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TESTING AND ESTIMATION FOR STRUCTURES

WHICH ARE CIRCULARLY SYMMETRIC IN BLOCKS
1

Ingram Olkin

Stanford University and Educational Testing Service

1. Introduction

There has been considerable study of models in which the observations

arise in a structured form. These structures may yield covariance matrices

which exhibit special patterns or symmetries. An early example of patterned

covariance structure is the intraclass correlation model (in which all the

variances and all the covariances are homogeneous) considered by Wilks

(1946). Another example is the spherical model in which all the variances

are equal and the covariances are zero. A wide class of structured models,

called radex models, was introduced by Guttman (1954). In these models,

test scores are generated from components which may be viewed as having a special

geometrical structure, and hence the more recent name simplex models.

Although Guttman (1954, 1957) provided examples of data which approximated

simplex structure, there was little work in developing estimators of the

parameters or in designing tests of hypotheses. The paper Of Wilks (1946)

was concerned with inference for the particular intraclass correlation

model. This model has now been studied in some detail in various contexts.

Similarly, tests for sphericity alio have been studied in detail (for

references, see Gleser, 1966).

The first general study of some simplex models was that of Mukherjee

(1966), in which solutions of the maximum likelihood equations are dis-

cussed. In a subsequent paper, Mukherjee (1970) was able to obtain explicit

maximum likelihood estimators for a certain class of simplex models.

1
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Another general paper which has relevance to some of the Guttman's simplex

models is that of Anderson (1970). The method of analysis considered by both

Anderson (1970) and Mukherjee (1970) is based on covariance matrices E which

may have a representation of the form

(1.1) . E = GlAl + + tm Am

where the matrices A are known and the A's are unknown. Many patterned

covariance matrices may be expressed in the form of (1.1). J3reskog (1970)

provides a general discussion of the solution of the maximum likelihood

equations for simplex models.

Although general methods were considered in these papers, greater

depth can be achieved in the study of some particular patterns. One

such pattern, called the circumplex by Guttman, was considered by Olkin and

Press (1969), in which an extensive study was made of a hierarchy of models.

In addition to studying the covariance structure, patterns among the means

are also considered. Olkin and Press provide not only the likelihood ratio tests

of varioas hypotheses, but also different approximations to the null and non-

null distributions. It is of interest to note that the genesis of their

study is a physical model in which observations are made at the vertices of

a regular polygon. Because of stationarity [see Olkin and Press (1969)], a

circularly symmetric model is generated, which is identical to that of the

circumplex.

In the present paper we extend the circularly symmetric model to the

case where the symmetries are exhibited in blocks, and show how maximum

likelihood estimators (MLE) and likelihood ratio tests (URT) can be obtained.
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2. Preliminaries on the Circularly Symmetric Model

Before providing an extension of the model, we first review the cir-

cularly symmetric model, and show how the reduction to a canonical form

enables us to obtain easily the MIE and LRT. In both Guttman's circumplex

model and in that considered by 011in and Press (1969), we have random vari-

ables xl,,xk with means g
1
,...,g

k
and covariance matrix E

c
, which is

a circular symmetric matrix. A circular symmetric matrix A
c

is given by

(2.1) Ac =

a
r

a
2 ... ar

a1
ar-1

a2' a3 al

, where a. = a
j r-j+2

Every symmetric matrix has a representation

(2.2) = ply

/ j 7 r

1/

= diag(T ,...,Trwhere T
/
T
r

are the eigenvalues of Ac

and r = (7jk) is orthogonal.

A key point in the development is the fact that if Ac is circularly

symmetric, then

(2.3) Tj = T
r-j+2

j = 2,...,r

furthermore, the elements 7jk
are give'n by

(2.4) 7jk = r-1/2(sin 2Ar-1(j - 1)(k - 1) + cos 2gr
-1

(j - 1)(k - 1))

which are independent of the elements of Ac .

1 4
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Another way to express (2.1) [see Wise (1955)] is

(2.5)

where

Ac = al + a2W1 + + w
r -1 '

(
(2.6) Wo = I , W. =

0

Ir_j)0

j = 1, .,r - 1

Remark

Since aj = ar_j+2 , we may combine terms having the same coefficients

to yield terms W. 4 W But W = W' so that W. + W is
r-j+2 r-j+2 j

,
3 r-j+2

symmetric. It is easily verified that W. =
1

, so that all matrices

(w. +
J

j = 0,...1r - 1 are commutative, and hence may be diagonalized

by the same orthogonal matrix. This fact will be used later.

Suppose we have a sample of size N , (x x ) I a = 1,..,N

from a normal population with mean vector µ and covariance matrix E

By sufficiency we may consider the mean vector X , which has a Oi(g,E/N)

distribution, and the cross product matrix S , which has a Wishart dis-

tribution, .//(E;p1n) , n = N - 1 , with density function

P(S) = c (p, n) IS I (n-P-1)/2 IE I- (n/2) exp[ -
1

tr E
-1
S]

where

c(p,n) = 2
-pn/20-p(p-1)/4

[
1

R r( (n - i + 1)) ]-1

1

Now transform x and S by

(2.7) Y = 11V Ca" , V = rsr,

so that S
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where v = pr and E = rEp' . If E is circular, then E is diagonal,

and estimators of the parameters are readily available.

In the following extension, we make use of these ideas to afford an

analogous simplificw6ion for the extended problem.

Block Circularity

The extended model may be generated in various ways. In terms of the

physical model mentioned in Section 1, we again have a point source

located at the geocenter of a regular polygon of p sides, from which a

signal is transmitted. Identical signal receivers are positioned at the p

vertices. However, now the signal received at the i -th vertex is

characterized by k components, and is denoted by xi = (xii,..,xik)

The main assumption is that the covariance matrices depend only on the

number of vertices separating the two receivers, so that

(3.1) Cov(x = Em =
p -m

m =

where each E
m

is a k x k matrix. Thus, for example, if p= 4 and 5,

we obtain

E
0

El
E2

El E0 El E2 E2 El

El E
0

El E
2

El E0 El E2 E2

(3.2)
E
2

E1 E
0

El E2 El E0 El E2

El
E2 Eo E2 E2 El E0 El

El E2 E2 El E0
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In terms of Guttman's circumplex modelvectors of scores are generated

from a structured model as follows. For simplicity, consider the special

case in which there are five tests t t2 t3 t4 , t made up
1

,
2

,
3

,

5

from 5 components cl , c2 y c 3 , c 4 , c5 where each c. is a k -

dimensional vector:

tl = cl + c2 + c )

t
3

=

c1

t5
1

= c + c
2

+ c +
3 4

c_ + c + c
) 4 5 '

+ + c
5

+ c
5

If ci , c2 , c3 , c4 , c5 are on a circle [Guttman (1954) provides a

rationale for this], so that

Cov(c. ci+k) = Lk for i = . . . 5 ,

with 101 bu 1 62 = [because the "distance"

of c
1

to c
5
, and the "distance" from c

1
to

from

c3

c 1
to c

2
is that

is that of c
1

c4 ,] then we obtain (3.2) for p = 5 as the covariance matrix.

4. Reduction to Canonical Form

to

The critical question at this point is whether a reduction to a canon-

ical form is possible for the block circular case. Although not obvious,

by using Kronecker products it becomes straightforward to see that such a

reduction is possible, indeed.

ti



First we note several facts concerning the Kronecker product

B a (a ijB)

If A:mxn, B : p x q , then AGB is an mp x qn matrix. We would

like to generate block circular matrices as in (3.2). To do this, the

matrix we use (2.5) and form

(4.1) E = (w0 E0) (wi Ei) + + wp_i Ep-1

where the matrices W. are defined in (2.5), and E. = E
3 P-i

j = 1,...,p - 1 For example, when p = 4 , we obto.in

E2 El E0 E1

E1
E2

E1
E0

0

0

0

1

0 0,

0 0 0 Eli

E
2

0 0 0

0i0

Next we need several well-known facts concerning Kronecker products:

(4.2) (A10 Bi)(A2 B2) = A1A2 9 BiB2

(4.3) A c) = B) + C)

(4.4) (A + B) e c = c) c)

;



Applying these facts to (.1), we obtain

(4.5) (r0 i)z(rt 1)

(rwor, zo) +(rwir zi) + rWp_ir f7) Ep_

Recall that W
0 j

= I , W = Wi j = 1,... p 1 Consequently, if r

diagonalizes W
1

+ W = + W' i.e. F(W1 + WO?' = diag(ell...lek)
p-1

W
1,

then roij + wpr' = DE But the matrix r defined by (2.3) is exactly

that orthogonal matrix which diagonalizes ,W. + W! and the diagonal

elements e. are the p roots of unity. Thus

(4.6) (ro i)z(1." 0.b 1) = Diag(*1,*21...,*p) E D*

where the matrices lej are positive definite and satisfy

(4.7) = *p_j+2 1 .'.

j= ...lp

As in the case when the blocks are single elements, we may now use

(2.6) and (2.7) as our starting point, noting that we have pk. variates

instead of p

Remark:UweldaltorecaPttlreeetimatesofE.,we may do so from .6),

namely,

(4.8) E = (r' ,m 1) ])*(ro I) .

Indeed (.8) yields simple linear equations of the form

(4.9) E = a
al
*
1

+ + a
oV P
* a = ..,p

where the coefficients a
ij

are functions of the y
ij
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5. Hypotheses for Symmetric Structures in the Covariance Matrix

and the Likelihood Functions

The following hypotheses represent block versions of (1) sphericity,

(2) intraciass correlation, (3) circular symmetry and (4) a general matrix:

H3 = E
C

: E > 0

In terms of the canonical representation, we may now test hypotheses such

as

(a) sphericity versus intraclass correlation,

(b) sphericity versus circular symmetry,

(c) intraclass correlation versus circular symmetry,

(d) circular symmetry versus general structure.

Because of the canonical form (4.6), the parameter space for each of the

hypotheses H
1

- H
4

becomes

10



(5.2 cal = (0% *1 = = *0 , given *. = * . , j = ..,p)
J

= (*: *1 > 0 = =V
P
>0 given *i 7rp_i+2 =

cc = (*: *1 > 0

= (Z: Z 0)

*2 * > 0
2 p-j+2 ) =

Following the procedure of Olkin and Press (1969), we may obtain the

maxima of the likelihood functions L(y,V) over the regions wi and w.

and thereby generate the likelihood ratio tests (LRT) for hypothesis H.

versus H. by

(5.3) N..
=3.j sup L(y,V)

J.

sup L(y,V)

i

Because the circular symmetric model is equ ivalent to the condition

*
2

= 71,
p

*
3 =

71,
-1

etc. it' is clear that we will want to pool thi! ^w-

variance

p

variance matrices V22 with V
PP

, V
33

with V etc. in esti-

mating the common *2 *3 etc. Thus, it will simplify our notation if

we write

(5.4) (V1, ...)Vmra) = (V11, V22 Vpp' V1DM Vm+2, m+ 2' Vm+1, m+ 1 )

when p = 2m is even, and

(5.5) (V1,...,Vma) =
(V11/V22 Vpp,""Vm+1,m+1 Vm+2,m+2)

when p = 2m + 1 is odd. For later use we define

!II



(5.6) V. = V
3 p-3+2

= 2) ...,p

Since the mean vector y and the V.'s are independently distributed,

when E is circular, we have as a canonical model:

Mean Vector

(5.7) Y1 71Xvi,*1)

Covariance Matrices

.3rj
, /1, *

3 3 j
_

p-j+2 2))13

(5.8) V1 -Y(*i;k,n) -)fri(ti;k,2n) ,
j = 2,...,m 1

Vv.]. -Wm+1;k,n) , when p = 2m .

(5.9) V1 -11('1;k,n) -)n*j;k12n) j = 2, ...,m + 1

when p = 2m + 1 .

The maxima of the likelihoods may now be obtained in a straightforward

manner, and to a certain extent, the results parallel those in Olkin and

Press (1969). The results are based on the assumption that the mean

vectors v1,...1% are unknown. A slight modification in the development

yields analogous results when the means are known.

We now list the maxima of the likelihood function for the various

models using (5.7) - (5.9) as our starting point. In each case the maximum

involves a common term

-plc/2 hit (n -plc-1)/2 e-pkIs1/2
(5. 10) c (V) = c (plc, n ) (27r)

.4 12
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Spherical Model

(5.11) = c(V) (Po?
2

w1
E V., IPN/2

1 11

Intraclass Correlation Model

(5.12) sup L(y,V)
c(V) [NP(p - 1)p -1]kN/2

at
I Via 114/2I E v i(pi)si/2

2
Vii

Circular Model

(5.13) sup L(y1V)
c(V) NPkN/2

IV 1N/2
w5

General Case

(5.14) sup gy,v)
c(v)

NpkN/2

IV
IN/2

For each of the hypotheses considered when the hypothesis is true,

the LRT is distributed as a product of independent beta variates, so that

the procedure of Box (1949) may be used to obtain an approximation for the

null distribution. We here present an approximation to 0(N -2) . Because

some of the hypotheses are closely allied to testing for the equality of

covariance matrices, the Bartlett modification may be preferable to the

LRT [see Anderson (1958) for details concerning this test]. Also, because

some of the hypotheses are nested, we may use the procedure of Gleser and

Olkin (1972) to provide an easier evaluation of the needed constants.



-13-
Nile Nsilawir

6. Likelihood Ratio Tests and Their Approximate Null Distribution

for Testing Symmetric Structures

Using the results (5.11)-(5.13), we may readily form the LRT for various

hypotheses. In some instances the results for p = 2m or p = 2m + 1

differ; whenever possible, we combine our results for even and odd p by

using the parameter m .

6.1 Test for Sphericity Versus Circularity

From (5.11) and (5.13), the LRT, 713 is given by

pk P
p HviI I

(6.1)
A2 /N 1

13
2
2k(p-m-1) P

I E Vii
IP

1

The modified Bartlett statistic, L13 , is a simple function of 7'13 0

namely, L13 = X13
/N

. Using the result of Anderson (1958, p. 254) we obtain

the approximate null distribution:

(6.2) PC-p log L13 < z) = P(4, < z) + 0(n-2) 1

where

f =
1
mk(k + 1) ,

2

1 [p(3m + 3 - p) - 2] (2k2 + 3k - 1)
p = 1

12mp(k + 1)
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6.2 Test for Intraclass Correlation Model Versus Circularity

From (5.12) and (5.13), the LRT, N23 , is given by

(p P
(p - 1)

N
23

-
2

(6.3)
2/N

-1)k n IVY 1

2
2k(p-m-1) E

11
2

As in Section 6.1, the modified Bartlett statistic, L23 is given by

NniN
23 23

Similarly,

(6.4) PC-p log L23 < z) = P(Xf2 < a) + 0(n-2)

where

f =
1

mk(k + 1)

p = 1
1 (3mp - p

2
- 3m + p - 3) (2k

2
+ 3k - 1)

12(p - 1)m(k +1)

6.3 Tests for Circular Versus General Structure

From (5.13) and (5.14), the LRT is given by

,2/N 22k(P-m-1)1V1
(6.5) .034 -

n IV.I

In order to show that this statistic is distributed as a product of

independent beta variates, note that
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III I 111 221 IvPP I
11/..1 hc,2, i+2 I

n IV..I +.V I

1 1
11 22 PP

h
run + V121+2 m+2

1

if p = 2m 1 and

Iv I 1111 111221 1Vpp Ivn-1-3;m+11 lvm+2 n+21

n IV. I it iVii I 1v + v
I1 0 1 IVn*l,m+1 + m+2, m+21

if p = 2m + 1 . Under the null hypothesis, these statistics are

independently distributed. Furthermore, each term is known to be dis-

tributed as a product of independent beta variables, Anderson (1958,

Chapters 9, 2' . Consequently, we may use the following result of Gleser

and Olkin (1972): If Z = H Z. , and appropriate regularity conditions
1

prevail, then

P(-2 log Z < z) = P(4. < pz) ,

G

1
E
G

1
wheref=Ef.,P=f.p./f,andthef.and.

p1
are obtained by

1 1 1 1

applying the Box procedure to each Zi .

raral =,

1

/In the present case, we may let Zi = / Prill This is the test

statistic for testing for independence

(1958, p. 233)]. Here f1 = k2p(p

The remaining statistics Z are

in a covariance matrix [see Anderson

1) 1 pi = 1 - [2k(p + 1) + 9]/6N .

of the form 1\11 I 'V221/11/11 + V22 1

which is the test statistic for testing for the equality of two covariance

matrices [see Anderson (1958, p. 255)]. For each such test, we obtain

16
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-f
1

p 1
2k

2
+ 3k - 1

fj = k(k + 1) , P. = 12N(k + 1)

Note that p - m - 1 is equal to m - 1 when p = 2m , and is equal

to m when p = 2m + 1 . Thus, in either case of p even or odd, we

obtain

(6.6) f = k2pCp - 1) + 2 (p - m - 1) k(k + 1) .,

P = 1 24fN
(2kp(p - 1) (2kp + 2k + q) + (p - m - 1)(2k2 + 3k - 1)) .

The final approximation to the null distribution is then given by

p(-p log N34 < z) = P(X:. < z) + 0(N-2) ,

where f and p are given by (6.6).

7. Tests for Means Given That the Covariance Matrix Is Circular

When the population covariance matrix has no special structure, and we

wish to test that the mean vector is zero, the appropriate test is

Hotelling's T
2

. However, when we know that there is a circular struc-

ture, we can take advantage of this information in constructing a test.

From the canonical form (5.7)-(5.9), we see that under H: v = 0 ,

we should estimate *1 by V11 + yiyi , and we should estimate *j by

Vii Vp-J-1-2,P-j+2 57J YP-i+25+j+2 '

j = 2,...,p . Thus the LRT statistic is given by

17



2/1s1 Iv4.j(7.1) -
Iv.j ji

where when A = 2m + 1

(7.2) Z
1
= y'y

)
= 50

0 p-j+2Yp-i4.2 j = 2po*oplii 1 p

and when p = 2m

(7.3) Z = yy
1 1 1 Z = y'.J

Py

+ y' .
J J -0+2 1 Zm+1 Ym+15`m+1 1

j = 2, ,n1 Each component of the product in (7.1) is distributed as a

U -statistic [see Anderson (1958, p. 193)]. Thus, we may again use the

Lemma or Gleser and Olkin (1972) to obtain an approximation to the null

distribution of the LRT. To do this we need to know the degrees of freedom

f , and the value of p . For ratios Iv II IV + Z j I , which do not in-

volve pooling, e.g., j = 1 , we have

k2
f=k , p= 1- ;

for terms which involve pooling, e.g., j = 2, , we have

f = 2k P =
k 1

2n

Consequently, the overall value of f is

f = pk , p= 1 (k3 + - 1)(R - m - 111
2f (k + 1)n

18.
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Remark: The methods outlined lend themselves to the development of other

tests concerning the means. For example, Olkin and Press (1969) consider

the test that the means are equal when there is circular symmetry. This

model may be extended to test that the mean vectors are equal in blocks,

when the covariance matrix is circularly symmetric in blocks. Similarly,

we may simultaneously test for the equality of the mean vectors and

circular symmetry. The key point in the development of such tests is

to start with the canonical form (5.7)-(5.9), from which the LRT may be

readily obtained.

1 19
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