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A Note on Box's General Method of Approximation for

the Null Distributions’ 'of‘ Likélihﬁdd Criterial
. ‘ o
Ieon Jay Gleser
The Johns Hopkins University and Fducational Testi‘ng Service
| and
Ingram Olkin

Stanford University and Fducational Testing Service

1. Introduction

Many multivariete test statistics (such as the likelihood ratio te‘st
statistic for MANOVA and the Bartlett modification of the likelihood ratio
test statistic for testing the equality of covariance matrices) have null

distributions whose h -th moment Mh is of the form

J A I )
n (y.) I D(x.(1+h)+¢E.) o
j=L 9 i=1 *
(1.1) M =K% X 7 ’ ‘ » h= Q,1,2,...
o(x) T T D(y;(1+h) )
i=1 Jj=1 S
vhere K 1is a constant (such that MO =1 ), the x's and y's are positive
numbers, and
(1.2) I J
1.2 ’ T x.= X Y. .
i=1 *  j=1 Y

Such statistics have a range of variation from O to 1, so that the moments

Mh , h=0,1,2,..., determine the null distribution.
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For any statistic W, O _{w <1, whfsse momeﬂts are of the form (1.1),
-Box (191‘&9) has proposed anbasymptotic expansion for the cumulative distri-.
bution function (c.d.f.). This expansion provides an accurate rhéthod for
determining the critica]: constants defining‘rejeétion. fegions for the multi-.
variate tests menti5r_1ed above. One form in which this expansion is oftén

given [see Anderson (1958; p. 207)] is the following:

(1.3) P(-2 log W< t) = (1 - o)P[X? < pt) + ¢P[X§+u < pt) + R(S) L.

I J
Here, ® = X, = X Y.
’ i=y * g 1]
I J 1
(1.4) f=-2 2 gi-zn.-§(I-J)] ,
Ci=1 j=1 9
rd ’ l I '2 J ' ‘2 '
1. = — 1 - .+ &) - . 1l - . .
(1.5) ° -6p2 { iil ‘xi B5((- p)xll 51) jil Y5 B5(.( p)VJ + TIJ)] )

p 1is the solution of the equation

_ I . ' ‘ B B _

(1) T xlB((L - o)y 4 ) - B yiBy((-elyy ) =0
L i=1 J=l

and R(d) is a remainder term. ([Note: p is chosen so that Anderson's Y ‘

is 0.] Also Bl(u) , B2(u) , and BB(u) are the Bernoulli polynomials of

Gdegree 1, 2, and 3 defined by:

(1'7) Bl(u)=u"%’ ’ Bg(u)=u2‘u+% s B5(u)=u-%u +%u .
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If lim a'lxi>o and lim (1 - p)x, exists, i=1,2,...,I

8-—’“ 5_.;&

and if 1lim S-lyj >0 and lim (1 - p)y exists, Jj =1,2,...,J , then

& —wew . 5 -
Anderson (1958, pp. 203-207) ‘sketches an argument which shows that the re-

' mainder term R(8) in (1.3) is 0(5'.5) as & —»® . In the case of the

J

likelihood ratio test for MANOVA, Anderson (1958) gives examples showing the

' hlgh accuracy prov1ded by the approxmatlon ( 1.3).

Determination of the constants ¢ and p defined by (l. ) and (1.6),
respectively, is usually a very cmnbersome task. .In Sec blon 2, we show how
thi‘s task can be considerably simplified by t‘aking_advantage of certain
relationships'ahong the Bernoulli polynomials Bk(u) ’ .k =123. Asa
result, we obtain conveni‘ent formulas fcr f, p,and ¢ for the
1mportant speclal cace (whlch 1ncludes the null dlstrlbutmns of the llke-
lihood ratio test statlstlc for MANOVA and for various speclal cases of the
likelihood ratio test statistic f_or 1ndependence of sets of variates) in
vhich T =7, vthe xi'a and yj’s are all equal, &, is lincar ia i, and
nj is linear in Jj . | |

Let W, and W2 be two statisticaliy independent random variables,
where each wi has range of variation from O to 1 and has moments of the
form (1.1). It follows that au asymptotic expansion (1.3) for the c.d.f.
of wi can be given, i =1,2 . Let fi » Py and o, be the constants
in the asymptotic expansion (1.3) for the c.d.f. of W, , 1= i,2 , and
suppose that the values of fl 5 f2 > P P ,01 , and 02 are

known to us. Let W = Wlw2 It can easily be shown that 0 <W <1l and

that the moments of W have the form (1.1). Thus, one can obtain an




e

asymptotic exp‘ansion “(1.5). for the c.d.f. of W. Although the‘ constants
f ,4 p,and ¢ in this expansion éan‘be obtained ab initio by calculating
the moments of W and then using formulas (l.h_) through (1.6), or the
simplifications of thesebfﬁrmu];as given in Sectign 2, it would be more
convenient to obtain the constants f s Py and ¢ directly from the

f ; and o, . Formulas for doing

1 ta Py » Pp > ¢l

this are given in Section'3. Section 4 provides two illustrations of the

given values of f

. method.

2. Simplification of the Formulas for £ and ¢

In this section it is .shown that if the h -th moment of the random vari-
able W, O0<W<1l, is given by (1.1), then the constants p and o -

in Equation (1.3) can be obtained as follows:
I J |
1 - -
3 2- = - = -
(2.1) p=1-%I 151 xilBe(gi) jil ylee("j)] s

and

I J
1 -2 -2 3 2
2.2 = - —— - Z -

vhere f is' given by (1.4).

. To verify (2.1), note from (1.7) that
) (2.3) B2(w +v) = BE(V) + 2wBl(V) . e ,

and hence



L
_ -1 Y
(2.4) Z oy B2((l - p)gi + vi)
i=1 ‘ ,
L ' L L
= I i 2(V)+2(l-p) z B(V)+(l-p) Zouy
i=1 | i=1 | i=1
Note that
(’ ) B | R | : 1 J 1
2.5 £ By(t;) - T B(n,)=2 g, -5I- 2 n,+35J
: jo1 LA g 1 i=112‘ 1 92
1
=-3 f .
N J : , .
Since I x; = I y; , it follows from (1.6), (2.4), and (2.5) that p is
: i=1 =1 9 ‘
the solution of
B -1 ’ o |
(2.6) B x[By(g;) - z y le(n - :p)=0
: i=1
which is equivalent to (2.1).
To verify (2.2), note from (1.7) that
2 p)
(2.7) B,(w + v) = B.(v) + 3uBy(v) + 3wB (v) +v"
> 3 2 1
and hence
L 2
iil u, BB((]’ - p)ui + vi)
L -2 L
(2.8) = E ui°B(v;) +3(1-p) T ul'By(v,)
i=l i=1
p L 5 L
+3(L-p)° 2 B (v.)+ (1 - ou, .
: i=1 1(v3) (2 -0) i=1 1

€
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Equation (2.2) now follows ‘ﬁ'-om (1.5), (2.1), (2.5‘), and the fact

I J
Z x.= 3

1

Y.
i=1 S J

1
the h -th moment of W has the form (1.1) with I =J
‘I=yl=y2=.....’=yJ§z’ §i=a+bi’ i=
dj , 3=1,2,.4.,3 , then from (1.4),
L .

. L
2[ £ (a+bi)- £ (c+ aj)
- i=l ’ =1

‘_-2L[ (a'- c) + % (b -a)u+1)} .

‘Also, from (2.1), (2.9), a;ud'(l.7),

L 5 L L s L '
p=1-=0[ = (@+bi)- £ (a+bi)- Z (c+dj) + = (c+4dj)]
v : i=1l ' C =1 j=l ,j:l . . )
- (2.10) ’ |

Finally, note from (1.7) that
1
BB(u) = w - % Be(u) - Bl(u) -5

From this fact, (2.1), (2.2), and (2.5), it follows that

;o
‘

(8- + (b -ca)(n+1)+ 302 -aD)@r)(@+1) e ] -




..‘7..
22 2 0 3 313 £
-62p0 = = [(a + bi) -(c+di)]-§(l-p)zf+é-
i=1 . :
: +.% (1 _.p)ezef .

By a direct evaluation we have that

Z [(a+ p1)? - (c + ai)’]

i=1 o I
(.2.12). = »'(a3 - cB);. + % (2% - ced)(Lv)(‘L +1)
| : %(abe : cde)(L')(L + 1)(2i,-+ 1) + % (b3 _ dB)(Le)(Ié + 1)2 .
Thus, (2.11) and (2.12) iogéther giVé us a formula for comput;ingv o - |

5. Approximation for the Distribution of the Product of

' Independent Statistics Whose Moments Are of the Form (1.1)

let the independent random variables W o< W S 1, be

independent, with h -th moment of the form

g vy A0 8
no(y..) S I I(x . (L+h)+E& )
s 8J . gi gi _
(3.1) e )P =x Lil : il , h=0,1,2,...,
N P e B aen e
X . Yy .(L+h)+n .
i=1l gl J=l &J . gJ

I J

g 4

where K_ is a constant (such that EW =1 ), and £ x .= I y_.
g g j=1 81 4o T8t

[«]

H

for g= 1,2 . Let

'k“:,'g;{é;.'.;-‘;;\i;‘:'-:" LT e



(5.2) W=W

1W2 .

It then follows that E(W)h_

E'(Wl)hE(W2)h , and hence the moments of W

are of the form (1.1) with T=1 +1,, J=J5 +Jp,
P P i i=1,2.0.,L
T R gi={ R . | ' :
o x2,i-]'1 , »§2’i-11 , if | i= Il + 1,12‘4- ,.0.,1
(3.3) , o
(Yij Ny if §=1,2.0,0
,yj:i _‘ "j={ | R | |
Yg’j_Jl , ﬂ2’j_Ji , if J = Jl+ l’Jl -I-_‘2?.f‘-,J .
I J
"Note also that X x. = Z y.=9 .
. i1 S ‘

1’

W, , and W are all of 'F.he forrq (1.1), it
follows from the results of Sectio_ns 1 and 2 that the c.d.f.'s of these

Since the moments of W
three Variables_ can _be expanded in the form (1.3). The coefficients fg R
pg ’ % for the expansion of the c.d.f. of wg , =12, and the
_coefficients £, p, ¢ , for the expansion of the c.d.f. of W are .

expressible by means of equations (2.5), (2.1), and (2.2). From these

expressions and (3.3), it can be shown by some straightforward algebra

that

(30’4’) f=fl+f2 k)
fp. +fp

(3.5) o=t 22

and



f,f,

020 + 020

5 .
(p - pr‘) -*
2 el L2

Equations (3.4), (3.5), and (3.6) thus provide a way to compute the co-
efficients f , .p, and ¢ in the expahsibn (1.3) of the c.d.f. of

W =.wlw2 1n.t§rms ?f_the cpeffic1epts fg 5 g .
(1.3) of the c.d.f. of wg , &=12 . We may generalize these results by '
2 'induction and obtain the following: |

o, and 0, 1in the e:.pansion

Theorem 1. Let the statistically independent'variablés Wg , 0<W <1,

‘ . &~
~ have moments of the form (3.1), &= 1,2,...,G . Let fg N Pg 0y s
' B TR | S
and & = X x .= I y_ . be the'constants‘in'the Box expansion (1.3)

of the c.d.f. of,wg’ , g=1,2,...,G . Finally, let : .

H

(3.7) W= T W, .
Th.en
(3.8)  P(-2 log W < t) = (1 - 0)B0XS < pt) + oPOE,) < ot) + R(B)

G G G
where 3= 2 & , £f=22 f , p= ngpg,',and

] L

g=1 € g=1 8 g:l




-10-

Two gpplication; 51 Theorem 1 to mltivariate testing‘problems are giveir -

“in Section %. Note that if in the Box expansions for wl,we,},-,wG ; each

G are all asymptoticaily

of the same order of magnitude (i.e., lim sés;l'> 0 as ‘Sg,Sh — o for

all g # h ), then R(3) in (3.8) is 0(8-3) . In practical use of

- 3. . 4
Rg(bg)v is 0(5g ) as Sg @, and if 8,85, ¢+¢,d

Theorem 1, the Sg's will usually be asymptotically of the same order of

magnitude.v If the Sé's are not asyﬁmtotiéally of the same order

of magnitude, Bquation (3-8) is formally correct (vhen &, £, p,
and o are defined as in Theorem 1), but the order of magnitude of the

remainder term R(5) in &. must be separately investigated.

4. Applications to Multivariate Hypothesis Testing Problems

Suppose we are 1nterested in testing whether either the mean vectors'
and/or covariance matrlces of k multlvarlate normal populatlons are -
1dent1cal. Suppose that an observatlon (p d1mens1onal rov :eﬂ*ﬂv) §(1)>»

- from the ‘-th populatlon has a p -varlate normal d1str1but10n with mean

vector_.p(l) and covariance matrix Z( i) , i=1, 2,.-.,k . Let x( 1)

be pariitioned as - (x{i),xgl)) , where xgl) is 1 xq, and let '

| A CHRIY
(’-l--]) “(1) - (“ 1)’“(1)) , z(l) = 11 12 ,
roe NEVINCY
2L 22
be correspondingly partitioned, i =1,2,...,k . Suppose that we observe
Ni observations from the i -th population, i = 1,2,...,k .
We consider two tests of hypotheses. The first test compares the null

hypothesis.

»




(4.2) i@ k) (1) _ @ _ g

mve )

against general alternatives. In the second test, we compare the null

hypothesis Hmvc against the alternative:

(4.3)  H B LW

mlvc|: “l 1 zfi) = zfj) = ees = Z(k)

11 )

)

Let )'((1) = ()?](_i),igi)) be the sample mean vector and let

/y1) (i)
v(i) 11 12

R

be the sample cross-product matrix from the i -th population, i=1,2,...,k .

Then (i(l),i(e-),...,i(k),v(l),v(e),...,v(k)) is a sufficient statistic
. k
for both hypothesis testing problems. ILet N = X. N, ,
i=1

0
I

= = k -(i) =(i
= (il’x2) = < ii:]_ Ni(x:f_ ),Xg ))

N
and
e N SOy S
A= = . N(x -x) (x>t - x) .
A i=
o1 Bopf 1=
4.1 Test of Hmvc Versus General Alternatives

Anderson (1958) suggests testing H . @sainst geueral alternatives ty

means of the test statistic

RN
\

B

,_“,b
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k . 4n
. z 2
izl i " i1
(b.4)  w= X ) N M D = W, o
|2 = vV | = (2 vi*+a)
n . n ‘.
i=1 i=1
k
vhere n, = Ni -1, i=12,2,...,k, and n = '21 n; - The statistic wl
1=

is the likelihood ratio test statistic for testing Z(l) = 2(2) = eee = 2(k)
against general alternatives, but modified [along lines suggested by
Bartlett (193"()] by everywhere replacing the sample sizes Ni by the degrees
of freedom, n, , of v(1) | The statistic W, isthe (n/N) -th power of
the likelihood ratio test statistic for MANOVA.

As Anderson (1958) shows, the statistics Wy and W, are independent

vhen H holds, and also
mve

kop 1 1
oo P(-§ni(l+h) +§(l-s))
()-l».5) E(W )h = K i=1l s=1 .
1 1 P
i I‘(%n(l + h)+%-(l-t))
t=1

Thus, the moments of W, under H . are of the form (1.1), and vwe can

use the Box expansion (1.3) for the c.d.f. of W when Ny ,Np,«-o,N, are
large and of the same order of magnitude. Although the constants fl » Py
and ol in the expansion (1.3) of the c.d.f. of Wl can be obtained directly
from (4.5) by use of the methods of Section 2, Anderson (1958; p. 255) has

already shown that

A Y
Yo
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H
]

1 %’ (k - L)p(p +1)

k 1 1 2 2 + 3p - 1
°1'1'(i§ln_i'ﬁ)3(pp+ 1)(§-1.) ?
(4.6)
k
pp+ D - Do+ 2 = (2)2- (1)) -6x-1)a - e
oy = i=1 i

h8p§

[In comparing (4.6) with Anderson's results it should be noted that his q
is our k .]
Anderson (1958; p. 207) gives the h -th moments of A\ = (WE)N/n

under H as
. mve

2

r‘(%w(1+ h) - = (k - 1) -%s)
P

I P(%N(l+h) -%t)
t=1

where (4.7) holds for all real h for which the gamma functions exist.

Hence,
P
it I‘(%n(l+h)+%-%}s)
w.8)  B(u,)? =k, =X .
2 2P 1 Kk 1
Il I‘(En(l+h)+§--§-t)
t=1

Thus, applying (2.9), (2.10), (2.11), and (2.12), with L=p , 2= n/2 ,

a=12, b=-(1/2), c=k2, a-= -(1/2) , we find that

24
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2 2 -5
Wy <t s (L - 02)P{Xf2 < ppt) * 02P{Xf2+h < et} v o(n™)

ok - 1)

_p - k + 2

=1 2n

Cplk - 1)[p° & (k - 1)° - 5]
L¥f3r12('o,:,)2

To obtain an asymptotic expansion for the c.d.f. of the test statistic.
W under Hmvc , Anderson (1958; p. 255) goes back to the h -th moments of

W and applies the Box expansion method ab initio.

However, we already have the constants f f

l: 2) pl, p2} ol,

and ¢2 from the asymptotic expansions of the c.d.f.'s of Wl and w2 .

Using Theorem 1 of Section 3, we thus conclude that the constants f, p ,

and ¢ 1in the Box expansion (1.3) of the ¢.d.¥. of W are given by

(4.10) £+, =% (k- 1)p(p+3) ,

fp, + 7 2 - -
(4.11) =ll—2pf=‘= 2p"+3p -1 p-k+2

T l'(ili_i'%)6(p+57(k-l)'n(p*-i)
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2 2
P10y * Py flfe ( 2
¢ = + P P
p2 ko f 1~ P
k 1l 1l 2 2
(#12) = =B [6( = ——5 -5 )" - 1)(p+2) -36(p + 3)(k - 1)(1 - p)
288p i=1 (ni) n v

-E(kz—.]'l(—2k2+7k+5pk—2p2-6p-1l»)] .
n

4.2 Test of H Versus H_,
mve m' ve

Gleser and Olkin (1972) show that thc likelihood ratio test statistic

+.. ., Tfor testing H ageinst the alternative H , , 1is
mve,m' ve mve . m've
k ]
L. (1) , 3N
()-l»-lB) }\mvc,m'vc' = N X (1) i )
| m (z v + A) l':'
i=1
where
i i i :
(4.1k) ge)l = Vge) - )(v( )) ]v , i=112,...,k .
However, instead of A mve,m've ' ? let us modify the statistic by replacing
k

N. by n. =N, -1, i=1,2,...,k,and N by n= I n, , everywhere

i i i i=1

in (#.13). [There is more than one way to modify the likelihood ratio test

statistic along the lines suggested by Bartlett (1937). One way is given

~4
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here; another, and possibly preferable, way is considered in Gleser and

Olkin (1972).] The resulting statistic is

zn,
|

TRV D e

i=1 i i=

HERCET
i=1l

To obtain the c.d.f. of U2 let U be a similar modification of

1

the likelihood ratio test statistic for testing hypothesis H , against

m've
general alternatives. Gleser and Olkin (1972) have derived the likelihood

ratio test statistic. From their result, we find that

Comparing the statistic W defined in (k4.k4) with U, , and recalling

that Iv(1)| = lv )Ilvég)ll for i=1,2,...,k , we see that

(4.17) w.—.UlU2 .

Since under H , ., the statistics -(i) -(1)(v(i) 'lv(i)

(Vﬁ))'lvg) ’ Vgg)l , i=12,...,k, , and ( § V(l +ay) are

complete and sufficient, and since the distribution of Ul is the same
for all values of the parameters u(l),u(z),...,u(k) s z(l),z(g),...,z(k)

obeying Hoiger 2 it follows from a theorem of Ba.ua (1955) that U, and

U2 are statistically independent under Hm'vc' (and thus under Hmvc ).
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Note that U. has the same form as W , except that U, 1is a function

1l 1l

only of x(l)(j) s d=L2,000 N 5 i= 1,2,..0,k . That is, U, isa

q -dimensional version of W . The moments of W under Hmvc are known

[they equal the product of (4.5) and (4.8)]). The moments of U; under

Hmvc can be obtained from the formula for the moments >f W by everywhere

replacing © by q . The moments of both Ul and W under Hmvc are

thus of the form (l.l). Since Ul and U2 are independent under Hmvc B

and since W =UU, , the h -th moment of U, under H equals the
172 2 mve .

h -th moment.; of W under Hmvc divided by the h -th moment of Ul

under H . Thus the moments of U, under H have the form (1.1).
mve mve

2

From the preceding discussion and the results of Sections 1l-5

(particularly Theorem 1), it follows that the c.d.f.'s of U U

1’ 2’

and W all have asymptotic expansions of the form (1.3). Let £ , p,
and ¢ be the coefficients in the expansion (1.3) for the c.d.f. of W ;
these constants are given by Equations (4.10), (4.11), and (4.12),
respectively. Let f*g“ ’ p*é , and o*é be the coefficients in the expan-

1

version of W, the coefficients f‘*i s p‘i , and m’i can be obtained

by substituting q for p in the formulas (4.10), (4.11), and (4.12)

sion for the c.d.f. of Ug , 8=12 . Since U, 1is a q -dimensional

respectively. Finally, from Theorem 1 we know that

f¥p¥ + f¥p%
2P2
f__:fi+:£‘§ , p=_1#i‘_ ,
(4.18)
(e1)%0% + (05)%3  riny
@_91 1 2°2+12(*-*)2
= 2 b Py T P :

P
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%

Solving for %, p% , and o% in (4.18) yields

2

(b19) E=f-fr=z(k-1)(p-al+a*3) ,

*
2 1l

fo - f¥p*
p*.__p_lpl=l_[ g_]_-_l][Ep2+2PQ+2q2+5p+5q-l
2 £% LV 6(p + g+ 3)(k - 1) ]
(4.20)
_[p+q-k+2]
n(p + q + 3) ’
2 2 2
LAt - (e} - o3) °
(o%) M (on)?
el s =l 2 ? - 0P ) - (@ - )+ 2)]
238(g5)‘ e (ni)2 n2
(4.21)

-1 (12)(x - Jé)(p - q) 3(p + a)(k - 2) - 2(p° + pq + 0°)
n

- 2%+ Tk - W] - 72r3(2 - p3)?)

Wie conclude that

2 -5
P(-2 log U, S t) = (1 - qﬁé)P[x‘?fg < pkt) + ¢§P[Xf,§+h < pft) + 0(n ) |

(4.22)

. vhere f§, 0%, and o% are given by (4.19), (4.20), and (4. 21)

respectively.
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