AUTHOR	Evans, Diane
TITLE	Learning Activity Package, Algekra:,
INSTITUTION	Ninety Six High School, S. C.
PUB DATE	72.
NOTE	314 p .
EDRS PRICE	MF-\$0.65 HC-\$13.16
DESCRIPTORS	*Algebra; Analytic Geometry; *Curriculum;
	*Individualized Instruction; *Instructional
12	Materials; Mathematics Education; Number Systems; Objectives; *Secondary Schooll Mathematics; Set
	Theory; Teacher Developed Materials; Teaching Guides;
	Units of Study (Subject Fields) '

A set of ten teacher-prepared Learning Activity Packagès (LAPs) in.beginning algebra and nine in intermediate algebra. these units cover sets, properties of operations, number systems, open expressions, solution sets of equations and inequalities in one and two variables, exponents, factoring and polynomials, relations and functions, radićals, rätional expressions., coordinate geometry, quadratic equations and inequalities, quadratic functions, and systems of equations and inequalities. Each unit contains a rationale for the material; a list of behavioral objectives; a list of resources including textes (with reading assiqgnments and problem sets specified), tape recordings, commercial games, filmstrips, and transparencies; a problem set for student self-evaluation; suggestions for advanced study; and references. For other documents in this series, see SE 015 193, SE 015 194, SE 015 19.6, and SE 015 197. (DT)

ABSTRACT

AUTHOR
TITLE
INSTITUTION
PUB DATE
NOTE
EDRS PRICE DESCRIPTORS

I. Read Rationalo
II. Read BEHAシIORAL ORTECTIVES

2II. Rescurrues
A. Al: word mast os due an win noterati cencil only.

O. Nork al? tha Exeressor fors andex for sach gexal. Alway sout notebosk (see your teabler).
IV. Selx-Eveluation
A. Must be taken at completion of netiqutus yo each section.
B. Does not affert, your erade in gry mes
V. Advanced ${ }^{\prime}$ Study
A. To be done onzy after ali prewion motk ben
\therefore B. Must be approved by teacher.
VI. 'Progress Test and LAP Teet; "
A. Teacher graded
B. Recycling may take place at bis fox fir ar is not satisfartory.

DO NOT LOSE YOUR LAP. If you do; Yau wn buy shetis

Rationale (The Lifts Barros:

 of mathematics. Afore a ate any us : : wed
 * Familiar with wat a set is, abortion with sots, end how eats can be iaea.

In this LAP yo: will bo given 3 getematho ! atiady of the subject of sets, inclunifas the basic notation associated with sets. Other concepts you will study'are subsets, equality and matching sets, operations on sets, infinite sets, and graphing sets.

Section 1

BEHAVIORAL, OBJECTIVES : At the complot forn ce form nregenibed sourate
 it. f.n set notation.
2. Buosn any sot, written in tios desardelammethos.

 ou identify \hat{f} t.in tive doscription mentod.
4. Gtuor a particular set and a lisy or ásementa" tactce which ars elomentog of thet set ard micin are aci.

 whether or not the result is the empty set - $X,\{$.
7. Given a jist of numbers, be able ne ne thoze the are prime \& those thet are compomits.
8. Given any two sets, denote whether on rot troy are matching sets (ons to one comesporemeat.

```
VEFOL:M
```

Objective 1
Nanatta, read pp. 8-iz, Ex. ? page !
Nichols, read pp. 1-3, Ex. 6 page and pate
Hollensak tape C-345] Introduction io sets
Objectives 2,3
 13, 16 written (roster only) age? if
Objectives $4,5,5$
 pages 4-6.
Nichols, rad pages $1-3$, Ex. $1-4,6,9-11$ pares :a ane a^{\prime}

18, 10, page at
Wooton, read page 16-12, ex. 34-36 page ic

Introduction to secs, thames 1 - -7
Wollensāk C-3075, Prime inubers
Objective 7

- Payne, read problems 16, 17 on page 5, Ex. 15 , 16 page 5: 3 page 4

Nichols, read 4-6, Ex. 2-6 page 5
Wollensak. C-3010, Prime Numbers

$\underset{j}{\text { Objective } 8}$

Payne, read pages $12-14$, Ex 14,15 pages 75 , 16
Nichols, read pages 7, 8, Ex. Yo page 849
Dolciani, read pages $13-14$ Ex. $9-16$ and page 14
Wotton, read pages $20-23$, Ex. 27,28 page 25
Introduction to Sets frames 226-255
$\operatorname{sen}-\operatorname{sen}$

objective

1. I. Write tho folyowne aces in : \cdots atom

2. {Evm,n, Yeso tham 10}
3. {Evm,n, Yeso tham 10}

4. III. Rewrite these sets wan Rev antitank method

 , 17\% \{1, 妾, 3, 4, 9!
$4 \quad\langle 4\rangle \div$

 -

B
… -4 a.

 - 27. 13

- 28. 5
- 29. 9 .
- 30.6
_ $31.10!$
 - $32 . a=\{2,5\}$

$$
B B=\{1,3,8\}
$$

A
3
\qquad
\square
HR

$$
3 / 46
$$

$$
8=8
$$

$$
-35
$$

$350 A=$

$\stackrel{1}{6}$

7
C, m

 4.
 the ect Gifen az ios sumenset.
 bating jllustactor.

Introduction to Set's f:agn If - 1 ?

Objectiye 14

Nichols, read pages o-2l, pore pre
 Objectives 15 . 16

1. Payne read.pungext4 4 d

 Introduction to fets sfeme $\frac{1}{2}$

OBJECTIVES
11,12 2. Tatanty

\qquad
13 ry

\qquad
\qquad

\qquad
\qquad

-4-0.
\therefore ar wer deriy one subect of

 CONSULT OUS

The following is an application on aet theory
I- Teaks either kingdom and draw a ven diagram showing proper subsets. pe the sere titi me particular spoctos. The moot interesting may be sapiens.
2. - Color rV is based or ie idea that there are three primary color, each trinsmitseq separately and then blended in
 print oblong to sion for tho colors are blended. Use set

3- Given mi s following quarilaterats ooxstruct a Venn Diagram Shang their proper zaytionehigs.

Sou.
Square

Trapazois
4- Find the mime factorization of a,002.
$:$ 2
 erid \%inston, Inc., acos.
 . . . Cgicel sercent.

Cha sun cumbey , 7obl
 ABy
arocabt, bace and wora, Inc., 1965

 Git,

Favcett, Waroly Pl, Consintan, Mantes, Meriall USLicinne Zo., lost

Audic Vicuni

RATIONAIE (The gap !s Purpose)

Mathematics can be thought of as a game in which you perform moves by specific rules. For example:

WHAT NUMBER IS EQUAL TO $4+3 \times 5$?
You 'may work it out this way: :
$4+37_{8}^{7} \times 5=35$.
or you maygompute it this way:.
$3^{4} \times 5=15$ and $4+15=19$
As you can see theréare two possible answers!!
Obviously, both ways cannot be correct because 35 is not equal to 191 The expression $4 .+3 \times 5$ must have only one meaning! 'It is customary to use parentheses, which are mathematical punctuation marks; to make the meaning of such phrases clear.

In this LAP you will not only learn, dict parentheses are used butalso about the "order of operations" that is the order in which certain operations are to be performed. Though you have studied the properties of operations in the past, you will review them again because of their Importance In learning mathematics.

Behavtoral 0bsectyes

Upon completion of your prescribed conrṣe of study, you w111 be able to:

1. Write the simplest name for any numerical expression which invol the use of grouping symbols and orcien of operation.
2. Glven any mathematical sentence, identify which of the following properties (if any) are being illustrated.'.
a) The Commutative Property of Addition ($\mathcal{P} A$)
b) The Commutative Eroperty of Multiplication (CPM)
c) The Assoclative. Property of Addition (APA)
d) The Assoclative Property of Multiplication (APM)
e) "Symmetric Property of Equality" (SPE)
f) "Distributlve Property of Multiplication over.Addition" (DPMA)
3. Given any set, determine if it is closed with respect to a given
4. Glven any mathematical sentence, Identify which of these properties (if any) are being. illustrated.
a) Multiplicative identity
b) Property of one'for Ditrision (P1D)
C) : Additive identity
d) Property of Zero for Multiplication (PZM)
5. Given any mathematical sentence, identify which of the following properties is being illustrated:
a. multipícative inverse
b. additive inverse
6. Given any mathematical sentence involving one operation, write an equiva-lent sentence using the inverse operation:
7. Given any word phrase, of the type in Appendix I, translate it into an
equivalent mathematical phrase.
8. Correctly write a mathematical sentence of the type in Appendixirwhich woild be used to solve a given word problem.

- NOTE: (EOL means every other letter.)

Objective 1

Vanatta, read pp. 47-48, Ex. 1-4 page 47.
Dolciani, read p. 23, Ex. 18-20, 30-34. page-24.
Nichols, read pp. 31-33, Ex. 1-25 odd pages 33-34; 2 EOL page 37.
\backslash Payne, read page 18, Ex. 1-5 page 18.
Wooton, read pp. 10-16; Ex. 1-10, 25-32 pages 13-14; 1-10 odd, 17ヶ̧29 odd pages $15-16 ;$ 1-10 page 51.
Pearson, read pages 52-59, Ex. 1-25 odd page 55; 1-3 EOL pages 56-57; 1-5 EOL page 58.

0bjective 2

Vanatta, read pp. 27-33; Ex. 2, 7, 10 page 29; 13, 18, 19, 24 page, 34; 14, 15 page 37; 14. page 30; 6, 20 page 34.
Dolciani, read page 69, 73-76; Ex. 1-26 page 74; 15, 16 pages 100-101; $1,6,7$ page $70 ; 2$ page 98.
Nichols, read pages 34-37, 40-46; Ex. 1 page 37; 1 EOL, 2 pages 40-41;

- 1,2 EOL, 3 ,pages 42-43.

Payne, read pages 31-38, Ex. 1, 3 page 33; 1-51 odd pages 35-37.
Wooton, read pages 48-52, 55-59, 71-76; Ex. 11-28 pages 50-51; 1-6, 723.odd pages 57-58.

Pearson, read pp. 139-145, 166-169; Ex: 1-14 pages 141-142; 1-3, 4 EOL, 5, 6 pages 144-145; 1-4 EOL, 5-7 pages 168-169.
Woll ensak C-3453 The Commutative Property
C-3454 The Associative Property C-3455 The Distributive Property
Objective 3
Dolciani, read pages 70-71, Ex. 1-14 oral p. 72; 1-12 written page 73.
Nicḥols, read pages 37-39, Ex. odds, page 39; 4 a , c, e page 51; 8 (state why or why not) page 53.
Payne, read page 31; Ex. 62-73 pages 37-38.
Wooton, read page 47, Ex. 1-10 pages 49 - 50 .
Pearson, read pages 135-137, Ex. 1-12 pages 136-137.
Wollensak $\mathrm{C}-3456$ The Closure Property

Objective 4, 5

Vanatta, read page 27 and study 2-5; page 28 study 2-5; Ex. 1, 4, 8, 9 page $29 ; 12,13$ page $30 ; 15-17,21,22$ page $34 ; 17-19$ page 37. Dolciani, read pages. 77, 121, 138; Ex. 33-42 page 141; 1-10. oral page. 122.

Pearson, read pages 162-166, 178-180., 204; Ex. 1, 2 EOL, 3, 5-7 EOL, 9 pages 164-166; $2 a, b, e, f, g, 5 a-h$, page 165,3 a-e, 4 a-d, g-i page 296.

Objective 6

Nichols, read pages 46-48, Ex. 1-3 EOL pages 47-48.

Objective 7

Dolciani, read p. 51, Ex. 1-22 pages 52-53; 1-25 even page 54; 3, $6,13,14$ page 55.
Nichols, read pages 48-49, Ex. 1-21 page 49.
Wooton, Ex. 11-24 page 13; 11-16 page 16.
Pearson, read pages 145-147, Ex. 10-13 page 147:

* Appendix. I

Objective 8

Vanatta, read pages 154-156, Ex. 1-10, 12-15 pages 156-157. Dolciani, read páges 57-58, Ex. (write equation only) 1-14 odd 4pages 57-58; 1-14 page 18 .
Payne, read pages 65-66, Ex. 21-23 pages 65-66.
Wooton, read pages 29-33, Ex: 31-38 page 33 (equation only).
Pearson, read pages 157-159, Ex. (write equations only) $1-19$ odd pages 158-159; 5-15 odd pages 176-177.

* ApRendix II

Woillensak C-3801 Open Phrase, Open Sentence C-3803 Open Sentence: Solution C-3809 Reading Written Problems

Games

Equations by Layman Allen
1
©

1. What li the cost of n pencils at 3 cents each?
2. What is the cost of \underline{x} articles at y dollars each?
3. How far can a boy run in h hours at the rate of 6 mlles per hour?
4. The sum of two numbers is 7 and one of them is x; what Is the other number?
5. Represent In terms of x two numbers that have the ratio $3: 4$.
6. If x 'represents the sum of two numbers and one of them is 5 , what is the other?
7. What is the total weight of I boys weighing y pounds each?
8. The sum of two numbers is $x^{\text {tand }}$ one of the numbers is 50 What is the other number?
9. How many cents are there in d dollars?
10. Mary is n years old now. How old was she 3 years ago?
11. 'How many-inches are there in \underline{x} feet and five inches?
12. A man had \underline{x} dollars and spent y dollars. How much did he have left?
13. If \underline{n} represents a certain number, represent the next larger consecutive number.
14. A parcel weighs $\frac{t}{}$ pounds and a smaller parcel weighs $\frac{2}{3}$ a
as much. What is the weight of the smaller parcel?.
15. What is the average weight of two boys who weigh \underline{x} pounds and \perp pounds each respectively?
16. How much salt remains when x pounds have been used from a bag containing at pounds?
17. What is the perimeter of a square one side of whlch is \underline{E} ?
18. The difference betweer two numbers is 2 and the smaller number is n. What is the other number?
19. One part of t is w. What is the other part?
20. Elizabeth's age is now 7 years. How old will she be in n years
21. $x=5 y$ Upon what does the value of x depend?
22. What is the perimeter of a triangle whose sides are $\underline{a}, \underline{b}$, and \underline{c} ?
23. What is the perimeter of a rectangle whoe length is 1 and whose width is w?
24. What is the area of a rectangie, whose base $\mathrm{Is} \underline{b}$ and whose height is h ?
25. How many inches are there in y yards, f feet and 1 inches?

Write the mathematical sentence which woild be used to solve each word problem.
1." Five tlmes a certain huinber is 105.
2. The greater of two numbers is twice the smaller and their sum is 48 .
3. Mary is 5 times as old as her. brother and their combined ages . total 18 years.
4. One numiber Is 4 times another and their diffenence is 24.
5. -4 man walks $\dot{6}$ hours at ${ }^{\text {and }}$ certain' rate and then proceeds hours at twice his formen rate. If he walked. 24 miles In all, lat what rate did he: start walkine?
6. The ledigth of a rectangle is three times its width and its perimpter is 56 feet.
(27. The sum of three numbers is 56. The second number is 3 times the first and the third number is if times the first. What are the numbers?
8. The sum of the three angles of any triangle is 180 degrees. In a ceartain triangle $A B C$, angle A is twice as large as angle C and angle B is three times as large as angle A.
9. Two numbers have the ratio $5: 6$ and their sum is 88 . Find the numbers.
10. Separate $92 /$ Into ${ }^{-1}$ two parts such that one part is three times the other.
11. One number is thice times another. "Six times the larger diminished by twice the smaller is 48 .
12. When a quart of cream cosit four tlmes as much as a quart of milk, 5 quants of milk and 3 quarts of cream cost $\$ 2.7$?, what is the cost of eachiper quart?

C. Applications.

1. If you mix 4 grams of salt and 84 grams of water, what percent of the total solution is salt?
2. Compound X is composed of elements Y and Z in the ratio of 3:2. If you had 50 grams of element Y, how many erams of element Z would you need to utllize all of Y into thakine compourd X ?

Self-Evaluatior: Jest

Behavioral Objectives

I. Write the simplest answer fo: each of the following:
-1. $56 \div 2 \times 3 \div \frac{1}{2}$
2. $\left(\frac{3}{4}-\frac{1}{3}\right)(3+9)+3[(5-3) \div 6]$

- 3. $15-3 \times 2+(18,-5) \cdot 5$
—4. 3 $4+2+5 \cdot 3-3+7$
-5. $5: 0+4-2 \cdot 2$
-6

6. $[5 \cdot(2)+11] \div 7$
-7. $4 \times\{74-[5 \cdot 4+(15 \div 3)] \times 3\} \cdot 2$
—8. $28 \div 2-2 \times 6 \div 3+3$
9: $(7+5)^{2}-6$
7. $7 \times 8 .-6$
-II. For each given sentence, write the name of the property lustrated. (Use abbreviations such as CPA, etc.)
—11. $(46+$ +2 21$)+7=146+(21+7)$
-12. $16 \therefore(5+7)=(5+7) \cdot 16$
8. $4 \cdot(7+13)=4 \cdot(13+7)$
9. $15 \cdot(6 \cdot 2)=(15 \cdot 6) \cdot 2$
10. ${ }^{4}$ If $a+b=c$ then $c=a+b$
11. $4 \cdot[x+(2+5)]=4+x+4 \therefore(2+5)$
12. $a x+a y=a \cdot(x+y)$
III. Each of the following statements is either true or false. 18. The set $\left\{0, \frac{1}{2}, 1\right\}$ is closed under multiplication. 19. The set of odd natural numbers is closed under the operation of multiplying by the factor 2 .
13. The set of even natural numbers is closed under addition.
_ 21. \because The set $\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{8}, \ldots.\right\}$ is closed under addition. 22. The set of all prime numbers is closed under adilition.

14. If $3+\% \pm$ then 1 a natural dumber.

2h. y ($\because(5-4) \div \ddot{y}$
25. 5. $1\left(x-x^{0}\right)=0$
26. $x+0-x$
27. $7+0=7$
28. $6 \cdot 1=$ -

V: For each statement, write a correct related j problem using the inverse operation.
11-4 $=7$
30. $\frac{1}{10}+\frac{1}{2}=\frac{3}{5}$
31. . $51 \div 3.7$

32:
$\frac{1}{2} \frac{5}{3} \times \frac{7}{3} \div \frac{3}{4}$
7 2. VI. For each phrase write a correct mathematical phrase.
33. The sin: of four tries n and 7.
34. 15 m doc: -eased by onemalf x.
35. " F our \because :ivided by the sum 5 and x_{0},
36. The quotient of seven x and fifteen.
37. Three tines the difference of 2 and q.
33. The prelect of 5 and x increased by t.
39. Seven less than four p.
40. Four times the sunn of n and ?.

8
VII. Translate each word sentence into an equivalent open matheritical sentence: (Do not solve)
41. The difference of three times a rumber' (w) and six is the number i:nereased by fir.
42. The fustiest of seven and the sum of a number (x) and eight plus five is thenty-threw.
43. Cne-fitt of a certain man's lifetime (y) spent in childhood, plus one-third of his life serviced in the armed services, totals the eight yours he roster $a s a$ bum and the twofifths $\because:$ bis life as a missicnery.
-5. VIII. For each given sentence, write the name of the property illustrated.
\qquad 44. $2 \cdot \frac{1}{2}=1$ 47. $(-7)+7=0$
\qquad 45. $6+(-6)=0$
46. $\frac{2}{3}: \frac{3}{2}=122$

1. Dolciani, Modern Algebra, Page 90 nos. 2,1-31. (Work at leást"six problems)
2. Dolciani, Modern Algebra', page 95 nos. 17-21. (Work at least 4 problems)
3. Dolciani, Modern School Mathematics, page 52 nos. 17-20. (Work al
4. Research the concept of field-Select a systeru of numbers and determine If the system is a fiell. Wirite a report on your findings, giving reasons for your conclusious.
5. Prepare à bulletin board showing all the properties and their relationships to the following set: of numbers: naturals, wholes, integers, and rationals.
\approx

Referrone:

1. Vanatta, Glen D, and Goudwin, A. Wilson, Algebra One: A
2. Modern Course, Charles E. Heryill lubijshing Co. r 1966.
2.' Dolciani, Mary D., Berman, Simon 1.., and Freilich, Julius, Modërn Algebra, Book 1, Houghton Mifflin Co., 1965.
3. Nichols, Eugene D. Modern Elementary Algebra, Holt, Rinehart
and Winston, Inc., 1965 .
4. Pearison, Helen k, and Allen, Frank B, Modern Algebra A
Loglcal Approach, Ginn and Company, 1964 .

5: Payne, Joseph H., Zantboni, Floyd F., Lankford, Jr., Francis G. Algebra One, Fiarcoint, Brace and World, Inc., 1969.
6. Dolciani, Mary P., Nouton, Williain, Béckentack, Edwin F., Jurgensen, Ray C., Ļommelly, Alfred.j., Modern School Ma Algebra 1, Houshton, Mifflin Company, 1967." Modematics
7. Wollensak feaching Tapes,
'Wollensak. C-3453 The Commutative l'roperty C-3454 The Associative Property
C-3455 The Distributive Preforty
C-34;56 The Closure Property
C-3459 Identity Element
C-345.1 The Inverse lilcoent
C- 3801° Open Phrase, Open Sentence
C-3803 Open Sentence: Sclution
C-3809 Reading livition Problems
8. Equations by Layman Allen

L

RAT IONAL NUUMBERS A CTIVITY
P ACKAGE .

鎵

Ackno:vledement
The administration and staff
of Minety Six High School craterully acknosledges the assistince provided by the staff of !lova Hich School, Fort Lauderdale, Florida. Se are especially indebter to :tr. Larrence G. Insel ohd Br . Lourence R. Santuch of Mova's Math Departinent for permitting us to use much naterial develored by them, some of which has been reproduced in its orisingl form.

RATIONALE:

You have studied many, sets of numbers through your mathematical career. The.first set your discussed was the set of "NATURAL NUMEERS" (1., 2, 3, . . .). You then added zero and the set became the "WHOLE NUMFRERS", after which you extended the set to include additive inverses and the set became the "INTEGERS". When you finally added the multiplicative inverses and arrived at the "RATICNAL" numbers, it appeared as though you were finished!

In this LAP you will extend the set of "RATIONAL" numbers. We will - call the numbers that we ADD, the "IRRATIONAL" numbers: The set then becomes the "REAL" number system. Once you haye at your disposal knowledge of the complete set of 'REA.L, numbers' you will he equipped to investigate the basic concepts of elementary Algebra!

SECIION 1

Behav'ioral Objective

After having completed your prescribed coursc of study, you will be

1. Write or identify the definition of the sets of natural numbers; whole numbers, integers, rational numbers, irrational numbers, and real numbers.
2. Given any number, determine if it is a member of the set of
a. natural numbers
b. whole numbers
c. integers
d. rational numbers
e. irrational numbers
f: real numbers
3. Given any statement involving relationships anong the sets of natural, whole, integer, rational, irrational, and real numbers, determine if it is true or false.
4. Determine if each of the sets of natural, whole, integer, and rational numbers is \dot{a} field. If aset is not a field, state the properties that do not apply. Appendix I will be completed and turned in to the teacher.
5. Given ápair of integers and b, determine whether $a<b, a=b$, or $a>b$.
6. Given two "or more rational numbers, compute their sum, difference, quotient, and/or product.

RESOURCES

I. Reading and Problems. NOTE: EOL means every other letter.
 pp. 79-83, Ex. 14 p. 84: \#3, pp. 79-83, Ex. 13 p. 83: \#4, Pp. 28-29, 85, Ex. 2,3,5 p. 86: \#5 : \#6 pp. 90-1.06, Ex. 1-13 pp. 92-93, 1-24, p. 95, 1-16.p. 99, $\overline{1-20}$ odd (bottom) p. 100-101, 1-26 p. 104, 1-18 p. 106, 21-25 p. 107.
2. Dolciani, Modern Algebra, Book 1, \#1,2,3,4;5 __ \#6 pp. 125-126; 128-130 \%. $133-135$, $138-140$, Ex. $1-16$ p: $126,1 \overline{-12}$ p. $130,1-11$ p. 135, $1-12$ P. $140,1-8 \mathrm{p} .141$.
3. Nichols, Modern Êlementary Algebra, \#1,2,3._: \#4 pp. 104-105, Ex. 1-3 p. 105: \#5 Pp. 55-59, Ex. 1-5 EOL PP. 59-61, 1-2 EOL p. 62: \#6 pp. 62-63, 85-88, 92-94, 96-98, Ex. 1-2 LOL p. 64-65, 6 a - n p. $68,3 a-z$ p. 89,1 a-y p. 95,2 all. p. 99.
4. Dolciani, Modern School Mathematics, Algebra I, \#a pp. 22, 316, 425, Ex. \qquad : \#2,3,4 \qquad \#5 pp. 5-8, Ex. 1-49 odd pp. 9-10: \#6 \qquad -
5. Payne, Algebra One, \#1 pp. 2, 52-54, Ex. \qquad ;i. \#2 pp. 52-54, Ex. 1-12 p. $54,1-15,32-41$. 55: \#3. pp, $52-54$, Ex. 13-20, p. 54,
 pp.. 57-58: \#6 pp. 66-699, 73-74, 75-77 p. 69, 1-34 p. 74, 1-30 Pp. 77-78, $10-24$ p. $81,1-12$ p. 83.
6. Pearson, Modern Algebra; Book One, \#1,2,3,4 \qquad : \#5 pp. 37-38, 1-6 EOL pp. 38-39: \|6 \qquad _.
7. Arithmetic of Directed Numbers," A programmed unit, \#6.
8. Supplementary LaPs-Integers, Rational Numbers, D. Evans; Ninety
Six High School.
II. Audio

Wollensak C-3458 The Real Number System
C-3331 Directed Numbers: Additition
C-3332 Directed Numbers: Subtraction
C- -3333 Directed Numbers: Multiplication
C-3334 .Directed Numbers: Division
III. Visual - filmstrips.

Comparing Fractions: Adding and Subtracting
: Multiplying Fractions
Multiplication of Signed' Numbers
Dividing Fractions
IV. Games

The Conversion Game by Evans
Equations by Layman Allen
Crossword Puzzle - "A Short Review of Fractions"

serf-evanduation 1

1 1. natural numbers.
2. whole numbers
3. integers
4. rational numbers.
5. irrational numbers
6. real numbers

2 II. Identify the following numbers as elements of naturals (N), wholes (W), integers (I), rationals (Q), irrationals (Z), or Reals (R). List all the sets that contain each number.

- 7. 28
- 8. $\sqrt{9}$.

9. $\frac{3}{4}$
-10. $\sqrt{7}$
1 11. 1. $\overline{3}$
_ 12. . $010010001 . .$.
10. 0
$14 .-18$
$-15 .-\frac{1}{8}$
3 III. True or Falise.
11. The natural numbers are a subset of the whole numbers.
12. The integers are a subset of the natural numbers.
13. The whole numbers are a subset of the rationals.
14. The rational numbers contain the integers and the fractions.
15. The natural numbers are a subset of the rational numbers.
16. The integers are not a subset of the rational numbers.
Self-Evaluation (cont')

3 IV. True or False.
$\mathrm{N}=$ set of nat rural numbers os W न set of whole numbers
$I=$ set of integers
$Q=$ set of. rational numbers
$\mathrm{Z}=$ set of irrational numbers
$R=$ set of real numbers
is
 22. $Q \subset R$
23. $Q \cup z=R$
24. W $C^{L} N$
\qquad 25. $\mathrm{Z} \subset \mathrm{R}$
\qquad '26. NC'R

4 , V. Is each of the following sets a field? If no, write the properties necessary to make it a field.
27. whole, numbers
28. integers

\qquad 29. natural numbers
\qquad 30. rational numbers

5 -, VI. In each blank write $<$,$\rangle , or =$ to make a 'true statement.
31. . 7 \qquad 2
32.-10 \qquad 5
33. 0 \qquad 18
34. $8+1$ \qquad 9
36. -2 \qquad 2
37. $3 \cdot 5$ \qquad -15
38. -5 \qquad 3
35. 0 \qquad -17
6. VII. Work the following:

$$
\begin{gathered}
41 \cdot-\frac{2}{3}+-\frac{4}{5}= \\
42-\frac{2}{3} \cdot \frac{4}{5} \\
43 \cdot-\frac{4}{5} \div \frac{-2}{3} \\
44 .-\frac{6}{5}+\frac{3}{4}
\end{gathered}
$$

Self-Evaluation (cont')
$450-\frac{2}{3} \div \frac{4}{5}$
46.- $-\frac{4}{7}+\frac{3}{4}$
$47 \cdot-\frac{2}{5} \cdot \frac{3}{4}$

- $48 .-\frac{1}{6}+\frac{2}{3}$
- $49 . \frac{1}{4}-\frac{1}{7}$
. $50 . \frac{2}{5}+-\frac{4}{5}$
\qquad 51. -8×-7
\qquad 52. $9+-3$
\qquad 53. -6-9
i
- 54. $28 \div-7$
\qquad 55. $-18 \div-9$
\qquad 56. 36 • - 2
\qquad 57. $-6+-12$
\qquad 58. $3--7$
\qquad 59. $-18--2$
\qquad 60. $12+-13$

Behavĩioral Objective

After having completed your prescribed coutse of study, you will be : able to:
57. Given any rational number of the form $\frac{a}{b}$, express it in decimal

5 form and state whether it is a terminating or repeating decimal.
8. Given any rational number expressed in decimal form, write it in the form $\frac{a}{b}$ where a is a whole /number and b is a natural number.
9. Given any pair of rational numbers, name the number midway between them.
10: Given any word phrase like thè ones in Appendix I, translate'it into an equivalent mathematical phrase.

RESOURCES

I. Reading. and Problems.
i. Vanatta, Algebra Oné, \#7,8,9,10 \qquad .
2. Dolciani, Modern Algebra, \#7. pp. 400-402, Ex. 1-12 even p. 403: \#8 pp. 400-402, Ex. 13-20.p. 403: \#9, p. 398, Ex. 15-20 p. 400: \#10 \qquad -
3. Nichols, Modern ${ }^{-}$Elementary Algebra, \#7 pp. 30-31, 65-77, Ex. 14, 5-6. EOL, p. 67-78: \#8 pp. 68-7.0, 1-2 EOL 户. 70: \#19. P. 71, Ex. 1 p. 73: \#10 p. 79, Ex. 1-19،Pp.. 79-80.
4. Dolciani, Modern Schooi Mathematics, Algebra I, \#7 pp. 422-423, Ex. :1-8 p. 426: \#8 pp. 424-425, Ex. 9-19 odd p. 426: \#9 p. 2, Ex. 21-22 p. 3, 19-22 p. 115: \#10 p. 10, Ex. 11-23 odd p. 13, 31-38. p. 33 .
5. Payne, Algebra One, \#7 p. 30, Ex. \qquad : \#8 p. 30, Ex. 64-69 p. 30: \#9 \qquad : \#10 p. 128, Ex. 1-35 odd pp. 128-130.
6. Pearson., Modern Algebra, Book One, \#8 pp. 268-269, Ex. \qquad : \#9 pp. 35-36, Ex. 1-4 p. 36: |110 p. 145, Ex. 10, 12-14 p. 147. - 1 P Pp. 35-36,
II. Audio

Wollensak C-3801 Open Phrase, Open Sentence

APPENDIX I

IN THIS SECTION you will learn to translate from a word phrase to a mathematical expression. This will help you when you later solve 'word problems. You are to fill EACH blank below with a mathematical expression. YOU ARE NOT TO DO ANY COMPUTING. (The first two problems have been fompleted for you as examples.)

1. The sum of 3 and the product of 2 and 6 is $3 \dot{y} 2$ (6)
(You should not write 15 for $3+12$, since
that requires computing 4)
2. Three more than the square of x is
3. The sum of 5 and 9 is I
4. The sum of $\frac{2}{3}$ and -6 is
5. The sum of 17 and x is
6. 5 more than 7 is
7. 18 increased by 12 is
8. x more than 10 is
*'9. 3 more than x is
9. The sum of $2 x$ and $5+3 x$ is
10. $5 t$ increased by $5-\underline{x}$ is
11. The square of the sum of 3 and 4 ts
12. The sum of the squares of 3 , and 4 is
13. The square of the sum of $2 x$ and $3 y$ is
14. The sum of the squares of 5 and m is
15. Thand times tre server of x
16. The stuare of the moduri of 3 and x is.

17. The square of the opposite of 5 is
18. The opposite of the square of 5 is
19. The square of the opposite of x is
20. The opposite of the square of \dot{x} is
21. Monday and \qquad are consecutive days of the week.
22. Tuesday, \qquad and Thursday are consecutive days of the week.
23. 1, $23,-62$, and -14 are integers. $-15,-16,-17$, \qquad ; and -19 are consecutive integers.
24. If \underline{x} is an integer, then " $\underline{x}, \underline{x}+1$, and \qquad are consecutive integers.
25. If y is an integer, then $y-2, y+1, \underline{y}, \underline{y}+1$, \qquad , and $y+3$ are consecutive integers.
26. If t is an integer, then $3 t$ is an integer. Also, $3 t, 3 t+1$; \qquad
\qquad , and $3 t^{-}+4$ are consecutive integers.
27. $-3 ; 0,5,7$, and 212 are integers. $-8,0,2,16 ;-40$, and 18 are even integers. If \underline{k} is an even integer, then $\underline{k}+8$ is an \qquad integer. 18, 20 , \qquad , and 24 are consecutive even integers. If x is an even integer, x and \qquad are consecutive even integers. If t is an even integer, then $t-2, t, t+2$, \qquad + and $t+6$ are consecutive even integers.
28. 7 is an odd integer. $3,5,7, \ldots$, and 11 are consecutive odd integers.
29. If m is an odd integer, then m and \qquad are consecutive odd. integers.
30. If \underline{r} is an odd integer, then $\underline{r}, \underline{r}+2$, \qquad , and r. +6 are consecutive odd integers.
31. The average of 6 and 4 is:

The a ${ }^{\text {average of }} 5,82,16,93$ ', and 74 is:
The average of $a, \underline{E}, \underline{\varrho}$, and \mathbb{E} is $\}$
7. I. Express the following fractions as decimals and state if they are repeating or terminating.

1. $\frac{4}{9}$
2. $\frac{3}{8}$
ξ
3. $\frac{2}{11}$
4. $\frac{2}{7}$

8" II. Express the following decimals as fractions.
5. .12
6. $\frac{.4}{274}$:
7. $.5 \overline{3}$

1. 8: . 684
9..$\overline{73}$

10: . 82

9 III. Find the rational number midway between the following: 11. $\because 9 \frac{1}{2}$ and $11: \frac{1}{3}$
12. 2.19 and 1.11
13. $\because-3.12$ and 3.76
i4. $\frac{1}{6}$ and $\frac{3}{24}$
15. $\frac{3}{4}$ and $\frac{15}{16}$

10 IV. Write the mathematical phrase of each word phrase.
16. sum of 17 and x
\qquad 17. 3 more than x
\qquad 18. the square of the sum of 3 and $\%$ is
\qquad 19. three times the square of x
\qquad 20. the quatient of x divided by $2 y$
\qquad 21. \qquad is the next consecutive odd integer after x
\qquad 22., t is an integer, give the next three consecutive integers
\qquad 23. number of feet in $7 t$ yards.
\qquad 24. number of quarts in ($a+3 t$) gallons
25. worth in cents of y eight-cent stamips
a.

$$
\begin{array}{cc}
\boldsymbol{P}^{\bullet} & \ddots \\
\bullet & \ddots \\
\cdots & \cdot
\end{array}
$$

S.

Put an x by each property that holsis for the given sets of number: Put a circle (0) by each property that does not hold. Do not leave a taric

REFERENCES

Vanatta, Glen D. Algebra One, Charies E. Merrill Publishing Co., 1966.
Dolciani, Mary P. Berman, Simon L., and Freilich, Julius, Modern Algebra, Book One, Houghton Mifflin Co., 1965.
Nichols, Eugene D.; Modern Elementary Algebra, Holt, Rinehart and Winston, Inc., 1965.
Payne, Joseph N., Zamboni, Floyd 'F., Lankford Jr., Francis G., Harcourt, Brace and World, Inc.,
1969.
Dolciani, Mary P., Wooton, William, Beckenback, Edwin F., Jurgensen, Ray C.. Dónnally, Alfred J., Houghton Mifflin Co., 1967.

Pearson, Helen R., Állen, Frank B., Modern Algebra, A.Logical Approach, Ginn and Company, 1964.

Nichols, Eugene D., Arithmetic of Directed Numbers, Holt, Rinehart and Winston, 1962 .
Wollensak teaching tape $\mathrm{C}-3801$.
Equations, a game by Layman Allen.

One of the most important concepts in the study of Algebra is that of a variable\% In-this LAP you will study terms and expressions, most of which contain one or more variables. Using many of the previously introm duced properties and definitions, you will leara to app; new thorens, listed on he next iage, which are concerned wh equivalent expessions.

Gou will, terelop the abllity to judge whether two given expressions are equivalent. This skill is neeessary in solving equations. While you are developing this skill, you will begin to learn how to prove theorems.

PROPERTIES AND THEOREMS

For every number x, y, and z, the foljowing apply:

Distributive property of multiplication over addition

$$
\begin{aligned}
& x(y+z)=x y+x z \\
& x y+x z=x(y+z) \\
& (y+z) x=y x+z x
\end{aligned}
$$

Distributive proper: multeplication over subtraction

$$
\begin{aligned}
& \dot{x}(y-z)=x y-x z \\
& x=-2 x \\
& x y-x z^{\prime}=x\left(\begin{array}{ll}
y & \because \\
z
\end{array}\right) \text {. }
\end{aligned}
$$

Multiplication by $-1 . \quad x(-1)=-x$

Division by $-1 \quad \frac{-x}{-1}=-x$

Opposite of $x-y \quad-(x-y)=y-x$

Opposite of $x+y . \quad-(x+y)=-x+-y$
$(-x) y=-(x y)$

Some additional theorems to be covered in this LAP $)$

$$
\begin{aligned}
& -(-x)=x \\
& -(-x) y=x y \\
& (-x)(-y)=x y
\end{aligned}
$$

THEORSAS TO BE DEVETORED TI THTS IAP

$$
\begin{aligned}
& { }_{x}^{\#}{ }_{x}^{\dot{\eta}} y \neq 0_{z}^{\#} \quad \frac{x_{z}}{y}=\left(\frac{z}{y}\right)(z)
\end{aligned}
$$

$$
\begin{aligned}
& { }_{x}{ }_{x \neq 0}{ }^{\ddagger} y \neq 0 \quad\left(\frac{1}{z}\right)\left(\frac{1}{y}\right)=\frac{i}{z y}
\end{aligned}
$$

$$
\begin{aligned}
& x^{x} x^{\psi} y \neq 0 \quad \frac{-x}{y}=-\frac{x}{y} \\
& { }^{\ddagger} x^{\psi} y \neq 0 \quad \frac{x}{-y}=-\frac{x}{y} \\
& { }^{*} x^{\psi} y \neq 0 \quad \frac{-x}{-y}=\frac{x}{y} \\
& { }^{\psi} x^{\psi} y \neq 0 \quad-\left(\frac{x}{-y}=\frac{x}{y}\right. \\
& { }^{\#} x^{\sharp} y \neq 0 \quad-\left(-\frac{x}{y}\right)=\frac{x}{y}
\end{aligned}
$$

SECTJON 1

Behavioral Objectives
At, the completion of your prescribed course of study, you will be able to:

1. Given any polynomial, classify it as
a. monomial
b. binomial
c. trinomial
2. Given any open expression and replacements for the variables, compute the value of the expression.
3. Given a pair of expressions, determine whether or not they are equivalent.
4. Using the appropriate properties, definitions, and theorems, write equivalent expressions for any given expression.
5. Given a pait of rational expressions, write a single equivaient expression that names their product.
6. Given a rational expression, use the multiplicative identity theorem to write a single equivalent expression where the numerator and denominator have no common factors.
7. Given a pair of rational expressions, write a single equivalent expression that names their sum.

RESOURCES
Obj. 1, 2
Vanatta, \#1 read p. 67-71, Ex. 4 p. 71: \#2 read p. 72, Ex. 1-27. p. 73.

Dolciani, :Modern Algebra, Bk. 1, \#1 \qquad : \#2 read pp. 36-37, Ex. 1-9 written p. 37, 37-46 p. 43.
-Nichols, \#1 and 2, read pp. 119-122, Ex. 1, 2 pp. 121-124.
Wooton, \#t and 2, read p.p, 52-54, Ex. 1-19 oral p. 54.
Payne, \#1 and 2, read pp. 307-309; Ex. 1-10, and 18-27, pp 309310.

Pearson, \#l and 2; read pp. 240-241, Ex. 1,2 p. 241, and 3 p. 243.

Obj. 3
\cdot Nichols, read pp. 124-132, Ex. 6, 7 pp. 127-128; 1-12 pp. 130-131; 4 p. 132.
Payne, read pp. 86-877, Ex. 1-19 pp: 87-88.

Obj. 4
Vanatta, read pp. 67-71, Ex. 5 p. 71, nos. $1-20$ even p. 125, s no. 3 p. 75.

Doictani, pp. \qquad , Ex. 1-30 even p. 79.

Nichols, read pp. 133-137, Ex. 2-6 pp. 135-136.
Wooton, read pp. 55-57, Ex. 7-24 p: 58, 1-28 p. 59.
Payné, read pp. 88-90, Ex. 1-20' p. 90, 39-43 p. 92.
Pearson, read pp. 242-243, Ex. 1-27 p. 242, nos. 1, 2 p. 243
Obj. 5
Vanatta, read pages 320-321, Ex. :1-5, 7-10 page 322.
Dolctani, MA, read pages 292, Ex. 1-20 even (oral) page 293.
Nichols; read pages $146-150$, Ex. 1, 2 p. 148, 3a, c,d,f,g;1 page 148; $3 a^{\circ}, c, e, g, i, 4$ page 150.
Payne, read pp. 386-394, Ex. 1-9, 11-31 odd, pages 387-388; 1-11,15, 17,19 pages 394-395.

Wooton MSM, read pp. 320-323, 328-330, Ex. 1-10 (written) PP. 323-324; •, 1-10 p. 330; 1-7,9,16 p. 331.

Pearson, read pp. 397-400, 401-402; Ex. 1i, 2,4abdfhkmq page 398; ladfhl:ic: page $400 ; 1-4,7,8,10,12,16,20-22$ pages 402-403.
© 0 bj . 6
Nichols, read page 151, Ex. lacdeg, 2 page 152.
Payne, read pp. 405-408, Ex. 1-3, 5-21 odd, 22, 25 page 408. Öbj. 7

Vanatta, read pp. 236-330, 33í-332, 333-335, Ex. 1;2,3,6,8 page 328; $1,4,5 ; 7,9,10,11,12,16$ page $330 ; 1,3,4,6,8,9,10,11,13,15$ page 333 ; $1,3,5,6,8,9,10,12,14,15,23,24$ page 335 .

Dolclani, MA, read Pp. 298-300, Ex. 1-14 even pages 298-299; 1-16 even, 20 p .301.

Nichols, read pp. 152-153, Ex." la, c,e,g;i,j,i page 153 .
Wooton, MSM, read Pp. 332-336, Ex: 7,12 page 334; 1,3,5,7,10,11, 13, 15 pages 337-338.

Payne, read pp. 398-403, Ex. $1,4,5,7,12,13,15,16,18,20,23,27,28,32,35$, $36,39,48,50,54,60,62,64,66$ pages $403-405$.

Peàrson, read pp. 403-405, Ex. 2, 4, 7, 8, 12 page 405.

SELF-EVÀLUATIÓN

OBJ. 1
Clasidiy the follozing as moncricilns biementarg or oftrientala.

- 1. 5

——_
2. $-x^{4}+6 x^{2}$
3. $5-4 x+2 y$
4. $455 x^{4} y^{5}$

- $50{ }^{3} y^{2} 5^{5}+6$

OBJ. 2
 and the replacanent you y is .3.
. 5 6. $5 x^{2}$
——7. $24 y$

- 8. $4 x^{2}+3 y$
\cdots

9. $\frac{x^{2}+y}{3}$
$+$
10. $\frac{x^{3}-y^{3}}{8}$

OBJ. 3
Given the folloding pair of expressions, are they equivelent? Write Yes or No.
\qquad 11. $x(-y)$ and $(-x) y$
$-$
12. $4-x$ and $x-4$
—__
13. - $(a-b)$ and $b-a$
14. - $(a+b)$ and $b+a$
15. $(a+b)^{3}$ and $a^{3}+b^{3}$

Obj. 4

_16. $4 x+3 x$
$\therefore \quad \therefore \quad$ 17. $7 y-8 y$
-
18. $-5(x-4 y)+5(x-y)$
19. $\quad 0-3 \mathrm{~d}-\mathrm{C}+4$
20. $-\frac{3}{4} x-7+\frac{2}{5} y+\frac{5}{8} x+5$.
21. \therefore 人
22. $4 x y-x y+3 y z: 1 x$
23. $19 m+\dot{m}-3 n+7 n+$
24. $3 x+5 x-6-7 x+4$
25. $x-2 y-x+y$
26. $-(3 x+y)+(2 x-3 x)$
27. $-2(4 a+2!\times(:$

Obj. 5
For each of the following: wrise its equivalent in a single erpressinh.
28. $\frac{1}{3} \cdot \frac{2}{7}$
29. $-\frac{1}{2}=\frac{5}{3}$
30. $-\frac{2}{3}: \frac{5}{7}$
31. $\frac{6}{y^{2}} \cdot \frac{y}{2}$
32. $\frac{a-b}{2} \cdot \frac{8}{a-b}$
33. $\frac{5 a b^{2}}{21 c^{2}} \cdot \frac{3 b c^{2}}{8 a^{2}} \cdot \frac{7 a^{2}}{30 c^{4}}$

Obj. 6
Simplify.
35. $\frac{2-a}{a} \cdot \frac{a}{3-a}$
36. $\frac{7}{6} \cdot \frac{-6}{6}$
37. $\frac{1}{x y} \cdot \frac{x(y-1)}{2}$
38. $\frac{2 a}{a} \cdot \frac{b}{4}$
39. $\frac{4+a}{5} \cdot \frac{5}{4-a}$
40. $\frac{3 x y}{7} \cdot \frac{7}{2 y}$

Obj. 7
Co Compute the following:
41. $\frac{2}{3}+\frac{1}{7}$
42. $\frac{a}{b} \cdot \frac{x}{y}$
43. $\frac{-3}{4}+\frac{-1}{2}$
44. $\cdot \frac{a}{7}+\frac{a}{3}$
45. $\frac{2 x}{5 y}+\frac{x}{2 y}$
46. $\frac{3}{x}+\frac{4}{y}$

Answer true or false to the following:
bj. ${ }_{5}$ \qquad 47. $\frac{3}{5} \cdot \frac{4}{5}=\frac{12}{5}$
\qquad 48. $\left(-\frac{3}{4}\right)(-2)=\frac{(-3)(-2)}{4}$
\qquad 49. $\frac{3}{x} \cdot \frac{2}{y}=\frac{3 y}{2 x}$
\qquad 50. $(-x) \cdot y \cdot\left(\frac{1}{-y}\right)=x$
6. \qquad 51. $\frac{x-3}{x-2}=\frac{3}{2}$
\qquad . $2 .-\frac{2}{3}: \frac{-3}{5}=\frac{2}{5}$
\qquad 53. $\frac{3 \mathrm{~m}}{7+\mathrm{m}}=\frac{3}{7}$:

6 \qquad 54. $\frac{4 y}{5 y}=\frac{4}{5}$
\qquad 55. $\frac{(-7) \times 2}{5 x(-7)}=\frac{2}{5}$
\qquad 56. $\frac{3-x}{4-x}=\frac{3}{4}$
7.
57. $\frac{2}{4}+\frac{5}{3}=\frac{7}{7}=1$
\qquad 58. $\quad \frac{3}{2 x}+\frac{4}{3 x}=\frac{17}{6 x}$
\qquad 59. $\frac{2}{x}+\frac{1}{\dot{y}}=\frac{3}{x y}$
\qquad $60 . \frac{x}{3}+\frac{k}{4}=\frac{4 x+3 k}{12}$
\qquad 61. $-\frac{2}{3}+\frac{4}{7}=\frac{2}{21}$
62.

$$
\frac{-3 k}{2}+\frac{-k}{4}=\frac{-7 k}{4}
$$

If you have satisfactorily completed your work, take the Progress Test. Consult your teacher first.

Behavioral Objectives

At the completion of your prescribed course of study, you will be able to:
8. Given a pair of rational expressions, write a single equivalent ëxpression that names their difference.
9. Given a pair of rational expressions, write a single equivalent expression that names their quotient.
10. Given a pair of rational expressions which involves the additive inverse of an expression; mile a single expressicn equivalent to it.
11. Given any complex rational expression, use the appropriate properties, theorems; and definitions to write a single expres-sion-equivalent to it.
12. Given a word phrase, change.it to an equivalent mathematical. phrase.

RESOURCES

Obj. 3.
'Vanctáa, read. if', $326-335$, Ex. $4,5,7,9-12$, page $328 ; 2,3,6,8,13,14,15$, 17,18 page $330 ; 2,5,7,12,14$ page $333 ; 2,4,7,11,13,16,18,20,21,25$ page 335.

Dolciani, MÁ, read pp. 298-300, Ex. 1-14 odd pages 298-299; 1-16 odd, 19, 21, 22, page 301.
Wooton, MSM, read pp. 332-336, Ex. 1-6,9,11 page $334 ; 4,8,9,12,14$, 16.17. 18 pages 337-338.

Payne, zead pp: 308-403, Ex. $8,9,11,21,22,24,29,30,31,33,38,41,44$, $56,60,61,63,65$ pages 403-405.

Pearson, read pp. 403-405, Ex. 3,5,6,9-11 page, 405.
Obj: 9
Vanatta, read pp. 323-324, Ex. 1-15 pp. 324-325.
Dolcianí, MA, read .p. 295, Ex. 1-12 p. 295; 1-4. pp. 296-297.
Nichols, read pp. 154-155,' Ex. 1 a,b,d,e,g,i,k,1, and $2 a ; b, e, f, h$; i,j,1;m pages 156-160.

Payne, tead pp.' 396-397, Ex. 1-22 even page 397.
Pearson, read pp. 401-402, Ex. 5,9,13,14,15,17,18 pages 402-403.
Obj. 10
 $\mathrm{m}, \mathrm{o}, \mathrm{p}, \mathrm{q}, \mathrm{s}, \mathrm{u}, \mathrm{v} ; 10 \mathrm{a}, \mathrm{c}, \mathrm{d}, \mathrm{g}, \mathrm{j}, \mathrm{k}, \mathrm{o}, \mathrm{q}$, pages $158-160$.

RESOUKCES (coṇt')
Obj. 11
Vanatta, read pp. $341-342$, Ex. $1-7,10,12,13$ page 343.
Dolciani, MA, read.p. 304, ex. $1-8,11,12, r 15,16,23$, page 305.
Nichols, read pp. 161-163, Ex. 9 a,b,c,e,f; $g ; h, i, j, k, 1, m, n, q, r, t ;$ $11 \mathrm{a}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{n}, \mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}, \mathrm{i}, 1, \mathrm{~m}$; $12 \mathrm{a}, \mathrm{c}, \mathrm{e}, \mathrm{f}$, pages $159-161$. Ex. 1 a, $c, f, h, j, m, n, p ; 2 a, c, d, f, g, h, k, 1, m, o, p, q, s, t, v, x, y, z$, $a^{\prime}, b^{\prime}, c^{\prime}, e^{\prime}, g^{\prime}, i^{\prime}, j^{\prime}, k^{\prime}, 1!$, pages l63-164.
-Payne, readspages 409, Ex. 1-11, 19, 21; 23, 25, 27, 29, 35 pages. 410-411.

Pearson, read pages 406-407 (examples 7 and 8), Ex. 46 a,c,e,f,h, j page 407.

Obj. 12
Vanatta, PP. _,_, Ex. 1-6 p. 74; 1 p. 75, 1:p. 77.
'Polciani, read pp. \qquad , Ex. 1-24 p. 42.

Nichols, read page 165 , Ex. 1 all parts; $2 \mathrm{a}, \mathrm{c}, \mathrm{d}, \mathrm{f}, \mathrm{g}, \mathrm{k} ; \mathrm{n}, \mathrm{o}$; $3 \mathrm{a}, \mathrm{c}, \mathrm{f}: \mathrm{h}, \mathrm{i}, \mathrm{l}, \mathrm{m}, \mathrm{n}, \mathrm{q} \mathrm{q}, \mathrm{r}, \mathrm{u}, \mathrm{w}, \mathrm{x} ; \mathrm{z}, \mathrm{a}^{\prime}, \mathrm{c}^{\prime}$ pages 165-167.

Wołlensak Teaching Tapes C-3801: \because Open Phiase C-3802: Open Sentence

* Appendix
* Required (turn in to teacher)
"OBJ. I. For each of the following exnreessions, write its equivalent in n single expression:

8
(1) $\frac{5}{8}-\frac{2}{3}$
(2) $\frac{1}{2}-\frac{2 a-1}{a}$
(3) $\underset{y}{y}-\frac{2}{3}=$
(4) $\frac{5 b}{3 y}-\frac{30}{4 y}$
(5) $\frac{2}{x}-5$
(6) $\frac{-3}{x} \cdot \frac{-2}{y}$

9
(7) $x \div \frac{2}{3}$
(3) $\frac{a}{b}+\frac{1}{2 b}$
(9) $\frac{-3}{4} \div \frac{m}{n}$
(10) $\frac{2}{3} \div \frac{5}{6}$
(11) $\frac{-\mathrm{a}}{\mathrm{b}}: \frac{\mathrm{c}}{\mathrm{d}}$:
(12) $\frac{3}{2} \div \frac{x-y}{2}$

10
(1.3) $-\frac{-5}{-3}$
$(14)-\frac{-5 x}{3 x}$
$(15)-\frac{4}{-T}$

11
(16) $\frac{12}{\frac{6}{x}}$
(17) $\frac{\frac{x}{y}+1}{\frac{x}{y}-1}$
(18) $\frac{\frac{x+y}{x-y}}{\frac{x-y}{x+y}}$
(19) $\frac{\frac{a}{x}+\frac{a}{y}}{\frac{b}{x}-\frac{b}{y}}$
$)_{(20)}^{4-\frac{1}{x}}$
(21) $\frac{x}{1+\frac{1}{x}}$
II. True or False.

8 $\because \quad 22 \cdot \frac{1}{y}-2=\frac{1-2}{y}=\frac{-1}{y}$
$\therefore \quad \therefore \quad \frac{a}{2}-\frac{b}{8}=\frac{a-b}{6}$
\qquad 24. $\frac{x}{3}-\frac{y}{6}=\frac{-2 x-y}{6}$
\qquad 26. $\frac{a}{2}-\frac{-a}{3}=\frac{5 a}{6}$

\qquad
 27. $-\frac{2}{3}-\frac{4}{2}=\frac{-6}{5}$

я
\qquad 28. $\frac{3}{4}-\frac{-2}{3}=\frac{17}{12}$

9 \qquad 29. $\frac{3}{4} \div \frac{a}{b}=\frac{3 a}{4 b}$
\qquad 30. $\frac{x}{y} \div \frac{a}{b}=\frac{x b}{y a}$
\qquad 31. $\frac{3}{5} \div \frac{x}{y}=\frac{5 x}{3 y}$
\qquad 32. $\frac{(-x) 3}{y(-7)}=-\frac{3 x}{7 y}$
\qquad 33.

$$
\frac{1}{r} \frac{1}{3}=\frac{1}{-r}
$$

\qquad s. $\quad \frac{1}{x+y}: \frac{1}{-x-y}$
36.
35. $-\frac{-3 x}{-2 y}=\frac{3 x}{2 y}$

11
6. $\frac{2}{\frac{2}{3}}=\frac{3}{4}$
\qquad 37

$$
\frac{\frac{a}{a}-b}{\frac{a}{a-b}}=1
$$

\qquad 38. $\frac{\frac{a+b}{2}}{\frac{6}{a+b}}=\frac{1}{\therefore}$
\qquad 39.

$$
\frac{\frac{x}{y}-\frac{3}{2}}{\frac{y}{y}+\frac{3}{2}}=\frac{2 x-6}{2 x+3 y}
$$

\qquad 40. $\frac{1}{1+\frac{1}{x}}=\frac{x}{x+1}$

12 III. Change the following word phrases to equivalent mathematical phrase.
\qquad 41. The product of seven and the sum of some number and five.
42. The sum of x and twice' y.
Vasarron t (rant)
 44. , The riffennce of th and mon in ied ly the sum of $4 t$ and u. 45. Number of Es in 1.0 y inclam
46. The number ar ninto in $3 y$ quarts.
\qquad 47. Wozth in sents $-\bar{x}(4 y-3)$ niclrois.
48." Number of inches in the perimeter of a square niti: xec: for the lenoth of the sjde.

If you have satisfactorily ecmpleted your work, you may take your LAP TEST, Consujt your teacher fizst:

antendis
 (to be turned in to the reacher)

1. 3 dimes are worth \qquad cents.
2. x dimes are worth \qquad cents.
3. $7 x$ dime e are north \qquad cents.
4. $\frac{x}{2}$ dimes are worth \qquad cents.
5. $x-4$ dices ere north \qquad cents.
6. 7 y-cent stamps are worth \qquad cents.
7. $k+4$ 3-cent stamps are worth \qquad cents.
 \qquad cents.
S. T. Have ; nickels, wa 4 amines and ? quarters, then I have ——. cosine vote \qquad cents.
 \qquad 10.jish men \qquad :eta
8. If it have animals and $3 x$ ames and $x+2$ grembero, then I \qquad mere urine booth \qquad bernays.
 \qquad years old end ε years 2 min now he will be \qquad yeary nolde 3 times his present ago is \qquad - Bill io 4 jean e younger thai Al. Bill $\rightarrow 18$ \qquad yemen ล ld.
9. Ed is x years old. 3 years from nor he rill be \qquad years old and 2 years ago be mas \qquad yécra old e pavo ic 4 treen as old as Ed is note. Dave is \qquad yarn old. 2 ychmoso he mas \qquad years old. Hal is 2 years younger than ra. Hal is \qquad years old, In 5 years he rill be \qquad years old. Sam is 6 years older than rye. Sem is____yeern old.
I. Complete the following proofs by writing the correct reason in the blank space provided.

Proof: Statements
Reasons

$$
\begin{aligned}
& \text { a. }\left(\frac{x}{y}\right)\left(\frac{r}{a}\right)=\left[x\left(\frac{1}{y}\right)\right] \cdot\left[5\left(\frac{1}{b}\right)\right] \\
& \text { b. } \quad=x\left[\left(\frac{1}{y}\right) r\right]\left(\frac{1}{6}\right) \\
& \text { c. } \quad=x\left[x\left(\frac{i}{y}\right)\right]\left(\frac{1}{3}\right) \\
& \text { d. } \quad=(x x)\left(\frac{1}{y} \cdot \frac{1}{8}\right) \\
& \text { 6. } \quad=(x r)\left(\frac{1}{70}\right) \\
& 5 . \quad=\frac{2 x}{y, 3}
\end{aligned}
$$

\qquad

Proust: Statements
Reasons
a. $\frac{x}{y}+\frac{r}{\theta}=\frac{x \theta}{y \theta}+\frac{r y}{B y}$

b. $\quad=\frac{x 8}{y s}+\frac{r y}{y s}$

(3) Prove: $\Psi_{x}^{\#} y \neq o^{\#} r^{\sharp} \neq 0 \frac{x}{y}-\frac{r}{B}=\frac{x 9 \cdot r y}{y s}$

Proof: Statements
Reasons
a. $\frac{x}{y}-\frac{r}{B}=\frac{r s}{y s}-\frac{r y}{8 y}$
i.. $=\frac{x s}{y s}+\left(-\frac{r g}{s y}\right)$
c. $=\frac{x g}{y B}+-\frac{\left(\frac{1 r g}{s y}\right)}{s i n}$

d.

$$
=\frac{x \theta}{y s}+-\frac{(r s)}{y s}
$$

e. $\quad \ddots=\frac{x_{s}+-\left(\underline{r_{B}}\right)}{y s}$
P. $\quad=\frac{x 8-r s}{19}$

ADVANCED STUDY (cont')

II. Work Problems 1-1"6 page 325, Vanat:ta.
III. Dolciani, p. 319, Just. for Fun.
IV. Dolciani, ${ }^{\text {pp }}$. 328-330, Extra for Experts.
V. Work the following:
(1) $5 x-\frac{3}{5 x-\frac{3}{5 x}}$

虱
(2) $\left[\frac{2 x+1}{x}-\frac{x}{2 x+1}\right] \cdot\left[\frac{5 x-1}{x}+\frac{x}{5 x-1}\right]$
(3) $\left[\frac{4}{x+1}+\frac{3}{x-2}\right] \cdot \frac{x+3}{7 x-5}$
(4) $\frac{2+\frac{5 a}{a+2 b}}{\frac{3 a}{a+2 b}}$

- VI. Prepare a chart using a Venn diagram showing the relationships among polynomials, moncmials: binomials, and trinomials.
VII. Dolciani, Modern Algebra, Bk. 1, work any ten problems from l-15 on pages 43-44.
VIII. Nichols, page 132 , number 7.
IX. Nichols, page 141, number 3.

REFERENCES

Nichols (abbreviation)
Nichols, Eugene, D., Moderi Elementary A]gehra, Holt, Rinehart and Winston, Inc., 1965.
Pearson (abbreviation)
Pearson, Helen R., and Allen, Frank B., ModernAlgebra: A Logical Approach, Ginn and Com-pany, 1964.
Payne (abbreviation)
Payne, Joserh N., Zamboni, Floyd F., Lankford, Jr.,Francis, Algelba Cue, Harcourt, Brace and Worli,Inc., 1969.
Wooton, MSM (abbreviation)
Dolctanj, Mary P., Wooton, Willjam, Becikenback,* Edwin Fi:., Jurgensen, Ray C.. Donnelly, Alfred J.,Molern School Hathematics, Aigebra 1.
Dolctani, ili (abbreviation)"
Dolcianl, Mary P., Berman, Simon L., Freilich, Julius; Modicr Algebra, Book 1; Houghton Miffilin Co., 1965.
Vanatta (abbreviation)
Vanatta, Glen D., Coodwin, A. Wilson, Algebra One, \dot{A}Modern Course, Charles E. Merrill Publishing Inc., 1966.
Wollenșak teaching tape C-3801 - Open Phrase
C-3802 - Open Sentence.

P Dexies

$2+$

$-3 x+4=6 x-2$

SOLUTION SETS: OF EQUATIONS AND

Lap numgige 7
writine rivenceans

Acknowledgement

The administration and staff of Ninety Six High School gratefully acknowledges the assistance provided by the staff of Nova High School, Fort Lauderdale, Florida. We are especially indebted to Mr. Lawrence G, Insel and Mr. Laurence R. Wantuck of Nova's 'Math Department for permitting' us to use much material developed by them, some of which has been reproduced in its original form.

RATIONALE

In daily life you most of ten express yourself in English sentences. Because of the importance of clean and effective communication, a great deal of time in school is spent studying the English language, ,

In mathematics, ideas are expressed in a combination of English sentences and special mathematical sentences. Mathematical,sentences consist of mathematical symbols rather than WORDS: An example of a mathematical sentence is $3 x+5=9$. An understanding of the types and properties of mathematical sentences is essential to your advancing in mathematics.

SECTION I.

'Behavioral Objectives
At the compleţion of your prescribed course of study, you will be able to:

1. Given any mathematical sentence, classify it as being true", false, or neither:
2. Given any linear equation where the solution is dependent on the addition and/or the subtraction property determine the solution set showing all steps and giving reasons.
3. Given any linear equation where the solution is dependent on the multiplication and/or division property, determine the. solution set showing all steps and giving reasons.
4. Given any linear equation whose solution is dependent upon a combined use of addition, subtraction, multiplication, and/or division properties; determine the solution set showing all steps and giving reasons. Appendix I will be completed and turned in to the teacher.

RESOURCES

Obj. 1

* Nichols, read pp. 174-176, Ex. 1-21 odd pages 175-176.

Payne, read pp. 20-22, 101-104, 110-112, 114-116, Ex. 1-12 page 22; 1-10 page 104; 11-20 pages 111-112; 1-18 page 116.

Wooton, read.pp. 29-33, Ex. 1'9 page 33.
Pearson, read pp. 57-59, Ex. 3 page. 58.
Obj. 2
Vanatta, read pp. 47-52, Ex. 1, 2, 6, 7, 13, 14, 17, 18,19 , page 53.
Dolciani, read pp. 80-82, Ex. 1-30 odd p. 83.
Nichols, read pp. 188-191, 177; Ex.' $1-48$ every 4 th problem pages 190191; 1-10 page 177.

Payne, read pp. 101-104, 110-112, Ex: 11-20 pages 104-105; 1-10 page 111.
Wooton, read pp. 116-118, Ex. 1-10 page 119.
Pearson, read pages 151-152, Ex. 1 a, f, h page $152 ; 3 \mathrm{~d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{i}$, m, n, o, s, t page 152.

* required

RESOURCES 1 (cont ${ }^{\text {i }}$

Transparency: Properties of Equality (3M)
Games: Equations

Obj. 3
Vanatta, read pp. 47-52, Ex. $3,4,5,8-12,15,16$, and 20 page 53.
Dolciani, read pp. 83-84, Ex. 1-20 evien pages 84-85.
Nichols, read pp. 191-192, Ex. 1-41 odd p. 192; 11-29 odd pages 177-178.

Wooton, read pp. 116 -120, Ex. 11-26(written) pages 119-1 20.
Payne, read pp. 105-107, Ex. 1-23 odd p. 106.
Pearson, read pp. 150-183, Ex. $1 \mathrm{~b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{i}, \mathrm{j} ; 2$ and $3 \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{j}, \mathrm{k}$, $1, p, q, r$; and 4 pages 152-153.

Games: Equations
Obj. 4
Vanatta, read pp. 53-54, Ex. 5-20 p. 55.
Dolciani, read pp. 86-87, 91-93, Ex. 1-4, 11-15, 29-33 page 88; 1-26 odd (written) p:. 93.

Nichols, read pp. 193-196, 178-180; Ex. 1-45 (every fourth one) pp. 195-196; 1-39 efvery fourth. one pp. 179-180.

Wooton, read pp. 116-120; 131-134, Ex. 27-55 odd page 120; 1-39 odd page: 134.

Payne, read pp. 107-110, pp. 112-114, Ex. i-55 every 4th one pages 109-110; 1-39 every fourth one pages 113-114.

Pearson, read pp. 154-156, pp. 174-175, Ex. 1 EOL, 3,6,9 pages 155-156; 1 a,c,e,g,i,h; 2 a,'c'e,g; 3 a,c,e,g; $4 a, c, e, g, i$ page 175.

* Appendix I.

Audio Tapes: C-3801 Open Phrase, Open Sentence
C-3803 Open Sentence: Solution
Filmstrip: Proof in Algebra: Solving Equations
Games: Équations
REQUIRED

SELF-EVALUATION 1

Obj.
1" I. Classify each sentence into one of the following categories:
If if the sentence is true.
F if the sentence is false.
R if at least one replacement, but not every replacement, for the variable or variables will result in a true statement.

N if. the sentence is neither true or false and there is no replacement for the variable or variablea which will result in a true statement.
b
E if the sentence is neither true or false and every replacement for the variable or variables oill reault in a true sentence.
\qquad a. $x+1=2 x$.
J. J. $d^{2}=-4$
\qquad b. $2=1.4$
k. $\frac{1}{8}=: 125^{\circ}$
\qquad c. $9=3 \times 3$ \qquad 1. $\frac{1}{3}=33 \frac{1}{3} \%$
\qquad d. $12=6 \times 6$
—mome $\frac{3 n}{n}=3$
e. $1 y+11=10^{\circ}$
—n, $-(x-y)=y-x$
\qquad f. $1 \%=.1$ \qquad o. $-1 \cdot(x-4)=4-x$
\qquad g. $\quad \mathrm{B}=2 \mathrm{a}$ \qquad p. $x-y=y-x$
\qquad h. $c+1=c$: \qquad q. $\quad-2(x-y)=(y-x) \cdot 2$
\qquad 1. $7 r-r=6 r$

2 'II. Determine the solution sets. Show all steps and give reasons for parts b and c.
a. $\dot{x}-3=6$
b. $x+-2=5$
c. $\quad y-14=4$
d. $\quad 12=b-1$
e. $26=x+16$
f. $-t+\frac{1}{5}=3 \frac{3}{5}$
g. $2.5=r-1.5$
h. $.05+x=3.5$:

SELF-EVALUATION 1 (cont')

i. $x+2.34=3.06$
3.." III. Determine the solution sets. No denominator is zero. Show all 'steps and give reasons for parts a and g.
a. $2 \mathrm{a}=22$
b. $3 x=5$
c. $.3 \mathrm{~m}-3$
d. $\frac{1}{4} \mathrm{r}=25$
f. $\frac{1}{4} y=60$
g. $\frac{2}{3} a=4$
h. $\frac{3}{a}=4$
i. $\frac{22}{7}=\frac{3 y}{7}$
e. $4=\frac{m}{4}$
4. IV. Determine the solution sets if the universal set is the set of real numbers. No denominator is zero... Show all steps and give reasons for parts a and c only.
a. $3 u+5=1$
h. $7(z-1)-2(2 z-3)=0$
b. $2 w+3=5$
i. $\quad 3 x-7=-(7-3 x)$
c. $\frac{3 x}{2}-6=7$
j: $\frac{4 x+7}{3}=\frac{4}{3} x+7$
d. $18 x+11=9 x-70$
k. $\frac{x-3}{x}=\frac{i}{4}$
e. $\frac{1}{2}+\frac{1}{3} x=1$
f.. $3 n+50=-1.0$

1. $\frac{7}{y+2}=\frac{11}{y}$
g. $\frac{p+1}{2}=2$
m. $\frac{2 x+11}{4}=\frac{3 x-7}{5}$
n. $8 x+91=-5 x-17$

4 V. Write the reason for each step in the following:
(1) $6 x+1=9$ $6 x+1-1=9-1$
$6 x+0=9-1$
$6 x=9-1$
$6 x=8$
$\frac{6 x}{6}=\frac{8}{6}$.

1. $x=\frac{8}{6}$
A. $x=\frac{8}{6}$.
$x=1 \frac{1}{3}$
64
(5)
\therefore A
o'SELF-EVALUATIon 1' (cont')

$$
\begin{aligned}
& \text { (2) } \frac{3 x}{2}-\frac{1}{1}=4 \\
& \frac{3 x}{2}-1+1=4+1 \\
& \frac{3 x}{2}+0=4+1 \\
& \frac{3 x}{2}=4+1 \\
& \frac{3 x}{2}=5 \\
& \frac{3 x}{2} \cdot 2=5,2 \\
& 3 x=1=5 \cdot 2 \\
& 3 x=-2 \\
& 3 x=10 \\
& \frac{3 x}{3}=\frac{10}{3} \\
& 1 \cdot x=\frac{10}{3} \\
& x=\frac{10}{3} \\
& x=2 \frac{1}{3}
\end{aligned}
$$

equation
a. \qquad
b. \qquad
c. \qquad
d. \qquad
e. \qquad
f. \qquad
g. \qquad
h.

i.

1. \qquad
m. \qquad

If you have satisfactorily completed your work, you may take the
 Progress Test. CONSULT YOUR TEACHER FIRST.
\odot

SECTION 2

Behavioral Objectives

At the completion of your prescribed course of study, you will be able to:
5. Given any mathematical sentence involving absolute value, determine the solution se't.
6. Given any verbal problem, translate it into an equivalent mathematical sentence and find its solution set.
7. Given any statemenc using the properties of inequalities, determine if it is true or false: Appendix II will be completed and turned in to the teacher.
8. Given any inequality whose Universal set is the set of real numbers; determine and/or graph the solution set on the . number line:
9. Given any pair of polynomials, write their product.

RESOURCES

Obj. 5
Nichols, read pp. 186-188; Ex. 1-29 odd page 188.
Payne, read pp. 148-151; Ex. $1 \frac{1}{7} 23$ odd page 149.
Wooton, read pp. 165-168, Ex. 1-23 odd page 168.
Pearson, read pp. 217-219, page 224, Ex. 3, Ex. 6 page 219; 13 page 226.

Obj. 6
Vanatta, read __, Ex. 1-14 page 74.
Dolćiani, read page 92, Ex. 1-8 page 94.
Nichols, read pp. 180-182; pp. 214-217, pp. 221-223, Ex. 1-10 pages 181-182; 1-9 odd pages 216-217; 1-8 odd pages 222-223.

Wooton, read pp. 120-123, pp. 124-130, pp. 131-133, Ex.' 1-6 pagés 122-123; 1-27 odd pages 128-130; 1-21 odd pages 134-136.

Payne, read pp. 132-136; Ex $-1-9$ odd pp. 133-134; 1-15 odd pages 134-135; 1-8 odd "pa'ges 136-137.

Pearison, read "pp. 157-159, Ex. 1-19 odd pages $158-159$; 5-17 odd pages 176-.178.

Audio Tapes: C - 3809 Reading Written Problems.

Obj. 7
Vanatta, read pp. 55-58, Ex. \qquad .

Dolciani, read pp. 159-163, Ex: \qquad .

* Appendix II

Transparencies: Properties of Inequality
(* required)

Obj. 8
Vanatta, read pp. 55-58, Ex. 1-10 page 58.
Dolciani, read pp. 159-162, Ex. 1-10, 14-16 page 163.
Nichols, read pp. 182-185, pp. 241-246, Ex. la,c,e,g,i,k pages 183-185; 2a,c,e,g and 3 a; c,e,g pages 183-185; 1 a,c,e,g,i, $\mathrm{k}, \mathrm{m}, \mathrm{o}, \mathrm{q}, \mathrm{r}$ and $2 \mathrm{a}, \mathrm{c}, \mathrm{e}, \mathrm{g}$ and $3 \mathrm{a}, \mathrm{c}, \mathrm{e}$ page 244.

Wooton, read pp. 157-i59, Ex. 1-10 page 159.
Payne, read pp. 117-122, p: 124 exercise 5; Ex. 1-19 odd pp. 119122, 23-29 odd pages: 119-122; 11-25 odd page 126 .

Pearson, read pp. 72-74, Ex. $1 \mathrm{c}, \mathrm{d}, \mathrm{h}, \mathrm{i}, \mathrm{j}$ and $4 \mathrm{a}, \mathrm{c}, \mathrm{d}, \mathrm{g}, \mathrm{i}$ pages 73-74.

Audio Tapes: C-3805 The Compound Sentence C-3806 Inequality and Equality Sentences

Filmstrip: Graphs of Inequalities in One Variable
Transparencies: Properties of Inequality

Obj. 9
Vanatta, read pp. 289-290, 293-294, Ex. 1-20 even p. 290; 1-30 odd pp. 294-295.

Dolciani, read pp. 206-207, 209; Ex. 1-6 oral page 207; 1-20 even page 210.

Nichols, read pp. 199-201, Ex. 1 a, c, e, g, i, k and $2 a, c, e, g, i, k, m$, o, q, s, u, w, y page 201.

Wooton, read $272-27.5$, 277-279, Ex. 1-23 odd pages 274-2.75; 1.3-39 odd page . 279 :

Payne, read pp. 313-317, Ex. 1-29, odd p. 315.
Pearson, read pp.170-173, Ex..1, 5. 7 pages 1.72-173.

Obj.
5
I. Solve the foliuwing:
(a) $|x|=8$
(d) $|6-2 x|=2$
(b) $|x-3|=4$
(e) $\left|\frac{1}{2} x+4\right|-2=3$
(c) $|3 t+1|=7$
(f) $\left|\frac{2+x}{3}\right|=2$
II. Write the equation used to solve each verbal problem and solve the problem. Show your work.
(a) The sum of a number and 1 is equal to the product of 3 and the number. What is the number?
(b) Multiplying a no. by 3 gives the same result as adding 4 to the number. What is the no.?
(c).Taking one-half of a number gives the same result as adding 5 to the number. What is the no.?
(d) How long is a rectangular plot if its length is 9 ft . longer than its width, and its perimeter is 94 ft ?
(e) The difference between the length and the width of a rectangle is 11 inches. What is the length and the width of the rectangle if its perimeter is equal to 26 inches?

7 III. TRUE OR FALSE.
\qquad 1. If $x<6$, then $x+2>6+2$.
\qquad 2. If $x<5$ and $c<0$, then $x \cdot c<5 \cdot c$.
\qquad 3. If $K>6$ and $c>0$, then $K \cdots c>6^{\cdot} c$.
\qquad 4. If $4<12$ and $-2<0$, then $4 \div-2>12 \div-2$.
\qquad 5. If $7<K$, then $?-6<K-6$.
\qquad 6. If $8>m$, then $8-7<m-7$.
\qquad 7. If $\mathrm{T}<4$, and $\mathrm{c}<0$, then $\mathrm{Tc}<4 \mathrm{c}$.
\qquad 8. If $k>7$ and $c<0$, then $k \cdot c<7 \cdot c$.
\qquad 9.

10. $3 \mathrm{x}=2-\mathrm{y}$

$$
3 y+3 x=0
$$

11. $2 \mathrm{x}>\mathrm{y}$
$3 x+5 y=y$
12. $2 x+y=6$
$x+y=y+3$
13: $3 x<2-y$
$3 y+3 x>0$
13. IV. Work the following problems. SHOW YOUR WORK.
14. Two men start out from the same city and travel in opposite directions. One travels north at an average rate of 35 mph and the other man travels south at 40 -mph. In how many hours will they be 250 miles apart?
15. The sum of four consecutive odd integers is 152. What are the integers?
16. Jim and Joe ride their motorbikes in opposite directions from Joe's house on the highway. They start at the same time. We find them 19 miles apart 15 minutes later. The average speed of Joe! s. bike is 8 miles per hour less than the average speed of Jim's bike. Determine the average speed of Joe's bike.
17. In Sue's bank she has some dimes and some nickels. She has two more dimes than she has nickels. In all she has $\$ 1.10$. How many dimes and how many nickels does she have?
18. How much water must be added to 16 pounds of a 25% salt solution to reduce it to a 15% solution?

If you haye satisfactorily completed your work, take the LAP Test. CONSULT

SELF-EVALUATION 2 (cont')

9 VI. For each of the following expressions, write an expression which is equivalent to it and which does not contain parenthesis.
a. $-3(2 a-5 n+4 n)$
b. $(a+4 n)(a-n)$
c. $(4+58)(58-4)$
d. $-(x-1)\left(1^{\prime \prime}-x\right)$
e. $(2 a+3)(2 a+3)$
P. $(2 a+3)(2 a-3)$

0

If you have satisfactorily completed your work, take the LAP Test: CONSULT YOUR TEACHER FIRST.

APPENDIX 1

1. rite an esilination of the addition property of equality.
2. Write an explanation of the subtraction property of equality.
3. Write an explanation of the multiplication property of equality.
4. Write an explanation of the division property of equality.
5. Write the reason for each in the follouving.
(1) $2 x=10$

$$
\begin{gathered}
\frac{2 x}{2}=\frac{10}{2} \\
1 \cdot x=\frac{10}{2} \\
\therefore=\frac{1.0}{2} \\
x=5
\end{gathered}
$$

(2) $\frac{x}{3}=10$

$$
\frac{x}{3} \cdot 3=10 \cdot 3
$$

$$
x \cdot 1=10 \cdot 3
$$

$$
\dot{x}=10 \cdot 3
$$

$$
x=30
$$

equation
equation
(3) $x+2=9$

$$
x+2-2=9-2
$$

$$
x+0=9-2
$$

$$
x=9-2
$$

$$
x=7
$$

\qquad
\square
\qquad
\square

\square
\qquad
\qquad

APPENDIX 1 (cont')

(4) $y-3=7$

$$
y-3+3=7+3
$$

equation

$$
\begin{aligned}
y+0 & =\dot{7}+3 \\
y & =7+3 \\
y & =10
\end{aligned}
$$

```
- - 
```

(5) $3 x+6=33$

$$
3 x+6-6=33-6
$$

$$
3 x+0=33-6
$$

$$
3 x=33-5
$$

$$
3 x=27
$$

$$
\frac{3 x}{3}=\frac{27}{3}
$$

$$
1 \cdot x=\frac{27}{3}
$$

$$
x=\frac{27}{3}
$$

$$
x=9
$$

(6) $\frac{-3 n}{4}-2=-4$
$\frac{-3 n}{4}-2+2=4+2$
$\frac{-3 n}{4}+0=4+2$
$\frac{-3 n}{4}=4+2$
$\frac{-3 n}{4}=6$
$\frac{-3 n}{4} \cdot 4=6 \cdot 4$
$-3 n \cdot 1=6 \cdot 4$
$\begin{aligned} 3 n & =6 \cdot 4 \\ -3 n & =24\end{aligned}$

$$
-3 n=24
$$

$$
\frac{-3 n}{-3}=\frac{24}{-3}
$$

$$
1 \cdot n=\frac{24}{-3}
$$

$$
\begin{align*}
& n=\frac{24}{-3} \tag{13}\\
& n=-8
\end{align*}
$$

1. Explain the following:
A. If $\mathrm{a}<\mathrm{b}$, then. $\mathrm{a}+\mathrm{c}<\mathrm{b}+\mathrm{c}$; and $\mathrm{a}>\mathrm{b}$, then $\mathrm{a}+\mathrm{c}>\mathrm{b}+\mathrm{c}$.
B. If $\mathrm{a}>\mathrm{b}$, then $\mathrm{a}-\mathrm{c}>\mathrm{b}-\mathrm{c}$; and $\mathrm{a}<\mathrm{b}$, then $\mathrm{a}-\mathrm{c}<\mathrm{b}-\mathrm{c}$.
c. If $a>b$ and $c>0$, then $a c>b c$; and $a<b$ and $c>0$, then $a c<b c$.
D. If $a>b$ and $c<0$, then $a c<b c ;$ and $a<b$ and $c<0$, then $a c>b c$.
E. If $\mathrm{a}<\mathrm{b}$ and $\mathrm{c}>0$, then $\mathrm{a} \div \mathrm{c}<\mathrm{b}+\mathrm{c}$.
F. If $a>b$ and $c<0$, then $\dot{a}+c<b+c$.
2. True or False.
\qquad 1. If $-2 \mathrm{x}<8$, then $\mathrm{x}<-4$.
\qquad 2. $3 \mathrm{x}<9$, then $\mathrm{x}>3$.
\qquad 3: $x+3<6$, then $x<3$.
\qquad 4. If $-\frac{x}{6}>2$, then $x<-12$.
\qquad 5. If $x-3<5$, then $x>8$.
3. If $-6 x>12$, then $x>-2$.
\qquad 7. If $\frac{x}{3}<9$, then $x>27$.
4. If $6 \mathrm{x}<18$, then $\mathrm{x}<3$.
\qquad 9. If $x-8<28$, then $x<20$.
_10. If $2 x+9<19$, then $x<5$;

ADVANCED STUDY

I. Work the following. Show your work.

1. A car starts out at a point 3 miles outside of town at a rate of 50 mph . How long will it take for the car to be 353 miles from the town? ($d=r t$)

Total distance $d_{t}=$ rate times time (rt) plus the 3 miles out of the town.

$$
\begin{aligned}
& 353=50(t)+3 \\
& \text { solve for } t
\end{aligned}
$$

2. An airplane travels 702 miles from its point of origin to its destination, it made one stop to pick up passengers and then flew at a rate of 310 mph . Ior 2 hours to arrive at its taritigal point.

Given the equation $d_{t}=d_{1}+d_{2}$
But $d_{2}=R \bullet t=310(2) \quad$ So:
$702=d_{1}+310(2) \quad$. solve for. d_{1}
II. Work the following, showing' your work.

1. The total electrical resistance in a series circuit is equal to the sum of the individual reaistances. If the first resistor bas a rating of two ohms (a measure of resistanca), and the second resistors rating is 7 ohris, then what is the ohm rating of the third resistor, given the total circuit resistance is 10 ohms?

Write the equation.
Solve the ohm rating of the thind resistor.
2. The total electrical resistance in a parallel circuit may be found by equating the reciprocal of the total reaistance to the sum of the reciprocals of the individual resistances.
$r_{1}=3, r_{2}=6, r_{3}=?$ Total rasistance is 1 ohm
Write the equation, then solve for r_{3}.
3. The focal length of a lens can be found by dividing the product of the inge diatance $\left(d_{i}\right)$ and the onject diatance $\left(d_{0}\right)$, by their sum.

Write the equation, if the focal distance is 1 and the object distance is 2.

Solie thr \because ?

ADVANCED STUDY (cont')
III. Wooton, read Pp. 160-163, Ex. 1-26 even (written) pp. 164-165.
IV. Wooton, Ex. 1018 page 174 any 4 problems.
V. Dolciani, Ex. $\stackrel{e}{2}^{23-32}$ page 163 any 5 problems.
VI. Dolciani, read 164-165, Ex. 1-20 any 8 problems.
VII. Dolciani, page 168 any 5 problems.

REFERENCES

Nicḥols (abbreviation)
Nichols, Eugene, D., Moderñ Elementary Algebra, Holt, Rinehart and Winston, Inc:; 1965.

Pearson (abbreviation)
Pearson, Helen Ro. and Allen, Frank B.. Modern Algebra: A Logical Approach, Ginn and Company, 1964.

Fayne (abbreviation)
Payne, Joseph N., Zamboni, Floyd F., Lankford, Jr., -Francis, Algebra One, Harcourt, Brace and World, Inc., 1969.'

Wooton (abbreviation)
Dolcíani, Mary Po, Wooton, William, Beckenback, Edwin Fr., Jurgensen, Ray C, , Donnelly, Alfred J., Modern School Mathematics, Algebrà "1.

Dolclani (abbreviation)
Dolciani, Mary P., Bermãn, Simon Lo,", Freilich, Julius, Modern Algebra, Book 1; Houghton Miffflin Co., 1965°.

Vanatta (abbreviation)
Vanatta, Glen D., Goodwin, A. Wilson, Algebra One, A Modern Course; Charles E. Merrill Publishing Co., 1066.

Wollensak teaching tapes $\mathrm{C}-3801, \mathrm{C}-3803, \mathrm{C}-3805, \mathrm{C}-3806$, aṇd C-3809
Transparencies: $3 M$ Properties of Equality Properties of'Inequality

Filmstrips: Proof in Algebra: Solving Equations Graphs of Inequalities iń One Variable

Games: Equations by Layman Allen
$\mathbf{L}_{\text {inavinu }}$ A

ACKAGE

EQUATIONS AND INEQUALITIES

 WITH TWO VARIABLES

Algebra 93-94

LAP NUMBER \qquad
WRITTEN BY Diane Evans

Acknowledgement

The administration and staff of Ninety Six High School gratefully acknowledges the assistance provided by the staff of Nova High School, Fort Lauderdale, Florida. 'We are especially indebted to Mr. Lawrence G. Insel and Mir. Laurence R. Wantuck of Nova's Math Department for permitting us to use much material developed by them, some of which has been reproduced in its original form.

RATIONALE
EQUATIONS OF THO VARIABLES

Graphs are not new to you. In your study of history, geographyp, and science, many relationshipa were made clear by graphing. Fór example, temperatures in relation to altitude might be indicated by means of a graph. Here the temperature depends upon the altitude. When a quantity depends upon another 80 that corresponding values can be determined, a graph of their correaponding values can be made.

You have learned how some physical problems can be translated into equations and inequalities.' You. Wll continuê to learn about wordr. probiems in this IAP. You will also" laam how' to set some of these ideas in a pictorial manner Their notions should be more meaningiul, to you through graphing.

Since an equation or inequality represents a relationship of variables, we can associate a point with each pair of values, of this relationship.
g We shall study graphs, which will help us gain insight into relationships described by equations and inequalities.

Behavioral Objectives
At the completion of your"prescribed course of study, you will be
to:

1. Given an equation in two variables and an ordered pair of numbers for replacements of those variables, tell whether the resulting equation is true or false.
2. Identify or define the following:
A. Cartesian coordinate șystem
B. Descartes
C. absçissa
D. ordinate
E. origin .
3. Given an ordered pair of real numbers, locate the point on a coordinate system corresponding to that ordered pair.
4. Given an equation of two variables put it in standard form.
5. Given an equation in two variables, name at least three ordered pairs of real numbers that are members of the solution set.
6. Given an equation or inequality of two variables, graph it.

RESOURCES

Obj. 1
Dolciani, read pp. 333-335, Ex. 1-10 oral p. 335.
Nichols, rèad pp. 259-260, Ex. 1-12 pages 260-261.
Wooton, read pp. 189-192, Ex. 1-10 page 192.
Pearson, read pp. 428-431, Ex. 1-3 page 431.
C. Algebra (programmed) Frames 65-90.
\therefore
C. Geometry (programmed) Frames 1-83.

嘼j. 2
Dolciani, read pp. 365, 337-338, Ex. 1-32 page 339.
Vanatta, read pp. 191-195, write definitions in Obj: 2.
Wooton," read pp. 194-195, Ex. 1-6 orall pages 195-196; write definitions in Obj. 2.

Obj. 3
Vanatta, read pp. 193-195, Ex. 1 page 196.
Dolciani, read pp. 337-338, Ex. 1-12 page 340.
Nichols, read pp. 263-264, Ex. 1-6 pages 264-266.
Wooten, read pp. 194-195, Ex. 1-14 (written) pages 196-197.
Payne, read pp. 167-170, Ex. 1-14 pages 170-172
Pearson, read pp. 431-432, Ex. 1-4 page 432; 1-5 pages 436-437.
C. Algebra (programmed) read Unit: 1 -Book 3, Ex; Frames 1-65.
C. Geometry. (programmed) Frames $128=181$; 329-338:

Obj. 4
Vanatta, read .pp. 246-248, Ex. \qquad .

Nichols, read Pp. 261-262, Ex. 1-16 page 262.
Wooton, read pp. 197-200, Ex. 1-6 page 201.

Obj. 5
Nichols, read pp. 266-267, problems assigned in next objective.
Wooton, read pp. 197-200, Ex. 7-12 page 201."
C. Algebra (programmed) read Unit 1, Book 3, Ex - Frames 66-98.

Obj. 6:

Nichols, read pp. 266-267, 276-280, Ex, 1-12 pages 267-268; 1-4 pages 280-281.

* Payne, read pp. 178-180, 205-207, Ex. 14-21 page 181; 1-10 even page 207.

Pearson, read pp. 448-451, 487-489, Ex. 1-2 page 452; 1-2 page 488; $1-7$ parts a and b only. page 490 .
C. Algebra (programmed) read Unit 1, Book 3, Ex. frames 99-132 Unit ${ }^{1}$; frames $1=124$ Unit 2.
C. Geometry (programmed) read Unit 2, Book 3, Ex. frames 182-291 and 324-379.
required

SELF-EVALUATION 1

j.

1 I. Next to the equations listed below, there are 3 ordered pairs cf numbers; tell wbether or not it satisfies the equations.

$$
\begin{aligned}
& \text { 1. } x+y=7 ;(6,1) ;(-10,3) ;(6.99, .01) \\
& \text { 2. } 2 x+3 y=6 ;(0,2) ;(2,0) ;\left(1, \frac{4}{3}\right) \\
& \text { 3. } 3 m=2 n+4 ;(0,-2) ;(-2,0) ;(-5,-2) \\
& \text { 4. } \frac{1}{2}|x+y|=\frac{1}{3}|x-y| ;(0,0) ;\left(6,-\frac{6}{5}\right) ;(6,-30) \\
& \text { 5. } 2 a=3|b|-1 . ;\left(0, \frac{1}{3}\right) ;\left(0,-\frac{1}{3}\right) ;(-4,-3)
\end{aligned}
$$

II. Graph the following ordered pairs on the coordinate system to the right.

I.II. Define the following terms.
15. abscissa
16. origin
17. Descartes
18. Cartesian coordinate system.
19. ordinate

4 IV. For each equation below, find an equivalent equation in standard form:
20. $2 x=-3-8 y$
21. $\frac{x-y}{x+y}=3$
22. $3 x-2 y+(-3)=2(3 y-6 \dot{x})+4$
23. $\frac{4 x+2}{6}=\frac{-3 x+6 y}{-2}$
24. $\frac{-2}{3 x+7 y}=\frac{-4}{5 x-2}$

$$
\cdots \quad,
$$

V. Which of the ordered pairs listed to the right are menbora of the solution set of the equations on the left. (There may be fore then one answar for each equation).
a) $(3,-1)^{\prime}$
'25. $2 x-3 y=12$
b) $\left(\frac{3}{2},-3\right)$
26. $2 x+3 y-1=x+y$
c) $(0,0)$
d) $(6,0)$
e) $(1,5)$.
f) $(1,0)$

VI: Graph each of the following sentences. The universal set in each case is the set of real numbers. (Use the graph paper provided)
28. $y=62 x+6$.
29. $2 x+3 y>1$
30. $\frac{2(3-3 x)}{y+1}=-3$
31. $2 \mathrm{x}-\mathrm{y}=4$
32. $x-y \leq 3$
33. $2 x-y>-4$.

If you have satisfactorily completed your work, take the Progress Test. CONSULT YOUR TEACHER FIRST.

SELF-EVALUATION 1 (cont ${ }^{\prime}$)

SECTION 2

Behavioral Objectives

At the completion of your prescribed course of study, you will be able to:
7. Given a system of equations in two variables, graph their solution set.
8. Given the graph of a pair of equations in two variables, tell whether they are:
A. dependent
B. inconsistent
C. independent
D. inconsistent
and if they are independent, name the point of intersection.
9. Given a system of equations and/or inequalities in two variables, graph their solution set.
10. Given a woṛd problem, translate it'into an open mathematical sentence and solve for the unknown.

RESOURCES

Obj. 7^{-}
Vanatta, read pp. 233-234, Ex. 1-8 page 241 .
Dolciani, read pp. 267-269, Ex. 1-8 page 369.
N̈ichols, read pp. 268-270, Ex. 1-13 pages 270-271.
Wooton, read pp. 223-225,. Ex. 7-15 page 228.
Payne, read pp. 219-221; Ex. 1-10 pages 222-223.
1 Pearson, read $\backslash p p .465-466$, Ex. 1-3 page 466.
C. Algebra (programmed) read Unit 3, Book 3 (includes obj. 9)

Ex. frames 8-105.
C. 'Geometry (programmed) frames'181-191; .324-279.

Obj. 8
Vanatta, read pp. 233-234, Ex. gíveñ for obj. 7 .
Dolcinai, read pp. 367-369, Ex. given in obj. 7 .
Nichols, réad pp. 271-275, Ex: 1-10 page 276.
Payñe, read pp. 234-235, Ex. 1-18 odd page 243 (do not use slope; use graph method)

RESOURCES 2 (cont').
Pearson, read pp. 480-481, Ex. 1-9 page 482.

Obj. 9
Dolciani, read pp. 350-352, 379-380, Ex. 1-12 even written page 352; 9-11 page 370; 5-14 even page 380.

Nichols, read pp. 281-284, Ex: 1-3 page 284.
Wooton, read pp. 252, Ex. 1-12 page 253.
Payne, read pp. 214-222, 244-245, Ex. 11-14 page 223; 1-10 page 246.
Pearšon, read pp. 490-491, Ex. 1-2 page 491.
C. Geometry (programmed) frames 324-477:
C. Algebra (programmed) (same as obj: 7)

Obj • 10
Vanatta, read pp: 154-158, 164-166, 169-170,. 214-216, 235-237, Ex. 1, $2,8,10,14$ page 156 ; 1-9 page 159 ; 1,2 pages $166-167 . ; 17$ page 177; 11 page 175; 6 page 178; 1,2,4,5,10 page 170.

Dolciani, read pp. 166-171, 172-175, 178-180, 182-183, 310, Ex. 1; 2, $4,10,19$ page $168 ; 6,7$ page $167 ; 1,4,7,10,13$ bottom. page 171; 4, 4 5,6 page 177; 1-3 pages $180-181$; 2-5 page 183 ; 1,3-5 pagé 311 .

Nichols, read pp. 223-228, Ex. 1-14 even page 224-225; 1-9 even, 11 pages 227-228.
Wooton, read pp. 169-172, 353-355, Ex. 1-36 even pages 173-176; 1-30 even pages 356-358,
Payne, 'read pp. 128-1/36, 139., Ex. 1-9 pp. 133-134; 1-15 even pages 134-135; $\tilde{I}, 3,5$ page $136 ; 1-4$ pages $139-140$.

Pearson, read pp. 251-252, 296-299, Ex. 1-30 eveñ pages 252-253.

Obj.
7 I. Graph each system of equations and name the point intersection. (approximately) Use the graph paper provided.

1. $\begin{aligned} 2 x-y & =0 \\ 2 x+y & =-4\end{aligned}$
2. $3 x+y=10$
$2 x-y=.1$
3. $4 \mathrm{x}=2 \mathrm{y}$
$2 x-y=2$
4. $3 x+5 y=4$.
$12-9 x=5 y$
5. ${ }^{\prime} 2 x+3 y=8$
$x+y=3$
6. $x+y=1$
$y=-x$

8 II.' 'Categorize the following graphs of pairs of equations as being
(a) dependent (b) inconsistent. (c) independent and if they are indeptndent, name the point of intersection.

8.

9 III. Graph the following systems. Use the graph paper provided.
10. $3 x=2-y$
$3 y+3 x=0$
11. . 2x>y
$3 \mathrm{x}+5 \mathrm{y}=\mathrm{y}$
12. $2 \mathrm{x}+\mathrm{y}=6$
$x+y=y+3$
13. $3 \mathrm{x}<2-\mathrm{y}$, $3 y+3 x>0$
IV." Work the following problems. SHOW YOUR WORK.
14. Two men start out from the same city and travel in opposite direc One travels north at an average rate of 35 mph and the other man south at 40 mph . In how many hours will they be 250 miles apart?
15. The sum of four consecutive odd integers is 152. What are the integers?
16. Jim and Joe ride their motorbikes in opposite directions from Joe's house on the highway. They start at the same time. We find them 19 miles apart 15 minutes later. The average speed of Joe! $\frac{1}{6}$ bike is 8 miles per hour less than the average speed of Jim's bike. Determine the average speed of Joe's bike.
17. In Sue's bank she has some dimes and some nickels. She has two more dimes than she has nickels. In all she has $\$ 1.10$. How many dimes and how many nickels does she have?
18.: How much water must be added to 16 pounds of a 25% salt solution to reduce it to a 15% solution?

SLLEKーrvaluation 2 (cont')

									+	+	-			-	-			--	-	1							:	+	-					1	
																			-	+							-	-	-						+
	,																-																		
																								-											
																			.					\therefore -					5						
																		\cdots										r							
,																		\%					-												
									.																	3						\because		\cdots	\square
		.																$=$					-					-						,	
																							.					-							,
																								\therefore											
				.																															
									-													.													
																						-						-							-
-																													+						1..:
																			-										1				-		1
								;																					7						-
																					,														-
\square					-																														1
																																			1
				-																		?							-						1
					?									.																					
															:						i														
										.				,													"								+
					*			1																											1
					+			\cdots	$!$.							.						
		\because																	.																
												\cdots																							
				.		-										\cdot																		-	
							\sim																											-	-
			.			\pm				\therefore											1														
				.		:							\because																						
													-					-				-													
																		-				-						-			$=$			-	
																																			\cdots
				.				.						4			.																		-
				.																															\cdots
				.																													-		
																						-	.												
																							:			\cdot									
		\therefore																				-										-			+
																																\cdot			
												.														;						-		,	
																															1				
							1																						\cdots		,				
		.																																	
						.																													
																		-								-									-
																-			8																
		.	-								"						.																		
																\cdots																			
																\cdots						-													-
																'																-			1
																											;								
					,																														
					-										-			-				-			.										
																			\because							\bullet		\bigcirc		\sim					
-																																			
																													'.						-
																												\cdots							1
																																			-
																																		-	8

 $1-1-1$ - 2 1. $1.0|\cdot|$

APPENDIX

Work the following problems. Show your work and turn it in to your teacher with this sheet.

1. Tony broke his bank and found he had $\$ 5.35$ in nickels and dimes. The bank contained ten more dimes than nickels. How many nickels and how many dimes did he have?
nickels
dimes \qquad
2. Mr. James weighs 30 pounds more than his son. His son weighs twice as much as Mrs. James. Their combined weight is 495 pounds. How much does Mr. James weigh?

Jim and John went hunting and shot 21 rabbits in all. John shot three less "rabbits than Jim. How many did each boy shoot?
4. A man purchases some three-cent stamps and some one-cent stamps for \$3.05.. There are 19 more three-cent stamps than one -cent stamps. How " many of each kind does he buy?
number of $3 c$ \qquad
number of $1 c$ \qquad
5. At a certain time two airplanes start from the same airport and travel in opposite directions at 300 miles an hour and 250 miles. an: hour respectively. In how many hours will they be 1.3 .75 miles apart?
6. At a certain time a train leaves New York going to Albany traveling at 75 mph. . At the same time a train leaves Albany going to New York traveling at $50-\mathrm{mph}$. In how many hours will they meet if New York is 375 miles from Albany?.
7. John left Greenville traveling to Atlanta driving 40 mph . At the same time Sam left Atlanta traveling to Greenville driving 55 mph . In how many hours will they meet if Greenville is 190 miles from Atlanta?
8. How múch water must be -added to a barrel containing 48 pounds of a " 10% brine to obtain a 6% brine?

APPENDIX (cont')
9. How many ounces of water must be added to 80 ounces of a 5% acid solution to produce a 2% acid solution?
\qquad $\underset{\because}{j}$

- I. Mixture problem from chemistry:

What quantities of gold 80% and 20% pure sbould be mixed to give 12 grams of 70% pure gold?

$$
\text { Let } \begin{aligned}
x & =80 \% \text { pure gold } \\
y & =20 \% \text { pure gold } \\
.4 x & =\text { gm of gold in } 80 \% \\
.6 y & =g \text { of gold in } 20 \%
\end{aligned}
$$

So the two equations are

A 12 volt D.C. gonerator can charge a battery at the rate of 20 ampenes which ia 20° couloribe 'of charge perisecond. It starts charging a mew battery at $1: 30$ P.

Another D.C. 12 "volt generator can charge a battery at the rate of 40, amperes. It starts charging a similar battery at 2:30 P. 146 Yhen will both batteries haye the 齐me charge? What will the $1 \therefore \quad$ charge be? .

ADVANCED STUDY (connt')
III. Work any 5 of the following problems:
A. Dolciani, page 172 , numbers $14-18$.

寊. Nichols, page $227, \therefore$ nos: 7-9.
IV. Work any 5 of the following:
A. Dolciani. page 182 , numbers $13,14,16$; page. 191 , numbers $56,58$.
B. Nicholspage 176 , number 14 ; page 177 , number 4.
V. "Work any 6 of the following:
A. Dolciani, page 184, numbers 13,14 ; page 311 , numbers 9,10 ; Page 318, numbers 1-5.
B. Vanatta, page 176 , numbdrs 9,20 ; page 178 , number 7 .
VI. Payne, page, 244, numberṡ 23-26.

Payne, page $24 x$, numbers $1-6$.
VII. ${ }^{\text {Payne, }}$ read Pp. 250-252,.Ex. 1-4 pages 252-253.:

Cons

Nichols (abbreviation)
Nichols, Eugene, D.., Modern Elementary Algebra, Holf, Rinehart andjwinston, Inc., 1965.

Pearson (abbreviation)

Pearson, Hélen R., and Allen, Frank Br., Modern Algebra: A Logical Approadh, Ginn and Company, 1964.

Payrie (abbreviation)
Payne, Joseph N., Zamboni, Floyd F., Lankford, Jr., Francis, Algebra-OKe; ${ }^{2}$ Harcourt, Brace and World, Ine., 1969.

Wooton (abbrevyation)
.1
Dolciani; Mary P., Wooton, William, Beckenback, Edwin' Fr.; Jurgensen; Ray C., Donnelly, Alfred J., Modern School Mathematics, Algebra 1, Houghton, is Mifflin Comipany, 1967.

Dolciand (abbreviation)
Dolciani, Mary P:, Berman, Simon'L., Freilich, Julius, Modern Algebra, Book 1, Houghton Miffiln Co., 1965.

Vanatta (abbrefiation)
(Vanatta, Glen D., Goodwin, A. Wilson, Algebra One, A Modern Course Charles E.. Merrill Publishing Co., 1966.

Programed Algebra: (abbreviation),
Helmer, Balpla T., Kocher, Fromk., and Lottea, John, J., A Program in Contemporary Algebra, Book 3, Equations and Inequailities in Tro Variables, Holt, Binehart and Finaton, Inc New Yo:rk, H. Y. ; 1963

Programed Geometry (abbreviation)

Nichols, Eugene D., Kalin, Robert., Garland; Henry., Introdučtion to Coiordinate Geometry, Holt, Rinehart and Finston., 1963.

RATIONALE

In your previous LAFs:you have been Gand inequalities involving one variable. . Actually, 5 most applied problems can be solved in this manner, depending upon your ingenuity!, There are instances where i, ie preferable to use two variables rather than nne. This requires that, you be able to solve systems of lineâr equations and inequalities.
'In LAP \& you had some experience in find-. ing solution sets to systems of linear equations and inequalities, through the use of graphing. You also found that the "graphing technique" was of limited value since your results were only approximations of the correct solutions.

In this LAP, you will be learning more pres1. cire techniques of computing the solution sets for symterms of linear equations $a^{\text {and inequalities. This will }}$ enable. you to solve applied problems, using two variables rather than one!

Behavioral Objectives.
At the completion of your prescribed course of study, you will be able to:

1. Given a pair of linear equations in two variables, compute their solution set using the COMPARISON method.
2. Givén a pair of linear equations in two variables, compute their solution set using the SUBSTITUTION. méthod.

Given a pair of linear equations lí tyo varitables, compute their solution set using the ADDITION miethod.
4. Given a word problem, TRANSLATE it into an OREN mathematical sentence (or sentences) and SOLVE for the UNKNOWN (or unknowns).

RESOURCES

Obj. 1
Nichols, read pp. 293-297, Ex. 1 all parts pages 297-298.
Games: Graphing Pictures nos. $11,6,22$
Obj, 2
Vanatta, read pp. - 249-250, Ex. 1-8 pages 250-251.
Doỉciani, read.pp. 378; Ex. 1 -18 even page 378.
Nichols, read pp. 299-300, Ex. 1,2 page 300.'
Payne, read p. 235, Ex. 1-18 even page 236.
Wooton, read pp. 240-242, Ex. 1-18 even page 243.
Pearson, read pp. 477, Ex. 1,2 page 478.

* 'Games: Graphing Pictures: nos: 11, 6, 22.

Obj. 3
Vanatta, reạd pp. 246-248, Ex, 1-4 page 245; 5-10 page 246; 1-4 page 248*:
Dolciani, read pp. 370-371, 374-375; Ex. 1-18 even page 372; 1-18 even page 376.

RESOULRCES 1 (cont').
Nichols'; reatd pp. 301-303, Ex: 1,2 page 303. Payne, (read pp. 227-229, Ex. 1-10
p. 230 .

Wooton, read pp. "236-238, 1-31 even page 239.

Obj. '4
Vanattia, read p. 253, Ex. 1-7, 11-15 pages 253-254.

* Bolcjani, read pp. 372-37,3; Ex. 1;3,5,6 page 373; 1-4 page 374; 2,3,4 p. 3/9; 1-3 page 311; 1-3 page 385.

Wootơn, read pp. 244, 247-248, Ex. 1-20 p: 245; 1-22. éven pages 250-25ł.

Pearson, read pp. 482-483, Ex. 1-3; 6, 17, 21 pp. 484-486.
Wollënsak tape C-3809

1. Nichols, read pp., 228-232, 305; Ex, 1-18 even pages 232-234; Ex: 11,12 p. 238; 4 p. 408.

SERE EVAFUATIQN

OBJECTIVE 1. Solve by the OMPAFISON ${ }^{\text {B method. }}$

1. $3 x^{2}-10=y ; y=4 x$
2. $x=12+2 y: x=3+3 y$
3. $x+y=1^{2} 0 ; 2 x+2 y=20$
4. $\frac{1}{2} x=y ; y+\frac{3}{15} x=7$
5. $x+y=\frac{25}{2} \cdot \frac{x}{2}+\frac{y}{2}=5$

OBJECTIVE 2. Solve by SUBSTITUTION method.
6. $7 x+9 y=16 ; x+y=2$
7. $x+y=20 ; y=2 x+5$
8. $3(x+2)^{+}+3 y=21 ; x^{0}+2 y=8$
9. $3 x+z y=15 ;-x=2-4 y$

10: $\frac{1}{3} x+\frac{2}{9} y=2: \frac{7}{3} x+\frac{1}{27} y-\frac{43}{6}$
ORJECTIVE 3.. Solve by ADDITION method: Check by substituting your solution in each problem:
11. $x+y=5 ; 2 x-y=7$
12. $8 x-3 y=15 ; 13 x-3 y=15$
13. $4 x+3 y=14 ; 9 x-2 y=14 \mathrm{C}$
14. $3 x+3 y=12.4 ; 4 x+66 y \quad 3 y=-5.8$
15. $3 s x+2 t y=-5 s t, 4 s x-5 t y=24 s t$

ORJECTIVE'4. Find the EQUATIONS and solve.

(One Variable)

16. John has twice as many, nickels as quarters and 3 fewer. dimes than quarters. The sum of the values of the coins is $\$ 1.95$. Find how many of each kind of coin he hals:
salt. How much water must evaporate to leave the solutionat 30 salt concentration?
17. Two capestart together In opposite directions, one at 40 mpl , the otkel at 50 rinh... Hew lore will it be before they are 300 miles apart?

Solve $19-23$, unitwo Variablea.
19., Tr. sum of numbers is 19.0 Thelr difference is 1. -20. The sum of two numbers is 20. Twice one is 3 times the! 6 ther.
21. A rectargle lq twice asilong. as it is wide....The sum of lengtit and width is 9.
22. John's age now 2 z lose thar twice his sister Sue's age. a. In five yearis Johnls age will equal 3 times Sue's age now.
23. A plane flies 360 mph with the wind and 270 mph against. what is the speed of the plane in still air? What is the wind: speer?

1.: Two spaneeraft A and B are golng to Mars. Spacecratt A containe meñ enci ught equipment. Spacecraft B coñitains fuếl, heavy equipment and lifensupport supplies'.
Question: At what pointudy the ships rendezvous?
Notetr Spacecraft A path: $x-2 y=-1$
Spacecraft B path: $3 x-4 y=28$
2. A man exerting a force of 150 pounds and using a lever 6 feet long would be able to life a welght of how many pounds if he placed the fulcrum 2 feet from the walght?
3. A man in an automoblle ls travelling 5 times as fast as a boy on a blotycle. The time required by the boy in going 40 miles is 3 hours greater than that required by the man goling 50 mlles! What is the rate of travel of the boy?. of the man?
4. $\frac{\text { Job Problems }}{\text { cost job basis) }}$ (These problems are best done on a one-day-total-

If John doos the job In 3 days and Sue in 4 days, how long will it take them to do it together?
5. Vanatta; page 252 , nos. $9,10$.
6. \therefore Dolciani, page 377, nos. 19, 20.
. Dolciani, page 377, nos. 19, 20.
O. REFERENCES

Vanatta (abbreviation)
fanatta, Glen D., Goodwty A. Wilson, Algebra One, A Modern Course, Charles E. Merrill Publishing Co., 1966..

Nichols is (abbreviation)
Nichols, Eugene: D., Modern Elementary Algebra, 1 Holt, Re Rinehart and Winston, Inc. 1965.
pearson. (abbreviation)
copearson, Hel eh R. jo and Allen, Frank B., Modern Algebra:
(1) A. Logical Approach, Ginn and Company; 1964..

Dolciani, Mary P, Wootons, William, Beckenbach, Edwin F:, Jurgensens, Ray CS. Doninelly, Alfred 3 , Modern School Mathematics, Algebra 1; Houghton, Mifflin Company, 1967.

Dolciani (abbreviation)
Dolcianí, Mary P., Burman, "Simon L., Freilich, Julius, Modern Algebra, Book 1 , Houghton Miffing. Co, 1965.

Wollensak teaching Tapes: C-3809

RATIONALE

The purpose of this LAP is to introduce

 the fundamental theorems of exponênts and radicals. At this stage you will not be expected to prove these laws, but will discover them through observing existing patterns Familiarity with these theorems is an important prerequisite for the learning of factoring, extension of the concept of function, and in using scientific notation.A wide variety of experiences will be provided to enable you to associate the basic theorems of exponents to their application either in mathematics or science. The laws Will be extended from natural number exponentsto negatiye exponents. Rational and real expónents will be left, to a later date. Scientific notation will be used in demont strating application of exponents.

SECTION $\quad 1$

Behavioral Objectives

At the completion of your prescribed "course of study, you will be able to:

1. Given any number written in exponential form, write it as a product where the factors are alike.
2. Given any number expressed in exponential form, name the base and the exponent.
3.: Use the product of powers property $\left(\forall x \in R \forall m n \in N X^{m} \cdot X^{n}=X^{m+1}\right.$ to rename any given product of powers so that no base is used more than once. (Simplify).

4: Given any rational. number, and a base; write the rational number in exponential form using the given base.
5. Given any number expressed in exponential form (power of a base), .Wwrite it as a decimal numeral.
6. Given two or more monomial expressions of the form $a^{m} \ldots a^{n},\left(a^{m}\right)^{n}$,
$\frac{a^{m}}{a^{n}},\left(\frac{a}{b}\right)^{n}$, or $(a b)^{m}$, use the laws of exponents together with the associative and comntative properties of multiplication to rename it as an equivalent expression.

RESOURCES

Objectives $1,2,3,4$

Nichols, read pp. 312-314, Ex. 2, 4 every other letter, 3 a, c pp. 314-315.

Vanatta, read pp. 69, 113-114, Ex. 1-18 page 114.
Dolciani, read p. 203, Ex. 1-24 page 204.
Payne, read pp. 257-259, Ex. 1-25 odd, 33-41 odd pages 259-260.
Pearson, read pp. 340 , Ex. $1-5,6 a, b, c, j, k, 1,7 a, b, c, 8 a, b, i, j, 1$, 10 page 341.
*. Appendix I

- Objective 5

Nichols, read pp. $312-313$, Ex, 1 a-j page 314.

Objective 6
Nichols, read pp. 315-319, Ex. 1-3 every other letter page 316; $1,2,5,6$ every other letter page 317; 1,2 every other letter page 318; 1-10 page 319.

Vanatta, read pp. 114-116, Ex. 1-16 page 116;
1-12 top page 117;
$1-23$ even page, 117;
Dolciani, read pp. 204-205, 215-217, Ex. 1-16 even page 205; 1-10
page 206; 1-24 even top page 218; 1-10 pages 218-219.
Payne, read pp. 260-265, Ex. pages 262-264 every number divisible by 4; 1-41 odd page 266.

Wooton, read ṕp. 315-319, Ex. 1-45 odd page 271.
Pearson, read pp. 342-343, 347-349, Ex. 1 every other lettèr, 2 page $342 ; 1,2,3$ every other letter page $343 ; 1,2,3$ every other. letter, $4,5,6$ pages 345-346.

Introduction to Exponents frames 80-141

$$
.218-220
$$

* required

$$
\begin{aligned}
& \text { Introduction to Exponents frames } 27-29 \text { (Obj. 1) } \\
& \text { frames 10-26, 30-32 (Obj: 2) } \\
& \text { - frames 1-9 (0bj. 3) } \\
& \text { : frames 33-35 (Obj. 4) }
\end{aligned}
$$

OBJECTIVE

1

4 : III.A.Write each of the following in exponential form using 2 as the base.
\qquad 9. 64
\qquad - 10. 32
\qquad 11. 4
\qquad 12; 16
$\because B$. Write the following in exponential form using 4 as the base.
\qquad 13. 16
\qquad 14. 4
\qquad 15. 64

IV:: Write the following as decimal numerals.
\qquad 16. 3^{4} \qquad 19. $\left(\frac{2}{3}\right)^{4}$
\qquad 17. -5^{2}
20. $(-5)^{2}$
\qquad 18. 7^{2} \qquad 21. -4^{3}
\square

SELF-EVALUATION 1 (con'')

V. Simplify the following.
\qquad 23. $3^{4} \cdot 3^{2}$
24. $x^{3} \cdot x^{4} \cdot x$
25. $a^{2} b^{3} a b^{4}$
$-i$
26. $x^{2} y^{3} x^{4} y^{2}$
\qquad $30 .{ }^{\circ}(4 x y)^{2}$
31. $\left(3 a^{2} m^{3}\right)^{2}$
\qquad 32: $\left(\frac{a^{2}}{b^{3}}\right)^{2}$
$\cdots-33 . \cdot \frac{c^{2} m^{3}}{c m^{4}}$
\qquad $34 . \frac{18 x^{3} y^{2}}{3 x y}$
\qquad $35 \cdot\left(\frac{a^{3}}{b^{3}}\right)^{2}$
\qquad 36. $\left(\frac{-x}{y}\right)^{3}$
\qquad 37. $\frac{-48 r^{5} s^{7}}{-4 r^{2} s^{4}}$
\qquad 38. $\left(r^{5}\right)^{3}$
\qquad 39. $\left(3 \mathrm{r}^{2} \mathrm{~s}^{3}\right)^{4}$

If you have satisfactorily completed your work, take the Progress Test. Consult your teacher first.
(

SECTION 2

Behavioral Objectives
At the completion of your prescribed course of stidy, you will be able to:
7. 'Given any non-zero rational expression involving exponents, write equivalent expressions using only positive exponents:
8. Use the distributive property to name the product of a
monomial and a polynomial.
9. Given any positive number, express it in scientific notation.
10. Given a number expressed in sdientific notation, express it as á decimal numeral.
11. - Given two or more numbers expressed in scientific notation, find the indicated sum, difference, product or quotient.
12. Given a verb́al problem involving very large or very small numbers, express the numbers in scientific notation and find the solution of the problem.

RESOURCES

Objective 7

Nichols, read pp. 320-324; Ex. 1-15 even page ' 322 ; 1-11 even top page 323; 1, 2 every other letter bottom page 323; $3 \mathrm{a} ; \mathrm{b}, \mathrm{d}, \mathrm{f}$, $\mathrm{g}, \mathrm{h}, \mathrm{j}, \mathrm{n}, \mathrm{p}, \mathrm{w}, \mathrm{r}, 6 \cdot \mathrm{a}, \mathrm{b}, \mathrm{e}, \mathrm{i}, \mathrm{j}$ pages 335-336:

Vanatta, read pp. 117-119, Ex. 1-40 even pages 119-120.
Dolciani, read pp. 232-233, Ex. 1-14 page 233.
Payne, read pp. 267-268, 27ß-274, Ex. 1-9 page 269.
Wooton, read pp. 324-326, Ex. 1-45 odd pages 327-328.
Pearson, read pp. 347-349, Ex. 1 page 349 ; 3-7 page 350.
Introduction to Exponent's frames 142-196.

Objective 8

Wanatta, read. pp. 1 f20-121; 137, Ex. 1-20 even page 121; 1-20 even pages 137-138.

Objective 8 (cont')

Dolciani, read pp. 206-207, Ex. 1-14 page 207.
Wooton, read pp. 272-274, Ex. 1-18 oral page 274 ALSO,
(a) $2 x\left(3 x^{2}+2 x-5\right)$
(b) $2 \mathrm{a}\left(\mathrm{a}^{2}-3 \mathrm{a}+.2\right.$
(c) $3 y\left(2 y^{2}+y-3\right)$
(d) $5 \mathrm{~d}\left(6-\mathrm{d}+2 \mathrm{~d}^{2}\right)$
(e) $x y\left(x-2 x y+y^{2 j}\right.$

Pearson, read page 350, Ex. 8 page 350.
50
Objectives $9,10,11,12$
Nichols, read pages 339-341, Ex. 1-3 pages 340-341.
Dolciani, read pf. 376-377, Ex. 1-17 page 278.
Payne, rèad p. 268, Ex. 25-55 page 269; 27-32 page 260.
Pearson, read pages 350-351; Ex: 1-10 pages 351-353.
Introduction to Exponents Frames 56-78 (Obj. 9) Frames 79 (Obj. 12)

* Appendix 2 1
* Nichols Ex. 4 pages 340-341.
* required

7 I. Write the following using only positive exponents and simplify.

1. $15^{9} \cdot 5^{-4}$
2. $\frac{x^{3} y}{x^{4}}$
3. $2 x^{-3}$
4. $\frac{3 x^{-2}}{a^{3} b^{2}}$
5. $\frac{2 x^{-6}}{8 y^{4}}$
6. $\frac{2 x^{-6}}{-8 x^{4}}$
7. $x^{-2} y^{4}$
8. $\frac{x^{3} y^{4}}{x^{-4} y^{-2}}$
$\because \frac{5 x^{2}}{r^{-3}}$
9. $3 x^{-4}$.
ii. $\frac{6 x y}{-2^{-2}}$
10. $\frac{3 b}{a^{-2} c^{4}}$

8 II. Simplify the Eollowing:
13. $3 x(2 x-3 y+4 c)$
14. $a^{2}(3 a-2 b+c)$
15. . (3xy) $\left(2 x^{2} y^{3}\right)$
16. $\left(2 x^{3} y^{4}\right)\left(3 x y^{4}\right)$
17. $3 x^{2} y(2 x+3 y+4 x y)$
,18. $-2 a^{3} b\left(a^{4} b-a^{3} b^{2}+2 a^{2} b^{4}-b^{5}\right)$
19. $3 x^{2} y\left(5-2 x y^{4}+3 x^{2} y^{3}-y^{5}\right)$

9 III. Express each in scientific notation.
20. $68.5=$
21. $.205=$
22. . $0024=$ \qquad
23. $186,000,000,000=$ \qquad
24. $.0000000612=$ \qquad
\therefore

ŞLL-EVALUATION 2 (cont')

IV. Express's each as a decimal numeral.
25. $3.2 \times 10^{4^{\circ}}=$ \qquad
26. $2.9 \times 10^{-4}=$ \qquad
27. $3.1 \times 10^{2}=$ \qquad
$\rightarrow \quad$ 28. $6.7 \times 10^{-8}=$ \qquad
V. Simplify, leaving the answer in scientific notation. .
29. $\left(4.5 \times 10^{2}\right)+\left(3.6 \times 10^{3}\right)=$ \qquad
30. $\left(3.7 \times 10^{4}\right)-\left(2.3 \times 10^{2}\right)=$
31. $\left(6.2 \times 10^{5}\right) \cdot\left(2.1 \times 10^{3}\right)=$
\qquad
32. $\frac{3.4 \times 10^{3}}{.2 \times 10^{2}}=$

33. $\frac{14 \times 10^{4} \times 2 \times 10^{-6}}{7 \times 10^{-2}}=$ \qquad
34. $\frac{3 \times 10^{-6} \times 21 \times 10^{4}}{9 \times 10^{-4}}=$ \qquad
VI. Solve each problem.
35. Give, in scientific notation, the number of 想inutes in a year. (1 year $=365$ days)
36. The speed of sound at"sea level is 760 mph . Give this speed in feet per second written in scientific notation.
, 37. Spaceships travel at speeds of $18,000 \mathrm{mph}$. How many miles per second is this?

38: The sun is $93,000,000$ miles away from earth. How far is this in feet? Express in scientific notation.
\because
\ddots
\ddots

F 15

4
IF you have satisfactorily completed your work, take the LAP TEST. Consult your teacher first.

Objective

1. i' I. Write the following as a product where the factors are alike.
A. 7^{4}
B. 10^{2}
C. 8^{6}.
D. 9^{3}
E. 6
2. . II. In each of the following, name the base and exponent.
A. 7^{4}
B. a^{9}
base \qquad
C. 2
base \qquad
base

exponent \qquad
exponent \qquad

exponent \qquad

III. Write each number on the left in exponential form using the ; number on the right as the base. Example $27=3 \times 3 \times 3=3^{3}$
A. 16 Use 2 as base \qquad
B. 9 Use 3 as báse \qquad
C 64 Use 4 as base. \qquad
D. 64 Use 2 as base

E. . 64 Use 8 as base

APPENDIX II

- OBJECTIVE

9 I. Express the following in scientific notation.

1. 3,$000 ; 000,000=$,
2. $463,000,000,000=$
3. $.049=$
4. $.0000000000061=$ 5
5. II. Write the following as decimal numerals.
6. $3.42^{2} \times 10^{6}$
7. $6,12 \times \cdot 10^{-4}=$
8. $7.412 \times 10^{6}=$
9. $3^{-7} 216 \times 10^{-7}=$

t
10. $6.014 \times 10^{4}=$
$1 i$ III. Compute the Following:
11. $3 \times 10^{4} \times 6 \times 10^{6}$
12. $\frac{6.8 \times 10^{4}}{3.4 \times 10^{6}}$
13. $\frac{3 \times 10^{7} \times 15 \times 10^{-2}}{9 \times 10^{4}}$
14. $\left(7.6 \times 10^{10}\right)+\left(5.6 \times 10^{8}\right)$
15. $\frac{10 \times 10^{4} \times 2 \times 10^{7}}{5 \times 10^{8} \times 2 \times 10}$
16. $\left(4.5 \times 10^{2}\right)+\left(3.6 \times 10^{3}\right)$
17. $\quad\left(3.7 \times 10^{4}\right)-\left(2.3 \times 1\left(0^{2}\right)\right.$

ADVANCED STUDY

I. Payne, read pp. 257-259, Ex: 43, 45, 47 pages. 259-260.
II.., Nichọ1s, read ppi. 332-335, Ex. $1,2, .3 \mathrm{c}, \mathrm{e}, \mathrm{i}, \mathrm{m}, \mathrm{p}, 4$ pages 335-336.
III. : Write a mathematical formula for the volume of a cube of edge X. The volume of a cube is equal to the product of the length, width, and height: Given ${ }^{\text {a }}$ cube, write the formula for its volume using exponents. What happens to volume if you should double the length of the edge?
IV. $1 . \operatorname{light}$ travels at a speed of three hundred million meters per ic. i. second. How far is the sun from the earth (meters) if it takes 8 minutes for light to travel from the sun to the earth? Express in scientific notation.
2. A Radar beam is directed toward the moon and the reflected beam is received $2.6 \times 10^{\circ}$ seconds later. The beam travels at 1.86×10 mile per sec. How far is the moon from the earth? Express in scientific notation.

REFERENCES

Pearson (abbreviation)

Pearson; Helen $\dot{R} .,{ }^{\circ}$ and Allen, Frank B., Modern Algebrä: A Logical Approach, Ginn and Company, 1964.

Payne (abbreviation)

Payne; Joseph N., Lamboni, Floyd F., Lankford, Jr., Francis, Algebra One, Harcourt, Brace and World, Inc. $\mathrm{A}_{1969 .}$

Wooton. (abbreviation)

Dolciani, Mary P.:', Wooton, William, Beckenback, Edyain Fr., Jurgenșen, Ray C., Donnelly, Alfred J:, Modern School Mathematics, Àgebra 1.

Dolciani (abbreviation)

Dolciani, Mary 'P., Berman, Simon L., Freilich, Julius, Modern Algebra, Book 1, Houghton Mifflin Co., 1965.
 Vanatta (abbreviation)
 VanatEa, Glen D., Goodwin, A. Wilson, Algebra One, Charles E_{E}. Merrill Publishing Co., 19,66.
 Odom, Mary Ḿargarèt, Nichols, Eugene D., consulting Editor,
 Introduction to Exponents, A Programmed Unit, Holt,
 Rinehart and Winston, Inc.

$$
\because \quad \because \quad,
$$

CEARNING:
 C T. I V'I.TY.
 ACKȦGE

FACTORING ÁND POEYNOMIALS

A lgebra $93-94$

LAP $\operatorname{RXUMBER}$ \square

WRITTEN BY Diane Evans

Acknowledgement

The administration and staff of Ninety Six High School gratefully acknowledges the assistance provided by the staff of Nova High School, Fort Lauderdale, Florida. We are especially indebted to Mr. Lawrence G. Insel and Mr. Laurence R. Wantuck of Nova's Math Department for permitting us to use much material developed by them, ..a some of which has been reproduced in its original form.

RATIONALE

In arithmetic, before you could solve practical problems, you had to be able to perform the fundamental operations with numbers: You needed to know the addition combinations before you could find the total cost of a number of items. In order to find the cost of several pounds of an item at a given ${ }^{\text {c }}$ price per pound, you needed to know how to multiply. Before you could work problems containing fractions and decimals, you had to learr the operations with those special types of numbers.

In algebra we will be dealing largely with polynomials. You must learn to perform . the basic operations with polynomials before you can use them in applications. In this LAP you will learn to use polynomials in addition, subtraction, multiplication, and divi\&
sion. You will also learn to solve equations involving polyiomials.

SECTION 1

Behavioral Objectives

At the completion of your prescribed course of study, you will be able to:

1. Given an algebraic phrase, identify the coefficients, factors, terms" and degree of the phrase.
2. Given a polynomial of 1,2 , or 3 terms, determine if it is a monomial, binomial, or trinomial
3. Given a polynomial, write it in descending or ascending order.
4. Given any pair of polynomials compute their
a. an m
b. difference
c. product
" $\mathrm{d} .$. quotient $^{\prime}$

RESOURCES

- OBJECTIVES 1,2

Nichols, read pp. 119-120, 199-200, 384-385, Ex.. 1 page 201.
Vanatta, read pp. 67-71, Ex. 2,3,4 page 7,1.
Payne; read pp. 307-310, Ex. 1-27 pages 309-310.: \therefore.
Wooton, read pp. 52-53, Ex. 1-19 odd oral page 54; 19-24 page 55.

* Appendix I parts I-III

OBJECTIVES 3,4

Vanatta, read pp. 133-135, 137-139, 140-143; Ex. 1-15 even p. 134; $1-12,13,15,16,19$ page $136 ; 1-24$ even $p .137 ; 1-24$ even p. 139; $1-20$ every 4 th problem p. 140; 1-30, even p. 141; 1-20 even p. 144.

Dolciani; read pp. 198, 200-201, 2-3, 2-9, 219-222; Ex: 1-20 odd written p. 199; 1-8 p. 201; .1-9 page 2 22; 1-20 even p. 210; 1-14 even p. 207; 25-28; $33-40$ page $210 ; 9-27$ even p. $220 ; 1 ; 3,6,8,12,15,18,2.4,2.5,29$ p. 223 个

Wooton, read pp. 310-323, Ex. $19-28,33,35$ page 59 ; $17-49$ odd pages 86 87; 1-41 odd pages 105-106; 1-23 odd pages $274-275$; 1-39 odd p. $2.79 ;$ 1-17 even bottom p. 314; 1-29 odd pp. 319-320.

* Appendix 1 parts IV, V

1. Far the polynomial $2 a^{3}+4 a^{2} b^{3}+9 a^{2} c^{4}$ otato each of the follciden: a. The degree of polynomial
b. The dagree of the polynomial with reapect to a:
c. The degree of tho polynomial trith rospoot to b
d. The degree of the polynomial with rospect to 0
e. The coefficient of a^{3}.
f. The number of terivis in the polynomial
II. CJasaify each of the folloving on either a monomial, a binomial, od: a trinomial (all letters aro variables).
2. $x+y$
3. 26
4. dan
5. $4.5 a-1.2 b+3.6 c$
6. - $\frac{1}{2}$ nry:
7. $\frac{1}{3}-\frac{1}{4}+\frac{1}{5}=$
8. $\quad 2 x-\dot{y}-2$
9. $3 x y=-2 a b$
III. Express the polynomial fin ascending ordar of b and then in descending order of a
$3 a^{2} b^{2}-4 a^{3} b^{4}+2 a b^{3}+5 a^{4} b$
IV. Find each sum and arriange in order of decreasing degroo in n_{0}
10. $\left(3 n^{3}+5-2 n\right)+\left(n^{2}-6 n L 8\right)$
2: $\left(2 m^{3} n-3 m^{2} n^{2}\right)+\left(4 m^{2} n^{2}-m m^{3}\right)+\left(-3 m^{3}-7 m^{3} n\right)$

OBJ.
SELF-EVALUATION 1 (cont')
$4 a^{2} \quad$ V.Adád
(1) $3 x^{2}+6 x+4$
(2) $3 x y-6 x^{2}+3 y$ $4 x y+2 x^{2}-4 y$
(3) $5 x^{2}-3 x+1$
$2 x^{2}-6 x-4$
(4) $\left(7 x^{2}+6 x+1\right)+\left(-4 x^{2}-3 x-6\right)=$
(5) $(-3 x+6 y-3)+(4 x-2 y-7)=$

4b
VI. Subtract
(1) $3 x^{2}+6 x-1$
(2) $7 x+3 y-6$
$2 x^{2}-4 x+6$
$-2 x-4 y+1$
("3) $8 x+6 y-7$
$-2 x+6 y+7$
(4.). $(6 x+7 y-2)-(8 x+6 y-7)=$
(5) $\left(2 x^{2}+7 x-3\right)-\left(6 x^{2}+3 x+1\right)=$

4a,b VEI, Simplify

$$
\begin{aligned}
& \text { 1. }(3 x+2 y-1)+(4 x+6 y)-(2 x+3 y+2)= \\
& \text { 2. }\left(5 x^{2}-6 x+1\right)-\left(4 x^{2}+2 x+1\right)+\left(6 x^{2}+9 x-2\right)= \\
& \text { 3. }(4 x y-6 x+7)+(2 x y+6 x-2)-(4 x y+3 x-7)=
\end{aligned}
$$

$4 c$
VIIf. Multiply

Seli-Eval.-1 con "t

Ix. multiply
i. $x+6$
2. $2 x-3$

3. | $7 x-7$ |
| :--- |
| $2 x+3$ |

$$
\text { 4. } \begin{array}{r}
4 x^{2}+1 \\
\quad 2 x^{2}-6 \\
\hline
\end{array}
$$

5. $6 x^{2}-7$ $2 \times 2 \times$
a
6. $3 x^{2}+6 x-9$.
7. $2 x y+3 x-1$
8. $-3 x^{2}+2 x-6$
$-2 x+3$.
$2 x+4$
$x+4$
9. $\left.6 x^{2}-2 x+1\right)\left(2 x^{2}+4\right)$
10. $\left(2 x^{2}-3 x y+2\right)\left(3 x^{2}+4 x+3\right)$
X. Divide
11. $x^{2}-7 x+12 \div x-4$
12. $6 x^{3}-x^{2}+3 x-20 \div 3 x+4$
13. $30 x^{2}-28 x+8 \div 5 x-3$
14. $2 x+4 \sqrt{2 x^{2}-8 x-34}$

者
5. $x^{5}+32: x+2$
6. $7 x - 2 \longdiv { 1 4 x ^ { 3 } + 3 8 x ^ { 2 } - 5 x + 9 }$

If you have satisfactorily completed your prescribed course of study, take the PROGRESS TEST. CONSULT YOUR TEACHER FIRST.

Behavioral Objectives

At the completion of your prescriped course of study; you will be
to: A
5. Write the prime factorization of any given composite number.
6. Given any polynomial; express it in factored from when the polynomial:
a. has a common monomial factor
b. is writtèn as the difference of two squares
c. is a perfect square trinomial
d. is of the form $x^{2}+(a+b) \dot{x}+a b$.
7. Givèn a polynomial of the form $a x^{2}+b x+c$, express it in factored form.
8. Givẹn a quadratic equation, determine the solution set by factoring,

RESOURCES

OBJECTIVE 5

Vánátta, read pp. 286́-289, Ex: 1-10 page 289.
Payne, read pp. 324-325, Ex. $22-41$ odd page 325°.
Wooton, read pp. 280-282, Ex. 1-33 odd page 283.
OBJECTIVE: 6
Vanatta read pp. 289-292, 293-297, 299-300, 301-305; Ex. 1-5 p. 290 ; 1-22 even page 292; 1-30 even p. 297; 1-14 even page 305.

Ńichols, read pp. $359-360,355-356,381-384$; Ex. $1-2$ every other letter pages $360-361$; 1-59 odd p. 356; 1-45 odd p. 384 .

Payne, read pp. 326-335, 338 ; Ex. 1-15 even, 31-45 even pages 326-328: 1-18 odd pages 329-330; 1-40 odd pages 331m33; 1-24 odd pp. 334-3?5: 1-12 odd pages 338-339.

Wooton, read pp. 282-287, Ex. 1-53 odd page 286; 1-50 odd p. 287.
Pearson, read pp, 247-249.; 373-386, 392-393; Ex: 1-4 every othęr Jetter p. 248 - $249,4,6,10,12$ EOL pages $246-247$; 1-10 odd p. 274: 2-4 TחT,
 1-31 EOL p. 393.
(ConT ${ }^{i}$)

OBJECTIVE 7
Vanatta, read pp. 297-300, Ex. 1-16 even p. 300.
\therefore Nichols, read pp. 357-359, Ex. 1-59 odd pp. 358-359.
Payne, read pp. 335-339, Ex́. 1-35 odd p. 337.
Pearson, read pp. 387-388, 395-396, Ex. 1-7 even, 8 , every other letter, page 388.

OBJECTIVE 8
Nichols, read pp. 361-363, Ex. 1-25 odd page 363.
Payne, page 340, 358-359; Ex. 1-19 odd pages 340-341; 1-15 odd pages 360-361; 1-26 odd page 368.

Pearsion, read pp. 389-395, 592-593, Ex. 1, 2 every other letter pages 390-391; 1-2 EOL page 593.

OBJ. I. Find the prime factors of the following: 5

1. $\quad 78=$ \qquad
2. $833=$
\qquad
3. $143=$ \qquad 4. $180=$ \qquad
6 . II. Express in factored form.
4. $7 \mathrm{x}+14 \mathrm{y}$
5. $-2 x^{2}+4 y^{2}$
6. $6 x y-3 a x+9 x b$
4.. $9 d^{2}-1$,
7. $4 r^{2}-9 s^{2}$
8. $\mathrm{m}^{2}-4 \mathrm{n}^{2}$
9. $9 a^{2}-81 b^{2}$ -
10. $9 x^{2}-42 x+49$
11. $x^{2}-12 x+36$
12. $16 x^{2}+32 x y+4 y^{2}$

7 III. Find the factors.

1. $x^{2}-3 x-10$
2. $c^{4}-2 c^{2}-63$
3. $18+3 x-10 x^{2}$
4. $6 y^{2}-17 y+12$
5. $8 x^{2}-10 x y+3 y^{2}$.
6. $6 x^{2}-5 x-21$
7. $45 x^{2}+320 x+35$
8. $9 x^{2}+6 x-8$
9. $15 y^{2}-y-2$
10. $30 x^{2}+39 x-9$

SELF-EVALUATION 2 (cont')
IV. Solve the following by factoring'.

1. $x^{2}-25=0$.
2. $x^{2}-5 x+6=0$.
3. $x^{2}-2 x=15$
4. $x^{2}-8=7 x$
5. $2 x^{2}-5 x+3=0$
6. $6 t^{2}-5 t+1=0$
7. $6 y^{2}-25 y+25=0$
8. $9 x^{2}-49=0$

If you have satisfactorily completed your prescribed course of study, take the LAP-TEST. CONSULT YOUR TEACHER FIRST.

2 I.' Write the derinition for each of the following. 1. polynomial
2. monomial
3. binomial
4. trinomial
II. Tell if each of the following "is a monomial, binomial or trinomial.为
\qquad 4. $8 x-7 x y z$
\qquad
2. $6 x y z$

48 5. $3 x y z+2 k l+1$
\qquad 3. $4 x+9 y+2$ 6." $3 x y z 1$
III. Jivefthe degree of each of the following and identify the coorricients
\qquad 1. $3 x^{2} y^{5}+3 x y^{3}+2 x^{4} y^{2}$
\qquad 2. $6 x^{2}+7 x^{3}+9 y^{4}$
\qquad 3. $2 x y-3 x^{2}+6 x^{2} y^{3}$
 4: $5 x^{2}+3 x y+9 x y^{2}$
\qquad ㄷ. $3 x+7 y+9 x y$
IV. Rewrite the following in decending order of powers of x_{0}
\qquad 1. $3 x-y+2 x^{2}+6 x^{4}+3 x^{3} y$
 2. $7 x^{2} y-2 x^{5} y+3 x^{4}+x$
 3. $x^{3}-6 x^{6}+6 x^{9}-2 x$
4. $3 x y^{2}+4 x^{2} y+7 x^{3} y^{4}$
$5: x^{5} y-6 x y^{3}+2 x^{3} y^{2}$
$6 \cdot x^{7} y^{5}-3 x^{4} y^{2}+8 x^{2} y^{3}-2 x y$
V. Write each of the polynomials in part iv in ascending order of powers of \dot{x}.

ADVANCED STUDY

I. Work the following:

1. $2 x^{5}+9 x^{2}-2 x^{3}-5 x^{4}-7 x+3+2 x^{2}-3 x+1$
2. multipiy: $\left(3 x^{3}-6 x^{2}+9 x-6\right)\left(2 x^{2}-3 x-9\right)$
3. divide: $9 x^{N+2}-6 x^{N+1}+24 x^{4}+4-3 x^{N}$.
II. Sh wh how synthetic division works and work the following using synthetic divisicn.
4. $x^{3}-3 x^{2}+5 x-6+x-2$
5. $x^{3}-7 x-100+x-5$
6. $x^{3}+25 \pm x+5$
III. . Solve, any three of the following:
$1: 2 x-(3 x+7)+5(2 x-2)=8 x+1$
7. $(3 x \pm 1)(2 x-6)--3 x(-2 x \pm 4)+6$
8. $\frac{3 x}{2}+\frac{6 x-4}{5}=\frac{11+2 x}{3}$
9. $\frac{3 x-4}{10}-\frac{6 x+2}{5}=\frac{x-2}{2}+\frac{2 x+3}{4}$
IV. Nichols, read pp. 361-373, Ex. 1,2 EOL page 364; 1 p. 373; 1,2 EOL page 366.
v. Payne, read pp. 358-373, Ex. 1-27 odd p. 363; 1-25 odd page 369-370.

REFERENÇES

Vanatta (abbreviation)

Vanatta, Glen D., Algebra One: A Modern Course, Charles E.. Merrill Publishing Co., 1966.

Dolciani (abbrèviation)

Dolciani, Mary P., Berman, Simon L., and Wooton, William; Modern Algebra, Book Two, Houghton Mifflin Co., 1965.

Nichols (abbreviation)
Nichols, Eugene D., Modern Elementary Algebra, Holt, Rinehart and Winston, Inc., 1965:

Wooton (abbreviation)
Dolciani, Mary P., Wooton, William, Beckenbach, Edwin F., Sharron, Sidney, Modern School Mathematics, Algebra, 1, Houghton Mifflin Co., 1967.

Payne (abbrêviation)
Payne, Joseph N., Zamboni, Floyd F., Lankford, Jr.•, Francis
G., Algebra One, Harcourt, Brace and World, 1969.

Pearson (abbreviation)
Pearson, Helen R., and Allen, Frank. B., Modern Algebra: A.
Logical Approach, 1964 .

Acknowledgement

The administration and staff of Ninety Six High School gratefully acknowledges the assistance provided by the staff of Nova High School, Fort Lauderdale, Florida. We are especially indebted to Mr. Lawrence G. Insel and Mr. Laurence R. Wantuck of Nova's Math Department for permitting us to use much material developed by them, some of which has been reproduced in its original form.

IPATJONAI,E

The words RELATION and FUNCTION in mathe* matics are probably new to youl Consider the OPERATION of ADDITION with which you have worked for mosi of your school years . . it is not only a RELATION but also a FUNCTION! There are many things which you have studied and which you will study in your future mathematics courses that are relations and functions.

- Throughout mathematics we pair numbers and obtain set of ordered pairs which are relations. These ordered pairs and graphing ('Which you have previously studied) Tol? serve as a basis for the study of relations and functions,

In this LAP you will be concerned primarily with the meaning of relation and function: Eraphing relations and functions will be stressed in order to give you experience in actually working with these ideas whith are basic to future courses in mathematics and sciencel

At the completion of your prescribed course of study, you will be able to:

1. Given two f̈njíte sets, list the ordered pairs which belong to their Cartesian Set (Cartesian Product).
2. Given two/subsets of therreal numbers, graph their Cartesian Set on the coordinate plane.
3. Given a relation defined by a rule of correspondence, name the ordered pairs which belong to this relation.
4. Given a relation, name:
a. its domain
rb. its range
5. Given a relation, determine whether or not that relation is a function where the relation is defined by:.
a. a set of ordered pairs
b. a graph
c. a rule or correspondence
6. Given a relation, name its inverse.;

RESOURCES

Objectives 1, 2
Nichols, read pp. 393-395, Ex. 1,3 page 394; 1, 3,. 5,. 6 page 395.

Wooton, read pp. 377-379, Ex. 19, 20 page 381.
Pearson, read pp: 431-435, 441-442, Ex. 1, 3, 5 page 432; $1 \mathrm{a}, \mathrm{c}, \mathrm{f}$ pages 436-437; 1, 3, 5 pages 442-443.

RESOURCES (cont')

ohiertive
Nichols, road pp. 396-397, Ex, page $3981-\mathrm{a}, \mathrm{c}$; d, f $2-a, c, d, f$
$3-\mathrm{a}, \mathrm{c}, \mathrm{d}, \mathrm{f}$
Poun, rear pp. 174-175, Ex: 4, 5 page $176 ; 1,4,5,8,10$, ' H i pages $1.80-181$.

Pearson, read page 542-543 Ex. 1, 2, 3, 5, 8a,b,c page 544.
'Objectịves $4, ` 5$
Nichols, read pp. 398-399, Ex. pages $399-4041$ - a,b,d,f,g, $\mathrm{h}, \mathrm{j}, \mathrm{k}$ 3 - a,b,d,f,g,h,j,k $4-a, b, d, f, g, h, j, k$ 5, 8a, c, e, g 9 a thru n 10 a thru j
** Payne, read pp. 175-17.9, 466-46.7; Ex. 1, 2, 10, 11, 12, 15, 17. 18-21 pages . 176-177; 28 page $181 ; 1,2,4 ; 5,7,9-12$, $13,14,21-30,33,35$ page 467.

Pearson, read pp. $545-550$, Ex. la,b, 2a,b, 5a, 6a pages 545-. 54.7; 1-20 pages 550-551.

* Appendix I

Objective 6
Nichols, read pp. 404-407, Ex. 1 a, f, 1, 2 a, c, e, h, i pages 407-408.

Payne; read pp. 481-483, Ex. 1, 2, 6, 7, 11-14, 15-17, 19, 21,24 pages $483-484$.

* required
$r \cdot \inf _{f}^{\top}$
I. Given $A=\{2,3,5\}$ and $B=\{3,5\}$

1. Find $A \times 13$
2.. Find $B \times A$
II. Graph A x B from Example I

III. . 1. If the Universal set is the set of real numbers, which one of the following ordered pairs belong to the solution set of the relation $y=2 x-1$.
(a) $(0,-1)$
(b) $\left(\frac{3}{4}, \frac{1}{2}\right)$
(c) $(10,19)$
(d) $\left(\frac{5}{8}, \frac{3}{4}\right)$
(e) all of these
2. If the Universal set is the set of real numbers, which of the following belongs to the solution set of the relation $2 x-3 y=1$?
(a) all ordered pairs in the coordinate plane
(b) $(5,3)$
(c) $\left(10, \frac{19}{3}\right)$
(d) $(4,2)$
(e) none of these

SELF-EVALUATION 1 (cont').

IV. List the domain and range of the following.

1. $(2,1)(2,3)(3,4){ }^{n}(5,6) \cdots(7,6)$ DOMAIN RANGE
2. $y=2 x+1$
3. | x | 3 | -2 | -7 | 0 | -7 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| y^{2} | 4 | 6 | 8 | 2 | 4 |
4. $y=x^{2}$

5a
V. Which of the following relations are functions?
(a) $\{(-1,1)(0,0)(0,1)(1,2)(1,3)\}$
(b) $\{(1,3)(3,17)(2,3)(3,2)\}$
(c) $\{(-2,1)(-1,2)(0,0)(1,2)(2,1)\}$
(d) $\{(1,1)(1,2)(1,3)(1,4)\}$
(e) none of these

Continued on the following page.
π

SHITF-EVALUATION 1 (cont')

VI. Felna are gaphs of some relations, tell which of
 those whici are not functions.

(i)

(d)

(f)

(h)

SELF-EVALUATION 1 (cont')

5c
VIT. Which of the following relations is a function?
(a) $y \leq 2 x+1$
(b) $x=-3$
(c) $y=2 x+1$,
(d) $\mathrm{y}=\mathrm{x}$
(e) $y>x+2$
(f) $y=-2$

6 VIII. Write the inverse of each of the following.
(1) $\{(-i, 2),(2,1),(3,2),(4,7)\}=\$$
(2) $y=x+5 \%$

(3) $2 x+3 y=-1$
(4) $\mathrm{y}^{\prime}=2 \mathrm{x}^{2}$
(5) $(3,1)(-2,4)(-6,8)(4,-2)$
(6) $5 x=1-\ddot{y}$

If you have satisfactorily completed your work, take the Progress test: Consult your teacher first.

SECTION 2

Behavioral Objectives
At the completion of your prescribed course of study, you will b e able to:
7. Given a function and a real number, compute the value of the function at the given number.
8. Given a function, name whether it is a linear function or a quadratic function.
9. Given a linear function, construct jits graph.

10: Given a linear function, determine its slope.
11. Given a quadratic function of the form $f(x)-a x^{2}+b x+c$ where a, b, and c are real numbers and $a \neq 0$, construct a :its graph.

RESOURCES

Objectives 7, 8
Nichols, read pp. 408-409, Ex. 1 a,b,e,f,h,i, 2 top p. 410.
Payne, read pp. 179-181, 349-353, 471-472; Ex. 11-13 page 181;: $1-5,7,10$ page 473 ; $1-10$ middle page 353 ; 5 page 183; 1 , 2 checkpoint page 183.

Pearson, read pp. 554-555, Ex. $1 \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{g}, 3 \mathrm{a}, \mathrm{b}, \mathrm{c}$ - page 555.

* Appendix II

Objectives 9, 10
Vanatta, read pp. 199-204, Ex. 1-5 pages 204-205.
Nichois, read pp. 410-412, Ex. 1 a,b,c,f, 2; 3 a,b,d,e,g, 4 pages $410-411$; $1 \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{f}, \mathrm{g}, 2 \mathrm{a}, \mathrm{c}, \mathrm{e}, \mathrm{f}, \mathrm{i}, 1$ page 412.

Payne; read pp. 178-180, 185-188; 471-472, Ex. 1/4, 1.6, 13, 20
page $181 ; 1,2,5,8,12,27$ page $189 ; 13,15$ page 473.
Dolciani, read pp. 346-348, Ex. 11-18 page 348.

Objective 11
Nichols, read page 413, Ex. 1 a-f, 2 a,d,g, 3a, 5c, Ya, d’pp. 414.-415.
Payne; read;pp. 349-353, Ex. 1-3, 7, 8, 11, 21 pages 353-354.
Wooton, read pages 394-399, Ex. 1-12 page 399.

SELF-EVALUATION 2

OBJ. 7
I. For each of the following functions, find the value indicated.
\qquad 1. Find $f(2)$ for $f(x)=6 x+1$
\qquad 2. Find $f(-3)$ for $f(x)=2 x-1$
\qquad 3. Find. $f(0)$ for $f(x)=\frac{x+1}{6 x}$
\qquad 4. Find $f(30)$ for $f(x)=x^{2}-x$
\qquad 5. Find $f(-10)$ for $f(x)=\frac{8}{4}-\frac{2 x}{4}$
II. Determine if each of the following equations is linear or quadratic.
\qquad 1. $\mathrm{y}=\mathrm{x}$
2. $y=2 x+1$
$\square^{3 .} \cdot y^{3} \doteq x^{4}+2+4 x^{2}$
\qquad 4. $y=x^{2}+2$
\qquad 5. $3 x+2 y=5$

9 III. Graph the following linear functions. Use the graph paper that follows.

1. $\mathrm{y}=2 \mathrm{x}$
2. $y-2=\frac{1}{3} x+3$
${ }^{\prime}$
3. $\mathrm{y}=-3$
4. $2 x+4 y=\frac{3}{8}$
5. $3 y=-2 x+6$ v
6. $x=5$

10
IV. Give the slope of each of the following linear functions.

11. V. Graph the following quadratic functions... Use the graph paper that follows.

1. $f(x)=x^{2}-2 x+1$
2. $f(x)=x^{2}-2$
3. $f(x)=x^{2}+x-6$

If you have satisfactorily completed your work, take the IAP TEST. Consult your teacher first.

ADVANCED STUDY

1. Payne, Ex. 39,40 pạge 184 .
2. Payne, read pp. 193-195, Ex. 1-20 even page 195.
3. Doiciani, read pp. 346-348, Ex. 1-10 page 348 .
4. `Pearson, read pp. 559-560, Ex. 1-5 page 560.
-:
I. Write the domain and range of the following.

- DOMAIN

1. $(8,1)(7,2)(-3,1)(7,-6)$
or
2. $y=x^{2}$
3. | x | y |
| ---: | ---: |
| -8 | 5 |
| 0 | 2 |
| -6 | 7 |
| 2 | 5 |

4. y is equal to twice x
5.

II. Determine if the following is a function. Write F if it is a function. If it is not a function, write R for relation only.
\qquad 1. $(3,6)(2,4)(-4,2)(-6,4)$

\qquad 2. | x | -6 | -2 | -4 | 6 |
| :--- | ---: | ---: | ---: | ---: |
| y | 8 | 1 | 3 | 7 |

\qquad 3. $y=x+1$
\qquad 4. $(3,-3)(4,-4)(5,-6)(7,-8)(3,-9)$

\qquad 5. | x | y |
| :---: | :---: |
| 0 | 7 |
| 7 | 0 |
| 3 | 5 |
| 9 | 4 |
| 5 | 3 |

\qquad 6.

APPENDIX I (cont')
7.

8.

\qquad 9.

\qquad 10.

APPENDIX II

1. Nefine linear function.
2. Define quadratic function.

1
3. Determine if the foll8wing are linear or quadratic.
\qquad a., $\mathrm{y}=\mathrm{x}$
\qquad b. $y^{2}=4 x+2$
\qquad c. $y=3 x^{2}+2 x+1$
\qquad d. $y=3 x+2$
\qquad e. $x^{2}+y^{2}=25$
\qquad f. $2 x+3 y=7$

For each of the following linear functions, rewrite each in slope-intercept form, state the slope, and y-intercept, and graph each. (USE THE GRAPH PAPER THAT FOLLOWS.)
(1) $2 x+3 y=-6$ \qquad Slope = \qquad y-int. \qquad
(2) $2 y=-4 x+8$ \qquad Slope $=$ \qquad y-int. \qquad
(3) $y=-x$

Slope = \qquad y-int. \qquad \therefore
(4) $-18 x-6 y=18$ \qquad Slope $=$ \qquad y-int. \qquad
(5) $3 x=6 y-12$ \qquad Slope $=$ \qquad y-int. \qquad

APPENDIX III (cont') Graph Baper

RLffrences

Vanatta (abbi:eviation)Vanatta., Glen D., Algebra Orre: A Modern Course, Charles E. -Merrill Publishing Co., 1966.
Dolciani (abbreviation)
Dolciani, Mary P., Berman', Simon L., and Wooton, William,
Modern Algebra, Book Two, Houghton Mifflin Co., 1965.,
Nichols (abbreviation)
Nichols, Eugene D., Modern Elementary Algebra, Holt,
Rinehart and Winston, Inc., 1965:.
Wooton (abbreviation)
Dolciani, Mary P., Wooton, William, Beckenbach, Edwi F.,
Sharron, Sidney, Modern School Mathematics, Algebra 1 ,
Houghton Mifflin Co., 1967.
Payne (abbreviation)
Payne, Joseph N., Zamboni, Floyd F.; Lankford, Jr., Francis
G., Algebra One, Harcourt, Brace and World, 1969.
Pearson (abobreviation)
Pearson, Helen R., and Allen, Frank B., Modern Algebra: A
Logical Approach, 1964.

I. Read Ratlomeio
II. Read Behavioral Objectives
III. Resources
A. All work muat be done in risath notebook with . pencil only.
B. Koep your notebook up to datic. : Your teacher may ant for it ationy tiran (ivithout warning).
C. Woris all the Enoucisej in ati least two tex't for each objective.

Always check your exercises (see your teacher)

IV. Solf-Evaluation

A. Must be talion at completion of activities for each section.
B. Does not affect your Erade in any way.
V. Advanced Study
A. To bo done only aftor all previous work has been satisfactorily completed.
B. Must be approved bj tenchor.
VI. Progress Test and L.AP Test
A. Teacher graded
B. Recycling may take place at this time if test is not satiapactory.

DO NOT LOSE YOUR IAAP: If Jou do, you must buy another one.

Rat.ionale (The LAP's purpose)

You have studied many mathematical systems in the past. When you first learned to count, you used the set of natural numbers. In your early study of arithmetic, you learned how to add, subtract, multiply, and divide.".You soon found that some division and subtraction problems had no answers: To handle such situations, the set of integers was developed for closure over subtraction, and the set of .rational numbers was developed for closure over division.

Irrational numbers such as $\sqrt{5}$ and π are not included in the number sets as yet developed. The set of real numbers is the union of the rational and irrationai numbers. It is the most complete number system to be developed.

In this LAP you will study the set of real numbers, its subsets; and properties.

Later, you will extend the field propertias of the set of real numbers into the field of complex numbers which give meaning to numerals such as $\sqrt{-2}$.

Behavioral Objectives
At the completion of your prescribed course of study, you will be able to:

1. Identify the following sets: natural numbers, whole numbers, integers, rational numbers, irrational numbers, and real numbers when written
a) in set notation
b) as definitions
2. Determine the relationships between the sets of natural numbers, whole numbers,"integers, rational numbers, irrational numbers, and real numbers.
3. Given the following sets: natural numbers, whole numbers, integers, rational numbers, ${ }^{\prime}$ irrational numbers, and real numbers, identify the properties of each: a) by completing the chart in Appendix I
b) by answering True or False questions
c) by answering multiple choice questions
4. Given any number system, state whether or not it,is a field. If it is not, list the missing propertics.
5. Given two or more real numbers, compute their sum, diffèrence, product, and/or quotient.
6. Write or select from several definitions, that which defines "density" for a given number system.

Resources

I. Reading and problems.

1. オanatta, Algebra Two. \#l pp: 10-13, 29-34, Ex. : \#2 pp. 2935, Ex. \qquad : \#3 pp. 5-11, 16.17, 29-37, Ex. 1-16 p. 6.7, 1-11 p. 15, $1-10$ p. $26,1-10$ p. 53: \#4 : \#5 pp. 10-11, 22-23, Ex. 5-14 p. 11-12, 1, 3,6,8,9 p. 25: \# "6 pp. 17-18, Ex. 1,2,4-8 H. 19,8 p. 35.

\%

2. Nichols, Modern Intermediate Algebra. \#l pp. 1, 14, 21, 33, 34, Ex. $5-8$ p. 18; 15, 19 p. 42: \#2 pp. $1,4,21,33,34$, Ex. 11-13 p. 41, ${ }^{7}$ p. 35: \#3 pp. 2-3, 14-17, 21-23, Ex. 1-4 p. 2,3 p. 5, 3 p. 17; 1, 2;4-10 p. 23; 1, 4, 5, p. 35; 1,5,30-39 p. 37-43: \#4 p. 1,14, 23,34, Ex. 1 p. 17: \#5 pp. -30-31, Ex. 11,12 p. 23-24, 7 p. 39, l a;b,c,g,h,i p. 32: \#6 p. 27-28, Ex. . ., 3,4,5 p. 28.
3. Dolciani, Modern Algebra, Bk Two. \#l pp. 2,8,157,251, Ex. \qquad $:$ \#2 __ \#3 pp. 11-15, Ex. 1-16 p. 12, 1-20 even p. 16: \# \#5 pp. 22-24, 26-29, Ex. 1-24, even p. 26, 1-12 p. 29: \#6 p. $\overline{256}$, Ex. 5-16 p. 257.
II. Activities

Complete the chart in Appendix 1.
III. Audio

For each Wollensak you use, you must secure a work sheet
from your teacher, complete it, and turn in to teacher.
Wollensak C-3453 The Commutative Property C-3454 The Associative Property C-3455 The Distributive Property
IV. Video

Filmstrip: Rational and Irrational Numbers
Transparency: T-510, Math, Visual No. 8, Complex numbers
Transparencies: T-510, Math, Visual Nos. 13, 14 Properties of Real. Numbers
V. Games

Cross Number Puzzle - Review of Fractions (II)
Cross Number Puzzle - Things to Know About Fractions
The Conversion Game (Bingo game on operations with real numbers)
"Propo" (Bingo game on real number system and properties)

1. I. Identify the following sets of numbers. Write the name of the set "in the blank.
\qquad 1. $\{\ldots,-2,-1,0,1,2 \ldots\}$
\qquad 2. union of rationals and irrationals
\qquad 3. the natural numbers and zero
\qquad 4. the set of numbers starting with one and formed by successively adding one
\qquad 5. all numbers of the form $\frac{a}{b}$ where $a, b \in I$ and $b \neq 0$.
\qquad 6. non-repeating decimals cannot be written as $\frac{a}{b}$
2. II. True or False.
\qquad 7. The real numbers equal the union of the rationals and the integers:
_-8. The real numbers are a subset. of the rational numbers.

- 9. The integers are a subset of the real numbers.
- 10. The natural numbers are a subset of the integers:
.-11. The intersection of the integers and the rationals is \varnothing.
_12. The rationals are a subset of the irrationals.

13. The natural nos. are a subset of the whole numbers.
_14. The intersection of the rationals and the irrationals is the set of real numbers.
14. III. Multiple choice: for each of the following write the letter(s) for
the correct answer.
15. Which of these properties do not hoid for the reals?
a) closure property for addition
b) associative property for multiplication
c) distributive property of multiplication over addition
d) additive identity
e) none of these
- 16. Which of these items holds, for the natural numbers?.
a) multiplicative inverses
b) additive inverses *
c) multiplicative identity
d) additive identity
e) none öf these
4.159
```
Self-Evaluation (cont')
```

17. Which of the following does not hold for the rationals?
a) associative property of multiplication
b), closure for addition
c) multiplicative inverses
d) commutative for multiplication
e) none of these
18. Which o: 'taese holds for the irrationals?
a) multiplicative identity
b) additive identity
c) inultiplicative inverses
d) closurefor multiplication
e) none of these
19. Which of these does rot hold for the integers?
a) additive inverses
b) mulriolicative inverses
c) clusure for addition
d) multiplicative identit:
e) none of these
'20. Which of these properties hold fire the rationals?
a) äditive invers.es
b) rultiriicative identity
c) \therefore ?ditive identity
d) multiplicative inverses
e)all of these
_- 21. Which of these holds for the real numbers but does not hold for the irrational numbers?
a) multiplicative inverses
b) closure for multiplication
c) additive inverses
d) closure far addition
e) none of these
IV. State if each of the following is true or false. If false, state the property (s) to make the statement irlie.
20. The set of integers is a field.
21. The set of real numbers is"a field. \qquad
22. The set of irrational numbers is a ficld. \qquad
23. The set of natural numbers is a field. \qquad
24. V. Multiple Choice: Simplify the following choose the letter of the correct answer.
25. $\frac{3}{3}+\frac{1}{2}=$
a) $\frac{3}{5}$
b) $\frac{3}{6}$.
c). $\frac{7}{6}$
d) none of these
\qquad 27. $-3-(-6)=$
a) -9
b) 3
c) -3
d). -9
e) none of these
\qquad 28. $\frac{-4}{3}+\frac{-2}{5}=$
a) 1
b) $\frac{-26}{15}$
c) $\frac{-2}{15}$
d) none of these
\qquad 29. $\frac{3}{4} \times \frac{5}{3}=$
$\begin{array}{ll}\text { a) } \frac{8}{12} & \text { b) } \frac{8}{7}\end{array}$
c) $\frac{5}{4}$
d) none of these
$\hat{\ddots}: \ddots$ 30. $-\frac{2}{2} \div \frac{3}{5}=$ a) $\frac{-5}{6}$
b) $\frac{-3}{10}$
c) $\frac{2}{10}$
d), none of these
\qquad 31. $(-8)+(-6)=$
a) 14 .
b) -2
c) -14
d) none of these,
\qquad 32. $-9 \times-7=$
a) -63
b) -16
c) 63
d) 16
e). none of these
\qquad 33. $-81 \div 9=$
a) 9 b) -9
c) 3
d) none of these
\qquad 34. $\frac{4}{9}=$
(a) $4 . \overline{9}$
b).$\overline{49}$
c) $\cdot \overline{4}$
d) none of these
\qquad $35 \cdot \frac{7}{25}=a(.28$
b) .725
c) 7.25
d) none of these
VI. Write the definition of density.

Write an X by each property that holds for the given set. Wrice a circle (0) by each property that does not hold. Do not leave a blank.

PROPERTIES	NATURAL'	WHOLE	INTEGERS	RATIONALS	IRRATIONALS	REALS
Closure for +						
Closure for x			:			
Commutative for +	:		,			
Commutative for x .	+				:	$\stackrel{.}{ }{ }^{\circ}$
```Associative for +```			.		- . .	
Associative.   for' $\mathbf{x}$   is			$\checkmark$			
Distributive'		,				
Additive identity						
Additive inverse		\%				
```Multiplica- tive identi- ty```						
Multiplicative inverses				.	. -	

If you have mastered your Behavioral Objectives take the LAP TEST.

ADVANCED STUDY

1. Draw a Venn diagram showing the set of real numbers and its subsets.
2. Prove: The sum of two even numbers is an even number.
3. Prove: The product pf two odd numbers is an odd number.
4. Prove: The product of an even and odd number. is an even number.
5. Prove: $\forall_{a}{ }_{b}$ if $a<b$, then $a<\frac{2 a+b}{3}<b$.
6. Find a number for which $n^{2}-n+41$ is not a prime number.
7. Prove $\sqrt{2}$ irrational.

References

1. Vanatta, Glen C. and Goodwin, A. Wilson, Algebra Two, A Modern Course, Charles E. Merrill Publishing Co., 1966.
2. Dolciani, Mary P., Rerman, Simon L., Wooton, William, Modern Algebra Book Two,

3: Nichols, Eugene D., Modern Intermediate Algebra, Holt, Rinehart and Winston, Inc., 1965.
4. Transpärency T-510 Visual No. 8, Comples Numbers
5. Transparencies T-510 Visuals 13,14 Properties of Real Numbers
6. Audio Tapes

Wollensak Teaching Tapes: C-3453 C-3454 C-3455 C-3456 C-3457 C-3458

- C-3459

RATIONALE (The l,AP's Purpose)

Have you ever wondered why exponents are added :"hen powers with the s same base are multiplied? Why do we subtract exponents when dividing? You may have learned how to manipulate exponents and radicals, but do you really understand what you are doing? If some of these Iules have been forfotten, we :ill not only recall them in this laP, but will also learn why we operate with them as we do..

We will examine operations with exponents and radicals more formally than in previous studies. Some of the topics covered will be the laws of exponents, square root, rational number exponents, radical equations; and scientific notation. Upon completion of this LAP, you should have a good foundation for future studies in mathematics.
-
In later LAPS, concepts involvins exponents and radicals i:ill be extended to such important topics as logarithms, rational expressions, quadratic functions, and complex numbers. Exponents and radicals are the building blocks for many topics in mathematics and in the applications of mathematical concepts to scientific studies.

Behavioral Objectives
Upon completion of your prescrlbed course of study, you will be able tc

1. Identify and apply any of the following in simplifying expressions*
involving integral exponents.
a. Definition of Integral Exponent:
b. Definition of Zero Exponent
c. Definition of Negative Exponent
d. Product of Powers Property
e. Power of a Power Property
f. Power of a Product Property
g. Power of a Quotient Property.
h. Quotient of Powers Property
i. Negative Expönent Property
j. Order of Operations Agreements
2. Given the expression $\sqrt[7]{x}$, identify:
a. the radical
b. the radical sign
c. the radicand
d. the index
3. Given any expression involving radicals, write the simplest'form* of any of the following:
a, any radical
b. a product or quotient of radicyls
c, a sum or difference of radicals
d. a product or quotient of sums or differences of radicals
e. an expression having a radical as its denominator
4. Simplify radical expressions for which the radicand is a rational number.

* NOTE; To simplify a radical or exponential expression is to write the expression so that:

1. there is no radical in the denominator
2. each exponent of the radicand. is a natural number less than the ind
3. each exponent is written as a positive exponent
4. no real number is expressed in exponential notation
5. there are no unnecessary parenthesis

RESOURCFS

I. Reading and Problems.

Vanatta, Algebra Two. \#1 pp. 8, 243-247; Ex. 1-24 p. 244, 1-10 p: 247, 24-28 p. 27: \#2 p. 246, Ex. ...: \#3 pp. 248-250, 252-254, 256-257, Ex. 1-9 at top and botton ?. 251, 1-8, 10-15 top p. 255, 1-9, 12-16 bot tom p. 255-256, 1-18 odd.p. 253, 20,21,25-27 top p. 255, 1-8 p. 257: \$4 pp. 248-250, Ex, 13, 14,15,17,18,21 top p. 251, 10, 13-17. bottom p. 251.

Dolciani, Modern Algebra, Bk. 2. ${ }^{11} 1 \mathrm{pp}$. 117-118, 153-154, 29, Ex. 128 even oral p. 120, 1-20 odd written pp. 120-121, 1-18 even p. 154, 17-24 p. 156: |12.p. 247, Ex. \qquad : \#3 pp. 258-260, 263-266, Ex. 1-14 even p. 261, 15-40 odd. p. 261, T-12, 16, 19 p. 264, 1-12, 36 pp. 266267: \#4 p. 259, Ex. \qquad \because

Nichols, Modern Internediate Algebra, \#1 pp. 44-45, Ex. 1-3, 5-7 pp. 4547: , \#2,3,4 pp. 47-48, 50 Ex. $1-30 \mathrm{pp} .48-49,4 \mathrm{p} .50$.

Dolciant.; Modern School Mathematics, Book 2. il 1 pp. 325-327, 330-333, 399, Ex. 1-60 pp. 328-329, 1-26 pp. 331-332, 1-48 pp. 333-334: |12,3,4 pp. $325-326,300-301,332-333$, Ex. 1-36 p. 326, 1-20 p. 331, 1-22 p.333.

Payne, Algebra Two. 111 pp. $57-58,72-76,348-349,353-354$, Ex. $1-48$ pp. $58-59,1-12 \mathrm{p} .73,1-35 \mathrm{pp} .76-77,1-9$ p. 349 , $1-50 \mathrm{p} .350$, $1-21$ pp. 354-355: \#2,3,4 pp. 5-10, 12-15,17-18, Ex. 1-32 p. 6, 1-40 p. 9, 1-94 пр. 10-11, 1-62 pp. 13-14, 1-51 pp. 15-16, 1-51 p. 18-19.

Pearson, Modern Algebra, A'Logical Approach. \#1 pp. 390-395, Ex. 1-8 pp. 391-392, 1-4 p. 396 .

Introduction to Exponents (Programmed) \#14 frames 1-14, 22-26, 39: \#1b frames 105-117: \#1d frames 80-96: \#le"118-128: \#ih frames 142152: \#liframes 178-196: \#lg frames i97-204.

II. Games

Equations by Layman E. Allen

Self-Evaluation I

1 I. Give a quanified statement for each of the following.

1. The defint:ion of the zero exponent.
2. The definition of the negative exponent.
3.- Product of powers property.
3. Powers of a power property.
4. Power of a product property.
5. Power of a quotient property.
6. Quotient of powers property.
II. Write in simplest form without negative exponents:
7. $\left(\frac{-2 s^{2}}{3 r^{2} s^{4}}\right)^{\cdot-2}$
8. $\frac{a^{-2} \cdot b^{3}}{a^{6} \cdot b .^{-3}}=$
9. $2-3+7 \cdot 4 \div 2-9=$
10. $\frac{\left(x^{2} y\right)^{3}}{. x^{3} y^{2}}$
11. $\frac{(6 a)^{\circ}}{6 a^{\circ}}$
12. $\frac{\cdot b^{-2}}{a^{-5} c^{-6}}$
13. $\frac{\left(2 x^{2} y^{3}\right)^{4}}{8 x^{8} y^{14}}$
$2^{\text {. III. For }} \sqrt[7]{x}$, complete the following.
14. $\sqrt[7]{\mathrm{x}}$ is called \qquad . .
15. $\sqrt{ }$ is called \qquad
16. For $\sqrt[7]{x}$, the x is called \qquad
17. For $\sqrt[n]{x}$, the n is called

Self-Evaluation (cont')

3 IV.. Write the simplest name for each of the following.
19. $\sqrt[3]{54 a^{3}} b^{2} c^{4}=$
20. $\sqrt{128}$
21. $\sqrt[3]{50} \cdot \sqrt[3]{5}$
22. $\sqrt[4]{\sqrt{a^{3} b^{2}}} \cdot \sqrt[4]{a^{3} b}=$
23. $10 \sqrt{40} \div 5 \sqrt{10}=$
24. $\sqrt[5]{64 x^{7}} \div \sqrt{2 x^{4}}=$
25. $\sqrt{48} \cdot+\sqrt{12}=$
26. $3 \sqrt{18}+\sqrt{200}=$
27. $\sqrt[3]{54}-\sqrt[3]{16}=$
28. $5 \sqrt{27}-\sqrt{12}=$
29. $\frac{1+\sqrt{2}}{1-\sqrt{2}}=$
30. $\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}$

4 V. Simplify the following.
31.
$\sqrt[3]{\frac{8}{216}}$
32. $\sqrt[1]{\frac{18}{49}}$
33. $\sqrt{\frac{3}{2}}$
34. $\sqrt[3]{\frac{8}{2 a^{2}}}$
35. $\sqrt[5]{\frac{3 x^{6}}{32}}$

IF YOU HAVE MASTERED ALL THE BEHAVIORAL OBJECTIVES, TAKE THE PROGRESS TE:

Behavioral Objectives
Upon completing 'your prescribed course of study, you will be able to:
5. Given a radical expression, write the simplest equivalent expression using fractional exponents.
6. Given an expression with fractional exponents, write the simplest equivalent radical expression:
7. Given a' real number raised to the power of any rational number, write the simplest name for the, number.
8. Given an expression of the form $n^{\sqrt[n]{b^{m}}}$, write it in simplest form using the theorem, $\sqrt[n]{b^{m}}=\left(\frac{n}{b}\right)^{m}$.

9, Given any expression involving rational exponents, simplify indices, write their product in simplest radical form.
10. Given two or more radical expressions with different indices, write their product in simplest radical form.

11: Given a radical equation, find its solution set.
12. Given a $^{\text {a }}$ numioer, write it in scientific notation.

RESOURCES

I, Reading and Problems

Vanatta, Algebra Two, \#5 : . \| $6{ }^{\circ} \mathrm{pp} \cdot{ }^{245-246,}$ Ex. 25-30 p. 248 \#7 pp. $245-246 ;$ Ex. 22-30 p. 247, 7-15, 24, p. 248: \#8
pp. 245-246, 13-21 p. 247: \#10 p. 254,: Ex. 5, 9, 16, 17, 18 top p. $255, ~$ 10, 17-21, 23.p. 256: \|11 pp. 258-260, Ex:-1-9 p. 260: \#12 \qquad

Dolciani, Modern Algebra, \#5 pp. 333-334, Ex. 1-6 p. 335: \#6 \qquad -:
\#7 pp. 334-335, Ex. 3-10 p., 334, 15-22. p. 335: \#8 p. 258, Ex. __ 119 \qquad \#10 \qquad \#11.pp. 334-335, Ex. \qquad : \#12 \qquad ,

Nichols, Modern Intermediate Algebra, $\# 5,6,7,8 \mathrm{pp}$. 49-50, Ex. 1-3, 5-13, pp. 50-51: \#11 pp. 51-52, Ex. 1-5 pp. 52-53: \#12 p. 53Ex. 1,2,3 p: 54.

Dolciani, Modern School Mathematics, Book 2; \#5;6, 7, 8 pp. 399-400, 402, Ex: 7-40, 47-49 p. $401: \# 11 \mathrm{pp}, 402-403,334-336$; Ex. $27-36$ po. $332,1-36$ pp. 336-337: \#9 41-46 p. 401: \#12 pp. 412-413, Ex. 1-38, pp. 413-414: \#11 pp. 334-336, Ex. $1-28$ even P. 336:
Payne', Algébra Two, \#5, $6,7,8$ pp. $355-356$, Ex. 1-92 pp. 357-358: \#12 p. . 351, Ex. 1-16 p. 352.

Pearson, Modern Algebraz A Logical Ápproach, \#5, 6,7,8.pp. 398-401, 403-404, Ex. 1-9 p. 402, 1-5 pp. 405-406: \#9 p. 405, Ex. 6-12 p. 406: \#10 pp. 396-397, Ex. 1-5 p. 398.

INTRODUCTION TO EXPONENTS (programmed) 45,6 frames 15,16,206-228, 234-235; 250-252;259-?51:" \#8 frames 262-271 \#12 frames 51-79.

II. Games

Equations by Layman Allen.

Self-Evaluation II

5 I. For each of the following write the simplest equivalent expression using fractional exponents.
\qquad 1. ${ }^{\prime} \sqrt{x}$
\qquad 2. $\sqrt[3]{m^{2} n}$
\qquad 3. $\sqrt[4]{y^{5}}$
\qquad 4. $\sqrt[3]{2 x^{2} y^{3}}$

6 II. For each of the following write the simplest equivalent expression using radic̣als.

$$
\text { 5. }(4 a b)^{\frac{1}{3}}
$$

\qquad
7. $(3 x)^{\frac{1}{2}}$
\qquad 8. $a^{\frac{3}{4}}$

7 III. Write the simplest name for the following.
9. $25^{\frac{3}{2}}$
\qquad 10. $16^{\frac{1}{4}} 8^{\frac{1}{3}} 9^{\frac{1}{2}}$
-
11. $\frac{5^{0} 16^{\frac{3}{4}}}{8^{\frac{1}{3}}}$
12. $16^{-\frac{3}{2}}$
\qquad 13. $81^{\frac{3}{4}}$
8. IV, Write the following in simplest form.
\qquad
14: $\sqrt[3]{27^{2}}$
15. $\sqrt[4]{81^{2}}$
$16 \cdot \sqrt[3]{8^{4}}$
17. $\cdot \sqrt[5]{32^{4}}$

9 V. Write the following in simplest sibil.
18. $a^{\frac{2}{3}} a^{\frac{3}{4}}$
\qquad
19. $y^{\frac{3}{4}} \div y^{-\frac{3}{4}}$
20. $\left(64 x^{4}\right)^{\frac{1}{8}}$
\qquad 21. $\left(-8 x^{6}\right)^{\frac{1}{3}}$
\qquad $22 . x^{\frac{2}{3}} \frac{2}{3}$
23.
$(5 \sqrt{2})(2 \sqrt[3]{2})$
\qquad 24. $(4 \sqrt[4]{2})(\sqrt[6]{4})$
\qquad 25. $\sqrt{2} \cdot \sqrt[3]{3}$
\qquad 26. $\sqrt[3]{2} \cdot \sqrt[4]{2}$
i. $\quad 11$ VII. Solve the following radical equations.
\qquad $27 \sqrt{x}-3=1$
\qquad 28. $4 \sqrt{x}+1=25$
\qquad 29. $\sqrt{2 x+1}=\sqrt{4 x-23}$

—— $\therefore \quad$ - Self-Evaluation (cont ${ }^{\prime}$)

\qquad 30. $9-\sqrt{x+2}=5$
\qquad 31. $3 \sqrt{x}-1=\sqrt{x}+1$
12. 'VIII. Write each of the following in" scientific notation.

\qquad 35. 30.61×10^{-2}
\qquad 36. . 00027×10^{-6}

IF • YOU HAVE MASTERED ALL THE BEKAVIORAL OBJECTIVES, TAKE THE LAP TEST.,
I. The following are in depth problems. To get advanced study credit, you must do at least one set and 80% of that set.

1. Dolciani, Modern Algebra. p. 156, numbers 29-38.
2. Dolciani, Modern Algebra. p. 261, numbers 43-50.
3. Dolciani, Modern Algebra. p. 265, númbers $21,22,24$
p. 267, numbers 27-30
4. Vanatta, Algebra Two. p. 252, numbers 23-30.
5. Vanatta, Algebra Two. p. 255, numbers 28-30
p. 256, number 24
p. 257,' numbers 11,12
6. Vanatta, Algebra Two. p. 260, numbers 13-15

$$
\text { p. } 262 \text {, numbers } 21,22,39,40
$$

II. Develop a game involving exponents.
III. Develop a set of rules to adapt the Equation game to operating with exponents.
IV. Can YOU do this??

The earth gravitational pull on an object is directly proportional to its mass (m) and inversely proportioned to the square of the distance of the object from the center of the earth $\left(\mathrm{d}-\mathbf{-}^{2}\right)$

Mathematically this may be written:

$$
F=\mathrm{kmd}^{-2}
$$

If an ooject experiences a force (weight) of 120 lbs. at the earth's surface (4×10^{3} miles from the center of the earth), what pull or force mould the same object experience at $\dot{8} \times 10^{3}$ miles from the center of the earth.
V. EXTRA FOR EXPERTS - Dolciani, Algebra One, pp. 276-278.
VI. Modern School Mathematics, p. 332 nos: 21-26, page 234 nos. 29-36.

Vanatta, Glen D., and Goodwin, Wilson A., Algebra Two, A Modern Course, Charles E. Merrill Publishing Co., 1966.

Dolciani, Mary P., Berman, Simon L., and Wooton, William, Modern Algebra and Trigonometry, Book Two, Houghton

Nichols, Eugène D., Modern Intermediate Algebra, Holt, Rinehart and Winston, Inc., 1965.

Pearson, Helen R. and Allen, Frank B., Modern Algebra, A Logical Approach, Book Two, Ginn and Company, 1966.

Payne, Joseph N., Zamboni, Floyd F., Lankford, Jr., Frances G., Algebra Two, Harcourt, Brace and World, 1969.

Dolciani, Mary. P., Nooton, William, Reckenback, Edwin F., Sharron, Sidney, Modèr School Mathematics, Algebra 2, Houghton Mifflin Company, 1968.

Odom, Mary Margaret, Introduction to Exponents, A Programmed Unit, Holt, Rinehart and Winston, Inc., 1964.

Aclno leagenent
The "adninistretion and strff
of Hinety six :ifigh 3chool cryterully eckno iledres the asisistance provided by the staff of rova lizh school, Fortt Lauderdale, Plopid: :c are esrecially inrebter to vr. Luncenfe.
 of Hova's Wath Demortinent for nermittinc us to, use mach wetenal devel orea by then, some or which his. been reproduced in its oricime form.

Acknovleacement

> The administerstion and stref of Minety six : ifeh 3chool giztefully -ackno:ledees the assistanco nrovided ! by the staff of yova lieh scbool, Fort Lauderdale, Flonide. So are especiolly incobter to ir., Lemonce G. Insel and $\because r$. Lurence 7 . Kntuctr of Mova's whth Deportment for nermittince ue to uso mach moteminl dovejored by then, some of which has been reproduced in its oricinn comm.

RATIONALE (The LAP's Purpose)

We will now extend our concept of a mathematical system to include the set of polynomials. You will learn how to add, subtract, multiply, divide, and factor polynomials. The ficild properties are used extensively in applying these operations on polynom- . ials.

You probably will recognize many of these skills from youf previous work in Algebra. They are presented again only in more depth because of thier importance when working with rational expressions, polynomial functions, and solving equations which will be deve-
'. : loped in your` future study.

$$
e_{1}
$$

SECTION 1

Behavioral Objectives
After completing your prescribed course of study, you will be able to:

1. Given an algebraic expression, state whether or not it is a polynomial.*
2. Given a polytomial:
a. State the degree of the polymomial.
b. State, if it is a polyromial over the integers, rationals or reals. *
c. State if itt is monomial, binomial, trinomial or perfect square trinomial.
d. State if it is in two or more variables. :
3. Given a polyromial and replacemerts for the variables, determire the value of the polynomial.
4. Given ar.y two polynomials, rame the polynomial in its simplifled form which represents their:
a. sum
5. .difference
c. producte**
d. quotient (where the polynomial of higher degree is divided by the polynomial of lesser degree).
6. Given any polynomial, name its additive inverse.
7. Given any polynomial, factor it over the integers if possible. .**.
8. Given any polynomial that is factorable over the rationals, write it as a factorization over the integers times some rational number. (The examples and exercises in Appendix 3 are highly recomended for all students as a review of factorization of polynomials.)

* Check deffnition in Appendix 1.
** Apply the full patterns listed in Appendix 2 where appiicable.

resources

I．Reading and Problems．
1．＇Yanatta，Algebra One，il，2ヶpp．56－．5\％，Ex． \qquad ：－\＃3 pp．56－58，Ex．41－ 46 p．60： $114 \mathrm{pp} .61-62,63-68,73$ ，Ex： $1-4,6,8,17,20,21,30 \mathrm{pp}$ ．62－ $63,2,5,8,14,16,20,21,24,27,29$ p．65， $1,2,5 ; 8,11,16,19 \mathrm{pp} .68-69$ ， $1,3,4,9,11,12,16,20,21,25 \mathrm{p} .73: 75 \ldots \quad: 76 \mathrm{pp} .74-76,77-79$ ， E：i．5，6，8，11，13，15，16，19，25，27，34，42 p．76，1，2，8，10，12，14，16，17， 18，20，21，23，25 p．79，1，5，7，13，16，18 p．80：｜l7 \qquad ．

2．Dolciani，Modern Algebra，Book 2， il $_{1,2,3 \text { ，}}$ \qquad ： $\mathrm{F}_{14 \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{pp} .121-}$ $122,128-1 \overline{29}, 140-141$, Ex． $1,9,15,16,20,21,2 \overline{2, ~ p} .123,8,9,14,17,21$ ， 26，31，32 p．142：\＃5，6，7 \qquad －

3．Nichols，Modern Intermediate Algebra，\＃1，2，pp．59－62，Ex．1， 2 p．60，
\＄1－4 p．62，．4－6 p．93：if p．63，1－18 p．63，1 a－h p．91：\＃4，5 pp．64－ 68，70－78，Еж．1， 2 p．65，1－3 p．67，1－3 pp．69－70，1－3．p．72，1－2 p．74－75，1－20 p．78，2－3 p．9．1－92：36，7 pp．78－90，Ex．1－2 p． 80 ， $1-2$ p．82，1－2 pp．84－85，1－2．pp．86－87，1－2 p．䦗，1－2 pp．89－90， 1－8 p． 90.

4．Dolciani，Modern School Mathematics，Book 2，\＃1， 2 pp．56－57，Ex．1－ 2 p．60：$\# 3 \ldots$ ：$\# 4,5$ ，pp．58－59，．251－254，256－258，272－275，Ex．5－ 46 p．60－61，$\overline{1-40} \mathrm{pp} .255-256,1-46 \mathrm{pp} .258-259,1,-35 \mathrm{p} .76: \$ 6,7$ pp．259－263，Ex．1－8 p．263，1－66 pp．264－265．

5．Payne，Algebra Two，\＃1，2，pp 49．．51，Ex．1－20，26－35 p．52：\＃3 pp．56－57， Ex．21－26 p．66：非， 5 pp ．52－53， $57-58,72,73,74-76$ ，Ex． $1-7 \mathrm{pp}$ ． $54-55,10,11,13-17,23-28,30,31$ p． $54-55,43-48 \mathrm{p} .56,1-26$（omit ones on complex numbers）p．59；1－12 p．73，1－35 p．76：\＃6，7 pp．65，68， 70；80－81，Ex隻1－54 pp．66－67，1－38 p．69；1－30 p．71，33－58，p．72， 1－31，pp．81－82．

6．Pearson，Modern Algebra II，L．A．\＃1，2 pp．148－149，153－154，Ex．1－7 p． 150 ， $1-5 \mathrm{p} .155: / 13 \mathrm{pp} .148-149$ ，Ex．8－9 p．150： $144,5 \mathrm{pp}$ ．156－ 161，Ex．1－6．p．157，1－15 pp．161－163：\＃6，7，pp．164－166，172－184， Ex．1－5 p．165，1－5 p．166，1－18 pp．174－175，1－20 p．176，1－3 p．178， 1 a－p，p．． $179,1-20$ ，p． $182,1-18$ p． $183,1-2$ p． 184.

II．Games
Equations by Layman＂enilen．

Behavioral. Objective l
I. Definition: \dot{A} polynomial in lie variable x is the set of all symbols $a_{0}+a_{1} x+a_{2} x^{2} \ldots+a_{n} x^{n}$ where n can be any non negative integer and the coefficients $a_{0}, a_{1}, \ldots a_{n}$ are members of specified set.
some examples of polynomials in one variable are: 1. 4-3x+6x which can be written $6 x^{2}-3 x+4$ The specified "set is the integers. We, therefore, say this is a polynomial
over the integers.
2. $\frac{1}{2}+4 x+\frac{2 x^{2}}{3}-5 x^{3}+4 x^{4}$

This is a polynomial over the \qquad
3. $5 y^{2}-3 y$

This is a polynomial over the \qquad
4. $\frac{1}{2}$

This is a polynomial over the \qquad
5. $2 x$

This is a polynomial over the \qquad
Nichols
Refer to page 60 of the /text for the definition of a polynomial in n variables. In this definition, the symbols x_{1}, x_{2}, x_{3}, . . Kin . . . $_{n}$ represent n different variables such as x, y, z, π, etc. The following are examples of expressions which are not polynomials:

1) $\frac{4}{x}$
2) $5 x y^{-1}$
3) $\frac{4 x^{2} y+2}{y}$
4) $\sqrt{x}+2 x^{-3}$

QUESTION: Is the number "O" a polynomial? Careful, does it conform to the definition.?

ANSWER: Yes, it certainly does. Think about it........!

APFENDIXZ 2

The following are examples of different types of factoring you will work in in Appendix 3. Study these examples and then complete Appendix 3.
I. Apply the following patterns where applicable in computing the product of two binomials:
(e) $(x-y)^{3}=x^{3}-3 x^{2} y+3 x y^{2}-y^{3}$
a. $(x+y)^{2}=x^{2}+2 x y+y^{2}$
b. $(x-y)^{2}=x^{2}-2 x y+y^{2}$
c. $(x+y)(x-y)=x^{2}-y^{2}$
(d) $(x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3}$
II. Use the following patterns where applicable to factor polynomials ${ }^{-}$ over the integers:
a. $a c x^{2}+(b c+a d) \dot{x}+d d=(a x+b)(c x+d)$
b. . the distributive property to remove common factors
c. grouping-by-pairs
d. $x^{2}+2(x y)+y^{2}=(x+y)(x+y)$
e. $x^{2}-a^{2}=(x+a)(x-a)$
f. $x^{3}+a^{3}=(x+a)\left(x^{2}-a x+a^{2}\right)$
g. $x^{3}-a^{3}=(x-a)\left(x^{2}+a x+a^{2}\right)$
h. $a^{5}+b^{5}=(a+b)\left(a^{4}-a^{3} b+a^{2} b^{2}-a b^{3}+b^{4}\right)$
i. $\quad a^{5}-b^{5}=(a-b)\left(a^{4}+a^{3} b+a^{2} b^{2}+a b^{3}+b^{4}\right)$

PRACTICE SHEET O

I: REMOVING MONOMIAL FACTORS

EXAMPLE:

$$
\begin{aligned}
& 2 x^{2} y+4 x^{3} y^{2}+2 x y^{3}= \\
& 2 x y\left(x+2 x^{2} y+y^{2}\right)
\end{aligned}
$$

* EXERCISES:

1. $-3 a x+6 a^{2} x y$
2. $16 x^{2}-12 x y+8 x y$

II: TRINOXIALS OF FORM $a x^{2}+b x+c$

EXAMPLE:

$$
\begin{aligned}
& 2 x^{2}+5 x+3= \\
& (2 x+3)(x+1)
\end{aligned}
$$

EXERCISES:

1. $a^{2}-2 a-15$
2. $10 x^{2}-11 x-6$

$$
\text { 3. } 9 a^{2}-24 a+16
$$

III: THE DIFFERENCE OF TWO SQUARES
EXAMPLE:
a. $\begin{aligned} & 25 x^{2}-1= \\ & (5 x-1)(5 x+1)\end{aligned}$
b. $/ t^{2}-\dot{b}^{2}=$
$(t-b)(t+b)$

$$
\begin{aligned}
\text { c. } & (a+b)^{2}-49= \\
& (a+b)^{2}-7^{2}= \\
& {[(a+b)+7][(a+b)-7]=r } \\
& (a+b+7)(a+b-7) \\
& 16 t^{4}-1= \\
& \left(4 t^{2}\right)^{2}-1^{2}= \\
& \left(4 t^{2}-1\right)\left(4 t^{2}+1\right)= \\
& {\left[(2 t)^{2}-1^{2}\right]\left[4 t^{2}+1\right]=} \\
\cdot & (2 t-1)(2 t+1)\left(4 t^{2}+1\right)
\end{aligned}
$$

III: THE DIFFEREICE OF "THO SQUARES (continued).
EXERCISES:

1. $x^{2}-y^{2}$
2. $9 x^{2}-12 x+4 y^{2}-16$
3. $4 a^{2}-25 b^{2}$
4. $x^{2}+y^{2}+2 x y-9$
5. $9 x^{2}-49$
6. $x^{4}-y^{4}$
7. $x^{2}-(y+z)^{2}$
8. $16-a^{4} b^{4}$
9. $(2 a-b)^{2}-25$
"11. $81-a^{4}$.
10. $\left(x^{2}+2 x+1\right)-y^{2}$
12: $b^{4}-16 a^{4}$

IV: FOUR TERMS - COMAON FACTORS IN EACH PAIR

EXAMPLE:

$x y+x+y^{2}+y=$
$(x y+x)+\left(y^{2}+y\right)=$
$x(y+1)+y(y+1)=$
$(x+y)\left(y_{z}+1\right)$

EXERCISES:

1. $\quad x y-y+2 x-2$
2 $\quad r s+2 r+3 s+6$
2. $2 x y+y-6 x-3$
4: $5 a+3 a b-3 b-5$
3. $3 a x+5 b x-3 a y-5 b y$
$V:^{\prime}$ TRINOMALS OF THE FORM $a x^{2}+b x y+c y^{2}$ AND TRINOMIAL SQUARES

EXAMPLE:

a. $4 a^{2}+12 a b+9 b^{2}=$
$(2 a+3 b)(2 a+3 b)=$ $(2 a+3 b)^{2}$
b. $6 x^{2}+11 x y+4 y^{2}=$ $(2 x+y)(3 x+4 y)$.

EEERCISES:

1. $9 x^{2}+24 x y+16 y^{2}$
2. $4 t^{2}+4 t+1$
3. $4 k^{2}+16 \mathrm{~km}+16 \mathrm{~m}^{2}$
4. $35 m^{2}+84 p m+49 p^{-2}$
5. $6 x^{2}-x y-12 y^{2}$
6. $20 t^{2}-9 t q-20 q^{2}$

VI: SUK OM ofer

ELAMPLE:
a. $a^{3}+b^{3}$
(a:b) $\left(a^{2}-a b+b^{2}\right)-$
b. $t^{3}+8=$
$t^{3}+2^{2}=$
$(t+2)\left(t^{2}-2 t+4\right)$

EXEGISE:
i. $x^{3}+125$
2. $27 x^{3}+1$
3. $54+y^{3}$
4. $\cdot x^{\dot{6}}+y^{6}$
5. $27 x^{3}+64 y^{3}$

VII: DIFPGEOS OT SUBES

EXAMPLE:
a. $a^{3}-b^{3}=$
$(a-b)\left(a^{2}+a^{3}+b^{2}\right)$
b. $x^{3}-27=$
$x^{3}-3^{3}=$
$(x-3)\left(x^{2}+3 x+9\right)$

EERCISES:

1. $54 \cdots 27 c^{3}$
2. $x^{3}-125$
3. $x^{6}-y^{6}$
4. $343 x^{3}-8 y^{3}$
5. $8 x^{3}-125 y^{3}$
VIII. OTHER TYFES - COMGMATIOIS - FACTOR USING THE DIFFERENT METHODS
a. .. COMPLETE PACTORING

EXERCISES:

1. $n n^{2}-\pi b^{2}$
2. $a^{4}-1$
c. GROUPING
3. $a x+a y-b x-b y$
4. $a^{3}-a-a^{2}+1$

b. COMMO: BINQMIAL FACTORS

EXERCISES:

1. $3(a-b)-4 x(a-b)$
2. $\left(x^{2}-y_{p}^{2}\right)-5(x+y)$
d. FOLINOLIALS OR DIFFERE:CE OF SQUARES
3. $4 a^{2}+9 b^{2}-25 c^{2}-12 a b$
4. $25 c^{2}-4 a^{2}-9 b^{2}-12 a b$

i. 5
5. $x^{2}+2 x+1$
6. $\frac{x+1}{x}$

- $4 \cdot \frac{x^{2}}{5}-2 x+\frac{1}{6}$

5. $\frac{5}{x}+7$
II. Consider the following polynomials:
6. $2 x y$
7. $\frac{1}{5} x \cdot y^{2}+3 x^{2}+2$
8. $\sqrt{2} x-x^{2} y$
9. $x^{2}+2 x y+y^{2}$
10. $\sqrt{3} x^{2}+7 x^{3}+3 x y+7$
a. Give the degree or each of the above polynomials:
b. Which of the above polynomials are over, the reals, curer the rationals, over the integers ?
c. Which of the above are monomials, binomials, trinomials, perfect square trinomial ?
III. Given the polynomials and replacements below compute the value of the polynomial.
11. $x^{2}-x ; x=2$
12. $2(x y-3) ; x=-32 y=1$
13. $\frac{\left(1 x y^{2}\right)_{0}(x-y)+7 ; x=y}{x}$
14. $x y+\frac{c}{d} ; x=1, y=2, c=-1, d=4$.
IV. Perform, the indicated operation.
15. $\left(a z^{3}+b z^{2}-z\right)+\left(-a z^{3}+z-4\right)$
16. $(2-x)-\left(x^{2}+3 x+5\right)$
17. $\left(4 y^{2}+y+3\right) \cdot(y-2) \quad$ 22. $\left(x^{5}+x^{3}-7 x^{2}+2 x\right)\left(3+4 x-6 x^{3}\right)=$
18. $\left(5 z^{2}-16 z+3\right) \div(z-3)^{4} 23:\left(19 a^{2}+26 a b-5 a c\right) \div\left(16 a c+15 a^{2}-2 a b\right.$
$19^{\circ}(2 a-3)^{2}-240\left(2 x^{2}-3 x+5\right)\left(3 x^{2}+4 x-2\right)=$
$20 .(a+2)^{2}, 25 \cdot\left(6 x^{3}-19 x^{2}+21 x-10\right)+(3 x-5)$
Ri. $(a+b) \cdot(a-b), \quad 26 .\left(3 x^{2}-26\right)\left(3 x^{2}+2 y\right)$
I! True or False?
27: $-(2 y)^{2} \ddot{=-4 \dot{y}^{2}}$
19. $-\left(2 x^{2}-3 x+4\right)^{\prime}=-2 x^{2}-3 x-4$
20. $-(x-y)=y-x$
21. $-\left(-4 a^{2}-4 a b+b^{2}-9\right)=4 a^{2}+4 a b-b^{2}+9$
vi. Factor over the integers if possible.

VII. Factor over the integers with a rational monomiaiofactor. 44:. $y^{2}-y+\frac{1}{4}$
22. $x^{2}-\frac{1}{4}$
23. $\frac{1 x^{2}}{4}+\frac{1 x}{3}+\frac{1}{9}$

Grade your own test. If you have, satisfactorily completed your work you may take the LAP • TEST. CONSULT YOUR TEACHER FIRS'T.

1. Dresearch and $^{\text {R }}$ learn to use synthetic division. Demonstratedyour knowledge by "completing, either of the following groups of exercises:

a. Vanatta, Algebra Two,pp. 71-72, numbers 1,$3 ; 6,8$, and 10 .
b. Dolciani, Modern Algebra, Book Two:, p. 523, numbers $\mathrm{T}, 2,3,4,6$.
2. Dolicani, Modern Algebra Two, P". 145 numbers 23-26.
`3. Write a paper on Blaise Pascal. Tell how his famous triangle is used in د r. expanding a binomial like $(x+y)^{8}$ and factor the following problems using the information you have found.
(a) $(x-y)^{15}$
(b) $(a-b)^{9}$,
(c). $\cdot(243 x+32 y)^{5}$
(d) $(x+2 y)^{4}$.
$\%$

1. "Vanatta, Glen D., Algebra Two: A Modez ?oursé, Charles E. Merrill Publishing Co., 1966
2. Dolciani, Mary P., Bérman, Simon L'., and Hooton; William, Modern Algebra; Book Two, Houghten Mifflin Co., 1965.
3. Nichols, Eugene D. , Modein Intermediate Algebra, Holt, Rinehar't and Winston, Inc., 1965.
4. Dolciani, Mary P., Wooton; William, Beckenbach, Edvin F., Sharron, Sidney, Modern School Nothematics, Algebra 2 , Houghtòn Mifflin Co.; 1968.
5. Payne, Joseph N.; Zamboni, Flopd F., Lankford, Jr., Francis G., Algebra Two, Harcourt, Brake and World, 1969 .
6. Péarsoin; lielen R., and Allén, jrank B., Modern Algebra: A Logical Approach, Book Tro, Ginn and Company, 1966.
i.. Equations by Layman, Allen

\therefore

Ackno:vleagement
The administration and staff
of Ninety Six Mien School spitefully aclno:Iedges the assistance provided by the staff of Nova High school, Foin Laucerdale, Florida, we are especially indebted to fro Lawrence G. Inset and ir r. Laurence R. Bantucle of Move's Math Department for permitting veloned by then, some of which has been reproduced in its oriental form.

Rationale (The lap's Purpose)

In the parst you have learned to solve equations. You have also learned that equations are not-alwaye in a form which iss easy to work. Many times it is nocessary to simplify equations to get them in a workable form: This lap is essential to your fueture work jin solving equations.

In thils LaP "al.gebrafe fractions" will also be reviewd along with- the study of the set of rational expregsions undor addition and multiplication: The treatment of the operations is based on the notion of the quantification of variables over the set of real numbers and the ripsuiting availability of field proparties. Addition and multiplication of rational expressions is done first by strict application of definitions so that the underiying principles, when short cuts are used, will be underatood. The concluding section will make use of rational expressions in problem solving.

Behavioral objectives

After the completion of your prescribed course of study, you will be able to

1. Given an expression, deteminerwether or not it is a rational
2. Given a rational expression, express it in simplified form; ie., express it so that the numerator and denominator have no common "actors:
3. Given a rational expression (or a sum, difference, product or quotient, of two rational expressions ${ }^{2}$, find all replacements for the variables for which the expression(s) is undefined.
4. Given two or mora rational expressions, determine the last common denominator for these expressions.
y
5. Given a rational expression find
a) its multiplicative inverse (if it exists)
b) its additive inverse
6. 'Given two rational' expressions, express any of the following in simplified form:
a) the product -of the two expressions
b) the quotient of the two expressions
c) the sum of the two expressions
d) the difference of the two -expressions
7.: Given a complex rational expression, write its simplified form.
7. Solve equations involving rational expressions.
8. Solve any given word problem'involying rational expressions.

RESOURCES

I. Readfng and Problems

1. Vanatta, Algebra Two, \#1 \qquad : \#2 pp. 81-83, Ex. 1-18 even pp. 83-84: \#3 pp. 21, Ex.-2 p. 22: \#4 pp. 84-86, Ex: —1 \#5: \#6.a b, pp. 87-90, Ex: 2; 3, 4, 8, $9,11,13,14 \mathrm{i} / 80,2,4,5,6, \overline{7}, 8,10$ p. 90,5, 9; 11; 12 p. 91; 6 c d, pp. 81-85, Ex. 2,3,5,13,14,16, 19, 22, 23, p. $86-$ 84, 15,16 p. 96: \#7 pp. 91-92, EX. 1/, 3,4,9,11, PP. 92-93, 18 p. 96 : \#8 \qquad $\because \quad \| 9$ \qquad , Ex. $1,2,5,6,8,9,12,14,16,17$ pp. 138-139, 2-4 p. 141.
2. Dolciani, Modern Algebra, Book 2, 1 : \#2 pp. 158-160, Ex. 1;3, 5,11,15, RO, 22,26.,29-32 PP. 160-161:.
\qquad pp. 157-158, Ex. $1-24$ odd p . 158: \#4 pp. 164-165, EX. $\quad: \quad \# 5$
 165, Ex. $5,8,10,11,12,15,18,25,26,28,31,32,35,38,42 \mathrm{pp}$. 166-167: \#7. pp. 167-168, Ex. 1, $7,9,10,13,14,25,26$ pp. 168-169: $\# 8$ pp. 169-170, Ex. $2,5,6,15,17,18 \mathrm{p}$, $171:$: 79 , Pp. 173-174, Ex. 1,3-9, $13,16 \mathrm{pp}$. 174176.
3. Nichoís, Modern Intermediate 1 hgebra, \#1 pp. $95-96$; Es. 1-9 oraĺ, p.
 pp. 99-100, $1:(a-j), 2(a-j) p / 102,1(a-j), 2(a-j)$ pp. 104-105, $1(a-j)$, 2(a-j) Pp. 107-108: |/7 pp. 108-109, Ex. 1-9, p. 109: \#8,9 \qquad -.
4. Dolciari", Mödern schooi Machematics, Book 2 , \#1. \because, \#2 pp. 277-279, Ex. 1-36 pp. 279-280: 43,4,5,6 pp. 280-282, 284-286, Ex. d-28 pp. 282283, 1-62 even. pp. 284-286: \#7 pP: $284-286 ;$ Ex: $1-62$ odd p. 286: \#8,9 \qquad .
5. Payne, Algebra Two, \#1, pp. $95-96$, Ex. 1-12 p. 97 : \#2 pp. 98-99, 102103, Ex. 1-12, p. 100, 1-10, p. 102, 1-39, p. 103: \#3, 4,5;6 p. 104, 106, 110,111, Ex. 13-33p. 97, 1-32, p. 105, 1-24, pe. 107, 1-40, p. 112: \#7, P. 113, Ex-1-20 p. 114: \#8,9 \qquad .
6. Pearson, Modern Algebra oII, A Logioal. Approach, $11 \mathrm{p}, 187$, Ex. \qquad : \#2 p. 187, Ex. 20, p! 53, (a-f) ip. 191, 28.a p $: 196: \# 3,4,5,6$, Pp. 187-189, Ex. 12, p. 53, 2(a-h)p. 191, 4 (a-h) p. 192; 28 (b, c) p: 196: \#7, pp. 188-189, Ex: 3(a-f), p. 191, $28(\mathrm{~d}-\mathrm{f})$ p: 196: $\# 8,9$ \qquad \therefore
II. Audio

Wollensak C-3809 Reading Written Probiems':
III. Games

Equations by Layman Allen*

Which of the following are rational expressions? Circle the" number by each rationál expręssion".

1. $\frac{1}{\sqrt{x}+2}$
$2 \cdot \frac{1}{\sqrt{2}} \cdot x^{2}+2$
2. $\frac{\sqrt{x}}{\sqrt{x}}+2(x 0)$
3. $\frac{1}{\sqrt{x^{2}+2}}$
4. $\frac{x^{2}+y^{2}}{x^{2}}$
5. $\frac{3}{7}$
6. 2% \square 8

9
2. 2
II. \therefore Stuplify the following rational expresstons:
9. : $\frac{2}{1}$
10. $\frac{x^{2}}{x y}$
12. $\frac{r^{2}-s^{2}}{i{ }^{2}+3 r s+2 s^{2}}$
\square
0
11. $\frac{x^{2}-z^{2}}{7 x+y z}$
13. $\frac{x^{2}+x y-2 x}{x^{2}+2 x y+y^{2}-4}$
14. $\frac{u^{3}-\nabla^{3}}{u^{2}+u v+v^{2}}$

Decide on the replacements for the variables for which the following expressions are undefined:
$15 \cdot \frac{3}{x+2}$
18: $\frac{12 x+2}{x^{2}-4}$
16. $\frac{t}{2-t}$
19. $\frac{3 t+3}{4 t-t^{2} \pm 4}$

$$
17 \cdot \frac{5+x}{3 y-4}
$$

$\%$

4 IV. What is the Least Common Denominator of each pair of expressions?

$$
\begin{aligned}
& \text { 20: } \frac{x}{y} \cdot \frac{x}{y}-2 \\
& \text { 21: } \frac{r 2}{x^{2}-y^{2}} ; \frac{6}{(x-y)}
\end{aligned}
$$

22. $\frac{2 x}{x^{4}-16}-\left(x^{2}+4\right)(x-2)$
23. $\frac{2}{x y z} ; \frac{5}{x x y}$
24. $\frac{6 x+2}{x(x-y)} ; \frac{3 x-y}{x^{3}-y^{3}}$

 following expressions; then simpify.
$25 . \frac{1}{2}$
25. $y=x$

$$
30 \frac{x}{x+1}
$$

32
48
8
$32 .{ }^{\circ}$
VI. Sppriform the indicatod oporation.
33. $\frac{x}{y}+\frac{6+2}{2 y}$
$34:-\frac{x+2)}{2 y}$
35- $\frac{3 s^{2}+g r+8-r}{9 s^{2}-r^{2}}$
36. $\frac{y^{2}}{4 x} \cdot \frac{x}{7}+x^{3}$
37. $\frac{2 x}{x^{2}+3 x+2} \frac{4}{x^{2}-1}$
38. $\frac{3 x+4}{x^{2}-16}+\frac{x-3}{x^{2}+8 x+16}$
39. $\frac{y^{2}}{4 x} \div \frac{y}{x}$
$40: \frac{8 x^{3}+27}{3 x^{2}-3} \cdot \frac{x^{4}-1}{2 x^{2}-x-6}$
$41 \frac{4 x^{2}-6 x+9}{2 x-3}+\frac{8 x^{3}+27}{4 x^{2}-12 x+9}$
$\frac{5 x-2}{42 \cdot \frac{52}{x} 88 x+12} \frac{x^{2}-2 x-8}{22-4 x-5}$

多

Sclf-Fvaluation (cont')
7. VII. Simplịfy the following complex rational expressiọns:
$44 \cdot \underline{4 x}+\underline{x} \quad \because 46$.

$\frac{\frac{2}{x}+\frac{3}{y}}{\frac{x}{y}+\frac{y}{x}}$
45.

©
VIII. Solve the following:
648. $\quad \frac{2 \pi}{3}+8=0$

2
049
0 $\frac{2 x+10}{5} \frac{1}{3}$
$\frac{3-2 x}{8}-\frac{x-3}{6}-1=\frac{4}{3}+\frac{1}{24}$
IX. Solve the Eollowing.
51. The average of two nunibes is 15. Find the numbers if the smaller is two-thirds of the larger.

52; One cardmorter can process a deckof punched cards in 30 minutes; while another" can sort the deck in 45 minutes. How long would it take the two sorters together to process the cards?
53. "A soluticn of silver nitrate ín water is 12% silvẹr nitrate. How many ounces of the compound must be added to 23 ounces of this solution to produce a 20% solution?
54.' 'Three men receive together $\$ 1285$ from a busines venture. 4 If $A^{\prime} s^{\prime}$ share, find the amount ${ }^{\circ}$ of"money each should receive.
55. The length of a rectangle is two fept longer, than its width. Find the width if the perimeter of the replangle is 144 feet.

GRADE YOUR OWN TEST. If you have satisfactorily completed your work, you may take the LAP TEST. CONSULT YOUR TEACEER FIRST.

1. Make up a game using rational expressions.?

At least 80% of any set of the following problems MUST BE CONHLETED, for credit.
2. Allendoerfer, Fundamentals of Freshman Mathematics,
\Leftrightarrow Ex. $i-20$ p. 74.
3. Allendoérfer, Ex. 17-20 p. 78, 15-22 p. 80.
4. Allendoerfer, EK. $10 \div 20$ p. 80.
5. Dolciani, Modern Algebra Two, Ex. 26, $31,33,34, \cdot$. 1.177 , and $9,10,15,19$ p. 182.

REFERENCES

1. Vanatta, Glen D., Algebra Two: A Modern Course, Charles E. Merrill Publishing Co., 1966.
2. Dolciani, Mary P., Berman, Simon L., and Wooten, William, Modern Algebra, Book Two, Houghton Miff lin Co., 1965.
3. Nichols, Eugene D.", Modern Intermediate Algebra, Holt, Rinehart, and Winston, Inc., 1965.
4. Dolcíani, Mary P., Wooton, William, Beckenbach, Edwin F., Sharron, Sidney, Modern School Mathematics, Algebra 2, Houghton Miffing Co., 1968.
5. Payne, Joseph N., Zamboní, Floyd F., Lankford, Jr., Francis G., Algebra Two, Harcu..it, Brace and World, 1969.
6. Pearson, Helen R., and Allen, Frank B., Modern Algebra: A . Logical Approach;' Book Two, Fin and Company, 1966.
7. Allendoerfer, C: B.; Oakley, C. O., Fundamentals of -Freshman Mathematic, , McGraw-Hill Book Company, Inc., 1959.
8. Wollensak Teaching Tape C-3809 Reading Written Problems.
9.: Equations (fame) by Layman Allen.

.RATIONALE (The LAP'ss. Purpose)

In 1600 European mathematicians worked with two branches of mathematics - geometry and ralgebra. However, there was no link between these !wo branches. Rene' Desscartes, a French philoropher and mathematician; pro- 1 vided the conn:zction in his Geometrie, published in 1537 , by devising a scheme for locating point: by using 'numbers. From this idea the whole subject of analytic geometry t or coordinate ieometry has developed.

In this. LAP you will begin an introduction to coordinate geometry. You. will sludy the most basic coordinate figure, the straight line. You will also investigate the concepts of slope, intercepts, distance, midpoint, parallelism; and perpendicularity.

Behavioral OBjectives,

* At the completion of your prescribed course of study, you will be able.tá:

1. Identify or define the following:
a. cartesian coordinate system
b. Descartes
c \because abscissa
d. ordinate
e. origin
2. Given a.coordinate system for a line:
$a r^{\circ}$ Find the coordinate of any given point.
b. Given two points, find the coordinate of any point of the segment joining the two points.
c. Given the coordinates of", two points, determine the distance between them.
3. Given a coordinate system for a plane:
a. Given a point, identify its coordinates:
b. Given an ordered pair, graph the corresponding point.
P. Given a point, identify the \cdot quadrant orathe axis which contains the point.
d. Given the lengths of two sides of a right traingle, Use the Pythagorean Theorem to find the length of the third side.
e. Given a geometric figure, one or more of whose sides lie along a horizontal or a vertical line, find lengths of segments or coordinates of points for this figure.
4. Given the coordinates of two points in a plane:
a. Use distance formula to determine the distance between them.
b. Find the coordinates of the midpoint of the segment joining them.
c. Find the slope of the line containing them.
5. Given the slope of a line or sufficient information to determine this slope, decide whether:
a. the line "rises to the right".
b. the line "falls to the right".
c. the line is horizontal.
d. the line is vertical;
;

Obj: 1:
4

Obj.•2: . Nichols, read pp. 115-117, 122, ex. 1, 2 page 11 ; i-4 pages 117-118, ${ }^{1} 1-6$ page 122.
Wooton, read. pp. 154-155, 160, ex. 5-8 page 159.
Payne, read p. 136, ex. 1-22., pp. 138-139:
Pearson; read p. 204, ex. $1_{\mathrm{R}} 20$, p. 205.
Obj.; 3 :
Vanattaf (a) \qquad (b): p. 115-116, ex. 1-4 page 117: (c)-(e) \qquad -
Nicho ${ }^{\prime}$ ', read pp. 118-119, ex. 1-9 pages 11.9-121.
Wooton', read pp. 155-157, 160-161, ex. 9-24 page 159.
Pearson, read pp. 205-210, ex: 1-12 pages 210-211.
Wollensak Tape C-3852 Graphing Lintear Functions
Games: Graphing Pictures
An Ordered Pair Code,
Obj.s 4,5: Vanatica (\#4a) read pp. 152-153, ex. 1, 2, 4 page 154:
(b) reà pp. 154-155, ex. 1-3 pages 155-156:
(c) read $\mathrm{pp} .142-143$, ex. 1-12 odd page 145.
(Il ${ }^{2}$) \qquad -

Dolclani, (\#4a,b) read page 294 , ex. 1-6 page 295:
((c) read pages $84-88$, Ex. 1-12 even page 89!
(il5)
Nichols, $\# 4,5$ read pages $122-126, \cdot 129-133$, ex. $1-14$ even pages 122-123; 1-8 pages 124-125; 1-14 even page 131; 1-14 even page 133.

Wooton, \#4,5 read pages $168-172,433-437$, ex. 1-18 bottom page 173; 1-30 pages 437-438.

Payne, $\# 4,5$ read pages $140-146,148-151$, ex. 1-14 page 143; 1-12 pages $146-147$;18-23 page 153 .

Péarsòn, \#4,5 read pages 212-218, ex. 1-4, 12, 13, pages 216-217; 1-14 pages 218-219.

Wollensak C-3854 The Slope of a Line

Obj.
I. a. Define Cartesian coordinate system.
b. For whom is the Cartesian coordinate system named?
c. On the following coordinate plane, label (1) the abscissa, (2) the ordinate, (3) the origin.
$;$

- . . . \quad.

2: II. Use this coordinate system to answer the following questions.

(1) Give the coordinate for each of the following points.
A \qquad

\qquad
C
D \qquad
(
(2) Give the distance between the following pairs of points.

A and E \qquad
C and D \qquad

A $(2,4)$
B. $(-6,-4)$

C $(-1,-1)$
D $(0,5)$
E $(-3,4)$
F $(4,-2)$
G $(5,0)$

Bc (2) Identify the quadrant or axis which contain g each of the following points:
\qquad A $(4,-1)$ \qquad E ($-6,8$)
\qquad © $(2,8)$
$\cdot 1$ \qquad F $(7,-1)$
\qquad C $(-7,-2)^{\prime}$. \square $G(0,-3)$
\qquad D $(-3,0)^{\circ}$ \qquad H $(-1,-4)$

3d . (3) Find the length of the third side in each of the following triangles.

' $\mathrm{C}=$ \qquad

$B^{\prime}=$ \qquad

$A=$ \qquad
(4) Find the length of each of the sides of the following triangle.

\qquad
$A B=$

SELF --EVALUATION 1 (cont')

(5) Write the coordinates for the points of the vertices of the following figure.

A \qquad
B
C \qquad
D \qquad

4) IV. For each of the following pairs of points, find:
(a) the distance between them
(b) the coordinate of the midpoint of the segment joIning each pair (c) the slope, of the line containing each pair
DISTANCE. MIDPOINT SLOPE
(1) $(4,0)(0,-3)$
(2) $(0,5)(-2 ;-2)$ \qquad , \qquad
(3) $(4,3)(8,7)$
$(4)(-2,8)(5,-3)$

V. Given two ordered pairs: (a) determine the slàp̀e of the line joining them, and (b) determine if the line: (1), rises to the right
(2) falls to the right
(3). is horizontal
(4) is vertical

IF YOU HAVE SATISFACTORILY COMPLETED YOUR WORK ON SECTION 1; CONSULT YOUR TEACHER: THEN TAKE THE PROGRESS TEST ON-SECTION 1.

At the completion of your prescribed course of study, you will be able to:

* 6. Given an equation of a line:
a. write an equivalent equation in slope intercept form.
b. determine the slope of the line.
c. determine the y - intercept of the line.
d. sketch. and/or identify, the graph af the line.
'7. Write the equation of a given line, when given any one off the following:
a. the slope of the line and the y - intercept of the line.
b. the coordinates of a point on the line and the slope of the
line.
c. the coordinates of two points on the line.

8. Given the coordinates of a point or information sufficient to find such coordinates, write:
a. the equation of the horizontal line containing this point.
b. the equation of the vertical line containing the point.

RESOURCES 2:

(10) Obj. 6: Vanatta, read pages 146-148; ex. page 148, wprk any 10. problems.

- Nichols, read page 144, ex. 2 a - 5 page 144.

page 1.72.
-Paynè, read pages 162-165, ex. 22-27 page 166 .
Pearson, read pages $161-162,175-177$, ex. 1-7 page 222, 4 page 227.
Wollensak Tape C-3852 Graphing Linear Functions
C-3855 Slope Intercept Form
Transpaxency 3M The Strajiflerine
Games: Graphing Pictures
An Equation Code
Obj. 7: Doĺciani, 7a, read pages 90-93, ex. 19~26 page 93: 7b réad pages 90-93, ex: ${ }^{\prime} 1-8$ page 93: 7c \qquad .
Nichols, 7a read pages 142-143, ex: 1 page 144: 7b read pp. 142143, ex. even numbers bottom page 143: 7c $2,4,6$, 8 top page 143.
Wooton, read pages 175-177, Ex. 1-6 and 13-18 orals page 178, . 1-12 written page 178, 13-24 page 179 .
Payne, read pages 162-165, ex. 7a $\quad 7 \mathrm{~b}, 9-17$ page 166: 7c, 1-8 page 165,48 page 167.
Pearson, read pages 224-226, Ex. 1. page 228, 1-17 pagè 233-236.

Payne, read pp. 162-165, ex. 1-55 even pages 165-167. Pearson, read pp. 223-226, Ex. 1-4'pages 226-227.

Obj.
6 I. : Rewrite the following in slope-intercept form; state the slope and. y - intercept, and graph each (use graph paper on next page).'
R
(1) $2 x+3 y=-6$ \qquad $m=$ \qquad $\mathrm{b}=$ \qquad
(2) $2 y=-4 x+8$ \qquad $\mathrm{m}^{\prime}=$ \qquad $\mathrm{b}=$ \qquad
(3) $y=-x$ \qquad $\mathrm{m}^{\prime}=$ \qquad $b^{\prime}=$ \qquad
(4) $-18 x-6 y=18$ \qquad $\mathrm{m}=$ \qquad $\mathrm{b}=$ \qquad
(5) $3 x=6 y-12$ \qquad $\underset{l}{m}=$ \qquad $\mathrm{b}=$ \qquad
7 "II... In each 'problem below, use the given information to write the equation for a line.
(1) $\mathfrak{m}=5, b=2$
(2) $m=-2, p_{1}(-3 ; 4)$ \qquad -.
(3) $P_{1}(1,-1), P_{2}(-1,-1)$ \qquad
(4) $\dot{\mathrm{m}}=-9, \quad b=0$ \qquad
(5) $m=\frac{4}{5},{ }^{4} P_{1}(3,-1)$
(6) $P_{1}(2,3), P_{2}(-1,-4)$ \qquad
(7) $m=-\frac{2}{3}, b=3$,
.5
(8) $m=5, P_{1}(-2,-4)$
(9) $P_{1}(4,-3), P_{2}(-6,2)^{\prime}$ \qquad
-8^{*} III. A) Write the equation for: (1) the vertical line, and (2) horizontal line through ($-2,3$).
(1) vertical
(2) horizontal \qquad
\qquad .
IV. Multiple Choice:
\qquad 1. If a line is vertical and passes through the point $(-2,-3)$ then its equation is:
(a) $\dot{x}=-3$
(d) $y=-2$
(b) $y=-3$
(e) none of these
(c) $x=-2$.

SELF-EVALUATION' 2 (cont)

9 \qquad 2. If a line is horizontal and passes through the point (abb), them its equation is:
a) $x=a$
d) $y=b$
b) $x=b$
e) none of these

Questions 3 - 5 refer to the 1 line with equation $3 x-y=2$.
6° \qquad 3. The slope - intercept form of the equation of this line is
(a) $-y=-3 x+2$
(d) $3 \dot{x}+-y=2$
(b) $y=3 x+2$
(e) $y=3(x-2)$
(c) $y=3 x^{7} 52$.

6 \qquad 4. The. slope and y, - intercept of this line are:
(a) $-3,(0,2)$
(d) $3,(0,-2)$
(b) $-3,(0,-2)$.
(c) $3 ;(0,2)$
-
(c) $3,(0,2)$?
(e) none of these

6 \qquad 5. Which of the following is the graph of this Tie?

(e) none of these
7. V. Choose the correct equation in Column B for each item in Column A :
\qquad 1. The line contains $(1,1)$ and $(2,2)$
A. $2 x+y=-2$
\qquad 2. The line contains $(-2,-3)$ and
B. $\quad \bar{x}-2 y=4$ has slope \mathbb{F}_{2}.

3: The line has slope -2 and y 1
C. $y=\dot{x}_{\text {, }}$
4.- The line contains $(1,-1)$ and
D. $x+y=0$ has slope -1.
5. The lipe has slope $\frac{1}{2}$ and
E. none of these

WHEN YOU HAVE COMPLETED YOUR RESOURCES AND SELF-EVALUATION, CONSULT YOUR TEACHER. IF YOU HAXEE DONE SAT ISFACTORY WORK, YOU MAY
TAKE YOUR PROGRESS TEST ON SECTION

SECTION

Behaviqral Objectives

- At the completion of your prescribed course of study, you will be able to:

9. "Given the slopes of two lines or ṣufficient information for \because.finding slopes, determine if,
a. the two lines are parallel
b. "the two lines are perpendicular
c. the two lines are neither parallel nor perpendicular
10. Given the coordinates of points on two lines, such that certain of the coordinates are variables, determine the value of the. missing numbers when the lines are:
```
a: parallel
b. perpendicular
```

11. Given the equation of a Iine and a point not on the line, write and/or identify the equation of a line through'the given.point and parallel and/or perpendicular to the given line.
Δ
Obj. 9: Vanatta, read pp. 150-151, Ex. 3,4 p. 152. Nichols, read pp. 133-135, Ex. 1-3 p. 136. Wooton, read pp. 175-177, 439-440, Ex. 1-8 and 14-18 page 441, 43-44 page 179.
Payne, read pages 155-156, Ex. 1-16 pages 157-158.
Nichols, read pp. ‘133-135, Ex. 4-9 page 136.
-Wooton, read pp. 175-177, 439-440, Ex. 41-42 páge 179.
Obj. 11: Vanatta, read pp.150-151, Ex. 6-7 p: 152. Wooton, read pp. 175-177, 439-440, Ex. 25-36 page 179, 9-12 page 441.

SELF-EVALUATION 3

9 . I. Given the following pairs of slopes, determine if the lines with these slopes are parallel, perpendicular, or neither.

\qquad 6. $-6,6$

9 II. Given the following pairs of linear equations, determine if their graphs are paralle?, perpendicular, or neither.
\qquad 7. $y=\frac{7}{4} x-1$
$y=\frac{7}{4} x+6$
\qquad 8. $3 x-6 y=9$
$2 x+y=4$
\qquad 9: $2 y=3 x-12$
$2 x+3 y=3$
\qquad 10. $7 x+y=7$
$2 y=-14 x+4$
\qquad 11. Determine x such that the line through $P_{1}(x, 3)$ and $P_{2}(-2,1)$ is parallel to the line through ${ }^{1} P_{3}(5 ;-2)$
and $P_{4}(1,4)$.
\qquad 12. Determine x such that the line through $A(x, 3)$ and $B(-2,1)$ is perpendicular to the line through $C(5,-2)$, and $D(1,4)$.
\qquad 13. Determine. m such that $y=m x+5$ is perpendicular to. $y=2 x+5$.
14. Determine C such that $C x+y=-2$ is parallel to $2 x+y=6$.

SELF-EVALUATION 3 (cont')

'11 IV. Write the equation of a line parallel to each given line and through the given points.
\qquad 1. $(2,3) \quad y=-3 x+1$
\qquad 2. $(-3,2) 4 x-y=6$
-
3. $(4,1) \quad y=\frac{-3}{4} x+6$
\qquad 4: $(-2,-3) \cdot 5 x+2 y=3$

11 V! Write the equation of a line perpendicular to each given line \& through the given points.

IF YOU HAVE'SATISFACTORILY COMPLETED YOUR WORK, CONSULT YOUR TEACHER. THEN TAKE THE LAP TEST.

ADVANCED STUDY

I. Nichols; read pages 137-138, Ex. work any 4 of $1-11$, pp. 138-139.

IF. Wooton, 'Ex. 19, 20 page 441.
III. Nichols, Ex. 7, 8 ppage $^{0} 129$.
IV. Nichols, Ex. 5,'7, 8 page 125.
V. Vanatta, work any 5 of the following: page 152 tios. 8, 9, 10; page 154 nos. $3, .6,10 ;$ page 156 no. 5
VI. Work any 4 of ,the following: *

1. Determine an equation of the line satisfying the stated conditions.
a. Through $(-3,2)$ and parailel to the line joining $(2,3)$ and ($1,-2$).
b. With x - intercept 2 and y - intercept 3 .
c. 'Through ($b,-2 b$) with slope $\frac{2}{b}$.
2. Show that the figure whose vertices are $(2,1),(4,2),(5,2)$, and $(7,3)$ is a pärallelogram.
3. If a line has x - intércept ${ }^{\circ} \mathrm{a}\left(\mathrm{a} \neq 0\right.$) and y - intercept $\mathrm{b}\left(\mathrm{b} \neq{ }^{\circ} 0\right.$), show that an equation of the line (called the. intercept farm of the equation) is:

$$
0 \quad \frac{x}{a}+\frac{y}{b}=1
$$

4. If $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are two points of a line and if $x_{1} \neq \dot{x}_{2}$, then an equation of the line (called the two-point form of the equation) is:

$$
y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)
$$

5. Show that if the graphs of the linear equations $A_{1} x+B_{1} y=C_{1}$ and $A_{2} x+B_{2} y=C_{2}$ are parallel; then $A_{1} B_{2}=\dot{A}_{2} B_{1}$!
6. Show that. if $A \cdot B_{2}=A_{2} B_{1}$, then the graphs/of the linear equations $A_{1} x+B_{1} y=C$
parallet lines.

REFERENCISS

Vanatta, Glen D., and Goodwin, Wilson A., Algebra Two, A
Modern Course, Charles E. Merilli Publishing Co., 1966.

Dolciani, Mary P., Berman, Simon L., and Wooton, William, Modern Algebra and Trigonometry; Book Two, Houghton Miffiln Co., 1965.

Nichols, Eugene D., Modern Intermediate Algebra, Holt; Rinehart and Winston, Inc., 1965.

Pearson, Helen R. and Allen, Frank B., Modern Aigebra, A Logical Approach, Book Two, Ginn and Company 91966.

Payne, Joséth N., Zambone, Floyd F. \therefore Lankford, Jr., Frances G., Algebra Two, Harcoukt, Brace and World, .1969.

Dolciani, Mary P., Wooton, Williann, Beckenback, Edwin F., Sharron, Sidney, Modern School Mathematics, Algebra. 2; , Houghton Mifflin Company;' 1968.

Wollensak Teaching Tapes C-3852
C-3855
c-3854
3M Transparencies - The Straight Line

RATIONALE

In mathematics, the concept of a function is very important. and extremely useful. It appears in almost every branch of the subject. The concept in mathew metics., howevef, has a slightly different meaning than in ordinary language. We wise the word function to denote a certain specific type of correspondence between the elements of two sets. But previous to any discussion on functions one must initially be concerned with the idea of a relation.

In this LAP emphasis is placed on review and extension of concepts which are basic to the study of relations, functions, and inequalities. The basic definitions important to the study of functions will be studied more formally than in previous units. You will have enough experience with graphing and analysis of graphs so that you should be able to transfer your knowledgepof functions to future studies in mathematics. and to situations in other academic fields or occupanttịonal endeavors.

SECTION 1

Behavioral Objectivès
At the completion of your prescribed course of study, you will be able to:

1. Giyen a pair of sets:
a. Determine the product set ($A^{\circ} \times B$)
b. Construct tine graph of the determined product set.
2. Given a set of ordered pairs" and a product set, determine whether or not that set of ordered pairs in a subset of that product set:
3. Write and/or identify the definition of these termis: relation, domain, rangẹ, and function.

4: Given a relation as, a set of ordered pairs, nàme its range and domain.
5. Write and/or identify any, or all of the five ways to. express a relation.
6. Given a relation, designate it by
(a) a statemeṇt
(b) an equation
(c) the roster method (ordered pairs)
(d) constructing a table
(e) displaying its graph
and name its domain and range. Appendix I will be completed and turned in to the teacher.
7. Given a relation, determine its inverse.

RESOURCES I

Obi.i. 1
Nichols, read pp. 155-157, Ex. 1-16 pp. 157-158.
Pearson, read pp. 31-34, Ex. 1-8 pp. 34-35.

Obi. . 2
Nichols, read pp. 158 -160, Ex. 1 page 160.

Obí • 3

Vanatta, read pp. 99-103, Ex. write the definitions of the words in this goal.

Dolciani, MÁ, read'Pp. 203 204 , Ex. \qquad $-$

Filmstrip: Relations and Functions
Transparency: $3 M-$ Functions

Obj. 4
Vanatta, Read pp. 99-103, Ex. 10 page 105.
Dolciani, MA, read pp. 203-204, Ex. 1-8 oral page 205.
Nichols, read pp. 158-160, Ex. 2 page 160.
Wooton, MSM, read pp. 149-151, Ex. 1-10 oral page 152.
Payne, read pp. 196 -198, Ex. 1-6 page 197; 1-11, 18-22 pages 198-199.

Obj. 5
Vanatta, read pp. 99-103, Ex. write the five ways to express a relation.

Dolciani, MA, read pp. 203-204, Ex. \qquad .

OBj'. 6
Vanatta, read. pp. 99-103, Ex. 1-5 pp. 103-105.
Nichols, read pp. 160-164, Ex. nl-3 pp. 163-164.
Wooton, MSM, read pp. 154-158, Ex. 1-24 pp. 158-159.

RESOURCES I (cont')

Payne, read pp. 194-195, Ex. 1-6, 11, 12, 16-20 page 195..
Wollensak teaching tapes - C-3852: Graphing Linear Functions
C-3855: Slope Intercept Form

Goal 7
Nichols, read pp. 164-169, Ex. 1-3 page 168.
\therefore Wooton, MSM, read pp. 404-407, - Ex. 1-7 (state if inverse and draw graphs) page 407.

Payne, read pp. 220-222, Ex. $1 \div 5$ page 222.

- Pearson, read pp. 293-299, Ex. 1-7 pp. 300-301: 3 a - h page 306.

SELf-ẹvaluaíion 1 .

Obj.. 1

IF. Given $N=\{1,-2,3,4, \ldots\}$. Consider $N X N$. Which of the sets below is a. relation in $N X_{, ~ N}$?
3. $\{(0,1), \ldots(1,0),(2,3)\}$
4. $\{(1,1),(1,2),(1,3)\}$
5. $\left\{\left(\frac{1}{2}, 2\right),\left(2, \frac{1}{2}\right),(5,5),(6,1),(7,7)\right\}$
6. $[(-2,2),(-6,2),(5,5),(6,6)\}$

4 III. Identify the domain ard range of each of the sets in. Part II. Assume they are relations in $\mathbb{R} \dot{X} \dot{R}$.
7. $\mathrm{D}=$
$\mathrm{R}=$
8. $\mathrm{D}=$
$\mathrm{R}=$
9. $\mathrm{D}=$
$\mathrm{R}=$
10. $D^{\dot{D}}=$
$\mathrm{R}=$
3. IV. Write the definitions of the following words:
1.: relation
2. domain
-3. range
4. function

5 V. List the 5 ways to express a relation.
1.
2.
3.
4.
5.

6 VI.A.GIVEN: the relation $3 x+1=y$;
$1 . \because$ write it in words
2. write 5 ordered pairs
3. make a table using these ordered pairs
4. graph the ordered pairs
5. write the domain \qquad range

SELF-EVALUATION 1 (cont') -

$6^{\text {th }}$
B. Given the relation: $(3,9)(-1,-3)(2,6)(0,0)(-3,-9)$

1. Write an equation \qquad
2. Write the relation in words t

3: Construct a table

4. Graph the relation
5. Write the domain \qquad :

4 VII. Write the domain and the range of each of the following:

4.. y is equal to twice x

SELF-EVALUATION' 1 (cont')
$\therefore 3$
7 VIII. Write the inverse of the following relations:
(a) $\{(2,3),(4,4),(6,1)\}$
(b) $x+2=y$ \qquad
(c) $y=x^{2}$
s
(d) $\{(-1,4),(5,-7),(2,-3),(4,-6)\}$ \qquad

If you have satisfactorily completed your work, take the PROGRESS TEST.

SECTION 2

0

Behavioral OBjectives

At the completion of your prescribed course of study, you will be able to:
$\therefore 8 . \quad$ Given a relation, decide if that relation is "a function or not.
9: "Given any function, determine the value of the function for any given number.
10. Given a function, name its inverse and decide if its inverse is itself a function.
11. Apply the vertical line test to determine if a relation is a function.
12. Given two functions f and g over the reals and a real number "a" determine the following:
(a) a $\cdot \dot{f}(x)$,
(e) $f(g(x))$
(b) $f(a \cdot x)$
(f) $g(f(x))$
$\therefore(c) f(x)+g(x)$
(g) $f(a)$
(d) $f(x): g(x)$
13. Given a function f, be able to identify it as:
(a). a constant function
(d) a linear function
(b) the identilty function
(e) a non-linear function
(c) the greatest integer function
14. Given a proportion function:
(a) Identify it as a direct proportion function or as an $\stackrel{2}{2}$ inverse proportion function.
(b) Find its constant of proportionality (constant of variation)
15. Construct the graph of an inequality of degree 1 (i.e. a relation which is a subset of the product set $R x \cdot R$).

Obj. 8
Vanatta, read 105-106, Ex: 3, 5, 7, 8 page 107.
Dolciani, Modern Algebra, read pages 207-208, Ex. 1-24 even pages 208-209.

Nichols; read pages 169-173, Ex. 1 page 171.
Payne, read pp. 199-201, 220-222, Ex: 1-3 (chéckpoint) and 1-9 page 101; 11 page 206; 1-5 page 222.

Wooton; MSM, read pages 154-157, Ex. 5-16 pages 157-158; 13-16 page 153.

Pearson, read pages 273-275, Ex. 1, 2, 5 page 276.
Filmstrip: Relations and Functions
Transparencies 3M: Functions

Obj. 9
Vanatta, read pages 108-110, Ex. 1-4, 12-15, 20, 26, 28 pages 110-111.
Dolciani; MA, read pages 207-208, Ex. 1-16 page 209.
Payne, read pages. 199-201, Ex. 1-5 page 201, 16-21 page 203.
Wooton, MSM, read pages 149-151, Ex. 11-18 oral page 152, 1-8 written page 152.

Pearson, read pp. 277-280, Ex. 1-3 pages 280-281.

OBj. 10
Vanattia, read pages 112-113, Ex. 1, 3-8 page 114; 9 page 126.
Nichols, read pp. 169-173, Ex. 3 page 173; 2, 3 page 268.
Payne, read pages $220-222$, Ex. 1-20 even page 223; 28-40 pages $224-$ r 225; 8-17 and 21-23 page 226 .

Pearson, read pp. 293-299, Ex. 1-7 page 300.

Obj. 11
Nichols, read pages 169-173, Ex. 2 pages 172-173.

Obj . 12
Nichols, read pp. 173-176, Ex. 1-6 pages 175-176.
Wooton, MSM, read pp. 152-153, Ex. 1-34 pagks 152-153.
Payne, read pp: 215-217, Ex. 1-25 pages 218-219.
Pearson, read pp. 277-280, 288-291, 316-319, Ex: 1-10 pages 280-2.281; 1-7 page 292; 1-10 pages 319-321.

Obj. 13
Nichols, read pp. 176-179, Ex. 1-7 page 178.
Wooton, MSM, iead pp. 183-183, 187-188, Ex. 1-24 pages 184-185;
1-15 page 188.
Payne, read pp. 206-208, Ex. 1-46 pp: 209-212:
Pearson, read pp. 302-305, Ex. 1-2 page 305.

Obj. 14
Nichols, read pp. 179-185, Ex. 1-5 pages 185-186.
Wooton, MSM, read pp. 180-183, Ex. 1-24 pages 184-185.
Payne, read pp. 206-208, Ex. 1-46 pages 209̈-212.
Pearson, read "pp. 307-308, 310, Ex. 1-14 pages 308-309; 1-13 page 3111 .
Filmstrip: Direct Variation

Obj. 15
Vanatta, read pp. 121-123, Ex. 2, 3, 6, 7 page 124.
Nichols, read. pp. 186-190, Ex. 1-2 pages 189-190.
Wooton, MSM, read pp. 164-167, Ex. 1-28 page 167; 1-16 pages 188-189.
Payne, read 441-442, Ex. ì-14 page 442.
Pearson, read pp. 314+315, Ex. 1-7 pages 315-316.
Wollensak teaching tape, C-3806: Inequality and Equality Sentences
Filmstrip: Graphs of Inequalities in One Variable
I. Determine if each of the following is a function. Write fior function
\qquad 1. $(4,1)(6,3)(2,1)(-4,3)$
\qquad 2.
\qquad 3.
a
\qquad 4. $y=x+1$
\qquad 5. $(3,-3)(4,-4)(5,-6)(7,-8)(3,-9)$
\qquad 6.

x	y	
0	7	
7	0	
3	5	
9	4	
5	3	

II. For each of the following functions, find the value indicated.

1. Find $f(2)$ for $f(x)=6 x+1$
2. Find $f(-3)$ for $f(x)=2 x-1$
3. Find $f(0)$ for $f(x)=\frac{x+1}{6 x}$
4. Find $f(30)$ for $f(x)=x^{2}-x$
5. Find $f(-10)$ fot $f(x)=\frac{8-2 x}{4}$.

10 III. Write the inverse of each of the following. State whether the inverse is a function or only a relation. Circle F or R.
\qquad F or $\mathrm{R} \quad \mathrm{l} \% \mathrm{y}=7 \mathrm{x}+6$

\qquad F or $R \quad 2:$| x | -6 | -6 | -6 | -6 | -6 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| y | 4 | 2 | 8 | 9 | 7 |

SELF-EVALUATION 2 (cont')

IV. Which of the following is not the graph of a function? (Circle the correct answer)

a.

12 V. Given $f(x)=x^{2}$ and $g(x)=x+2$, find the following:

1) $f(x) \cdot g(x)=$
2) $f(g(x))=$
3) $\underset{g}{g}(f(x))=$
4) $2 \cdot g(x)=$
5) $g(2 x)=$
6) $f(x)+g(x) \doteq$
$\left.\int 7\right) f(100)=$

13 VI. Classify the functions below as linear, nonlinear, constant, greatest integer, or identity. A function may have two such classifications.
\qquad 1. $f(x)=x^{2}$
\qquad 2. $f(x)=a$ where a is a real number
\qquad 3. $f(x)=2 x$
\qquad

$$
\text { 4. } f(x)=[x]
$$

\qquad 5. $f(x)=x$
VII. Identify each of the following functions as direct or inverse proportional functions; then find the constant of proportionality.
\qquad 1. $f(x)=\frac{2 x}{4}$
\qquad 2. $f(x)=\frac{\frac{1}{2}}{x}$

13 VIII. Which of the following when in $R \times R$, are not linear functions?
a. a direct proportion function
b. . the greatest integer function
c. the identity function
d. the function defined by $y=2 x+3$

13,14 IX. Choose from Column B a graph of the type of function given in Column A.
\rightarrow
\qquad
cosine a
32. Inverse proportion function.

33. Constarit function
34. Direct proportion function
35. Greatest integer function

SELF-EVALUATION 2 (cont ${ }^{\text {' }) ~}$

.
X. Graph the following on the graph paper includeg. (next page)
(1) $y>3 x+1$
(2) $y \geqq-2 x$
(3) $y<-4 x+1$
(4) $y \leqq-x-3$

- If you have satisfactorily completed your work; take the LAP test. CONSULT YOUR TEACHER FIRST.

| |
| :---: | :---: | :---: | :---: | :---: | :---: |

APPENDIX 1

I. Given the relation: 5 more than twice x is equal to y a. write an equation \qquad
b. write 5 ordered pairs \qquad
c. construct a table using the 5 ordered pairs

d. graph the ordered pairs

II. Given the relation: $\quad(4,8)(5,10)(2,4)(-1,-2)(-2,-4)$
a. write an equation \qquad
b. write the relation in words \qquad
c. construct a table
d. graph the relation
\qquad
III. Given the relation :

x	y
-2	0
-1	1
2	4
.	
6	8

ADVANCED STUDY

I. Newton's Law of Universal Gravitation is expressed as follows:
$\left.F_{(G r a v}\right)=\frac{G M m}{R^{2}}$ where $F(g r a v)$ is the attractive force in newtons betwee: two masses (M) and (m). These masses are expressed in kilograms. R is the distance between the two centers of mass ard is express in meters. G is the proportionality constant with a value of

$$
\alpha \cdot G=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kE} 2
$$

Find the force (F) that the earth with mass $M=5.98 \times 10^{24} \mathrm{ks}$ exerts on a. body of mass $m=10 \mathrm{~kg}$ located at its surface. Radius of earth

$$
R=6.38 \times 10^{6} \text { meters }
$$

II. . Payne, page 225; no. 41
III. Dolciani, page 210, nos. 31-40
IV. Dolciani, read p. 218, Ex. 1-16 any 6 page 219
V. - Vanatta, page 121 no. 8, page 112 no. 30 , page 104 no. 8.

REFERENCES

Nichols (abbreviation)

Nichols; Eugene, D., MODERN INTERMEDIATE ALGEBRA,
Holt, Rinehart and Winston, Inc., 1965.
Pearson (Abbreviation)
Pearson, Helen R., and Allen, Prank B., MODERN ALGEBRA: A LOGICAL APPROACH, Book 2, Giňn and Company, 1966.
Payne (abbreviation)

- Payne, Joseph N., Zamboni, Floyd F., Lankford, Jr., Francis, Algebra Two, Harcourt, Brace and World, Inc: , 1969.

Wooton (A'bbreviation)

Dolciani, Mary P., Wooton; William, Beckenback, Edwin F., Sharron; Sidney, MODERN SCHOOL MATHEMATICS, ALGEBRA 2, Houghton Mifflin Company, 1968.

Dolciani (äbbreviation)
Dolciani, Mary P., Berman, Simon L., Freilich, Julius MODERN ALGEBRA, Book 2, Houghton Mifflin Co., 1965.

Vanatta (abbreviation)
Vanattạ, Glen ${ }^{\circ}$., Goodwin, A. Wilson, Algebra Two, A! Modern Course, Charles E. Merrill Publishing Co., 1966.

Wollensak teaching tapes:	$C-3806$.	Inequality and Equality Sentences	
	\because	$C-3852$	Graphing Linear Functions

Filmstrips: 1. Relations and Functions
2. Direct Variation
3. Graph of Inequalities in One Variable

Transparencies $3 M$ - Functions

In the preceding LAP, you studied linear functions which were defined by linear equations in two variables. Unfortunately, nature was not so kind, so in your study of science you will need a working knowledge of all forms of quadratic equations and inequalities. For example, the cable of the bridge in the picture above forms a parabolic curve and can be reduced to a quadratic equation.

In this LAP we will study all quadratic equations and inequalities and some other kinds of equations which are expressible as quadratic equations and inequalities.

SECTION 1

Behavioral Objectives

At the completion of your prescribed course of study, you will be able to:

1. Define quadratic equation or quadratic function.
2. Sketch or identify the graph of a quadratic function.
3. Given any factorable quadratic function, determine its roots.
4. Given any quadratic function that is not factorable; determine its roots in simplest form by completing the square.

- 5. State and/or identify the quadratic formula.

6. Given the equation $A x^{2}+B x+C=0$, derive the quadratic formula.
7. Given any equation that is not factorable, determine its solutions by substituting into the quadratic formula.

RESOURCES

Obj. 1
Vanatta, read p. 163, write the definition of quadratic equation Nichols, read p. 221, write the definition of quadratic equation. Dolciani, read p. 220, write the definition.

Payne, read p. 251, write the definition.
Pearson, read p. 337, $\because i$ it the definition.

Obj. 2
Vanatta, read pp. 163-164, ex. 1-10 even page 164..
Dolciani, read p. 220, ex. 5-10 page 234.
Payne, read pp. 251-253, ex. li page 153.
Pearson, read. pp. 337-340; ex. 1 a b, 2, 3 b ce e (draw graphs only). p. 340 .

Obj. 3
Vanatta read pp. 165-166, Ex. 2, 5, 6, 7, 10, 12, 14, 17, 18 page 167.

Dolciani, \qquad ex. 1-8 even, $15,18,22,28$ pa gee 136.

Wooten, read pp. 265-268, ex. 1-26 every fourth problem. Pearson, read pp. 176-177, ex. 3 page 178.

Obj. 4
Vanäta, read pp. 167-170, ex. 1, 3, 7, 10, 14 page 172.
Doiciani, read pp. $268-270,1,3,5,6,8$ written pages $270-271$.
Wooton; read pp. 337-340, ex. 1-8 page 340 .
Payne, read pp. 257-259, ex. 1-10 even p. 259; 19-32 odd p. 260.
'Pearson', read pp. 355-357, ex. 1-12 even page 183 (solve by completing the square)

Obj. 5
Vanatta, read p. 170, state the quadratic formula.
Doliciani, read p. 269, state the quadratic formula.
Nichols, read pp. 224-225, state the quadratic formula.
Wooton, read p. 339, state the formula.
Payne, read pp. 260-26i, state the formula.

Obj. 6
Exercise for all books: Derive the quadratic formula.
Vanatta, read. pp': 269-170, ex. above.
Dolciani, read p. 268, ex. above.
Nichols; read pp. 224-225, ex. above.
Payne, read p. 260, ex. above.
S-M Transparency 6M - The Quadratic Formula

Obj. 7
Vanatta, read pp. $170-171$, ex. $2,4,5,8,11 \mathrm{p} .172$ solve by using
quadratic quadratic formula.

Dolciani, read pp. 268-270, ex. $10,13,15,18,20$ written p. 270.
Nichols, read pp. 224-226, ex. 2 every other letter page 227.
Wooton', read pD. 337-340, ex. 9-20 even page 341.
Payne, read pp. 260-261, ex. 1-20. odd page 262.
Pearson, read pp. 355-357, ex. 1, a,b,c,e,g, 3a,b,c,d page 358
I. Define: quadratic equation.
II. Graph the following. \qquad
-(A) $x^{2}-3 x-4=y$
(b) $y=3 x^{2}+17 x+20$
(c) $y=-2 x^{2}-3 x+2$

III. Solve the for lowing by factoring.

2. $6 x^{2}-5 x+1=0$

.
\qquad 3. $x^{2}+4 b x-12 b^{2}=0$

$4 \cdot \frac{x^{2}-12}{3}=\frac{x^{2}-4}{4}$
IV. Find the roots of each of the following by completing the square.
Show your work.
\qquad 1. $x^{2}+1 \cdot 1 x+24=0$
3. $x^{2}+5 x-7=0$
-2. $x+\frac{1}{x-1}=\frac{9}{2}$
\qquad 4. $3 x^{2}+8 x+2=0$

SELF-EVALUATION 1 (cont')

V. State the quadratic formula.
VI. Derive the quadratic formula. Begin with $A x^{2}+B x+C=0$.
i
VII. Find the roots of the following by substituting into the quadratic formula. SHOW YOUR WORK!
(1) $3 r^{2}+r-1=0$
(2) $x^{2}-2 x-1=0$
(3) $6 x^{2}+10 x+3=0$

(4) $5 x^{2}+x+1=0$

$$
5 \cdot \frac{1}{2}-\frac{7}{6} x=x^{2}
$$

If you have satisfactorily completed your work; you may take the progress test. Consult your teacher first.

Behavioral Objectives
At the completion of your prescribed course of study, you will be fáble to:
8. Write and/or identify the definition of imaginary numbers.
9. Given any square root you will be able to determine whether it
is imaginary or real. If it is real, you will be, able to. determine if it is rational or irrational.

10. Given a quadratic equation $a x^{2}+b x+c=0, a \neq 0$:
a. Find the sum of the roots of the equation.
b. Find the product of the roots of the equation.
11. Given a quadratic equation of the form $a x^{2}+b x+c=0, a \notin 0$:
a. Name the discriminarit of the equation.
b. Specify the number of real rootes of the equation.
c. Give the nature of the roots by detefmining:
i

1. If the roots are real or imaginary.
2. If the roots are real determine if they are rational or irrational.
3. If the roots are equal or unequal.
4. How many times the graph will touch the x axis.
5. Write a quadratic equation $a x^{2}+b x+c=0$:
a. Having a given set $\{r, s\}$ as its solution set.
b. When given the sum and product of its roots..
c. When certain coefficients are unknown and sufficient information about the roots of the equation is given to find these coefficients.
6. Given a fractional equation:
a. Write the corresponding quadratic equation. (assuming one exixts)
b. Find the solution set of the quadratic equation.

Obj. 8
Vanatta, read page 166, ex. write the definition of imaginary numbers.
Payne, read pp. 24-25, ex. write the definition of imaginary numbers.

Obj. 9
Vanatta, read pp. 166́, 30-32, ex. Appendix I.
Payne, read pp. 24-25, ex. 1-27 even page 26. .
Filmstrip: Rational and Irrational Numbers:

Obj. 10
Vanatta, read pp. 172-173, ex. 1-10 even pages 173-174.
Dolciani, ead page 273, ex. 1-15 odd (oral) page 274.
Nichols, read pp. 228;' ex. 2 pages 229-230.
Payne, read pp. 267-268, ex. 1-6 page 268.
Wooton, read pp. 343-344, ex. 1-9 page 344.
Pearson, read pp. 359-362, ex. 2 page 362.

Obj. 11
Vanattia, read p. 175-177, ex. write the discriminant of the equation $a x^{2}+b x+c=0$; ex. $1-10$ page 177.

Dolciani, read pp. 275-278, ex. write the discriminant of $a x^{2}+b x+c=0$; 1-10 page 278.

Payne, read pp. 264-266, ex. 1-10 page 266.
Wooton, read pp. 374-376, ex. 1-14 page 377.

Obj. 12
Vanatta; read pp. 172-173,'ex. 11, 14, 16, 18, 20 page 173.

* Dolciani, read pp. 273-274, 16-23 even page 274 top; ex. $1, \ddot{2}$, $6,13,15,16,18,21,23$ bottom pages $274-275$.
Nichols, read pp. 228-229, ex. 1, 3-6 pages 229-230.
Payne, read pp. 246-271, ex. 1-14 pp. 266-267; 1-14 p. 269; 1-18 p. 271.
Wooton, read pp. 343-344, ex. 16-23 p. 345; 1-14 even, 19-24 pages 345-? 46 . ${ }^{4}$ Obj. 13

Obj.
8 I. Write the definition of imaginary numbers.

9 II. State whether each of the following is real or imaginary. If real, state if it is rational or irrational.
\qquad 1. $\sqrt{18}$
\qquad 2. $\sqrt{-4}$
\qquad 3. $\sqrt{24}$
\qquad 4. $\sqrt{25}$
\qquad 5. $\sqrt{-100}$
10. III. Write the sum of the roots of the following:
\qquad 6. $y^{2}-2 y-9=0$
\qquad 7. $2 x^{2}+3 x=0$
\qquad 8. $2 x^{2}-8 x-1=0$
\qquad 9. $3 x^{2}+15 x+2=0$

10 IV. Write the product of the roots of the following:
\qquad 10. $y^{2}-2 y-9=0$
\qquad 11. $2 x^{2}+3 \mathrm{x}=0$
12. $2 x^{2}-8 x-1=0$
\qquad 13. $3 x^{2}+15 x+2=0$

11 V. In each of the following equations:
(a) determine the value of the discriminant.
(b) specify the numberof real roots of the equation.
(c) determine if the roots are real or imaginary.
(d) if the roots are real, determine if they are rational or irrational.
(e) state if the roots are equal or unequal:
(f) state how many times the graph touches the x-axis.
$): 14 \cdot x^{2}+4 x+3=0$
15. $x^{2}-5 x+7=0$
16. $3 x^{2}-2 x=4$

5
18. $-3 x^{2}+4 x+1=0$
19. $3 x^{2}-4 x+\frac{4}{3}=0$

12a VI. Write an equation for each of the following solution sets.
\qquad 20. $\{5,-7\}$

- $\quad . \quad \cdot$

21. $\left\{0, \frac{1}{3}\right\}$

22: $\left\{-\frac{1}{7},-\frac{1}{9}\right\}$
\qquad 23. $\{\sqrt{2}+\sqrt{3}, \sqrt{2}-\sqrt{3}\}$
24. $\left\{\frac{-1+\sqrt{2}}{2}, \frac{-1-\sqrt{2}}{2}\right\}$

12b VII. Given. the following sum and product of roots, write an equation.

SELF-EVALUATION 2 (Eont?)

\qquad 28. sum $=0$
product $=-7$

12c VIII. Find the real values to satisfy the conditions, given.
29. For what value (s) of "a"'will the sum of the roots be 8 ?

$$
x^{2}-\left(a^{2}-2 a\right) x+3=0
$$

30. For what value (s) of " b " will the equation $2 x^{2}+4 x+\left(2-b-b^{2}\right)=0$ have exactly one root?
13. IX. For each of the following fractional equations:
(a) Write the coriesponding quadratic equation (assuming one exists).
(b) Find the solution set of the quadratic equation.
31. $\frac{1}{x}+\frac{x-1}{x(x+2)}=\frac{-x}{x+2}$
32. $x-4=\frac{-1}{x}$

If you have satisfactorily completed your work, you may take the PROGRESS TEST. Consult your teacher first.

SECTION 3

Behavioral Objectives
At the completion of your prescribed course of study, you will be able to:
14. Given a radical equation:
a. Write the corresponding quadratic equation. (assuming one exists)
b. Find the solution set of the quadratic equation.
c. Find the solution set of the radical equation.
d. State whether the two equations are equivalent.
e. Name the roots of the quadratic equation which are not permisisible roots of the radical equation:
15. Given any quadratic inequality:
a. Find the solution set of the inequality.
b. Graph the solution set on a number line.
16. Given a word problem solvable by means of a quadratic equation:
a. Translate the problem into a quadratic equation.
b. Solve the problem.
17. Given a word problem solvable by means of a fractional equation:
a. Translate the problem into a quadratic equation.
b. Solve the ptoblem.

RESOURCES 3

Obj. 14
Work one set of problems.
Vanatta, read pp. 258-260, ex. 1-14 page. 260.
Nichols, read pp. 233-235, ex. 1, 2, pages 235-236.
Payne, read pp. 360-363, ex. 1-26 even pages $361-362$; 1-25 even pp. 363-364.

Pearṣon, read pp. 370-371, ex. 1-3 page 371.
Wooton, read pp. 334-336, ex. 1-36 even page 336.
Dolciani, read pp. 281-282, ex. 1, 3, 13, 15, 17, 24, 26° pages 282-283.

Obj. 15
Vanatta, read pp. "205-206, ex. 1-8 page 208.
Nichols, read pp. 239-243, ex. 1-3 pages 243-245.
Payne, read pp. 276-278, ex. 3-8 (bottom), page 278.
Wooton, read pp. 362-363, ex. 1-16 even page 364 .
Dolciani, read pp. 279-280, ex. 1-8 page 280.

Obj: 16
Vanatta, read pp. 179-181, ex. 1, 2, 4, 7, 15, 1.9 pages 181-183; 13, 14, page 211.

Nichols, read pp. 221-226, ex. 4-12 pages 227.
Wooton, read pp. 337-340, ex. 1, 2, 7 page 342 ; 1, 2, 4, 7, 13 pages 269-270.

Dolciani, \qquad ex. 32, 38 .page 201; 1-4, 8-13 pages 137-138.

Goal 17
Vanatta, read pp. 179-181, ex. 5, 6 page 182 ; no. 18 'page 160.
Nichols, read pp. 230-232; ex. 1, 2 päges 232-233.
Dolciani, read pp. 178-179, ex. 10, 19, page 182.

SELF-EVALUATION

I. For each of the following radical equations:
a. Write the corresponding quadratic equation (assuming one exists).
b. Find the solution set of the quadratic equation.
c. Find the solution set of the radical equation.
d. State whether the two equations are equivalent.
e. Name the roots of the quadratic equation which are not permissible roots of the radical equation.
(1) $x-3=\sqrt{2 x-3}$
(i) $\sqrt{3 x+2}=3 \sqrt{x}-\sqrt{2}$
(3) $5 x-\sqrt{2 x+1}=4 x+1$
(4)

$\sqrt{x+4}+\sqrt{x-3}=7$
II. Solve the following inequalities and graph their solution sets on the real number line.
(5) $3 x^{2}-5 x-4 \leq 0$

(6) $2 x^{2}+5 x<3$
(7) $x+3 x \leq 10$
(8) $3 x-x^{2} \geq 0$.

∞

16 III. Write the equation and solve the foliowing word problems.
(9) Find the 2 consecutive positive integers whose product is 756 ،
(10) Find the length of a side of a. square if the length of a diagonal is 5 units greater than the length of a side.
.
(11) The length of a rectangle is 4 feet more than twice the width. If the area of the rectangle is 30 square feet, find the length and width.
0^{\prime}
(12) The rug in a bedroom is 9 feet by 12 feet. If the area of the rug is 154 sq . feet, how wide is 'the strip of bare floor around the rug if the bare strip is of uniform width?

17 IV. Write the equation and solve the following.
(13) A certain integer increased by 4 tiftes its reciprocal equals $8 \frac{1}{2}$. Find the number.
(15) Jim can pick a bushel of apples in 25 minutes. Sam can pick a bushel in 15 minutes. How long will it take the boys to pick a bushel together?

. If you have satisfactorily completed your work, you may take the LAP test.。 Consult your teacher first.

State whèther each of the following is real or imaginary. If real; state if it is rational or iryational. Write each in simplest form.

1. $\sqrt{144}$
2. $\sqrt{-81}$
3. $\sqrt{24}$
4. $\sqrt{-100}$
5. $\sqrt{70}$
i
6. $\sqrt{36}$
7. $\sqrt{-1}$
8. $\sqrt{-126}$
9. $\sqrt{25}$
10. $\sqrt{-25}$

ADVANCED STƯOY

1. Wooton, page 342 nos. 49,50
2. Payne p. 264 nos. 55-62
3. Dolciani, p. 271 nos. 49, 50
4. Wooton, page 346, nos. 26-28
5. Wooton, page 342 nos. 49, 50
6. Pearson, page 363 , nos. 9-14
7. Dolciani, pages 283-284, nos. 43-46. any 3 problems.

REFERENCES

Vanatta (abbreviation)

Vanatta, Glen D., and Goodwin, Wilson A., Algebra Two, A Modern Course, Charles E. Merrill Publishing Co., 1966.

Dolciani (abbreviation)

Dolciani, Mary P., Berman; Simon Z., and Wooton, William, Modern Algebra, Book Two, Houghton Mifflin Co., 1965.

Nichols (abbreviation)
Nichols, Eugene D., Modern Intermediate Algebra, Holt, Rinehart and WInston, Inc., 1965.

Pearson (abbreviation).
Pearson, Helen R., and Allen, Frank B., Modern Algebra: A Logicai Approach, Book Two, Ginn and Company, 1966.

Paýne (abbreviation)

Payne, Joseph N. Zamboni, FLoyd F., Lankford, Jr., Francis G., Algebra Two, Harcourt, Brace and-World, 1969.

Wooton (abbreviation)
Dolciani, Mary P:, Wooton, Williad, Beckenbach, Edwin F., Sharron, Sidney, Modern School Mathematics, Algebra 2,. Houghton Mifflin Company, 1968.

RATIONALE

In preceding LAPs you studied functions in general, and more specifically, the straight line. Recall that Descartes is credited with originating the Cartesian coordinate system. In the concept of coordinates, - Descartes gave mathematicians a new way to look at mathematical information. Not only did he show that first degree, or linear, equations can be graphed as straight lines, but he also showed that all second degree, or quadratic equations can be graphed to become circles, ellipses, parabolas; or hyperbolas. These quadratic functions are collectively red to as conic sections.

Conics appear frequent in nature and in numerous applications; for example, the orbits of planets about the sun are ellipses: The supporting cables of a suspension bridge form a parabola. The hyperbola appears as the edges of the shadow cast on a wall by a lampshade. In this LAP we will investigäte the graphs of these quadratiç functions in some detail. In addition, we will study quadratic inequalities.

Behavioral Objectives
At the completion of your prescribed course of study, you will be able to:

1: Given a relation in $R \times R$, determine whether or not it is a quadratic function.
2. Write and/or identify the definition of conic section.

3 3. List and/or identify the foür conic sections.
4. Describe and/or identify the descriptions of the following terms as they relate to a cone:
a. element
b. axis
c. circle
d. el.lipse
e. parabula
f. hyperbola
5. Write and/or identify:
a. the definition of a circle
b. the standard form of the equation of a circle with radius r and center at the origin.
c. The standard form of the equation of a circle with radius r and center (h, k).
6. Given the equation of a circle, write and/or identify:
a. the center
b. the radiús
c. the graph of the circle
7. Given the center and radius of a circle,
a. graph and/or identify the curve
b. write and/or identify the equation in staquard form

RESOURCES

Objective 1.
*. Nichols, read pp. 195-199, Ex. 1 a-d page 199-200.
Pearson, read pp. 337-339, Ex. 2 page 340 .

Objectives 2, 3, 4

Nichols, read•pp. 312-313, Exercise Appendix I.
Wooton, read pp. 456-457, Exercise: Appendix I.
Dolciani, read pp. 330-331, Ex. Appendix I.
Vanatta, read pp. 183-185, Ex. Appendix I.
Pearson, read pp. 697, Ex. Appendix I. .:
Payne, read page 417, Ex. Appendix $I_{\text {: }}$

Objective 5
Exercise for all books: Write the definition and equations in Objective 5.

* Vanatta, read pp. 191-192, Ex. above.

Dolciani, read pp. 300-302, Ex. above.
Wooton, read pp. 442-443, Ex. above.
Paynes read pp. 418-419; Ex. above.
3M Transparency: Circle

Objectives 6, 7

* Vanatta, read pp. 191-193, Ex. 1, 3, 5, 6, 8, 10 page 194; 11-16 page 194.

Dolciani, read pp. 300-302, Ex, 11-16 page 302; 1-4, 9, 10 pp. 300302 (graph and write equations).

Wooton, read pp. 442-443, Ex. 13-17, 20 page 443; 1-8 page 443 (graph and write equations).

Payne, read Pp. 418-419, Ex. 1-6 page 419; 3, 4, 6, 9-12 page 420. 3M Transparency: Circle

* required
I. True or False.

\qquad 2. An axis is a stralght line that lies wholly within the surface of a cone.

3. A parabola is the section of a cone formed by a plane that is perpendicular to one element.
\qquad 4. A hyperbola is the section of a cone formed by a plane that intersects the cone so that the plane is parallel to one element.
\qquad 5. An element is a line that joins the vertex of a cone with the center of the circle that is its base.
\qquad 6. An ellipse is the section of a cone formed by a plane that cuts completely through the cone perpendicular to the axis. A circle is a special kind of an ellipse.
II. Which of the following are quadratic functions?
\qquad 7. $x^{2}+y=1$
4. $y=x+2$

- 9. $3 x-2 y^{2}=7$
\qquad 10. $y=1_{2} x^{2}-3$
III. Match each figure on the left with its name on the right.
\qquad 11.

\qquad 12.

4
A. ellipse
B. circle
C. hyperbola
D. parabola
IV. 15. A. Define circle.
B. Write the equation of the circle with radius r and center (0,0).
C. Write the equation of the circle with radius r and center ($h, 1:$).
V. Give the center and radius of the following circles and graph each.
16. $\mathrm{x}^{2}+\mathrm{y}^{2}=36$

17. $(x+5)^{2}+(y-8)^{2}=4^{\prime}$

18. $x^{2}+y^{2}+12 x+11=0$

VI. For each given center and radius (1) graph the curve, and (2) write the equation in. standard form.
20. $C(2,1), r=3$
21. $C(0,0), r=6$

SELF-EVALUATION 1 (cont')

If you have satisfactorily completed your work, take the Progress Test. Consult your teacher first.

SECTION 2

Behavioral Objectives
0.

At the comndetion of your proscriber conrse of study, you will He ablè to:
8. Write and/or identify the definitions of the following temin:
a. parabolia
b. axis of symmetry
c. the value of p
d. focus (F)
e'. directrix
f. vertex (V)
9. Write and/or identify a description of the equations $x^{2}=4 \mathrm{py}$ and $y^{2}=4 \mathrm{px}$
10. Given any equation of the form $x^{2}=4 p y$ and/or $y^{2}=4 p x$;
A. determine the value of p
B. determine the focus
C. determine the equation of the directrix
D. graph the curve, focus, and directrix
11. Given a focus and an equation of a directrix,
a. graph the curve
b. write the equation of the parabola
12. Given an equation of the form $(y-k)^{2}=4 p(x-h)$ or $(x-h)^{2}=$ $4 p(y-k)$, determine the vertex, focus, directrix, and sketch the graph.

RESOURCES 2

Objective 8

Exercise for all texts: Write the definitions of the terms in ? O. Objective 8.

Vanatta, read PP. 146,196, Ex. above .n
Nichols; read p. 146, Ex. above.
Wooten' read pp: 444-445; Ex. above.
Payne; read pp. 425-426, 'Ex. above.
3M Transparency: Parabola

Objective 9
Vanatta, read p.. 188, Ex. describe the equations $x^{2}=4 p y$ and $y^{2}=4 p x$

Objective 10
Vanat ta, read pp. 188-190, Ex. 1, 2, 5, 7, 9, 10 pages 190-191.
3M Transparency: Parabola

Objective 11
a *, Vanatta, read pp. 188-190, Ex. 11-16 page 191.

* Dolciani, read page 306, Ex. 15-18 page 306.

Objective 12
Vanatta, read pp. 203-204, Ex. 4, 7, 12, 13 page 204.
Wooten, read pp. 444-448, Ex. 1-6 page 448

[^0]
SELF-EVALUATION 2

OBJ.
8 I. Define the following:
a. parabola
b. axis of symmetry
c. the value of p
d. focus (F)
e. directrix
f. vertex (V)

9 II. Desciribe the graph of each of the following:

1. $x^{2}=4 \mathrm{py}$
2. $. y^{2}=4 p x$

10 III. Write the value of p for each of these.
$\ldots \quad$ 1. $x^{2}=-16 y$
$\ldots 2 . y^{2}=100 x$
\qquad 3. $x^{2}=-6 y$
\qquad 4. $y^{2}=-2 x$
" $5 . x^{2}=10 y$

10
IV. For each of the following: (1) determine the value of p, (2) determine the focus, (3) determine the equation of the directrix, (4) locate two points other than the vertex and graph the curve, focug, and directrix.

1. $x^{2}=16 y$

2. $y^{2}=-20 x$
3. $y^{2}=2 x$

4: $\cdot x^{2}=-8 y$

11. V. Given the following foch and directricea, graph each curve formed by them,

1. $F(2,0) \dot{x}=-2$
2. $F(0,-4) y=4$
"

3. $F\left(-\frac{3}{2}, 0\right) x-\frac{3}{2}=0$
4. $\mathrm{F}\left(0, \frac{1}{3}\right) y+\frac{1}{3}=0$

$\therefore:$| \quad |
| :--- |

25
11 VI. Write an equation for each parabola in example V above.
. 1. \qquad
3. \qquad 4.

SELF -EVALUATION 2 (cont!)

VII. For each of the following (1) give the vertex, (2) give the focus, (3) give the directrix, (4) plot the graph; vertex, focus, and directrix.

1. $(y-2)^{2}=16(x+2)$

1
2. $(x+3)^{2}=-8(y-1)$

3. $(y+2)^{2}=-2(x+1)$

$f "$
4. $x^{2}+8 x+8 y+8=0$

If you have satisfactorily comr lated your work, take the PROGRESS TEST. Consult your teacher first.
7.:

4

SECTION 3:-
Behavioral Objectives
At the completion of your prescribed course of study, you will be able to:
13. Write and/or identify the definitions of the following terms':
A. ellipse
B. foci
C. vertices
D. major axis, length of major axis
E. minor axis, length of minor axis
14. .Given a drawing of an ellipse, identify the following parts:
A. major axis
B.' minor axis
C. foci
D. vertices
E. center
15. Write and/or identify the standard form of both an ellipse with its center at the origin and major axis on the x-axis and an ellipse with its center at the origin and major axis on the f-axis.
16. Given any equation of an ellipse, determine by looking at the equation if the major and minor axes are on x or y and/or deterinine the length.
17. Given any equation of an ellipse, determine
A. the semi-major (a) and semi-minor (b) axes
B. "the foci
C. "graph the ellipse, plot the foci and vertices
18. Given the major and/or minor axes, the length of the semi-major (a) and semi-minor (b) axes and the center at the origin, determine the equation of the ellipse.

OBJECTIVES 3 (cont')

19. Given the vertices and fort;
A. determine the equation of the curve
B. sketch the curve
20. Given the equation of an ellipse whose center is not at the origin, determine
A. the center
B. the fort
C. whether the major axis is parallel to the x or y axis
D. sketch the graph, plot the center; vertices, and foci

RESOURCES

Objectives 13, 14, 15; 16

Exercise for all texts: Appendix 2 "parts I-Iy
Vanatta, read pp. 194-196, Ex. 'above.
Payne, read pp. 421-423, Ex. above.
Wooten, read pp. 449-452, Ex . above.
3M Transparency: The Ellipse

Objective 17

* Appendix II part V

Vanatta, read pp. 195-197, Ex. 1, 3, 4, 7, 9 page 197.

Wooton, read pp. 449-452, Ex. 1-8 even page 452 .
3M Transparency: The Ellipse.
Objective 18
Vanatta, read pp. 194-197, Ex. 11, 12 page 198.
Objective 19
Vanatta, read f pp. 194-197, Ex. 17, 18 page 198.
Objective 20 (work all exercises)
Dolciani, read _._ Ex. 23, 24 page 309.
Vanatta, read pp. 203-204, Ex. $2,8,10,15$ page 204.
Pearson, \qquad Ex. 7 b, e, g page 691.

OBJ.
13 I. Define the following terms:
a. ellipse
b. foci
c. vertices
d. major axis
e. length of major axis,
f. minor axis
g. center

14 II. Using the following graph identify these parts: (a) major axis, (b) minor axis; (c) foci, (d) vertices (e) center.

$\begin{aligned} & 15 . \text { III. } 1 . \therefore \text { Write the equation of the ellipse with center at the origin. } \\ & \text { and major axis on x-axis. }\end{aligned}$
2. Write the equation of the ellipse with center at the origin and major axis on y-axis.

'SELF-EVALUATION 3 (cont')

16. IV. Determine in each of the following if the major axis is on x or y and give its length.
\qquad 1. $\frac{x^{2}}{15}+\frac{y^{2}}{9}=1$
\qquad 2. $\frac{x^{2}}{100}+\frac{y^{2}}{64}=1$
\qquad 3. $\frac{x^{2}}{121}+\frac{y^{2}}{144}=1$
\qquad 4. $\frac{x^{2}}{9}+\frac{y^{2}}{49}=1$

16: V. Determine in each of the examples in problem V if the minor axis is on x or y and give its length.
\qquad 1. \qquad 3.

\qquad 4. 2.

17 VI. In each of these find the value of a (the semi-major axis) and the value of b (the semi-minor axis).

1. $\frac{x}{25}+\frac{y^{2}}{9}=1$
2. $\frac{x^{2}}{81}+\frac{y^{2}}{121}=1$

$\frac{\ddots}{} \quad$| \quad |
| :--- |
| \quad |

2. $\frac{x^{2}}{100}+\frac{y^{2}}{36}=1$ \qquad 4. $\frac{x^{2}}{16}+\frac{y^{2}}{49}=1$

17 VII. Find the foci for each of the following.
\qquad 1. $\frac{x^{2}}{16}+\frac{y^{2}}{9}$ \qquad 3. $\frac{x^{2}}{100}+\frac{y^{2}}{64}$,
\qquad 2. $\frac{x^{2}}{36}+\frac{y^{2}}{4}=.1$ \qquad 4. $\frac{x^{2}}{9}+\frac{y^{2}}{81}=$

17 VIII. Graph the following ellipses, plot the loci, and vertices of each.

10 $\frac{x^{2}}{9}+\left.\frac{y^{2}}{16}\right\|^{=1}$
\cdots

$3 \cdot \frac{x^{2}}{36}+\frac{y^{2}}{4}=1$

18
IX. Given the following centers and values of a and b, write an equation for each ellipse.
\qquad 1.

$$
\begin{aligned}
& a=10 \\
& b=3 \\
& C(4,1) \\
& \text { Major axis parallel to } x
\end{aligned}
$$

2.

$$
\begin{aligned}
& a=4 \\
& b=2 \\
& c(-1,3) \\
& \text { Major axis parallel to } y .
\end{aligned}
$$

\qquad $\because 3$

$$
\begin{aligned}
& a=12 \\
& b=9 \\
& C(0,7) \\
& \text { Major axis parallel to } x
\end{aligned}
$$

4.

$$
\begin{aligned}
& a=12 \\
& b:=8
\end{aligned}
$$

19. X. Given the following vertices and foci, write an equation for each and graph the curve, centers are at $(0 ; 0)$.
\qquad 1. vertices $(8,0)(-8,0)$ \qquad 2. vertices $(0,4)$

20. vertices $(10,0)(-10,0)$ foci
$(8,0)(-8,0)$
 4. vertices

XI. For each of the following give (1) the center, (2) the, foch, (3) tail if the major axis is parallel to x or y, (4) sketch the curve and plot the center, vertices, and foch.
21. $\frac{(x+1)^{2}}{16}+\frac{(y-2)^{2}}{25}=1$
22. $\frac{(x-3)^{2}}{100}+\frac{(y+4)^{2}}{36}=1$

SELF-EVALUATION 3 (cont')

3. $25 x^{2}+9 y^{2}-100 x-36 y-89=0$

If you'have satisfactorily completed your work, take the PROGRESS TEST. Consult your teacher first.

Behavioral Objectives
At the completion of your prescribed course of study, you will be able to:
21. Write and/or identify the definition of
A. hyperbola
B. transverse axis and its length
C. conjugate axis and its length
22. Given a drawing of a hyperbola, identify the following parts:
A. transverse axis
B. asymptotes
C. conjugate axis
D. foci
E. vertices

F: center
23. Identify the standard form of
A. the ellipse whose center is at the origin and transverse axis on x
B. the ell角pse whose center is at the origin and transverse axis on y
24. Given the equation of a hyperbola, determine
A. the length of the transverse axis, the length of the conjugate axís, draw the asymptotes, and sketch the curve.
B. the coordinates of the fodi and plot them on the graph
25. Determine the equation of a hýperbola when given
A. the transverse axis and the length of a and b
B. the foci and vertices
26. Given any equation of a hyperbolawhose center is not the origin, "determine
A. the center

SECTION 4
BEHAVIORAL, OBJECTIVES (cont')
B. the length of the transverse and conjugate axes
C. the vertices
D. plot the asymptotes
E. the foci
F. draw and/oridentify the sketch, plot the center, vertices, and foci

RESOURCES

OBJ. 21, 22, 23
Exercise-for all resources: Appendix 3

* Vanatta, read pp. 198-201, Ex. above.

Payne, read pp. 427-430, Ex. above.
Wooton, read pp. 453-457, Ex. above.
3M Transparencies: The Hyperbola.
a
OBJ. 24

* Vanatta, read pp. 198-201, Ex. 1, 2, 4, 7, 9 page 202.

Dolcianí, read pp. 311-312, Ex. 1, 2, 4, 7, 10 pages 311-312 (follow directions in Obj. 24).

Payne, read pp. 427-340, Ex. 3-8 page 430 (follow directions in Obj. 24).:
Wooton, read pp. 453-457, Ex. 1-10 even page 457 (follow directions in Obj. 24).

3M Transparencies: The Hyperbola.

OBJ. 25

* Vanatta, read page 201, Ex. 11-14 page 202.

Payne, read pp. 427-430, Ex. 9-12 page 430.
'3M Transparencies: The Hyperbola.

SECTION 4
 RESOURCES (cont*)

OBJ.. 26

* Vanatta, read pp. 203-204, Ex. 3, 6, 11, 14 page 204.

Wootòn, read \qquad , Ex. 21, 22 page 458.

Pearson, read __, Ex. 7 page 695, (follow directions in Obj., 26).
3M Transparencies: The Hyperbola.

* required

4

OBJ.
21 I. Write the definition of hyperbola.

21 II.. a. Write the definition of transverse axis, give its. lengty

- b. Write the definition of conjugate axis, give its length.

23: IV. (1) Write the equation of the ellipse whose center is at the origin and transverse axis on x.
(2). Write the equation of the ellipse whose center is" at the origin
and transverse axis on.y.
V. For each of the following (1) determine the length of the transverse caxis and conjugate axis, (2) draw the asymptotes, (3) sketch the. curve, (4) determine the foci and plot them on the graph.

1. $\frac{x^{2}}{100}-\frac{y^{2}}{64}=1$
(graph is on the following page).

SELF-EVALUATION 4 (cont!)

$$
\text { 2. } \frac{y^{2}}{49}-\frac{x^{2}}{36}=1
$$

3. $\frac{y^{2}}{1}-\frac{x^{2}}{16}=1$

- $\because \because$

0

SELF-EVALUATION 4 (cont')

4. $\frac{x^{2}}{1}-\frac{y^{2}}{4}=1$

VI. Given the following values of a and b and transverse axis, write an equation for each.
5. $a=2, b=3$, transverse axis on x \qquad
6. $a=4, b=1$, transverse axis on y. \qquad
7. $\mathrm{a}=2, \mathrm{~b} \triangleq 7$, traņsverse axis on ${ }^{\text {x }}$ \qquad
8. $a=9, b=12$, transverse axis on y \qquad
VII. Given the following foci and vertices, write an equation for each hyperbola.

$$
\text { 1. } \begin{aligned}
F(12,0)(-12,0) \\
V(8,0)(-8,0)
\end{aligned}
$$

2. $F(0,6)(0,-6)$
$\mathrm{V}(0,3)(0,-3)$
3. $F(0,2)(0,-2)$
$\mathrm{V}(0,1)(0,-1)$
 of the transverse and conjugate axes, (3) :vertices, (4) loci,
(5) plot the asymptotes, plot the curve, center, vertices and for.
(1) $\frac{(x-1)^{2}}{4}-\frac{(y+2)^{2}}{16}=i$

on

(2) $\frac{(y+3)^{2}}{64}-\frac{(x-5)^{2}}{36}=1$
,
! /
(3) $25 x^{2}-y^{2}+150 x+125=0$

If you have satisfactorily completed Your work, take the PROGRESS TEST: Consult your teacher first.
$2 r 5$

SECTION 5
Behavioral Objectives
7 At the completion of your prescribed course of study, you will be able to:
27. Given any quadratic inequality, determine it's graph.
28. Given any word problem, determine itş equation and determine its solution.

RESOURCES

Obj. 27 (both are required)
Vanatta, read pp. 205-208, Ex. 9-12; 16 page 208.
Dolciani; read \qquad , Ex. 10; 12 page 309 .

Obj. 28~
Vanatta, read pp. 179-181, Ex. $1-4,6-8,16,19$ pagés $181-182 ; 13-1 \dot{4}$, page 211

SELF-EVALUATION 5

$$
\text { (1) } \mathrm{x}^{2}+\mathrm{y}^{2}<36
$$

*.
lo
(3) $9 y^{2}-x^{2}<9^{2}$

(2) $9 x^{2}+25 y^{2}>225$.

(4) $x^{2} \geqq 16 y$

1. Three times the square of a positive integer, decreased by twice the product of, the number and the next smajler integer, is 143. \because Find the number.
2. Find two consecutive integers such that, if twice the larger is added to three times the square of the smaller, the sum will be 58.
3. The base of a triangle is 4 feet less than the altitude, and the area of the triangle is 48 square feet. Find the length of the «base:
4. A rectangular lot is surrqunded on all sides by a driveway 5 yards wide. The lot is twice as long as it is wide. If the area of the lot and driveway together: is. 6600 square yards, find the dimensions of the lot..
\qquad
5. One leg of a given right triangle exceeds the other by 2 "feet. If the hypotenuse is 10 feet, find the legs of the triangle.
6. A field of tomatoes contains 3825 , plants. The number of plants in each row is 5 less than twice the number of rows. Find the number of plants, in each row.

If you have satisfactorily completed your work, take the LAP TEST. Consult your teacher first;

ADVANCED STUDY
I. Work any 4 of the following:

$$
\begin{aligned}
& \text { Vanatta, page } 194 \text { nos. 17-20. } \\
& \text { page } 211 \text { no: 5; page } 214 \text { no. } 40 \\
& \text { Dolciani, page } 326 \text { no. } 11 \text {. }
\end{aligned}
$$

II. Work any 4.

$$
\begin{aligned}
& \text { Vanatta page } 198 \text { nos, } 15,16,19,20 \\
& \text { page } 214 \text { no. } 41 \\
& \text { Dólciani page } 326 \text { no. } 13 .
\end{aligned}
$$

III. Work any 4 from no. 1 and onesfrom no. 2 .
(1) Vanatta page 202 nos. 15-20
page 212 nc. 18 ; page 214 no. 43
Dolciani page ${ }^{326}$ nó, 12,14
a.
(2.) Dolcíani page 312 no. 19; 20

IY: Work any one of these three.
(1) Graph. (A) $x y=36^{\circ}$
(B) ${ }^{2} x y=-10$
(2) Vanatta page 205 nos. $16,19,20$
(3) Write a report on LORAN, a system of navigation. Tell how it uses the concept of hyperbola (at least 500 words).
V. Work any 5 of the following.

Vanatta page 212, no. 20 ; page 214 no. $44,45 . \quad$.

$$
\begin{gathered}
\text { Doiciani, page } 237 \text {, nos. } 22,25,27,28 \\
\text { page } 309 \text {, nos. } 13,14,
\end{gathered}
$$

7
\because

6
APPENDIX II
I. Write the definition of conic section.

1
II. Name the four conic sections.
(1)
(2)
(3)

ت
(4) 1

III, Write a description or definition of each of the following terms i. element
$1 \quad 7^{2 .}$ axis

- 3. circle

$$
t_{0}
$$

4. ellipse
5. parabola

Hyperbola
6. Hyperbola
I. Define the 'following:
a. ellipse
' 1.
b. loci

c.: vertices
d. major axis
e. minor axis

2 II. Identify. the following parts of the ellipse in the figure:
(a) major axis,
(b) minor axis,
(c) foch,
(d) vertices
(e) center.

III. Descillbe thereilipses with the following equations: (in
\qquad
(a) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\lambda$
 where $a>k$
(b) $\frac{x^{2}}{b^{2}}\left\{^{+} \frac{y^{2}}{a^{2}}=1\right.$ where $a>b$

IV: In each of the following, determine (1) if the major axis is on x or y and; give its length, and (2) if the minor axis is on x or y att give its length:
$\frac{x^{2}}{}+y^{27} y^{5}=1 / 4$个: F.
(a) $\frac{x^{2}}{16}+\cdot \frac{y^{2}}{9}=1$
(b) $\frac{x^{2}}{25}+\frac{y^{2}}{100}=1$
(c) $\frac{x^{2}}{49}+\frac{y^{2}}{81}=1$
\therefore 车
22
v. In each equation in IV, determine the value of a and b.
es

LI
\qquad

ERIC
202
I. Define the following:
a. hyperbola
b. transverse axis - give its length"
c. conjugate axis - give its length
II. Identifyy the parts of the following graph:
a. conjugate axis
b. transverse axis
c. asymptotes
d. foci
e. vertices.
f. center

1
1 :

III. a. : Write the equation of the ellipse whose center is at the origin and, transverse axis on the x axis:
b. Writerthe equation of the ellipse wilose center is at the origin and transverse, axis on the y axis.

Måy problems in mathematics result.
in mathematical models inyolving more than
of one sentehce, yett the problemirequires a" - single solution. Two beams of light across . 1
the sky might each obe described, as the $\therefore 2$ graphof a linear equation If. theywere to cross one another," you might then have a point of intersection, the single solutiond

This LAP should help you gain an " understanding óf systems of equations or

49 of inequalities. The use of previously learned, concepts about functions will be used in developing methods for solving these systems. Equations of conic sections will also be continued and studied with systems of first and second-degree equations so that you should be able to solve these systems, and relate the solut tions to their graphs.

Behavioral Objectives,

At the umpleition of your prescribed course of study, you will o be able to

1. Given an equation, or system of linear equations, and cridered pairs of real numbers, determine if the ordered pairs satisfy the equation or system of equations.
2. Given a system of two linear equations: a. graph the system R KR
b. find the solution set of the system
3. From a system of linear equations, determine if the system it independent, inconsistent, dependent, or consistent when given:
a. the equations of tho system
b. the graph of the equations of the system
c. the solution set of the system
d. the number of ordered pairs of the solution set of the system
4. Given two systems of equations, determine if, they are equivalent.
5. Given' a system of two linear equations, rewrite each equation in the form $A x_{1}+B y+C=00^{\circ}$
6. Given a system of two linear equations, solve the system by any one of the following methods:
a. the comparison method
b. the substitution method
c. the addition method

Behavioral Qbjectives (cont')

7. Givén a word problem to be solved by the use of a system of two linear equations:
$\stackrel{F}{5}$
a. write a system.of equations which fits the problem.
b. solve the resulting system.
c. give the solutioin of the original problem,

RESOURCES

Objective 1

Nicḩols, read pp. 285; 2901-294, Ex. 1, 3, 5, 7 pagé 290; 1, 3;́4 ,page 292.

ÖÓjective 2,3

Vanatta, read pp. 215-218, Ex. $1,3,4,9,10,13$ page 219.
Dolciani, read pp. 9ं5, Ex. 1; 2, 5; 6, 15 page 95.
Nichols, réad pp. 290-294, Ex. 1-3, 5, 7; 8 page 294.
$\begin{aligned} & \text { Payne, read pp. 291-293, 303-306; Ex. } 1-10 \text { even page } 294 ; 1-4,6, \text {, } \\ & 11-13 \text { pages } 305-306 .\end{aligned}$
Appendix I

Objectives 4, 5

Nichóls; read pp. 295, Ex.. 1 a; b, 2, a, c, e pages 295-296.

-

Objective 6

Vanatta, read pp. 219-222, Exercises
6(a) [for explanation read Nichols 296-300] Ex . 6,8,9 solve by comparison.

6(b) Ex. 1, 4, 9, 10 solve by substitution
6 (fc) - $2 ; 3,5,7$ solye by addition
'Dclciani, read pp. 95'-98, Exercises
6(a) $1,2,5$-pages 99% (see Nichols reading for explanation, soive ,by comparison

6 (b) 3, 4, 7, 8, 10 pages $99-100$ solve by substitution
6 (c) 6, 11, 13, 14, 17, pages 99-100 solve by addition
Nichols, read pp. 296́-300, Exercises
6(a) 1-7, 9-11 pages 297-298 solve by comparison
6(b) 1-11 odd, 12 page 299 solve by substitution
6(c) $\frac{1}{4} a, c, e, g, j, k, 1 ; 2 a, c, e, g, h, j$.pages 300-301 solve by addition.

Payne, riad pp. 294-301, 309-310, Exercises
6.(a) $2,3,4,7,8$ page 298-299 (solve by comparison)

6(b) $2,4,5,6,8$ page 300 (solve by substitution)
6(c) 1-12 even pages 298-299 (solye by .addition)

Objective 7 (all problems are required)
*, Nichols, read pp. 296-300, Ex. 3 a, c,e,g,i,k pages 301-302.
Payne, read pp. 294-301, 309-310, ex. 27, 28 pages 306.
Wooton, read pp. 210-212, Ex. 3-5, 9, 12, pages 213-214. Dolciani, read p. 102, Ex. 6, 11, 12, 13 page 103.

SELF-EVALUATION 1

1 I. Match each equation or system of equations with the ordered pair that belongs to its solution set.
\qquad 1. $4 \mathrm{y}-\mathrm{x}=1$.
A. $(4,1)$
\qquad 2. $y=2 x+3$
B. $(-5,1 \vec{i})$ $y=x-1$
C. $(7,2)$)
\qquad 3. $3 x-4 y=8$
D. $(-4,-5) \div$
\qquad 4. $x+y=6$
5. $x+y=7$
$3 \mathrm{x}-2 \mathrm{y}=6$
6. $3 x-2 y=2$
$6 x-4 y=-8$
a
7. $x-4 y=.24$
$4 x+y=2$
III. True or False.
II. Graph the following systems. (Use the graph paper that follows the self-evaluation.). Determine if each system. is consistent or inconsistent, dependent or independent.

$$
-0
$$

\qquad 8. The system $2(x-y)=5$ and $4 x-4 y=10$ is dependent and inconsistent.
9. If a system's solution set is the set of all ordered pairs, then the system i's independent.
\qquad 10. The solution set of the system: $x=4$ and $y=2$ is the set containing the ordered pair (4,2).
\qquad 11. Parallel lines are independent and inconsistent.
\qquad 12. A system of equations that has only one point in its solution set is dependent and inconsistent.
The system $\left\{\begin{array}{l}3+y=4+2 x \\ 2 x=y\end{array}\right.$ is equivalent to $\left\{\begin{array}{l}y=2 x \\ y-2 x=-1\end{array}\right.$ —14. $3+y=4+2 x$ is in standard form.

6 in. Solve the following by the specified method.
COMPARISON
17. $3 x+y=9$

$$
x-y=16
$$

$$
\text { 18. } \quad 7 x+7 y=14
$$

SUBSTITUTION

19. $\begin{aligned} & 3 x+2 y=6 \\ & x-2 y=4\end{aligned}$

$$
\begin{aligned}
\text { 20. } & y \equiv 7 x+2 \\
, & 2 x-4 y=5
\end{aligned}
$$

ADDITION

$$
\text { 21. } \quad \begin{aligned}
& 8 x+2 y=1 \\
& 2 x+3 y=4
\end{aligned}
$$

$$
\text { 22. } 2 x-3 y=4
$$

n
V. Write an equation for each of the following and solve.
23. The sum of two numbers is 59 . If the sum of 12 and twice the first. number is 4 more, than the second number, what are the numbers?
24. A collection of nickels and dimes has a total value of $\$ 2.40$ and contains 35 coins. How many of each kind of coin are there in the collection?
25. The perimeter of a rectangle is 44 inches. If its length is decreased twice its width, the result is 17 . Find the length and width.

If you have satisfactorily completed your w, take the PROGRESS TEST. Consult your teacher first.

Behavioral Objectives

At the completion of your prescribed course of study, you will be able to:
8. Given a system of a linear equation and a second-degree equation, or a system of two-gecond degree equations:
a. graph the equation or equations of the system
b. solve the system algebraically
9. Given a word. problem to be solved by a" system of one linear and one second-degree equation, or two secpnd-degree equations:
a. write system of equations which fit the problem.
b. solve the resulting system.
c. give the solution set of the original problem.
10. Graph in $R X R$ any of the following systems:
a. a system of two linear inequalities.
b, a system of one linear inequality and one-second degree inequality.
c. a system of two second-degree inequalities.
11. Given a graph of a system of inequalities as listed in Objective 10 , identify the solution set of that system.

Objective 8

Vanatta, read pp. 231-237; Exercises
Solve by graphing: 1, 4, 5, 9 page 234 and $1,4,6,7$ page 237.
Solve algebraically: 3, 6, 8 page 234 and $2,3,7$ page 237 .
-Dolciani, read pp. 320-321, Exercises
Solve by graphing: $-3,5,7,9$ page 321 , and $5,14,15$ page 325 .
Solve algebraically: 1, 4, 6, 9 page 321 , and 4,6, $14,1-5$ page 325 .
Nichols, reád pp: 312-322, Exercises 1-6 page 314; $1 \mathrm{a}, \mathrm{c}, \mathrm{e}, \mathrm{g}, \mathrm{i}, \mathrm{k}$, $\mathrm{m}, \mathrm{o}, \mathrm{q}$ and $2 \mathrm{a}, \mathrm{c}, \mathrm{e}, \mathrm{g}, \mathrm{i}$ pages $316-317 ; \mathrm{n}^{1}-23$ odd page 321 :
'RESOURCES (cont')
\therefore Wooton, read pp. 463-469; Exercises
Solve by graphing: $2,6,7,9,1 \cdot 3$ page 464;
Solve by algebra: $1,3,8,9$ pages $466-467$.
Pearson, read pp. 687-697\% 698-705, Exercises
Sólve by graphing 3,4,7,8,9 page 699; .
Solve by algebra $1,4,7,8$ page 699 .

- Objective 9 (all"problems axe required)

Nichols, read pp. 312-322, Ex. 2 a, c, d, page 317 ; 2 a, c, e page
Dolctiani, read p.p. 320-321, Ex. 1,5,8 page 322; 34 page 325.
Wooton, read pp. 466-469; Ex. 1, 2, 4,; 5.pages 467-468.

Objectives 10,11

* Vanatta; read pp. 229-230 and 238-239, Ex., 1, 3, 6, -7 page 230; 2, 3, 6,-8 page 239.

Nichols, read pp. 324-327, Ex. 1 a, $c, i, k, m, o, q, 2 a, c, 3 \mathrm{~d}, 14 \mathrm{a}, \mathrm{c}$, 5 a,c,e pages 327-328.

Woaton, read pp. 216-219, Ex. 19, 21, 22 page 465.
Pearson, read pp. 642-644; 706 7 708, Ex: 5 EOL, $6 f, 8 \mathrm{~d}, \mathrm{e}, \mathrm{f}$ page 645 ; 1 a,b,d, 2 a,b;d,e page' 708.

SELF-EVALUATION 2

objective
8 I. Solve the following by graphing. (Use the graph paper provided)

1. $\begin{aligned} & x^{2}+y^{2}=36 \\ & x-y=5\end{aligned}$
2. $\mathrm{y}^{2}=4 \mathrm{x}$.
$\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$
3. $4 x^{2}-9 y^{2}=36$

$$
\frac{x^{2}}{9}+\frac{y^{2}}{4}=1
$$

$\$$
4. $x y=8$

$$
x+y=4
$$

8 in. Solve algebraically. Show your work.
59 $\begin{aligned} & x^{2}+4 y^{2}=32 \\ & x-2 y=-8\end{aligned}$
6. $x^{2}+\dot{y}^{2}=16$
$2 y=x-10$

$$
\text { 7. } \begin{array}{lll}
x^{2}=12 y \\
x=y+1
\end{array} \quad \therefore \quad \begin{aligned}
& \frac{x^{2}}{4}+\frac{y^{2}}{9}=1 \\
&
\end{aligned} \quad \begin{array}{ll}
\frac{x^{2}}{4}-\frac{y^{2}}{9}=1
\end{array}
$$

3,11 . III. Solve the following by graphing. (Use the graph paper provided). 0

$$
\begin{aligned}
& 2 x+y<4 \\
& x-3 y>-6
\end{aligned} \quad \begin{aligned}
& x^{2}+y^{2} \leqq 16 \\
& 2 x-y>1
\end{aligned}
$$

$$
\text { 11. } x^{2}+y^{2}<9
$$

$$
\text { 12. } \frac{x^{2}}{9}-\frac{y^{2}}{16}<1
$$

$$
x^{2}+y^{2}=49
$$

$$
\begin{aligned}
& 13 \cdot-x^{2} \geqslant 16 y \\
& \cdot \quad 3 x-y=2
\end{aligned}
$$

SELF -EVALUATION 2 (cont')
14. $x+y \leq 2$

$$
\underbrace{\frac{x^{2}}{9}}+\frac{y^{2}}{25}>1
$$

9. IV. Write an equation for each of the following and solve. Show your work.
10. The preimeter of a rectangle is 26 inches. Its area is 12 square. inches. Find the dimensions of the rectangle.
11. The product of two numbers is 8 . The sum of their reciprocals is $\frac{3}{4}$.
What are the numbers?
\approx
12. The area. of a right triangle is 24 sq. in. The measure of the hypotenuse is 10 in . Find the measure of the two. legs.
13. Find two numbers such that the square of their sum is 20 more than the square of their difference, and the difference of their squares is 24.
14. Find two numbers whose difference is 2 and whose product is 2. .
15. Find two numbers such that the sum of their squares is 170 and the difference of their squares is 72.
$\because)^{n}$

If you have satisfactorily completed your work take the LAP TXEST. Consult your teacher first.

APPENDIX 1

Given the following solutioṇis the systems of linear equations; determine if eảch system is inconsistent, consistent, dependent: or independent.
a. . $\left(3, \frac{8}{8}\right)$ in comidn
b. •no pointo in comution
ci. ail points in commón
d: $(-3 ; 2)$ in common
e. equations are parallél
f: - equations havie same grảph.

3d : II. Given the following numbers of ordered pairs of solution sets of linear equations, determine if each'system is inconsistent, consistent dependent, or independent.
\therefore a. no points.are in the solution set
b. one point is in the solution set
c.' . an infinite number of points are in the solution set

ADVAṄCED STUDY

I. Dolciani, read pp: 100A to 101 , ex. $1-6,12$, 烈, 14,15 page 101.
II. Work any one of the following:

1. Nichols, read pp. 302-310, ex. 1, 2 page 306; 1, Ra; c,d,e,h,j,1,m;o pages 310-311.
.2. Payne, read pp. 327-329, 334-336, ex. 1-10 page 329; 21 page 337.
2. Wooton, read pp. 649-652, 657-661, ex: 1-12, 21-26 pages 652653; 1-8 page 661.

Dolciani, ex, 11-14 page 326.
III. Wooten, read pp. 223-226, ex. l-20 oral page 226.
IV. Vanatta, read pp. 224,-227, ex. 1-4, 6 pages 227-228.
Vanatta (abbreviation).Vañatta, Glen D., and Goodwin, Wilison A: , Algebra Two; A ModernCourse, Char,les E. Merrill Publishing Co., 1966.
Dolciani (abbreviation)
Dolciani, Mary P., Berman, Simon L.; and Wooton; William, Modern Algebra; Book The, Houghton Mifflin Co., 1965.
Nichols (abbreviation)
Nichóls, Eugene D., Modern Intermediate Algebra, Holt, Rinehar \dot{t} . and Winnston, Inc., 1965.

Pearson (abbreyiation)

Pearson, Helen R., and Allen', Frank B., Modern Algebra: A Logical Approach, Book Two, Ginn and Company, 1966.
Payne (abbreviation)
0
Payne, Joseph N. Zamboni, FLoyd F., lankford, Jr., Francis G., Algebra Two, Harcourt, Brace and World, 1969.

Wooton (abbreviation)

Dolciani, Mary P., Wootoin, William, Beckenbach, Edwin F., Sharron, Sidney, Modern School Mathematics, Algebra 2, Houghton Mifflin Company, 1968.

[^0]: * required

