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ANCHORED SCALING AND EQUATING:

OLD CONCEPTUAL FROBLEMS 'AND NEW METHODS
Abstract

This paper describes several situations in_which generalization of
statistical results is not possible by representative sampling but which
is attempted using éorrections for selectioh of éroups. The situations
include hiring, admissions, differential classification, guidance, test
score equating, and test score écaling. Evidence of inaccuracies of thé
assumptiohs underlying the corrections is adduce@. The Pearson equations
which rest on these assumptions, are mentioned as a basis of scaling and
equating procedures ir existence, anbalternative approach is suggested,
and ité aprlication to anchored equating, vertical equating, scaling,
and equating with mixed essay and objective material is descriﬁed. The
alternative approach consists of a principle for choosing objective
functions whose optimization would lead to a selection of cqnversion
constants for equating. The principle is that equal equating test
scores should be associated with equal reported scores on the average.

Constrained optimizations are suggested where policy considerations

50 indicate.




ANCHORED SCALING AND EQUATING:

OLD CONCEPTUAL PROBLEMS AND NEW METHODS

Because of the ﬁtility of individual prediction a great many applications
of psychological measurement techniques have received attention which iz
characterized by the relating of measurements taken under two sets of condi-
tions. .For some purposes these conditions differ in fhe time at which they
are taken, but this difference is not the oniy one that offers po'tential
ut:ility. In this paper the focus is on situations where measurements dif‘fer‘
not only in the time at which they are taken, but.also from some necessity
in the frame from which they are sampled. Consequently, generalization across
the different populations is needed and this generalization.gvoes beyond that
accomplished through randomization alone.

In a hiring situation, for example, one would like to be able to predict
the performance of an applicant for employment. In an academic situation one
.would like to be sure that an admitted candidate has a reasonable chance of
completing some curriculum, or even possibly of pérforming well. ‘Or one
might desire, granted the foregoing goals, to select a test that might best
vertcerm these functicns. And to do so, the supporting research would be
very well founded on a study in which the candidates or applicants are unse-
lectively hired or admitted depending on which context is being considered.
Provided the criterion scores would be assigned on the same basis regardless
of the input of talent to the school or job, the consequences of various
admissions or hiring policies on the basis of test scores could be investigated.

However, unselective hiring or admissions will not be allowed in prsctice.
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More complex situations arise when many possible activities might be
accomplished by people from a common pool. This situation occurs most
often in the military service where basic trainees must be fractionated
~into a variety of types of advanced training assignments; Many of these
trainees have arrived at some agreement with the service about the type of
advanced training'to be given, but for many trainees the assignment decisioh
is yet to be determined when the student is in basic training. A somewhat
similar situation occurs in_éducation at the curriéulum—selection stage. The
"undifferentiated pool" of people from whom various specialists will even-
tually develop is the freshman class, or possibly the college-bound secondary
school seniors, and the activities to which they route themselves are majors
in the various curricula. Hence both curriculum selection and the military
classification problem have in common the goal of optimum sorting of the people
in a manpower pool into a set of difrerentiated activities, each with its own
standard of excellence. In neither situation is a randomization experiment
feasible,

A less obviously related situation is where one'wants to supply, on a
scale which is the same in some sense, scores based on different measuring
instruments. In this case, the existence of the pool from which people
are sorted into groups is not obvious. One might, for example, just admin-
ister both measuring instruments to the same people. But this is sometimes
not possible, so Angoff (1961) describes a conceptual approach due to Tucker

in which the union of the two groups is analogous to the pool fTrom which hiring

or admissions is done in the previous paragraphs. In other more extreme
situations one can merely assert the existence of pools for which comparable

scores are desired on certain measuring instruments when these instruments

are properly scaled.
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Recognizing that there is a monumental obscurity in the preceding
paragraphs, the following examples are presented hopefully sn clarification.
The first is in that area of scaling which is sometimes called equating.

Here the operationsl equating of the Scholastic Aptitude Test. (SAT) applies.

"For a given administration the actual SAT may be a completely new test
administered for the first time an a unit. This occurs for a variety of
entirely defensible security reasons, but it does generate a problem in that
the scores reported from the first administration will, in the admissicns
process, be compared with those reported based on performance on another
SAT é.dministered at a different time. Hence using different instruments,
scores must be generated which are in some sense similar. The‘ point of
departure taken in developing the procedures currently used is that if noth
tests were given to the union of the two populations taking the SAT, tnen
the scores should be so scaled as to provide the same rnean and standard
deviation. Both tests are not, of course, administered to the same popu-
lation, but a small equating tes‘t is used instead to bridge the gap between
the two populatians. However, in the logic developing the equating proce-
dures, the notion of estimating population statistics in the union of the
populations definitely plays a role.

The second example which applies to supplying scores which are comparable
in some sense is the achievement portions of the College Board Admissions
Testing Program (ATP) or the Advanced Tests of the Graduate Record Examina-
tions (GRE). There is an interest in having these systems of tests on scales
that are comparable in some sense and the procedure which produces this com-

parability uses the aptitude tests associated with the achievement test

systems to define similar reference populations. These are the populations
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which are referred to as being "asserted” in the earlier paragraph. The @
re ference populations for these tests are ﬁypothetical ones in which the-
means, Qariances, and correlation of the aptitude tests are assumed as
particular numbers. The actual set of values chosen for these reference
population statistics are supposed to hold in a reference group for the
aptitude tests and might rightly be thought of as the union of the various
groups that take the achievement tests, at least in the case of the GRE.
However, the referring of these reference groups to any single group of
people is highly dubious from a scientific point of view and for this

reason should be referred to as "reference populations, one for each achieve-
rent area," wiia similar moments rather than to a single reference popula-
tion. In this situation the reference populations take the role of the
"pool," and their existence is much more a matter of sheer assertion than

in the hiring;or admissions contexts.

A final example is ohe in which a group of people all take a common
arithmetic test and then <hoose beiween a trigonometry and a business math
.test as the second test. Ip is dgsired to put all the scores on a common
scale, and the pool in this situation is the completé group, but the math
scores are to be based on the arithmetic-trig or arithmetic-business math

combination and are to be put on a single scale in some sense.

It should be noted that the "similarity" of scores achieved is defined
up to a certain point in the present context, but that it is also easy to
misinterpret., For éxample, scaled and equated scores are not necessarily
parallel, nor are they necessarily equivalent from a predictive point of
view. None of the operations described here bear on their parallelism or

predictive equivalence except rather superficially, and it may be that the

desire for "similarity" which leads to an equating or a scaling is a desire

»
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for predictive equivalence which is not achievad. That is another matter
entirely and one to which this paper is not responsive.

In summary, a numbercﬁf activities have been recounted that involve a
pool of people to which generalizatiop is intended and another group on
which certain observations are available though nct for all members of the
pool. In one kind of faifly standard termihology the pool is also referred
to as the "unrestricted group" and the employees are referred to as the
"restricted group."-‘This latter terminology has an employment flavor
‘reflecting its origin. Table 1 lists decision activifies and groups for the
Vafious contexts above as a.possible additicnal source of intuitive feel for

the sort of situation that is pertinent.

Logical Formulation

Like many other problems of an applied statistical sort, Karl Pearson
(1903) encountered the problem 6f interest here and proposed a solution to
it. At the turn of the centufy hé was one of many whp were tracing out the
consequences of theories of evolution and naturai selection. In this case
Pearson was interested in the correlation between body organ sizes. Appér-
ently Galton had earlier suggested that correlations between organ size might
be a criterion for the identification of species. Pearson doubted this because
he felt that these correlations would differ from local race to local race as a
Tunction of selection as much as do other descriptive statisties and hence woula
not be satisfactory as bases for species determination. He gave numerical
illustrations including one of the influence of selecting two organs, A and B,
in parents on the correlﬁtion of the like organs A¥ and B¥ in the offspring.

He also developed an algebraic theory of the selective death rate. Although
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Table 1

Restrictea ard Unrestricted Groups in

. Some Personnel Decision Problems

Decision Activity

Pool
(Unrestricted)

BEmployees
(Restricted)

Hiring

Undergraduate
Admissions

Army Classification

*

Guidance

. SAT Equating

Achievement Test
or GPA® Scaling

Applicants

Candidates

Basic Combat
Trainees

Freshman Class -

Candidates at a
Particular
. Administration

Achievement fPegt
Candidates

BEmployees

Freshman Class

Occupational Specialty
Trainees

Majors in Curricula

The Union of Candi:lates
at a Number of
Administrations

Reference Populations

®Grade Point Average
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these contfibutions seem substantively removed from the educational and
psychological ones at hand, tﬁey are related in that they deal with concepts of
selection in populations as abstracted in mathematical language and with the
intent of feaching generalizations from population to population, For Pear-
son, the populations which differed did so because of natural selection as

they were separated by generations., But the underlying approach, given dif-
ferent :emantic content, has a broad range of application gnd conscitvies the
best methodology today.

In his early paper, Pearson (1908) presented his developmént in terms of
linear regression and joint normal distributions. He considered the case of
two selection variables, and in a later paper (Pearson, 1912) he relaxed the
assumption that the distributions be Gaussian in character, Lawley (1943)
provided a generalization of.Pearson's equations to the multivariate case on
both éelectors and variables subject to selection. This generalization is
briefly discussed in Lordvand Novick (1968, Ch. 6). A variety of related
problems are diséussed by Federer (1963). Tie basic assumptions for study
purposes in the present context are best presented by Gulliksen (1950) who draws
out théir conéequences for a variety of situations. These formulae are often
referred to as the range restriction formulae and are thought to be needed as
the consequence of the implementation of a cutting score for personnel selection
purposes,

In the present paper the notation for representing the sélection of groups
will be kept general, We begin by assuming that there are two populations of
interest, that there are r + s variables in the two populations, and that

Joint distributions of the variables are represented as




sesesZ

J(zl,...,z

r r+s)

and
).

j 2
J(zl,...,zr,... r+s

In the contexts of interest the populations corresponding to J and J are
‘produced by a process which must be represented, and it is assumed that a

reasonable representation is

@

J(z ) G(Zl""’zr) = j(zl,...,z

12 3% r+s) g(Ll,...,zr) . (1)

In other wofds, the process produces differences between population J and
population J depending entirely on the first r variablesl and nothing else,
for if some other variablé were involved, then the equality would not hold.
Also, one may list 2z variables with subscripts between zero and r + 1 for
which the values of G and g are constant and the equality would still hold.
Such variables could be reassigned subscripts larger than r or left alone.
The point of this comment is that the list of variables which are arguments for
G ad g may exceed the list of those actually operating, without invalidating
(1). |

The selection process is one which requires only that the array frequencies
in j -are multiples of the corresponding arrayé in J . Thus it is required

that where a given array in J 1is not zero and the (orresponding array in J

lw..*le ‘the substantive development is not at this point far enough along
for substantive comment in the body of the text, it may be useful to the reader
who is versed in the scaling applications discusser later to pcint out that
the variables included in the string =z through =z include raference test
scores and curriculum or advanced test choice. When corrections are made during
scallng—s;bcedures in the GRE or SAT, the variables of explicit selection do not
include the choice of curriculum (Boldt 1971).
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,e

is zero, then & must also be zero, and vice versa.. Excspt for zeros the
‘formwlaticn of Equation (1) requires oniy that in arrwys where J and j
are nonzero, values of G and g exist which ogree with Equatioy: (1) which
is certainiy true since‘tbe values of the functions are real or raiional
numbervrs.,

bThe qoﬂtext of the problem demands that J , J times G, Jj , and
times g are all depsity functions., Thus for J and j there exist marginal
and conditional distributions, M(zl,...,zr) and m(zl,.;.,zr), respectively,

and conditional distributions C(z zr) and #(z

r+l,...,zr+sizl,..., r+l,...,zr+s|

Zyaees ,2..) respectively, such that

M(zl,...,zr) C(zr+l,...,zr+s|zl,...,zr) = J(zy,000,2

) (2)

rvs

and

m(Zl""’zr) E(Zr+1””’Zr+s'Zl””’Zr) = J(Zl”"’zri.-s) E (3)

The notation C and & is used to distinguish these conditional distribution
funct ions from covariances discussed below. If Equatiouns (2) and (3) are sub-
stituted into Equation (1) and the variable strinz is now ineluded in the note-

tion (as it will not be from here on unless needed for clarity), one obtains

~

MCG = mCg (k)
and it one sums or integrates over the space of 241 through Zopg * one
obtains the marginal distributions of 2y through z, in JG and Jjg and
notes that

MG = mg . (5)

Finally, since Equation (5) indicates that the marginal distributions are equal,

it follows that where division is possible by the marginal distributions (they

ar. not zero), 11
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C(zr_‘_l,...,er{s zl,...,zr) = C(zr_kl,...,zr_,_s Zyseeesz,) (6)

Equation (5) is a most important result and indicates that under the very

general assumptions of Equation (1) and granting that the arrays involved

are associated with nonzero marginal frequencies of the first r variables,

the conditional arrays of the r + 1lst to r + sth variable conditioned

on particular values of the first through rth varisbles are equal in the

selec ted and u;lselected populaticns. One can therefore equate parameters of
the selected and unselected conditional distributions and, knowing the pafam—
eters of the distribution of the variables of explicit selection (the arguments
of G and g ), make inferences about J or Jj , depending on to which one

is arguing. Equation (6) thus rationalizes the Pearson assumptions as given, as

shown in Gulliksen (1950, Eqs. 1T & 18, p. 162).
Applications

The problems given in the tahle all have been usually approached using the
first and second moments and cross mements of the z-variables. Sometimes the
protlenm is to estimate a variance, a correlatio'n, a regression equation, or
merely to derive a transformation on a scale. Also, rll of the approaches have
assumed that the regressiorsof 2, where i is greater than r , on the Z,j's’
where j goes from 1 to r , are linear. That is, if both sides of Equation
(6) were multiplied by z, and expectation taken over the space of the variables
subject to selection, the result would be equations which are linear in the =z, .

Hence Gulliksen (1950) takes as a point of departure that the regression equations

in both the restricted and unrestricted populations are equal and linear. If we

let the subscript r refer to the first r variables (z's) , the ones on
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which explicit selection occurs, and s refer to the variables with subscripts
fronm r+1 to r + s , then the assumptions that the regression equations are

equal can.be written as

-1 =ct (1)

rr rs rr rs

where the capital and small c¢'s refer in this case to covariance matrices
for the unrestricted and restricted populations, respectively, and the sub-
scripts refer to the variables involved, the first subscript being for rows
and the second for columns. The quantities entering into Crs and Cg

need some elucidation. Using standard notation it would be common to refer

to the covariance between zg and =z for a given vector of values of

it
the explicit selectors as COV(Zi’Zi'l Zysees ,zr) . The s by s matrix of such
partial variances and covariances could be referred. to as Css et Similarly
one could imagine a Crs r which would go into the computation of the Crs of
Equation (7)., However, a little reflection will convince the reader that

Crs| r has to equal zero since expectations averéged over the distributions in
Equation {t) have to equal zero if they involve deviations of the variables

subject to seiection around their own array means. Hence the Crs come from

elsevhere, viz, the well-known least squares formula

c =¢ -c¢ _ctec (8)

ee SS s rr TIs

where Cee is the matrix of partial variances and covariances of variables
subject to explicit selection, averaged over the explicit selector space as
distributed in the unselected population. A similar equation in small c's

would refer to the matrix of partial variances of variables subject to explicit

113
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selection, averaged over the euplicit selector space as distributed in the
restricted population.

One must distinguish clearly between the matrix ca}led Css r and the
one called C__ in Equation (8), as ore must distinguish between c. and
C which is zero. Actually, the CSs ro averaged over the unrestricted

rsir
space of explicit selectors equals cee , and if Css r is averaged over the
restricted space of explicit selectors, the result is the matrix Cee alluded
to in the paragraph immediately above. Since the following assumption is

cormmonly made in range restriction work and is explicitly given as an assump-

tion by authors on the subject, it should be given here. That assumption is

that

= c s ' (9)

and it is a key one in range restriction work including scaling, equating, tect
selection, and validation. Using assumptions (7) and (9) as well as Equation
(8), its counterpart in the restricted distribution, one has equations relating
‘six matrices, crr , crr s Crs R crs s CSS , and cSs . Given the obser-
vation of four of these matrices one might infer the other two. For example,
it is common to assume that only Crs and Css are not available for obser-
vation, but with Equations (7) and (9) they can be found.

In industrial applications one might administer a battery of tests for
hiring purposes and reach hiring decisions based on the scores. Thus the test
scores become the arguments of the functions named G and g . Other variables

may also become of interest, such as scores on selection instruments which

might replace the battery in use, and of course improved job performance is the

goal of it all and that should te measured. Further, it will be assumed that
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additional selection stages do not occur. Such stages could be accommodated ;
in the loéical machinery developed but it would just complicate matters need-
lessly. Hence we have only the restricted population, j , for which complete
data are available, and an unrestricted population, J , for which data on the
selection instruments only are available., Using Equations (T7), (8), znd (9)
one can complete the variance-covaria-nce matrix of variables as they would be
observed under the theory, in the population of applicants. Using these esti-
mated parameters one can generate the multiple correlations of interest includ--
ing the ones needed for test selection. Such calculations made on the restricted
population would underestimate the effectiveness of the instruments being used
since their variation in the population of the hired would be restricted as com-
pared to the unrestricted population wh:re the personnel decisions are being
made,

Undergraduate admission is very like the industrial setting, in that a
set of selection instruments may be used to admit students for post-secondary
school study. There are differences, however; one being that the pursuit of a
high average criterion score, usually grade point average, is not as obviously
desirable as high job perfonﬁance is from the point of view of private industry.
However, like the industrial hiring situation, the variables on which admis-
sions decisions are made are the arguments in the G and g functions. In
order to obtain the statistics necessary for computations which are routinely
made in validity studies such as those produced by the College Board or the
American College Testing Service, one needs either to restrict one's inference
to statistics which are conditional on the variables of explicit selection, to
make corrections based on Equations (7), (8), and (9) or to show that the lack

of such restraint does not lead to serious bias in the specific instances
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reported., To the author's knowledge, however, noﬁe of' the three alternatives
above are followed. Some effort probably should have been made by this time

to deal with these problems, but at least one reason would make it quite
difficult. That reason is that college admissions are made on a variety of
scattered bases, with different reasons for different people. Test scores

are not held to be the main bases of admission and guite a variety of variables
are reportedly used. The variables Z)seee s s which are the arguments of

the functions J and § and which are the variables on which the distributions

in the very impertant Equation (6) are conditioned, consist of the union of all

variables used in the admissions decisions for any particular group from which
a college class is chosen. Use of-a.ll those variables in a validity study
boggles the mind somewhat and, of course, it is never done. However, Equation
(6) is the only way known to the author to argue from the groups ad.rry,i.t‘,’ted and
eveatually graded to the group on whom admissions decisions are made. An ef-
fective selection procedure, one making heavy use of variables which are quite
valid when evaluated in the pool of applicants, would resuit in very low valid-
ities for these variables in the pool of selectees; these l1ow correlations would
not necessarily indicate that the selection procedure is ineffective or inap-
propriate., It is clear that tle selectees are not the group on which to con-
duct studies unless the biases referred to are slight. Yet the admitted group
i3 the greup studied for obvious reasons, and the degree of bias thus introduced
i5 not really known thougl one likes to say that maybe it is not large. Fmnirical
research in this area is quite possible, though of course it does not establish
applicability in general. Also, there are further theoretical problems which
will be discussed later.

Army classification constitutes an additional complication of the selection

problem. Here there are many criteria becazuse for many basic combat trainees

‘ T .‘.6




one needs to estimate how they might do if placed in each of a variety of
specialties. The pool of basic trainees must therefore be allocated to ad-
vanced training of different kinds, each trainee being taught one of a variety
of skills. Brogden (1946, 1955) has dealt with this problem, and his classifi-
cation theorem (Brogden, 1954) can roughly be regarded as a particularly good
way of setting up the selection functions G and g . He assumes that the
information by which the assignment decisions are to be made is available,

and in the case of the Army system the data aI"e indeed supplied to a central
decision agency in Washington (Johnson & Sorenson, 19T1). This is quite neces-
sary as the manpower needs of the total Army need to be brought to bear on the
training assignments and local decisions would ccnstitute possibly incompatitle
suboptimizations. Hence the distribution of the variables used in assignment
decisions is clearly known in the input population, and only performance datrs.
are needed.in addition for validity studies. These data become available for
those allocated to the courses, and then the equations developed c:;n be used

to infer parameters as they may apply in the input population. Thus multistage
selection processes actually obtain in the Army situation; the course input is
the unrestricted population with respect to a validity study where on-the-job
perfo.maace is the criterion, but is a restricted population with respect to the
input population.

The use of the variables of explicit selection may not be complete in the
Army situation because of limitations of computer space or research time. These
are practical limitations which may be overcome by the expenditure of funds or
energy if one so desires. In contrast,validity studies for guidance purposes
have the problem that the variables Z)sesss2, are not known and indeed from

the point of view of scientific philosophy may forever remain unobservable,

[ irg
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Those variszbles of explicit selection are the ones which operate to produce
curriculum choice, and if they were known with any degree of confidence, our
colieagues in the guidance fields would have long since told us about it.
However, they may at most list certain observables which are related to, and
that does not make them part of the explicit selectors, curriculum choice. To
the author's knowledge the most one can do here is to try to identify variables
which account for known results of selection and trust that if accurate for those
variables, they are accurate for variables where the results of selection are

not known. The identification of such variables, elsewhere called "surrogate

' is an empirical matter and has not been tested extensively to date.2

selectors,'
Some accounting for selection would really seem to be needed in the guidance
context because the group for whom the estimate of success is needed (counselees

or at any rate freshmen) is by its definition unselected so far as curriculum

goes.
Test Score Distributions Not Homoscedastic

The scaling and equating applications remain to be spelled out. They are
rather different from the ones previously discussed which fit together rather
as a group. It has been pointed out that there are problems in identifying and
using the variables of explicit selection, such problems being quite severe in
the case of validity studies for guidance purposes. However, there is yet

another problem in the application of Equation (6) to these problems that has

21t has been hypothesized that if one did a discriminant function study to
select those variables that best predict curriculum choice, the interest tests
might prove to be most valid fCur this purpose. Thus the depressed validities of
these tests would be accounted for, and if correction for range restriction on
these variables produced accurute estimates of known covariances and then demon-
strated substantially increased validities of their own, the case for the utility
of interest tests would be quite strengthened. The hypothesis depends on the
notion that it is interest tha' sorts pecple into curricula, more than ability.

P18
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* not been mentioned. That is

» it has been suggested that Equation (6) is a

point of departure from which one arrives at Equations (1), (8), and (9) which

are then used to work at solving the problems listed. It remains actually to

get from Equation (6) to the points of departure, and the qQuestion of how it

is done is at the heart of what it is that is generalized in order to provide

estimates of quantities for populations that one cannot examine directly,

As mentioned above, the original discussion by Pearson (1903) of the

effect of group selection was based on normal distributions, and though he

relaxed his requirements in 1912, he retained the features of linearity ana

homoscedasticity that obtain in Jjoint normal distributions. That is, normal

distributions are often discussed ag pPertaining to the error of prediction

regression function, Regression lines are sometimes represented as tilted

straight lines around which, at each level of the predictor, are distributed

values cf the variable being predicted, and it is g feature of these represen-

tations that the distributions at each level of the predictor are all the same.

These are eéxamples of homoscedasticity. They probably also do not describe how

test scores Wwork—-they certainly do not describe how test scores wo.

~k in gen-
eral,

the assump-

Css,r does not require the notation indicating that the covariances

are dependent on the particular values of the r explicit selectors. That is

= ¢ =

= C c .
ss,r ee ee ss‘ r

(10)
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If Equation (10) is accepted, then the fact that the conditional covariances

are averaged over the restricted or unrestricted d.stributions of the explicit

selector to get Cee and Coe does not matter since either is the average
of a constant which is, of course, the coms tant itself, With the understanding
that the Crs and C.g are the zero-order covariances arising from calcu-

lations over the respective populations, the terms of Equations (7) and (9)

are all defined and justified in terms of the model.

The position of this paper is that reliance on Equation {10) should be

avoided where possible as it is detectably incorrect in a fairly regular way,

at least with test scores. Application of the range restriction technique will

Occasionally yield results that imply impossible values of criterion such as

negative scores when the criterion is a nonnegative average of ratings. It

would be helpful, perhams, to study empirically the acceptability of linearity
and homoscedasticity for interesting criteria. However, the author feels safe
in prejudging the outcome of such study--it is felt that lack of homoscedasticity
would be apparent unless only very weak experiments were used. The wiser course
of action is to find some other way to handle the problems encountered. The
balance of this section will present various types of evidence bearing on assump-
tions of linearity and homoscedasticity in test score distributions.

As discussed earlier in.this paper, the influence of the normal distribtution
has been tremendous in statistical theory, and in the topic at hand the first
res ults published by Harl Pearson were couched in terms of normal theory. Though
he later modified his point of view by relaxing the normality assumptions, he
retained the assumptions of linearity and homoscedasticity which do obtain in

the normal distribution and which, it has been pcinted out, are needed for the

applicability of the techniqu=s he presented. Hence the influence of the normal
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distribution is still felt. Kendall (1948, pp. 131-132) commented on the normal

distribution as follows:

The discovery that errors of observation ought, on certain plausible
hypotheses, to be distributed normally led to a general belief that
they were so distributed. The belief extended itself to distributions
such as those of height, in which the variate-value of an individual
may be regarded as the cumulation of a large number of small effects.
Vestiges of this dogma are still found in textbooks.

It was found in the latter half of the nineteenth century that the
frequency distributions occurring in practice are rarely of the normal
type and it seemed that the normal distribution was due to be discarded
as a representation of natural phenomena. But as the importance of

the distribution declined in the observational sphere, it grew in the
theoretical, particularly in the theory of sampling. It is in fact
found that many of the distributions arising in that theory are either
normal or sufficiently close to normality to permit satisfactory approx-
imations by the use of the normal distribution. Furthermore, by a for-
tunate accident (if one may speak of accidents in mathematics) it happens
that the analytic form of the normal distribution is particularly well
adapted to the requirements of sampling theory. For these and other

reasons which will be amply illustrated in the sequel, the normal distri-
bution is pre-eminent amonz the distributions of statistical theory.

This passage is quoted at length because it seems to the present author to

put the matter particularly well--the assumption of normality leads to nuch
interesting and suggestive theoretical work. Lord (1955), for example, uséd
nornality assumptioas in connection with test score equating to derive some
important and useful formuiae. In fact, the handling of some problems such

as those encountered¢ in factor analysis is much easier when the assumption of
Jjoint normality is made. However, in testing as elsewhere it is not correct in
practice, and while the procedures suggested through normal theory may be quite
useful, their applicability arises froﬁ other considerations. In rejecting the
property of normality we do not fly in the face of established expert opinion
but merely follow a trend of development which has taken place in other areas.

Probably, excessive adherence to the familiar procedures derived from normal

theory wili prove detrimental to the expeditious development of improved
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statistical development and procedure unless the procedures arise from cther
and perhaps more realistic assumptions.

One classical way of thinking about test scores is to regard them as com-

posed of two components, a true and an error score. Discussions of this model

often refer to an error of measurement which is considered to be invariant as

a function of the true score and is represented as, for example, in the College
Board adnissions testing program, being roughly on the order of 30 points, and
this figure is rarely qualified as to different levels of performance. For
example, if true and error scores were jointly normally distributed, one would
expect invariance of the error of measurement with the true score level and
joint normal distributions of tests. However, Mollenkopf (1949) developed a
line of logic that demonstrated that unless the skewness of a test distribution
were zero and its kurtosis were three, features of the normal distributi»n, the
error of measurement would not be invariant at various score levels. Data
presented by Boldt (1972) indicate that neither of these features obtain. Keats
(1957) developed a different formulation of the error of measurement that agrees
both with Mollenkopf's method and with Mollenkopf's data better than does the
homoscedastic model (which can be seen to be clearly incorrect by examining the
data Keats presented). Lord (1%35) assumed that the error distribution given the
true score level is a compound binomial distribution vhich is surely not homo-

scedastic. Meredith (1965) also refrained from assumptions of homoscedasticity.

In fact, among test theorists it is rather widely agreed that errors of measure-
ment are not homoscedastic over the range of true scores (Lord & Novick, 1968,
p. 131).

The preceding remarks deal with errors of measurement and do not bear

directly on the Pearson equations of interest, but nevertheless they very
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strongly suggest that homoscedasticity between tests is not going to be
realized. Lord (1965) constructed a bivariate frequency distribution from
the univariate marginal distributions of two tests which purport to measure
the same thing and got a rather good-looking reproduction of the actual joiﬁt
frequency distribution (which nevertheless is not, according to a chi-square
test, quite right). His distribution is neither linear nor homoscedastic nor
would it be if it is to fit the data as well as it does.

In another context the author (Boldt, 1966, 1968) had occasion to plot
array‘varianc;s from bivariate frequency plots and found that the plot looked
rather like a skewed but inverted cup. The skewness came from the fact that a
mismatch in difficulty obtained for the tests plotted. This inverted cup has
been observed in a number of other tests, both verbal and math. Figure 1 pre-
sents a typical plot displaying this inverted cup effect. What is referred
to is the trend for the variances to become small at the e.tremes of the fre-
quency distribution and that trend has to be appreciated in spite of a certain
amount of visual static introduced by the spikey fluctuations. The latter are’
not represented in the polynomial distribution mentioned above, but the inverted
cup effect is summarized in numerical form in Table 2. The entries for Table
2 come from scatterplots of reported SAT scores plotted against shorter tests

(equating tests) that are bujlt to the same specifications except for length.

The test data presented in the first data row of Table 2 refer to the test pre-

sented in Figure 1, The first column of Table 2 gives the correlation of the
variances with the associated short test score level, and thz second column
shows the multiple cofrelation of the variances with the score level and its
square. llote that in some cases the gain in correlation from introducing +he

quadratic term is substantial, but of course the correlation with two independent

3




Table 2

Correlation between Linear and Quadratic Functions of Equating Test Scores

and the Conditional Variances and Standard Score Regression

Coefficient and Quadratic Function

Correlations Regression Termns
Linear and

Test Linear Quadratic Linear Quadratic

SAT-M 3671 .6759 1.5920 -2.0396
.0100 .8823 2..4882 -2.6L9L
3311 .8950 2.7800 -2.5862
.3009 .5079 .8909 -1.2601
.0158 .1810 1856 -.5033
.0126 .818Y 2.1283 -2.2919
.0278 9179 2.7297 -2.8525
.0322 .8518 2.2592 -2.3842
.2287 .9558 3.2376 -3.588L
.2563 . 7507 2.8917 -2.7232
807 . 7687 1.7599 -2.3196
3864 . 7027 1.8381 -2.3005
.3037 .L656 1.0143 -1.36L5
1179 . 7061 2.L482Y -2.%919
.5800 <7334 1.0378 -1.6850
.6531 .8880 1.5945 -2.3267

SAT-V .2615 .5233 1.2869 -1.613L
.0L69 . 7340 2.3549 -2.5119
.18L49 L1899 1.1059 -1.3532
.0985 .8230 2.4892 -2.5350
.0521 .8230 2.4892 -2.5350
L0521 . 781k 2.295L -2.4736
.3161 . 7213 1.6617 -2.0813
.1708 . 7695 2.14980 -2.4l52
3795 . 7766 2.1826 -2.6801
.2380 .3280 6155 -.8828
D377 N 1.9791 -2.0998
1190 . T1h2 1.7678 -2.2619
2790 L1157 .8013 -1.13€éL
.053L B771 2.5506 -2.6901
.0978 .1020 .2072 -.1132
.0170 . 0665 .2598 -.2511
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variables is better than with one. Therefore, the data in the nexﬁ two
columns are of special interest. These data give the standard score regression
coefficients, and the important thing to note is that in every case the pattern
of signs is the same, being negative for the quadratic term. The probability
that all 31 examples would have the same sign is two to the minus thirtieth,
given equal odds for plus and minus, and thus the trend seems quite reliable.
Hence the lack of homoscedasticity that appeared in the author's study refe;red
to above (Boldt, 1968) is not unique to the tests used in that study but obtains
between equating and operational SAT tests that are built to the saﬁe relétive
specifications (differing only because of length)., To put these plots in the
context of the Pearson equations it should bte. noted that the assumptions that
act as a point of departure for Tucker (Angoff, 1961) can be developed from
Pearson's equation, which can be clearly seen in Gulliksen's presentation (1950,
Ch. 11,Eas. 3 & 6) where the explicit selector is the equating test. Where
the observations for the test being equated are based on a population which is
identical to that supplying observations for the test to which the equating is
being done, these equations do not require the support of derivation from the
Pearson equations, Bﬁt vhere the populations are not comparable, some derivation
must be done to support his assertions. Where the populations are not quite the
same, the Pearson equations are needed to support the defivation of the equating
assumptions though one might conductfa study to show that the current methods
are almost correct.

Figure 1 also contains a plot of SAT means for people scoring at various
levels of the short equating test. Such plots might be expected to be curvi-
linear according to some of the results in the author's previously cited paper

(Boldt, 1968), but inspection of the figures presented here shows that linearity

Cove
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very nearly obtains. Linearity is also indicated by inspection of the data
presented in Table 3, These data in Table 3 give the correlations between
mean SAT score and the levels of the shorter test for linear, quadratic, and
some cubic polynomials, Only a few of the correlations associated with cubic
functions are presented since most of them suffered from near singularity of
the matrix of correlations of the predictors; i.e., :-:3 and x tend to be

extremely highly correlated, However, the correlations associated with the

linear functions are so high that further concern about linearity in this con-
text at least seems quite unnecessary. Probably lé.ck of linearity is greatest
when the difficulties of the tests being plotted are mismatched. As a con-
cluding note to this section of the present paper it is desired to suggest that
for some purpdses where a distribution assumption would be useful the following
might be sufficient. Let x ©be a vector of random variables with mean u , let
K, X,and P be positive scalars and C be a positive definite symmetric

matrix of the same order as x , and u . Then let the distribution be

F(x) = X [ K = (x-u)'C(x-u)]¥

if the qua.n"r,ity in brackets is nonnegative, zero otherwise, It will be found
that if X 1is determined s‘o that the function is a protability function and

that K is a linear‘ funciion of P , then F approaches normality as P
approaches infinity. The conditional variances are quadratic functions of the
variables on which the conditioning takes place and, last, the quantity P is
related to the kurtosis of the univariate frequency distribution of the arguments.
This kurtosis must lie in the interval from 1.8 to 3, a fact which seems to
obtain for the SAT, for -example. The properties of the distribution will not be

pursued further here because the pursuit is not related to the following material

For
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Table 3
Correlation between Polynomial Functions of

Equating Test Score and the Conditional Means

Linear,
Linear and Quadratica
Linear Quadratic and Cubic

.9938 .9951 _
.9875 .9957 .9967
.9979 .9983
.9937 .9940 .9959
.9910 L9972 .9985
.9948 .998L .998L
.9928 . 9965
.9933 .9966 .9975
.9978 .9983
.9952 .9991
.9992 .9993
.9973 .9988
.9985 .9989
-9945 .9991
.9986 .9986
.9987 .9990

L9757 9771
.9832 .98L0
.9897 .990L
.9961 . 9966
.9940 .9987
.9900 .9939
.9956 - 9977
.9982 .9983
.9985 . 9989
9979 9991
.9980 .9987
.9959 .9987
.9853 . 9869
.9872 .9900
.9912 994,

aMissing entries arise from colinearity problems referred to in text.
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(for more detail see Boldt, 19723 Press, 1972; Raiffa & Schlaifer, 1961, pp. 259-

260, p. 129). However, it was felt that to suggest a possible alternative to

the more usual assumptions is desirable.

Some Consequences

In terms of the activities listed in Table 1, the consequences of the

foregoing section are different. For example, in the case of industrial hiring

the criterion of interest is seldom a test and hence the foregoing evidence

may not really apply. This is not to say that the Pearson assumptions hold in

the industrial selection situation but considering the variety of criteria, the

lack of standardization of criteria, and the limited size of the applicant pool,

there is probably little to be concerned about in the foregoing discussion as

far as industrial applications are concerned. Criticis:n about tests in the

industrial context to.da,y arises from concerns other than those at issue in the

present paper (though the present issues may bear on the feasibility of validity

studies). Further, the balance of risks involved in industrial hiring are dif-

ferent, both for the manager and for the applicant, than in the academic con-

text. It is felt that the technical discussion recorded here bears directly on

some aspects of industrial psychology, but may not be as crucial as in some

educational applications, We introduce the. topic in & sense to discard it. It

has served its function as part of the background of the discussion. .
For undergraduate admissions the logic of correcting for selection does

not seem to have been incorporated in the thinking leading to validity study !

. designs. Certainly neither the validity study services of ACT nor the College

Board explicitly incorporate corrections for selection either in estimating cor-

relations or in correcting for selection so that regression composites can be

39
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more accurately determined. The reasons for this may be in part practical and
one may see the difficulties in the context of Flaugher and Rock (1966, 1968).
Their study is one of the few in the context of college admissions that have
attempted to correct for range restriction and is undoubtedly better for it. How-
ever, the corrections, being based on SAT-V and M only and correcting to the

base of a hypothetical applicant pool, are highly stylized. One can lez.arn to
appreciate the formidable difficulties of accomplishing studies with better
modeling processes by undertaking the intellectual exercise of .trying to design

a realistic selection model for the Flaugher-Rock study and then planning the
implementation of such a model,

For both industrial hiring and .academic admissions Novick and Thayer's (1969)
study pertains. In this study range restriction corrections were made for known
selection processes and the resulting corrected results compared with the known
actual results. Novick and Thayer detected bias as one might expect, but the
bias in the corrected multiple regression coefficient occurred when selection
was quite severe, indeed, more severe than that which might be accomplished.in
practice on the basis of %ests. It should be pointed out, however, that Novick
and Thayer modeled a known and simple process and hence the rather small biases
in many cases are not surprising. The situa*ion they modeled is not that of any
of the situations discussed in this paper. |

Guidance practice and Army classification are rather like academic admis-
sions and industrial hiring in that the criteria are not psychological tests and
are therefore not necessarily relevant to the testing experience quoted in the
previous sect';ion. In both cases the means of allocating personnel to curricula
are not entirely known though in the Army situation the information available

is finite and known. Also, the criteria of job performance are better standard-

ized in the Army situation than in the industrial hiring situation and hence
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empirical investigation of the criterion relationships with tests would be
much more meaningful.

In all of these situations the logic of selection of group as formulated
by Pearson applies if inferences are to be made about the population for whom
decisions are being made. The requirements of linearity and homoscedasticity
are probably not quite correct in many instances of these situations but each
would profit, possibly, from separate study. Thus, for the present, one is
forced to rely on the Pearson équations, hoping that they are ebout right and
getting the best modeling of the selective processes that can be implemented
realistically within constraints of budget and utility of the anticipated re-
sults, The reasoning on which some current scaling and equating processes ar
based is that same group selection logic of Equation (6), and the consequent
equations that research or the other personnel processes rely on. However, the
equating and possitly the scaling situations are rather more manageable in terms
of actions that can be taken to offset the lack of validity of the Pearson assump-
tions, and the evidence of lack of homoscedasticity bears more directly on the
scaling and equating situations, dealing as it does with the relationships of
tests to tests than it does on the other processes. Alternative ways of approach-
ing scaling and equating problems, ways that may not help much for the other
Processes, will be presented. These approaches will be based on linearity or on
a more direct application of Equation (6) with a minimum of further elaboration
of assumption. Such modifications of method might help in the scaling and equating
situati ons because even thbugh these procedures rest on logic similar to that of
industrial hiring' and the rest, the context is greatly different and the quanti-

ties required of the iodels are rather different.

‘31
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SAT Equating

The SAT equating method that is most pertinent to the discussion here
derives from equations in Gulliksen (1950, Ch., 11, Eqs..3 & 6), which are the
univariate case of the more general equations referred to earlier. Their'
use in this context is attributed by Angoff (1961, 1971) to Tucker. Tucker's

introduction of methods at a time when Educational Testing Service did not

have access to a computer and in fact accomplished test processing on accounting
machine equipment is certainly not under criticism here. Very few educational
technicians were well aware of the Pearson equations at that time (few of them
are very well acquainted with them today) and their application to the oper-
ational processing was very appropriate and useful. The methods have been a
mainstay of operational procedures for 25 years, and it has often been said that
the methods are as good as can be done with the existing technology.

The methods usel are to "adjust for differences in ability" and this adjust-
ment is accomplished by treating the equating test score as an explicit selector
in the Pearson equations; As has been discussed, the role of the explicit
selector is that of a variable on which the selection process acts directly
leaving the conditional arrays untampered with, To ascribe such a role to an
equating test is recognizably a little strange since at the time the candidates
sort themselves into various postures with respect to college application, the
equating tests are certainly not available to act as explicit selectors. Hence
the process that produces different SAT populations should not be one that is
considered to produce explicit selection by equating tests. Levine (1955) intro-
duced a modification that treats the selection process as if the differences in

populations tested can be attributed to differences in the true score distribution

alone and leaves the errors of measurement unaffected. Such an assumption is
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entirely consistent with our thinking about the nature of true scores and
the nature of the error of measurement, The attribution of selection solely
to true scores seems to the author to have much to recommend it, and a methoa
is presented in the Appendix for expanding the equating application af the

model such that a highly efficient and automated equating procedure results,

The Appendix includes a modified use of the model which constitutes a study of

drift, and one can correctly infer that if the model can be used both to design

and equating method and a study of a drift, it can also procduce virtually drift-
free equating, at least in its own terms.

The author developed the material in the Appendix about the same time as
the results of the study of linearity and homoscedasticity of chance level
scores became available, and the conflict between these results and the assump-
tions of the Levine (1955) true score equating became apparent. The true score
model assumes in.variance of the distribution of errors of measurement as a
function of true score level, and it seemed clear that in some sense the dis-
tribution of errors of measurement must be dependent on the true score level or
the results obtaining in the chance level score study would not have been found.
However, returning to the results of Mollenkopf (1949) and Keats (1957), which
were cited earlier, one sees that the assumption of invariance of distribution
of errors simply does not hold., The wonder of it is that in the intervening
decadg-plus, no operational cognizance or theoretical study of the situation
has been undertaken by the practitioners who use or depend on the method to pro-
duce the educational product. In defense of the Levine study it may be said
that it was not basically theoretical but was an empirical demonstration that
the formulae based on true score considerations have certain advantages. While

it 'is nice for such a report to deal with theoretical problems, it is certainly

'33
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not necessary. Some subsequent not entirely verbal attempf to deal with
the conceptual models and their problems is, however, long overdue,

In the material that follows, an approach to scaling and equating prob-
lems is presented which seems to the author to be reasonable and fair even

given certain unrealities incurred in the use of statistical reasoning. That

principle is as follows:

Insofar as equivalence can be established, equivalent per-

. ' . .
formances should receive as nearly the same score as possible.-

This statement is offset not because it is particularly profound but because

it states a philosophy that can be implemented almost literally in a particular
situation. Obviously, the equivalent events undér consideration in scaling and
equating are the levels of equating test berformance, and the establishment of a
scoring system that yields the same score as nearly as possible is to be inter-
preted as a numerical optimization subject to constraints imposed in the partie-
ular context. Perhaps this is merely dodging the scientific issue, but the
approach is as fair a one as the author can think of when the process that allo-
cates people to different populations is not known or isn't adequately modeled.
Implementation of such a policy is an explicit attempt at fairness, if not of
rigor.

Tt should be pointed out that while the approach introduced above avoids
explicit assumptions of linearity and homoscedasticity, the assumption that
explicit selection is based on the equating test score is not one that can be
avoided when making theoretical statements about the equating. Clearly, the
equivalent events must be observable if the approach is to be applicable in the

absence of a statistical model, and the evenﬁs which are on hand to be used as

L34
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cbservables in more than one population are the scores achieQed on the

equating tests. 1f the population selection process is to be represented

at all, the author has not been able to get back of Kquation (6).
It was indicated above that minimizations are to be involved, perkaps

constrained minimizations., These will not be traced out in this tezt since

the derivation of optimization procedures is another matter and need not be

of concern here, The optimizations involved may nof have been feasible in

many cases in 1946 when the Pearson equations were adopted, at léast not

feasible within the context of the testing operation being discussed, but they

areé quite feasible now with the current equipment. They are not optimizations

that are difficult within the state of the art--complications would arise main-

ly from start-up costs due to rearrangements of data logistics and programming.
The first equating method to be presented treats the test scores merely

as indices, and they do not enter directly into the calculation except as

indications of groups to which scores belong. The method assigns a score, called

8 reported score, to each level of the operational test score. For an "old"

test it is assumed that a mapping of operational test scores y 1into reported

Scores S

y

had been achieved and that mapping is taken for granted. A new

test z is operational, has been administered, and a mapping of levels of =z

into reported scores S, is the equating desired. An equating test x has been

administered to both the old and the new populations., If nxy and n,, are

the frequencies of cases receiving scores of both x and Yy ,or x and 2z ,

they are clearly observable, and a quantity Vx can be defined such that
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is the average reported score assigned to equating test score level x .
As nearly as possible, we would like the Vx to hold in the new population.

The following least squares minimization would accomplish that:

N [»]
H €
- . “xz \S _V (11)
M= z(ZNxz) §.<3ﬁf——> z X .
X 2 , %2

o

Thus one goes from the policy directly to the function to be minimized for
equating purposes. Unfortunately, there are infinitely many sets of values
S, that reduce the value of ﬁ in Equation (11) to exactly zero. ‘That not
all of these would be acceptable as equatings can be seen because the number
of levels of the equating test for which the values Vx are given ave less
than the number of levels of the operational teéts, at least for tests §f the
type under discussion. If additional equating tests wvere used adding the con-
straints of other administrations,‘and if enough such tests were used, the
expanded version.of Equation (11) would eventually reflect.overdetermination
such as is required. For the SAT, at least three such tests would be needed.
To bring the equating prqblem within reach, it seems easier to reduce the

number of quantities to be estimated. Note that in the formulation above the

scores are used only as indices. In fact, the reported scores do not have to

be monotonic with operational test scores as the equations above are written,
thcugh they probably would be since V, would be monotonic with the equating
test score from earlier equatings. One may substitute for s, in Equation
(11) tne quéntity Az + B so that the reported score is simply a linear func-
tion of the formula score. This does not assume directly that some linearity

obtains. It simply limits the range of acceptable transformetions to those

which are linear. Thus the dozens of values %“hat must be estimated in the
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equating are limited to two--A and B . Probably a better choice of trans-

formations is possible, but when such are developed, these will probably come

from item characteristic curve theory or a strong true-score theory such as . . ‘
that due to Lord (1965) and cited earlier.

One might well wonder where Equation (6) which was so carefully developed
has entered into the equating method mentioned here., The answer is that Eaqua-

tion (6) enters in when one makes the claim that it makes no difference which

group was used for the equating. Equation (6) says that the guantities

n

X2 and| =L-] would be the same in either the old or the new population
z an ) an
2 y

within sampling error and up to a constant of proportionality obtaining in case
the sample sizes are different. The policy from which Equation (11) stems may
be sufficiently acceptable for the method to stand alone, and if we further
accept the range restriction logic which is currently explicitly used in overa-
tional methods, we may more rigorously generalize the application of the re-
sults. However, ve do not develop the method based on the applicability of the
range restriction assumptions. '
In the paragraphs immediately above a genera; expression, L , has been
developed as an objective function whose minimization would lead to an equating
of a new test Z . The role of the range restriction equations in interpreting
the results of such an equating is pointed out, and it is also pointed out that
by expressing the s, as a linear function of the formula scores, the number
of parameters to be evaluated in the optimization of ﬁ is small enough that

the determination is made with some reliability. However, the restriction of

the s, to linear transformations of the test scores is too limiting because

'3?
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policies concerning the assignment of scores at the extremes of the test score

ranges override by fiat policies aimed at producing a stable equating. Thus

there is a policy that says that a score which is at the chonce level (a negative
formula score) should be assigned a reported score not to be in excess of scme
predetermined number.3 Hence, we do not merely modify the expression of Equation
(11) by writing s, as a function of A, B , and the test score of the sue-
ceeding paragrzph and call it an equating nmthod because it doesn't hendle the end-
point problem. DNor does it take into account double- or multi-part score equating.
What is done to finish the equating method is to write the objective function as
depending on several equating tests and append it with constraints which for policy
reasons are desirable, The resulting optimization will be in the form of a non-
linear program, possibly, or some other numerical method which is not of interest
here so long as the optimization is feasible in the practical sense,

The term objective function, as used above, refers to that mathematical
expression whose optimization leads to quantities required in the equating. The
quantities required are the scores to be reported, s's , for each category of
performance (formula score) on the operational test. However, the particular
objective f{unction, M , given in (11), does not contain the properties qeeded,
and it is desired to generalize it to include multi-part score equating. The
term multi-part, instead of double-part, is used because the transition to more
general notation is as easy as to restrict the notation to two tests. This
can be done in a strictly formal way by including a subseript i to the x and

generalizing (11) as follows:

3The author's suggestion of a method to deal with this policy should not
be taken to suggest his concurrence with it. The policy is used because tests
whose difficulties are improperly pitched scale out so that chance scores are
misleadingly high. Test construction according to proper test specifications
is a more appropriate remedy to the protlem.

N
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The formula for M  is put into the multi-part score equating context by

defining the terms X5 and n,, . We let i refer to a particular equating
i

test-operational test combination and X; refer to the levels of equating test

performance in the ith combination. Then n is the number of cases (in the
i
current operational administration) that scored at the xigg score level on

the equating test that pertains to the combination i . Finally, v, is cal-
. | Xy
culated as indicated in the text immediately preceding (11) with the exception

that equating test levels indicated by x in that expression and the operational
test y are the equating test-operational test combination associated with the
subscript i in the formulation of Equation (12)., That is, Vx is the observed

i
average reported score at the score level x where the score level is that of

the equating test associated with the equating test that goes with the subscript
i . These associations are routinely made in choosing the equating tests that
are to be used for operational administrations and have been last studied by

McGee (1961).

With the definitions above, and the restraint that the
s_=Az + B,
z

we arrive at the following objective function.

In (Az + B) 2
M =L Z(In, )|Z i -V, (13)
1 {x. 2x.,2°|In i .

i 1 X.2
(I




-38-

Thus, all the values of (13) will be known at equating time excent A and
B. The choice of A and B such that Ml is at a minimum is the means of
obtaining conversion parameters—-the function (13) has a wnique minimum in
which the formulae for A and B are expressible as the solution to a pair
of simultaneous linear equations.

It is not the intention of this author to display the formulae that
minimize Ml since the computational steps are not relevant to this discussion,
The intention of this discussiop is to give the equating rationale and from it
develop an objective function that accomplishes the task set out by the rationale.
Equation (13) gives an objective function that does this in at least as good
a sense as the current methods, in t.',hat it develops a single set of conversion
parameters.. It is also similar to the present methods in that it uses Equation
(6) to arrive at the justification for using Vx. as the desired average of
reported scores for a given equating test score',lassuming that the difference
between the population for which the. equating is being done differs from that
being used as part of the equating process by explicit selection on the associated
equating tesi. The method of Equation (13) is somewhat superior to the current
methods, in that it combines double-part score equating into a single optimiza-
tion where the choice of conversion parameters is determined in reaching an opti-
mum compromise beiween the several part score equatings. However, the conversion
parameters obtained by minimizing Ml might very well not be acceptable in the
case of a test such as Hebrew Achievement. In this case the conversion param-
eters might indicate that a score at the chance level would be converted into

a reported score of 400, say, which seems like too much for a test performance

. L
at the guessing level,” When such a set of conversion parameters is obtained

In footnote 3 it was commented that appropriate test specifications should
be established and met. Here is an example--the test is too hard for the examinees.

i 10
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under existing procedures, a set of more or less arbitrary steps are applied to

yield a point-to-point equating or a second linear transformation is chosen

produce a reported score through part of the range of 2z . If such departures
from a single linear conversion are to be gotten by minimizing one of the forms
of M, clearly it cannot be that of Equation (13) but rather that of (12) togeth-

er with a set of constraints. The development follows.

First, note that two policies are involved. One is that the transformation
from formula score to reported score will be linear; the other is that scores in
the chance level will not exceed some specified amount. When these two notions
conflict is when the linear transformation produces a line that never reaches

down to the desired score. The situation is pictured in Figure 2. In Figure 2

the formula score of zero is the coordinate of point A which is by the volicy .
to have a reported score of not more than 400, Note that the unconstrained linear
solution would not satisfy this policy and hence at some point, indicated by

the abscissa of x on the figure, will be the lowest point at which the linear
solution applies., Then as .one moves down the formula-score scale to the point
zero, one wants the reported scor.es to change regularly and smoothly to the point
where the chance score has 2 reported score as near as possible to the linear
solution and still within the range admissible by the policy. This would be the
maximum acceptable score at the chance range, and it is taken as 400 for the pur-
pose of discussion. Then as the formula scores move further into the negative o
range, one need only require that the reported scores are nonincreasing., Agsuming
that changes in the constraints on extreme cases will not noticeably affect the
linear solution, Figure 2 might also be taken as a picture of the constrained
solution with a relatively systematic trend from the linear solution to the

chance level score of LOO with nonincreasing scores shown as one observes reported
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scores corresponding to successively decreasing scores below the chance level.
One must, to fi.t this intq a satisfactory equating scheme, express these con-
straints in mathematical terms so that they can become a part of the optimization
that is a part of the equating scheme.-

To arrive at a mathematical statement of the constraints the use of z as a
subscript must be discontinued as it will be necessary to represent the "first"
(lowest), "second" (next lowest), etc. values of 2z ;the 2's are not equally
spaced if they are formula scores. Hence zJ will be the jth wvalue of 2z 1in
order where Z, is t:.he smallest, and sj will be the reported score aSSOCié.ted
with that formula score. Suppose further that the lowest score to which the

linear conversion is to apply is the Lth score, and that at the chance level

J=C , so that 2o = 0 . Ve then have three types of constraints on the s, ,

those from j =0 to j=C -1, and those from j =L and up (we are assuming

that s¢ = 400). Constraints for the values of s are

sjisj+l j=0,i..,6 -1 (1k)
Esjz-sj+l+sj-l,and. j=C+1,...,L (15)
s, = Az, + B. J=L,...,H (16)
J J

The constraints (14) assure that the reported scores in the chance range increase

monotonically with increasing formula scores. The constraints (15) assure that

tle reported scores which progressively move from the *straight line conversion

to the policy implied at a formula score of zero form a curve which is convex 1
upward and to the left as in Figure 2. The constraints (16) assure that the

conversion is linear from the point where j =L up to where another policy might

take over (to be discussed below). Note that due to the defined limits where
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cons traints 115) and (16) apply, both forms of the constraints apply to the
poi;lts where j=L and j=L+ 1 . This is done so that points fitted
under the constraints (15) can never wander above the extension of the linear
converted line--a condition which conceivably might obtain otherwise but
which won't with the constraints written with limits as set above.

Before rewriting the objective function further, constraints may be
needed. Unlike Hebrew or Math Level II, some tests may not scale out to a
reported score of 800. This condition also is shown in the upper right of
Figure 2, One might be inclined to feel that to be fair to the candidates it
should be possible to achieve a score of 800 on any tests-—clearly with the
linear conversion shown in Figure 2 such will not be the case. Therefore, it
could be desirable to depart from the linear conversion in the manner shown
in the figure; that is, smoothly movirg to a maximum of 800 for s with the
last point on the line of linear conversion at j = H . This is accomplished

through the addition of the constraints

55 2wt %y 3= Hoeeend =1 (an)

Note that the inequality of (17) is the reverse of the inequality of (15) pro-

ducing the concavity and convexity, respectively. Again, the overlap of points

involved in the inequalities (17) and those of (16) assure that the solution
when plotted will not reveal that the reported scores are less than the linear

conversion, extended.

5An enforced scaling out to 800, in the case of the College Board tests,

occurs because the possibility should exist for any candidate to achieve the
maximum score, whatever the form he is administered. Eight hundred is supposed

to be at the top of the expected range of difficulty of most of the tests in the
College Board Admissions Testing Program and is therefore used as a representative
top. Actually, the "fairness" achieved by such enforced scalings is mainly il-
lusory, and true fairness is accomplished by establlshmg appropriate statistical
specifications and then meetmg them.
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With the symbolic statement of constraints that provide reasonable conditions

for solutions to the end-point problems, the equating method sugeested here is

to find sj's which minimize M (Equation (12)) subject to constraints riven

in (14), (15), (16), and (17). While the procedures for finding the si's , that

is, the reported scores,exist, they are not to be displayed here. The com-

putational probiem is one of nonlinear programming to which approaches are

discussed by Fiacco and McCormick (1968). What is displayed here is the

roal of the procedure; that is, the function to be optimized together with the

constraints. In this procedure the assumption that would be associated with

the selection Equation (6) is that the present population differs from the

respective ones entering into the multi-part score equating by virtue of

explicit selection on the equating test used for the particular part, or at

least the selection acts this way. Particularly, the consequence of this

assumption is that the n's of Equation (12) are proportional whether they

are observed in the population to which the test being equated to was given

or in the population to which the test being equated was given.

In implementing the equating method dsscribed here, assuming the n's

and V's are available, one would first fit Equation (12) using only the

constraints (16), setting L = 0 and H=J . That is, fit a straight line
and see if it works. If it goes high enough and low enough, the equating is
finished and score conversion can commence. If not, and if the problem is at
the low end of the scale, refit (12) but under the constraints (14), (15),

and (16). If not, and the problem is at the high end of the scale, refit (12)
but under the constraints (16) and (17). Problems at both ends imply refitting
With all constraints, (14) through (17), imposed. In this way, unless a defi-
nite problem is observed, the conversion will be linear and probably this will

be the case most of the time. When the constraints must be invoked, the
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technique of fitting (12) though with the constraints imposed produces the best
equating one can get within those constraints. If the equating produced in this
way is not satisfactory, it is because some condition is not included in the
constraints or because some redefinition of the objective function (12) is
needed.

It should be pointed out that when constraints other than those of (16)
are used, one must decide where in the formula-score scale one will G&epart
from the linear conversion. One intuitively reasonable way to make this
choice is to pick values of L and H such that the average departures
from the linear conversion are acceptably small, This average departure will
probably be overestimated by calculating the average as if the departure from
linearity were made using another straight line. The overesitimation is expected
because of the convexity and concavity due to constraints (15) and (17) which
result in smaller deviations toward the more dense parts of the distribution of
formula scores. Thus as more and more formula scores are involved in nonlinear
constraints, the average deviation from linearity will decrease, the total num-
ber of people off the line will increase, and the achievable minimum of the ob jec~
tive function will probably increase. At the present time the author knows of
no obviously correct way to trade-off these various effects, and it will probably
be useful to examine some particularly troublesome College Board Achievement areas
such as Hebrew, German, and Mathematics to see what the results of imposing var-
ious constraints might have been. 1In this way a satisfactory rule, probably in
the form of choosing a fixed value of H or L 1if nonlinear consiraints are
to be used for a subject matter area (or possibly for all), can be formulated

for some time to come.

The situation described in Figure 2 and for which constraints are introduced

above do not exhaust the problems that may arise regarding end points. Another
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kind of problem is, in a sense, the opposite of the difficulty previously de-
scribed. That is, instead of having a situation where the conversion line
doesn't reach down to 200 or up to 800, one may have a situation where a linear
equating would scale well up over 800 and/or well below 200. Since, by policy,
scores are not reported above the former or below the latter the result would

be a pileup of scores at the extremes with the consequent loss of discrimination.
To provide discrimination at the upper end it may be desirable to introduce a
bend in the scale at some point below that at whiéh the linear conversion would

imply a score of 800. Suppose that H is the smallest value of J for which

the linear conversion is greater than 750. Then the constraints

-~

25'j :-sj+l + S5-1 Hel,...,0 -1

SJ=800 . ‘. l,ooo,H+l

would vegin the bend at 750 and scale up to 800. At the lower end, if the pile-

up were observed, the constraints

2s + 5

3 =51t S50

SO = 200

where H is the largest value for j for which the linear conversion ié less
than 225 would begin the bend just before the scale reaches 225 and would scale
down to 200. Clearly the choice of 225 and 775 for the points of introducing
the bend are arbitrary bhut it is hoped that a minimum of disturbance of the

linear fit would be introduced while still attaining some kind of discrimination

at the extremes,
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Achievement Test Equating

The reader will notice that the Previous section is headed SAT Equating,
but where the end-point troubles arise the achievement tests have been referred
to. This is, of course, because the procedures that might be used for SAT
equating should have a provision for handling tests that somehow do not behave
statistically as one would normally expect. The most striking examples of this
tyve of test behavior actually come from the achievement test areas and, hence,
have been mentioned as the examples, Whether the methods suggested actually
apply to these tests is another question. The author's position is that they
clearly do as long as the equating test is a miniature of the operational test.

When it is not, but has another subject matter, the rationale for using the

method would differ somewhat, and it may be somewhat different in form.

For most subject matter areas, the difference between SAT equating and
Achievement test equating is in whether the equating test is part of the
operating test, In SAT equating, the equating test contains different items
and is timed separately; in Achievement test equating the equating test is
actually part of the operational test, ‘Vhile these difference; have a great
deal of impact on operational procedures during test constructién and admin-
istration, the resulting scores fit the Pearson-type formulation in that the
equating test and operational test are jointly distributed variables whether
one is embedded in the other or not, and explicit selection is assumed on the
equating test and can be represented by taking products of functions as in

Equation (1).6 Homoscedasticity is re jected even though the equating test is

In this comment the existence of context effects and the lack of indepen-
dence due to enforcement of a single timing on both the equating material and the
other material are not considered. Actually, the proper form for the operational
equating experiment is one where separate timing of the anchor test occurs if one
is to be used. However, the representation of these context and timing effects
will not be presented in the symbolism used here.

Q K 'tflé;
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embedded in the operational test, the array'variation being supplied by that

portion of the operatimal test which is not part of the equating test. It

is as reasonable to accept the policy that equal equating-test performance

should imply equal reported scores on the average, possibly even more
reasonable since the equating test is, in the case of achievement tests, a part

of the actual operational test performence. Also, the end-point considerations

apply in the same fashion whether the tests be for achievement tests or apti-
tude tests, or at least the policy as understood by the author does not include
any subsfantive differentiation. Hence no reason is apparent why the procedure

should not apply to achievement tests as well.

This question is raised because in cne other equating model, that consistent
with Levine (1955), the prccedures for internal and external equatiﬂg tests
are different. This is‘when the equating test is assumed to have & true score
component which is equal to that of the operational test up to a-linear trans-
formation. The difference in whether the internél or external equating test
is used comes in whether or not the errors of measurement of the equating and
operational test can be assumed to be uncorrelated. If the equating test is
exiernal the errors of measuremeht are assumed to be independent of those of the
operational test; whereas if the equating test is internal, a part-whole cor-
relation between errors of measurement obtains. This difference leads to
different interpretation of computational results and hence to different com-
putational procedures., Therefore, under the traditional true-score model assum-

ing explicit selection is on the true score, internal and external equating

must be treated differently.

However, we have rejected the traditional true-score model. It is con-
ceivable that true and error scores are uncorrelated, but it seems almost certain

considering the evidence adduced earlier that they are not independent and that

the range restriection equations will not work. This is too bad, because the idea

. 4149
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of assuming that range restriction occurs explicitly on the true score is highly

appealing and would allow one to build an equating policy that "on the average

equal true scores imply equal reported scores," if the correct (or at least a

reasonable) true-score model were available that afforded the development of

feasible numerical procedures,

but at this point the author does not know how

to do such equating. Rather we are not using any true-score logic, and the pro-

cedures suggested are based on notions by which we are unable to develop a dis-

tinction between internal and external equating tests.
Vertical Equating

The rule that equivalent events should be assigned reported scores as simi-

lar as possible suggests an approach to the very difficult problem of vertical

equating. The present methods are, in the view of one of their originators (Lord,

1969), quite unsatisfactory.7 This comment was not meant to be critical, of course,

but expresses the difficulty of the problem attacked. In the same communication

he urged an approach to vertical equating through the use of the Rasch model , and

it is assumed that other latent trait models would do as well. However, because

it fits the context of designing equivalent scores for equivalent performances,

another approach is outlined below.

The vertical equating problem arises when, for example, one wants to develop

8 series of examinations and a scoring procedure that would allow one to trace

the development of a skill. Suppose one would want to trace the develooment of

arithmetical skill from second to sixth grades, doing this with a series of tests

of appropriate difficulty, Perhaps there are three tests ta be given, an easy

one, a middle one, and a hard one. To equate them one might administer the easy

7He adds, "I do not say this in criticism, since I was partially responsible
for the method " :
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test and the middle test to the third grade, and administer the middle test and
the hard test to the fifth grade. The particular pattern of administration is
not at issue here as long as some patfern of administration is accomplished that
relates the tests by administering combinations to various groups of people.

This will be commented on later.

The equating would in this situation be accomplished by appiying the
principle that a person should, as nearly as possible, get the same score, no
matter which test he takes, For example, if a third grader gets a score of u
on the easy test and a score of v on the middle test, this is taken as evi-
dence that the scaled score associated with a test score of u on the easy
test should be similar in value to the scéied score associated with a test

score of v on the middle test. This principle can be implemented as

follows, Let

i be a subscript for individual;
J, J' be subscripts for test;
k, k' refer to a score level within test (k ranges from one for the

lowest score to Kj where K, is the number of score levels in

J
the jth test);

Gijk be one if individual i scored at the kth score level on the

jth test, zero otherwise; and

Sjk be the scaled score associated with the kth score level on the

Jth test.

The equating problem is to find the S's given that the §'s have been

observed. These S's are chosen so as to minimize 6 where

N o
-x}1
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I J J X, x.

6=z 1§ 5 g 2
= pX DR § -

i=] J=1 j'=1 k=1 k'=1 ijtk i‘jk(sjk Sj'k') ’

where 1 ranges over all people in the equating experiment, and J 1is the
number of tests which was by hypothesis three in the example. Note that a
minimum value of 5 equal to zero can be obtained if all S's are taken as
zero., This is, of course, a nonuseful solution to be avoided by constraining
the solution such that the sums of sqﬁares of 8's , or possibly the sums of
squares of S's for a pafticular test, be set equal to an arbitrary positive
constant using - LaGrange constraint. The choice of the constant would be
for convenience. Another constraint would be needed to establish a zero for
the scale. Clearly, the value of 5 is invariant under additive shifting of
the 8's , so probably it would be convenient to set some arbitrary average
of the S's equal to zero or a constant. Once a solution is found in terms

of the .arbitrary constants, a linear translation of the S's would be an

equivalent solution.

The quantity 6 , together with the constraints mentioned in the paragraph
above, are not so designed as to ensure that the resulting S's are even
monotonic with increase in the k's . Certainly no linear relation with a

formula score or number rights is implied nor should it be, since the diffi-

culty levels of the tests are intentionally mismatched. However, it might be
desirable to attempt some smoothing of the solution by an averaging process 1
such as is used in the quantity 6 below, which fits the total of an examinee's
scaled score and the two scaled scores from the adjacent levels on one test
to a similar average from the other. The quantity to be minimized with this

~

smoothing is highly similar to © except that the range of k is from the

AT
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second score level to the next to the last score level; i.e., for test
there is a Oth score level and a (Kj + 1)th score level. Then we have

I J J K, K,
o

6=1 1I I I bX 8., 6 [s

R PO +85,, +8
i=1 g1 j'el kel k=1 LIKCRITRT TR30k-1) T Tkt Tg(ked)

. 2
"Sjl (kl_l )-Sjlkl-sjl (k'+l)]

The reader Wiil note that the deltas actually are the data of this scheme

and should be aware that they are in part determined by the design for the
collection of data and in part determined by the test performances, The class
of adequate designs for a scaling study may be investigated by seeking configura-
tions of deltas that lead to unique solutions for the S's wup to a linear
transformation. It is not the intent of this paper to go into such designs as
the present paper stops by choice with the suggestion of plausible objective
functions., It suffices to comment that designs and calculations can be worked
out which lead to satisfactory minima af 8 or 5 . The design suggested in

the paragraph above is a quite satisfactory one,
Equating with Mixed Essay and Objective Items

The approach to equating suggested previously can also be applied to the
situation where mixed essay and ob jective tests are used. Despite considerable
evidence to the contrary which is convincing to the author, it is often deemed
desirable to mix essay material with objective material when testing for achieve-
ment evaluation in certain subject matters. Many feel that essay testing is
useful in a teaching context and some feel that the utility would carry over in
mass achievement testing. And judging from history, the inclusion of essay

material will continue at least from time to time within the foreseeable future,

'53
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for proponents of essay testing feel that the requirement to write on the
test might engender a felt need to learn to write on the part of the candidate.
The;efore, despit';e the author's btelief that essay testing in large commercial
programs is at best an expensive method of unsuccessfilly testing the ability to
Organize and think, it seems that an equating method will be needed, and one
is herein proposed that is consistent with the philosophy of the previous dis-
cussion, |

It is assumed that each examinee will answer some number of essay questions
but that they need not all answer the same questions. Fach candidate also takes
a section of objective questions within which is embedded a miniature test
which has appeared embedded in anotiher objective section for which a reporting
score scale is establilshed. In fact, it will be assumed that tﬁere are two
score scales,one vhich is finely graduated and oﬁe which has rather gross divisions.
Scores on the finely graduated scale will be referred to as being on the F
scale, The gross scale is given as a series of ranges, or cut points, on the F
scale, thus, if equating is accomplished on the F scale, it cé.n be immediately
translated into the gross scale and the gross scale need not bé considered
further here, This gross scale is mentioned because its use may be consistent
with the College Board Advanced Placement (AP) practice of reporting scores on
only five levels, but reporting on that scale does not require or even recommend
equating on that scale (as it is not at this time). Conversion to the gross
scale can be done as a last step in the score reporting process, for instance,
by establishing or having established a set of cut points t | ¢ =1l...k where

>

k 1is one less than the number of intervals to be reported, If T. s 8=0...k ,

is the reported score gnd if F < tl , then TO is reported, Otherwise if t '

is the largest of the set of t's which are equal to or less than F , then ’l‘p

is reported. It is consistent with some practices to take ’i‘p =g+,

-3
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The sense in which equating will be accomplished is that equal scores
on the equating sectiou will imply equal reported scores so far as is
feasible within other constraints. Rather than using the actual reported
scores, though, the equating will be done using the F scale as indicated
above. Prior to the actuél equating steps it is necessary to infer for each
student a score on the essay section. This score will then be combined with
the score on the objective section in an ,equating‘step.

In inferring an examinee's score on the essay section it will be recog-
nized in the notation to follow that each combination of reader, question, and
examinee is unique in a sense. That is, in the symbolism to follow there is
an indexing subscrij)t which refers to reader-question combination and does not
abstract quantities related in theory to reader alone, or question alone, though
some comments about reader evaluation will follow later in the text, It should
also be noted that a symbol W is used to indicate whether or not a particular
reader-question combination evaluated a response by a particular student. This
quantity takes on values zero and unity, indicating whether or not an observation
was generated by a combination of student, question, and reader. The quantities
W could be regulated by experimental design, at least as far as readers and
questions go and possibly somewhat for students also, though it is assumed that

the pattern of W's 1is left mostly to happenstance., Let

i be a subscript for candidate;
J refer to reader-question combination;
S; be an unequated score for the ith candidate's essays;
A, , B, Dbe constants associated with reader-question combination
J which account for the variability and toughness (of

the question or the reader) of the particular reader when

reading the particular questiong
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xiJ be a numerical score assigned to student 1 by the
Jth reader-question combination;

wi,j be unity if candidate i received a score from reader-
question combination J , zero othervise; and

C,j be an arbitrary weight chosen to vary the emphasis placed

on a particular reader-question combination.

Essentially a single factor system is assumed8 where the A's and B's adjust
for severity of grading and variation in grades assigned, but the same student
score underlies all performances by that student., This éssumes that scores that
are used are not subject to a sliding standard as the readings progress and that
careful reader training has tazen place so that readers have a common and re-
liable notion of‘that which is to be graded., We chose as an objective function

2
I C, I W X;, - A, - B, S,
g 9 i i (l.i J K i)

to be minimized subject to the constraints that )1: Si = 0 and )1: S? =1
Note that in the expression above if a particular set of A's , B's , and S's

are a solution, then adding a constant to the 8's and at the same time sub-
tracting from the A's that constant times the B's produces an equivalent solu-
tion. nlso, the effect of multiplying the S's by a constant is offset by di-
viding =“he B's by the same constant, That is, the S's are determined only

up to a linear transformation (that transformation is to be determined in con-

nection with the equating). Adding a constant for reader-question combination

This assumption is not entirely inconsistent with the conclusion of
Torgerson and Green (1952) who, though they noted four factors in the grades

assigned by EFnpglish essay readers, found that a large general factor was
dominant;,
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(j) can be offset by subtracting that constant from the A's for that sub-

script (j) . Further, if all the X's are multiplied by a constant, a solu-

tion can be retained by multiplying the B's by the constant. Hence the

solution adjusts a tendency toward additive bias (toughness), and the scale of
grading may be expanded or contracted arbitrarily if the gradations are not

modified. However, a limited use of the grading scale lessens a reader's effect

in the objective function. One might try to offset this effect by choosing
different values for the C's , or by standardizing a particular reader's grades

9

prior to the minimization of the objective function, It standardization is
done and a reader tends to get small values for B , then he probably is not
grading on the same standard as the others and some judgment about the suita-
bility of his Jjudgments would be needed.

Minimization of the objective function above requires certain characteris-
tics of the quantities involved. First, to use the scoring procedure W.J must
not equal zero (reader-question combination must assign a grade), In fact, if
S's were known, it can be seen that two observations are required to allow &
unique solution for A and B , Second, ‘the number of constants to be determined
less the numter of constraint:,s is 2J+1I-2 , wvhere I and J are the num-
ber of candidates and the number of reader-question combinations, respectively,
and hence IIw.

ij iJ

order reader-question combinations and examinees so that the objective function

must exceed that number., Third, it should not be possible to

partitions into more than one sum containing different parameters. That is, if
the objective function could be written as Ql + Q2 where none of the parameters

in Ql are contained in Q2 and vice versa, then separate constraints would be

9The C's may stimulate more confusion than insight and their inclusion may
have been in error. However, they do represent a way of influencing the solution
which might at a later point in time prove to have an unanticipated advantage.
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required for the S's in each @ . This would occur, for example, if students
were allowed to answer only one question, and if this were done, the cases
contributing to Ql could be equated separately from those contributing to

Q2

quite clear that for each examinee, at least one observation is required from

though this would probably not be desirable. Further, it should also be

a reader-question combination which has a nonzero weight. Finally, the actual
computations cen be accomplished using existing logic which has been described
by Tompkins (1968).

To complete the description of the equating let

Ry be the average reported score in the last administration
for those who received a score of y on the equating
test;

S be the average essay score (determined using the method
above) for those who received a score of y on the
equating test; and

U  be the averapge score on the multiple choice section for
those who received a score of y on the equating test.

The multiple choice section referred to here is the current

one, not the one entering into Ry .

Then find m , p , and q such that m Sy + p Uy + q 1is the weighted least
squares fit to Ry , where the weights are frequencies associated with equating
test score in the administration where the equating is taking place. The con-
version to the F scale is m Si +p Ui + q where the subscripts now refer to

examinees rather than to equating test levels.

o
8
@
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In this type of equating system the relative weight given to the essay
and objective score either passes out of the hands of examiners once the system
is implemented or is undefined, or both depending on how one views it. It
passes out of their hands once the equating system is in effect because the
equating determines the weighting system. If the examiners decide on relative
weights when the system is started, feel that these weights are effective, do
not change test content, and the candidate populations do not differ drastically,
then their weighting is preserved. This weighting is undefined, however, in
. the sense that common factor variance is not uniquely ascribable to the essay
or the objective sections and hence the relative weight is more or less undefined
(this is true of all section weightings at the present time as far as the author
knows). Also, the t's are fixed in a sense once such a system begins operation.
Hence, in using this type of system, a good bit of judgment passes from the oper-
ators of the system to the statistical system -- a development which may be viewed

with dit'ferent emoticns by different people and mixed emotions by some.
Scaling

As a topic in the psychometric literature, scaling is qQuite general deeling
with systems of assigning numbers to events. One defines a set of equivalent
events and then sets up an equivalence between these events and the number
system., For example, in the equating system just discussed, the equivalent
events were the scores on the equating tests, and the number system being
chosen is to be found by minimizing the objective function, perhaps with some
apparently necessary constraints. Ho;wever, local usage assigns the term "scaling"
to the alignment of test scores and distinguishes between scaling and equating

in terms of the kinds of events chosen as equivalent. Specif'ically, when the

é
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equivalent events are defined in terms of scores on a performance of a sort
not measuring the performance for which the number system is being developed,
then local usage has it that this is "scaling." In the present context this
latter usage of the word will apply.

Scaling is useful in the applications of measurement systems that use tests
in that it is the means by which alignment is achieved among score scales based
on variables which measure different things. For example, the Army classifica-
tion Battery consists of a number of different measures such as clerical spéed,
numerical ability, mechanical knowlege, etc., However, the scores on these tests
are in theory aligned in such a way that they would all have the same mean (one
hundred), and standard deviation (twenty), in a VWorld War II mobilization popu-
lation. Thus when a score of 150 is encountered, it is a good one no matter
what the content of the test, Thus some intuitive feel for the size of the scores
is established, and the procecs of explaining the meaning of test scores is quite
a bit simpler than if such standardization were not effected,

Another use of scores from a battery, not one recommended by the writer but
nevertheless one that is said to occur, is that of using the average of available
scores as an argument in a regression function. ’For example, if a student offers
scores on English and Spanish achievement and another offers scores on math and
history achievement, the averages of the scores might be substituted into a
regression function as "achievement averages." Granted that such use is quite
inappropriate, the damage done would be minimized to the extent that some stan-
aardization between the achievement tests has occurred. The really appropriate
standardization for this purpose is a validity scaling, but where such is not
possible, an aptitude-oriented scaling is commonly used. It is the aptitude-
oriented scaliné, or more generally, situations formally similar to that of

aptitude scaling that is the topic of this discussion.

o8
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First, consider the problem of using performance data from several sending

institutions (secondary schools or undergraduate institutions) to predict per-

formance data at a single receiving institution. Here there is a single criter-

ion hence the predictors should be put on a single appropriate scale. It has

been mentioned above that the appropriate scale is the criterion scale in this

case, obviously, and methods are available for such scaling (Novick, Jackson,

Thayer, & Cole, 1971 ; Tucker, 1960). However, it has been the practice often

to use a test to put the grades on a scale using the Pearson assumptions. If

one chooses to go along with the aptitude scaling but realizes the probable

incorrectness of the Pearson assumptions, one might proceed by defining a

reference population in terms of standard frequencies associated with the

levels of the test used for scaling and then transform the grades by equating

means and standard deviations. In this way, one works toward the same intent

as current methods, that is to produce a scaling that yields similar distri-

butions ofthe scaling variable, The following notation will be needed. Let

ix

ixj

refer to levels of thekaptitude scaling variable,
refer to the sending institution,

refer to the particular person within sending insti-
tution and at score level x ,
be the grade of the Jjth person at institution i

who received an aptitude score at the xth level,

be the number of people at institution i who received
an aptitude score at the xth , level,

be the multiplicative and additive constants in the

transformation at institution i ,
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Yix. = (l/nix) X yix,j ’
= m) iy -5 ).
R ix 3 ixj ix. -
ix

In the notation above and to follow, the dotted subscript indicates summation
over the subscript position dotted in accordance with the current common
practice. Then if a reference population N had frequencies fx , the variancé
0? of ¥y in N would be

1

L+
i= % hSix § x'Vix, i.. > (18)

where ¥ = (g X
y (x f (19)

and assuming that s?x and y.

ix remain unchanged, that is that selection is

explicit on x and therefore Equation (1) applies when r and s are defined
as one., Then if in 1N the scaled variance should be u2 and the mean should

be u , then by the usual formulae for equating means and variances

Ai = u/oi and Bi =y - Ai i,

The reader will note that here the computations are given where in other sections
they are not. This is for two reasons. First, there is no objective function
defining this scaling method. The equalities which are sought can be matched
exactly with the data at hand in every case, provided the f's are suitably
defined. Second, the f's in Equations (18) and (19) are a source of difficulty
which the equations exhibit., Note that if no cases are 6bserved at a level of

X at a sending institution, the computations in (18) and (19) are not defined

unless f is nonzero only for those levels of x for which Ny . is nonzero
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for all i . In words, this means that a score level to be used in the scaling
must have cases at all sending institutions.

Consider the case where institutions of nonoverlapping quality in terms
of aptitude are to be included in a scaling using the above method. Then
the scaling can't be performed since overlap must exist; if overlap does not
exist, what does scaling with the aptitude test mean? This question is not
idle because, for one thing, if any two sending institutions are nonoverlapping
the difficulty arises, and for another, the scaling is used in undergraduate
and graduate admissions testing programs where the scaling is done on very dis-
parate groups. To clarify the shift from scaling grades to scaling in admis-
sions testing programs, note that the levels of x defined as levels of a single
aptitude variable in the case of scaling grades can be taken as categories defined
by pairs of aptitude test scores as in the Graduate Record Examinations and the
Céllege Board Admissions Testing Program. Rather than indexing the sending
institution, the i can be taken as the particular achievement area. Then it
can be seen that all the notation leading to the computations of Equations (18)
and (19) go through (with a suitable redefinition of v and H, and ifT y is
taken as an achievement test score to be scaled rather than a grade point average).

Both of these testing programs have achievement areas that serve very able candi-

dates for the most part and some that serve examinees that are relatively much

less able. Thus one might expect that quite a number of combinations of aptitude
levels do not occur at nonzero frequency for all achievement areas. It might be
very difficult to define a meaningful (to substantively oriented users) reference

population such that fy 1s nonzero for all levels of x for all achievement
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populations and yet that seems to be required once the Pearson assumptions are
fovezone. One is therefore tempted to accept the Pearson assumptions anywvay,
but it should be pointed oﬁt that it is precisely where the various populations
to be scaled are disparate that the problem with the Pearson assumptions is

intensified,

The reader might wonder why ii is insisted that a given level of x must
be observed in all populations to be observed, Why not just scale the achieve-
ment tests one at a time with the aptitude tests using a definition of fx
that yields a suitable mean and standard deviation of the aptitude test scores?
The answer is in the question--the scaling in that case would be to the aptitude
test and not particularly to the other achievement tests for whom comparability
is claimed. One could assert that this achieves comparability among achievement
tests and probably many credulous users would believe it. Their credulity would
probably lead them to ascrite a transitivity to the comparability, a belief
that is uﬂfounded in logic or fact.

The foregoing discussi;n of scaling is admittedly quite unsatisfactory to
the reader who is looking for definitive answers., All that is said is that what
has been done in the past is doubtful, and alternative suggestions are admittedly
only partially satisfactory. Where criterion scaling is feasible, it seems to

the author that it should be done. But the bases for requiring comparability

among types of measures that gain value as a collection because of their different-

ness need development., It may be that the problems that one attempts to solve

through scaling would after careful consideration prove to require another kind of

solution altogether.
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APPENDIX

True Score Selection Model

It has been commented that the author has found no way to get around the

assumption that explicit selection is on the equating test when the populations
tested in an equating experiment using an equating test are not equivalent.
This is not quite true, in that the metlod due to Levine (1755) follows if
selection is on the true score. However, that method assumes homoscedasticity
with variation in the true score range, an assumption which is highly question-
able. It is unfortunate that the assumptions are questionable because the model
could be applied in a way that has advantages that will be described in the latter
portion of this Appendix.

The following develops an equating method using the notion of true score

selection, Let

i be a subscript for operational test;
J be a subseript for equating test;
k be a subscript for candidate (nested within ij);

yijk be the score of the ith operational test of the kth candidate
who took the Jjth equating test at the ith administration;

xijk be the score on the Jjth equating test of the kth candidate who
took the Jjth equating test at the ith administration;

6:1;] be 1 if equating test § was teken with operational test i , zero 1

otherwise

tijk be the true score of the kth candidate taking the jth equating

test at the ith administration; and

p. be the reliability of the ith operational test.
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above assumptions are heavily influenced by a belief in the equivalence of

populations which take the various experimental sections of the SAT; i.e.,

adequacy of the spiraling operation is accepted. Then

The deductions immediately above give some observables on the left in terms of
structural variables on the right. In these equations the relisbility is assumed
tc be observed as the result of split-half scoring of the operational test, cor-
relating the half-length tests and then corrocting to full-length. Such a method
is feasible using modern computing equipment and is preferable to other approx-
imations (since the approximation is not necessary, and may very well not agree

with the preferable split-half method).

/

Note that the covariance ‘ij

Covx_y) between operational and equating test can

in theory be split into two multiplicative parts, one associated with the
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operational test and the other associated with the equating test., This cpb'uld

be accomplished in a least squares way as follows. Find {Ui} s {Bj} such

that

2
);)j Gij(ijcovxy - aiBj) lmin

is at a minimum with arbitrary norming on the a's or B's . Take

and

B, =4,/K

where K is an arbitrary norming constant. Then

2 .
(oy icy)/(mi) =, /K .

Find {cj} . {Gi} such that

- 2
? s:aij(xij. -y - BjGi)

is at a minimum subject to arbitrary additive. norming on the G's , Then

G, = KI. +P

where P is an arbitrary norming constant. Then

2
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In terms of the wvarious quantities developed, then,

1

2

p. .0 p. .C

st

e

ijk °

To equate one would choose constants Ai

and Bi such that if the true scores

on some agreed upon scale and the reporting score scale is such that there exist

constants y and n ,

E(S) =y, + n ,

t

where Si = Aiyi,jk + Di » then coefficients of powers of t can be equated to
Yy and n if P and K are known, and Ai and Bi can be easily solved for.
To find P and K , arbitrary scaling can be put on the true scores. For example,

it might be desired that for some combinations of administrations the average

true score should be considered M . Then averaging the Gi's over these admin-

istrations one would obtain

G=KM+P
and
<
" TP=G-KM.
Thus P could be eliminated, and it should be noted that the average involved

could be a weighted one involving numbers of cases at the administrations

or some other basis for choosing weights. The quantity K might be chosen so
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that the b's are, on the average, equa]t to one and hence that the product
of the reliability coefficient and the test variance would be an estimate of
the true score variance for the particular test involved or at least on a
scale of the same order of magnitude,

For an equating method, assuming the scale is set so that a's and c's

are known, then find B's so that

z(,.Cov__ =~ @B )2|

j i xy 3

is at a minimum and set

(x,, - cJ)/BJ .

1J'0

P. .02
I A
o, 4

1

n - Ay

are the new conversion parameters, The advantages of this method are that

only a's and c's are needed for old forms and equating tests., The method
is drift free in the sense that one uses all the available data to arrive

at weightings which are calculated to relate reported scores to true scores.

Of course, variations in the quality of the examinations will affect the result
of this type of scaling as it would in any method. Also, minor changes in the
method would allow its use with internal equating tests. The important point is

that the reliabil‘ity used should be on material which is not part of the equating
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test because if it is, it may be necessary to solve a quadratic equation to
obtain a solution and that quadratic equation may not have real roots for
some unfortunate administration,

A major weakness of the methcd is that it suggests to the author no

particularly good way to proceed when the end-point vproblem occurs as it will
quite often, Another weaskness is that the validity of the model is doubtful,
though on this score it is at least as good as the models currently in use.

Certainly it is the only model that makes a plausible assumption about the

effects of selection of populations.




