptance, and to collect data regarding the use of the

different options in the programs. This program testing is an essential

first step thal.; must precede evaluation of the programs in a training

environment. This latter evaluation involves many, sometimes conflicting,

considerations (Bond, 1970) and should be done over a sufficiently long

period of time to allow for a series of interrelated studies to be done

with reasonably large samples of subjects. Cost is an important con-

sideration, here. It is not economically feasible to do this with a

commercial time-sharing system. The two programs that have been des-

cribed here are being converted to run in a new type of programmable

terminal that will be an economical device to use as a "stand alone CAI

system." This device is described in a subsequent section.

Troubleshooting, Program Tests

The original LISP program was tried out at the Naval Schools Command,

Treasure Island, with data modules for practice in troubleshooting a

phase-shift oscillator, and practice in determining the frequency and

peak voltage of a sine wave with an oscilloscope. For troubleshooting

practice, students were given a multimeter and a phase-shift oscillator

-32-

41

encased in an aluminum box. Test points were brought out to the surface

of the box, in the form of plug-in jacks. The student could take DC or

AC voltage or resistance measures at any of these jacks. Malfunctions

were inserted by the instructor via two rows of 15 toggle switches each,

one row to open and the other to short components. There were two

variations in the program with regard to student and program roles in

information-sampling operations. The program could be set to accept the

student's readings from a multimeter (with adjustable tolerances), or to

give the student a numerical value for DC, AC, or ohms at a test point.

In this case, the student's ability to use the multimeter and its

accuracy were excluded from the loop. In both cases, the student was

asked by the program to judge whether the value was high, normal, or low.

The student proceeded, using the program options then available (PROG,

NEXT, HIST) until he believed he had located the malfunction. He then

entered MAL and the number of a shorted or open component he suspected.

Practice in ascertaining the voltage and frequency of an unknown

wave form required a signal generator, probes and leads, and an oscilloscope.

The student had to operate the oscilloscope, informing the program, via

a teletype terminal, of his actions. He in turn was given knowledge of

results, and advice on-demand, and was told what slides to view by

operating a random-access slide projector manually.

Enough students were run on the LISP program to ascertain that it

worked and that students were interested enough to use it. It also was

clear that more sophisticated terminals were necessary for teaching

procedural skills.

The troubleshooting program subsequently was developed to give

students practice in troubleshooting from front-panel symptoms. This

-33-

42

required entirely new logic to allow the program to "track" the student

in making front panel control settings, and to do other processing

required for simulating this level of equipment complexity.

This program was tested with a small sample of students from a Naval

electronics school. Most of these students were in the last stage of the

school on the equipment they were going to practice troubleshooting. It

was anticipated that these students would be able to comment on the

validity and realism of the simulation of this equipment, the AN/SPA-66.

The students were run two at a time for a week's session. They

were given an introduction to the program, shown the reference manuals

supplementing the technical manual that had been prepared for off-line

study, and were allowed to practice troubleshooting on-line with the

program for the remainder of the week until Friday morning. On that

morning, they were given an on-line troubleshooting test. The students

were able to put in about three and one-half days of troubleshooting

practice. They were left alone, to do as they pleased after the first

morning's instruction and familiarization session. Without exception,

they chose to practice on-line from 8 a.m. to 5 p.m., with a few breaks

and time out for lunch. Although a monitor was standing by, the system

was essentially automatic. The test for the first few students consisted

of ten problems, ten more problems were added later to increase the

difficulty of the test. The program automatically recorded eleven items

of information about each student as he was working. These were written

on one large disk file. The ten students who participated generated

42,896 characters of data on this file.

A program, LINKT, was written to process the student file. This

program "deloused" the file, converted time in seconds to minutes, and

-34-

43

analyzed the data by student or by problem. The analysis by student could

be over all problems or over subsets of problems of specified size.

A summary of these data is given in Table 1.

The entries are means per problem, except for N (number of problems

attempted in a practice or test session). The categories in the table

are:

Time: Time in minutes taken per problem; i.e., to find a malfunction.

The students were not.given knowledge of results during the

test.

Tests: The number of front panel tests made during a problem.

Repl: The number of times the student asked the program to

"substitute" a good component (actually, fault area) for a

suspected one.

Solved: The proportion of problems attempted that were solved.

PROD, REV, OVER, SET: The average number of times each of these

advice commands was used by each student.

FPER: The average number of front panel errors made per problem by

each student.

N: The total number of problems attempted by each student.

The front panel test drill and the "backwards troubleshooting"

drill were not used at all by some students, quite a bit by others.

This also was true of the self-test, these frequencies are shown on

the next page.

-35-

44

Table 1

Data from Test of Troubleshooting Program

PRACTICE SESSION

STUDENT NO. TIME TESTS REPL SOLVED PROG REV OVER SET FPER N

1 9.14 10.53 1.58 .64 .30 .22 .00 .05 .00 74

2 16.39 16.42 1.06 .81 .56 .19 .14 .42 .00 36

3 14.22 17.45 1.18 .90 2.50 .98 .15 .33 .00 60

4 20.67 15.36 1.11 .80 .91 .76 .09 .64 .00 45
5 26.54 22.57 1.25 .89 .32 .39 .04 .32 .46 28

6 14.56 16.29 1.31 .94 .81 .48 .04 .13 .23 48

7 15.25 19.34 1.49 .86 .17 .12 .03 .08 .27 59

8 14.19 15.83 1.44 .79 .33 .67 .06 .35 .90 48

9 16.75 19.33 1.10 .85 2.23 .15 .03 .08 1.03 40
10 18.29 18.92 1.14 .86 1.31 .57 .31 .57 .49 51

TEST SESSION

STUDENT NO. TIME TESTS REPL SOLVED SET FPER

1 12.10 16.40 3.40 1.00 .00 .00 10
2 8.10 16.60 1.00 1.00 .10 .00 10
3 13.33 21.33 1.00 1.00 .22 .00 9

4 14.25 23.75 1.00 1.00 .50 .00 4
5 15.25 18.20 1.45 .80 .00 .25 20
6 12.75 21.30 1.15 .95 .00 .30 20
7 12.65 22.20 1.35 .90 .00 .40 20
8 12.96 16.58 2.04 .50 .17 .42 24
9 18.25 21.55 1.90 .90 .10 .10 20
10 15.80 18.80 1.50 .85 .00 .00 20

-36--

45

Table 2

Frequency of Use of Self-Tests and Drills
During Practice Sessions

Student No. STEST IDRILL MDRILL

1 0 0 0
2 3 0 4
3 1 2 22
4 0 0 8

5 4 0 1

6 14 6 7

7 8 1 0
8 7 5 4
9 11 0 0

10 6 0 0

Students were interviewed at the end of the week, after taking the

test. They were asked the following questions. "Majority"and "minority"

comments are summarized under each question.

1. What was the best feature of TASKTEACH?

Mai: It took you through all the variations of front panel settings

and front panel tests as they are used for troubleshooting, and related

these to the circuits. It forced you to think about these relationships.

It made you look "deeper" for front panel symptoms than you do in the

regular troubleshooting practice.

Min: Its quickness--you could cover a lot of problems in a short

time.

2. What was the worst feature of TASKTEACH?

You couldn't see the (AN/SPA-66) CRT.

Min: Block diagrams (in reference manual) for some sections were

not supplied.

-37-

46

3. Which of the troubleshooting support functions was most useful
to 222.?

Mai: PROG and REV (invariably discussed together).

Min: None.

4. Which was least useful to you?

Mal: SET

Min: OVER (at this time, OVER was not a selective review--it listed

the student's entire history)

5. Did you use the (front panel test _Ka and "backwards troubleshooting
(M)) drills?

hai: M drill was used more, was considered more helpful.

Min: Severe]. did not use either drill.

6a. What improvements would you suggest in the program?

Mai: (Two suggestions) make OVER a selective review and present

CRT symptoms graphically rather than verbally.

Min: None

6b. What improvements would yal suggest in the references?

Mai: None. They were far better than what they had at the schools.

Min: Front Panel Tests and Front Panel Organization manuals not

necessary if you knew something about the SPA-66.

7. At what point did you feel you understood you knew how to use
TASKTEACH?

Mai: Tuesday morning (first day of practice)

Min: None

8. Do you believe something like TASKTEACH would be a worthwhile
addition to the Navy schools?

(Unanimous): Yes. Some amplifying comments were:

I learned more about the SPA-66 in one week than I did in three
weeks at the school.

Worthwhile--it exposed me to more possible troubles.

Procedural Program Tests

The procedural program was tested using students from a local trade-

technical school. The objectives were to test the program logic, to

identify errors, and to look for major differences between using the

program with the actual equipment front-panel present for the student to

work on and using colored slides of the equipment front-panel. The full

potential of this program will not be realized until it can be converted

to run in a graphics terminal with a light pen, or with front-panel

simulators, to reduce the level of verbalization in the student-program

interaction. Therefore, only a few subject (six) were run to identify

major problems, if any. As soon as it was apparent the students accepted

the program, could learn how to perform the procedural tasks, and major

trends in usage patterns were identified, data collection was stopped.

The students, none of whom had ever seen the AN/URC-32, the equip-

ment they were to learn to operate, were from electronic communications

classes in a technical school. They were divided into two random

groups. One group used the actual equipment and the other used the

photographic slides during their on-line practice from the program. All

students were instructed in how to use the terminal (alphanumeric CRT

operating at 300 baud and random access slide projector under program con-

trol) and in using the features and options in the program. The students

then proceeded at their own individual rates. The task was to learn

the procedures for, first, putting the AN/URC-32 into any of five receive

modes; and, second, to set the AN/URC-32 up for transmitting in any of

five modes. In some respects, this was a fairly rigorous test of the

-39-

effectiveness and appeal of the system, since the AN/URC-32 surely must

be one of the most poorly human-engineered devices in the Navy (controls

are scattered haphazardly over eleven different units and are misleadingly

or poorly labeled) and these students had no intrinsic reasons for

wanting to learn how to operate this device. They probably would never

see it again.

Students worked at the terminals until they considered themselves

ready for the performance test. They could take a self-test to determine

their readiness by using the test mode (mode 3) of the program. The

performance test consisted of putting the AN/URC-32 into a receive and

then into a transmit mode (selected by the monitor) with the power on.

They used the alphanumeric terminal with the program in test mode during

this test. During sessions, the program recorded actions by the students,

times, and errors, on disk files.

The slide group made a total of eight errors during the performance

test and the front panel group made a total of two errors. All of these

were either type 8, attempting to perform an action not part of a goal,

or type 11, attempting to perform an action out of sequence.

Times to learn the tasks were inflated by time-sharing system down

time and time-sharing system response lags, which were appreciable during

the program test. It was necessary, in fact, to change to a different

sub-system. Thus, time as a measure of "learning rate" is not reliable.

However, mode 1 was used most, mode 3 next, and mode 2 least. The fact

that the students did use mode 3, the self-test mode, rather heavily, is

of some interest. Also, the slide group required an average of eleven

elapsed hours on-line versus seventeen for the front panel group. Usage

-40-

49

trends and errors were highly correlated between the two groups, although

the group learning from slides used the HELP function slightly more

during practice, and used the NEXT function somewhat less. Error patterns

also were highly correlated; both groups made the same kinds of errors.

The most frequent type of error was attempting to perform an action that

was not part of the goal on which the student was currently working.

Table 3 and 4 presented below give frequencies of usage of different

system commands and frequencies of different types of errors, as des-

cribed on the left hand column of the table, for both groups combined.

Table 3

Mean Frequency of Use of System Commands by Students
N=6

MODE 1
Course 1 Course 2

MODE 2

Course 1 Course 2
MODE 3

Course 1 Course 2

NEXT 15.33 44.66
0 3.83 .16 .99 .16

MAIN 18.49 28.50 7.33 31.00 14.16 26.16

HELP 3.49 4.33 3.33 .16 .33 .16

MODE 9.16 7.16 5.83 3.16 4.66 5.99

R 0 .33 .16 .33 0 0

D 39.33 91.99 1.16 .16 .33 .49

P 167.49 374.33 63.16 136.32 203.66 435.83

M 1.83 .66 .16 0 0 0

W 75.49 291.66 5.99 4.50 79.16 314.33

S 18.83 43.50 2.33 5.50 .83 8.33

-42-

51

Mean Frequencies of Errors
N=6

ERRORS

MODE 1
Course 1 Course 2

MODE 2
Course 1 Course 2

MODE 3
Course 1 Course 2

1 I 2.49 8.49 2.33 2.83 3.99 3.33

2 .50 .16 0 0 0 0

3 2.49 1.16 .16 0 1.16 .16

4 0 0 3.99 .16 .99 .16

5 0 0 1.66 .16 .33 .49

6 0 0 0 0 0 0

7 0 0 0 0 .33 .16

8 19.49 86.66 6.99 6.83 10.16 37.50
9 0 0 0 0 0 0

10 0 0 0 0 0 0

11 7.16 7.83 2.83 2.49 3.33 5.83
12 4.16 5.83 2.99 1.16 .99 1.49

13 0 0 0 0 0 0

14 0 .16 0 0 0 0

15 0 0 0 0 0 0

16 4.66 5.61 1.33 2 .49 1.16

17 0 .99 0 0 0 0

18 0 .16 .33 0 0 0

19 0 .33 0 .16 0 0

20 0 0 0 0 .16 .83

1 There is no action or goal #XX
(for DXX, PXX, MXX, or WXX)

2 XX is not a goal # for DXX
3 XX is not a goal # for WXX
4 NEXT in modes 2 and 3
5 D in modes 2 and 3
6 M in mode 3
7 HELP in mode 3
8 XX not part of goal on which working
9 XX not required because of answer to IFEX question

10 XX wrong path on IFIN
11 Out of sequence
12 Already done
13 Wrong path on IFIC
14 UNDO action not same as corresponding ANY action
15 For PXX where XX is goal #, difficulty level of XX is greater than

current level
16 Main goal already done

(PXX, WXX)
17 Break key in response to UNDO question
18 Invalid slide number (SXX where g >DC> 88)
19 R in mode 1 or 3
20 No slide of map in mode 3

SECTION IX, FUTURE DEVELOP f::NT

Some of the possible configurations of hardware and software for CAI

systems were discussed in earlier work (Rigney, Fromer, and Teplitzky, 1968),

They range from large networks with one or more large computers to small,

stand-alone systems based on minicomputers. The latter have some

advantages for use in certain types of environments. For example, where

the subject-matter is classified and there are not sufficient local

resources to sustain a larger, time-sharing configuration with central

CPU and peripheral terminals. We doubt that "either-or" arguments for

these two extremes are appropriate. The variables to consider are com-

plex and there probably is room in the world for several different con-

figurations. A small programmable graphics terminal recently became

available on the market for use as a stand-alone CAI system. This device

is relatively inexpensive, yet it is surprisingly powerful if its in-

herent capabilities are recognized and are fully exploited. It also

could be aforerunner of even more powerful and less expensive program-

mable graphics terminals made possible by the remarkably swift advances

in integrated circuit, microprogramming, and memory technologies.

The programmable graphics terminal includes two integral mini-

computers, 12K of core, and an I/O interface for controlling peripherals.

It will be the basis for a stand-alone system providing randomly accessed

photographic slides under program control, static and animated graphics,

simulated front-panels with controls and displays under program control,

and both light-pen and keyboard inputs. Each of these different features

-44-

53
1

contributes uniquely to the training capabilities of the system. The

light-pen provides for pointing responses and allows a reduction in the

verbal interaction between student and program. The student can respond

to and interact with visual imagery. The graphics feature provides for

visual imagery, especially imagery that changes in relation to student

responses, and for real-time animation. The random-access slide projector,

with large back-projection screen, provides the color, definition, resolu-

tion and realism of photographic slides that is impossible to obtain by any

other comparably inexpensive means. The on-line front-panel simulators

provide for realistic simulation of equipment front panels and of tasks

performed on those interfaces. The programmable keyboard provides a

capability for displaying any special graphics symbols that are needed,

since the keys call display subroutines, and these can be changed to suit

the application. This feature also allows the creation of "function" keys.

These can be used by the student to control events in the instructional

environment. We see then, that this small system does provide the user

with a remarkably powerful potential likely to be limited more by the

users' imagination than by anything else.

The TASKTEACH programs are being converted to run in these program-

mable graphics terminals. System analysis indicates that the essential

features of the troubleshooting and of the procedural programs can be

implemented in assembly programs using less than 12K words of core, in-

cluding a data-module for the program to operate on. In an austere

configuration, different data modules, representing different "courses,"

can be loaded from magnetic tape casettes. Practicing procedural tasks,

e.g., the operation of equipment, can be immensely facilitated by substi-

tuting pointing responses with a light pen for verbal responses made via

a keyboard.

-45- 54

APPENDIX A

EXAMPLE OF LISP 1.85 FUNCTION

Some of the "flavor" of the LISP 1.85 language is illustrated by

a small function, called BEST, written for the purpose of finding the

ordinal position of the smallest value in a list of sums of squares,

called POWER. This particular function was used in the LISP version of

the troubleshooting program to provide the information for selecting the

best next test to recommend to the student. That test which would most

closely approximate splitting the remaining hypothesis set in half could

be selected by counting the hypotheses in each of the two subsets that

would be produced by applying each possible test. The number of elements

in each subset was squared and the two squares were added. The smallest

sum-of-squares would identify the desired test. It was necessary to know

the ordinal position of this test in the set of possible tests to use in

the NEXT function in the program. The BEST function is listed below:

(BEST

(LAMBDA (POWER)
(COND

((NULL (CDR POWER))
1)

((LESSP (CAR POWER)
(CAR (NTH (CDR POWER)

(SETQ K (BEST (CDR POWER))))))
1)

(ADD1 KM))

A few notes may be of use to the reader who wishes to gain some

feeling for how a recursive LISP function operates. This is not to say

that these notes will please a hardened Lisper, or will be an easy guide

-46-

to understanding LISP. In the above listing, BEST is the name of the

function. LAMBDA is used to define functions with arguments that are to

be evaluated. POWER is the name of the argument to be evaluated, in

this case a list of integers representing sums of squares, each of two

integers squared. COND is the conditional function of LISP. It takes

an indefinite number of arguments, called clauses. For the purposes of

this illustration, the first expression of a clause will be labelled pi,

the following expression in the clause will be labelled ei. These ex-

pressions are considered in sequence. The expression, pi, is evaluated

and its value is classified as true (equal to T), or false (equal to NIL).

If the first expression is true, then el is evaluated, and the value of

the conditional is the value of el. NULL has the form null(x) which is

equivalent to not(x). CDR is a primitive function in LISP which separates

the tail of a list from the first element. The CDR of 12 3 7 6 8 2 9 would

be 3 7 6 8 2 9. CAR is a primitive function that returns the first

element of a list. The CAR of the above list would be 12. LESSP is an

arithmetic function of the general form lessp(x;y). It is true if x <

NIL (false) otherwise. NTH has the general form nth(x;n). Of these

arguments, x is a list, and n is a positive integer. The value of NTH

is the list whose first element is the nth element of list x. In the

above function, x is (CDR POWER) and the value of n is found from

evaluating (SETA K (BEST (CDR POWER))). SETA is a LISP function of the

general form set (x;y). It sets x (without evaluating it) to the value

of y. (Here, it sets K to the value of (BEST (CDR POWER)). T is a way

of setting pi to be always true, so that the following ei is always done.

ADD1, addl(x), adds 1 to x, in the above example, to K. We now rewrite

Y;

-47-

56

the function with pi and ei labelled, and with the elements of NTH, that

is, x and n marked:

(BEST

(LAMBDA (POWER)
(COND

pl ((NULL (CDR POWER))
ei 1)

P2 ((LESSP (CAR POWER)

(CAR NTH* (!".tp2142) (SETQ K (BEST (CDR POWER)))))
e2 1)

p3 (T) *nth &c,r
e3 (ADD1 K)))))

In looking for the ordinal position of the lowest value in a list

of sums-of-squares called POWER, say, (12 3 7 6 8 2 9), we find that the

following will be true:

pi.: If the list (POWER) has only one element, then the position of
the BEST test is 1.

p2: Else, if the first element (CAR POWER) is less than the BEST
of rest of the list (BEST (CDR POWER)), then the position of
the BEST test is 1.

p3: Else, the position of the BEST test is 1 plus the position
of the BEST test in the rest of the list (ADD1 K).

In a list, (12 3 7 6 8 2 9), the function will find the 6th element

in the list, which is 2. If, on the other hand, the order was (2 12 3 7

6 8 9), the function would find 2 to be the first element. The value cif

BEST, in this case, would be 1 instead of 6.

It is worthwhile noting that the original LISP program consisted of

34 special functions of this general nature, most of them considerably

more crmplex than BEST.

APPENDIX B

INSTRUCTIONS FOR USING THE TROUBLESHOOTING PROGRAM

A New Tool for the Learner to Use

The first industrial revolution substituted machines for manual

labor. In the second industrial revolution, computers perform and con-

trol operations that formerly had to be done directly by human intelli-

gence. Computers store human intelligence in the form of computer programs.

In this way, operations can be done at a time or place distant from the

human originator, they can be done over and over, and they can be done at

great speeds.

The computer that is the heart of the time-sharing system you will

use has a basic cycle time measured in billionths of a second. Although

you will be on-line with this computer for an hour or more per session,

it will require only a few seconds of processing time for all of its

transactions with you, and it will be serving many other customers during

that time.

(TASKTEACH) is the computer program you will be using on this time-

sharing system. You will use it by operating a CRT terminal with a key-

board like a typewriter. This program was designed to serve you, the

learner, as a powerful tool you can use to help you learn how to trouble-

shoot a device, such as a radar repeater, or an automobile, using symptoms

available from "indicators" built into the device. You will have control

over how you use this tool. It can give you practice in making "front

-49-

58

panel tests;" in "backwards troubleshooting" in which you select a

particular malfunction and try to predict the symptoms it would produce;

and in "forward troubleshooting" in which you attempt to localize an

unknown malfunction by using symptoms available from built-in indicators.

You can choose to do any one of these drills anytime you wish, by giving

the program a short command. When you wish to test your proficiency in

troubleshooting, you can ask the program to administer a self-test to you.

On the basis of the results of the self-test, you may decide that you

need to review certain topics, or that. you need more practice. After more

review of practice, you should take a self-test again. When you decide,

on the basis of self-tests, that you have mastered a particular block of

problems, you are ready to take a test for the record. In this case, you

can ask the program to give you a test, which will be like the self-test,

except that the results will be recorded and will be available to your

imtructor.

If you decide you want to review certain topics, you can log off the

time-sharing system and refer to the reference material that is provided.

It is likely that you will find it convenient to cycle through several

on-line and off-line sessions before you take a test for the record.

When you take a self-test or a test for the record, you should use

only the Technical Manual with the block numbers (fault area numbers) on

the schematics and block diagrams. Do not use the other references when

taking these tests. When you reach the fleet, you will have to rely on

the Technical Manual.

The TASKTEACH program contains several features you can use to assist

you in learning while you are engaged in on-line drills. You can select

any ore of these by giving the program a short command word. Each of

these commands and what it does for you is described on the next page.

-50-

The Equipment Reference Manuals

When you are off-line and wish to read about some topic concerning

the device you are learning to troubleshoot, you should start with the

reference manuals that are provided. These have been organized to

present useful information at two levels of detail; for quick reference

and to dig deeper. They also are indexed to the TECHNICAL MANUAL, so

that you can quickly find additional information and familiar schematics

and block diagrams there. There are four of these Equipment Reference

Manuals:

Front Panel Controls and Indicators. In the quick reference section

of this manual, all these controls and indicators are illustrated, label-

led with proper designations, and described in terms of their functions.

The controls and indicators are grouped according to nine categories to

assist you in remembering them.

In the to-dig-deeper section, drills in the operation of the equip-

ment, using these controls and indicators, are provided. To use this

section, you should have abailable the AN/SPA-66 and the Range Rings

Calibrator. The drills in this section will tell you how to set up the

equipment and will lead you through a detailed lesson on the use of each

control.

Front Panel Tests. This manual gives you an overview of the basic

front panel tests, and a detailed description of how to perform them.

You can use this as a guide while practicing these tests on the equip-

ment itself, and as a reference source for reading about front panel

tests after you have been practicing on the terminal.

Signal Flow Paths. Eleven block diagrams constitute the quick

reference section of the manual. These illustrate the major signal paths

-51-

for video and cursor sweeps, electron beam intensity control, off-centering

inputs and controls, electron beam focus control, range strobe yards and

miles counters, and timing section. Blocks in these diagrams are numbered.

The numbers are indexed to the TECHNICAL MANUAL by Appendix C3 in this

manual.

The to-dig-deeper section of this manual contains a description of

each block in a signal flow path and what it does. This will give you

an overall understanding of the organization of the circuits in the

AN/SPA-66 from the important viewpoint of how they affect front panel

indicators, primarily the intensified elements that appear on the CRT.

To go into even more detail, you can find a description of each numbered

block in the diagrams, in terms of inputs, conversion circuitry, outputs,

special conditions, and page numbers in the TECHNICAL MANUAL where you

will find diagrams, schematics and further discussion.

Fault Area Summaries. In this manual, you will find a discussion of

each fault area you can isolate by making front panel tests and interpre-

ting the symptoms you see on front panel indicators. You probably will

refer to this manual after a troubleshooting session on-line with the

time-sharing terminal.

The fault area numbers in this manual correspond to the fault area

numbers used in the data base for the TASKTEACH program. For each fault

area, one or more examples are given of a component failure that could

result in the front panel symptoms you observed.

To dig deeper, use the reference data for each fault area, reproduced

after the examples of malfunctions, to find diagrams and text in the

TECHNICAL MANUAL.

-52-61

Troubleshooting Advice

Finding out why a system is not functioning properly is required of

many different specialists, from physicians to plumbers. People, auto-

mobiles, television sets, radar repeaters, washing machines, and moon

rockets break down all too frequently. Diagnosing them requires a set

of skills common to all of these specialists, plLs a great deal of

knowledge specific to the system. General steps in diagnosis are:

Listen to the Customer's Complaint. He may or may not know what is

wrong. You will have to check what he says, but listen to him and ask

questions to draw out all the possibly useful information he has.

Check the State of the System. To do this, you will have to use

information-sampling procedures. Very often these involve special instru-

ments and tests which are expensive and difficult to perform. Therefore,

it is smart to get all the information you can as simply as you can, first.

The physician uses direct observation of the patient, listens with a

stethoscope, takes temperature, pulse, and blood pressure before he

orders expensive laboratory tests. You should use the infoimatien quickly

available to you on front panel indicators to diagnose the state of the

equipment. The pattern of symptoms you can observe there usually contains

sufficient information to reduce the possible sources to a very small

percentage of the total circuitry.

The point is, someone has to pay for using information-sampling

procedures to get information about the state of a system. You have to

pay in terms of time and work done, since unlike the physician, you can-

not call on a corps of assistants and pass on the costs to the patient.

The customer who wants to use the device pays in terms of lost usage.

So, whenever it is possible to do so, get all the low-cost information

before you resort to more expensive procedures. Fortunately, front

-53- 62

panel tests can be made quickly and easily. With them, you buy a lot

of good information at relatively low cost.

Related to the cost of sampling information is the power of the

information you get from using a sampling procedure. Some symptoms

tell you very little, others pinpoint the malfunction exactly. Obviously,

a high-cost procedure which yields only low-power information is to be

avoided. In troubleshooting, powerful information allows you to reduce

the fault area rapidly, by eliminating a relatively large proportion of

the circuits from the fault area. Weak information leaves you with a

fault area not much smaller than it was before you acquired the information.

In most cases, it is necessary to accumulate information by making

several tests. A pattern of symptoms will tell a more complete and more

accurate story than one symptom alone.

Recognize Symptoms. How do you know that what you are observing is

normal or abnormal? You need to compare what you observe with some

standard. You may have a description or picture of normal indications

to use as referents. You may have learned what normal should be, so you

do not need to refer to printed standards. You may be able to calculate

the normal value. Regardless of which of these you use, the basic opera-

tion is one of comparison of your observation with some standard. In

many cases, you will not be absolutely sure that your decision of normal

or abnormal is correct.

Under these circumstances, if you make a number of different observa-

tions, you can relate each observation to the remaining ones in terms of

content and context.

Content refers to the magnitude of a measurement or observation in

relation to what it is reasonable to expect. If B+ is 300 volts and your

-54-

63

measurement of B+ is 3000 volts, you should suspect your procedure or

voltmeter. If the content of the observation is unreasonable, you probably

have made an error in procedure.

Context refers to the pattern of symptoms up to the current observa-

tion. Observations should fit together to make a logical story. Observa-

tions that contradict or do not fit that story are suspect and also cast

doubt on every thing up to that point. Such an observation should be

checked. Make the observation again, watching your procedure carefully.

If it holds up, make a confirming check. That is, if the observation is

true, then you should predict the outcome of sampling some other related

indication. Make the second observation to see if the predicted outcome

occurs. If it does, the context you have built up from previous informa-

tion may be wrong. If it does not, either check the first observation

again or ignore it temporarily and go on making other checks, they may

resolve the conflicting information.

Relate Symptoms to Causes. Diagnosing depends on knowing how elements

of the system are interrelated. An expert on a particular equipment builds

up a mental "model" of how the equipment works--and doesn't work. He can

relate his observations to this model. Because he knows signal flow paths

and other relationships, he can infer probable causes for a pattern of

symptoms.

It takes a lot of experience to build up a mental model as detailed

as that of the expert's; you have to do a lot of thinking about relation-

ships and a lot of testing your mental model against reality by using it.

You will need to look up answers to questions you formulate for yourself

in the tech manual or other references. If your mental model lets you

-SS-

64

down when you are troubleshooting, you have to find out why and change

that part of the model.

The important point is, this kind of learning depends on your, the

learner's, operations on available information. When you have done the

organizing, relating, reality testing, and reorganizing, you will have a

mental model you can remember and you can rely on for relating symptoms

to causes.

Reduce the Fault Area. Possibilities for malfunctions that would

cause a certain symptom pattern can be considered from a functional and

a geographic standpoint. Each circuit in the equipment performs some

function and each circuit has a physical location. For example, if the

symptoms seem to be due to absence of the negative time-share gate, you

then need to look for the location of the circuits that produce this gate..

When you are troubleshooting from front panel indications, the signal

flow paths will be guides to circuit chains concerned with major functions,

and to the circuits which modify these functions in various ways. There

are three major geographic areas in the AN/SPA-66 where these circuits are

found: in the (p-c board) subassemblies in the rack just below the

operator's writing shelf, in the power supply unit below this rack, and on

p-c boards and in electro-mechanical subassemblies behind the front panel.

Of course, when you are troubleshooting from the front panel, you

cannot physically bracket the ends of a fault area and reduce it by moving

the brackets closer. You have to work with functions which affect the

intensified elements you can see on the CRT or the outputs of other

indicators. The key relationships to know are those among functions,

intensified CRT elements and other front panel indications, and front

panel controls. You have to know how to operate front panel controls to

-56-

make each intensified element visible, and to make it possible for the

effects of those functions which affect each intensified element to be

observable.

Starting the Program

In this section, all entries typed by the student are underlined;

the remaining words are typed automatically by TASKTEACH. TASKTEACH will

ask for your student number, it will list the equipments which it can help

you with, and will have you pick a problem.

To begin a session with TASKTEACH, type your student number and

select a problem:

EXAMPLE:

WHAT IS YOUR STUDENT NUMBER? 26

SPA-66 REPEATER
THERE ARE 136 PROBLEMS

WHICH PROBLEM WILL YOU TAKE? 122

Troubleshooting with TASKTEACH

When you start TASKTEACH, you will automatically be in the trouble-

shooting mode. When you enter a problem number, the program will select

that problem, representing a malfunction, unknown to you, which you must

find.

A troubleshooting session with TASKTEACH consists of an exchange of

information between you and the program. TASKTEACH will print:

ACTION(S):?

whenever it is awaiting input from you. You may enter indicators you wish

to "observe," you may enter the malfunction which you believe is causing

-57-

66

the symptoms you have received, or you may command TASKTEACH to help you

in a variety of ways.

After TASKTEACH has provided the information or the help you required,

it will print ACTION(S):? again, and wait for you to respond. This in-

teraction continues until you solve the problem, at which time you may

choose another, or terminate the session.

Checking Indicators. You will be given a list of indicators for the

equipment you are working with. To check the status of an indicator,

you type I followed by the indicator number. TASKTEACH will respond with

the status of that indicator.

EXAMPLE:

ACTION(S):? 13,15,16,17,18
---> TRACKING STROBE SHOULD NOT BE CHECKED IN
THIS CONFIGURATION.
17. RANGE STROBE IS NORMAL
18. RADAR VIDEO IS NORMAL
---> OFF-CENTERING IN RESPONSE TO DRA INPUT SHOULD NOT
BE CHECKED IN THIS CONFIGURATION.
---> OFF-CENTERING IN RESPONSE TO AEW INPUT SHOULD NOT
BE CHECKED IN THIS CONFIGURATION.

The example also shows that you may enter two or more indicators you

wish to check, by separating them with commas.

Setting Switches. You will be given a list of switches for the

equipment you are working with. This list provides the name and code for

each switch, and the names of each of its settings. It also indicates

the initial setting of each switch. This initial mode is assumed at the

start of each problem.

To change a switch setting, type the switch code, followed by a "-"

mark and then the setting number.

-58-

EXAMPLE:

ACTION(S):? S13-1,S2-2,A7S1-1,S16-6
10. RADAR SELECTOR SWITCH S13 NOW SET TO CONVENTIONAL
11. NORM-ALIGN SWITCH S2 NOW SET TO ALIGN
12. SWEEP-BOTH-CURSOR SELECTOR A7S1 NOW SET TO SWEEP
13. RANGE RINGS/MILES SWITCH S16 NOW SET TO 50 MILES

As with indicators, you may enter several switch changes on one

line, if you separate them with commas.

Replacing Components. You will be given a list of possible malfunctions

in the equipment you are working with. When you think you know what is

causing the trouble with the equipment, type M followed by the malfunction

number which you suspect. You should then make more checks to determine

if the abnormal symptoms have been corrected.

EXAMPLE:

ACTION(S):' 13
1. INDICATOR THREE IS OFF-CENTER

ACTION(S):? M5
2. MS IS NOW REPLACED

ACTION(S):? 13
3. INDICATOR THREE IS NORMAL

ACTION(S):? DONE
. YOU FOUND THE PROBLEM...M5

WHICH PROBLEM WILL YOU TAKE?

This example also shows that you type DONE to tell TASKTEACH that

you have corrected the problem. If you find that the problem persists

after "replacing" a component or circuit, you should do more trouble-

shooting until you can find the actual problem.

-59-

6q

Controlling the Program

TASKTEACH is a tool which you can use to substantially reduce the

time and effort required to learn about complex tasks.

To make it provide the help you want, you will type certain command

words. These commands are explained on the following page.

General Commands.

RUN This starts the program running.

QUIT When you want to terminate a session with TASKTEACH, type QUIT.
The terminal will print a "-" mark. You then type BYE. You may
then turn off the terminal.

EXAMPLE:

ACTION(S):? QUIT

BYE

Troubleshooting Commands.

1. REV Use this when troubleshooting to ask the program to REView
a list of possibilities for malfunctions which you wish to
know about. The program will tell you the following about
each possibility you listed:

(1) It is a good possibility--at this point it could be
the malfunction.

(2) You obtained enough information in a preceding step
(Step No.) to have eliminated this possibility.

The program also will tell you the following:

(1) You are not suspecting the actual malfunction. The
program will list possibilities you overlooked.

Or (2) The actual malfunction is among those you suspect.

The following is an example of the use of REV. Observe
that you must identify each possibility you list with M
followed by a number, and that this must be followed by
a comma to separate it from the next possibility.

-60-

69

EXAMPLE:

ACTION(S)? REV

ENTER THE MALFUNCTION(S) WHICH YOU SUSPECT? M35,M36,M45

S16A-9 OPEN CONTACT COULDN'T BE THE MALFUNCTION
CHECK YOUR STEP NUMBER 2

A6R38 OPEN IS A GOOD POSSIBILITY

A6R93 OPEN; OR C12 SHORTED COULDN'T BE THE MALFUNCTION
CHECK YOUR STEP NUMBER 2

THE ACTUAL MALFUNCTION IS AMONG THOSE WHICH YOU SUSPECTED

2. PROG Use this when troubleshooting if you want to get some
idea of the PROGress you have made in localizing the
fault area. The command PROG will cause the program
to print out the number of remaining possibilities for
the malfunction, in terms of blocks defined in the block
diagrams you will use, which remain up to this point.

EXAMPLE:

ACTION(S)? PROG
THERE ARE 2 POSSIBLE MALFUNCTIONS REMAINING

ACTION(S)?

3. SET Use this command any time you want to refresh your memory
about the settings of the front panel controls. The
program will print out the current settings of any con-
trols which are not in their original settings.

EXAMPLE:

ACTION(S)? SET

THE SWITCHES ARE SET IN THEIR INITIAL SETTINGS
EXCEPT FOR THE FOLLOWING:
RANGE RINGS/MILES SWITCH S16 IS SET TO 20 MILES
RADAR SELECTOR SWITCH S13 IS SET TO ELSCAN

4. OVER You would use this command at the end of a troubleshooting
problem if you wanted a selective "replay" of your work.
The program will go back to the first action you request
and print out the step number, what you did at that step,
and what the result of your action was. The program will
ask you if you have any questions about particular fault
areas. If you type YES, the program will ask you to enter
the fault areas which you are interested in.

-61-

rt

EXAMPLE:

WHICH PROBLEM WILL YOU TAKE? OVER

HERE IS A SUMMARY OF YOUR WORK
ENTER THE MALFUNCTIONS YOU WISH TO DISCUSS? M45

MALFUNCTION 45 WAS ELIMINATED BY STEP 2
RANGE RING ELEMENT IS ABNORMAL
ENTER THE MALFUNCTIONS YOU WISH TO DISCUSS? 0
ENTER THE STEPS YOU WISH TO DISCUSS? 2.4

2. RANGE RING ELEMENT IS ABNORMAL
THIS ELIMINATED 110 POSSIBLE FAULT AREAS
WOULD YOU LIKE A LIST OF THESE MALFUNCTION? NO

4. RANGE RING ELEMENT IS ABNORMAL
THIS DID NOT ELIMINATE ANY OF THE POSSIBLE FAULTS

ENTER THE STEPS YOU WISH TO DISCUSS? QUIT

NEXT Command. Use this command if you want advice about the next

test to make during troubleshooting. The program will tell you an

efficient next test to make, and will give you a list of front panel

controls that are important for making this test. It will not, however,

tell you the positions to which these switches must be set.

EXAMPLE:

ACTION(S)? NEXT
IF YOU CHECK THE RANGE RING ELEMENT IN THE APPROPRIATE
SWITCH CONFIGURATION(S), YOU WILL OBTAIN USEFUL INFO
DO YOU WANT A LIST OF SWITCHES THAT ARE IMPORTANT? YES
THE FOLLOWING SWITCHES ARE IMPORTANT FOR THIS INDICATOR
RANGE RINGS/MILES SWITCH S16
RADAR SELECTOR SWITCH S13
SWEEP-BOTH-CURSOR SELECTOR A7S1
NORM/ALIGN SWITCH S2

ACTION(S)? S13-2
8. RADAR SELECTOR SWITCH S13 NOW SET TO ELSCAN

ACTION(S)? 14
9. RANGE RING ELEMENT IS NORMAL

-62-

DONE Command. Use this command while troubleshooting to tell the

program you have finished a problem. This will normally occur after you

have found what you think is the malfunction, the program has "substituted"

a new component, and you have checked the appropriate front panel indicators

again and see that the .tbnormal symptoms have disappeared.

If you enter DONE, and you have not in fact found the real malfunction,

the program will tell you that you did not solve the problem, and it will

ask you if you wish to continue this problem. If you reply YES, the

program will ask you what actions you want to take next. If you reply

NO, the program will ask you for another problem number and you can

start on a new problem.

If DONE is used while you are taking a test, the program will select

the next problem in the test, without telling you anything else.

EXAMPLE 1:

ACTION(S)? DONE

YOU FOUND THE PROBLEM A6R38 OPEN

EXAMPLE 2: (during test)

ACTION(S)? DONE
PROBLEM 2
ACTION(S)? 11,12,S16-5,I4

1. VIDEO SWEEP IS NORMAL
2. CURSOR SWEEP IS NORMAL
3. RANGE RINGS/MILES SWITCH S16 NOW SET TO 20 MILES
4. RANGE RING ELEMENT IS NORMAL

ACTION(S)? DONE
PROBLEM 3

Drill Command. This command allows you to practice making front panel

tests, or doing "backwards troubleshooting." When given this command, the

-63-

program will ask you what you would like to discuss. If you enter an I

followed by a number, it will give you a drill in checking that front panel

indicator. If you enter an M followed by a number it will ask you to list

the front panel indicators which you believe would be affected by that

malfunction. The program will inform you if your selections were correct,

remind you of other indicators you overlooked, and, if necessary, review

with you the particular switch settings necessary for making the effects

of the selected fault area observable on a selected indicator.

EXAMPLE 1:

WHD:H PROBLEM WILL YOU TAKE? DRILL

WHAT WOULD YOU LIKE TO DISCUSS? M36

ENTER THE INDICATORS WHICH YOU BELIEVE
WOULD BE AFFECTED BY M36? 13,14,15

TRACKING STROBE IS NOT AFFECTED BY M36 IN ANY MODE

YOU ARE RIGHT ABOUT RANGE RING ELEMENT
FOR THIS MALFUNCTION TO AFFECT
RANGE RING ELEMENT

TO WHAT POSITION WOULD YOU SET RANGE RINGS/MILES SWITCH S16? 4

NO, THIS CONTROL MUST BE SET TO POSITION
5: 20 MILES

WITH THESE SETTINGS, RANGE RING ELEMENT IS ABNORMAL

RANCE STROBE IS NOT AFFECTED BY M36 IN ANY MODE

EXAMPLE 2:

WHAT WOULD YOU LIKE TO DISCUSS? 17

IN ORDER TO CHECK OFF-CENTERING IN RESPONSE TO DRA INPUT
TO WHAT POSITION WOULD YOU SET RADAR SELECTOR SWITCH S13? 2

RIGHT ... ELSCAN

TO WHAT POSITION WOULD YOU SET OFF-CENTERING SWITCH S14? 2

NO, THIS CONTROL MUST BE SET TO POSITION
1: OFF CENTER

TO WHAT POSITION WOULD YOU SET MAN-DRA SWITCH S3? 2

RIGHT ... MAN-DRA

WITH THESE SETTINGS, OFF-CENTERING IN RESPONSE TO DRA INPUT
MAY BE CHECKED.

Test Commands.

STES Use this command when you want to give yourself a SELF-TEST.
The program will administer the test to you.

EXAMPLE:

WHICH PROBLEM WILL YOU TAKE? STES

CHOOSE A PROBLEM FOR SELF-TESTING? 122

ACTION(S)? 316-5,14

1. RANGE RINGS/MILES SWITCH S16 NOW SET TO 20 MILES
2. RANGE RING ELEMENT IS ABNORMAL

ACTION(S)? M36

5. A6R38 OPEN IS NOW REPLACED

ACTION(S): DONE

YOU FOUND THE PROBLEM ... A6R38 OPEN
SELF-TEST IS OVER.

TEST When you are ready to take a TEST for the record, use this
command. The program will administer the test. The results
will be available to your instructor.

EXAMPLE:

WHICH PROBLEM WILL YOU TAKE? TEST

PROBLEM 1

ACTION(S)? 11,12,13,14

1. VIDEO SWEEP IS NORMAL
2. CURSOR SWEEP IS NORMAL
- --> TRACKING STROBE SHOULD NOT BE CHECKED IN THIS

CONFIGURATION
- --> RANGE RING ELEMENT SHOULD NOT BE CHECKED IN THIS

CONFIGURATION

ACTION(S)? S16-5,14

3. RANGE RINGS/MILES SWITCH S16 NOW SET TO 20 MILES

4. RANGE RING ELEMENT IS ABSENT

ACTION(S)? PROG

WHAT?

Typing Errors

Using TASKTEACH requires a minimum of typing; your inputs are always

short combinations of characters. You will, however, occasionally make

typing errors. You will seldom suffer from these errors, however, for

two reasons:

1. If what you type doesn't make any sense at all, TASKTEACH will

know you made a typing error, and will simply ask for the entry

again.

EXAMPLE:

YOU TYPE INSTEAD OF

J4 14

T15-2 S15-2

OXER OVER

QUIL QUIT

2. If what you type makes sense, TASKTEACH will respond. However,

this will never take much of your time.

-66-

EXAMPLE:

YOU TYPE INSTEAD OF RESPONSE

14 15 You get indication of 14

M3 M13 You replace malfunction M3

DONE QUIT You will terminate current
problem; you may quit next
if you wish.

During tests, you could be penalized slightly for making a typing

error which makes sense to TASKTEACH. For example, if you type 14 instead

of 15, TASKTEACH will give you the indication at 14, and it will count

that as a reading. This is not very significant, however.

Or, typing M3 instead of M5, during a test, will "cost-you" one

extra replacement. This is slightly more serious.

In any case, if you make a typing error, and notice it before aping

the carriage return Ely, you can correct the entry by typing - (Shift 0)

for each wrong character, and continuing.

EXAMPLE:

WHICH PROBLEM WILL YOU TAKE? STES

CHOOSE A PROBLEM FOR SELF-TESTING? 122

ACTION(S)? S16-14 *. 5,14,S13-2,I4

Practice Session

You whould try using TASKTEACH on sample problems. In this first

session, be sure you try out every option in the program.

You may not need to use all of these options, but you do need to know

that they are available, and what each one does. The best way to find

this out is to explore each, using sample problems at the beginning.

Otherwise you may overlook some very useful options.

-67-

76

S

Also, while familiarizing yourself with TASKTEACH options, you should

use the diagrams in the Signal Flow Path Manual, and observe the relation-

ship between these and the special diagrams and schematics in the Technical

Manual. Observe that the block n'tbers in the troubleshooting diagrams

are also found in the special diagrams and schematics in the Technical

Manual, where these numbers appear inside diamonds with arrows pointing

to the output of a possible fault area.

You will be required to use only the Technical Manual when taking

self tests, intermediate tests, and the final test for the record.

Therefore, during the week you are working with TASKTEACH, you should

learn to transition from using the TASKTEACH Manuals to using the Technical

Manual.

-68-

'77

APPENDIX C

INSTRUCTIONS FOR USING THE PROCEDURAL PROGRAM

This system is designed to assist you in learning complicated

procedures, called task structures, such as those required to repair and

operate equipment. The program contains a number of features you can

use to help you learn. These will be described in detail later. First,

a word or two about what task structures are, and about effective ways

to learn them.

All human work can be described in terms of goals, actions and con-

ditions for performance of the actions. There is some goal to be

accomplished by one or more actions, which must be performed correctly.

The correct ways to perform actions may be determined by a variety of

conditions, some specific to the kind of work, others more general to all

work. There generally is some overall, or final, goal that can be attained

only by first accomplishing a series of subgoals, one at a time. The

structure that results from describing work in this way can be represented

in a "map" that shows goals, actions, and conditions. Such a map shows

you the detailed organization of a task structure, and therefore, is

useful when you are learning the structure.

The CAI system you will work with makes learning more convenient by

assembling information you need, showing you colored slides of devices

you are learning about, allowing you to proceed at your own pace, and

helping you to correct errors.

-69-

'7 8

The system provides you with control commands that will let you

tailor-make your own learning experiences, by using particular combina-

tions of these commands. The system cannot, however, learn for you.

Learning is a mostly consequence of the operations you perform on the

material to be learned. Several steps are involved:

1. Learn what this CAI system has to offer by reading about its

features in the following paragraphs, and then trying all of them out on

the example provided, so you know how to use the system. The system

provides an Instruct Mode (1), a Practice Mode (2), and a Self-Test Mode

(3). You can use Mode 1 to find out all about a task structure, then use

Modes 2 and 3 to practice learning it.

2. Learn the series of goals and actions that make up the "backbone"

of a task structure. The CAI system will help you do this.

3. Learn the actions that go with each goal by working on one goal

at a time in Mode 2. In this mode, you can easily practice the actions

required to accomplish a goal. If you need to have the system review

them for you, you can ask it to do this with a command called R.

4. Go through one "thread" of the entire task structure, from start

to finish, staying in Mode 3 as much as you can. When you can stay in

Mode 3 all the way through without making any errors, you are close to

mastery. When you can go through in Mode 3 a second time without errors

(and without returning to Mode 1 or 2 for help) you have learned that

thread sufficiently well to move on.

5. The operations you perform on the material to be learned are of

two kinds: (1) interacting with the terminal, where you first learn about

the task structure and then try to recall it; and (2) thinking about what

you are learning "--running it over in your rind." This is called rehearsal.

During rehearsal, there are many mental operations you can perform to

organize the material you are learning, to relate it to what you already

know and to check for yourself how much yon know. These operations are

the key to rapid learning and long-term retention. When you can run

through an entire task structure in your mind, recalling the sequence of

goals, the actions that go with each, and the conditions for their per-

formance, you will not need the CAI system anymore: The features of the

CAI system and the commands you can use to control it are described in the

following paragraphs.

1. As pointed out above, there are three modes, starting with Mode 1,

which is used primarily to get a description of the procedures to be

learned, and progressing to Mode 3, in which you can test yourself on

how well you have learned the steps in the procedures. Mode 2 is an

intermediate mode that gives you the opportunity to practice recalling

the task structure, with the assistance of the system.

Use "MODE" to tell the program you want to change modes. The program

then will ask you to enter the new mode number. You can change modes any

time you wish. Generally, you would progress from Mode 1, to 2, and

finally to 3, as you shift from needing instruction about, to practicing

recall of, the structure you are learning. But, if you find Mode 3 too

hard the first time, you can go back to Mode 2 or 1. Any time you enter

Mode 2, it will give you a list of the major goals in the task structure.

The) ? output from the system indicates it is expecting a command

from you. If it prints only a ?, it is expecting you to answer the

preceding question with a number (usually) or with a YES or NO.

-71.-

80

Statements in quotes preceded by a "-" are goal descriptions. No

leading "-" indicates an action description.

In all the following examples, your command or response to the

computer is underlined.

EXAMPLE:

?MODE

NEW MODE?2

-"OPERATE THE AN/URC-32 AS A RECEIVER "
MAY BE ACCOMPLISHED BY PERFORMING
THE FOLLOWING IN THE GIVEN ORDER:

-"SAFETY PRESET CONTROLS "

-"PRESET CONTROLS TO RECEIVE "

-"SELECT A MODE "

-"SELECT A BAND AND A FREQUENCY "

-"TUNE SMO"

"ADJUST RECEIVER GAIN POT (5R15) UNTIL AUDIO IS HEARD"

-"ADJUST BFO IF IN FSK RECEIVE MODE "

"SET POWER SWITCH (11S1) TO OFF "

2. There are six single letter commands: M, D, R, S, W and P.

(These are easily remembered if you observe that they are the first letters

in the main words of the phrase "Metropolitan Department of Reprocessed

Sewage, Water, and Power!") You can use the first three of these commands,

M, D and R, to ask for detailed information about a part of a task struc-

ture associated with accomplishing a subgoal and to look at photographic

slides. M commands the system to give you "MORE" information about goals

-72-

81

or actions. M also directs the system to operate a slide projector

and to show you a photograph of the part of the equipment or device

appropriate to the current goal or action. If there is more than one

slide to see, the number of slides which follow in sequence will be

printed on the CRT. You can see these additional slides by hitting the

"CR" key on the terminal. When you have seen all of tiem, if you press

the CR key again, the system will return the slide magaiinc to a "standby"

slide. You can use M in Mode 2 for goals and actions. Sclde 1, you

need use M only for actions since it is supolied automatically for goals.

M is not available in Mode 3.

EXAMPLE:

> ?M216

SLIDE NUMBER 72 (2 SLIDES)

THE FREQUENCY IS READ IN THE AREA LIGHTED BY THE BAND
CONTROL SETTING; ALIGN THE DIGITS IN THIS WINDOW.
>? CR

SLIDE NUMBER 73
? CR

SLIDE NUMBER 88 (STANDBY)

The D command can be used in Mode 1 to ask the system to list all

the actions required to accomplish a goal and to give you more informa-

tion about the goal. The system also tells you the way you should perform

the actions. In some cases, all the actions must be performed in one

particular sequence. In others, all actions must be performed, but-se-

quence is unimportant. In still other cases, only one of a list of actions

-73-

82

need be performed. These are the most common conditions. Less common

special conditions will be described later.

EXAMPLES:

TRANSMIT

?D1

- "TRANSMIT WITH AN/URC-32 "
MAY BE ACCOMPLISHED BY PERFORMING
THE FOLLOWING IN THE GIVEN ORDER:

-"SAFETY PRESET CONTROLS "

-"TUNE TRANSMITTER AT SELECTED FREQUENCY "

- "OPERATE IN A TRANSMIT MODE "

SLIDE NUMBER 01

THE AN/URC-32 RADIO TRANSCEIVER 13 REALLY MANY DEVICES IN
ONE PACKAGE. TO USE IT, YOU MUST FIRST SET FRONT-PANEL
CONTROLS TO SELECT THE PARTICULAR "DEVICE" YOU WANT. IN

THIS LESSON YOU WiLL LEARN HOW TO SET CONTROLS TO USE THE
TRANSMITTER IN A SELECTED MODE AND FREQUENCY.

RECEIVE

> ?D2

- "SAFETY PRESET CONTROLS "
MAY BE ACCOMPLISHED BY PERFORMING
ALL OF THE FOLLOWING IN ANY ORDER:

"SET XMIT/REC/CW TEST SWITCH TO REC (6S3)"

"SET POWER SWITCH (11S1) TO OFF "

GENERALLY, AVOID ACTUATING ANY OF THESE SPRING-LOADED
SWITCHES OUT OF SEQUENCE AFTER POWER IS ON:

PRESS-TO-TALK (PTT) SWITCH (10S1)
OPERATE-TUNE SWITCH (4S2)
XMIT/REC/CW TEST SWITCH (6S3)
PLATE ON/OFF/KEY SWITCH (3S9)
PLATE NO. 1 SWITCH (3S2)
PLATE NO. 2 SWITCH (3S3)

The third single letter command, R, may be used in Mode 2 to ask the

system to repeat a goal and the actions associated with it. This will be

useful when you are practicing recalling the cluster of actions required

to accomplish the goal. You can do this as many times as necessary to

assist you in learning.

The fourth single letter command, S, may be used to review the colored

slides for a lesson. You will be given a list of all slide titles and

magazine slot numbers. You can see any slide about a particular topic

by entering S, followed by the slot number.

EXAMPLE:

?S5

SLIDE NUMBER 5

The last two of the six single letter commands, W and P, are used

when you want to practice performing the task structure. W followed by a

goal number tells the system you want to work on accomplishing that goal.

W can be used in any mode, and must always be used before you try to

perform lny actions, so the system will know what goal you are trying to

accomplish. When you are in Mode 2, entering W and a goal number will

cause the system to automatically list all the actions required for that

goal. The system will not do this in Mode 1 or 3.

In any mode, if you select the wrong next goal to work on, the system

will respond with an error message and will wait for you to select a goal

that would be correct to work on next. As you will see in a moment, if

you are, in Modes 1 or 2, you can get help, if you do not know what to do

next. Since no help is available in Mode 3, if you don't know what to

do, you will have to retreat to Mode 1 or 2.

EXAMPLE:

?W7

-"SELECT A MODE "

MAY BE ACCOMPLISHED BY PERFORMING
ANY ONE OF THE FOLLOWING:

-"SET CONTROLS FOR AM "

-"SET CONTROLS FOR LSB "

-"SET CONTROLS FOR USB "

-"SET CONTROLS FOR FSK "

-"SET CONTROLS FOR CW "

The P command tells the system you already know how to accomplish a

goal, or that you propose to perform a particular action next. If you

tell the system you already know how to accomplish a goal, it will believe

you, and, if the goal was appropriate, allow you to proceed to the next

goal. If the goal was not appropriate, it wilt not let you proceed until

the error is corrected by your choosing another, appropriate goal. In the

case of proposed actions, the system allows you to go on if the action,

or actions, your proposed were appropriate and were proposed in the correct

sequence. Otherwise, you will receive an error message and be required

to try again.

Any time you use the P command in Mode 2, the CRT screen will be

cleared of all information. Thus, you should be prepared to remember

action or goal numbers you wish to enter with P. Any time you enter P

and a correct goal or action number, the system will "echo back" the goal

or action statement.

The modes in which you can use these six commands are shown below:

11

D

R

P

Mode 1 Mode 2 Mode 3

Yes* Yes** ir ,ff,,,A0
Yes

Yes

ffiffif, I.Z
Yes

ZIMMITM.1.17N17,
Yes

Yes Yes
Yes Yes Yes

*Use only for actions: more information about goals is given
automatically by D.

**Use for either goals or actions.

3. You have several other commands that you can use to select goals

to work on, to ask for help if you forget where you are in the task

structure, or to ask the system to tell you what to do next. Finally,

there is a command to use to tell the system you want to quit. These

commands are described as follows:

"MAIN" tells the system you want to change the main goal you want

to ,,ork on. The system will ask you to enter the new main goal number.

You can use this command to select different parts of the task structure

to learn about.

EXAMPLE:

>?MAIN

NEW MAIN GOAL?7

"NEXT" is available only in Mode 1 to ask the system to tell you

what to do next. (In fact, in Mode 1, you can use "NEXT," "D" and "M"

to get a complete description of a new task structure, including all the

slides for actions.

EXAMPLE:

?NEXT

NEXT YOU MAY PERFORM

-"PRESET CONTROLS TO RECEIVE "

).?NEXT

YOU MAY DO ALL OF THE FOLLOWING IN ANY ORDER:

"SET SIDEBAND SWITCH (7S1) to USB "

"SET OSC CONTROL SWITCH (651) to OFF "

"SET SSB/AM SWITCH (5S4) to AM "

"HELP" can be used in Modes 1 and 2 to ask the system to tell you

where you are, and to show you a slide of the part of the task structure

you are working on. The diagram on the slide shows you a "map" with

goals and actions belonging to the goals, and the conditions under which

the actions must be performed.

EXAMPLE:

?HELP

SLIDE NUMBER 81
THERE ARE 6 SLIDES FOR THE MAP

YOU ARE CURRENTLY WORKING ON

-"SAFETY PRESET CONTROLS 11

THE OTHER GOALS IN PROGRESS ARE

-"TRANSMIT WITH AN/URC-32 "

The light green "backbone" of the map shows the major goals and

actions that must be accomplished in sequence, starting from the top. The

light yellow structures show secondary goals and actions that must be

accomplished in exact sequence. Blue parts of the map show parts of the

structure that can be done in any order, so long as all actions are per-

formed. Orange boxes in the map specify choice points: only one of

those subsequent parts of the structure that are connected to these "ANY"

boxes need be accomplished. Purple boxes signify special conditions.

For example, the "UNDO" constraints specifies that if you turned something

on, or disassembled it, in a particular way, it has to be turned off, or

reassembled, in the reverse order. Another special condition is called

"IFIN." This specifies that a goal is to be accomplished or an action

is to be performed only if some prior condition has been established.

For example, you would do something only if you had earlier selected a

particular one of several different ways to operate a device. The program

will tell you what to do when you come to any of these and other special

conditions.

EXAMPLE (IFIN):

?D10

-"ADJUST BFO IF IN FSK RECEIVE MODE"
DEPENDS UPON THE COMPLETION OF

-"SET CONTROLS FOR FSK"
IF IT HAS BEEN DONE, THEN PERFORM

"ADJUST BFO CONTROL (6A1C) TO OBTAIN CLEAR SIGNAL"
IF IT HAS NOT BEEN DONE, NO ACTION IS REQUIRED

THE BEAT FREQUENCY OSCILLATOR (BFO) SUPPLIES A SPECIAL
INTERMEDIATE FREQUENCY FOR THE CV-FSK UNIT SO THAT 2125 CPS
"SPACE" and 2975 CPS "MARK" AUDIO TONES CAN BE SUPPLIED
TO THE FSK CONVERTER TO DRIVE A TELETYPE.

-79-

88

Although it is unlikely you would wish to do so, "COUR" can be used

to change courses, e.g., from AN/URC-32 receive to AN/URC-32 transmit.

If you want to stop the system from displaying something on the CRT,

hit the "break" key once and the program will stop printing. Then tell

the system what you want it to do by using one of the other commands.

CAUTION: Do not hit the "break" key twice; you will be immediately dis-

connected from the time-sharing system. Also, when you are first

starting on the system, do not hit the break key before the system prints

the first >?. If you accidentally do this, you will have to type "RUN"

and the system will start over.

"QUIT" is used when you have finished a session and want to "sign-off"

the terminal. The system will tell you the point at which program execu-

tion stopped, and wait. You then enter "BYE" and you will be disconnected

from the time-sharing system.

EXAMPLE:

?QUIT

98

PROGRAM STOP AT 1490

USED 1.54 UNITS
BYE

0013.46 CRU 0000.87 TCH 0008.79 KC

OFF AT 14:25PDT 0/6/05/72

The following figure (next page) shows you the ...des in which these

commands can be used:

-80-

89

Command Mode 1 Mode 2 Mode 3

MAIN Yes Yes Yes
MODE Yes Yes Yes
NEXT Yes / 7
HELP Yes Yes 7 /(_7/

QUIT Yes Yes Yes
BREAK Yes Yes Yes

4. You can correct an accidental typing error by holding the shift

key down and hitting back arrow (on the "0" key) once for each erroneous

character. Then, retype the message from that point.

5. You will be shown how to log on the system. After logging on,

you will be asked for your student number, what course you want to take.

what main goal, what mode, and what difficulty level. Always enter 1 for

difficulty level, other levels are not currently being used.

-81-

so

INNEMS11111111

REFERENCES

Atkinson, R. C., and Paulson, J. A. An approach to the psychology of
instruction, Psych. Bull., 1972, 78(1), 49-61.

Bond, Nicholas A., Jr. and Rigney, J. W. Measurement of training outcomes.
Los Angeles: University of Southern California, Behavioral Technology
Laboratories, June 1970. (Tech. Rep. 66)

Carbonell, Jaime. Scholar, A New Approach to Computer-Assisted Instruction..
Naval Research Reviews, October 1972. Arlington: Office of Naval
Research, Department of the Navy.

Feurtzig, W. Automated Instructional Monitors for Complex Operational
Tasks. Final Report; Bolt, Beranek and New, Inc., October, 1971.

Rigney, J. W., Fromer, R., and Bond, N. A., Jr. The application of time-
sharing technology to training requirements at the Electronics Schools
Commands, Mare Island. Los Angeles: University of Southern California,
Electronics Personnel Res. Group, December 1967. (Tech. Rep. 56)

Rigney, J. W., Fromer, R., and Teplitzky, F. Requirements for a computer-
aided instruction system for the U.S. Naval Schools Command, Mare
Island. Los Angeles: Electronics Personnel Res. Group, June 1968.
(Tech. Rep. 58)

Rigney, J. W., and Towne, D. M. TASKTEACH: A method for computer-
assisted performance training, Human Factors, 1970, 12(3), 285-296.

Rigney, J. W. Maintainability: Psychological factors in the persistency
and consistency of design. In K. B. DeGreene (Ed.), Systems
Psychology. New York: McGraw-Hill, 1970.

Uttal, W. R. Real-Time Computers: Technique and Applications in the
Psychological Sciences, New York: Harper and Row, 1968.

-82-

91

ONR DISTRIBUTION LIST

4 Dr. Marshall J. Farr
Director, Personnel and Training

Research Programs
Office of Naval Research
Arlington, Virginia 22217

1 Director
ONR Branch Office
495 Summer Street
Boston, Massachusetts 02210

1 Director
ONR Branch Office
1030 East Green Street
Pasadena, California 91101

1 Director
ONR Branch Office
536 South Clark Street
Chicago, Illinois 60605

1 Office of Naval Research
Area Office
1076 Mission Street
San Francisco, California 94103

1 Commander
Operational Test and Evaluation Force
U.S. Naval Base
Norfolk, Virginia 23511

6 Director
Naval Research Laboratory
Code 2627
Washington, D. C. 20390

12 Defense Documentation Center
Cameron Station, Building 5
5010 Duke Street
Alexandria, Virginia 22314

1 Chairman
Behavioral Science Department
Naval Command and Management Division
U.S. Naval Academy
Luce Hall
Annapolis, Maryland 21402

92

1 Chief of Naval Technical Training
Naval Air Station Memphis (75)
Millington, Tennessee 38054

ATTN: Dr. G. D. Mayo

1 Chief of Naval Training
Naval Air Station
Pensacola, Florida 32508

ATTN: CAPT Allen E. McMichael

1 Chief
Bureau of Medicine and Surgery
Code 513
Washington, D. C. 20390

1 Commander Naval Air Reserve
Naval Air Station
Glenview, Illinois 60026

1 Commander
Naval Air Systems Command
Navy Department, AIR-413C
Washington, D. C. 20360

1 Commander
Submarine Development Group Two
Fleet Post Office
New York, NY 09501

1 Commanding Officer
Naval Air Technical Training
Center

Jacksonville, Florida 32213

1 Commanding Officer
Naval Personnel and ';raining
Research Laboratory

San Diego, California 92152

1 Commanding Officer
Service School Command
U.S. Naval Training Center
San Diego, California 92133

ATTN: Code 303

-2-

1 Head, Personnel Measurement Staff
Capital Area Personnel Service
Office

Ballston Tower #2, Room 1204
801 N. Randolph Street
Arlington, Virginia 22203

1 Program Coordinator
Bureau of Medicine and Surgery

(Code 71G)
Department of the Navy
Washington, D. C. 20390

1 Research Director, Code 06
Research and Evaluation Department
U.S. Naval Examining Center
Building 2711 - Green Bay Area
Great Lakes, Illinois 60088
ATTN: C. S. Winiewicz

1 Superintendent

Naval Postgraduate School
Monterey, California 93940
ATTN: Library (Code 2124)

1 Technical Director

Naval Personnel Research and
Development Laboratory

Washington Navy Yard
Building 200
Washington, D. C. 20390

1 Technical Director
Personnel Research Division
Bureau of Naval Personnel
Washington, D. C. 20370

1 Technical Library (Pers-11B)
Bureau of Naval Personnel
Department of the Navy
Washington, D. C. 20360

1 Technical Library
Naval Ship Systems Command
National Center
Building 3 Room 3
S-08
Washington, D. C. 20360

1 Technical Reference Library
Naval Medical Research Institute
National Naval Medical Center
Bethesda, Maryland 20014

1. Behavioral Sciences Department
Naval Medical Research Institute
National Naval Medical Center
Bethesda, Maryland 20014

1 COL George Caridakis
Director, Office of Manpower
Utilization

Headquarters, Marine Corps (AOIH)
MCB
Quantico, Virginia 22134

1 Special Assistant for Research
and Studies

OASN (M&RA)
The Pentagon, Room 4E794
Washington, D. C. 20350

1 Mr. George N. Graine
Naval Ship Systems Command
(SHIPS 03H)

Department of the Navy
Washington, D. C. 20360

1 CDR Richard L. Martin, USN
COMFAIRMIRAMAR F-14
NAS Miramar, California 92145

1 Mr. Lee Miller (AIR 413E)
Naval Air Systems Command
5600 Columbia Pike
Falls Church, Virginia 22042

1 Dr. James J. Regan
Code 55

Naval Training Device Center
Orlando, Florida 32813

1 Dr. A. L. Slafkosky

Scientific Advisor (Code Ax)
Commandant of the Marine Corps
Washington, D. C. 20380

1 LCDR Charles J. Theisen, Jr.
MSC, USN

CSOT

Naval Air Development Center
Warminster, Pennsylvania 18974

I

-3-

Arm

1 Behavioral Sciences Division

Office of Chief of Research and
Development

Department of the Army
Washington, D. C. 20310

1 U.S. Army Behavior and Systems
Research Laboratory

Rosslyn Commonwealth Building,
Room 239

1300 Wilson Boulevard
Arlington, Virginia 27 70

1 Director of Research
U.S. Army Armor Human Research

Unit

ATTN: Library
Building 2422 Morade Street
Fort Knox, Kentucky 40121

1 COMMANDANT

U.S. Army Adjutant General School
Fort Benjamin Harrison, Indiana 46216
ATTN: ATSAG-EA

1 Commanding Officer
ATTN: LTC Montgomery
USACDC - PASA
Ft. Benjamin Harrison, Indiana 46249

1 Director

Behavioral Sciences Laboratory
U.S. Army Research Institute of
Environmental Medicine

Natick, Maryland 01760

1 Commandant

U.S. Army Infantry School
ATTN: ATSIN-H
Fort Benning, Georgia 31905

1 U.S. Army Research Institute
Room 239

Commonwealth Building
1300 Wilson Boulevard
Arlington, Virginia 22209
ATTN: Dr. R. Dusek

1 Mr. Edmund Fuchs
BESRL

Commonwealth Building, Room 239
1320 Wilson Boulevard
Arlington, Virginia 22209

Air Force

1 AFHRL (TR.Dr. G.A. Eckstrand)
Wright-Patterson Air Force Base
Ohio 45433

1 AFHRL (TRT/Dr. Ross L. Morgan)
Wright-Patterson Air Force Base
Ohio 45433

1 AFHRL/MD
701 Prince Street
Room 200
Alexandria, Virginia 22314

1 AFOSR (NL)

1400 Wilson Boulevard
Arlington, Virginia 22209

1 COMMANDANT

USAF School of Aerospace Medicine
ATTN: Aeromedical Libraty (SCL-4)
Brooks AFB, Texas 78235

1 Personnel Research Division
AFHRL
Lackland Air Force Base
San Antonio, Texas 78236

1 Headquarters, U.S. Air Force
Chief, Personnel Research and
Analysis Division (AF/DPXY)

Washington, D. C. 20330

1 Research and Analysis Division
AF/DPXYR Room 4C200
Washington, D. C. 20330

1 Headquarters Electronic Systems
Division

ATTN: Dr. Sylvia R. Itver/MCIT
LG Hanscom Field
Bedford, Maryland 01730

1 CAPT Jack Thorpe USAF
Department of Psychology
Bowling Green State University
Bowling Green, Ohio 43403

94

-4-

DOD

1 Mr. William J. Stormer
DOD Computer Institute
Washington Navy Yard
Building 175

Washington, D.C. 20390

1 Mr. Joseph J. Cowan, Chief

Psychological Research Branch (P-1)
U.S. Coast Guard Headquarters
400 Seventh Street, SW
Washington, D.C. 20590

1 Dr. Ralph R. Canter
Director for Manpower Research
Office of Secretary of Defense
The Pentagon, Room 3C980
Washington, D.C. 20310

Other Government

1 Dr. Alvin E. Coins, Chief
Personality and Cognition

Research Section
Behavioral Sciences Research

Branch

National Institute of Mental
Health

5600 Fishers Lane
Rockville, Maryland 20852

1 Dr. Andrew R. Molnar

Computer Innovation in Education
Section

Office of Computing Activities
National Science Foundation
Washington, D.C. 20550

1 Office of Computer Information

Center for Computer Sciences and
Technology

National Bureau of Standards
Washington, D.C. 20234

Miscellaneous

1 Dr. Scarvia Anderson

Executive Director for Special
Development

Educational Testing Service
Princeton, New Jersey 08540

95

1 Professor John Annett
The Open University
Waltonteale, BLETCHLEY
Bucks, ENGLAND

1 Dr. Richard C. Atkinson
Department of Psychology
Stanford University
Stanford, California 94305

1 Dr. Bernard M. Bass
University of Rochester
Management Research Center
Rochester, New York 14627

1 Professor Mats Bjorkman
University of Umea
Department of Psychology
Radhuseplanaden 2
S-902 47 UMEA/SWEDEN

1 Mr. H. Dean Brown
Stanford Research Institute
333 Ravenswood Avenue
Menlo Park, California 94025

1 Dr. Jaime Carbonell
Bolt Beranek and Newman
50 Moulton Street
Cambridge, Maryland 02138

1 Dr. Kenneth E. Clark
University of Rochester
College of Arts and Sciences
River Campus Station
Rochester, New York 14627

1 ERIC
Processing and Reference Facility
4833 Rugby Avenue
Bethesda, Maryland 20014

1 Dr. Victor Fields
Department of Psychology
Montgomery College
Rockville, Maryland 20850

1 Dr. Robert Glaser
Learning Research and Development

Center
University of Pittsburgh
Pittsburgh, Pennsylvania 15213

-5-

1 Dr. Albert S. Glickman
American institutes for Research
8555 Sixteenth Street
Silver Spring, Maryland 20910

1 Dr. Duncan N. Hansen
Center for Computer-Assisted
Instruction

Florida State University
Tallahassee, Florida 32306

1 Human Resources Research
Organization

Division #3
Post Office Box 5787
Presidio of Monterey, California
93940

1 Human Resources Research
Organization

Division #4, Infantry
Post Office Box 2085
Fort Banning, Georgia 31905

1 Human Resources Research
Organization

Division #5, Air Defense
Post Office Box 6057
Fort Bliss, Texas 79916

1 Library
HumRRO Division Number 6
P. 0. Box 428
Fort Rucker, Alabama 36360

1 Dr. Lawrence B. Johnson
Lawrence Johnson and Associates, Inc.
2001 "S" Street, NW
Suite 502
Washington, D. C 20009

1 Dr. Roger A. Kaufman
Graduate School of Human Behavior
U.S. International University
8655 E. Pomerada Road
San DLego, California 92124

1 Dr. E. J. McCormick
Department of Pcychological Sciences
Purdue University
Lafayette, Indiana 47907

1 Mr. Luigi Petrullo
2431 North Edgewood Street
Arlington, Virginia 22207

1 Dr. Robert D. Pritchard
Assistant Professor of Psychology
Purdue University
Lafayette, Indiana 47907

1 Dr. Diane M. Ramsey-Klee
R-K Research & System Design
3947 Ridgemont Drive
Malibu, California 90265

1 Dr. Leonard L. Rosenbaum, Chairman
Department of Psychology
Montgomery College
Rockville, Maryland 20850

1 Dr. George E. Rowland
Rowland and Company, Inc.
Post Office Box 61
Haddonfield, New Jersey 08033

1 Dr. Benjamin Schneider
Department of Psychology
University of Maryland
College Park, Maryland 20742

1 Dr. Robert J. Seidel
Human Resources Research Organization
300 N. Washington Street
Alexandria, Virginia 22314

1 Dr. Arthur I. Siegel
Applied Psychological Services
Science Center
404 East Lancaster Avenue
Wayne, Pennsylvania 19087

1 Dr. Benton J. Underwood
Department of Psychology
Northwestern University
Evanston, Illinois 60201

1 Dr. David Weiss
University of Minnesota
Department of Psychology
Elliott Hall.

Minneapolis, Minnesota 55455

-6-

1 Mr. Edmund C. Berkeley
Berkeley Enterprises, Inc.
815 Washington Street
Newtonville, Maryland 02160

1 Mr. Dennis J. Sullivan
Training Department
Hughes Aircraft Co.
P.O. Box 90515
Los Angeles, California 90009

1 Dr. Frank J. Harris
Chief, Training Division
U.S. Army Research Institute
1300 Wilson Boulevard
Arlington, Virginia 22209

1 LCOL Austin W. Kibler, Director
Human Resources Research Office

ARPA
1400 Wilson Boulevard
Arlington, Virginia 22209

1 Dr. Robert R. Mackie
Human Factors Research, Inc.
Santa Barbara Research Park
6780 Cortona Drive
Goleta, California 93017

