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A Note on Box's General Method of Approximation for

the Null Distributions' of Likelihood Criterial

by

Leon Jay Gleser

The Johns Hopkins University and Educational Testing Service

and

Ingram Olkin

Stanford University and Educational Testing Service

1. Introduction

Many multivariete test statistics (such as the likelihood ratio test

statistic for MANOVA and the Bartlett modification of the likelihood ratio

test statistic for testing the equality of covariance matrices) have null

distributions whose h -th moment Mh is of the form

J

(1.1) Mh = K
n (xi )

I

H r(xi 1 + h
1=1
J

H + h

j=1

h 0 1 2
/ P."

where K is a constant (such that M
0

= 1 ), the x's and y's are positive

numbers, and

I J

(1.2) E x. = E y.

i=1 1 j=1

Such statistics have a range of variation from 0 to 1, so that the moments

M
h

, h = 0,1,2,... , determine the null distribution.
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For any statistic

Box (1949) has propos

bution function (c.d

determining the cr

variate tests men

given [see Ande

(1.3) P(-2 1

Here, S =

(1.4)

(1

-2-

W , 0 < W < 1 , whose moments are of the form (1.1),

ed an asymptotic expansion for the cumulative distri-

.f.). This, expansion provides an accurate method for

itical constants defining rejection regions for the multi-

tinned above. One form in which this expansion is often

rson (1958; p. 207)] is the following:

2
og W < t) = (1 - )P(Xf < pt) + 0P(Xfo4 < pt) + R(B)

I J
E xi E y.

1 1

f = -2[ E Ei - E n. -
1

(I - J)] ,

i=1 j=1

I
21 2 ,

Y. n.)].5) 0 = - p)xi + t) - E y. B k(
-6p

2
[

xi

B
3

((

I j=1 3
3 3

p is the solution of the equation

- ,
(1.6) E x.

1
B
2
((1 - p)x. + E y. 1

B,%(1 - y. + ) = 0

i=1 j=1 3 `

and R(B) is a remainder term. [Note: p is chosen so that Anderson's col

is 0.] Also B1(u) , B2(u) , and B3(u) are the Bernoulli polynomials of

degree 1, 2, and 3 defined by:

(1.7) B1(u) = u - B2(u) = u2 - u + B
5
(u) = u3 _ 2

2u +
1
fu



If lim lx. > 0 and lim (1 - p)x. exists, i = 1,2,...,1 ,

--) co
_403

and if lim ly. > 0 and lim (1 - p)y exists, .j = 1,2,...,J , then

S co
J S ) co

Anderson (1958, pp. 205-207) sketches an argument which shows that the re-

mainder term R(B) in (1.3) is 0(S -3) as 5 -4,w . In the case of the

likelihood ratio test for MANOVA, Anderson (1958) gives examples showing the

high accuracy provided by the approximation (1.3).

Determination of the constants 0 and p defined by (1.5) and (1.6),

respectively, is usually a very cumbersome task. In Section 2, we show how

this task can be considerably simplified by taking advantage of certain

relationships among the Bernoulli polynomials Bk(u) , k = 1,2,3 . As a

result, we obtain convenient formulas for f , p, and 0 for the

important special case (which includes the null distributions of the like-

lihood ratio test statistic for. MANOVA and for various special cases of the

likelihood ratio test statistic for independence of sets of variates) in

whichT=J,thex'sandy.'s are all equal, gi is linear in i , and

11 is linear in j

Let W
1

and W
2

be two statistically independent random variables,

Where each W. has range of variation from 0 to 1 and has moments of the

form (1.1). It follows that au asymptotic expansion (1.3) for the c.d.f.

ofW.canbegiven,i=1,2.Letf.,p. , and 0i be the constants

in the asymptotic expansion (1.3) for the c.d.f. of Wi , i = 1,2 , and

suppose that the values of fl , f2 , pl , p2 , 01 , and 02 are

known to us. Let W = W1W2 . It can easily be shown that 0 < W < 1 and

that the moments of W have the form (1.1). Thus, one can obtain an



asymptotic expansion (1.3) for the c.d.f. of W . Although the constants

f , p , and 0 in this expansion can be obtained ab initio by calculating

the moments of W and then using formulas (1.4) through (1.6), or the

simplifications of these formulas given in Section 2, it would be more

convenient to obtain the constants f , and 0 directly from the

given values of f
1 '

f
2 '

Pi , P2 , 01 , and 02 . Formulas for doing

this are given in Section 3. Section 4 provides two illustrations of the

method.

2. Simplification of the Formulas for p and 0

In this section it is shown that if the h -th moment of the random vari-

able W , 0 < W < 1 , is given by (1.1), then the constants p and

in Equation (1.3) can be obtained as follows:

1
(2.1) p 1- f

- ( E x1B
2
(E. ) - E 5rj 12 (n

j
)] 1

. ,
1=.1. j=1

and

I
J ,(2.2) -

1

i

[ E
1 1

x. B
3 '

(E,)
1

E
1
Yj

2 3 /
B3(n) + P)

2
fJ6p' =.

where f is. given by (1.4).

To verify (2.1), note from (1.7) that

(2.3) B2(w + v) = B2(v) + 2wB1(v) + w2

and hence

411111I



Note that

(2.5)

((1 u. + v.)
1 1

-5-

L _1 2
= E u. B

2
(v. 2(1 - p) E + - p) E ui

i=1 i=1

I

E B
1
(

i=1

J

E B
1
(i

j=1

J
1

= E -
1

E qj +fJ
i=1 J=1

1= -

i=1

I J

Since Z x
i j

= E y it follows from (1.6), 2.4), and (2.5) that p is

i=1 j=1

the solution of

J

(2.6) E x: ( E j 2 j
- p)f = 0 ,

1
i=1 j=1

which is equivalent to (2.1).

To verify (2.2), note from (1.7) that

(2.7) B3(w + = B3(v) + 31.7B2(v) + 34.(v) + w3 2

and hence

E ui
2
B3 ((1 - p)u. + v.)

i=1

L ,

v
1

(2.8) =
i

E
1
u
i

2
B3
(.) + 3(1 - p) E

1
u171B

2
(v.)

1 1==
L L

+ 3(1 - p)2 E B
1 ira
(v ) + (1 -

1
E u.

1=1

6



Equation (2.2) now follows from 1.5 (2.1), 2.5 and the fact that

I J
E x. = E y
i=1 1 j=1

If the h -th moment of W has the form (1.1) with

1 x2
= xi = yi = y2 = = yj Z = a + bi

and T = c + dj , j = 1, 2, ... , J , then from (1.4),

L L
(2.9) f = -2( E (a + bi. ) - E (c + dj)]

i=1 j=1

= .-21,[ (a - c) + - d)(L + 1)] .

Also, from (2.1), (2.9), and (1.7),

1 L
p = 1 - [ E (a + bi)

2
- E (a + bi) - E

iz
i=1 i=1 j=1

(2.10)

f

fz `

r a2

Finally, note from (1.7) that

1
B
3
(u) u3 -

2
B
2
(u) - B1(u) -

C +
2 L

E
j=1

c + dj)]

From this fact, (2.1), (2.2), and (2.5), it follows that

f



(2.11)

L
-z2 p20= E [(a + bi)3

i=1

c + di)3] - (1 - p)zf +

+
2

( - p) z2f .

By a direct evaluation we have that

L
E [(a + bi)3 - (c + di)3]
i=1

(2.12) = (a3 - c3)L + (alb - c2d)(L)(L + 1)

1 2 2., 1 2
+ f (oh - cd )kL)kL + 1)(2L + 1) 7 (b3 - d )(L )(L +

Thus, (2.11) and (2.12) together give us a formula for computing

3. Approximation for the Distribution of the Product of

Independent Statistics Whose Moments Are of the Form (1.1)

Let the independent random variables W
g )

0 < W
g < 1 be

independent, with h -th moment lf the form

J s

g
h g

II (Y,i) II r(x (1 + h) + ggi)

(3.1) E(1.1 )
h . K dEl___

J
2L____ i=1 gi

g g I x.
H
g

(x .) H
g

r (Ygj .(1 + h) + ngi)

i=1 gl

fp.

j=1

h = 0,1, 2, ... ,

I
g

Jg

where K is a constant (such that EW° = 1 ), and E x = E y ,

g g i=1 gi j=1 gi

for g = 1,2 . Let



(3.2) = W
1
W2

-8"

It then follows that E(W)h =
1
)hE(W

2
,)h and hence the moments of W

are of the form (1.1) with I = I1 + 12 , J = J1 + J2 ,

x. =
1

2,i-11

3.3)

,j-J1
{

i- ,

nij ,

I J
Note also that E x. = E y. =

1=1
1

j=1
j

'

if i = 1,2,...,11

if i = Il + 1,12 + 1,...,I

if j = 1,2,...,J1

if j = Jl + 1,J1 + 2,...,J

Since the moments of W1 W
2

, and W are all of the form (1.1), it

follows from the results of Sections 1 and 2 that the c.d.f.'s of these

three variables can be expanded in the form (1.3) The coefficients fg ,

p
g

,

g
for the expansion of the c.d.f. of W , g = 1,2 and the

g.

coefficientsflp slfor the expansion of the c.d.f. of W are

expressible by means of equations (2.5), (2.1), and (2.2). From these

expressions and (3.3), it can be shown by some straightforward algebra

that

(3.4) f = f + f
2

,

(3.5)

and

flpl + f2p2

f

al



2 2

(3.6)
P14)1 P2.2 flf

2
p2)202

4fp

Equations (3.4),

efficients f

(3.5), and (3.6) thus provide a way to compute the co-

p , and in the expansiOn (1.3) of the c.d.f. of

W = 1011142 in terms of, the coefficients fg 08 , and og in the e:pansion

(1.3) of the c.d.f. of W /
g = 1,2 . We may generalize these results by

induction and obtain the following:

Theorem 1. Let the statistically independent variables Wg 0 < W < 1 ,

have moments of the form (3.1), g = 1,2,...,G Let f ) Og )

and

Ig Jg

Sg =E x. = Eyg3 . be the constants in the Box expansion (1.3)

g 1=1 gl j=1

of the c.d.f. of Wg = 1,2,...,G . Finally let

(3.7)

Then

W= Jr W
g=1

(3.8) p(-2 log W < t) = (1 - 0)1'((2
f

< pt) + OP(X2
f+4

< dot) + R(S)

G
where S = E

g=1 g
,

G
f = E f ,

g=1 g

0 =
1

E 0 ',and

g=1 g g

G

=
1 2 1

(1) E Peg
40

2
f gE

fgfh (0g 0h )

2p
g=1

1.0
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Two application:i ')f Theorem 1 to multivariate testing problems are giveo

in Section 4. Note that if in the Box expansions for W
l' 2'
W ...

'

W
G

, each

,is 0(5 g3) as 6
g

....) 03 and if 61,62,...,6G are all asymptoticallyR
g
(6
g

)

of the
-

same order of magnitude (i.e., lim
g h

> 0 as g h ,c0 for

all g / h ), then. R(6) in (3.8) is 0(6
-3

) . In practical use of

Theorem 1, the 's will usually be asymptotically of the same order of

magnitude. If the s are not asymptotically of the same order

of magnitude, Equation (3.8) is formally correct (when 6 ,

and m are defined as in Theorem 1), but the order of magnitude of the

remainder term R(6) in S. must be separately investigated.

4. Applications to Multivariate Hypothesis Testing Problems

Suppose we are interested in testing whether either the mean vectors

and/or covariance matrices of k multivariate normal populations are

identical. Suppose that an observation ( p dimensional rol,,
(i)

from the i -th population has a p -variate normal distribution with mean

vector p (1) and covariance matrix E.
(i) i = 1,2,...,k . Let x (i)

be partitioned as (xi(i) x2i) ) where x1 is 1 x q , and let

(4.1) p(i)
(P1 '2

(i)
P
(1)

)

E(i)
E

21

11

E(i)
22

12

be correspondingly partitioned, i = 1,2,...,k . Suppose that we observe

Ni observations 4'rom the i -th population, i = 1,2,...,k

We consider two tests of hypotheses. The first test compares the null

hypothesis.



(4.2) H : p
(1)

= p
(2)

= = p(k)
E(1) E(2) E(k)

mvc

against general alternatives. In the second test, we compare the null

hypothesis H against the alternative:
mvc

(4.5) H
m vc' 1

1)

1

2)
-

g(k) E(1) E(2) r(k)

1 ' 11
Eli) -

"11

Let c(i) = X(i)) be the sample mean vector and let
1 ' 2

/ (i)

V' =V(i)
11

V
12

V(i) V(i)
21 22

be the sample cross-product matrix from the i -th population, i = 1,2,...,k .

-(1) -(2) -(k) (1) (2) (10%
Then (x ,x ,V IV ) is a sufficient statistic

k
for bpth hypothesis testing problems. Let N = E. Ni ,

i=1

and

(7c1,7c2) N E NiucliAi))
1=1

A =
A
21

A
22

i=1
= E Ni(x - x)1Cx(1). - x)=

4.1 Test of H Versus General Alternatives
mvc

Anderson (1958) suggests testing Hmvc against general alternatives 1.y

means of the test statistic
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HI-1 V(1)12n1 IlEV(i)1 V2n

k

(

. k _ . k

n

V

(4.4) _ 1=1 :i

1 2 v(olin ( (1) A)I
n

1=1
n

i=1

W
1
W
2 '

k
wheren.=N.-I,i=1,2,...,k,andn=En..The statistic W

1
1=1

is the likelihood ratio test statistic for testing E
(1)

= E
(2)

= = E
(k)

against general alternatives, but modified [along lines suggested by

Bartlett (1937)]by everywhere replacing the sample sizes Ni by the degrees

offreedom,n.,of V (i)
. The statistic W

2
is the (n/N) -th power of

the likelihood ratio test statistic for MANOVA.

As Anderson (1958) shows, the statistics W
1

and W
2

are independent

when H
mvc

holds, and also

k p
n n r( + h) + (1 - s))

(4.5)
E(wi)h i=1 s=1

/
H r(

1 n(l + h) +
1

(1 -t))
t=1

Thus, the moments of W
1

under H
mvc

are of the form (1.1), and we can

use the Box expansion (1.3) for the c.d.f. of W when N
1
,N

2'
N
k

are

large and of the same order of magnitude. Although the constants f
1 '

p
1 '

and 0
1

in the expansion (1.3) of the c.d.f. of W
1

can be obtained directly

from (4.5) by use of the methods of Section 2, Anderson (1958; p. 255) has

already shown that



(4.6)
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f
1 2
= (k - 1)p(p + 1) ,

1

k 2

Pi= 1 E -1-1) 1

n n 71) 4 k - 2)
i =1 i

01

k

P(P 1)[(P 1)(P 2)(
1 )2 1 N2-

) 6(k - 1)(1 - p1)2]

i=1 ni
n 1

48p1

[In comparing (4.6) with Anderson's results it should be noted that his q

is our k .]

Anderson (1958; p. 207) gives the h -th moments of A = (1412)N/n

under H as
mvc

H r(
1N(1 + h) - 1 (k - 1) -

1
s)

(4.7) E(W)
h

= K

, 2

2
P

r(
1 1

it N(1 + h) -
2

t)

t=1

where (4.7) holds for all real h for which the gamma functions exist.

Hence,

%

H r(2 n(1
1 1

h) + - s)%=
E(142)

h
= K

2

s

p
1

r(2n(1 +h) +2 -2t)
t=1

Thus, applying (2.9), (2.10), (2.11), and (2.12), with L = p , z= n/2 ,

a = 1/2 , b = -(1/2) , c = k/2 , d = -(1/2) , we find that



f
/ .

P( -2 log W
2
< t) - (1 - 0 )14X

f
2

< p
2

t) + 02PLX. L < p
2
t) 00 -3

j
2 2

where

(4.9)

f2= p(k - 1) I

P - k + 2
p
2

= 1
2n

r , 1

Elk - 1)Lp
2

+ (k - 1)
2

- 5i

(P2
48n

2
(p
2

)
2

To obtain an asymptotic expansion for the c.d.f. of the test statistic.

W under H
vc

, Anderson (1958; p. 255) goes back to the h -th moments of
m

W and applies the Box expansion method ab initio.

However, we already have the constants f1 f2 pl
1

p2 of

and 02 from the asymptotic expansions of the c.d.f.'s of and W2 .

Using Theorem 1 of Section 3, we thus conclude that the constants f , p ,

and o in the Box expansion (1.3) of the c.d.f. of W are given by

(4.10) f = fi + f2 (k - 1)p(p + 3) ,

f p + f...e o
2

k
1 1 1 1 1 2p

2
+ 3p -1 P - k + 2(4.11) P= - 1 - ( E

f n. -n) 6(p + 3)-(k - 1) n(p 4 .5)
i=1 1

and
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2 2

-

p1to
1
+ p2O2 flf2

2 (Pi p2)

2

p 4p f

k
(4.12) = P [6( E

1
2 )(P

2
1)(13 + 2) 36(1) + 3)(k 1)(1 02

288p
2

(ni) n

-
12(k2 1)

(-2k
2
+ 7k + 3pk - 2p

2
- 6p - 4)]

n

4.2 Test of
/11Nt

Versus H
m , vc'

Gleser and Olkin (1972) show that the likelihood ratio test statistic

A for testing H against the alternative H
'

is
mvc,m've' mvc m'vc

k IN4 1 2 1
Vii)

1

1 (.1., I 1/1 f r ull/ 4. A )1-2-N

I" 7 k " vil 111(11 N. V22.1
i.1 1 im--1

(4.13) ?mvc,m'vc' k .

I
1

N
I ( E V

(I)
+ A) 12

N
i =1

where

(4.14) Vg ) = -1/1t)(1/11))1qP , i = 1,2, . . . , k .

2

However, instead of A ,, let us modify the statistic by replacing
mvc,m vc

k
N. by n. = N. - 1 , i 1,2,...,k , and N by n E n. , everywhere

1 1 1 i=1 1

in (4.13). [There is more than one way to modify the likelihood ratio test

statistic along the lines suggested by Bartlett (1937). One way is given
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here; another, and possibly preferable, way is considered in Gleser and

Olkin (1972).] The resulting statistic is

11 I -L. V(i) 1) 11 (i)
n. 22.1 ( .E V11 A11),"i(

(4.15) U2 -
1=1

( E V(i) + A)lin
n

i=1

To obtain the c.d.f. of U
2

let U
1

be a similar modification of

the likelihood ratio test statistic for testing hypothesis H
m vc

against

general alternatives. Gleser and Olkin (1972) have derived the likelihood

ratio test statistic. From their result, we find that

II 1 -1 - V(i)I-2ni
n. 11

i=1
(4.16) U

1

1

I

n
( E V11) + AllWn

i =11=.1_

Comparing the statistic W defined in (4.4) with U1U2 , and recalling

that IV(i)I = IVIVIIVW11 for i = 1,2,...,k , we see that

(4.17) W = U1U2

Since under H,
the statistics 41) - Xii)(V11))-1VIP ,

vc

(V))1V(i)
'

V(i)
11 12 22.1 '

i = 1,2,...,k ,
1'

and 0
1 1

V(i) + A
11

) are
= 11

complete and sufficient, and since the distribution of U1 is the same

for all values of the parameters
(1)

,4
(2) (k)

E
(1)

,E
(2)

)..-)E
(k)

obeying H
m'vc

, , it follows from a theorem of Ba,a (1955) that U1 and

U
2

are statistically independent under H (and thus under H
m'vc'

Hmvc
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Note that U
1

has the same form as W , except that Ul is a function

only of x(1) (j) , j = 1,2,...,N. ; i = 1,2,...,k . That is, U
1

is a

q -dimensional version of W . The moments of W under H
mvc

are known

[they equal the product of (4.5) and (4.8)1. The v4vIents of U
1

under

Hmvc
can be obtained from the formula for the moments .)f 4 by everywhere

replacing p by q . The moments of both U
1

and W under H
mvc

are

thus of the form (1.1). Since U
1

and U
2

are independent under H
mvc

and since W = U
1
U
2

, the h -th moment of U
2

under H
mvc

equals the

h -th moment of W under H
mvc

divided by the h -th moment of U
1

under H
mvc

. Thus the moments of U
2

under H
mvc

have the form (1.1).

From the preceding discussion and the results of Sections 1-3

(particularly Theorem 1), it follows that the c.d.f.ts of U1 , U2 ,

and W all have asymptotic expansions of the form (1.3). Let f , p ,

and o be the coefficients in the expansion (1.3) for the c.d.f. of W ;

these constants are given by Equations (4.10), (4.11), and (4.12),

respectively. Let f*
g

, p* , and 0* be the coefficients in the expan-

sion for the c.d.f. of Ug , g = 1,2 . Since U
1

is a q -dimensional

version of W , the coefficients
' 1

f*
1

p* ,
1

and o* can be obtained

by substituting q for p in the formulas (4.10), (4.11), and (4.12)

respectively. Finally, from Theorem 1 we know that

(4.18)

f*p* f*p*
1 2 2

f = f* + f* P
1

1 2 '

2 2
(P*) 0* 4 (P*) 0* * f*

21 2 2 1 2
o -

2 4f (Pi P2)
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Solving for I , 64 , and tot in (4.18) yields

(4.19) I =f - fr = i (k - 1)(p - q)(p + q + 3)

(4.20

(4.21)

fp - fs* fp*

rof
1 1 1- 2p2 + 2pq + 2q

2
+ 3p + 3q - 1 ,

- 1 - ( E ]( J
1-'2 pf . , n. n 6(p + q + 3)(k - 1)

2 1=1 1

rp+q-k+ 2 1

' n(p + q +3 '

P20 (PI)201 r*1 f*2 (P*1 P*2 )

2

o*
2'

-

(P*)2
li.f 2

(Pt)

l

k
1 1 1 2 ., 2 2 . 2

.

288(rs,
2
) (61 i=1 (ni) n

2 7 1[(P 1)(P + 2p) - (q - 1)(q + 2q)]

(12)(k -

2
1)(p q) ] [ 3(P + q) (k 2) .. 2(p

2
+ pq + q

2,
i

n

- 2k
2
+ 7k - 4] - p72f*2 (1 p J

,2,

We conclude that

P(-2 log U2 < t) = (1 - 42)P(X2f1. < ptt) + 41P(X2i.+4 < ptt) + 0(n-3)

(4-22)

where fl. , pt , and o*
2

are given by (4.19), (4. 20), and (4.21)

respectively.

,
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