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Individualized Testing and Item Characteristic Curve Theory

Abstract

An elementary survey of item characteristic curve theory is presented,

centered around the problems of individualized ("tailored") testing.



Individualized Testing and Item Characteristic Curve Theme*

1. Introduction

In conventional mental testing situations, a group of individuals

take the same testa Inevitably, an aptitude or achievement test is too

easy for some individuals and too hard for others. Some may obtain per-

fect or near perfect scores on the test; others may score near zero. If

successful random guessing is possible, low scores will be at and below

the chance level.

If a test is too easy for some individuals, it will not discriminate

effectively among them. A helpful analogy for this situation is a high

jump contest: one would not try to rank the best jumpers by always setting

the bar at a level appropriate for mediocre jumpers. Similarly, if a

test is too hard for some individuals, it will not discriminate effectively

1

among them either. One would not try to rank poor jumpers by setting the

bar at a level where none of them clear it.

If successful random guessing is possible (as on almost all objective

tests), it is also obvious that the test cannot effectively measure an

individual who gives random answers to almost all the test questions.

The "noise" on his answer sheet overwhelms the "signal." This discussion

suggests that for each individual there is an optimal difficulty level at

which test questions are most effective for evaluating his performance or

"ability."

Let us limit further consideration to the common case where all

responses to test questions are (treated as) either "right" or "wrong."

*Preparation of this chapter was supported in part by Grant GB-32781X
from the National Science Foundation.



If there is no guessing, a common rule for effectively measuring performance

(this is also the rule to which theory will lead us) calls for a difficulty

level such that the individual will answer half the questions correctly and

half incorrectly. If questions can be answered correctly by blind guessing,

then the optimal difficulty level will be somewhat easier than this.

Clearly it would be desirable to test each individual with questions

best suited to his ability level. This is likely to be impractical in

ordinary paper-and-pencil testing situations (but see Lord,1971a, b, c).

Now that many educational institutions have high-speed computers, however,

it is becoming practical to have the computer "tailor" the test for each

individual tested, administering only test questions that seem appropriate

for his level of ability, as judged from his responses to the questions

previously administered.

In order to tailor the test to the individual tested, the computer

must be able

1. To predict from the individual's previous responses how he

would respond to various questions not yet administered

(these may be more, or less, difficult than any of the ques-

tions already administered).

2. To make effective use of this knowledge in picking the ques-

tion to be administered next.

3. To assign at the end of the testing a numerical score (or

interval estimate) somehow representing the "ability" or

overall level of performance of the individual tested.

4
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2. Test Theory for Itemized Tests

Classical test theory does not provide an ampropriate framework

for dealing with any of these three tasks that the computer (or the

tailored-test designer) must carry out. Classical test theory is of great

practical value in the design, construction, pretesting, scoring, statis-

tical analysis, and interpretation of conventional tests of all kinds. An

effective theory for similar purposes is urgently needed for individualized

testing. Without careful design and appropriate scoring, individualized

testing will often be inferior to conventional testing.

If we are to think meaningfully about "good" testing procedures and

"inferioPprocedures. we first need to be clear about the purpose of

testing. The immediate purpose is not simply to determine the individual's

actual performance on the particular test questions administered. This

statement becomes obvious in individualized testing, since here each

individual is responding to a different set of test questions, so that no*

comparisons among individuals are possible in terms of actual performance.

Rather, the purpose is to make some inference as to his typical or expected

performance on a large class of questions like those administered. In

order to have a convenient label, this typical or expected performance

will be called the ability of the individual in the area represented by

the class of test questions.

If the questions in a class are too heterogeneous, "ability" as

defined above has little psychological meaning. Science and understanding

will best be served if we choose to work (at least initially) with classes
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of questions sufficiently homogeneous so that we are happy to describe

performance on any one class by a single number, rather than by several.

This grouping of questions into homogeneous classes will be assumed in

all that follows (however, see Mulaik, 1972, for a model that avoids this

assumption). The reader may think of certain spelling tests, vocabulary

tests, or tests of spatial abilities, among others, as providing good

practical examples of homogeneous grouping of questions.

Note: There is no suggestion that an ability as defined here is

in any sense a genetic, anatomical, neurological, or even psychological

entity. For example, an "ability" useful in one set of circumstances as

a dimension for describing individuals might in other circumstances be

shown to be a composite of several abilities.

Our main problem is to infer the individual's ability (in the area

represented by the test) from his performance on certain test questions.

In order to do this, it is indispensable to have some idea of how the

individual's responses depend upon his ability.

1

3. The Guttman Scale

A simple and appealing model has often been used in the attempt to

describe the dependence of examinee response on examinee ability. The

test questions are visualized as hurdles, the height of the hurdle being

directly related to the difficulty of the question. The ability of the

examinee completely determines which hurdles he can clear and which he

cannot. In this deterministic model, all questions below a certain dif-

ficulty level are answered correctly by a given examinee; all questions
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above this level are answered incorrectly. A scale of test questions

displaying this property for all examinees is called a Guttman scale

(see Torgerson, 1958, Chapt. 12).

This model is arrived at by asking what we would like a test to do.

It would be nice if we could know from the examinee's test score (number

of right answers) exactly how he responded to every question in the test.

This knowledge can be obtained from a Guttman scale but not from any

other kind of test.

Although approximate Guttman scales are of use in sociological

work and in attitude measurement, they seem to be of little interest

in aptitude and achievement testing. For one thing, in many common

situations an ideal aptitude or achievement test should have all items

of equal difficulty. According to the deterministic hurdle model, all

examinees should obtain either a zero score or a perfect score on such

a test. Nothing like this happens in practice, however. The distribution

of number-right scores is typically bell-shaped, even when we try by

every means to obtain a U-shaped distribution.

The Guttman scale assumes that the tetrachoric correlation between

scores on any two test questions is 1.00. For two questions of medium

difficulty, this would mean a product-moment correlation of approximately

1.00 also. Actually, the tetrachoric correlation between typical

aptitude or achievement test questions is not 1.00 but only about .15.

The product-moment correlation between questions of medium difficulty

is about .10.
1k

7
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4. Ite.i Characteristic Curve Theory

If we want a mathematical model capable of fitting typical aptitude

or achievement test data, we must use a probabilistic rather than a

deterministic model. Denote the probability that individual a will

answer a test question correctly by P
p
OD

a
) E Prob(U

a
= 110

a
op) Here
-

U
a

is a random variable that assumes the value l when individual a

answers correctly, 0 otherwise. The real number 0a represents the

ability of individual a . The vector p contains parameters fully

characterizing the test question ("item") administered. The difficulty

of the item, for example, will be represented by one of the parameters in

p All this notation serves only to assert that the probability that

individual a will answer a question correctly depends only upon the

ability of the individual and upon certain characteristics of the test

question.

The probability. PD
(Oa) is to be interpreted here (see next section)

as a relative frequency over randomly selected test questions all having

the same characteristics p p . There is no consideration here of

repeated testing--each individual is tested only once.

It is natural to assume that P0(0) is an increasing function of 0 .

The higher the ability level, the greater the probability of a correct

answer. This will be assumed hereafter. Some typical functions P0(0)

(see Lord, 1968) are shown in Figure 1 for illustrative purposes.

We wish to assume that the probability of a correct answer to a ques-

tion depends only on the individual's ability level and on p , not on any

other known characteristic of his, nor on any other characteristics of

1
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the question, nor on any other variable available to us. It follows

that the probability of an individual answering correctly is not

altered by knowledge of the actual performance of other individuals.

Thus, for example, the probability of correct answers to a question by

both individuals a and a' is given by the product P" )P13(% )

In addition, it follows that the probability of an individual

answering a question correctly is not altered by knowledge of his actual

performance on other questions. Thus, for example, the probability that

individual a will answer questions i , and i" all correctly

is given by the product Po(Ga)P0,(Ga)Pon(Ga) This is called the

principle of local independence (Lazarsfeld, 1959).

It is instructive to see what would happen if local independence did

not hold. Suppose that for a certain individual a the probability that

he will answer randomly chosen questions i i' and i" all correctly

is greater than P
0
(E)

a
)P

13'

(E)
a
)P .(E)

a
) . If this is not a unique occurrence,

this would mean that there are individuals at ability level G = 0
a

who

score systematically higher on these test questions than other individuals

with the same 0 level. Thus these test questions would be measuring some

psychological dimension other than 0 . This is just the situation that

the assumption of local independence is designed to exclude. We want to

deal with a test that measures the ability G ; we do not want to deal

(at least at first) with a test score that may represent either of two

(or more) psychological dimensions at once.

10
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5. An Alternative Model

It seems necessary 5t this point to mention another model very commonly

confused with the .P
p
OD
a
) model used here. This Wo.i!r model makes asser-

tions about the probability, to be denoted by P.(0
a

) , that a specific

individual a answers a specific item i correctly. The two models will

be distinguished and reasons given for discarding one of them.

If an individual responds to question i at random, it is clear that

his probability of success is the reciprocal of the number of possible

responses to question i . There are many questions, however, for which

this individual knows the correct answer; for such a question, his

probability of answering correctly would seem to be virtually 1. There

may be other questions on which this individual is misinformed; for such

a question, his probability of answering correctly would seem to be

virtually 0.

Consider two individuals, a and b , and two test questions, i and

Individual a happens to know the answer to question i and to be mis-

informed on question j . Individual b happens to know the answer to

question j and to be misinformed on question i . If we write P.(0 )
a

for the probability that individual a answers question i correctly

we have Pi (Oa) . 1 , Pi(%) = 0 , Pi (%) = 0 , Pi (013) = 1 , approxi-

mately. The first two equations considered together imply that question

i is easier than question j , the last two equations imply just the

reverse. Thus questions i and j must measure a different ability for

individual a than they measure for individual b . This is a possible

model (Meredith, 1965: and a possible interpretation, but usually not a

fruitful one, since usually we want to compare individuals a and b

along the same ability dimension.

11
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In order to avoid the situation just outlined, we will use only

the model defined in the previous section, which makes no assertions about

the probability Pi(Ga) that a specified individual a answers a specified

test question i correctly. The model that we will use deals instead with

P (G)
a

) , which represents the long-run relative frequency of correct answers

given by individual a when answering test questions all having the same

specified 0 . An equivalent statement is that P (Oa ) represents the
INF

probability that individual a will answer correctly a question chosen

at random from all questions having the same p . When the model holds,

the function P
P
(D) of 0 will be referred to as the characteristic

curve for each item having parameters a

6. Specialization, Application, and Evaluation

Empirical checks on the validity and practical utility of the item

characteristic curve (icc) model have in large part been delayed for about

twenty-five years because of the difficulty of estimating the characteristic

curves of particular items. Recently a number of workers have successfully

estimated many icc and some evidence of the validity and usefulness of the

model has been accumulated. The present section is intended to refer the

reader to materials relevant for assessing the validity and usefulness

of the model; no detailed discussion is possible here.

An approach that estimates icc without restrictive assumptions about

their mathematical form has been described by Lord (19700. If it can be

assumed simply that the icc differ only by a linear transformation of 0

(a common assumption), a computer program implementing Levine (1972) has

been found very effective for estimating icc (Levine, personal communication).

12



It has been common to assume that the icc are normal ogives or logistic

curves. If the icc are logistic and if, for a given test, the curves all

have the same slope parameter, the present model can be shown (Birnbaum,

1968, p. 402) to be the same as the well-known Rasch model, which has

certain desirable measurement properties (Rasch,1960, 1961, 1966a, 1.);.

Wright, 1968; Wright and Panclvdpakesan, 1969). Methods for estimating the

single item parameter needed in this model and studies evaluating the fit

and effectiveness of this model have been reported by Rasch, by Wright and

Panchapakesan, and by Lawley (1243, 1944), Andersen (1970, 1971a, b, 1972a, b),

Anderson, Kearney, and Everett (1968), Choppin (1968), Fischer (1972),

Fischer and Scheiblechner (1970), HaMbleton (1969), Hambleton and Traub

(1971), Panchapakesan (1969), Scheiblechner (1971a, b), Tinsley and Dawis

(1972), Urry (1970). Reports on the fit and effectiveness of the one-

parameter model range from disapproval to enthusiasm.

If some test questions correlate higher with ability than others, as

is commonly the case, a one-parameter model may be inadequate. Whenever

correct answers can be obtained by random guessing, even a two-parameter

model is likely to be inadequate. Modified normal ogive and logistic

models with three parameters are available (Birnbaum, 1968, chapter 17).

The mathematical formulas are

P
0
(D) = y + (1 - 7)

a(o-p)

Jrexp(- 2 t2) dt

-co

for the modified normal ogive, and

(1)

(2)
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for the modified logistic. Models (1) and (2) do not differ anywhere by more

than :01. We need not debate here which model is more nearly correct.

Neither, of course, is exactly correct.

The three parameters in E la,13,y1 may be thought of as

'a discriminating power (a measure of the relaUon between

item score and ability),

difficulty,

y probability of a correct answer for individuals at lowest

ability levels.

A more detailed, practical discussion of these item parameters is gilien in

Lord (1970b).

Lord and Novick (1968, section 16.11) consider for what practical

situations the normal ogive model is likely to be appropriate. Studies

evaluating the fit of the model to actual test data include Lord (1952, 1970a,

1972); Indow and Samejima (1962, 1966). Their findings support the model

for the data studied. Many more evaluative studies are needed.

Methods for estimating the item parameters have been developed and tried

out by Lord (1952, 1968, 1972), Indow and Samejima (1962, 1966), Birnbaum (1968),

Bock (1970, 1972), Bock and Lieberman (1970), Kolakowski and Bock (1970),

Kolakowski (1969, 1972), Lees, Wingersky, and Lord (1972). Studies making

theoretical or practical use of these models appear in two books by Solomon

(1961, 1965). Included among other such studies are those by Brogden (1946),

Tucker (1946) , Cronbach and Warrington (1952), Lord (1953a, b; 1955, 1970a,

b; 1971a, b, c, d, e), Cronbach and Merwin (1955), Anderson (1959), Merwin

14
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(1959), Cronbach and Azuma (1962), Paterson (1962), Birnbaum (1968, chapters

17-20; 1969), Wood and Skurnik (1969), Shiba (1969a, b), Shoemak.?..1- and

Osbur (1970), Urry (1970), I'Iishisato and Torii (1971), Bay (1971),

Hambleton and Traub (1971), Samejima (1972).

7. Pretesting

In order to design a test for the specific purpose of measuring the

ability of a particular individual: we must have available a large pool of

test questions that have been extensively pretested, so that the param-

eters characterizing each question may be considered known. Mote that

the item characteristic function P (0) does not depend on the distribu-

tion of ability in any group of individuals. Consequently, tKe parameters

0 for a test question can be determined once and for all by pretesting in

some convenient group. Of course, reliance on the robustness of the model

over wide variations in group should not be carried to extremes. In

practice, the pretest group should resemble the collection of individuals

who will later be given the individualized tests.

Corresponding to the invariance of the item parameters 0 over groups

of individuals there is an invariance of the ability parameter 0 over

different tests (cf. Rasch: 1961, pp. 331-333). These invariances are

fundamental to the success of item characteristic curve theory in com-

parison with older item analysis methods. In a leading older method,

each item would be characterized by the proportion of correct answers

received and by the correlation between item response and total test

score. However, these item parameters of the older method would be dif-

ferent for different pretest groups; also, the correlation parameter would

15



change if the test was lengthened or otherwise modified. This lack of in-

variance limits the usefulness of classical item analysis. The usual

kinds of test score for an individual have a similar lack of invariance

when the test administered is modified.

8. The Statistical Estimatir:w of Ability

Once the item parameters fi have been determined by pretesting, the

problem of estimating the ability of an individual from his responses is a

straightforward statistical estimation problem. If hin probability of

success on question i is P
P

(g) and his probability of failure is
-1

%a. (G) E 1 - P
P

(9) , then the likelihood function for his score
a1 P1

( u. = 1 or 0 ) on question i is simply

(0) if u. = 1 ,

Li (0) = -1

012.(0 ) if u. = 0

This may be more conveniently written

U.

Li(G) = [Pc (0)] 1[0. (9)] 1

Because of local independence, the likelihood function for the

individual's responses to a test of n questions is simply the product

of the likelihoods for the separate questions:

n u. 1-u.

1(0) = n (0] 1[Q, (0)] 1
i=1 Pi

Pi

16
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Since the (ii known from pretesting, it is not difficult for e compu-
1

ter, given a mathematical form for P
P
(0) such as (1) or (2), to find

the maximum likelihood estimate 0 of the individual's ability. ( 0

is the value of 0 that maximizes the likelihood L(G) of his onserved

responses u
1'

u
2'

...
'

u
n

.)

A Simpler Prpcedare for Estimating Ability

There still remains the Problem of how to pick the n test questions

to be administered to a given individual. One advantage of individualized

testing is that testing can be continued until e individual's ability has

been estimated with some predetermined degree of statistical accuracy. For

the sake of simplicity, however, we will consider here only the case where

n is fixed.

To make matters even more simple, let us select from the pool a

large set of pretested questions that differ from each other only in

difficulty ( p ). These questions have identical values of a and y .

If (1) or (2) held with no random guessing, the optimal test for estimating

with minimum squared error would consist entir.ly of questions for which

P (Oa
2

)
1

'
where

a
is the ability of the individual to be tested.

Since we do not know
a

and cannot estimate it with any accuracy in

advance of testing, all this would not give us a method for choosing the

n test questions to be administered. Such methods will be discussed in

the next section.
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Let us assume now (as seems reasonable) that individual ability ( G )

and item difficulty ( p ) are measured along thesame dimension, in the

sense that for any increment k an increase in ability from 9 to G + k

could hypothetically be exactly offset by an equivalent increase in dif-

ficulty from P to E k . In other words, P (0 and

P(
(G + k) represent exactly the same function of G . This

assumption holds for models (1) and (2) and for any other P (G) in

which G and P appear only as their difference 0 - p . Under this

assumption P (0) :4 F(G - where.F is an unspecified monotonic

function.

What we have assumed here is simply that we have a large set of ques-

tions, selected from the pretested pool, whose icc differ only by a trans-

lation along the G axis. Let us define e as the item difficulty level

at which the individual has probability of success F(0) . Thus G = e° .

We can determine aq individual's ability G by determining his p° .

It is possible in practice to find the proportion of correct answers

actually given by individual a to test questions at any specified dif-

ficulty level. By trial and error, or by better methods to he discussed

below, we can in this way find approximately the difficulty level ea

such that P o OD ) = F(0) . This difficulty level is (approximately)
(a, ISa

a .

the ability level of individual a , since by definition Oa pa

10. Stochastic Approximation

Clearly what we need now is some method better than trial and error

for finding IP . Stated in this way, the problem is a standard problem

is
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in stochastic approximation (Wasan, 1969). Specifically, the stochastic

approximation problem is to select a sequence of test questions so that

we can conveniently and accurately estimate the individual's ability Ga

frar the sequence ul,u2,...,un of responses. Since for simplicity we

have selected from the pretest pool a set of test questions that differ

statistically only on their difficulty parameter (for a treatment that

avoids this, see Owen, ww), the problem of selecting a sequence of test

questions is simply the problem of selecting a sequence 01,02,...,0n .

The resulting sequence of questions constitutes an individualized test

or tailored test designed for effective measurement of the particular

individual tested.

The difficulty 01 of the first question administered can be chosen

in the same way that we would choose the average difficulty level of the

questions in a conventional test--by subjective judgment or by using a

Byesian prior. If the individual answers the first question incorrectly,

we gaess that it is too hard for him and choose an easier question to

administer next. If he answers the first question correctly, we guess that

it is too easy for him and choose a harder question to administer next.

After administering the second question, we could use the statistical

method outlined in section 8 to obtain from his responses to the first

.two questions an estimate 6!2) of the individual's ability. The dif-

ficulty of the third question administered could be matched to the

individual's estimated ability by choosing p3 = 8!2) . lie could then

choose p4,p5,.. similarly. However, a procedure that proceeds by

steps that are individually optimal is not in this case likely to be

an optimal procedure overall.

19
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We will not try here to devise an optimal procedure. Rather, we will

try to find a good, simple procedure that is not only easy to carry out

but also easy to evaluate as a procedure for statistical inference.

Under the Robbins-Monro stochastic approximation procedure, the rule

for choosing the difficulty of the (v + 1) -st question is

fv4.1 = + dv(uv - F(0)) ( 3 )

where di,d,,... is a suitable decreasing sequence of positive numbers

chosen in advance (Robbins and Monro, 1951). If the sten size dv is small,

the (v + 1) -st question will be chosen to have nearly the same difficulty

as the v -th question; if d
v

is large, there will be a more substantial

change in difficulty. In the Robbins-Monro procedure, the dv are chosen

relatively large initially when little is known about the individual's

ability level, allowing substantial readjustments in item difficulty levels.

Later when the appropriate difficulty level has been approximated, the

chosen d
v

are small, eventually approaching zero. Typically d
v

d1 /v
'

v 1,2,3,...

Robbins and Monro's proof shows that when (3) is used with suitable

d
v

, the item difficulty S
v+1

is a consistent estimator of the

individual's ability 0 , in the sense that S
v+1

converges sto,:hastically

to 0 as v becomes large. Formulas leading in some cases to asymptoti-

callycptimal choices of the dv are given by Hodges and Lehmann (1956).

11. The Staircase Method for Selecting the Test Questions

Unfortunately, the Robbins-M:nro procedure requires storing 2
n

test questions in the computer before testing is begun, where n is the

20



number (here assumed to be fixed in advance) of questions to be adminis-

tered to the examinee. For most aptitude and achievement tests composed

of dichotomously scored questions, n > 25 .

An alternative procedure, keeping the total number of test questions

within acceptable limits, is available: the up-and-down method or stair-

case method, used in testing explosives, in bioassay, in psychophysics,

and elsewhere. In the up-and-down method, the rule for selecting questions

is still given by (3), but with d
v

replaced by a constant step size d .

If F(0)

by

= 1/2

=

b

b

,

v

the up-and-down rule becomes

d if question v

- d if question v

is answered correctly,

is answered incorrectly.

This simple form of (3) normally holds only if there is no guessing of

correct answers.

For basic di,cusnions of this method, see Dixon and M-,od (1943) and

Brownlee, Hodges and Rosenblatt (1953). Some modifications are dis-

cussed by Tsutakawa (1963, 1967a, b).

This method requires storing only n(n 1)/2 test questions in

the computer in advance of testing. This number can be reduced further

by taking a few obvious shortcuts.

12. Scoring the Answers*

Consider the following three simple methods for scoring the

student's responses to the test questions:

*This section and part of the previous section are a slight revision
of material appearing in Lord (1971e).
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1. The "final-difficulty score," 01,11 , the difficulty of the

(n + 1) -th question (not actually administered) as defined

by equation (3).

n

2. The "nuMner-right score," E uv , or the "proportion-

v=1
n

right score,
fr u

v
The former is the score most

v=1

commonly used in scoring conventional mental tests.

1 n+1
3. The "average-difficulty score," p r.71 E 0 This

v=2 1/

score is simply the average of the difficulty param-

eters of the questions administered, omitting the first

(since the first question is the same for all individuals

tested) and including 0,14.1

[Before going ahead, the reader may wish to make a guess as to the

relative merits of these three scoring methods for the up-and-down

(fixed step size) procedure.]

When the step size shrings appropriately as n increases, as in the

Robbins-Monro procedure, 011+1 is a good estimator of ability. When the

step size is fixed, as in the up-and-down method,
n+1

is no longer a

consistent estimator for 8 , nor does its sampling variance approach

zero as n becomes large. It turns out that when step size is fixed,

number-right score is perfectly correlated with 0114.1 ; so it, too, can

be eliminated as an effective method of scoring.

Brownlee, Hodges, and Rosenblatt (1953) have shown that the average-

difficulty score is asymptotically equivalent to the maximum likelihood
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estimator for 0 found by Dixon and Mood (1943) for the up-and-down

method. Although no optimum small-sample properties have been proven for

the average-difficulty score, it appears at present to be the preferable

method of scoring testh administered by the up-and-down method.

It frequently happens that similar groups of students are tested

year after year. In this case, an excellent prior distribution for the

parameter 0 is available, based on records of past performance. In

such situations, the careful design of a tailored testing procedure

would certainly be based on a Bayesian approach. The Bayesian approach

will not be treated here since it is of greater mathematical complexity.

The interested reader is referred to Owen (1970) and to Freeman (1970).

13. Evaluation of Testing Methods

The remaining problem for discussior here is the evaluation of dif-

ferent stochastic approximation procedures and of different choices

of parampters such az d .

Properties of the Robbins-Monro procedure for large n are dis-

cussed in the references given. Some properties for snail n are

treated by Wasan (1969, chapt. 2) and by Cochran and Davis (1965). An

improved procedure for small n is suggested by Kesten (1958) and tried

out empirically by Odell (1961).

The up-and-down rule for selecting test questions to be administered

produces a Markov chain or, more specifically, a random walk for the values

of pv . The transition probabilities P ,P1P7}(0) and Q
,

vo,y}(1
)
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are stationary. They depend on ply , but they do not depend on v when

p
v

and G are given.

Starting from this, it is not hard to write down a formula for the

frequency distribution of p(nil) under the up-and-down method; but

3(14.1) is not a satisfactory scoring procedure for this method, as

already noted. The frequency distribution of the average difficulty

score p is not easily obtained for moderate n , but Brownlee, Hodges,

and Rosenblatt have provided recursive formulas from which the mean and

sampling variance of p can be readily calculated numerically by

computer for given 0 , a , pl , 7 , d , F(0) and for any n likely

to be of interest. Given the bias and sampling variance of for

given 0 for each of various testing designs, it is not hard to decide

which design is preferable for measuring at a specified aWlity level.

A variety of testing designs were investigated in this fashion by

Lord (1970b, 1971d). Numerical studies of a variety of stochastic

approximation methods applicable to individualized testing are reported by

Cochran and :avi (1964), Davis (1971), Wetherill (1963), Wetherill

and Levitt (1965), Wetherill, Chen, and Vasudeva (1966). Other

empirical studies of individualized testing include Bayroff and Seeley

(1967), Ferguson (1971), Hansen and Schwarz (1968), Linn, Rock,

and Cleary (1969, 1972), Paterson (1962), Seeley, Morton, and Anderson

(1962), Urry (1970), Waters (1964), Waters and Bayroff (1971), Wood

(1969).
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14. Relation to Psychophysical Methods

The up-and-down method is often used in bioassay. According to Guilford

(1954), it originally was developed for the study of explosives. When used

in nsychor,hysical studies, it is known as the staircase method (Cornsweet,

1962).

The psychophysicist does not need to know thf: precise mathematical form

of the psychometric function. To elucidate comparison with icc theory, let

us assume that the psychometric function actually is given by equation (1)

or (2) with y = 0 .

Whereas the mental tester controls a and p (by using pretested

items) while trying to estimate the value of 0 , the psychophysicist (or

bioassayist) controls 0 while trying to estimate the value of and,

sometimes, the value of a . Note that 0 and ff play reversed roles

for the mental tester and for the psychophysicist. Fpr the latter, 0

might represent the physical intensity of the various stimuli presented

under experimental control. Then, would be the "threshold" at which

the subject says "yes, I detect the stimulus" P(0) of the time; a would

be the precision of the psychometric function. The psychophysicist chooses

the stimulus level 0
1

, administers this stimulus, and records the response

uil = 0 or 1 . He then chooses another stimulus level 09 , administers

this stimulus, records ui2 = 0 or 1 , and continues in this way.

In mental testing, we are interested only in the relative values of

0 for differmt examinees; 0 is, at best, measured on an interval scale.

The unit and zero point of this scale have little ready meaning for most

other scientists concerned with mental measurement. The psychophysicist,
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on the contrary, usually estimates the absolute value of 13 on some standard

scale having a unit and origin well known to physicists and other scientists.

Avoiding bias in his estimates is therefore of crucial importance for

the psychophysicist. In mental testing, any linear transformation of 0 is

as valid as any other. Bias is usually of no importance to the mental tester

as long as it affects all scores equally.

The fact that the psychophysicist has two unknown parameters, a and

0 , creates a further problem. It is not possible for him to choose the

step size d optimally without knowing a . A poor choice of d leads

either to excessive standard error or bias in the estimated threshold, or

else to experiments that are unnecessarily lengthy.

Often the psychophysicist can obtain observations cheaply. It may be

easy for him to obtain a thousand or ten thousand responses from a single

subject. The mental tester cannot do this. The objective situation forces

the mental tester to use reasonably efficient testing and estimation methods.

For the osychophysicist, statistically efficient procedures may be unnecessary

and'distinctly uneconomical.

In addition to the staircase method, the psychophysicist sometimes uses

block up-and-down methods (Stuckey, Hutton, and Campbell, 1966; Tsutakaa,

1963, 1967a, b; Cochran and Davis, 1964) and unequal-step-size "sequential"

methods (Taylor and Creelman, 1967; Pollack, 1968). The time-honored con-

stant-stimulus method corresponds in part to conventional (not individualized)

mental testing; the scoring methods are different in the two applications,

however.

The 111:1icated correspondence between individualized testing and certain

psychophysical experiments is clear and instructive whenever the mental
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tester can work with items all having the same a and y accurately

determined by pretesting. Such situations do not really exist at present,

however. NDt enough items are usually available to do practical work with

a pool of items all having the same a and y (proponents of Rasch's

method may disagree).

Present work in icc theory and practice is concerned with estimating

item and examinee parameters simultaneously. This is very different from

the typical psychophysical problem. An outstanding current problem is how

to carry out individualized testing using test items chuacterized by a

variety of inaccurately estimated item parameters. A recent article by

Dupaa and Kriil (1972) is relevant for individualized testing with fallibly

estimated values of pi .
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