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arise in a structured form. These structures may yield covariance matrices

wh1ch e\<h1b1t special patterns or sy'mmetrles. An early 'e)'car.nple of patterned

covariance structure is the intraclass correlatlon model (1n wh1ch all the
_variances and all the covariances are homogeneous) cons1dered by Wilks
(19h6)- Anouher-example is the spherical model in which all the variances
are equal and the covariances are zero. A wide class of structured models,
'ca'lled radex‘models , Was 1ntroduced by Guttman (195&) In these models,

test scores are generated from components which may be v1ewed as hav1np' a speclal

TESTING AND ESTIMATION FOR STRUCTURES

WHICH ARE CIRCULARLY SYMMETRIC IN BLOCKSl
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1. Introduction

* There has been considerable study of models in which the observations

geometrlcal structure, and hence the more recent name simpiex models.

Although Guttman (1954, 1957) provided examples of date which approx1mated ' ,

simplex structure, there was little work in develop.;ng est1mators of the

parameters or in designlng tests of hypotheses. ‘The paper of Wilks (1946)

was concerned with inference for the particular intraclass correlation

model.' This model has now been studied in some detail in various contexts.

Similarly, tests for sphericity also have been studied in detail (for

references, see Gleser, 1966).

(1966), in which solutions of the waximum likelihood equations are dis-
cussed. In a subsequent paper, Mukherjee (1970) was able to obtain explicit

maximum likelihood estimators for a certain class of simplex models.

The first general study of some simplex models was that of Mukherjee
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Another general paper whiéh has relevance to some of the Guttrﬁan's simplex
models is that of Anderson (1970). The method of analysis considered by both

N ~ Anderson (1970) and Mukherjee (1970) is based on covariance matrices £ which

may have a representation of the form
(lol) ) z = QlAl + [N ) + GmAm 3

where th:e,matrices‘ A, are known and the ©'s é.re unkriownf Many patterne;d'
covariance matrices may be expreéééd in the form of (1.1).. J8reskog (1970)
provides a general discussion of the solution 61‘ the maximum ]Tikelihood
equationsj for: simplex modeis. |

Although general methods were considered in these papers; greater

depth can be achieved v:i.n the study of some particular pattgfns + One
- 1 ‘ .such pattern, called the circumplex byﬂGtrbtm.an, was considefed by Olkin and § “
Press (1969) , in which an extensive study was made of a hierarchy of models. o ‘
In addition to studying the cqvarip.née stfuctu.:re, pattefps among the means |

are also considered. Olkin and Press provide not onl3; t_hé likelihood ratio tests

: Qf vax_'ioasb hypothgses, but also different approximations to the null and non-
null distributions. It is of interest to note that the genesis of their
stﬁdy is a physical model in which ob servatiohs are made at the vertices of

’ a .regular polygon. Because of stationarity ~[ see Olkin and Press (1969)], a “4

circularly symmetric model is generated, which is identical to that of the

e e TR

circumplex.

In the present paper we extend the circularly symmetric wmodel to the

case where the symmetries are exhibited in blocks, and show how maximum

YR TR vy e

likelihood estimators (MLE) and likelihood ratio tests (LRT) can be obtained.
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2. Preliminaries on the Circularly Symmetric Model

"~ Before providing an extension of ‘the mode]_.‘, we"f:i.rs‘t review the cir-
. cularly symmetric wodel, and show how.the reduction fo a canonical form
enables us to obtain egsily the MIE and LRT. In both‘Guttman'bs ci’rcufﬁplex
model and in that considered by Olkin and Press (1969), we have rahdom_vari'-

ables Xy -’..,Xk' with means Hq» ..'.,pk and covariance matrix Zé , which is

a circular symmetric matrix. A circular symmetric matrix Ac is given by

a

[¢ ces 7
a, a -8,

2

8y 8 tcc |
(201) Ac = ) ) eee ) Where aj = ar-j+2 . j = 2’...’1‘ .

. e e

Every symmetric matrix has a representation

‘ (2.2) A, =T'DT )

where Ty,e..,T, are the eigenvalues of A, , D = dia.g(fl,...,fr) s

and I = (7jk) is orthogonal.

A key point in the development is the fact that if Ac is ecircularly

[

symmetric, then

j=2,o.o,r‘ ;

(2.3) Ty T

Tr-j+2  ?

i‘trrtherthore, the elements 7jk are given by

(2.4) 75k = r'l/e{sin 2:&'1(3 - 1)(k - i) + cos 2:rr'l(.j -1)(k -1)) ,

e e A e

which are independent of the elements of Ac .
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Another way to express (2.1) [see Wise (1955)] is

' 2; = . .
( 5) Ac : alWO *aghy + oe.. arwr-l ,
where
0 Ir-j
(206) wo=I k) WJ.= ’ J-“'—l,o.o’r"l .
| I, O
- d
Remark
Since a:j = ar-j+2 , we may combine terms having the same coefficients

tp yield terms W'j + wr-j+2 . But wr'-j+2 is

' .
W'j , so that W‘_i + wr-;j+2

wi , so that all matrices

(WJ. + WS) j= 0,...,r‘ -1 are qommutative, and hence inay be diagonalized

symmetric. It is easily verified that W'j

- by the same orthogonal matrix. This fact will be used later.

a = l’.oo’N )

Suppose we have a sample of size N y (xla,.-.,x ),

from a normal pnpulatlon with mean vector u and covariance matrix Z .

By sufficiency we may consider the_ mean vector X , which has a '7((;1, z/N)

matrix S , which has a Wishart dis-

d‘istribution,Aand the cross product

tribution, %As;p,n) , n=N -1, vith density function

p(s) = e(p,n)ls| (2 P1)/2 217 (0/2) ey - Zerz’s]

. where
¢(p,n) = o0/, -p(p-1) /g & SRR R L
1
Now transform x and S by
(2.7) v = VE 50, vV =rosM" |,

o .
EMC so that | :‘. 5
e “, .
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2.8)  y~MwE) , V-~¥Spm)

where v = VN u* and T=0DEM . If & is circular, then ,i is diagonal,
and estimators of the parameters are readily available.
In the following extension; we make use of these ideas co afford an |

analogous simplification for the extended problem.

3. Block Circularity -

The extended model mﬁy‘belgenerated in various ways.v In terms of the
physical model mentioned in Sectién l,:we again ﬁave a point source
located at the geocenter of a regular polygon of p  sides, from which a
signal is transmitted. Tdentical signal receiyers'arepositioned ét the p

vertices. However, now the signal received at the i -th vertex is

characterized by k components, and is denoted by x,; = (xil,---,xik) .

The main assumption is that the covariance matrices depend only on the

number of verticeS'separafing the two receivers, so that

)=Z =L P) m=0,...,p P)

™ p-m

(3.1) | -COV(Xi’xi+m

where each Zm is & k x k matrix. Thus, for example, if p = 4 and 5, ﬁg

we obtain
s £ £ I s 5. 2. %, %]
o X1 2 1 0o %1 %2 2 A1
5.2) 2, B 5 % ’ Iy B Iy Ep Epl
Zy I B % o Iy Iy % I
Lzl Zp Iy zo_ Zp Zp Iy Ip %y
Iy B I Iy o

Ago
(~2)
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In terms of Guttman's circumplex model,, vectors of scores are generated
from a structured model as follows. For simplicity, consider the special
case in which there are fe.ve tests tl ’ t2 s 1.?5 s tlt ’ t5 made u.p‘
from 5 components ¢y » Cos c5 5 ¢y _05 , where each ci. is a k_ -

dimensional vector:

If e, ¢, , c5 s ¢u s 05 are on & circle [Guttman (1954) provides a
Lo N

rationale for this], so that

COV(Ci,Ci+k) = Al{ ] fOI‘ i = 1’2’O¢¢’5 k)

with &, = Alb ) b= A5 [because the "distance" from ¢, to ¢, is that |
N 1"nas 1" .
of cy to 05 , and the "distance” from cy to c5 is that of cy to

c), 1, then we obtain (3.2) for p = 5 as the covariance matrix.

k. Reduction to Canonical Form

The critical question at this point is whether a reduction to a canon-
jcal form is possible for the block circular case. Although not obvious,
by using Kronecker products it becomes straightforward to see that such a .

reduction is possible, indeed.
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First we note several facts concerning the Kronecker product -

A 3 Bb“-.: (éijB)‘ )

if Aiz_mxn, B:Dpxgq, then A@B isan mp x qn matrix. We would
like to generate block circular matrices as in (3.2). To do this;vthe

matrix we use (2.5) and form

where the matrices W'j are defined in (2.5), and Zj = ZP'J s

J=121000,p =1 For example, when p = 4 , we obtain

Next we need several well-known facts concerning Kronecker products:

T 0 0.0 ,
5 o % 0 Q 0 0.z o\ 0 0 o ;

0 =0 0] [0 o s o £, 0 0

00 0 £ 0 0 ; |

Zy 0 0z £, 0 0 0o {0 Zz 0
o 0o o x| ; S0
o £, 0 0 o0 0 =, 6 0 o 0 % :
Zo Iy B By
B Zo B Z2|
z B o5 5
5 I, I X% "
"1 "2 1 Yo

(4.2) (4, @ Bl)(A2 ®B,) = AA, BB,

(+.3) A® (B+C)

(A®B) + (Apc) ,

(4.4) (A+B)®cC (A@C) + (B-&C) ..
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.Applyihgvthese_facts to (4.1), we obtain
(v5)  (F® DM Q1)

= (MW" B 5p) +(WT B By) # eee + (rw_,r @zp_l) .

‘Recall that Wb =‘I', W. = Wi sy J=1yeee,Pp =1 Cohsequently, if T

d ' s W Yo = a3

1agona11zes Wl + W -1 =W + W, e, P(Wl +»Wi)1' d;ag(el,,..,ek) s
" then r(w + w' )r' = g . But the matrix T defined by (2‘.5) is exactly

that orthogonal matrix whlch dlagonallzes WJ + WS , and the diagonal

elements-vej” are the p roots of unity. Thus
- (4.6) (ro I ®1I) = .Dieg(ﬂfl,ﬂfa,--uwp) =D s

where the metrices ij are positive definite and satisfy

b7 ¥ = wp_j;e', ,  a- 2,,,.,p :

As in the case when the blocks are 51ngle elements, we may. now use

(2 6) and (2 7) as our startlng p01nt notlng that we have pk variates

' 1nstead of p -
Remark: If we wish to recapture estimates of 25”,.we may do so from (4.6),
namely,
u8) =(3I)p@I) -

" Indeed (4.8) yields simple linear equations of the form

(uog) za = aalwl + eee + aapwp k) a= l, ooo’p k)

where the coefficients aij are functions of the 7ij °

59
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5. Hypotheses for Symmetric Structures in the Covariancé Matrix

" and the Likelihood Functions

The following'hypotheses represent block vefsions’of (l) spiuericity,

(2) intraclass dorrelation,‘(3)-circular symmetry, and (4) a generai motrix:

z

(5.1) "Hl

Diag(zO: o .’20) ’
zo zlv LU zl

Zy Bg e By

Lzl_ Zy e ZOJ |

S HZ>0 .

in'terms'pf the canonical repreSentatibn, ve way now test hypothéses sﬁch

. as

(a) _sphericity versus intraclass correlation,
B ‘f E - (b) sphericity versus cifdular'symmetry;‘
(¢) intraclass correlation versus circular symmetry,

(a) circular symmetry versus general structure.

2 KTV

Because of the canonical form (4.6), the parameter space for each of the

hypotheses Hl - Hh becomes

MR L S A AR 2
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(5.2) a)l = {¥: ﬂfl'= ces = ¢') » 0, given ’q'fj = "'rp-j-ﬁ}‘ P 2:‘°°.-:P] s

o 032 = {¥: ‘ﬂf >0 ,»7];2':... = ﬂfp >0 ) given ‘ij = wp-j+2 » 3 =2400,0) |  ’ )

>0’ j=2,...,p‘]k‘ k)

oy 920, Gu ko>

a5+~;'[z: >0} .

Following the procedure of Olkin and Press (1969), we may obtain the

maxima of the likej.ih_ood functions L(y,V) over the regions w, and s 5

and thereby generate the likelihood ratio tests (LRT) for hypothesis H,
Versus Hj by

sup L(y,V)
w.

(5.3) 7‘13 ~ sup L(y,V *
w, .
J E

Because the circular symmetric model is equ ivalent to the éondition.

2 - 'p 5 , | }
variance matrngs Voo with‘ Ypp s V33 with vp-l,p-l_ , etc. in estj.fv_
Hmatin»g the common 7lf2 I 7lf5 ’ ejbc.‘ Thus, it will simplify our notation if

vV,=% , ¥, = wp-l , etec., it is clear that we wiil want to pool thw gor

- we write,

(5-%) (Vy ""Vm+l) = (V¥ + Vop " Vem * Vm+2,m+2’vm+l,m+l) ’
when p = 2m is even, and

(5.5) (Vl’ ...’Vmi-l) = (Vl]_’vaa + Vpp’.”’vm+]_’m+]_ + Vm+2’m+2) )

when p=2m+ 1 1is odd. For later use we define.
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(5.6) V:i = vp_j+2 , 3 =240, o

Since the mean vector y and the Vj's are independently distributed,

when £ is circular, we have as a canonical model:
Mean Vector

(5-7) ¥y, - 77("1””1)_.{ ¥y ~7l(vj,7lfj) , tlfj = ﬂrp_j+2 , §=20e0,D

Covariance Matrices

(5.8) vy "Jl'(ﬂfl;k,n) » Yy "ﬁ’(ﬂfj;k,an) , §=2,0e0,m,
le ~ﬁ/(wm+l;k)n) ) When b= 20'1 b
(5.9) vy ~7}/(7lfl;k,n) , Vj ~7/’(7lrj;k,2n) , J=2,e00,m+ 1

when p=2m+1 .

The maxima of the likelihoods may now bé obtained in a straightforward
manner, and to a certain extent, the results parallel those in Olkin and
Press (1969). The results are based on the assumption that the mean
vectors VyseersV, are ufﬂmown- A slight modification in the development
yields analogous results when the means are known.

We now list the maxima of the likelihood function for the various

models using (5.7) - (5.9) as our starting point. In each case the maximum

involves a common term

(5:10)  o(v) = clok,n)(2n) P2 ly| (PRLN2 BR/2




Spherical Model

kN/2
(5.11)  sup L(y,V) = C(‘If)) (PN)P//
w. pN/2
1 | ’i"ﬁ'

Intraclass Correlation Model

(5.12) sup L(y,V) c(v) [NP(p - ]_)P"]-]km/2
/2 B (p-1)w/2
K vy, | /2| gvﬁ& /

Circular Model

pkN/2
(5-13)  sw L(y,v)=9ﬂ)l—“l'm— :
v

(05

General Case

kN/2
(5.14)  swp L(y,V) = % .

Wy

For each of the hypotheses considered when the hypothesis is true,

the LRT is distributed as a product of independent beta variates, so that
the procedure of Box (1949) may be used to obtain an approximation for the
null distribution. We here present an approximation to O(N-e) . Because
some of the hypotheses are closely allied to testing for the equality of

covariance matrices, the Bartlett modification may be preferable to the

LRT [see Anderson (1958) for details concerning this test). Also, because
some of the hypotheses are nested, we may use the procedure of Gleser and

Olkin (1972) to provide an easier evaluation of the needed constants.
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6. Likelihood Ratio Tests and Their Approximate Null Distribution

for Testing Symmetric Structures

Using the results (5.11)-(5.13), we may readily form the LRT for various
hypotheses. In some instances the results for p=2m or p = 2m + 1
differ; whenever possible, we combine our results for even and odd p by

using the parameter m .

6.1 Test for Sphericity Versus Circularity

From (5.11) and (5.15), the LRT,

7\15 , is given by
P
k
» . pp I IVjI
(6.1) MéN I L .
221c(p-m-l) | 5 v, P
] i

(4]

The modified Bartlett statistie, LlB , is a,simple function of 7\15 ,

namely, LlS = %N . Using the result of Anderson (1958, p. 254) we obtain

the approximate null distribution:

(6.2) Pl-p log Ly <2} = POE<2) +0(™)

where

H
ll

Zuk(k +1)

_1[p(Gm+ 3 -p) - 2] (26> + 3k - 1)
n 2mp(k + 1)

;14
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6.2 Test for Intraclass Correlation Model Versus Circularity

From (5.12) and (5.13), the LRT, 7\25 , is given by

- P
(o - D@ 1y
2

52k(p-m-1) | g v. Pl
5 i

As in Section 6.1, the modified Bartlett statistic, L23 , is given by

- n/N . . .
L25 =Nz - Similarly, :,‘:_..
- -2
(6.4) P{-p log Los <z} = P(X. < z} + o(n" ") , g
vhere i ":'.'
\
1
£f=3 mk(k + 1) , g
2 2
_ ;. L1(Gmp-p -5m+p-3) (A _+3k-1)
p= n 12(p - 1)m(k + 1)
6.3 Tests for Circular Versus General Structure
From (5.13) and (5.14), the LRT is given by
65y - ]
. T3k P
m v, |
J
In order to show that this statistic is distributed as a product of

independent beta variates, note that

. 15
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v l

Vool ol Vg

= m+2, m+2
Rl B, | | ’
. ‘s Vv ;
s 1 M 22 +'VPP ,me ¥ Vm+2,m+2l
if p=2m, and

! = i |V22| IVDR" lV1."-~.+Ilgm+ll lvm+2, n+2l
BN Bl | ’

L V.. \'s
1 J 1 1l 22 * VPPl ,Vm+l,m+l * Vm+2,m+2,

if p=2m+ 1 . Under the null hypothesis, these statistics are
independently distributed. Furthermore, each term is known to be dis-
tributed as a product of independent beta variables, Anderson (1958,
Chapters 9, 27 . Cbnsequently, we may use the following result of Gleser
and Olkin (1972): If 2= I;}I. Z, , and appropriate regularity conditions
prevail, then '

P(-2 logz <z} = P[X? <pz)

2

where f = % £f,, P = g fipi/f , and the f. and p, are obtained by
applying the Box procedure to each Zi .

In the present case, we may let Zl = IVI /IP:E lviil . This is the test
statistic for testing for independence in a covariance matrix [see Anderson
(1958, p. 253)]. Here £ = % kap(p -1), pp=1- [2k(p + 1) + 91/6N .

The remaining statistics 2, are of the form lvlll lv22 |/ lvll * Vool

which is the test statistic for testing for the equality of two covariance

matrices [see Anderson (1958, p. 255)]. For each such test, we obtain

i1 16




amases - . .-l6-=_ C e - - . - .. .~ - - = e e b B

2 —

_ 1 _ 2k~ + 3k - 1
£,=5kk+ 1) , Py=1- (R + 1)

Note that p -m -1 is equai to m-1 when p=2m, and is equal
to m when p=2m+ 1 . Thus, in either case of p even or odd, we

obtain

n

(6.6) £=%21p(p - 1)+ (p-m-1) K(k+ 1) -,

©
f

2
—l-glﬁ—fﬁ-wkp(p-l)(2kp+2k+q)+(p-m-l)(2k +3k - 1)) .
The final approximation to the null distribution is then given by

2 -2
p{-p log Ay, <2} = P{X_ <z} +O(N ") ,
34 = £ -
i where f and p are given by (6.6).

7. Tests for Means Given That the Covariance Matrix Is Circular

When the population covariance matrix has no special structure, and we
wish to test that the mean vector is zero, the appropriate test is
Hotelling's T2 . However, when we know that there is a circular struc-
ture, we can take advantage of this information in constructing a test.

From the canonical form (5.7)-(5.9), we see that under H: v=0,

' we should estimate ib‘l by Vo, + ¥y, o and we should estimate (ifj by

1
Vig * Vp-gez,p-gr2 ¥ V¥ ¥ Yp-sedVprge2

j=2,.00,p - Thus the LRT statistic is given by

1 - TP C L TR TRV PIRL] s ot FL T 151 IR ieT S SIL RS
(—'Cgé‘afi??.ﬁ"‘.;“:.ff“’_ i;l‘-’f'i"'::‘«.‘:.'. g "3"«""" B ‘:.‘_!:4_",7-! AR IR
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2 b -
(7.1) 7\/N=2W ’

where when p = 2m + 1

_ ! ' ' s _
(7.2) Zl =Yy o Z:] = yjyj + yp-.’j+2yp"j+2 y J=2,000m+ 1,

and when p = 2m ,

- ' — '
(7.3) Zy=vy s Py =YYt Vo2 0 B T YmeYmer o

J=2,¢¢e,m . Each component of the product in (7.1) is distributed as a

U -statistic [see Anderson (1958, p. 193)]. Thus, we may again use the
Lemma of Gleser and Olkin (1972) to obtain an approximation to the null
distribution of the LRT. To do this we need to know the degrees of freedom
f , and the value of p . For ratios IV:j l/ 'V;j +Z;j' , which do not in-

1 , we have

volve pooling, e.g., J
k2
f=k |, p=1- m 3

for terms which involve pooling, e.g., Jj=2,...,m , we have

k -1
f =2k ,p=l-T .

Consequently, the overall value of f 1is

© + (k2 -1)(p ~m - 1
f=pk , p=1-% +(2f(k+)§1)>nm )]

R T T T D TSI - B o

VA @e <
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Remark: The methods outlined lend themselves to the development of other
tests concerning. the means. For example, Olkin and Press (1969) consider
the test that the means are equal when there is circular symmetry. This
model may be extended to test that the mean vectors are equal in blocks,
whgn the covariance matrix is circularly symmetric in blocks. Similarly,

ve may simultaneously test for the equality of the mean vectors and

circular symmetry. The key point in the development of such tests is
to start with the canonical form (5.7)-(5.9), from which the LRT may be

readily obtained.
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