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MONOTONICITY PROPERTIES OF DIRICHLET INTEGRALS WITH APPLICATIONS

TO THE MULTINOMIAL DISTRIBUTION AND THE ANOVA TEST

o » ‘ Ingram Olkin
Stanford University and Educational Testing Service

SUMMARY
Bc;uhds for the tails of Dirichiiét inte';grals‘ ‘_a'lje esté.bliéhed b'yl_
‘showing, that each integral as a fun’ctio'n' of vthe limitsvis a Schur
tanction. 1In pai;tiéular, it ié shown how these bO};nds apply to the
- ;imulta.ﬁeous analjsis of variance test and to the multinomial distri-

" bution.
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MONOTONICITY PROPERTIES OF DIRICHLET INTEGRALS WITH APPLICATIONS

TO THE MULTINOMIAL DISTRIBUTION AND THE ANOVA TEST 1

. - Ingram Olkin A
Stanford University and Educational Testing Service

1. - Introduction. .Thevpresent paper is concerned with establishing

_ bounds for the Dirichlet integréls :

a .
1 K k w1 qk ’
Ll(a) = f ]:Etl (1-2t.) mat, , (1.1)
. o} 0
a a
1 Kk . k - ‘
) WPl "d :
0 0 1 ;
- - K . |
w-1 -d . : ' =
v = [ o f ey eze) T ey @
i 8.1 ak . o

vhere a = (al"""ak)’ and 4 is s'ﬁchAthat_t‘;:he' in{;egrgls exist. o

The main reéult is that under certain conditions, -Ll(a.), -Le(a),
and -U(a) are Schur functions in (a.l,...,a.k), (see e.g., Berge (1963)
or Marshall, Olkin and Proschan (1967)). As a consequence of thivs fact

it follows that if

CHPPRIVL) > (byseeesb))

_ lWork supported in part by Educational Testing Service and by
National Science Foundation Grant GP-32326X at Stanford University.
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in the sense that, after possible reordering, with

>... >
by 2 ... 2 b, that

v -k k ' v
i m=l,...,k-). ’ iai = ]Z_bi : C(1.4)

holds , then

L, (a) 5Ll(b) » Ly(a) SLe(bv), u(a) < u(b) - L (1‘.5):

In this way we can generate many ineqﬁalities. Both the multinomial
distribution and "the simultaneous analysis of variance test are relate_d
to Lz(a) and U(a), respectively, and we"provvide several new results

as a consequence of ,(l.yu).

2. | ~ The main resultss / We next‘;prove the main fesults cbhcerning
L, (?.), La(é.) ,gnd U(g). Theorem 1 is sta.tﬁedvmofe g‘eher"all;ir and
vehc‘o‘mpa.ss'es both L,'l (a) eand L2(a). | | |

To show fhé.t a function F(a) = F(al,‘..,ak)' is a Schur funcfioh;'

we must show that

(0 3) oy 2o

1

for all i and j.




Theorem 1. If f£(x) is a non-negative monotone decreasing function,

M B kwi-l ‘ :
L(a;w) = f f 2(ze) Mt odt, | (2.2)

0 0 1
> e > > < < s oo < - 3 i
where &, 2 2 a, 2 O,‘ 0wy Seee Sy then »L(a,w) is a

Schur function in (a, ,...,ak), whenever the 1ntegral is finite.

Proof. Because of symmetry, we need only consider (i,j) =(1,2) in

showing that (2.1) holds for _-L(é.;w)._ It is immediate from (2.2) --

'noting the condition on £(x) -~ that

: 25  wl gw-d I
i’%-‘ﬁ = f .. f £(a, +2t, REN ¢! m. i oat, (2.3)
» 2 i B R . .
1 0 : ‘ .

2-

w.-1l k Wi"l k
f f a.l f(a. +a, z+Za. A ) z ny. dz T .dy, .
35 3

Condition (2.1) for -L(a;w) will be satisfied if

-1”‘ Ck W -1

f f[a. f(a. ta, z+Za. y )z - a.-lf(a. zta_+3a.y.)z 1 ] (2.4)
2 1" 2 3 ivi
k
az T dy, <0 .
3

A sufficient condition for (2.4) to hold is that, pointwise,

_ wa-l ‘ wl-l 2.5)
aaf(alhzz-i-Q)z < alf(alz+a2+Q)z . (2.

>




I

<z < + ' ; ) + <
For 0<z<251, (a.:L a2z+Q,) > (glz+a2+Q,, so that f(al a.27.+Q,) <

’f(alz+a.2+Q,)., Since O Swy Sv, 2 2 < 2%, and (2.14) holds. |l

The result for U(a) is more delicate and a pointwise argument

does not carry through.

. >ooo' > < <ooo< »
Theoren_nE If 8, 2 a.k_O, 0<w = S and

kwi-l
o w It dt, ,
. 1 1 i
U(a;w)=ﬁf f 5 (2.6)
+ o
, ay "o (1+Zt, S

where d 2 Zwi, then -U(a;w) is a Schur function.

Proof. Because of symmetry, we need only'con's.ider' (i,5) = (1,2) in

showing that (2.1) holds for U(a;w). It is immediate that
o o ’ w-l kw1

1
o al, , ]'alti dt‘i

+t + ...+
8, (1% *t, t,)

. ‘(2.7)
%0, 2

auga;.w} _ _f

as

Let tz-‘a.2=z‘ and interchange order of integration; then (2.7) .

becomes
. . . wl-l wa-l
o L [ f e ey [ (g " & )
1 2, o 3 ) (l+al+a2+z+t5+...+tk)




We now use a pointwise argment on the inner integral with ' Zti

‘61,...,9k]

k

_ -k _ 37 .
fixed. Let 2z = (l+al+a2+2ti)v = gv then the inner integral becomes
w,-l . w,-l
oo alq' '(sV"'aa) 2 _ ‘ : o
= - dv : o (2.9)
L st -
Consequently, ir a, > aa,' (BUa(:.;w) - aJaS‘;w)) < 0 provided
w, -1 woel o w._=1 W, -1
Y [va]_]'. (sv+a2) 2 -ae‘d (sv*a.l) 1 ] | .
f — 3 — v 20 . (2.10)
Jo , (1+v)" - - SR

The ordering O < vy < w;, guarantees that the integrand be non-
: 2 ‘ _ ) .

negative, so that (2.10) holds.ll

3, An application to the multinomial distribution. Let X = (xl,;..,xk)

- have the multinomial distribution

g ‘ o _ . . )k. x, . ,
i P{x=x) = ( e~ , o (3.1)
) . . E - ixl,ooo,xk l 1 » ‘ . ’

where x = (xl,...,xk), Zx, =n, 0y > 2 0y >0, zei=1, and

consider the tail probability P[Xl 2 Tyeee ,Xk 2 rlel,.. . ,ek], with
r < n/k.
Alam (1970) obtains lower and upper bounds for P[)(l 210Xy > rl

by averaging some of the 6's, namely

i

AU M b s I e Y e e st - .



g ere00) S P(xlzr,...,xkzrlel,...,ek} (3.2)

P{Xl 2r,. . ,Xk Zr!e*.' »0

< P(X) 2750 ,xk'zrla.. .58)

where 0% = 1- (k-l)e and 6 = 20, /k. It has been showh by Olkin and
Sobel (196‘5) tha.t P[X >r,...,x >rlel,...,e ] has a representatlon .

in terms of the D1r1chlet 1ntegra.l ‘

dk r l ‘
: P{x >r,...,x >rlel,...,e ) = n(n,r,k)f f (1- Zt ) : t (3.3)

| , N
‘where d=n-kr >0, and R(n,r,k) = l"(_n+l)/t[ l"(r)]k I'(n-kr+l) }. We may

now make use of Theorem 1 with Wy = =w, =T. Thus, if 0 < P, <1,

0 <q <1, and (pl,...,pk))- (ql,...,qk), then

c..‘ > o’..' : see > ‘e o o‘
P(xlzr’ . ’xk"?lpl’ :Pk] S P{xljr: :Xk_rlql: ’qk]- (3.4)
‘The results of Alam are special cases of (3.4) since

(6%16, 5+ ++28,) > (81,0.258,) (6,...,8) .

Clearly, many other intermediate bounds can now be obtained.

For the lower tail of the multinomial distribution (3.1), we

have the representation




c(o;r) = P(X; <1ye0esX < ilel""’ek]/",“(n:r)m) e 5.5

.m~1

m m ‘ ‘
-Zt,
f f J (1-7t)° et Tat,
: B ll 1»
8, 6, ) ‘
m

where- m < min(k-1,n) and d=n-kr >0. As in Theorem 1, a direct

' dlfferentlatlon of (3.5) with respect tc Gl, followed by the change of

valeable‘s t -6,=v, t.,-0:= ,J., -5,...,m, ylelds

2.2 d J
v ‘ m~1 , . v
. 8, 6.~v. 8,.-v~ Z 2z ' C
fa.-y. . O A0 0 J ' - mo m.
o (6;r) =-f f f 5 (e (v+6 )I[(z 49, ) ]r 1(9 -v--ZZ.)ddrI[dz. y
o6 J- . : ~J 07 .7 . 37
1l p) p) p)
: 00 0] _ o ‘
. m -
where 6. = 1-Z6.,. By symmetry,
) 0 1 i :
i v m-1
6. 8.-v . 6. .~-v-2Z z,
. 0 .0 . Zo J ~
a_Cﬁ:—rl;-f f f 5 [6(v+9 )I[(z 9 ))" (e sz)
08, : 3 dvndz
2 % Y% 39 J

o > s

That -~C:(6;r) "is a Schur funcfiqn_ follows from the fact that _

r-1 r-1
: - - + > .
(Gl 92)[(le+9162) (92v 6192) } >0 for all v

As a consequence, we have the

Corollary. If (Pl’ .o .,pk) > (ql, e ,qk), ‘then

l’ooo’pk

T 9

o

a

!
»
i
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4, An & 4pp;1cat10n to the 31multaneous analy51s of variance model. Suppoee»

two hypotheses are tested using the same error variance for each test, so ‘

‘that we have

_ ql/ Ny _ qe/ ny
Fl - n.’ F2 - n ’
o o

| o o . , »
where 9’ Q. and qa' are independently distributed as X7 variates

with no,'nl, and n, d.f. respectively. Kimball (1951) obtained the

inequality

» F, <F ] 2 P[F < F ] P[F

<
P(F SF 5 <

1o N L N (R 3
where FLa and Faz' are the 100 o percent points of the.distributions :

"~ of 'Fl ghd' Fé. ‘This inequalityiis of interest in that it provides a

_bound for the.probability of making no erfors of the first kind. We

may uée Theorem 2 to obtain a bound for P[Fl >F » F2 > Faa].

Supposg that‘ qlén2=n?-then

. o w
P(F, > F, F, 2 F ) =k f
[

e 8
=
N <
=
Q,
»
Q,
<
-
~
£~
N
~

where ¢ = nFa/no and k is a normalizing constant. Since (2¢,0) P (c,e),

we obtain from Theorem 2 that .

.

>F ) > > >0) =
P(F, 2 F, F, 2F,) 2 P(F) 2 2Fy, Fp 2 0) = P(F, > 2F,) . (4.3)

8 40




Since

» <
P(P <

< = <F. ' < + SF ,F. >F )= 4.4) -
F,SF.) P[Fl_Fla}+P[F27F2a] O GUN

Fla’ 2

we obtaix an glternative'inequality to that of (4.l); namely,

..
P(FJ. SFp F

P ) >op(F. <F ) - < (4.5)
, SF,) 22P(F) SF ) - P(F) S 2F,) . g

This is to be compared with

<
P(F, <F, F

o o
o ST 2 [B(F SEJT S we

~ We wish the largeir bound, so that we need to determine the sign of

-[P[El_<_‘Fa]] ;2P[F15Fa]+l~P[F1_32Fa]f[P[F13Fa” ?[FlzaFa] . _-‘ )

It turns out that the difference is not always of one sign. When n=2, _‘.ﬁff;

-n
N o ™
(p(r > )12 = (1425) O < (14ke) 2

n 0

= P(F >2c} ,
o . .

‘so that (4.5) yields a better bound than (h,6)4. With ng -~ w,,the

difference becomes

(p0C 2 ¢))? - PO 2 2¢) . (4.8)




T R Ny O e

m-1 . ' :
When n=2m, P[Xi 2c)=2Z ca/jl, and a straightforward analysis
0

shows that (4.8) is nonnegative.

For small values of c¢ {(less than co(n,no)), [P(F 2 c}]2 is
larger than P{F 2 2c}, wheréas for ¢ > co(n,no), P{(F > 2c} is
larger than [P{F 2 c]]2, where co(n,no) depends on n and Ny

As either n or n, increase, the constant co(n,no) tends to

jncrease. Since c¢ will, in generel, be of moderate size, it appears

that (4.5) is the better bound in practise.
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