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ANCHORED SCALING AND EQUATING:

OLD CONCEPTUAL PROBLEMS AND NEW METHODS

Abstract

This paper describes several situations in which generalization of

statistical results is not possible by representative sampling but which

is attempted using corrections for selection of groups. The situations

include hiring, admissions, differential classification, guidance, test

score equating, and test score scaling. Evidence of inaccuracies of the

assumptions underlying the corrections is adduced. The Pearson equations

which rest on these assumptions, are mentioned as a basis of scaling and

equating procedures in existence, an alternative approach is suggested,

and its application to anchored equating, vertical equating, scaling,

and equating with mixed essay and objective material is described. The

alternative approach consists of a principle for choosing objective

functions whose optimization would lead to a selection of conversion

constants for equating. The principle is that equal equating test

scores should be associated with equal reported scores on the average.

Constrained optimizations are suggested where policy considerations

so indicate.



ANCHORED SCALING AND EQUATING:

OLD CONCEPTUAL PROBLEMS AND NEW METHODS

Because of the utility of individual prediction a great many applications

of psychological measurement techniques have received attention which is

characterized by the relating of measurements taken under two sets of condi-

tions. For some purposes these conditions differ in the time at which they

are taken, but this difference is not the only one that offers potential

utility. In this paper the focus is on situations where, measurements differ

not only in the time at which they are taken, but also from some necessity

in the frame from which they are sampled. Consequently, generalization across

the different populations is needed and this generalization goes beyond that

accomplished through randomization alone.

In a hiring situation, for example, one would like to be able to predict

the performance of an applicant for employment. In an academic situation one

would like to be sure that an admitted candidate has a reasonable chance of

completing some curriculum, or even possibly of performing well. Or one

might desire, granted the foregoing goals, to select a test that might best

perfvm these functions. And to do so, the supporting research would be

very well founded on a study in which the candidates or applicants are unse-

lectively hired or admitted depending on which context is being considered.

Provided the criterion scores would be assigned on the same basis regardless

of the input of talent to the school or job, the consequences of various

admissions or hiring policies on the basis of test scores could be investigated.

However, unselective hiring or admissions will not be allowed in pratice.



More complex situations arise when many possible activities might be

accomplished by people from a common pool. This situation occurs most

often in the military service where basic trainees must be fractionated

into a variety of types of advanced training assignments. Many of these

trainees have arrived at some agreement with the service about the type of

advanced training to be given, but for many trainees the assignment decision

is yet to be determined when the student is in basic training. A somewhat

similar situation occurs in education at the curriculum-selection stage. The

"undifferentiated pool" of people from whom various specialists will even-

tually develop is the freshman class, oz possibly the college-bound secondary

school seniors, and the activities to which they route themselves are majors

in the various curricula. Hence both curriculum selection and the military

classification problem have in common the goal of optimum sorting of the people

in a manpower pool into a set of differentiated activities, each with its own

standard of excellence. In neither situation is a randomization experiment

feasible.

A less obviously related situation is where one wants to supply, on a

scale which is the same in some sense, scores based on different measuring

instruments. In this case, the existence of the pool from which people

are sorted into groups is not obvious. One might, for example, just admin-

ister both measuring instruments to the same people. But this is sometimes

not possible, so Angoff (1961) describes a conceptual approach due to Tucker

in which the union of the two groups is analogous to the pool from which hiring

or admissions is done in the previous paragraphs. In other more extreme

situations one can merely assert the existence of pools for which comparable

scores are desired on certain measuring instruments when these instruments

are properly scaled.

4
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Recognizing that there is a monumental obscurity in the preceding

paragraphs, the following examples are presented hopefully 4.n clarification.

The first is in that area of scaling which is sometimes called equating.

Here the operational equating of the Scholastic Aptitude Test. (SAT) applies.

For a given administration the actual SAT may be a completely new test

administered for the first time as a unit. This occurs for a variety of

entirely defensible security reasons, but it does generate a problem in that

the scores reported from the first administration will, in the admissions

process, be compared with those reported based on performance on another.

SAT administered at a different time. Hence using different instruments,

scores must be generated which are in some sense similar. The point of

departure taken in developing the procedures currently used is that if both

tests were given to the union of the two populations taking the SAT, then

the scores should be so scaled as to provide the same mean and standard.

deviation. Both tests are not, of course, administered to the same popu-

lation, but a small equating test is used instead to bridge the gap between

the two populations. However, in the logic developing the eauating proce-

dures, the notion of estimating population statistics in the union of the

populations definitely plays a role.

The second example which applies to supplying scores which are comparable

in some sense is the achievement portions of the College Board Admissions

Testing Program (ATP) or the Advanced Tests of the Graduate Record Examina-

tions (GRE). There is an interest in having these systems of tests on scales

that are comparable in some sense and the procedure which produces this com-

parability uses the aptitude tests associated with the achievement test

systems to define similar reference populations. These are the populations

5



which are referred to as being "asserted" in the earlier paragraph. The

reference populations for these tests are hypothetical ones in which the

means, variances, and correlation of the aptitude tests are assumed as

particular numbers. The actual set of values chosen for these reference

population statistics are supposed to hold in a reference group for the

aptitude tests and might rightly be thought of as the union of the various

groups that take the achievement tests, at least in the case of the GRE.

However, the referring of these reference groups to any single group of

people is highly dubious from a scientific point of view and for this

reason should be referred to as "reference populations, one for each achieve-

ment area," wiva similar moments rather than to a single reference popula-

tion. In this situation the reference populations take the role of the.

"pool," and their existence is much more a matter of sheer assertion than

in the hiring or admissions contexts.

A final example is one in which a group of people all take a common

arithmetic test and then '.hoose between a trigonometry and a business math

test as the second test. It is desired to put all the scores on a common

scale, and the pool in this situation is the complete group, but the math

scores are to be based on the arithmetic-trig or arithmetic-business math

combination and are to be put on a single scale in some sense.

It should be noted that the "similarity" of scores achieved is defined

up to a certain point in the present context, but that it is also easy to

misinterpret. For example, scaled and equated scores are not necessarily

parallel, nor are they necessarily equivalent from a predictive point of

view. None of the operations described here bear on their parallelism or

predictive equivalence except rather superficially, and it may be that the

desire for "similarity" which leads to an equating or a scaling is a desire
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for predictive equivalence which is not achieved. That is another matter

entirely and one to which this paper is not responsive.

In summary, a number o f activities have been recounted that involve a

pool of people to which generalization is intended and another group on

which certain observations are available though nct for all members of the

pool. In one kind of fairly standard terminology the pool is also referred

to as the "unrestricted group" and the employees are referred to as the

"restricted group." This latter terminology has an employment flavor

reflecting its origin. Table 1 lists decision activities and groups for the

various contexts above as a possible additicnal source of intuitive feel for

the sort of situation that is pertinent.

Logical Formulation

Like many other problems of an applied statistical sort, Karl Pearson

(1903) encountered the problem of interest here and proposed a solution to

it. At the turn of the century he was one of many who were tracing out the

consequences of theories of evolution and natural selection. In this case

Pearson was interested in the correlation between body organ sizes. Appar-

ently Calton had earlier suggested that correlations between organ size might

be a criterion for the identification of species. Pearson doubted this because

he felt that'these correlations would differ from local race to local race as a

function of selection as much as do other descriptive statistics and hence would

not be satisfactory as bases for species determination. He gave numerical

illustrations including one of the influence of selecting two organs, A and B,

in parents on the correlation of the like organs A* and B* in the offspring.

He also developed an algebraic theory of the selective death rate. Although

7
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Table 1

Restrictea and Unr ?stricted Groups in

Some Personnel Decision problems

Decision Activity* Pool

(Unrestricted)
Employees
(Restricted)

Hiring

Undergraduate
Admissions

Army Classification

Guidance

SAT Equating

Achievement Test
or GPAa Scaling

Applicants

Candidates

Basic Combat
Trainees

Freshman Class

Candidates at a
Particular
Administration

Achievement Test
Candidates

Employees

Freshman Class

Occupational Specialty
Trainees

Majors in Curricula

The Union of Candidates
at a Number of

Administrations

Reference populations

a
Grade Point Average
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these contributions seem substantively removed from the educational and

psychological ones at hand, they are related in that they deal with concepts of

selection in populations as abstracted in mathematical language and with the

intent of reaching generalizations from population to population. For Pear-

son, the populations which differed did so because of natural selection as

they were separated by generations. But the underlying approach, given dif-

ferent semantic content, has .a broad range of application and consciti.'tes the

best methodology today.

In his early paper, Pearson (1908) presented his development in terms of

linear regression and joint normal distributions. He considered the case of

two selection variables, and in a later paper (Pearson, 1912) he relaxed the

assumption that the distributions be Gaussian in character. Lawley (1943)

provided a generalization of Pearson's equations to the multivariate case on

both selectors and variables subject to selection. This generalization is

briefly discussed in Lord and Novick (1968, Ch. 6). A variety of related

problems are discussed by Federer (1963). rle basic assumptions for study

purposes in the present context are best presented by Gulliksen (1950) who draws

out their consequences for a variety of situations. These formulae are often

referred to as the range restriction formulae and are thought to be needed as

the consequence of the implementation of a cutting score for personnel selection

purposes.

In the present paper the notation for representing the selection of groups

will be kept general. We begin by assuming that there are two populations of

interest, that there are r + s variables in the two populations, and that

joint distributions of the variables are represented as

9
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J(z
r' r+s

,z ...,z
)

j( r' r+s
z z ...z ).
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In the contexts of interest the populations corresponding to J and j are

produced by a process which must be represented, and it is assumed that a

reasonable representation is

0

J(zi,...,zr+s)
r

) = j(zi ..... z
r+s

) . (1)

In other words, the process produces differences between population J and

population j depending entirely on the first r variables' and nothing else,

for if some other variable were involved, then the equality would not hold.

Also, one may list z variables with subscripts between zero and r + 1 for

which the values of G and g are constant and the equality would still hold.

Such variables could be reassigned subscripts larger than r or left alone.

The point of this comment is that the list of variables which are arguments for

G and g may exceed the list of those actually operating, without invalidating

(1).

The selection process is one which requires only that the array frequencies

in j are multiples of the corresponding arrays in J . Thus it is required

that where a given array in J is not zero and the Lorresponding array in J

1
While the substantive development is not at tYis point far enough along

for substantive comment in the body of the text, it may be useful to the reader
who is versed in the scaling applications discusser later to pcint out that
the variables included in the string z1 through zr include reference test
scores and curriculum or advanced test choice. When corrections are made during
scaling procedures in the GRE or SAT, the variables of explicit selection do not
include the choice of curriculum (Boldt, 1971).

4.0



-9-

it zero, then G must also be zero, and vice versa. Except for zeros the
it

formulation of Equation (1) requires only that in arri.,7s were J and j

are nonzero, values of G and g exist which agree with Equatio:, (1) which

is certainly true since the values of the functions are real or rational

numbers.

The context of the problem demands that J , J times G, j , and j

times g are all density functions. Thus for J and j there exist marginal

and conditional distributions, M(zi,...,zr) and m(zi,...,zr), respectively,

and conditional distributions C(z
r+l''''

,zr+sizi,...,z ) and t(zr+,...,zr+sl

z1" z
-
) respectively, such that

and

) C(zr+11 ,zr+slzi,...,z ) = "." r+s)
(2)

, zr ) ,...,zr) = j(zi , (3)

The notation C and Z is used to distinguish these conditional distribution

functions from covariances discussed below. If Equations (2) and (3) are sub-

stituted into Equation (1) and the variable strirv! is nzrr, included in the nota-

tion (as it will not be from here on unless needed for clarity), one obtains

MCG = meg

and if one suns or integrates over the space of zra through zr+s , one

obtains the marginal distributions of z1 through zr in JG and jg and

notes that

MG = mg . (5)

Finally, since Equation (5) indicates that the marginal distributions are equal,

it follows that where division is possible by the marginal distributions (they

art not zero),
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C(zr+1"' z
r

) C(zr+1"."zr+slz1"."zr) (6)

Equation (5) is a most important result and indicates that under the very

general assumptions of Equation (1) and granting that the arrays involved

are associated with nonzero marginal frequencies of the first r variables,

the conditional arrays of the r + 1st to r + sth variable conditioned

on particular values of the first through rth variables are equal in the

selected and unselected populations. One can therefore equate parameters of

the selected and unselected conditional distributions and, knowing the param-

eters of the distribution of the variables of explicit selection (the arguments

of G and g ) , make inferences about J or j , depending on to which one

is arguing. Equation (6) thus rationalizes the. Pearson assumptions as given, as

shown in Gulliksen (1950, Eqs. 17 & 18, p. 162).

Applications

The problems given in the table all have been usually approached using the

first and second moments and cross moments of the z-variables. Sometimes the

problem is to estimate a variance, a correlation, a regression equation, or

merely to derive a transformation on a scale. Also, al of the approaches have

assumed that the regressions of zi where i is gre'ater than r , on the zj's,

where j goes from 1 to r , are linear. That is, if both sides of Equation

(6) were multiplied by zi and expectation taken over the space of the variables

subject to selection, the result would be equations which are linear in the z. .

Hence Gulliksen (1950) takes as a point of departure that the regression equations

in both the restricted and unrestricted populations are equal and linear. If we

let the subscript r refer to the first r variables (z's) , the ones on



c

which explicit selection occurs, and s refer to the variables with subscripts

from r + 1 to r + s , then the assumptions that the regression equations are

equal canbe written as

C
-1

C = c
-1

rr rs rr rs

where the capital and small c's refer in this case to covariance matrices

for the unrestricted and restricted populations, respectively, and the sub-

scripts refer to the variables involved, the first subscript being for rows

and the second for columns. The quantities entering into Crs and c
rs

need some elucidation. Using standard notation it would be common to refer

to the covariance between z.andz.,for a given vector of values of

(7)

the explicit selectors as Cov(zi,zi4 z1,...,z
r

) . The s by s matrix of such

partial variances and covariances could be referred to as C
ssi r

. Similarly

one could imagine a Crsir which would go into the computation of the Crs of

Equation (7). However, a little reflection will convince the reader that

has to equal zero since expectations averaged over the distributions in
rsi r

Equation f.6) have to equal zero if they involve deviations of the variables

subject to selection around their own array means. Hence the Crs come from

elsewhere, viz. the well-:known least squares formula

C
ee

= C - C' C
1

C
ss rs rr rs

where C
ee

is the matrix of partial variances and covariances of variables

(8)

subject to explicit selection, averaged over the explicit selector space as

distributed in the unselected population. A similar equation in small c's

would refer to the matrix of partial variances of variables subject to explicit

i13
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selection, averaged over the eAplicit selector space as distributed in the

restricted population.

One must distinguish clearly between the matrix called Cssir and the

one called C
ss

in Equation (8), as °Le must distinguish between C
rs

and

C
rsir

which is zero. Actually, the C
ss

I

r
, averaged over the unrestricted

space of explicit selectors equals Cee , and if C
ss

is averaged over the
r

restricted space of explicit selectors, the result is the matrix cee alluded

to in the paragraph immediately above. Since the following assumption is

commonly made in range restriction work and is explicitly given as an assump-

tion by authors on the subject, it should be given here. That assumption is

that

C
ee

= c
ee '

(9)

and it is a key one in range restriction work including scaling, equating, test

selection, and validation. Using assumptions (7) and (9) as well as Equation

(8), its counterpart in the restricted distribution, one has equations relating

six matrices, C
rr '

c
rr

, C
rs

, c
rs

, C
ss

, and c Given the obser-
ss

vation of four of these matrices one might infer the other two. For example,

it is common to assume that only C
rs

and C
ss

are not available for obser-

vation, but with Equations (7) and (9) they can be found.

In industrial applications one might administer a battery of tests for

hiring purposes and reach hiring decisions based on the scores. Thus the test

scores become the arguments of the functions named G and g . Other variables

may also become of interest, such as scores on selection instruments which

might replace the battery in use, and of course improved job performance is the

goal of it all and that should be measured. Further, it will be assumed that
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additional selection stages do not occur. Such stages could be accommodated

in the logical machinery developed but it would just complicate matters need-

lessly. Hence we have only the restricted population, j , for which complete

data are available, and an unrestricted population, J , for which data on the

selection instruments only are available. Using Equations (7), (8), and (9)

one can complete the variance-covariance matrix of variables as they would be

observed under the theory, in the population of applicants. Using these esti-

mated parameters one can generate the multiple correlations of interest includ-

ing the ones needed for test selection. Such calculations made on the restricted

population would underestimate the effectiveness of the instruments being used

since their variation in the population of the hired would be restricted as com-

pared to the unrestricted population wh2re the personnel decisions are being

made.

Undergraduate admission is very like the industrial setting, in that a

set of selection instruments may be used to admit students for post-secondary

school study. There are differences, however; one being that the pursuit of a

high average criterion score, usually grade point average, is not as obviously

desirable as high job performance is from the point of view of private industry.

However, like the industrial hiring situation, the variables on which admis-

sions decisions are made are the arguments in the G and g functions. In

order to obtain the statistics necessary for computations which are routinely

made in validity studies such as those produced by the College Board or the

American College Testing Service, one needs either to restrict one's inference

to statistics which are conditional on the variables of explicit selection, to

make corrections based on Equations (7), (8), and (9) or to show that the lack

of such restraint does not lead to serious bias in the specific instances

15



reported. To the author's knowledge, however, none of the three alternatives

above are followed. Some effort probably should have been made by this time

to deal with these problems, but at least one reason would make it quite

difficult. That reason is that college admissions are made on a variety of

scattered bases, with different reasons for different people. Test scores

are not held to be the main bases of admission and quite a variety of variables

are reportedly used. The variables z1,...,zr , which are the arguments of

the functions J and j and which are the variables on which the distributions

in the very important Equation (6) are conditioned, consist of the union of all

variables used in the admissions decisions for any particular group from which

a college class is chosen. Use of all those variables in a validity study

boggles the mind somewhat and, of course, it is never done. However, Equation

(6) is the only way known to the author to argue from the groups adritted and
w$

eventually graded to the group on whom admissions decisions are made. An ef-

fective selection procedure, one making heavy use of variables which are quite

valid when evaluated in the pool of applicants, would result in very low valid-

ities for these variables in the pool of selectees; these low correlations would

not necessarily indicate that the selection procedure is ineffective or inap-

propriate. It is clear that the selectees are not the group on which to con-

duct studies unless the biases referred to are slight. Yet the admitted group

the Group studied for obvious reasons, and the degree of bias thus introduced

is not really known thougl. rme likes to say that maybe it is not large. Empirical

research in this area is qufte possible, though of course it does not establish

applicability in general. Also, there are further theoretical problems which

will be discussed later.

Army classification constitutes an additional complication of the selection

problem. Here there are many criteria because for many basic combat trainees
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one needs to estimate how they might do if placed in each of a variety of

specialties. The pool of basic trainees must therefore be allocated to ad-

vanced training of different kinds, each trainee being taught one of a variety

of skills. Brogden (1946, 1955) has dealt with this problem, and his classifi-

cation theorem (Brogden, 1954) can roughly be regarded as a particularly good

:ay of setting up the seleCtion functions G and g . He assumes that the

information by which the assignment decisions are to be made is available,

and in the case of the Army system the data are indeed supplied to a central

decision agency in Washington (Johnson & Sorenson, 1971). This is quite neces-

sary as the manpower needs of the total Army need to be brought to bear on the

training assignments and local decisions would constitute possibly incompatitle

suboptimizations. Hence the distribution of the variables used in assignment

decisions is clearly known in the input population, and only performance data,

are needed in addition for validity studies. These data become available for

those allocated to the courses, and then the equations developed can be used

to infer parameters as they may apply in the input population. Thus multistage

selection processes actually obtain in the Army situation; the course input is

the unrestricted population with respect to a validity study where on-the-job

perfomance is the criterion, but is a restricted population with respect to the

input population.

The use of the variables of explicit selection may not be complete in the

Army situation because of limitations of computer space or research time. These

are practical limitations which may be overcome by the expenditure of funds or

energy if one so desires. In contrast,validity studies for guidance purposes

have the problem that the variables z1,...,z
r

are not known and indeed from

the point of view of scientific philosophy may forever remain unobservable.
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Those variables of explicit selection are the ones which operate to produce

curriculum choice, and if they were known with any degree of confidence, our

colleagues in the guidance fields would have long since told us about it.

However, they may at most list certain observables which are related to, and

that does not make them part of the explicit selectors, curriculum choice. To

the author's knowledge the most one can do here is to try to identify variables

which account for known results of selection and trust that if accurate for those

variables, they are accurate for variables where the results of selection are

not known. The identification of such variables, elsewhere called "surrogate

selectors," is an empirical matter and has not been tested extensively to date. 2

Some accounting for selection would really seem to be needed in the guidance

context because the group for whom the estimate of success is needed (counselees

or at any rate freshmen) is by its definition unselected so far as curriculum

goes.

Test Score Distributions Not Homoscedastic

The scaling and equating applications remain to be spelled out. They are

rather different from the ones previously discussed which fit together rather

as a group. It has been pointed out that there are problems in identifying and

using the variables of explicit selection, such problems being quite severe in

the case of validity studies for guidance purposes. However, there is yet

another problem in the application of Equation (6) to these problems that has

2
It has been hypothesized that if one did a discriminant function study to

select those variables that best predict curriculum choice, the interest tests
might prove to be most valid fQr this purpose. Thus the depressed validities of
these tests would be accounted for, and if correction for range restriction on
these variables produced accuru:e estimate; of known covariances and then demon-
strated substantially increased validities of their own, the case for the utility
of interest tests would be quite strengthened. The hypothesis depends on the
notion that it is interest that sorts pecple into curricula, more than ability.
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not been mentioned.
That is, it has been suggested that Equation (6) is a

point of departure from which one arrives at Equations (7), (8), and (9) which
are then used to work at solving the problems listed. It remains actually to
get from Equation (6) to the points of departure, and the question of how it
is done is at the heart of what it is that is generalized in order to provide
estimates of quantities for populations that one cannot examine directly.

As mentioned above, the original
discussion by Pearson (1903) of the

effect of group selection was based on normal
distributions, and though he

relaxed his requirements in 1912, he retained the features of linearity and
homoscedasticity that obtain in joint normal distributions. That is, normal
distributions are often discussed

as pertaining to the error of prediction
in a regression

equation, and it is often asserted that the variance of the
errors of prediction does not depend on the values of the arguments in a
regression function. Regression lines are sometimes represented as tilted
straight lines around which, at each level of the predictor, are distributed
values of the variable being predicted, and it is a feature of these represen-
tations that the distributions at each level of the predictor are all the same.
These are examples of homoscedasticity. They probably also do not describe how
test scores work--they certainly do not describe how test scores wok in gen-
eral.

Homoscedasticity in the notation of the present discussion is the assump-
tion the C

ssir does not require the notation indicating that the covariances
are dependent on the particular values of the r explicit selectors. That is

C = Cee = cee = cssi r
ssl r (10)
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If Equation (10) is accepted, then the fact that the conditional covariances

are averaged over the restricted or unrestricted Listributions of the explicit

selector to get Cee and c
ee

does not matter since either is the average

of a constant which is, of course, the constant itself. With the understanding

that the C
rs

and c
rs

are the zero-order covariances arising from calcu-

lations over the respective populations, the terms of Equations (7) and (9)

are all defined and justified in terms of the model.

The position of this paper is that reliance on Equation (10) should be

avoided where possible as it is detectably incorrect in a fairly regular way,

at least with test scores. Application of the range restriction technique will

occasionally yield results that imply impossible values of criterion such as

negative scores when the criterion is a nonnegative average of ratings. It

would be helpfUl, perhaps, to study empirically the acceptability of linearity

and homoscedasticity for interesting criteria. However, the author feels safe

in prejudging the outcome of such study--it is felt that lack of homoscedasticity

would be apparent unless only very weak experiments were used. The wiser course

of action is to find some other way to handle the problems encountered. The

balance of this section will present various types of evidence bearing on assump-

tions of linearity and homoscedasticity in test score distributions.

As discussed earlier in this paper, the influence of the normal distribution

has been tremendous in statistical theory, and in the topic at hand the first

results published by Karl Pearson were couched in terms of normal theory. Though

he later modified his point of view by relaxing the normality assumptions, he

retained the assumptions of linearity and homoscedasticity which do obtain in

the normal distribution and which, it has been pointed out, are needed for the

applicability of the techniques he presented. Hence the influence of the normal
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distribution is still felt. Kendall (1948, pp. 131-132) commented on the normal

distribution as follows:

The discovery that errors of observation ought, on certain plausible
hypotheses, to be distributed normally led to a general belief that
they were so distributed. The belief extended itself to distributions
such as those of height, in which the variate-value of an individual
may be regarded as the cumulation of a large number of small effects.
Vestiges of this dogma are still found in textbooks.

It was found in the latter half of the nineteenth century that the
frequency distributions occurring in practice are rarely of the normal
type and it seemed that the normal distribution was due to be discarded
as a representation of natural phenomena. But as the importance of
the distribution declined in the observational sphere, it grew in the
theoretical, particularly in the theory of sampling. It is in fact
found that many of the distributions arising in that theory are either
normal or sufficiently close to normality to permit satisfactory approx-
imations by the use of the normal distribution. Furthermore, by a for-
tunate accident (if one may speak of accidents in mathematics) it happens
that the analytic form of the normal distribution is particularly well
adapted to the requirements of sampling theory. For these and other
reasons which will be amply illustrated in the sequel, the normal distri-
bution is pre-eminent among the distributions of statistical theory.

This passage is quoted at length because it seems to the present author to

put the matter particularly well--the assumption of normality leads to much

interesting and suggestive theoretical work. Lord (1955), for example, used

normality assumptions in connection with test score equating to derive some

important and useful formulae. In fact, the handling of some problems such

as those encountered in factor analysis is much easier when the assumption .f

joint normality is made. However, in testing as elsewhere it is not correct in

practice, and while the procedures suggested through normal theory may be quite

useful, their applicability arises from other considerations. In rejecting the

property of normality we do not fly in the face of established expert opinion

but merely follow a trend of development which has taken place in other areas.

Probably, excessive adherence to the familiar procedures derived from normal

theory will prove detrimental to the expeditious development of improved
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statistical development and procedure unless the procedures arise from ether

and perhaps more realistic assumptions.

One classical way of thinking about test scores is to regard them as com-

posed of two components, a true and an error score. Discussions of this model

often refer to an error of measurement which is considered to be invariant as

a function of the true score and is represented as, for example, in the College

Board admissions testing program, being roughly on the order of 30 points, and

this figure is rarely qualified as to different levels of performance. For

example, if true and error scores were jointly normally distributed, one would

expect invariance of the error of measurement with the true score level and

joint normal distributions of tests. However, Mollenkopf (1949) developed a

line of logic that demonstrated that unless the skewness of a test distribution

were zero and its kurtosis were three, features of the normal distribu'Aln, the

error of measurement would not be invariant at various score levels. Data

presented by Boldt (1972) indicate that neither of these features obtain. Keats

(1957) developed a different formulation of the error of measurement that agrees

both with Mollenkopf's method and with Mollenkopf's data better than does the

homoscedastic model (which can be seen to be clearly incorrect by examining the

data Keats presented). Lord (1965) assumed that the error distribution given the

true score level is a compound binomial distribution which is surely not homo-

scedastic. Meredith (1965) also refrained from assumptions of homoscedasticity.

In fact, among test theorists it is rather widely agreed that errors of measure-

ment are not homoscedastic over the range of true scores (Lord & Novick, 1968,

D. 131).

The preceding remarks deal with errors of measurement and do not bear

directly on the Pearson equations of interest, but nevertheless they very
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strongly suggest that homoscedasticity between tests is not going to be

realized. Lord (1965) constructed a bivariate frequency distribution from

the univariate marginal distributions of two tests which purport to measure

the same thing and got a rather good-looking reproduction of the actual joint

frequency distribution (which nevertheless is not, according to a chi-sauare

test, quite right). His distribution is neither linear nor homoscedastic nor

would it be if it is to fit the data as well as it does.

In another context the author (Boldt, 1966, 1968) had occasion to plot

array variances from bivariate frequency plots and found that the plot looked

rather like a skewed but inverted cup. The skewness came from the fact that a

mismatch in difficulty obtained for the tests plotted. This inverted cup has

been observed in a number of other tests, both verbal and math. Figure 1 pre-

sents a typical plot displaying this inverted cup effect. What is referred

to is the trend for the variances to become small at the eitremes of the fre-

quency distribution and that trend has to be appreciated in spite of a certain

amount of visual static introduced by the spikey fluctuations. The latter are

not represented in the polynomial distribution mentioned above, but the inverted

cup effect is summarized in numerical form in Table 2. The entries for Table

2 come from scatterplots of reported SAT scores plotted against shorter tests

(equating tests) that are built to the same specifications except for length.

The test data presented in the first data row of Table 2 refer to the test pre-

sented in Figure 1. The first column of Table 2 gives the correlation of the

variances with the associated short test score level, and the second column

shows the multiple correlation of the variances with the score level and its

square. Note that in some cases the gain in correlation from introducing the

quadratic term is substantial, but of course the correlation with two independent
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Table 2

Correlation between Linear and Quadratic Functions of Equating Test Scores

and the Conditional Variances and Standard Score Regression

Coefficient and Quadratic Function

Test

Correlatiohs
Linear and

Linear Quadratic

Regression Terns

Linear Quadratic

SAT-M .3671 .6759

.0100 .8823

. 3311 .8950

. 3009 .5079

.0158 .1810

. 0126 .8184
. 0278 .9179

. 0322 .8518

.2287 .9558

. 2563 .7507

.4807 .7687

.3864 .7027

. 3037 .4656

. 1179 .7061

.5800 .7334

.6531 .8880

1.5920 -2.0396
2.4882 -2.6494

2.7800 -2.5862
. 8909 -1.2601

.4856 -.5033

2.1283 -2.2919

2.7297 -2.8525

2.2592 -2.3842

3.2376 _3.5884

2.8917 -2.7232

1.7599 -2.3196
1.8381 -2.3005
1.0143 -1.3645

2.4824 -2.6919

1.0378 -1.6850

1.5945 -2.3267

SAT-V . 2615 .5233
. 0469 .7340
. 1849 .4899

. 0985 .8230

.0521 .8230

. 0521 .7814

. 3161 .7213

.1708 .7695

.3795 .7766

.2380 .3280

.4377 .7744

. 4190 .7142

.2794 .4157

.0534 .6771

.0978 .1020

.0170 .0665

1.2869 -1.6134

2.3549 -2.5110

1.1059 -1.3532
2.14892 -2.5.350

2.4892 -2.5350

2.2954 -2.4736
1.6617 -2.0813

2.4980 -2.4452
2.1826 -2.6831
.6155 -.8828

1.9791 -2.4998
1.7678 -2.2619
.8013 -1.1364

2.5506 -2.6901
. 2072 -.1132
.2598 - .251.1

gel
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variables is better than with one. Therefore, the data in the next two

columns are especial interest. These data give the standard score regression

coefficients, and the important thing to note is that in every case the pattern

of signs is the same, being negative for the quadratic term. The probability

that all 31 examples would have the same sign is two to the minus thirtieth,

given equal odds for plus and minus, and thus the trend seems quite reliable.

Hence the lack of homoscedasticity that appeared in the author's study referred

to above (Boldt, 1968) is not unique to the tests used in that study but obtains

between equating and operational SAT tests that are built to the same relative

specifications (differing only because of length). To put these plots in the

context of the Pearson equations it should be. noted that the assumptions that

act as a point of departure for Tucker (Angoff, 1961) can be developed from

Pearson's equation, which can be clearly seen in Gulliksen's presentation (1950,

Ch. 11,Eqs. 3 & 6) where the explicit selector is the equating test. Where

the observations for the test being equated are based on a population which is

identical to that supplying observations for the test to which the equating is

being done, these equations do not require the support of derivation from the

Pearson equations. But where the populations are not comparable, some derivation

must be done to support his assertions. Where the populations are not quite the

same, the Pearson equations are needed to support the derivation of the equating

assumptions though one might conduct a study to show that the current methods

are almost correct.

Figure 1 also contains a plot of SAT means for people scoring at various

levels of the short equating test. Such plots might be expected to be curvi-

linear according to some of the results in the author's previously cited paper

(Boldt, 1968), but inspection of the figures presented here shows that linearity

t 6
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very nearly obtains. Linearity is also indicated by inspection of the data

presented in Table 3. These data in Table 3 give the correlations between

mean SAT score and the levels of the shorter test for linear, quadratic, and

some cubic polynomials. Only a few of the correlations associated with cubic

functions are presented since most of them suffered from near singularity of

the matrix of correlations of the predictors; i.e., x
3

and x tend to be

extremely highly correlated. However, the correlations associated with the

linearlunctions are so high that further concern about linearity in this con-

text at least seems quite unnecessary. Probably lack of linearity is greatest

when the difficulties of the tests being plotted are mismatched. As a con-

cluding note to this section of the present paper it is desired to suggest that

for some purposes where a distribution assumption would be useful the following

might be sufficient. Let x be a vector of random variables with mean u , let

K , X , and P be positive scalars and C be a positive definite symmetric

matrix of the same order as x , and u . Then let the distribution be

F(x) = X [ K - (x-u)'C(x-u)11)

if the quantity in brackets is nonnegative, zero otherwise. It will be found

that if X is determined so that the function is a probability function and

that K is a linear function of P , then F approaches normality as P

approaches infinity. The conditional variances are quadratic functions of the

variables on which the conditioning takes place and, last, the quantity P is

related to the kurtosis of the univariate frequency distribution of the arguments.

This kurtosis must lie in the interval from 1.8 to 3, a fact which seems to

obtain for the SAT, for example. The properties of the distribution will not be

pursued further here because the pursuit is not related to the following material

27
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Table 3

Correlation between Polynomial Functions of

Equating Test Score and the Conditional Means

Test Linear
Linear and
Quadratic

Linear,
Quadratic
and Cubic

SAT -M .9938 .9951
.9875 .9957 .9967

.9979 .9983

.9937 .9940 .9959

.9910 .9972 .9985

.9948 .9984 .998)4

.9928 .9965

.9933 .9966 .9975

.9978 .9983

.9952 .9991

.9992 .9993

.9973 .9988

.9985 .9989

.9945 .9991

.9986 .9986

.9987 .9990

SAT-V .9757 .9771
.9832 .9840
.9897 .9904
.9961 .9966 .9967
.9940 .9987
.9900 .9939
.9956 .9977
.9982 .9983

.9985 .9989

.9979 .9991

.9980 .9987

.9959 .9987

.9853 .9869

.9872 .9900

.9912 .9944

aMissing entries arise from colinearity problems referred to in text.
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(for more detail see Boldt, 1972; PLess, 1972; Raiffa & Schlaifer, 1961,pp. 259-

260, p. 129). However, it was felt that to suggest a possible alternative to

the more usual assumptions is desirable.

Some Consequences

In terms of the activities listed in Table 1, the consequences of the

foregoing section are different. For example, in the case of industrial hiring

the criterion of interest is seldom a test and hence the foregoing evidence

may not really apply. This is not to say that the Pearson assumptions hold in

the industrial selection situation but considering the variety of criteria, the

lack of standardization of criteria, and the limited size of the applicant pool,

there is probably little to be concerned about in the foregoing discussion as

far as industrial applications are concerned. Criticism about tests in the

industrial context today arises from concerns other than those at issue in the

present paper (though the present issues may bear on the feasibility of validity

studies). Further, the balance of risks involved in industrial hiring are dif-

ferent, both for the manager and for the applicant, than in the academic con-

text. It is felt that the technical discussion recorded here bears directly on

some aspects of industrial psychology, but may not be as crucial as in some

educational applications. We introduce the topic in a sense to discard it. It

has served its function as part of the background of the discussion.

For undergraduate admissions the logic of correcting for selection does

not seem to have been incorporated in the thinking leading to validity study

designs. Certainly neither the validity study services of ACT nor the College

Board explicitly incorporate corrections for selection either in estimating cor-

relations or in correcting for selection so that regression composites can be
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more accurately determined. The reasons for this may be in part practical and

one may see the difficulties in the context of Flaugher and Rock (1966, 1968).

Their study is one of the few in the context of college admissions that have

attempted to correct for range restriction and is undoubtedly better for it. How-

ever, the corrections, being based on SAT-V and M only and correcting to the

base cf a hypothetical applicant pool, are highly stylized. One can learn to

appreciate the formidable difficulties of accomplishing studies with better

modeling processes by undertaking the intellectual exercise of trying to design

a realistic selection model for the Flaugher-Rock study and then planning the

implementation of such a model.

For both industrial hiring and academic admissions Novick and Thayer's (1969)

study pertains. In this study range restriction corrections were made for known

selection processes and the resulting corrected results compared with the known

actual results. Novick and Thayer detected bias as one might expect, but the

bias in the corrected multiple regression coefficient occurred when selection

was quite severe, indeed, more severe than that which might be accomplished in

practice on the basis of tests. It should be pointed out, however, that Novick

and Thayer modeled a known and simple process and hence the rather small biases

in many cases are not surprising. The situation they modeled is not that of any

of the situations discussed in this paper.

Guidance practice and Army classification are rather like academic admis-

sions and industrial hiring in that the criteria are not psychological tests and

are therefore not necessarily relevant to the testing experience quoted in the

previous section. In both cases the means of allocating personnel to curricula

are not entirely known though in the Army situation the information available

is finite and known. Also, the criteria of job performance are better standard-

ized in the Army situation than'in the industrial hiring situation and hence

.1
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empirical investigation of the criterion relationships with tests would be

much more meaningful.

In all of these situations the logic of selection of group as formulated

by Pearson applies if inferences are to be made about the population for whom

decisions are being made. The requirements of linearity and homoscedasticity

are probably not quite correct in many instances of these situations but each

would profit, possibly, from separate study. Thus, for the present, one is

forced to rely on the Pearson equations, hoping that they are about right and

getting the best modeling of the selective processes that can be implemented

realistically within constraints of budget and utility of the anticipated re-

sults. The reasoning on which some current scaling and equating processes are

based is that same group selection logic of Equation (6), and the consequent

equations that research or the other personnel processes rely on. However, the

equating and possibly the scaling situations are rather more manageable in terms

of actions that can be taken to offset the lack of validity of the Pearson assump-

tions, and the evidence of lack of homoscedasticity bears more directly on the

scaling and equating situations, dealing as it does with the relationships of

tests to tests than it does on the other processes. Alternative ways of approach-

ing scaling and equating problems, ways that may not help much for the other

processes, will be presented. These approaches will be based on linearity or on

a more direct application of Equation (6) with a minimum of further elaboration

of assumption. Such modifications of method might help in the scaling and equating

situations because even though these procedures rest on logic similar to that of

industrial hiring and the rest, the context is greatly different and the quanti-

ties required of the models are rather different.
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SAT Equating

The SAT equating method that is most pertinent to the discussion here

derives from equations in Gulliksen (1950, Ch. 11, Eqs . 3 & 6), which are the

univariat,e case of the more general equations referred to earlier. Their

use in this context is attributed by Angoff (1961, 1971) to Tucker. Tucker's

introduction of methods at a time when Educational Testing Service did not

have access to a computer and in fact accomplished test processing on accounting

machine equipment is certainly not under criticism here. Very few educational

technicians were well aware of the Pearson equations at that time (few of them

are very well acquainted with them today) and their application to the oper-

ational processing was very appropriate and useful. The methods have been a

mainstay of operational procedures for 25 years, and it has often been said that

the methods are as good as can be done with the existing technology.

The methods used are to "adjust for differences in ability" and this adjust-

ment is accomplished by treating the equating test score as an explicit selector

in the Pearson equations. As has been discussed, the role of the explicit

selector is that of a variable on which the selection process acts directly

leaving the conditional arrays untampered with. To ascribe such a role to an

equating test is recognizably a little strange since at the time the candidates

sort themselves into various postures with respect to college application, the

equating tests are certainly not available to act as explicit selectors. Hence

the process that produces different SAT populations should not be one that is

considered to produce explicit selection by equating tests. Levine (1955) intro-

duced a modification that treats the selection process as if the differences in

populations tested can be attributed to differences in the true score distribution

alone and leaves the errors of measurement unaffected. Such an assumption is

4.32
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entirely consistent with our thinking about the nature of true scores and

the nature of the error of measurement. The attribution of selection solely

to true scores seems to the author to have much to recommend it, and a method

is presented in the Appendix for expanding the equating application of the

model such that a highly efficient and automated equating procedure results.

The Appendix includes a modified use of the model which constitutes a study of

drift, and one can correctly infer that if the model can be used both to design

and equating method and a study of a drift, it can also produce virtually drift-

free equating, at least in its own terms.

The author developed the material in the Appendix about the same time as

the results of the study of linearity and homoscedasticity of chance level

scores became available, and the conflict between these results and the assump-

tions of the Levine (1955) true score equating became apparent. The true score

model assumes invariance of the distribution of errors of measurement as a

function of true score level, and it seemed clear that in some sense the dis-

tribution of errors of measurement must be dependent on the true score level or

the results obtaining in the chance level score study would not have been found.

However, returning to the results of Mollenkopf (1949) and Keats (1957), which

were cited earlier, one sees that the assumption of invariance of distribution

of errors simply does not hold. The wonder of it is that in the intervening

decade-plus, no operational cognizance or theoretical study of the situation

has been undertaken by the practitioners who use or depend on the method to pro-

duce the educational product. In defense of the Levine study it may be said

that it was not basically theoretical but was an empirical demonstration that

the formulae based on true score considerations have certain advantages. While

it is nice for such a report to deal with theoretical problems, it is certainly
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not necessary. Some subsequent not entirely verbal attempt to deal with

the conceptual models and their problems is, however, long overdue.

In the material that follows, an approach to scaling and equating prob-

lems is presented which seems to the author to be reasonable and fair even

given certain unrealities incurred in the use of statistical reasoning. That

principle is as follows:

Insofar as equivalence can be established, equivalent per-

formances should receive as nearly the same score as possible.-

This statement is offset not because it is particularly profound but because

it states a philosophy that can be implemented almost literally in a particular

situation. Obviously, the equivalent events under consideration in scaling and

equating are the levels of equating test performance, and the establishment of a

scoring system that yields the same score as nearly as possible is to be inter-

preted as a numerical optimization subject to constraints imposed in the partic-

ular context. Perhaps this is merely dodging the scientific issue, but the

approach is as fair a one as the author can think of when the process that allo-

cates people to different populations is not known or isn't adequately modeled.

Implementation of such a policy is an explicit attempt at fairness, if not of

rigor.

It should be pointed out that while the approach introduced above avoids

explicit assumptions of linearity and homoscedasticity, the assumption that

explicit selection is based on the equating test score is not one that can be

avoided when making theoretical statements about the equating. Clearly, the

equivalent events must be observable if the approach is to be applicable in the

absence of a statistical model, and the events which are on hand to be used as

t
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observables in more than one population are the scores achieved on the

equating; tests. If the population selection process is to be represented

at all, the author has not been able to get back of Equation (6).

It was indicated above that minimizations are to be involved, perhaps

constrained minimizations. These will not be traced out in this text since

the derivation of optimization procedures is another matter and need not be

of concern here. The optimizations involved may not have been feasible in

many cases in 1946 when the Pearson equations were adopted, at least not

feasible within the context of the testing operation being discussed, but they

are quite feasible now with the current equipment. They are not optimizations

that are difficult within the state of the art--complications would arise main-

ly from start-up costs due to rearrangements of data logistics and programming.

The first equating method to be presented treats the test scores merely

as indices, and they do not enter directly into the calculation except as

indications of groups to which scores belong. The method assigns a score, called

a reported score, to each level of the operational test score. For an "old"

test it is assumed that a mapping of operational test scores y into reported

scores S had been achieved and that mapping is taken for granted. A new

test z is operational, has been administered, and a mapping of levels of z

into reported scores s
z

is the equating desired. An equating test x has been

administered to both the old and the new populations. If n
xy

and n
xz

are

the frequencies of cases receiving scores of both x and y , or x and z ,

they are clearly observable, and a quantity Vx can be defined such that

M
xYV E

yx kLn Sy
Y xy
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is the average reported score assigned to equating test score level x .

As nearly as possible, we would like the Vx to hold in the new population.

The following least squares minimization would accomplish that:

Al
1:r Sz _ V.

xz
x z

z
xz

Thus one goes from the policy directly to the function to be minimized for

equating purposes. Unfortunately, there are infinitely many sets of values

s
z

that reduce the value of M in Equation (11) to exactly zero. That not

all of these would be acceptable as equatings can be seen because the number

of levels of the equating test for which the values V, are given are less

than the number of levels of the operational tests, at least for tests of the

type under discussion. If additional equating tests were used adding the con-

straints of other administrations, and if enough such tests were used, the

expanded version of Equation (11) would eventually reflect overdetermination

such as is required. For the SAT, at least three such tests would be needed.

To bring the equating problem within reach, it seems easier to reduce the

number of quantities to be estimated. Note that in the formulation above the

scores are used only as indices. In fact, the reported scores do not have to

be monotonic with operational test scores as the equations above are written,

though they probably would be since VX would be monotonic with the equating

test score from earlier equatings. One may substitute for s
z

in Equation

(11) the quantity Az + B so that the reported score is simply a linear func-

tion of the formula score. This does not assume directly that some linearity

obtains. It simply limits the range of acceptable transformations to those

which are linear. Thus the dozens of values that must be estimated in the

.t16



-35-

equating are limited to two--A and B . Probably a better choice of trans-

formations is possible, but when such are developed, these will probably come

from item characteristic curve theory or a strong true-score theory such as

that due to Lord (1965) and cited earlier.

One might well wonder where Equation (6) which was so carefully developed

has entered into the equating method mentioned here. The answer is that Equa-

tion (6) enters in when one makes the claim that it makes no difference which

group was used for the equating. Equation (6) says that the quantities

(
-2(1-- and
n En

z xz Y xY

would be the same in either the old or the new population

within sampling error and up to a constant of proportionality obtaining in case

the sample sizes are different. The policy from which Equation (11) stems may

be sufficiently acceptable for the method to stand alone, and if we further

accept the range restriction logic which is currently explicitly used in opera-

tional methods, we may more rigorously generalize the application of the re-

sults. However, we do not develop the method based on the applicability of the

range restriction assumptions.

In the paragraphs immediately above a general expression, t , has been

developed as an objective function whose minimization would lead to an equating

of a new test Z . The role of the range restriction equations in interpreting

the results of such an equating is pointed out, and it is also pointed out that

by expressing the az as a linear function of the formula scores, the number

of parameters to be evaluated in the optimization of M is small enough that

the determination is made with some reliability. However, the restriction of

the s
z

to linear transformations of the test scores is too limiting because
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policies concerning the assignment of scores at the extremes of the test score

ranges override by fiat policies aimed at producing a stable equating. Thus

there is a policy that says that a score which is at the cir:nce level (a negative

formula score) should be assigned a reported score not to be in excess of some

predetermined number.
3

Hence, de do not merely modify the expression of Equation

(11) by writing sz as a function of A , B , and the test score of the suc-

ceeding paragraph and call it an equating method because it doesn't handle the end-

point problem. Nor does it take into account double- or multi-part score equating.

What is done to finish the equating method is to write the objective function as

dc:pending on several equating tests and append it with constraints which for policy

reasons are desirable. The resulting optimization will be in the form of a non-

linear program, possibly, or some other numerical method which is not of interest

here so long as the optimization is feasible in the practical sense.

The term objective function, as used above, refers to that mathematical

expression whose optimization leads to quantities required in the equating. The

quantities required are the scores to be reported, s's , for each category of

performance (formula score) on the operational test. However, the particular

objective function, M , given in (11), does not contain the properties needed,

and it is desired to generalize it to include multi-part score equating. The

term multi-part, instead of double-part, is used because the transition to more

general notation is as easy as to restrict the notation to two tests. This

can be done in a strictly formal way by including a subscript i to the x and

generalizing (11) as follows:

3
The author's suggestion of a method to deal with this policy should not

be taken to suggest his concurrence with it. The policy is used because tests
whose difficulties are improperly pitched scale out so that chance scores are
misleadingly high. Test construction according to proper test specifications
is a more appropriate remedy to the problem.
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M= E E (En ) E
x x.z

1
Z X.Z

X.2
1 - V

1

1

2 X.

The formula for MH is put into the multi-part score equating context by

(12)

definingtheterHISX1 .8.11d n
x z

. We let i refer to a particular equating
1

test - operational test combination. and x. refer to the
1

performance in the ith combination. Then n is the
x.z
1

current operational administration) that scored at the

the equating test that pertains to the combination i .

culated as indicated in the text immediately preceding

levels of equating test

number of cases (in the

x.th score level on1
Finally, V, is cal-

(11) with the exception

that equating test levels indicated by x in that expression and the operational

test y are the equating test-operational test combination associated with the

subscript i in the formulation of Equation (12). That is, V is the observed
x.
1

average reported score at the score level x where the score level is that of

the equating test associated with the equating test that goes with the subscript

i . These associations are routinely made in choosing the equating tests that

are to be used for operational administrations and have been last studied by

McGee (1961).

With the definitions above, and the restraint that the

s
z
= Az + B

we arrive at the following objective

= E (En )M E
x1 i . z x.z

1 1

function.

En
x.z

(Az + B)

z 1 V
x1

(13 )

En
z xiz
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Thus, all the values of (13) will be known at equating time except A and

B. The choice of A and B such that M
1

is at a minimum is the means of

obtaining conversion parameters--the function (13) has a unique minimum in

which the formulae for A and B are expressible as the solution to a pair

of simultaneous linear equations.

It is not the intention of this author to display the formulae that

minimize since the computational steps are not relevant to this discussion.

The intention of this discussion is to give the equating rationale and from it

develop an objective function that accomplishes the task set out by the rationale.

Equation (13) gives an objective function that does this in at least as good

a sense as the current methods, in that it develops a single set of conversion

parameters. It is also similar to the present methods in that it uses Equation

(6) to arrive at the justification for using Vx as the desired average of
i

reported scores for a given equating test score, assuming that the difference

between the population for which the equating is being done differs from that

being used as part of the equating nrocess by explicit selection on the associated

equating test. The method of Equation (13) is somewhat superior to the current

methods, in that it combines double-part score equating into a single optimiza-

tion where the choice of conversion parameters is determined in reaching an opti-

mum compromise between the several part score equatings. However, the conversion

parameters obtained by minimizing M1 might very well not be acceptable in the

case of a test such as Hebrew Achievement. In this case the conversion param-

eters might indicate that a score at the chance level would be converted into

a reported score of 400, say, which seems like too much for a test performance

at the guessing level. When such a set of conversion parameters is obtained

4
In footnote 3 it was commented that appropriate test specifications should

be established and met. Here is an example--the test is too hard for the examinees.

AO
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under existing procedures, a set of more or less arbitrary steps are applied to

yield a point-to-point equating or a second linear transformation is chosen

produce a reported score through part of the range of z . If such departures

from a single linear conversion are to be gotten by minimizing one of the forms

of M , clearly it cannot be that of Equation (13) but rather that of (12) togeth-

er with a set of constraints. The development follows.

First, note that two policies are involved. One is that the transformation

from formula score to reported score will be linear; the other is that scores in

the chance level will not exceed some specified amount. When these two notions

conflict is when the linear transformation produces a line that never reaches

down to the desired score. The situation is pictured in Figure 2. In Figure 2

the formula score of zero is the coordinate of point A which is by the policy

to have a reported score of not more than 1400. Note that the unconstrained linear

solution would not satisfy this policy and hence at some point, indicated by

the abscissa of x on the figure, will be the lowest point at which the linear

solution applies. Then as one moves down the formula-score scale to the point

zero, one wants the reported scores to change regularly and smoothly to the point

where the chance score has a reported score as near as possible to the linear

solution and still within the range admissible by the policy. This would be the

maximum acceptable score at the chance range, and it is taken as 1400 for the pur-

pose of discussion. Then as the formula scores move further into the negative

range, one need only require that the reported scores are nonincreasing. Assuming

that changes in the constraints on extreme cases will not noticeably affect the

linear solution, Figure 2 might also be taken as a picture of the constrained

solution with a relatively systematic trend from the linear solution to the

chance level score of 1400 with nonincreasing scores shown as one observes reported

'41
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scores corresponding to successively decreasing scores below the chance level.

One must, to fit this into a satisfactory equating scheme, express these con-

straints in mathematical terms so that they can become a part of the optimization

that is a part of the equating scheme.

To arrive at a mathematical statement of the constraints the use of z as a

subscript must be discontinued as it will be necessary to represent the "first"

(lowest), "second" (next lowest), etc. values of z ;the z's are not equally

spaced if they are formula scores. Hence z will be the jth value of z in

order where z0 is the smallest, and s. will be the reported score associated

with that formula score. Suppose further that the lowest score to which the

linear conversion is to apply is the Lth score, and that at the chance level

j = C , so that zc = 0 . We then have three types of constraints on the s. ,

those from j = 0 to j = C - 1 , and those from j = L and up (we are assuming

that sC = 400). Constraints for the values of s are

Sj < s
j+1

2sj > sj+1 +

s. = Az, + B.

j = 0,...,C - 1 (14)

s
j -1 ,

j = C + 1,...,L (15)

j = L,...,H (16)

The constraints (14) assure that the reported scores in the chance range increase

monotonically with increasing formula scores. The constraints (15) assure that

ti reported scores which progressively move from the'straight line conversion

to the policy implied at a formula score of zero form a curve which is convex

upward and to the left as in Figure 2. The constraints (16) assure that the

conversion is linear from the point where j = L up to where another policy might

take over (to be discussed below). Note that due to the defined limits where

143
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constraints 15) and (i6) apply, both forms of the constraints apply to the

points where j = L and j = L + 1 . This is clone so that points fitted

under the constraints (15) can never wander above the extension of the linear

converted line--a condition which conceivably might obtain otherwise but

which won't with the constraints written with limits as set above.

Before rewriting the objective function further, constraints may be

needed. Unlike Hebrew or Math Level II, some tests may not scale out to a

reported score of 800. This condition also is shown in the upper right of

Figure 2. One might be inclined to feel that to be fair to the candidates it

should be possible to achieve a score of 800 on any tests -- clearly with the

linear conversion shown in Figure 2 such will not be the case. Therefore, it

could be desirable to depart from the linear conversion in the manner shown

in the figure; that is, smoothly moving to a maximum of 800 for s with the

last point on the line of, linear conversion at j = H . This is accomplished

through the addition of the constraints

2s. < sj+1 + s
J-1

j = H,...,J 1 (17)
.

Note that the inequality of (17) is the reverse of the inequality of (15) pro-

ducing the concavity and convexity, respectively. Again, the overlap of points

involved in the inequalities (17) and those of (16) assure that the solution

when plotted will not reveal that the reported scores are less than the linear

conversion. extended.

5An enforced scaling out to 800, in the case of the College Board tests,
occurs because the possibility should exist for any candidate to achieve the
maximum score, whatever the form he is administered. Eight hundred is supposed
to be at the top of the expected range of difficulty of most of the tests in the
College Board Admissions Testing Program and is therefore used as a representative
top. Actually, the "fairness" achieved by such enforced scalings is mainly il-
lusory, and true fairness is accomplished by establishing appropriate statistical
specifications and then meeting them.
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With the symbolic statement of constraints that provide reasonable conditions

for solutions to the end-point problems, the equating method suggested here is

to find s.'s which minimize M (Equation (12)) subject to constraints piven

in (14), (15), (16), and (17). While the procedures for finding the s.'s , that

is, the reported scores,exist, they are not to be displayed here. The com-

putational problem is one of nonlinear programming to which approaches are

discussed by Fiacco and McCormick (1968). What is displayed here is the

goal of the procedure; that is, the function to be optimized together with the

constraints. In this procedure the assumption that would be associated with

the selection Equation (6) is that the present population differs from the

respective ones entering into the multi-part score equating by virtue of

explicit selection on the equating test used for the particular part, or at

least the selection acts this way. Particularly, the consequence of this

assumption is that the n's of Equation (12) are proportional whether they

are observed in the population to which the test being equated to was given

or in the population to which the test being equated was given.

In implementing the equating method dsscribed here, assuming the n's

and V's are available, one would first fit Equation (12) using only the

constraints (16), setting L = 0 and H = J . That is, fit a straight line

and see if it works. If it goes high enough and low enough, the equating is

finished and score conversion can commence. If not, and if' the problem is at

the low end of the scale, refit (12) but under the constraints (14), (15),

and (16). If not, and the problem is at the high end of the scale, refit (12)

but under the constraints (16) and (17). Problems at both ends imply refitting

with all constraints, (14) through (17), imposed. In this way, unless a defi-

nite problem is observed, the conversion will be linear and probably this will

be the case most of the time. When the constraints must be invoked, the
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technique of fitting (12) though with the constraints imposed produces the best

equating one can get within those constraints. If the equating produced in this

way is not satisfactory, it is because some condition is not included in the

constraints or because some redefinition of the objective function (12) is

needed.

It should be pointed out that when constraints other than those of (16)

are used, one must decide where in the formula-score scale one will depart

from the linear conversion. One intuitively reasonable way to make this

choice is to pick values of L and H such that the average departures

from the linear conversion are acceptably small. This average departure will

probably be overestimated by calculating the average as if the departure from

linearity were made using another straight line. The overestimation is expected

because of the convexity and concavity due to constraints (15) and (17) which

result in smaller deviations toward the more dense parts of the distribution of

formula scores. Thus as more and more formula scores are involved in nonlinear

constraints, the average deviation from linearity will decrease, the total num-

ber of people off the line will increase, and the achievable minimum of the objec-

tive function will probably increase. At the present time the author knows of

no obviously correct way to trade-off these various effects, and it will probably

be useful to examine some particularly troublesome College Board Achievement areas

such as Hebrew, German, and Mathematics to see what the results of imposing var-

ious constraints might have been. In this way a satisfactory rule, probably in

the form of choosing a fixed value of H or L if nonlinear constraints are

to be used for a subject matter area (or possibly for all), can be formulated

for some time to come.

The situation described in Figure 2 and for which constraints are introduced

above do not exhaust the problems that may arise regarding end points. Another
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kind of problem is, in a sense, the opposite of the difficulty previously de-

scribed. That is, instead of having a situation where the conversion line

doesn't reach down to 200 or up to 800, one may have a situation where a linear

equating would scale well up over 800 and/or well below 200. Since, by policy,

scores are not reported above the former or below the latter the result would

be a pileup of scores at the extremes with the consequent loss of discrimination.

To provide discrimination at the upper end it may be desirable to introduce a

bend in the scale at some point below that at which the linear conversion would
ea.

imply a score of 800. Suppose that H is the smallest value of j for which

the linear conversion is greater than 150. Then the constraints

2s. > s + s.
J j+1 J-1

53 = 800

j = H - 1,... ,J - 1

j= 1,...,H + 1

would begin the bend at 750 and scale up to 800. At the lower end, if the pile-

up were observed, the constraints

2s < s + s
i+1 i-1

sO = 200

where fi is the largest value for j for which the linear conversion is less

than 225 would begin the bend just before the scale reaches 225 and would scale

down to 200. Clearly the choice of 225 and 775 for the points of introducing

the bend are arbitrary but it is hoped that a minimum of disturbance of the

linear fit would be introduced while still attaining some kind of discrimination

at the extremes.
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Achievement Test Equating

The reader will notice that the previous section is headed SAT Equating,

but where the end-point troubles arise the achievement tests have been referred
to. This is, of course, because the procedures that might be used for SAT

equating should have a provision for handling tests that somehow do not behave
statistically as one would normally expect. The most striking examples of this

type of test behavior actually come from the achievement test areas and, hence,

have been mentioned as the examples. Whether the methods suggested actually

apply to these tests is another question. The author's position is that they

clearly do as long as the equating test is a miniature of the operational test.

When it is not, but has another subject matter, the rationale for using the

method would differ somewhat, and it may be somewhat different in form.

For most subject matter areas, the difference between SAT equating and

Achievement test equating is in whether the equating test is part of the

operating test. In SAT equating, the equating test contains different items

and is timed separately; in Achievement test equating the equating test is

actually part of the operational test. While these difference.; have a great

deal of impact on operational procedures during test construction and admin-

istration, the resulting scores fit the Pearson-type formulation in that the

equating test and operational test are jointly distributed variables whether

one is embedded in the other or not, and explicit selection is assumed on the

equating test and can be represented by taking products of functions as in

Equation (1). 6 Homoscedasticity is rejected even though the equating test is

61n this comment the existence of context effects and the lack of indepen-dence due to enforcement of a single timing on both the equating material and the
other material are not considered. Actually, the proper form for the operationalequating experiment is one where separate timing of the anchor test occurs if oneis to be used. However, the representation of these context and timing effects
will not be presented in the symbolism used here.



embedded in the operational test, the array variation being supplied by that

portion of the operational test which is not part of the equating test. It

is as reasonable to accept the policy that equal equating-test performance

should imply equal reported scores on the average, possibly even more

reasonable since the equating test is, in the case of achievement tests, a part

of the actual operational test performance. Also, the end-point considerations

apply in the same fashion whether the tests be for achievement tests or apti-

tude tests, or at least the policy as understood by the author does not include

any substantive differentiation. Hence no reason is apparent why the procedure

should not apply to achievement tests as well.

This question is raised because in one other equating model, that consistent

with Levine (1955), the procedures for internal and external equating tests

are different. This is when the equating test is assumed to have a true score

component which is equal to that of the operational test up to a linear trans-

formation. The difference in whether the internal or external equating test

is used comes in whether or not the errors of measurement of the equating and

operational test can be assumed to be uncorrelated. If the equating test is

ex;;ernal the errors of measurement are assumed to be independent of those of the

operational test; whereas if the equating test is internal, a part-whole cor-

relation between errors of measurement obtains. This difference leads to

different interpretation of computational results and hence to different com-

putational procedures. Therefore, under the traditional true-score model assum-

ing explicit selection is on the true score, internal and external equating

must be treated differently.

However, we have rejected the traditional true-score model. It is con-

ceivable that true and error scores are uncorrelated, but it seems almost certain

considering the evidence adduced earlier that they are not independent and that

the range restriction equations will not work. This is too bad, because the idea
0 Ad



of assuming that range restriction occurs explicitly on the true score is highly

appealing and would allow one to build an equating policy that "on the average

equal true scores imply equal reported scores," if the correct (or at least a

reasonable) true-score model were available that afforded the development of

feasible numerical procedures, but at this point the author does not know how

to do such equating. Rather we are not using any true-score logic, and the pro-

cedures suggested are based on notions by which we are unable to develop a dis-

tinction between internal and external equating tests.

Vertical Equating

The rule that equivalent events should be assigned reported scores as simi-

lar as possible suggests an approach to the very difficult problem of vertical

equating. The present methods are, in the view of one of their originators (Lord,

1969), quite unsatisfactory.
7

This comment was not meant to be critical, of course,

but expresses the difficulty of the problem attacked. In the same communication

he urged an approach to vertical equating through the use of the Rasch model, and
it is assumed that other latent trait models would do as well. However, because
it fits the context of designing equivalent scores for equivalent performances,

another approach is outlined below.

The vertical equating problem arises when, for example, one wants to develop
a series of examinations and a scoring procedure that would allow one to trace

the development of a skill. Suppose one would want to trace the development of

arithmetical skill from second to sixth grades, doing this with a series of tests

of appropriate difficulty. Perhaps there are three tests to be given, an easy

one, a middle one, and a hard one. To equate them one might administer the easy

7
He adds, "I do not say this in criticism, since I was partially responsiblefor the method...."



test and the middle test to the third grade, and administer the middle test and

the hard test to the fifth grade. The particular pattern of administration is

not at issue here as long as some pattern of administration is accomplished that

relates the tests by administering combinations to various groups of people.

This will be commented on later.

The equating would in this situation be accomplished by applying the

principle that a person should, as nearly as possible, get the same score, no

matter which test he takes. For example, if a third grader gets a score of u

on the easy test and a score of, v on the middle test, this is taken as evi-

dence that the scaled score associated with a test score of u on the easy

test should be similar in value to the scaled score associated with a test

score of v on the middle test. This principle can be implemented as

follows. Let

i be a subscript for individual;

j, j' be subscripts for test;

k, k' refer to a score level within test (k ranges from one for the

lowest score to K where K is the number of score levels in

the jth test);

6ijk be one if individual i scored at the kth score level on the

jth test, zero otherwise; and

Sjk be the scaled score associated with the kth score level on the

jth test.

The equating problem is to find the S's given that the d's have been

observed. These S's are chosen so as to minimize 6 where
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I J J K. K.
J
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)2i=1 j=1 j'=1 k=1 10=1 ijk jk j

where i ranges over all people in the equating experiment, and J is the

number of tests which was by hypothesis three in the example. Note that a

minimum value of 8 equal to zero can be obtained if all S's are taken as

zero. This is, of course, a nonuseful solution to be avoided by constraining

the solution such that the sums of squares of S's , or possibly the sums of

squares of S's for a particular test, be set equal to an arbitrary positive

constant using - LaGrange constraint. The choice of the constant would be

for convenience. Another constraint would be needed to establish a zero for

the scale. Clearly, the value of 0 is invariant under additive shifting of

the S's , so probably it would be convenient to set some arbitrary average

of the S's equal to zero or a constant. Once a solution is found in terms

of the arbitrary constants, a linear translation of the S's would be an

equivalent solution.

The quantity 0 ,together with the constraints mentioned in the paragraph

above, are not so designed as to ensure that the resulting S's are even

monotonic with increase in the k's . Certainly no linear relation with a

formula score or number rights is implied nor should it be, since the diffi-

culty levels of the tests are intentionally mismatched. However, it might be

desirable to attempt some smoothing of the solution by an averaging process

such as is used in the quantity 8 below, which fits the total of an examinee's

scaled score and the two scaled scores from the adjacent levels on one test

to a similar average from the other. The quantity to be minimized with this

smoothing is highly similar to 0 except that the range of k is from the
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second score level to the next to the last score level; i.e., for test j

thereisaOthscorelevelanda(K.+1)th score level. Then we have

I J J K. K.
J JI0 =EE EE E d.. 05..

i=1 j=1 j'=1 k=1 k'=1
ijk ij,k' Is

i(k-1) Sjk Sj(k +l)

12.mSil(kLirSjfkiSji(k11.1).1

The reader will note that the deltas actually are the data of this scheme

and should be aware that they are in part determined by the design for the

collection of data and in part determined by the test performances. The class

of adequate designs for a scaling study may be investigated by seeking configura-

tions of deltas that lead to unique solutions for the S's up to a linear

transformation. It is not the intent of this paper to go into such designs as

the present paper stops by choice with the suggestion of plausible objective

functions. It suffices to comment that designs and calculations can be worked

out which lead to satisfactory minima of 0 or 0 . The design suggested in

the paragraph above is a quite satisfactory one.

Equating with Mixed Essay and Objective Items

The approach to equating suggested previously can also be applied to the

situation where mixed essay and objective tests are used. Despite considerable

evidence to the contrary which is convincing to the author, it is often deemed

desirable to mix essay material with objective material when testing for achieve-

ment evaluation in certain subject matters. Many feel that essay testing is

useful in a teaching context and some feel that the utility would carry over in

mass achievement testing. And judging from history, the inclusion of essay

material will continue at least from time to time within the foreseeable future,

0

C)4..1



-52-

for proponents of essay testing feel that the requirement to write on the

test might engender a felt need to learn to write on the part of the candidate.

Therefore, despite the author's belief that essay testing in large commercial

programs is at best an expensive method of unsuccessfully testing the ability to

organize and think, it seems that an equating method mill be needed, and one

is herein proposed that is consistent with the philosophy of the previous dis

cussion.

It is assumed that each examinee will answer some number of essay questions

but that they need not all answer the same questions. Each candidate also takes

a section of objective questions within which is embedded a miniature test

which has appeared embedded in another objective section for which a reporting

score scale is established. In fact, it will be assumed that there are two

score scales,one which is finely graduated and one which has rather gross divisions.

Scores on the finely graduated scale will be referred to as being on the F

scale. The gross scale is given as a series of ranges, or cut points, on the F

scale, thus, if equating is accomplished on the F scale, it can be immediately

translated into the gross scale and the gross scale need not be considered

further here. This gross scale is mentioned because its use may be consistent

with the College Board Advanced Placement (AP) practice of reporting scores on

only five levels, but reporting on that scale does not require or even recommend

equating on that scale (as it is not at this time). Conversion to the gross

scale can be done as a last step in the score reporting process, for instance,

by establishing or having established a set of cut points t , g = 1...k where

k is one less than the number of intervals to be reported. If Tg g = 0, . .k ,

is the reported score and if F < tl , then To is reported. Otherwise if t gl

is the largest of the set of t's which are equal to or less than F , then T

is reported. It is consistent with some practices to take T = g + 1 .
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The sense in which equating will be accomplished is that equal scores

on the equating sectioll will imply equal reported scores so far as is

feasible within other constraints. Rather than using the actual reported

scores, though, the equating will be done using the F scale as indicated

above. Prior to the actual equating steps it is necessary to infer for each

student a score on the essay section. This score will then be combined with

the score on the objective section in an equating step.

In inferring an examinee's score on the essay section it will be recog-

nized in the notation to follow that each combination of reader, question, and

examinee is unique in a sense. That is, in the symbolism to follow there is

an indexing subscript which refers to reader-question combination and does not

abstract quantities related in theory to reader alone, or question alone, though

some comments about reader evaluation will follow later in the text. It should

also be noted that a symbol W is used to indicate whether or not a particular

reader-question combination evaluated a response by a particular student. This

quantity takes on values zero and unity, indicating whether or not an observation

was generated by a combination of student, question, and reader. The quantities

W could be regulated by experimental design, at least as far as readers and

Questions go and possibly somewhat for students also, though it is assumed that

the pattern of W's is left mostly to happenstance. Let

A.
J

i be a subscript for candidate;

j refer to reader-question combination;

Si be an unequated score for the ith candidate's essays;

B. be constants associated with reader-question combination

j which account for the variability and toughness (of

the question or the reader) of the particular reader when

reading the particular question;
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X. be a numerical score assigned to student i by the
ij

jth reader-question combination;

Wi be unity if candidate i received a score from reader-
j

question combination zero otherwise; and

C be an arbitrary weight chosen to vary the emphasis placed

on a particular reader-question combination.

Essentially a single factor system is assumed
8

where the A's and B's adjust

for severity of grading and variation in grades assigned, but the same student

score underlies all performances by that student. This assumes that scores that

are used are not subject to a sliding standard as the readings progress and that

careful reader training has ta'Aen place so that readers have a common and re-

liable notion of that which is to be graded. We chose as an objective function

j
E C. E W.. (X.. - A. - B.

1
B.)

2
5i 1J 1J J 4 1

to be minimized subject to the constraints t
2

Note that in the expression above if a particular set of A's , B's and S's

are a solution, then adding a constant to the S's and at the same time sub-

tracting from the A's that constant times the B's produces an equivalent solu-

tion. Also, the effect of multiplying the S's by a constant is offset by di-

viding -;he B's by the same constant. That is, the S's are determined only

up to a linear transformation (that transformation is to be determined in con-

nection with the equating). Adding a constant for reader-question combination

8Tliis assumption is not entirely inconsistent with the conclusion of
Torgerson and Green (1952) who, though they noted four factors in the grades
assigned by English essay readers, found that a large general factor was
dominant.
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(j) can be offset by subtracting that constant from the A's for that sub-

script (j) . Further, if all the X's are multiplied by a constant, a solu-

tion can be retained by multiplying the B's by the constant. Hence the

solution adjusts a tendency toward additive bias (toughness), and the scale of

grading may be expanded or contracted arbitrarily if the gradations are not

modified. However, a limited use of the grading scale lessens a reader's effect

in the objective function. One might try to offset this effect by choosing

different values for the C's , or by standardizing a particular reader's grades

prior to the minimization of the objective function.9 If standardization is

done and a reader tends to get small values for B , then he probably is not

grading on the same standard as the others and some judgment about the suita-

bility of his judgments would be needed.

Minimization of the objective function above requires certain characteris-

tics of the quantities involved. First, to use the scoring procedure W.i must

not equal zero (reader-question combination must assign a grade). In fact, if

S's were known, it can be seen that two observations are required to allow a

unique solution for A and B . Second, the number of constants to be determined

less the number of constraints is 2 J + I - 2 , where I and J are the num-

ber of candidates and the number of reader-question combinations, respectively,

and hence EEwij must exceed that number. Third, it should not be possible to
ij

order reader-question combinations and examinees so that the objective function

partitions into more than one sum containing different parameters. That is, if

the objective function could be written as
Qi + Q2

where none of the parameters

in Q
1

are contained in Q
2

and vice versa, then separate constraints would be

9The C's may stimulate more confusion than insight and their inclusion may
have been in error. However, they do represent a way of influencing the solution
which might at a later point in time prove to have an unanticipated advantage.
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required for the S's in each Q . This would occur, for example, if students

were allowed to answer only one question, and if this were done, the cases

contributing to could be equated separately from those contributing to

Q
2

though this would probably not be desirable. Further, it should also be

quite clear that for each examinee, at least one observation is required from

a reader-question combination which has a nonzero weight. Finally, the actual

computations can be accomplished using existing logic which has been described

by Tompkins (1968).

To complete the description of the equating let

Ry be the average reported score in the last administration

for those who received a score of y on the equating

test;

Sy be the average essay score (determined using the method

above) for those who received a score of y on the

equating test; and

Uy be the average score on the multiple choice section for

those who received a score of y on the equating test.

The multiple choice section referred to here is the current

one, not the one entering into R .

Then find m , p , and q such that m S + p U +q is the weighted least

squares fit to R , where the weights are frequencies associated with equating

test score in the administration where the equating is taking place. The con-

yersiontotheFscaleismS.+p U. + q where the subscripts now refer to

examinees rather than to equating test levels.
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In this type of equating system the relative weight given to the essay

and objective score either passes out of the hands of examiners once the system

is implemented or is undefined, or both depending on how one views it. It

passes out of their hands once the equating system is in effect because the

equating determines the weighting system. If the examiners decide on relative

weights when the system is started, feel that these weights are effective, do

not change test content, and the candidate populations do not differ drastically,

then their weighting is preserved. This weighting is undefined, however, in

the sense that common factor variance is not uniquely ascribable to the essay

or the objective sections and hence the relative weight is more or less undefined

(this is true of all section weightings at the present time as far as the author

knows). Also, the t's are fixed in a sense once such a system begins operation.

Hence, in using this type of system, a good bit of judgment passes from the oper-

ators of the system to the statistical system -- a development which may be viewed

with different emoticns by different people and mixed emotions by some.

Scaling

As a topic in the psychometric literature, scaling is quite general dealing

with systems of assigning numbers to events. One defines a set of equivalent

events and then sets up an equivalence between these events and the number

system. For example, in the equating system just discussed, the equivalent

events were the scores on the equating tests, and the number system being

chosen is to be found by minimizing the objective function, perhaps with some

apparently necessary constraints. However, local usage assigns the term "scaling"

to the alignment of test scores and distinguishes between scaling and equating

in terms of the kinds of events chosen as equivalent. Specifically, when the



equivalent events are defined in terms of scores on a performance of a sort

not measuring the performance for which the number system is being developed,

then local usage has it that this is "scaling." In the present context this

latter usage of the word will apply.

Scaling is useful in the applications of measurement systems that use tests

in that it is the means by which alignment is achieved among score scales based

on variables which measure different things. For example, the Army classifica-

tion Battery consists of a number of different measures such as clerical speed,

numerical ability, mechanical knowlege, etc. However, the scores on these tests

are in theory aligned in such a way that they would all have the same mean (one

hundred), and standard deviation (twenty), in a World War II mobilization popu-

lation. Thus when a score of 150 is encountered, it is a good one no matter

what the content of the test. Thus some intuitive feel for the size of the scores

is established, and the process of explaining the meaning of test scores is quite

a bit simpler than if such standardization were not effected.

Another use of scores from a battery, not one recommended by the writer but

nevertheless one that is said to occur, is that of using the average of available

scores as an argument in a regression function. 'For example, if a student offers

scores on English and Spanish achievement and another offers scores on math and

history achievement, the averages of the scores might be substituted into a

regression function as "achievement averages." Granted that such use is quite

inappropriate, the damage done would be minimized to the extent that some stan-

dardization between the achievement tests has occurred. The really appropriate

standardization for this purpose is a validity scaling, but where such is not

possible, an aptitude-oriented scaling is commonly used. It is the aptitude-

oriented scaling, or more generally, situations formally similar to that of

aptitude scaling that is the topic of this discussion.
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First, consider the problem of using performance data from several sending

institutions (secondary schools or undergraduate institutions) to predict per-

formance data at a single receiving institution. Here there is a single criter-

ion hence the predictors should be put on a single appropriate scale. It has

been mentioned above that the appropriate scale is the criterion scale in this

case, obviously, and methods are available for such scaling (Novick, Jackson,

Thayer, & Cole, 1971; Tucker, 1960). However, it has been the practice often

to use a test to put the grades on a scale using the Pearson assumptions. If

one chooses to go along with the aptitude scaling but realizes the probable

incorrectness of the Pearson assumptions, one might proceed by defining a

reference population in terms of standard frequencies associated with the

levels of the test used for scaling and then transform the grades by equating

means and standard deviations. In this way, one works toward the same intent

as current methods, that is to produce a scaling that yields similar distri-

butions of the scaling variable. The following notation will be needed. Let

x refer to levels of the aptitude scaling variable,

i refer to the sending institution,

j refer to the particular person within sending insti-

tution and at score level x ,

be the grade of the jth person at institution i
Yixj

who received an aptitude score at the xth level,

nix be the number of people at institution i uho received

A.

an aptitude score at the xth , level,

B. be the multiplicative and additive constants in the

transformation at institution i
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(l/ni ) yiYix. x xj
,

s
2

(y yix.ix xjix i

In the notation above and to follow, the dotted subscript indicates summation

over the subscript position dotted in accordance with the ctrrent common

practice. Then if a reference population R had frequencies f
x

, the variance

a.
2

of y in II would be

where

2
N0. = E f s. 2E f ky. Y. )1 X X 1X X X 1X. 1..

7r1. = (E f 57i )/(E f ).. x x x. x x '

2
and assuming that six and yix.

ti

(18)

(19)

remain unchanged, that is that selection is

explicit on x and therefore Equation (1) applies when r and s are defined

as one. Then if in II the scaled variance should be u
2

and the mean should

be u , then by the usual formulae for equating means and variances

A. = u/a. and B. = u - A. y. .1 1 1 1 1..

The reader will note that here the computations are given where in other sections

they are not. This is for two reasons. First, there is no objective function

defining this scaling method. The equalities which are sought can be matched

exactly with the data at hand in every case, provided the f's are suitably

defined. Second, the f's in Equations (18) and (19) are a source of difficulty

which the equations exhibit. Note that if no cases are observed at a level of

x at a sending institution, the computations in (18) and (19) are not defined

unless f is nonzero only for those levels of x for which nix is nonzero



-61-

for all i . In words, this means that a score level to be used in the scaling

must have cases at all sending institutions.

Consider the case where institutions of nonoverlapping quality in terms

of aptitude are to be included in a scaling using the above method. Then

the scaling can't be performed since overlap must exist; if overlap does not

exist, what does scaling with the aptitude test mean? This question is not

idle because, for one thing, if an2 two sending institutions are nonoverlapping

the difficulty arises, and for another, the scaling is used in undergraduate

and graduate admissions testing programs where the scaling is done on very dis-

parate groups. To clarify the shift from scaling grades to scaling in admis-

sions testing programs, note that the levels of x defined as levels of a single

aptitude variable in the case of scaling grades can be taken as categories defined

by pairs of aptitude test scores as in the Graduate Record Examinations and the

College Board Admissions Testing Program. Rather than indexing the sending

institution, the i can be taken as the particular achievement area. Then it

can be seen that all the notation leading to the computations of Equations (18)

and (19) go through (with a suitable redefinition of u and p , and if y is

taken as an achievement test score to be scaled rather than a grade point average).

Both of these testing programs have achievement areas that serve very able candi-

dates for the most part and some that serve examinees that are relatively much

less able. Thus one might expect that quite a number of combinations of aptitude

levels do not occur at nonzero frequency for all achievement areas. It might be

very difficult to define a meaningful (to substantively oriented users) reference

population such that fx is nonzero for all levels of x for all achievement
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populations and yet that seems to be required once the Pearson assumptions are

fo-:ezone. One is therefore tempted to accept the Pearson assumptions anyway,

but it should be pointed out that it is precisely where the various populations

to be scaled are disparate that the problem with the Pearson assumptions is

intensified.

The reader might wonder why it is insisted that a given level of x must

be observed in all populations to be observed. Why not just scale the achieve-

ment tests one at a time with the aptitude tests using a definition of fx

that yields a suitable mean and standard deviation of the aptitude test scores?

The answer is in the question--the scaling in that case would be to the aptitude

test and not particularly to the other achievement tests for whom comparability

is claimed. One could assert that this achieves comparability among achievement

tests and probably many credulous users would believe it. Their credulity would

probably lead them to ascribe a transitivity to the comparability, a belief

that is unfounded in logic or fact.

The foregoing discussion of scaling is admittedly quite unsatisfactory to

the reader who is looking for definitive answers. All that is said is that what

has been done in the past is doubtful, and alternative suggestions are admittedly

only partially satisfactory. Where criterion scaling is feasible, it seems to

the author that it should be done. But the bases for requiring comparability

among types of measures that gain value as a collection because of their different-

ness need development. It may be that the problems that one attempts to solve

through scaling would after careful consideration prove to require another kind of

solution altogether.

A 64
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APPENDIX

True Score Selection Model

It has been commented that the author has found no way to get around the

assumption that explicit selection is on the equating test when the populations

tested in an equating experiment using an equating test are not equivalent.

This is not quite true, in that the methpd due to Levine (1955) follows if

selection is on the true score. However, that method assumes homoscedasticity

with variation in the true score range, an assumption which is highly question-

able. It is unfortunate that the assumptions are questionable because the model

could be applied in a way that has advantages that will be described in the latter

portion of this Appendix.

The following develops an equating method using the notion of true score

selection. Let

i be a subscript for operational test;

j be a subscript for equating test;

k be a subscript for candidate (nested within ij);

yijk be the score of the ith operational test of the kth candidate

who took the jth equating test at the ith administration;

xijk be the score on the jth equating test of the kth candidate who

took the jth equating test at the ith administration;

d
ij

be 1 if equating test j was taken with operational test i , zero

otherwise;

tijk be the true score of the kth candidate taking the jth equating

test at the ith administration; and

pi be the reliability of the ith operational test.
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yi = a. + b.t + ejk

ijk ijk

xi = c + d t + c.
jk j j ijk ijk

t1.. tij.

e. = c. = 0

Cov
te

Covte Covet 0

2 2
_CI = .03

2 2 2
= .ajet iat ij e 1 e ij

0
c 1 c

The above assumptions are heavily influenced by a belief in the equivalence of

the populations which take the various experimental sections of the SAT; i.e.,

the adequacy of the spiraling operation is accepted. Then

and

Cov = b.d .(1
2

ij xy lilt

2 2 2
.0 = b. 0 + .0

2ly lt le
2

P. .0
2

= b.
2

1 1 y 1 i it

The deductions immediately above give some observables on the left in terms of

structural variables on the right. In these equations the reliability is assumed

tc be observed as the result of split-half scoring of the operational test, cor-

relating the half-length tests and then cormcting to full-length. Such a method

is feasible using modern computing equipment and is preferable to other approx-

imations (since the approximation is not necessary, and may very well not agree

with the preferable split-half method).

Note that the covariance (ij Cov
xy

) between operational and equating test can

in theory be split into two multiplicative parts, one associated with the
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operational test and the other associated with the equating test. This could

be"complishediriale"""areswayasfollows.mul{a.1 } ,
{s j} such

that

- 00j)2Imin

is at a minimum with arbitrary norming on the a's or a's . Take

and

a. = Kb. .0
2

1 1 1 t

0 = d /K

where K is an arbitrary norming constant. Then

(Pi .0
2

y )/(a.)

Find {C
j

,
1

} (G.} such that

./K .

E Ed. (Y. - c
j 1
- 8.G.)2

i

is at a minimum subject to arbitrary additive norming on the G's . Then

G.=KY. + P
1 1..

where P is an arbitrary norming constant. Then

2 2p. .0
1

2
p. .

1
0i .0.

= + = a. +
y p.

G. - P1
a

1
a. i a. 1 al

1..71
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2

a. =
p. .0

1 1..
31' (G. P)

1

In terms of the various quantities developed, then,

Ai .0
2

Ai .a
2

Jljk Ji..
a

= - (G. - P)
a

Kt + e .
.

Ktijk
ijk

To equate one would choose constants Ai andp.such that if the true scores

on some agreed upon scale and the reporting score scale is such that there exist

constants y and n ,

E(S) = yt + n ,

Where Si = Aiyijk -I- Di , then coefficients of powers of t can be equated to

y and n if P and K are known, and Ai and Bi can be easily solved for.

To find P and K , arbitrary scaling can be put on the true scores. For example,

it might be desired that for some combinations of administrations the average

true score should be considered M . Then averaging the Gi's over these admin-

istrations one would obtain

= KM + P

and

P = U.- KM .

Thus P could be eliminated, and it should be noted that the average involved

could be a weighted one involving numbers of cases at the administrations

or some other basis for choosing weights. The quantity K might be chosen so
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that the b's are, on the average, equal to one and hence that the product

of the reliability coefficient and the test variance would be an estimate of

the true score variance for the particular test involved or at least on a

scale of the same order of magnitude.

For an equating method, assuming the scale is set so that a's and c's

are known, then find B's so that

is at a minimum and set

Then

and

,

E(. Gov - )

21

J ij xy

G. =
1J.

- c
j
)/(3 .

1

A. = ya./n
i i0y

2
p. .ci

B. = n - A.(7.
,

2-_22,L %G.)
1 1 J... a. i

1

are the new conversion parameters. The advantages of this method are that

only a's and c's are needed for old forms and equating tests. The method

is drift free in the sense that one uses all the available data to arrive

at weightings which are calculated to relate reported scores to true scores.

Of course, variations in the quality of the examinations will affect the result

of this type of scaling as it would in any method. Also, minor changes in the

method would allow its use with internal equating tests. The important point is

that the reliability used should be on material which is not part of the equating

1 73
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test because if it is, it may be necessary to solve a quadratic equation to

obtain a solution and that quadratic equation may not have real roots for

some unfortunate administration.

A major weakness of the method is that it suggests to the author no

particularly good way to proceed when the end-point problem occurs as it will

quite often. Another weakness is that the validity of the model is doubtful,

though on this score it is at least as good as the models currently in use.

Certainly it is the only model that makes a plausible assumption about the

effects of selection of populations.


