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Purpose: To investigate the problem of comparing proportions when
some data are missing, and to determine what statistical techniques are
appropriate under each of several probability models describing the
observations likely to be missing. '

Method and sample: Monte Carlo methods were used to investigate
the properties of standard estimators under each of the missing data
models. ‘

Conclusions: Applying standard techniques which ignore the occur-
rence of missing observations may yield misleading conclusions. Some
tests and estimators are fairly robust to the model for missing data,
others may be seriously affected. If the model for missing observations
is complex, the sample information may be insufficient for adequate
data analysis. :

Usefulness: The problem of missing data is recurrent in educational
research and may present serious difficulties even for-the simple problem .
of comparing two proportions.
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Introductory Statement

The central mission of the Stanford Center for Research and Develop~
ment in Teaching is to contribute to the improvement of teaching in
American schools. Given the urgency of the times, technological develop-~
ments, and advances in knowledge from the behavioral sciences about teach-
ing and learning, the Center works on the assumption that a fundamental
reformulation of the future role of the teacher will take place. The
Center's mission is to specify as clearly, and on as empirical a basis as
possible, the direction of that reformulation, to help shape it, to fashion
and validate programs for training and retraining teachers in accordance
with it, and to develop and test materials and procedures for use in these
new training programs.

The Center is at work in three interrelated problem areas:
(a) Heuristic Teaching, which aims at promoting self-motivated and sus-
tained inquiry in students, emphasizes affective as well as cognitive
processes, and places a high premium upon the uniqueness of each pupil,
teacher, and learning situation; (b) The Environment for Teaching, which
aims at making schools more flexible so that pupils, teachers, and learn~
ing materials can be brought together in ways that take account of their
many differences; and (c) Teaching Students from Low-Income Areas, which
aims to determine whether more heuristically oriented teachers and more
open kinds of schools can and should be developed to improve the education
of those currently labled as the poor and the disadvantaged.

The Methodology Unit developed Research and Development Memorandum
No. 73, which follows, to deal with the problem of comparing proportions
where some cases are missing. Such nonresponse problems are frequently
encountered in the analysis of data gathered by Center projects.
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Abstract

Two-sample problems with dichotomous data are considered; some
specific probability models are developed to describe which observations

are missing and why; and the statistical techniques appropriate under

each of the models are discussed.

Aruitoxt provided by Eric:




MISSING DATA PROBLEMS FOR TWO SAMPLES

ON A DICHOTOMOUS VARIABLE

Janet Dixon Elashoff and Robert M. Elashoff1

1. Introduction

Incomplete or missing data is a major problem ir many fields. Data
may be incomplete because of nonresponse, random loss, transcription
errors, refusal to cooperate, and a variety of other reasons. 1In these
instances, statistical techniques to deal with the incompléte data are
necessary. One possibility is simplf to &glete and ignore the incomplete
éases. To select the appropriate technique,'however; some facts must
be known about the kind of observations which are missing and which
variables influence the loss of certain observationms.

.In this study two-samﬁle problems with dichotomous data are con-

sidered; some specific probability models are developed to describe

which observations are missing ahd why; and the statistical techniques
appropriate under each of the models are discussed. Using techniques
which assume that observations are missing at random may be extremely
misleading. If the probability model governing the occurrence of missing
data is complex, the only adequate solution may be to "find out what the
missing observations are."

Section 2 discusses four probability models for the occurrence fﬁf«
of missing observations. Section 3 introduces notation and lists the
estimation and testing problems to be discussed. The succeeding three

sections derive solutions under each of the first three probability

1Janet D. Elashoff is Assistant Professor of Education at Stanford
University and a Research and Development Associate at SCRDT; Robert M.
Elashoff is Associate Professor of Biostatistics at the University of
California, San Francisco.
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models proposed, while Section 7 indicates how headway might be made
undef Model 4. Then in Sections 8, 9, 10, and 11 the Model 1 and
Model 3 estimators are compared using asymptotic and small sample
results. Section 12 contains recommendations about procedures to use
for each of the estimation and testing problems discussed and problems

for further research.

2, Probability Models for Incomplete Data

This section d;scusses four general probability models proposed
in'the statistics literature to account for the occurrence of missing
data.

Assume that one independent variable x and one dependent
variable y are under studj for each individual. Further assume that:
(1) n§ x observations are missing, (2) for e;ch value of X occurring
in the study, a random sample of Nx‘ individuals is drawn, and nx
individuals are observed on vy and Nx -n individualsvare not
observed on y (their y values are "missing" and so unknown), (3) no
other variables have been measured.

Define

q(x,y) = Pr (an individual's y is observed|x,y) .

In other words, among individuals with values x and y of the
independent and dependent variables, the probability that the value of
the dependent variable is not observed is 1l-q(x,y) . Thus, the loss of

particular observations may be influenced by the actual values of the

dependent and independent variables.




Model 1: Randomly Missing Data

It is commonly assumed that missing observations have occurred at
random or by chance. That is, neither the value of x nor the value
of y influences whether an individual's y value is observed or not.
Thus the random model states that q(x,y) , the probability that an
individual's y value is observed, is independent of both x and Yy,
or

q(x,y) = q for all x and y .

The random model is appropriate where factors completely independent
of the variables under study are causing missing data or where a question

y 1is asked of a random subsample of individuals surveyed.

The random model is the basis for the frequent practice of "ignoring"

missing data, that is, analyzing only complete observations. The practice

of ignoring missing data is appropriate if the random model holds, other-

wise it may give misleading results (see Sections 8, 9, and 10).

Model 2: Independent Variable Influences Missing Data

Model 2 states that q(x,y) , the probability that an individual's’
y value is observed, is dependent on x but independent of the value
of y, or

q(x,y) = q, for all y .

-

For example, suppose computer-assisted instruction is compared with
a conventional teaching method. Let x denote the teaching method. A
sample of Nx students is taught by method x , and each student attains
a final score of y on material learned. Due to computer breakdowns

final scores y are missing for some students. In this example, the

%0




independent variable, teaching method, but not the dependent variable,

final score, influences the probability that an observation is missing.

Model 3: Dependent Variable y__Influences Missing Data

Model 3 states that q(x,y) depends on the value of the dependent
variable y but is independent of the value of the independent variable
x

q(x,y) = qy for all x .

For example, suppose patiénts with a certain disease are assigned
either an active drug or a placebo x 1in a double blind study. The
placebo has the same side effects as the aétive drug, but presumably iﬁ
does not have the same curative or palliative effect as the active drug.‘

A follow-up study is made and each patient is scored as improved or

unimp:oved y . Lack of improvement may cause some patients to drop out

of the study or refuse to cooperate further. Impruvement also may give .

patients a reééon to drop out or a chance to leave the area. In both
cases the y measurements are unknown. Clearly, in these circumstances,
missing y's may be influenced by whether or not the patient is improved

but not directly by the drug the patient received.

Model 4: The Values of Both the Dependent and Independent

Variable Influence Missing Data

Model 4 states that q(x,y) depends on the value of the dependent
variable y and the value of the independent variable x . Both an
individual's y value and his x value affect the probability that

his y value will be observed.




Suppose, for example, that a prospective panel study is undertaken

to investigate differences in employment status y between the sexes x
in New England over a ten-year period. Some people will be lost to
follow-up in the course of the study because of emigration from the

region. Clearly employment status is one factor influencing emigration--

thus, employment status y influences whether an individual's employment

status is observed. Furthermore, the sexes have differential mobility,
so the independent variable x also influences whether an individual's

employment status is observed or not.

3. Two-Sample Problems for y Dichotomous

This section outlines five statistical problems involving the
comparison of two independent proportions {problems (a) through (e)
below] and presents the notation used in describing samples with missing

data.

Let Py be the probability that Yy equals one in population 1
Py =Pr(y=1|x=1).

The five statistical problems to be discussed are:
(a) To estimate Py for population 1 .,

(b) To estimate the difference d = Py =Py -

(c) To estimate the ratio R = p1/p2 .

pl (1 = pz)
(d) To estimate the odds ratio OR = =53 -
pz ( = pl)

(e) To test Ho * Py -~ P, against the alternative H 3 Py # Py -

Random samples of Ni and NZ individuals are selected from the

two infinite populations denoted by x=1 and x =2 . Suppose that

B
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n, individuals are actually observed from each sample, n, < Ni (1i=1,2)

so that Ni - n, observations are missing from each sample. Let r,

be the number of individuals for whom y = 1 out of the n actually

i

observed in population i ; ri =n, -ry . Let u be the number of

individuals with y =1 in the N, - n, individuals who weren't
observed; ui = Ni -0 -u . The number of missing observations
Ni - n, is known but u, is not known. This nctation is summarized

in Table 1.

TABLE 1

Notation

Population Value of ' Actual number Observed number
x 'y P(ylx) q(x,y) in the sample in the sample

1 P, q(1,1) r, +u

Totals

1

0

Totals

Notice it is assumed that it is not feasible to make further efforts

to obtain the y-values for individuals whose y-values are missing. Call-
backs will not be carried out and further data on other measured variables
will not enable us to obtain "'good" predicted values of y . These strin-

gent restrictions are relaxed only in the discussion of Model 4.

13




4. Randomly Missing Data: Statistical Techniques for -,

Problems (a) Through (e) Under Model 1

When Model 1 is correct and missing observations occur at random,
the Nl -n and N2 = n, missing observations are ignored and the
remaining obsexvations are regarded as random samples of size n, and

n, respectively. Standard statistical techniques are applied to these
random samples. The maximum likelihood (ML) estimator of Py under

Model 1 is ﬁli = ri/ni and the ML estimators of d , R » and OR are

obtained by substituting 611 for Py in each of these expressions.

The conditional and unconditional means and variances of the estimators

of Py » d, R, and OR are given in Tables 2, 3, and 4.

Alternative estimators for R and OR or simple functions of these

quantities have been derived and studied under Model 1. For example,
Haldane (1955) and Anscombe (1956) recommend that log OR should be
estimated by substituting i)‘i + (1/2ni) for f)‘i and [(1-61) + (1/2ni)]

for (1-'p‘i) in the expression OR, to reduce bias (see Table 2).

1
Since the primary focus of this study is comparison of estimators under
different models for the missing data, such modifications were not

investigated. For the conditional mean of an estimator the expectation
of the estimator is taken conditionall upon the observed ni ; the uncon-

ditional mean is not conditioned upon the n In the development of

i L]
the asymptotic means and variances it is assumed that
(o)) T, = lim ni/Ni >0

(2) A= 1lim Nl/(Nl + NZ) >0,

Occasionally, }‘1 = A and AZ = (1~A) will be used.

44




The statistics ﬁl:l s 31 s R , and O'I\{]_ have asymptotic normal

1
distributions conditionally and unconditionally with the means and

variances shown in Tables 2, 3, and 4.

TABLE 2

Conditional and Unconditional Means (Assuming Model 1)

Estimator Mean
P1y Py
dh =P -9 P =P
Rl = Pl/P2 p1/p2 [asymptotic] i
D N N Pal Pal ;
OR, = §, (1-B,)/$,(1-8,) Py (1-p,) /p, (1-p,) [asymptotic] ;
> TABLE 3

Asymptotic Conditional Variance Under Model 1

Estimator Variance

(1-p.)
pi—pi [exact]

AyTy

- p,(1-p,) p,(1-p.)
1Py 2\"7Py
1¥N 4 Xy a-nr, [exact]

' p, (1 - p,) 2 p,(1 - p.,)
FFT, & Lt [ s
(Pz)z A P T, 1 -1)

pp-p) | 1-p, . 12 |
2 1(1 - pl)‘rl}\ pz‘tz(l - )\)‘

2




TABLE 4

Asymptotic Unconditional Variance Under Model 1

Estimator Variance
CEEE VR
R FT, & Ty LA-Npy @ = 2D + 2,1 - p)]
AT, ] qp23’;1+)\)}\ (2,1 - py) - A(p, - py)]
A F T, ok pl(l;pz) 72,0 ) A1) + p QpA] .
A(-2)qp, (1-p)) '

« A test of the HO tpy = P, against one or two-sided alternatives

may be carried out using Fisher's exact test. Naturally, the power of

the test based on sample sizes n, will be less than that based on

e St TSI FOTG

sample sizes N:l .

3
5
iE
3
i
oo
-4
i
B
1
o
R
W5
¥
%
3
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5. The Independent Variable Influences Missing Data (Model 2):

PR CLIRAR

Statistical Techniques for Problems (a) Through (e)

T TR ATV 4T v ey

In this model the probability of observing the particular y score

for a particular individual is independent of the value of y but does

TerTIN LT

depend on the population sampled. The estimators defined under Model 1

for Py s d ,R, and OR are also the ML estimators assuming Model 2,

TITAN U e

and they have the same conditional means and variances under Model 2 as
u under Model 1 (see Tables 2 and 3). Moreover, the asymptotic uncondi-

,f' tional means are also the same. However, the unconditional variances

16
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under Model 2 are different from those under Model 1 (see Table 5).

TABLE 5

Asymptotic Unconditional Variance Under Model 2

Estimator Variance
p,(1 -p,)
A i i
NN, By X
i1
/N + N, d e, - N,

2
P, -py) . P, (1 - p,)

e o1 WA S o ¢ A

T Ty

17N R Aq,p> (1-\)q.,p2
11P2 2P,

A pl(l = pz) "

/N, + N, OR, [p,(1-p,)q,(-A) + p, (1-p,)q, ]

A(l-A)pg(l-pl)3q1q2

It is possible to test whether Model 1 or Model 2 applies in a
particular problem. The null hypothesis is Ho tq,.=4q for x=1,2 ;
the alternative hypothesis is H, : q # q, - Fisher's Exact Test may

be used to carry out a test conditional on the N, and (nl + n2) .

i

To test H against one or two-sided alternatives use the

0P 7P

same tests as if Model 1 obtains.

6. The Dependent Variable Influences Missing Data (Model 3):

Statistical Techniques for Problems (a) Through (e)

Under Model 3, the value of the dependent variable y influences

the probability that an individual's y value will be observed. The

17
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independent variable x does not influence the probability of a missing

observation. Therefore

(3) q(l,y) = q(2,y) = qy for y=0,1.

The maximum likelihood equations for Model 3 have quadratic and cross

product terms in the P's and q's . For example

alnL _ M7y | (mp7r))  -Wh-m)(-p))  -(N,-m,) (1-p,)
3q, “q, ' q 1-p,q,-(-p,)a, | 1-p,q.-(Ip Yag - 0 -
0 0 0 171 1770 271 2°70
Consequently, simple estimators are of interest. Eklund (1959) argues
that if there were no missing observations, the P; might be estimated

by ’p‘i = (ri + “1)/Ni - Therefore, estimating the q's as

Ty
q{,1) =
ri + ui
(4) '
r
” i
¢(1,0) = ————
ri + ui

and using relationship (3) yields equations

(5)

V TS O T e
r1+u1 r2+u2

Solving for u, and ui yields estimates

v '
50 ¢

V I
152 ~ 5h

(6)

e




et

12

This leads to estimating the qy and »p i 3s

3 = b o I A1
= N +' - N 7
1 Nzr1 N1r2
(7
g - ol2” %201 ‘
0 Nyr, = Nory f
S o
31 N, al
v 1
(8) _ i N2r1 Nlr |
N i nll:2 = n,r ‘

r, [Nz(nl -r) - Nl(n2 - 1'2)]

i NIy = M

S et oo oa e

It can be shown that (8) is indeed a consistent ,'eStimator of Py -
Using this estimator for Py » possible estimators fcr d , R, and OR
are dy =By - By, s Ry = Byfhy, . end Gy By 0 - P3g) /B3 (1 = B3))
respectively. Note that the estimator of OR , O'i{3 s is didentical to O'iil .
Under Model 3 these estimators have asymptotic normal distributions and
are asymptotically unbiased and consistent--conditionally and uncondi-
tionally. The asymptotic conditional and unconditional variances are
shown in Tables 6 and 7.

Notice that the Model 3 estimator for Py fails for P; = Py 3
both asymptotic variances are infinite for this case. Basically, for
P =P, =P there is insufficient information in the samples to estimate
Ps9qy > and 9q - Thus we may not be able to obtain reasonable estimates

of Py and Py using this procedure in cases where 12 is close to P, -

N, . When n

To illustrate, consider the case Nl =N, = n2 , then

1

19
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TABLE 6

Asymptotic Conditional Variance Under Model 3

Estimator Variance
0,(-6,)
. " 1% 2 2 2
: /Nl + N, Py 3 7% T [ej(Ti-Tj) + elrl + 6212 - 2116162]
i 7,(0,-8.) i'i
. §%27%
+ 22— 0.6, (1-0,) (1-0,) (t.~1.)2]
Ajrj 172 1 2471,
8, (1-8.) ‘ 2
- 1 1Y% 2 2.2
AN +T, d, 2200yt | Ay 028 (1T T 4 (0,87
1249279
8. (1-6.) 2 1
2V 2 2.2
+ W [91(1-91) (Tl-‘l'z) + (92-91) "l'z] )(
T 6, (1-6.) ) 6.,(1-6,)
A 1,2 1 |%1Y% 9 1,2 2179,
A +N, Ry Qﬁ? 2| T x  F (629 T,
21
0.2-8,) [1-8 0 1
A 1479 2 1
/N, ¥ N, OR + 1
17 Ng URg e§(1-91)2 TA(-8) T 7,0,
where
r P,q
1%
! 8, = E(=—) =
¢ 1 n° pyqy + Q1 -pq,

N

Py = ﬁli . Note, however, that if r2/n2 = 1/n1 s 61 =0 and ﬁi is
undefined. If ny =Wy =r) -1, then § = (nlr2 - nzrl)/N-O yielding

N

Py = 0 , another nonsense estimate. Even worse, 61 and ﬁi may both be

negative; this will occur if r, - (n1 - nz) < r, < n, r1/n1 or

A 2Ty

< r, < r, - (n1 - nz) .

N




TABLE 7

Asymptotic Unconditional Variance Under Model 3

Estimator

KT, §

Variance

p,(1-p.)q, [p, - A(p,-p,)]
p (L - p) 3 i’% ‘P2 27

+ p,(1-p,)q, [(1-p,) + A(p.-p,)]
M1-Mqyq0(p,mp)% | LT 2 271
- pi(l-pi)qlqo

PP, 99 [Py = A(py-py)]

oy §F o) Uppda [1-p, + Alp,ymp,)]

0% 9
- 999, (1~p,-p,)

Py
(1 - Mp, + Ap, - p,pP,q,]
P4 - 1 2 ¥ APy 7 PiPyYy
Pl(l‘PZ) r R

3
A(1-1)q,94p; (1-p;)

This same problem is reflected in the behavior of the maximum likeli-

hood estimators for Model 3. When P; =Py s the information matrix is

singular. For p, # p, , numerical comparisons for parameter values
1 2

listed below2 indicate that the asymptotic variances of 331 s 33 s ﬁ3 s

and di3 are identical with those of the ML estimators of P3y » d , R,

and OR .

2Variance ratios were evaluated for p

Py = .1, .25, .50, .754°.90 ; q = .5, .75, .90, 1.0 ;
.90, 1.0 . )

=.1l, .25, .50, .75, .90 ;

1
a9 = -5, 75,




Detailed investigations of the behavior of the Model 3 estimators

in large and small samples are reported in Sections 9, 10, and 11, while

in Section 12 the testing of Ho ipy = Py is discussed.

7. Both Variables Influence Missing Data (Model 4):

Statistical Techniques for Problems (a) Through (e)

In Model 4, the probability that a particular observation is missing
depends on both the value of X , the independent variable, and the value
of y , the dependent variable. Therefore, the probability that a par-
ticular y observation is missing is different for each of the four x,y
combinations. Without further assumptions or additional information, it
is impossible to obtain consistent estimators of the Py - No detailed
studies of problems (a) through (e) were carried out for Model 4 since
entirely new problems arise when this model holds. The following are
four possible lines of attack.

(a) Assumptions can be made about .relationships among the four

probabilities q(x,y) which would allow the use of techniques

oﬁtained for Model 2 or Model 3. For example, assume that missing

observations are twice as likely in population 1 as in population 2.

(b) Estimates of the probabilities q(x,y) may be obtained by a

pilot study or intensive subsampling of nonrespondents (see e.g.,

Cochran, 1963).

(c) Use of some related variable 2z can be made. For instance,

if a dichotomous variable 2z affects the probability distribution

of y but does not influence q(x,y) , then Eklund (1959) has

developed consistent estimators of the Py -
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(d) Estimators based upon Models 1, 2, and 3 could be employed if

the magnitude of the biases when Model 4 holds were ascertained and

the corresponding standard error formulae changed. That is, a
robustness study could be made to find out the conditions under which
these Model 1, Model 2, and Model 3 estimators give reasonable results;

This point will be discussed in later sectionms.

8. Estimators of the Py

, { In this section the concern is only with how well the p; are
estimated and not with how to estimate the variance of P; - Since the é
Model 1 and Model 2 estimators of the p; are the same, the estimation 5
problem is reduced to a comparison of the behavior of ﬁli and ﬁ3i
;  under Models 1 and 3. How much is lost if it is assumed observations
i{ were missing at random, if in fact 9 # qy ? How much is lost by

using the Model 3 estimators even though 99 = 93 ? To answer these

¥ questions it is necessary to examine asymptotic unconditional results

“

<
i
L
g
&
£
b

for the bias, variance, and mean~-squared error of the Model 1 and

Model 3 estimators of Py under Model 1 and Model 3. Since comparisons
between Py and p, are the major interest, small sample work is
reported only for d , R, and OR (see Sections 9, 10, 11, and 12).

The Model 1 and Model 3 estimators for p, are

L)
(-

[

[}

=2 a}
= |~

n ) [Ny(ay = 1)) - Ny (n, - 1))]
mI, - mn

23
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The estimator 331 is asymptotically unbiased with conditional and-
unconditional asymptotic variances given in Tables 6 and 7. Results

for ﬁll under Model 3 are given in Table 8.

TABLE 8

Asymptotic Behavior of 311 Under Model 3

E (ﬁll) el [exact]

(ql-qo) P, (1-p,)

Bias (p,,) {exact]
11 qul + (1‘P1)q°
:; Var Jﬁl + N2 20
N 91 (1—61)
o conditional —_— [exact]
E T;A
02 (1-8,)
y unconditional

Suppose Model 1 is true and 9) = 95 = 9 , how much is lost by
using the Model 3 estimator of Py ? For simplicity, let Py =Py + A
and Nl = N2 = N . Thenunder Model 1 both estimators are asymptotically
unbiased and the conditional variance formulas for ﬁll and 331

become

p, (1-p,)
. 1417Py
Var (6))) = =55

P, (1-p,)
t— 1872 + G (op]
qd

Var (ﬁ31) =X

24
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yielding

Var (f;,) ) 2(1-q)p, (1-p,)
—_—— =1+

var (§;;) a2 )

Under Model 1 then, 631 always has a larger variance than 611 and
gets worse in comparison with 611 as py approaches 0.5 , as ¢q
approaches zero (the proportion of missing data increases) and as

A= Py = Pg approaches zero.

Under Model 3, the asymptotic unconditional formulas for mean-

squared errors are:

reemimam e e -

2
9 (1-6,)q
bl

N
- 1
fpz(l-pl)qo[p2 ", (p,-p;)]

,\ p, (A-p,) N
MSE (p,,) = (N.+N,) + p, (1-p,)q, [1-p, + —= (P,-p,)] .
31 172 1 2’9 27 N, 2R

3
N,Ny9,945(py-p;)

\- pl (1'91) qlqo
As A approaches zero, MSE (ﬁll) will be smaller than MSE (631) .

However, for Py # P, and N large, the bias in ﬁll s which increases ?

with Iql-qol will make 331 preferable. In small samples, 331 is

BRI AL L 1 S sae e Sy L

biased and may have a larger variance than asymptotic results indicate.

9. Comparisons of Model 1 and Model 3 Estimators of d

In this section the unconditional asymptotic and exact small sample

behavior of estimators 31 and 33 undér Models 1 and 3 are compared.

kS
hg
i
3w
W
i
e
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i
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g
B
53
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Model 1 and Model 3 estimators of d

3 2
170, "o,
2
2 =( _.j:g)(Nz(“l ~ ) - N, - rz))
3 1 N2 mry, -,

Results of the comparison indicate that the Model 1 estimator d will

1
be preferavle for P; =P, ,bfor 94 = 4 and for small N (N < 50).

For q4 ¢ q; , Ipl-p2| $0, 33 will look better f§r large N .

Next the three situations P =P, q = qo » and the general case of
Model 3 are discussed by comparing asymptotic results and by examining

exact bias and mean square error for samples cf N1 = N2 = 20, 50 .
The Model 3 estimator, 33 s 1s asymptotically unbiased with
conditional and unconditional‘variances given iu Tables 6 and 7. The

behavior of 31 -under Model 3 is given in Table 9.

TABLE 9

Asymptotic Behavior.of 31 Under Model 3

E (31) - 8, (exact]

i RASERITIN SERCE TN

[exact]

Var Jﬁl + N2 d1

conditional

61(1-61) . 62(1-62)

(exact]
TlA Tz(l-A) ; _

2 2
61(1-61) 62(1-62)

unconditional -+ =
Aplql Q@ }\)qul
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Exact unconditional results for bias, variance and mean-square error

were obtained for d1 and d3. for Nl = N2 = 20, 50

of parameter values Pys Py = .10, .25, .50, .75, .90 ; 95 95 = .50,

» for 400 sets

«75, .90, 1.0 . Results are summarized in Tables 10, 11, 12, and 13.
Notice that except for sign changes in the biés, results for P> Py
are identical to results for Py Py and, with 99> 9p reversed, to

results for 1-p1, 1-p2 and 1-p2, l-p1 + Results were obtained

A

conditional on n, #£0, 92 #0; for B T, = n,ry d3 was defined to

be 0.

When Py =Py » both estimators are unbiased in large and small

samples. The asymptotié unconditional variances of 31 and 33

respectively become

1199 p(1-p)
A(1=1) (pq, + (l-p)q0)3
1 3 3 2
and E;EIXYE:XT [qop + ql(l'P) - q0q1(1-2p) 1.

Table 10a shbws the ratio of the unconditional asymptotic variance
fo:mulaé for several values of p , 9q > and q; - (Note that the con-
ditional variancé of 33 ‘is infinite for P, =P, .) The ratio is

always less than 1.0 , indicating that for P; =Py » dl is to be

" preferred. Table 12a shows the exact ratio; &1 is even more strongly

preferable in small samples.
When q; =95 » that is, when Model 1 obtaims, 31 is unbiased in

large and small samples; 33' is unbiased in largg samples but has bias

"ranging from .001 to .075 in absolute value for samples of size 20

and from .001 to .045 for samples of size 50 (Séé Table‘llC)f The

h,-,._,,__..‘_,w_..«—,....._..U_

ot e it L AR AP B o AR < s




T

L S e S

NN v et v

Y

S AT R T e

BRI

21

bias ranges up to 39 and 26 percent of d for samples of size 20

and 50 respectively. The asymptotic variance formulas for Nl = N2 =N

are related by
Var d. = Var 4. + L (1~q) (1-p,-p )2
_ 3 1 gN 1°%2 *

They are equal only for N infinite, q =1 or Py + P, = 1l ; otherwise

a3

var d3 > var &1 by an amount which increases as q decreases and as
P + Py differs from 1 . See Table 10b for ratios of the variances.
Table 12b shows the -ratio of exact mean-squared errors for N = 20, 50 .

These results favor 31 more strongly than asymptotic comparisons would

indicate.
For the general case of Model 3 when Py # p, and 4 # g » 31
is biased and 33 unbiased in iarge samples. The asymptotic uncondi-

tional ratio of MSE (31) to wvar 33 is shown in Table 10. These

asymptotic comparisons indicate that for small samples (N = 20) d, is

1
preferred for p, close to P, R 33 is preferred for 'Ipl—pzl large.

For samples as large as 200 , the bias in 31 makes 33 appear

preferable except for some cases where lpl—pzl is small. The exact -

bias in 81 is independent of N and ranges up to .12 in absolute .

value and up to 45% of d for the cases considered; it increases in

‘absolute value as Iqo-q1| increases. The _absoluté',bias in 33 ranges

up to .06 for N =20 and .04 for N = 50 ; maximum percentage bias
is 39 for N =20 and 26 for N = 50 (see Table 11). For a g:lven‘ '
Pys Py the bias in 33 is always one-sided while the bias in 31 may

be either positive or négétive. ‘The bias in 33 vdecrea‘ses slowiy_ with

N, with increasing _Ipl—pzl , and wih increasing 'qo +4q, . The exact

ratio of unconditional mean-squared efrors_ (Table 12) generally favors

Rt s Iy
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TABLE 10

Ratio of Asymptotic Unconditional Formulas for MSE d

~

MSE d1

MSE d

3

1

and MSE 33a

R ST e e r A D

a) When Py =Py » the ratio is independent of N , both estimators are
' 1.0 .)

asymptotically unbiased. (For 9 =

b
Py Py

9
Min

Max

.10 .10 .220
.25 .25 .600
.50 .50 .790

b) When 949 = 4y > the ratio is independent of N , both estimators are
= 1 , the ratio is

asymptotically unbiased. (For q; = q;

9y =q; #1

P; Py Min

.926
.962

=1 , the ratio is

.994

Max

.10 .25 396
.50 .680
.75 .925

.90 1.000

025 - - .50 - .875
.75 1.000

.766
914
.984
1.000

.972
~1.000

¢c) For d # 9 > d, is asymptotically'unbiased.

N =20

Py Py Min ‘Max

= 200

Min

Max

10 .25 474,961
| .50 | . .696  1.712
.75 .789  1.896
.90 1.005  1.284

.25 .50 - . 757 L9955
' w15 ©.985 . .999

.708

1,033

1.002
1.006

.812
.999

3.169
8.636

17.452
£ 2.075

2,155

1.585

1.0 .)

Formulas evaluated for pl, p2 of W1, .25, .SO, ,75; .90
, qO’ ql of .5, .75, .90 1, 0 o _ : S

bDue to symmetries in the formulas, all other cases in pl, p2

reduce to those shown.-

s NS FSe




TABLE 11

Exact Unconditional Bias of dl R 33 for Nl =N2

g TR

A
e Sov

a) For Py =Py both dl and 33 are unbiased for all N .

b) The bias in dl is independent of N. For 949 = 9, > dl is

unbiased. For q # q ¢

100 ‘Bias
Bias d1 3
5 Py Py Min Max Min Max
; 10 .25 ~.0681 0597 -45 39
[ | 6
% .50 -.0848  .1191 -21 29
: .75 -.0271  .1025 4 15
£ .90 .0008 - .0344 1 4
: .25 .50 -.0179  .0594 -7 23
: .75 .0010  .0428 .2 9
§ R | | &
‘f c) For d3 : | | %
; ‘Bias 33 ‘ : ‘ g
g N =20 N =50 ' ﬁ
99 =4, #1 9@ *#9 9y =9 #1 qp # 1
i Py Py Min Max Min Max Min = Max Min Max
. +10 .25 | .0094 .0557 .0022 .0593 .0052 .0391  .0009 .0393 | E
g - +50 | .0059 .0579  .0014 .0511 .0021 .0203 .0005 .0170 3
: - .75 | .0027 .0288 .0009 .0222 .0010 .0094 . .0003 .0074- ;
S .90 | .0014 .0143 .0007 .0093 - - - --
b .25 .50 |..0115 .0746 .0042 .0598 .0050 .0453  .0019 .0352

. +75.] .0051 .0542 .0026 .0359 .0018 .0176  .0009 .0116

qExact unconditional results obtained for Pis p2 = .10, .25, .50

.75, .90; «50, .75, 190, .999 . Due to symmetries in the dis-
tribution, a? %her cases reduce to those shown with possible sign changes.
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TABLE 11 (continued)

_ 100 Bias
d
N =20 N = 50

v q0=q1*1 qo#ql qO=q_l#1 qO#ql
pl p2 Min = Max Min Max Min ‘Max Min Max

.10 .25 6.2 37 1.4 39 3‘.4 26 .6 26
50 | 1.4 14 421 .5 5.0 .1 4.2
.75 .4 4.4 .1 304 .2 1.4 .0 1.1

o90 o2 1.7 o9 1.1 - - -"" -

.25 ..50 4.6 29 1.6 23 2.0 18 .8 14
.75 1,0 10 .5 7.1 4 3.5 .2 2.3

A

dl except for some cases where Ipl-p2| is large and N.= 50 . Gener-
ally the ratio tends to increase as Qs qo increase; that is, 33
looks worse as the proportion of missing data increases.

Table 13 gives ‘the ratio of the exact to the asymptotic uncondi-
tional variances for | dl and 33 for N=20 and N=50. For N
. as _srnall as 20 , the‘asympt‘otic‘variance formulafis‘quite close to the
exact variance for dl 3 for ‘33 the asymptotic formula does not provide
a reasonablel'ap‘proximation.‘ For Py - p.2 ’ the ex"act variance cf 33
'gces_up_ with N , and for Py close to S Pyos the ‘e}‘c‘actvariance does
no’t decrease as fast as. 1/N . Generally the ratio of exact to asymp-'
totic variance is largest for q0 or. ql small as. would be expected.
| 'Note that the ordinary estitnator of the conditional variance of dl
should be a good est:l.mate of its conditional variance under Model 3.. )

‘_ In summary, 'for pl = p2 or ql qo s OF N stnall to tnoderate,

dl is the preferred estitnator., For . N large,_ pl P, # 0 3 and 9
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: TABLE 12
Exact Ratio of Unconditional Formulas for MSE &1 and MSE 333
| MSE d
MSE d3
; a) For P, = pé , both 31 and 33 are unbiased. The ratio increases
? as 45 » qq increase. For 949 = 9; = 1 , the ratio is 1.0 .
5 N = 20 N = 50
3 » .
; Py P, Min  Max Min Max
] L1000 .10 .07 .95 .02 .97
£ o25 o25 o06 o93 ’ o02 o67
3 .50 .50 .07 .73 .02 .43
¢ L |
b)  For 49 = 9y # 1, dl is unbiased.
. N =20 N = 50
P P, Min Max " Min Max
.10 .25 .08 .53 04 .40
- .50 .21 .83 .46 .90
§ .75 .54 .96 .84. .98
.25 .50 .10 .60 .07 .70
.75 .27 © .94 .73 .99
g c) For q # q *
| N = 20 N = 50
2 P,y P, Min Max Min Max 3
.10 .25 .09 .94 05 .94 A
i .90 .88 1.03 - - J %
.25 .50 .08 .85 .04 .89 i
.75 .21 .97 77 .99 :
Exact unconditional results obtained for p s P, = .10, .25, .50, : 1\
.75, .90 ; 9y 9y = .50, .75, .90, .999 . Due t0 symmetries in the - ?;ﬁi’,
‘ distributions, al other cases reduce to those shown. Generally speaking, ;;;1
the ratio increases ‘as ql ’ q0 increase. : R e R f
;

) . : o ) [ 1
')"2 b o o o s
S . . . ‘h-% C
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and 9 known to be unequal, 33 may be employed. In other words,

unless it is reasonably sure that Model 3 pertains and Py # P, 5 more

will be lost than gained by using 33 .

TABLE 13
Ratio of Exact to Asymptotic Unconditional Variance of d°

'(Excluding 94 =9 = 1 for Which Ratio Is 1.0 )

N =20 N =250
dy dy d 4
Py P, Min Max Min Max Min Max Min Max
.10 .10 1.00 1.06 .88  5.10 '1,00 1.02 .98 17.55
«25 1.00 1.06 1.02 6.27 1.00 1.02 1.03 12.41

.50 1.00 1.06 1.02  4.32 1.00 1.02 1.00 1.77
.75 | 1,00 1.06  1.01 1.9 1.00 1.02 1.00 1.12
.90 1.00. 1.06 1.01  1.37 1.00 1.02 - -

«25 .25 1.00 1.06 1.04 - 9.82 1.00 1.02 1.43 35.4
.50 1.00 1.06 1.17 9.29 1.00 1.02 1.12° 18.4
75 '1.00 1.06 1.046 4.90 1.00 1.02 1.01 1.39

.50 .50 1.00 1.06 1.37 15.21 1,00 1.02 2.32 61.50

3Exact unconditional results were obtained for P> p = ,10, .25,
.50, .75, .90 ; qo, q = 50, «75, .90, .999 . Due to0 symmetries in the

distributions of 4 , d s all other cases reduce to those shown.
[Note, variances wereé calculated conditional on n, #0, # 0 ; for

nr, = n2 1 , define. 33>=>0..]

10, Comparisdns of ﬁl and §3 ,

The estimators of the ratio.‘pllp2 are

A rl n2
T
"2

[
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~ r, N
and R =,—1—2 .
r

3 271
In this section the unconditional asymptotic and exact small sample

behavior of ﬁl and §3 under Models 1 and 3 are compared. Results

show that for P; =P, is

99 = q; » OF N small to moderate, ﬁl
moderately preferable to §3 .
| The Model 3 'estimator, §3 s is asymptotically unbiased with condi-

tional and unconditional,variances given in Tables 6 and 7. The behavior

of R, under Model 3 is given in Table 14.

TABLE 14
Asymptotic Behavior of ﬁl Under Model 3
0
A 1
E (R,) o
1 5,
(a,-4,) (p,~p; )0,
1l 70 2 7171
Bias (R,) '
1 Pp9)
Var Vﬁl + N2 ﬁl | :
o [6,¢1~6.) (6.y2 6,.(1-6.)
| | 1 |20 (9))% U9,
‘ conditiqna]_. 9—2 |:,tT-f+ [92] '1'2(1-)\)}
2 R
02, [p2(1-p))0, (11) + p2(1-p.)0.A]
R - 190 PR \17P)Y T Py \TPy)Y,
unconditional v : . — —
291 . PPy WA

Under Model 3, the confiitioﬁal variances of 'ﬁl “and ‘ﬁ3. have the

ratio °




small samples the range of the bias is generally comparable for the f&o

- able to R
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which in large samples will be approximately

9y + Py (ql-qof]z
99 + Py (ql-qo{J

and consequently will be greater or less than 1.0 for p1/p2 greater

or less than 1.0 .

Exact unconditional results for the bias, variance, and mean square

error were obtained for ﬁl and §3 for N1 = N2 = 20, 50 , and for

400 parameter‘sets in Pys Pys 935 9g - Results were obtained conditional

on hl #0, n, # 0 , and are summarized in‘Tables 15, 16, and 17.

For p, =.p2‘;‘both ﬁl and §3 are asymptotically unbiased. In

.«

estimators although always slightly less for ﬁl than for ﬁ3 (see

.Table 16a). The biases are generally poSitive.and range up to .30% of

R ; the biases decrease as P; » Py increase.

The ratio of the asymptotic unconditional variances is

Var R1 1-0

"~ T-pq,

Vér §3
which is always less than 1.0 véxcept for q; =45 = 1 . The ratids

have been’eValuated in Table 15a. The exact ratio of mean-squared errors

~ is shown in Table 17a and is quite similar to asymptotic results even for

N"= 20 . Iherefore,‘for Py ='p2 , the estimator ﬁl is clearly prefer~
. . 3 ) . .
Whgn_Model lfis trug aqd' ql'- dg- but p, # p2i,tboth R, an@' Ry
are asymptotically unbiased. The biases in ﬁl and §3 are usually
positiVé'énd show.very similar rangés; The percentage bias depends only

on ﬁé“ ahdfdécréasés,as pzx‘increaseé (see Table 16). The ratio‘of the

a5

T e e




asymptotic unconditional variances is

Var R, } pz(l_-)\) + )\pl - PP,
var R, Py (1-A) + Apy - ap,yp,

1.0 L]

This ratio is evaluated in Table 15b. The exact unconditional ratio of

MSE ﬁl to MSE ﬁ3 is shown in Table 17b. The small sample comparison
favors R1 somevhat more than the asymptotic results. Therefore, under
Model 1 ﬁl is to be preferred, although for Py small, the gain in

using ﬁl may be relatively small,

Under Model 3, when ql'# q, and Py # Py » ﬁ3 is asymptotically
unbiased and ﬁl is asymptotically biased. Excépt for Py small, ﬁ3
shows a smaller range for exact bias and its Biés decreases with increas-

' ing N‘ and increasing q (it is almost unaffected By dq ). The ratio
of asymptbticvuﬁcbnditional_meah—éqdared'errors is shown in Table 15c.

" For an N 55 small as 20 there is no ciear-cut choice between ﬁl and
ﬁ3 s by N = 200 ﬁ3 is éiearly préfefable. The small sample results
vfor N = 20 shown ih Table 17c¢ are quite similar to those obtained using
asymptotic fo:ﬁﬁlas. .Although ﬁ3 'improveSIWiﬁh N , exact résulﬁs do

not clearly favor either estimator, even for N as large as 50 .

The ratio of exact to asymptotic variance is quite similar for 'R1

Py

and ﬁ3 '« The exact variance is generaily_larger except for P =
and N = 20 .k For N = 50 , the ratios vafy from 1.0 to 3.7, being

close to 1.0 fbr R <1 and larger for R>1.

Invconclnsion, then, for P, = p2‘{ 9y = qlv, or N small ;o

moderate, R, is moderately-éreférable'to’ ﬁ3 . For N .lafge,_ P, # Py »

qiv# 9 » .ﬁ3 is preferable to ﬁl . For other situations; the chdice

dépends on the parameter values.
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TABLE 15
Ratio of Asymptotic Unconditional Formulas for MSE ﬁl and MSE §3
.,MSE,R1
MSE R3

a) When P; =Py » both ﬁl "~ and ﬁ3 are asymptotically.unbiased'and
the ratio is independent of N . (For qQ =9 = 1 , the ratio

is 1.0 .)
Py Py - Min - Max
.10 .10 91 1.00
.25 .25 .80 .99
.50 .50 .65 .96
.75 .75 .40 .92

.90 .90 18 .91

b) When 95 = 9; » the ratio is independent of N . For 9 =9 = 1.0 s
the ratio is 1.0 . The ratio is syﬁmetric in Py » pz'. v

qp = 4qy #1
Py Py - »Min Max
.10 .25 .92 . .98
.50 .91 .98
.75 .90 .98 -
. . .90 .90 .98
.25 .50 , .80 .95
75 .77 .94
.90 .76 .94
.50 .75 .57 .87
o .90 .53 .85
.75 .90 B ) | | .69

c) For qo.# q > §3' is asympfotically unbiased.

| N = 20 N =200
p, P Min  Max - Min  Max.
.10 .25 .85 117 .89 . L.45
) .50 ' o65 1.91 088 : 4.29
.75 53 3,02 95 - 9.75

.90 49 3.8 .96 14.31




TABLE 15 (continued)

N = 20 . N = 200
Py Py Min Max o Min Max
.25 .10 .71 1.18 .84 1.23
: .50 .74 1.30 .90 3.10
.75 .65 2.48 1.01 11.12
.90 .62 3.56 1.08 19.21
.50. .10 .62 1.64 .91 2,22
.25 .65 1.35 .91 1.92
.75 .61 1.29 .90 5.04
.90 .58 2.33 1.07 13.84
.75 .10 .61 2.50 .95 4.85
.25 .64 2.16 1.03 5.48
% .50 .54 1.32 .94 3.53
i .90 .39 0.99 .64 3.97
E .90 .10 .59  3.38 .98 8.09
2 .25 .67 3.08 1.12 10.73
.50 .58 1.98 1.16 8.38
.75 .35 0.90 71 3,28
§: TABLE 16
'FEQ Exact Unconditional Bias for ﬁi , §37 as a Percent of R2

R RS

a) For §3 » which is asymptotically unbiased, the ﬁercentage bias is
independent of pi (the range is only slightly larger for q # q;
yhan for 9y = 93 ). 

N =20 N =50
p, . Min ‘Max Min Max
.10 23 . 16 24 31
.25 S22 28 7 20
.50 - 6 22 2 7
.75 2 11 R | e
090 1 8 - 7.-

~ ¥Excluding 9 = 4
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¢) For

Py

TABLE 16 (continued)

N =20

. Min

Max

10
.25
.50
.75
.90

A

=23
20
7

2

1

- 10

26
15
4
1

R1 is asymptotically biased.

b) For 99 = 9 1, ﬁl is asymptotically unbiased and
age bias is independent of Py -

the percent-

.10
.25

75

=23
18

=24

13
27
24
42

36
20
22
39

57
40

15

89
68
27




TABLE 17

Exact Unconditional Ratio of MSE ﬁ to MSE ﬁ

1 3
P, = P, (excluding q = q, =
N =20 N =50
Py P, Min Max Min Max
10 .10 .93 1.04 .87  1.00
.25 .25 .73 .99 .76 .99
.50 .50 .56 .95 .61 .95
.75 .75 .32 .92 .37 .92
ogo .90 o15 090 - -

9y = q; (for 9y =4y = 1, the ratio is 1.0 ):

N =20 N =50
pl p2 Min Max Min Max
.10 .25 .91 .97 .85 .97
.50 .75 .96 .85 .97
.75 .73 .96 .85 .97
. 90 . 76 . 96 - -
.25 .10 .98 1.01 .92 .98
.50 .65 .93 .73 <94
.75 .60 .92 72 <94
. 90 . 61 . 92 - -
.50 .10 .96 .98 .90 .98
.25 .79 .95 77 .95
.75 .43 .85 .53 .86
. 90 . 40 . 83 - -
.75 .10 .95 .98 .89 .98
.25 .76 .94 .75 .94
.50 .52 .86 .54 .87
. 90 . 23 . 67 - -
.90 .10 .94 .97
.25 .74 .94
.50 .50 .85
.75 .26 .68
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TABLE 17 (continued)

¢) For 9 # q *
N= 20 N = 50

P, Py Min Max Min .Max
.10 .25 .83 1.07 .81 1.20

.50 .56 1.86 .63 2.30

.75 41 3.05 .62 4.14

090 039 3.94 —— ——
.25 .10 .67 1.08 .62 1.23

.50 .63 1.26 .69 1.61

.75 .46 2.47 .68 3.91

090 047 3058 - -
.50 .10 «52 1.26 43 1.91

.25 .46 1.43 .57 1.46

.75 .45 1.29 .59 1.92

090 041 2032 — --
.75 .10 .56 1.60 .38 3.24

.25 .38 2.35 .51 2.45

.50 41 1.32 .53 1.62

.90 .29 .99 - -
.90 .10 .61 2.27

25 .36 3.34

.50 .38 1.86

.15 .30 .87

11, The Estimation of the Odds Ratio OR

The Model 1, Model 2, and Model 3 estimators of

L

OR =

r, (n

2 = Ty)

r, (n

1T

OR all reduce to

This estimator is asymptotically unbiased under all three models with

asymptotic unconditional variances under the three models given in

Table 18.




TABLE 18

Asymptotic Unconditional Variance of Vﬁl + N2 OR

Variance
Pl(l‘PZ)
3
A(l-k)qu(l-p 1

3 [p, (A=p,) (1-3) + p, (1-p,)A]

Pl(l'PZ)
3 3
A (1')\)132 (1'P1) : qlqz

[p2 (l-pz)qz(l-k), + pl(l-pl)qlkl

Pl(l'PZ)

A (l-A)qlqopg (1-p,)

3 [1>2(1-1>2)[1>1<11 + (l-pl)qol(l-k)

+ pl(l-pl)[péql + (l-pz)qdlkl

Alternatively, the asymptotic variances are given by
Pl(l‘PZ)
3 3
A(1-))p; (1-p,)

£(1)

P A Py (ipy) (1-1)
q q

£(1)

P Gpp} P,y (1-3)

£(2
@ 9 9

Pl(l‘PL)A 32. + .pz(l-pz)(l-k) El

9 % 9 &

£(3)

This independence of the form of the estimator from q(x,y) suggests
that the use of OR will be robust to q(x,y) . Further investigation of

6i is ﬁhen in order.
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Under P; = Py the variance formulas reduce to

i Model 1
S
X VrIie B Hodel 2
k £ Model 3
9,9

Table 19 shows the exact bias in OR under Model 3 for ‘Nl = NZ = 20
Table 20 shows the performance of the asymptotic variance formula for
N1_= N2 =.20 . Generaily‘the bias‘is of the order of 20% to 50% of
OR , although it does not contribute éppreciably to MSE . This suggests
a modification of OR to reduce bias along the lines suggested by
Anscombe (1956) and G#rt & Zweifél (1967) for estimating ﬁhe logit. The

exact behavior of OR does not seem to depend particularly on Ipl - p2|

or |q - qql .

TABLE 19
Exact Unconditional Bias of di for Nl - N2 = 202
Bias 100 Bias
b ' OR
P P Min Max Min Max
1 2 o
.10 .10 -.195 331 =20 33
.25 .116 .176 39 59
.50 .0207 . .0522 23 58
.75 .00505 = .0126 19 47
.90 .00151 - .,00363 19 45

8For dps 9y = -5, -75, .90, 1.0 .
For the other cases in Py» P, » Mote that p,, p, is eduivaleqt
to (1-p,), (1-p,) with the q's reversed.

a3

=
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TABLE 19 (continued)

Bias 100 Bias

pl p2 o Min Max ) Min Max

1.134
.578
174
.0428

4.632
2.206
.670

15.427
7.221

30.053

TABLE 20
Ratios of Exact to Asymptotic Variance and

for OR for N1 = N2 = 20

Variance
Py Py Min Max

.10
«25
.50
.75
.90

.10
25
.50
.75

.10
«25
.50

L7510

.25,
.90 .10

426
2.304

1.860

1.610
1.660

.314
2,219
1.984
1.647

.316

2,520

2,439
469

3.080
072 -

2,100
4.550
4.420
3.399
3.299

2,284
5.541
5.300
3.879

3.157
7.673
7.389

3.097
7.930

1,244

 %For 9 4y = 05,.;75; .90, 1.0 .

, vaor the other cases in p,, p, , noté that Pas P is equivalent to |
_(l-pz), (1-p,) with the q's. Yeversed. The extreimes usually occur at
ql ’ qo = (. ’ '5)9 (1'09 1'0)9’ (-59.‘1'_0)9 (1009 .5) .
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12, Conclusions: Tests and Confidence Intervals

" Under Models 1, 2, or 3

A test of Ho :py =p, may be carried out using the Irwin-Fisher

exact test for the 2x2 table of r, and n, -r;, conditional on n,
n‘2 , and r + r, . Ihé'tabled significance values and the power function
will be correct under all thfee models. If Model 4 obtains, an accurate
test of 12 ='p2 cannot be performed without a&ditional information.

The major issues in point and intérval estimation are the choice Qf
an estimator and the calculation of a variance. For the estimation of
d, 31 is the estimator of choice for Models 1 an.d 2, and, though
biased may be useful for quel 3 unless N is large; than 50 and Py
and p, are known to be widely different. The ordinary estimator of the
conditional variance of 31 shouid perform well under "all three models.

To estimate R , use ﬁl in Models 1 and ,2; under Model 3 the

1 3 depends strongly on the values ofi the

parameters. Modification of these eétimators to reduce bias is of

interest. It is common to base confidence intervals on the large sample

" normal disfributions of ﬁ « In smail samples the large sample standard

error is bil"«.ised.' In addifion, it may be sensible to estimate the large
sample conditional variance formula for Model 3 by substituting r i/ni

for the Bi , but there is no good estimator for the Py and qj “of the

unconditional formula.

To estixhate OR , O'f{ (or a mbdification to. reduce bias) can be
used under ‘A]_.l'thrfee models. Uniformly most-accurate confidence intervals

can be constructed for OR uSing the noncentral distribution of r
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r, conditionai on (r1 + r2) > My 5 D, (see Lehmann,ll959). This non-—
central distribution is the same under all three models.

In conclusion, then, the effect of different models for missing data
deﬁends on the inference pfobiem at hand. Choice of a test for 'HO':
pl’é 178 and aﬁ estimator for OR is the same for Modelsll, 2, and 3.
Eséimaﬁion of p and d and R is the same for Modgls'l and 2 but
may be'difficulﬁ for Model 3. Under Modei 4, ad&itional information is

necessary.

.46
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